1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Resource Director Technology(RDT)
4 * - Monitoring code
5 *
6 * Copyright (C) 2017 Intel Corporation
7 *
8 * Author:
9 * Vikas Shivappa <vikas.shivappa@intel.com>
10 *
11 * This replaces the cqm.c based on perf but we reuse a lot of
12 * code and datastructures originally from Peter Zijlstra and Matt Fleming.
13 *
14 * More information about RDT be found in the Intel (R) x86 Architecture
15 * Software Developer Manual June 2016, volume 3, section 17.17.
16 */
17
18 #define pr_fmt(fmt) "resctrl: " fmt
19
20 #include <linux/cpu.h>
21 #include <linux/resctrl.h>
22 #include <linux/sizes.h>
23 #include <linux/slab.h>
24
25 #include "internal.h"
26
27 #define CREATE_TRACE_POINTS
28
29 #include "monitor_trace.h"
30
31 /**
32 * struct rmid_entry - dirty tracking for all RMID.
33 * @closid: The CLOSID for this entry.
34 * @rmid: The RMID for this entry.
35 * @busy: The number of domains with cached data using this RMID.
36 * @list: Member of the rmid_free_lru list when busy == 0.
37 *
38 * Depending on the architecture the correct monitor is accessed using
39 * both @closid and @rmid, or @rmid only.
40 *
41 * Take the rdtgroup_mutex when accessing.
42 */
43 struct rmid_entry {
44 u32 closid;
45 u32 rmid;
46 int busy;
47 struct list_head list;
48 };
49
50 /*
51 * @rmid_free_lru - A least recently used list of free RMIDs
52 * These RMIDs are guaranteed to have an occupancy less than the
53 * threshold occupancy
54 */
55 static LIST_HEAD(rmid_free_lru);
56
57 /*
58 * @closid_num_dirty_rmid The number of dirty RMID each CLOSID has.
59 * Only allocated when CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID is defined.
60 * Indexed by CLOSID. Protected by rdtgroup_mutex.
61 */
62 static u32 *closid_num_dirty_rmid;
63
64 /*
65 * @rmid_limbo_count - count of currently unused but (potentially)
66 * dirty RMIDs.
67 * This counts RMIDs that no one is currently using but that
68 * may have a occupancy value > resctrl_rmid_realloc_threshold. User can
69 * change the threshold occupancy value.
70 */
71 static unsigned int rmid_limbo_count;
72
73 /*
74 * @rmid_entry - The entry in the limbo and free lists.
75 */
76 static struct rmid_entry *rmid_ptrs;
77
78 /*
79 * This is the threshold cache occupancy in bytes at which we will consider an
80 * RMID available for re-allocation.
81 */
82 unsigned int resctrl_rmid_realloc_threshold;
83
84 /*
85 * This is the maximum value for the reallocation threshold, in bytes.
86 */
87 unsigned int resctrl_rmid_realloc_limit;
88
89 /*
90 * x86 and arm64 differ in their handling of monitoring.
91 * x86's RMID are independent numbers, there is only one source of traffic
92 * with an RMID value of '1'.
93 * arm64's PMG extends the PARTID/CLOSID space, there are multiple sources of
94 * traffic with a PMG value of '1', one for each CLOSID, meaning the RMID
95 * value is no longer unique.
96 * To account for this, resctrl uses an index. On x86 this is just the RMID,
97 * on arm64 it encodes the CLOSID and RMID. This gives a unique number.
98 *
99 * The domain's rmid_busy_llc and rmid_ptrs[] are sized by index. The arch code
100 * must accept an attempt to read every index.
101 */
__rmid_entry(u32 idx)102 static inline struct rmid_entry *__rmid_entry(u32 idx)
103 {
104 struct rmid_entry *entry;
105 u32 closid, rmid;
106
107 entry = &rmid_ptrs[idx];
108 resctrl_arch_rmid_idx_decode(idx, &closid, &rmid);
109
110 WARN_ON_ONCE(entry->closid != closid);
111 WARN_ON_ONCE(entry->rmid != rmid);
112
113 return entry;
114 }
115
limbo_release_entry(struct rmid_entry * entry)116 static void limbo_release_entry(struct rmid_entry *entry)
117 {
118 lockdep_assert_held(&rdtgroup_mutex);
119
120 rmid_limbo_count--;
121 list_add_tail(&entry->list, &rmid_free_lru);
122
123 if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
124 closid_num_dirty_rmid[entry->closid]--;
125 }
126
127 /*
128 * Check the RMIDs that are marked as busy for this domain. If the
129 * reported LLC occupancy is below the threshold clear the busy bit and
130 * decrement the count. If the busy count gets to zero on an RMID, we
131 * free the RMID
132 */
__check_limbo(struct rdt_mon_domain * d,bool force_free)133 void __check_limbo(struct rdt_mon_domain *d, bool force_free)
134 {
135 struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
136 u32 idx_limit = resctrl_arch_system_num_rmid_idx();
137 struct rmid_entry *entry;
138 u32 idx, cur_idx = 1;
139 void *arch_mon_ctx;
140 bool rmid_dirty;
141 u64 val = 0;
142
143 arch_mon_ctx = resctrl_arch_mon_ctx_alloc(r, QOS_L3_OCCUP_EVENT_ID);
144 if (IS_ERR(arch_mon_ctx)) {
145 pr_warn_ratelimited("Failed to allocate monitor context: %ld",
146 PTR_ERR(arch_mon_ctx));
147 return;
148 }
149
150 /*
151 * Skip RMID 0 and start from RMID 1 and check all the RMIDs that
152 * are marked as busy for occupancy < threshold. If the occupancy
153 * is less than the threshold decrement the busy counter of the
154 * RMID and move it to the free list when the counter reaches 0.
155 */
156 for (;;) {
157 idx = find_next_bit(d->rmid_busy_llc, idx_limit, cur_idx);
158 if (idx >= idx_limit)
159 break;
160
161 entry = __rmid_entry(idx);
162 if (resctrl_arch_rmid_read(r, d, entry->closid, entry->rmid,
163 QOS_L3_OCCUP_EVENT_ID, &val,
164 arch_mon_ctx)) {
165 rmid_dirty = true;
166 } else {
167 rmid_dirty = (val >= resctrl_rmid_realloc_threshold);
168
169 /*
170 * x86's CLOSID and RMID are independent numbers, so the entry's
171 * CLOSID is an empty CLOSID (X86_RESCTRL_EMPTY_CLOSID). On Arm the
172 * RMID (PMG) extends the CLOSID (PARTID) space with bits that aren't
173 * used to select the configuration. It is thus necessary to track both
174 * CLOSID and RMID because there may be dependencies between them
175 * on some architectures.
176 */
177 trace_mon_llc_occupancy_limbo(entry->closid, entry->rmid, d->hdr.id, val);
178 }
179
180 if (force_free || !rmid_dirty) {
181 clear_bit(idx, d->rmid_busy_llc);
182 if (!--entry->busy)
183 limbo_release_entry(entry);
184 }
185 cur_idx = idx + 1;
186 }
187
188 resctrl_arch_mon_ctx_free(r, QOS_L3_OCCUP_EVENT_ID, arch_mon_ctx);
189 }
190
has_busy_rmid(struct rdt_mon_domain * d)191 bool has_busy_rmid(struct rdt_mon_domain *d)
192 {
193 u32 idx_limit = resctrl_arch_system_num_rmid_idx();
194
195 return find_first_bit(d->rmid_busy_llc, idx_limit) != idx_limit;
196 }
197
resctrl_find_free_rmid(u32 closid)198 static struct rmid_entry *resctrl_find_free_rmid(u32 closid)
199 {
200 struct rmid_entry *itr;
201 u32 itr_idx, cmp_idx;
202
203 if (list_empty(&rmid_free_lru))
204 return rmid_limbo_count ? ERR_PTR(-EBUSY) : ERR_PTR(-ENOSPC);
205
206 list_for_each_entry(itr, &rmid_free_lru, list) {
207 /*
208 * Get the index of this free RMID, and the index it would need
209 * to be if it were used with this CLOSID.
210 * If the CLOSID is irrelevant on this architecture, the two
211 * index values are always the same on every entry and thus the
212 * very first entry will be returned.
213 */
214 itr_idx = resctrl_arch_rmid_idx_encode(itr->closid, itr->rmid);
215 cmp_idx = resctrl_arch_rmid_idx_encode(closid, itr->rmid);
216
217 if (itr_idx == cmp_idx)
218 return itr;
219 }
220
221 return ERR_PTR(-ENOSPC);
222 }
223
224 /**
225 * resctrl_find_cleanest_closid() - Find a CLOSID where all the associated
226 * RMID are clean, or the CLOSID that has
227 * the most clean RMID.
228 *
229 * MPAM's equivalent of RMID are per-CLOSID, meaning a freshly allocated CLOSID
230 * may not be able to allocate clean RMID. To avoid this the allocator will
231 * choose the CLOSID with the most clean RMID.
232 *
233 * When the CLOSID and RMID are independent numbers, the first free CLOSID will
234 * be returned.
235 */
resctrl_find_cleanest_closid(void)236 int resctrl_find_cleanest_closid(void)
237 {
238 u32 cleanest_closid = ~0;
239 int i = 0;
240
241 lockdep_assert_held(&rdtgroup_mutex);
242
243 if (!IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
244 return -EIO;
245
246 for (i = 0; i < closids_supported(); i++) {
247 int num_dirty;
248
249 if (closid_allocated(i))
250 continue;
251
252 num_dirty = closid_num_dirty_rmid[i];
253 if (num_dirty == 0)
254 return i;
255
256 if (cleanest_closid == ~0)
257 cleanest_closid = i;
258
259 if (num_dirty < closid_num_dirty_rmid[cleanest_closid])
260 cleanest_closid = i;
261 }
262
263 if (cleanest_closid == ~0)
264 return -ENOSPC;
265
266 return cleanest_closid;
267 }
268
269 /*
270 * For MPAM the RMID value is not unique, and has to be considered with
271 * the CLOSID. The (CLOSID, RMID) pair is allocated on all domains, which
272 * allows all domains to be managed by a single free list.
273 * Each domain also has a rmid_busy_llc to reduce the work of the limbo handler.
274 */
alloc_rmid(u32 closid)275 int alloc_rmid(u32 closid)
276 {
277 struct rmid_entry *entry;
278
279 lockdep_assert_held(&rdtgroup_mutex);
280
281 entry = resctrl_find_free_rmid(closid);
282 if (IS_ERR(entry))
283 return PTR_ERR(entry);
284
285 list_del(&entry->list);
286 return entry->rmid;
287 }
288
add_rmid_to_limbo(struct rmid_entry * entry)289 static void add_rmid_to_limbo(struct rmid_entry *entry)
290 {
291 struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
292 struct rdt_mon_domain *d;
293 u32 idx;
294
295 lockdep_assert_held(&rdtgroup_mutex);
296
297 /* Walking r->domains, ensure it can't race with cpuhp */
298 lockdep_assert_cpus_held();
299
300 idx = resctrl_arch_rmid_idx_encode(entry->closid, entry->rmid);
301
302 entry->busy = 0;
303 list_for_each_entry(d, &r->mon_domains, hdr.list) {
304 /*
305 * For the first limbo RMID in the domain,
306 * setup up the limbo worker.
307 */
308 if (!has_busy_rmid(d))
309 cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL,
310 RESCTRL_PICK_ANY_CPU);
311 set_bit(idx, d->rmid_busy_llc);
312 entry->busy++;
313 }
314
315 rmid_limbo_count++;
316 if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
317 closid_num_dirty_rmid[entry->closid]++;
318 }
319
free_rmid(u32 closid,u32 rmid)320 void free_rmid(u32 closid, u32 rmid)
321 {
322 u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid);
323 struct rmid_entry *entry;
324
325 lockdep_assert_held(&rdtgroup_mutex);
326
327 /*
328 * Do not allow the default rmid to be free'd. Comparing by index
329 * allows architectures that ignore the closid parameter to avoid an
330 * unnecessary check.
331 */
332 if (!resctrl_arch_mon_capable() ||
333 idx == resctrl_arch_rmid_idx_encode(RESCTRL_RESERVED_CLOSID,
334 RESCTRL_RESERVED_RMID))
335 return;
336
337 entry = __rmid_entry(idx);
338
339 if (resctrl_arch_is_llc_occupancy_enabled())
340 add_rmid_to_limbo(entry);
341 else
342 list_add_tail(&entry->list, &rmid_free_lru);
343 }
344
get_mbm_state(struct rdt_mon_domain * d,u32 closid,u32 rmid,enum resctrl_event_id evtid)345 static struct mbm_state *get_mbm_state(struct rdt_mon_domain *d, u32 closid,
346 u32 rmid, enum resctrl_event_id evtid)
347 {
348 u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid);
349
350 switch (evtid) {
351 case QOS_L3_MBM_TOTAL_EVENT_ID:
352 return &d->mbm_total[idx];
353 case QOS_L3_MBM_LOCAL_EVENT_ID:
354 return &d->mbm_local[idx];
355 default:
356 return NULL;
357 }
358 }
359
__mon_event_count(u32 closid,u32 rmid,struct rmid_read * rr)360 static int __mon_event_count(u32 closid, u32 rmid, struct rmid_read *rr)
361 {
362 int cpu = smp_processor_id();
363 struct rdt_mon_domain *d;
364 struct cacheinfo *ci;
365 struct mbm_state *m;
366 int err, ret;
367 u64 tval = 0;
368
369 if (rr->first) {
370 resctrl_arch_reset_rmid(rr->r, rr->d, closid, rmid, rr->evtid);
371 m = get_mbm_state(rr->d, closid, rmid, rr->evtid);
372 if (m)
373 memset(m, 0, sizeof(struct mbm_state));
374 return 0;
375 }
376
377 if (rr->d) {
378 /* Reading a single domain, must be on a CPU in that domain. */
379 if (!cpumask_test_cpu(cpu, &rr->d->hdr.cpu_mask))
380 return -EINVAL;
381 rr->err = resctrl_arch_rmid_read(rr->r, rr->d, closid, rmid,
382 rr->evtid, &tval, rr->arch_mon_ctx);
383 if (rr->err)
384 return rr->err;
385
386 rr->val += tval;
387
388 return 0;
389 }
390
391 /* Summing domains that share a cache, must be on a CPU for that cache. */
392 ci = get_cpu_cacheinfo_level(cpu, RESCTRL_L3_CACHE);
393 if (!ci || ci->id != rr->ci_id)
394 return -EINVAL;
395
396 /*
397 * Legacy files must report the sum of an event across all
398 * domains that share the same L3 cache instance.
399 * Report success if a read from any domain succeeds, -EINVAL
400 * (translated to "Unavailable" for user space) if reading from
401 * all domains fail for any reason.
402 */
403 ret = -EINVAL;
404 list_for_each_entry(d, &rr->r->mon_domains, hdr.list) {
405 if (d->ci_id != rr->ci_id)
406 continue;
407 err = resctrl_arch_rmid_read(rr->r, d, closid, rmid,
408 rr->evtid, &tval, rr->arch_mon_ctx);
409 if (!err) {
410 rr->val += tval;
411 ret = 0;
412 }
413 }
414
415 if (ret)
416 rr->err = ret;
417
418 return ret;
419 }
420
421 /*
422 * mbm_bw_count() - Update bw count from values previously read by
423 * __mon_event_count().
424 * @closid: The closid used to identify the cached mbm_state.
425 * @rmid: The rmid used to identify the cached mbm_state.
426 * @rr: The struct rmid_read populated by __mon_event_count().
427 *
428 * Supporting function to calculate the memory bandwidth
429 * and delta bandwidth in MBps. The chunks value previously read by
430 * __mon_event_count() is compared with the chunks value from the previous
431 * invocation. This must be called once per second to maintain values in MBps.
432 */
mbm_bw_count(u32 closid,u32 rmid,struct rmid_read * rr)433 static void mbm_bw_count(u32 closid, u32 rmid, struct rmid_read *rr)
434 {
435 u64 cur_bw, bytes, cur_bytes;
436 struct mbm_state *m;
437
438 m = get_mbm_state(rr->d, closid, rmid, rr->evtid);
439 if (WARN_ON_ONCE(!m))
440 return;
441
442 cur_bytes = rr->val;
443 bytes = cur_bytes - m->prev_bw_bytes;
444 m->prev_bw_bytes = cur_bytes;
445
446 cur_bw = bytes / SZ_1M;
447
448 m->prev_bw = cur_bw;
449 }
450
451 /*
452 * This is scheduled by mon_event_read() to read the CQM/MBM counters
453 * on a domain.
454 */
mon_event_count(void * info)455 void mon_event_count(void *info)
456 {
457 struct rdtgroup *rdtgrp, *entry;
458 struct rmid_read *rr = info;
459 struct list_head *head;
460 int ret;
461
462 rdtgrp = rr->rgrp;
463
464 ret = __mon_event_count(rdtgrp->closid, rdtgrp->mon.rmid, rr);
465
466 /*
467 * For Ctrl groups read data from child monitor groups and
468 * add them together. Count events which are read successfully.
469 * Discard the rmid_read's reporting errors.
470 */
471 head = &rdtgrp->mon.crdtgrp_list;
472
473 if (rdtgrp->type == RDTCTRL_GROUP) {
474 list_for_each_entry(entry, head, mon.crdtgrp_list) {
475 if (__mon_event_count(entry->closid, entry->mon.rmid,
476 rr) == 0)
477 ret = 0;
478 }
479 }
480
481 /*
482 * __mon_event_count() calls for newly created monitor groups may
483 * report -EINVAL/Unavailable if the monitor hasn't seen any traffic.
484 * Discard error if any of the monitor event reads succeeded.
485 */
486 if (ret == 0)
487 rr->err = 0;
488 }
489
get_ctrl_domain_from_cpu(int cpu,struct rdt_resource * r)490 static struct rdt_ctrl_domain *get_ctrl_domain_from_cpu(int cpu,
491 struct rdt_resource *r)
492 {
493 struct rdt_ctrl_domain *d;
494
495 lockdep_assert_cpus_held();
496
497 list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
498 /* Find the domain that contains this CPU */
499 if (cpumask_test_cpu(cpu, &d->hdr.cpu_mask))
500 return d;
501 }
502
503 return NULL;
504 }
505
506 /*
507 * Feedback loop for MBA software controller (mba_sc)
508 *
509 * mba_sc is a feedback loop where we periodically read MBM counters and
510 * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so
511 * that:
512 *
513 * current bandwidth(cur_bw) < user specified bandwidth(user_bw)
514 *
515 * This uses the MBM counters to measure the bandwidth and MBA throttle
516 * MSRs to control the bandwidth for a particular rdtgrp. It builds on the
517 * fact that resctrl rdtgroups have both monitoring and control.
518 *
519 * The frequency of the checks is 1s and we just tag along the MBM overflow
520 * timer. Having 1s interval makes the calculation of bandwidth simpler.
521 *
522 * Although MBA's goal is to restrict the bandwidth to a maximum, there may
523 * be a need to increase the bandwidth to avoid unnecessarily restricting
524 * the L2 <-> L3 traffic.
525 *
526 * Since MBA controls the L2 external bandwidth where as MBM measures the
527 * L3 external bandwidth the following sequence could lead to such a
528 * situation.
529 *
530 * Consider an rdtgroup which had high L3 <-> memory traffic in initial
531 * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but
532 * after some time rdtgroup has mostly L2 <-> L3 traffic.
533 *
534 * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its
535 * throttle MSRs already have low percentage values. To avoid
536 * unnecessarily restricting such rdtgroups, we also increase the bandwidth.
537 */
update_mba_bw(struct rdtgroup * rgrp,struct rdt_mon_domain * dom_mbm)538 static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_mon_domain *dom_mbm)
539 {
540 u32 closid, rmid, cur_msr_val, new_msr_val;
541 struct mbm_state *pmbm_data, *cmbm_data;
542 struct rdt_ctrl_domain *dom_mba;
543 enum resctrl_event_id evt_id;
544 struct rdt_resource *r_mba;
545 struct list_head *head;
546 struct rdtgroup *entry;
547 u32 cur_bw, user_bw;
548
549 r_mba = resctrl_arch_get_resource(RDT_RESOURCE_MBA);
550 evt_id = rgrp->mba_mbps_event;
551
552 closid = rgrp->closid;
553 rmid = rgrp->mon.rmid;
554 pmbm_data = get_mbm_state(dom_mbm, closid, rmid, evt_id);
555 if (WARN_ON_ONCE(!pmbm_data))
556 return;
557
558 dom_mba = get_ctrl_domain_from_cpu(smp_processor_id(), r_mba);
559 if (!dom_mba) {
560 pr_warn_once("Failure to get domain for MBA update\n");
561 return;
562 }
563
564 cur_bw = pmbm_data->prev_bw;
565 user_bw = dom_mba->mbps_val[closid];
566
567 /* MBA resource doesn't support CDP */
568 cur_msr_val = resctrl_arch_get_config(r_mba, dom_mba, closid, CDP_NONE);
569
570 /*
571 * For Ctrl groups read data from child monitor groups.
572 */
573 head = &rgrp->mon.crdtgrp_list;
574 list_for_each_entry(entry, head, mon.crdtgrp_list) {
575 cmbm_data = get_mbm_state(dom_mbm, entry->closid, entry->mon.rmid, evt_id);
576 if (WARN_ON_ONCE(!cmbm_data))
577 return;
578 cur_bw += cmbm_data->prev_bw;
579 }
580
581 /*
582 * Scale up/down the bandwidth linearly for the ctrl group. The
583 * bandwidth step is the bandwidth granularity specified by the
584 * hardware.
585 * Always increase throttling if current bandwidth is above the
586 * target set by user.
587 * But avoid thrashing up and down on every poll by checking
588 * whether a decrease in throttling is likely to push the group
589 * back over target. E.g. if currently throttling to 30% of bandwidth
590 * on a system with 10% granularity steps, check whether moving to
591 * 40% would go past the limit by multiplying current bandwidth by
592 * "(30 + 10) / 30".
593 */
594 if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) {
595 new_msr_val = cur_msr_val - r_mba->membw.bw_gran;
596 } else if (cur_msr_val < MAX_MBA_BW &&
597 (user_bw > (cur_bw * (cur_msr_val + r_mba->membw.min_bw) / cur_msr_val))) {
598 new_msr_val = cur_msr_val + r_mba->membw.bw_gran;
599 } else {
600 return;
601 }
602
603 resctrl_arch_update_one(r_mba, dom_mba, closid, CDP_NONE, new_msr_val);
604 }
605
mbm_update_one_event(struct rdt_resource * r,struct rdt_mon_domain * d,u32 closid,u32 rmid,enum resctrl_event_id evtid)606 static void mbm_update_one_event(struct rdt_resource *r, struct rdt_mon_domain *d,
607 u32 closid, u32 rmid, enum resctrl_event_id evtid)
608 {
609 struct rmid_read rr = {0};
610
611 rr.r = r;
612 rr.d = d;
613 rr.evtid = evtid;
614 rr.arch_mon_ctx = resctrl_arch_mon_ctx_alloc(rr.r, rr.evtid);
615 if (IS_ERR(rr.arch_mon_ctx)) {
616 pr_warn_ratelimited("Failed to allocate monitor context: %ld",
617 PTR_ERR(rr.arch_mon_ctx));
618 return;
619 }
620
621 __mon_event_count(closid, rmid, &rr);
622
623 /*
624 * If the software controller is enabled, compute the
625 * bandwidth for this event id.
626 */
627 if (is_mba_sc(NULL))
628 mbm_bw_count(closid, rmid, &rr);
629
630 resctrl_arch_mon_ctx_free(rr.r, rr.evtid, rr.arch_mon_ctx);
631 }
632
mbm_update(struct rdt_resource * r,struct rdt_mon_domain * d,u32 closid,u32 rmid)633 static void mbm_update(struct rdt_resource *r, struct rdt_mon_domain *d,
634 u32 closid, u32 rmid)
635 {
636 /*
637 * This is protected from concurrent reads from user as both
638 * the user and overflow handler hold the global mutex.
639 */
640 if (resctrl_arch_is_mbm_total_enabled())
641 mbm_update_one_event(r, d, closid, rmid, QOS_L3_MBM_TOTAL_EVENT_ID);
642
643 if (resctrl_arch_is_mbm_local_enabled())
644 mbm_update_one_event(r, d, closid, rmid, QOS_L3_MBM_LOCAL_EVENT_ID);
645 }
646
647 /*
648 * Handler to scan the limbo list and move the RMIDs
649 * to free list whose occupancy < threshold_occupancy.
650 */
cqm_handle_limbo(struct work_struct * work)651 void cqm_handle_limbo(struct work_struct *work)
652 {
653 unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL);
654 struct rdt_mon_domain *d;
655
656 cpus_read_lock();
657 mutex_lock(&rdtgroup_mutex);
658
659 d = container_of(work, struct rdt_mon_domain, cqm_limbo.work);
660
661 __check_limbo(d, false);
662
663 if (has_busy_rmid(d)) {
664 d->cqm_work_cpu = cpumask_any_housekeeping(&d->hdr.cpu_mask,
665 RESCTRL_PICK_ANY_CPU);
666 schedule_delayed_work_on(d->cqm_work_cpu, &d->cqm_limbo,
667 delay);
668 }
669
670 mutex_unlock(&rdtgroup_mutex);
671 cpus_read_unlock();
672 }
673
674 /**
675 * cqm_setup_limbo_handler() - Schedule the limbo handler to run for this
676 * domain.
677 * @dom: The domain the limbo handler should run for.
678 * @delay_ms: How far in the future the handler should run.
679 * @exclude_cpu: Which CPU the handler should not run on,
680 * RESCTRL_PICK_ANY_CPU to pick any CPU.
681 */
cqm_setup_limbo_handler(struct rdt_mon_domain * dom,unsigned long delay_ms,int exclude_cpu)682 void cqm_setup_limbo_handler(struct rdt_mon_domain *dom, unsigned long delay_ms,
683 int exclude_cpu)
684 {
685 unsigned long delay = msecs_to_jiffies(delay_ms);
686 int cpu;
687
688 cpu = cpumask_any_housekeeping(&dom->hdr.cpu_mask, exclude_cpu);
689 dom->cqm_work_cpu = cpu;
690
691 if (cpu < nr_cpu_ids)
692 schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay);
693 }
694
mbm_handle_overflow(struct work_struct * work)695 void mbm_handle_overflow(struct work_struct *work)
696 {
697 unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL);
698 struct rdtgroup *prgrp, *crgrp;
699 struct rdt_mon_domain *d;
700 struct list_head *head;
701 struct rdt_resource *r;
702
703 cpus_read_lock();
704 mutex_lock(&rdtgroup_mutex);
705
706 /*
707 * If the filesystem has been unmounted this work no longer needs to
708 * run.
709 */
710 if (!resctrl_mounted || !resctrl_arch_mon_capable())
711 goto out_unlock;
712
713 r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
714 d = container_of(work, struct rdt_mon_domain, mbm_over.work);
715
716 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
717 mbm_update(r, d, prgrp->closid, prgrp->mon.rmid);
718
719 head = &prgrp->mon.crdtgrp_list;
720 list_for_each_entry(crgrp, head, mon.crdtgrp_list)
721 mbm_update(r, d, crgrp->closid, crgrp->mon.rmid);
722
723 if (is_mba_sc(NULL))
724 update_mba_bw(prgrp, d);
725 }
726
727 /*
728 * Re-check for housekeeping CPUs. This allows the overflow handler to
729 * move off a nohz_full CPU quickly.
730 */
731 d->mbm_work_cpu = cpumask_any_housekeeping(&d->hdr.cpu_mask,
732 RESCTRL_PICK_ANY_CPU);
733 schedule_delayed_work_on(d->mbm_work_cpu, &d->mbm_over, delay);
734
735 out_unlock:
736 mutex_unlock(&rdtgroup_mutex);
737 cpus_read_unlock();
738 }
739
740 /**
741 * mbm_setup_overflow_handler() - Schedule the overflow handler to run for this
742 * domain.
743 * @dom: The domain the overflow handler should run for.
744 * @delay_ms: How far in the future the handler should run.
745 * @exclude_cpu: Which CPU the handler should not run on,
746 * RESCTRL_PICK_ANY_CPU to pick any CPU.
747 */
mbm_setup_overflow_handler(struct rdt_mon_domain * dom,unsigned long delay_ms,int exclude_cpu)748 void mbm_setup_overflow_handler(struct rdt_mon_domain *dom, unsigned long delay_ms,
749 int exclude_cpu)
750 {
751 unsigned long delay = msecs_to_jiffies(delay_ms);
752 int cpu;
753
754 /*
755 * When a domain comes online there is no guarantee the filesystem is
756 * mounted. If not, there is no need to catch counter overflow.
757 */
758 if (!resctrl_mounted || !resctrl_arch_mon_capable())
759 return;
760 cpu = cpumask_any_housekeeping(&dom->hdr.cpu_mask, exclude_cpu);
761 dom->mbm_work_cpu = cpu;
762
763 if (cpu < nr_cpu_ids)
764 schedule_delayed_work_on(cpu, &dom->mbm_over, delay);
765 }
766
dom_data_init(struct rdt_resource * r)767 static int dom_data_init(struct rdt_resource *r)
768 {
769 u32 idx_limit = resctrl_arch_system_num_rmid_idx();
770 u32 num_closid = resctrl_arch_get_num_closid(r);
771 struct rmid_entry *entry = NULL;
772 int err = 0, i;
773 u32 idx;
774
775 mutex_lock(&rdtgroup_mutex);
776 if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
777 u32 *tmp;
778
779 /*
780 * If the architecture hasn't provided a sanitised value here,
781 * this may result in larger arrays than necessary. Resctrl will
782 * use a smaller system wide value based on the resources in
783 * use.
784 */
785 tmp = kcalloc(num_closid, sizeof(*tmp), GFP_KERNEL);
786 if (!tmp) {
787 err = -ENOMEM;
788 goto out_unlock;
789 }
790
791 closid_num_dirty_rmid = tmp;
792 }
793
794 rmid_ptrs = kcalloc(idx_limit, sizeof(struct rmid_entry), GFP_KERNEL);
795 if (!rmid_ptrs) {
796 if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
797 kfree(closid_num_dirty_rmid);
798 closid_num_dirty_rmid = NULL;
799 }
800 err = -ENOMEM;
801 goto out_unlock;
802 }
803
804 for (i = 0; i < idx_limit; i++) {
805 entry = &rmid_ptrs[i];
806 INIT_LIST_HEAD(&entry->list);
807
808 resctrl_arch_rmid_idx_decode(i, &entry->closid, &entry->rmid);
809 list_add_tail(&entry->list, &rmid_free_lru);
810 }
811
812 /*
813 * RESCTRL_RESERVED_CLOSID and RESCTRL_RESERVED_RMID are special and
814 * are always allocated. These are used for the rdtgroup_default
815 * control group, which will be setup later in resctrl_init().
816 */
817 idx = resctrl_arch_rmid_idx_encode(RESCTRL_RESERVED_CLOSID,
818 RESCTRL_RESERVED_RMID);
819 entry = __rmid_entry(idx);
820 list_del(&entry->list);
821
822 out_unlock:
823 mutex_unlock(&rdtgroup_mutex);
824
825 return err;
826 }
827
dom_data_exit(struct rdt_resource * r)828 static void dom_data_exit(struct rdt_resource *r)
829 {
830 mutex_lock(&rdtgroup_mutex);
831
832 if (!r->mon_capable)
833 goto out_unlock;
834
835 if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
836 kfree(closid_num_dirty_rmid);
837 closid_num_dirty_rmid = NULL;
838 }
839
840 kfree(rmid_ptrs);
841 rmid_ptrs = NULL;
842
843 out_unlock:
844 mutex_unlock(&rdtgroup_mutex);
845 }
846
847 static struct mon_evt llc_occupancy_event = {
848 .name = "llc_occupancy",
849 .evtid = QOS_L3_OCCUP_EVENT_ID,
850 };
851
852 static struct mon_evt mbm_total_event = {
853 .name = "mbm_total_bytes",
854 .evtid = QOS_L3_MBM_TOTAL_EVENT_ID,
855 };
856
857 static struct mon_evt mbm_local_event = {
858 .name = "mbm_local_bytes",
859 .evtid = QOS_L3_MBM_LOCAL_EVENT_ID,
860 };
861
862 /*
863 * Initialize the event list for the resource.
864 *
865 * Note that MBM events are also part of RDT_RESOURCE_L3 resource
866 * because as per the SDM the total and local memory bandwidth
867 * are enumerated as part of L3 monitoring.
868 */
l3_mon_evt_init(struct rdt_resource * r)869 static void l3_mon_evt_init(struct rdt_resource *r)
870 {
871 INIT_LIST_HEAD(&r->evt_list);
872
873 if (resctrl_arch_is_llc_occupancy_enabled())
874 list_add_tail(&llc_occupancy_event.list, &r->evt_list);
875 if (resctrl_arch_is_mbm_total_enabled())
876 list_add_tail(&mbm_total_event.list, &r->evt_list);
877 if (resctrl_arch_is_mbm_local_enabled())
878 list_add_tail(&mbm_local_event.list, &r->evt_list);
879 }
880
881 /**
882 * resctrl_mon_resource_init() - Initialise global monitoring structures.
883 *
884 * Allocate and initialise global monitor resources that do not belong to a
885 * specific domain. i.e. the rmid_ptrs[] used for the limbo and free lists.
886 * Called once during boot after the struct rdt_resource's have been configured
887 * but before the filesystem is mounted.
888 * Resctrl's cpuhp callbacks may be called before this point to bring a domain
889 * online.
890 *
891 * Returns 0 for success, or -ENOMEM.
892 */
resctrl_mon_resource_init(void)893 int resctrl_mon_resource_init(void)
894 {
895 struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
896 int ret;
897
898 if (!r->mon_capable)
899 return 0;
900
901 ret = dom_data_init(r);
902 if (ret)
903 return ret;
904
905 l3_mon_evt_init(r);
906
907 if (resctrl_arch_is_evt_configurable(QOS_L3_MBM_TOTAL_EVENT_ID)) {
908 mbm_total_event.configurable = true;
909 resctrl_file_fflags_init("mbm_total_bytes_config",
910 RFTYPE_MON_INFO | RFTYPE_RES_CACHE);
911 }
912 if (resctrl_arch_is_evt_configurable(QOS_L3_MBM_LOCAL_EVENT_ID)) {
913 mbm_local_event.configurable = true;
914 resctrl_file_fflags_init("mbm_local_bytes_config",
915 RFTYPE_MON_INFO | RFTYPE_RES_CACHE);
916 }
917
918 if (resctrl_arch_is_mbm_local_enabled())
919 mba_mbps_default_event = QOS_L3_MBM_LOCAL_EVENT_ID;
920 else if (resctrl_arch_is_mbm_total_enabled())
921 mba_mbps_default_event = QOS_L3_MBM_TOTAL_EVENT_ID;
922
923 return 0;
924 }
925
resctrl_mon_resource_exit(void)926 void resctrl_mon_resource_exit(void)
927 {
928 struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
929
930 dom_data_exit(r);
931 }
932