xref: /linux/kernel/sched/core.c (revision 2004cef11ea072838f99bd95cefa5c8e45df0847)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel CPU scheduler code
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat
9  */
10 #include <linux/highmem.h>
11 #include <linux/hrtimer_api.h>
12 #include <linux/ktime_api.h>
13 #include <linux/sched/signal.h>
14 #include <linux/syscalls_api.h>
15 #include <linux/debug_locks.h>
16 #include <linux/prefetch.h>
17 #include <linux/capability.h>
18 #include <linux/pgtable_api.h>
19 #include <linux/wait_bit.h>
20 #include <linux/jiffies.h>
21 #include <linux/spinlock_api.h>
22 #include <linux/cpumask_api.h>
23 #include <linux/lockdep_api.h>
24 #include <linux/hardirq.h>
25 #include <linux/softirq.h>
26 #include <linux/refcount_api.h>
27 #include <linux/topology.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/cond_resched.h>
30 #include <linux/sched/cputime.h>
31 #include <linux/sched/debug.h>
32 #include <linux/sched/hotplug.h>
33 #include <linux/sched/init.h>
34 #include <linux/sched/isolation.h>
35 #include <linux/sched/loadavg.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/nohz.h>
38 #include <linux/sched/rseq_api.h>
39 #include <linux/sched/rt.h>
40 
41 #include <linux/blkdev.h>
42 #include <linux/context_tracking.h>
43 #include <linux/cpuset.h>
44 #include <linux/delayacct.h>
45 #include <linux/init_task.h>
46 #include <linux/interrupt.h>
47 #include <linux/ioprio.h>
48 #include <linux/kallsyms.h>
49 #include <linux/kcov.h>
50 #include <linux/kprobes.h>
51 #include <linux/llist_api.h>
52 #include <linux/mmu_context.h>
53 #include <linux/mmzone.h>
54 #include <linux/mutex_api.h>
55 #include <linux/nmi.h>
56 #include <linux/nospec.h>
57 #include <linux/perf_event_api.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcuwait_api.h>
61 #include <linux/rseq.h>
62 #include <linux/sched/wake_q.h>
63 #include <linux/scs.h>
64 #include <linux/slab.h>
65 #include <linux/syscalls.h>
66 #include <linux/vtime.h>
67 #include <linux/wait_api.h>
68 #include <linux/workqueue_api.h>
69 
70 #ifdef CONFIG_PREEMPT_DYNAMIC
71 # ifdef CONFIG_GENERIC_ENTRY
72 #  include <linux/entry-common.h>
73 # endif
74 #endif
75 
76 #include <uapi/linux/sched/types.h>
77 
78 #include <asm/irq_regs.h>
79 #include <asm/switch_to.h>
80 #include <asm/tlb.h>
81 
82 #define CREATE_TRACE_POINTS
83 #include <linux/sched/rseq_api.h>
84 #include <trace/events/sched.h>
85 #include <trace/events/ipi.h>
86 #undef CREATE_TRACE_POINTS
87 
88 #include "sched.h"
89 #include "stats.h"
90 
91 #include "autogroup.h"
92 #include "pelt.h"
93 #include "smp.h"
94 #include "stats.h"
95 
96 #include "../workqueue_internal.h"
97 #include "../../io_uring/io-wq.h"
98 #include "../smpboot.h"
99 
100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
101 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
102 
103 /*
104  * Export tracepoints that act as a bare tracehook (ie: have no trace event
105  * associated with them) to allow external modules to probe them.
106  */
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
119 
120 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
121 
122 #ifdef CONFIG_SCHED_DEBUG
123 /*
124  * Debugging: various feature bits
125  *
126  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
127  * sysctl_sched_features, defined in sched.h, to allow constants propagation
128  * at compile time and compiler optimization based on features default.
129  */
130 #define SCHED_FEAT(name, enabled)	\
131 	(1UL << __SCHED_FEAT_##name) * enabled |
132 const_debug unsigned int sysctl_sched_features =
133 #include "features.h"
134 	0;
135 #undef SCHED_FEAT
136 
137 /*
138  * Print a warning if need_resched is set for the given duration (if
139  * LATENCY_WARN is enabled).
140  *
141  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
142  * per boot.
143  */
144 __read_mostly int sysctl_resched_latency_warn_ms = 100;
145 __read_mostly int sysctl_resched_latency_warn_once = 1;
146 #endif /* CONFIG_SCHED_DEBUG */
147 
148 /*
149  * Number of tasks to iterate in a single balance run.
150  * Limited because this is done with IRQs disabled.
151  */
152 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
153 
154 __read_mostly int scheduler_running;
155 
156 #ifdef CONFIG_SCHED_CORE
157 
158 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
159 
160 /* kernel prio, less is more */
161 static inline int __task_prio(const struct task_struct *p)
162 {
163 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
164 		return -2;
165 
166 	if (p->dl_server)
167 		return -1; /* deadline */
168 
169 	if (rt_or_dl_prio(p->prio))
170 		return p->prio; /* [-1, 99] */
171 
172 	if (p->sched_class == &idle_sched_class)
173 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
174 
175 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
176 }
177 
178 /*
179  * l(a,b)
180  * le(a,b) := !l(b,a)
181  * g(a,b)  := l(b,a)
182  * ge(a,b) := !l(a,b)
183  */
184 
185 /* real prio, less is less */
186 static inline bool prio_less(const struct task_struct *a,
187 			     const struct task_struct *b, bool in_fi)
188 {
189 
190 	int pa = __task_prio(a), pb = __task_prio(b);
191 
192 	if (-pa < -pb)
193 		return true;
194 
195 	if (-pb < -pa)
196 		return false;
197 
198 	if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */
199 		const struct sched_dl_entity *a_dl, *b_dl;
200 
201 		a_dl = &a->dl;
202 		/*
203 		 * Since,'a' and 'b' can be CFS tasks served by DL server,
204 		 * __task_prio() can return -1 (for DL) even for those. In that
205 		 * case, get to the dl_server's DL entity.
206 		 */
207 		if (a->dl_server)
208 			a_dl = a->dl_server;
209 
210 		b_dl = &b->dl;
211 		if (b->dl_server)
212 			b_dl = b->dl_server;
213 
214 		return !dl_time_before(a_dl->deadline, b_dl->deadline);
215 	}
216 
217 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
218 		return cfs_prio_less(a, b, in_fi);
219 
220 	return false;
221 }
222 
223 static inline bool __sched_core_less(const struct task_struct *a,
224 				     const struct task_struct *b)
225 {
226 	if (a->core_cookie < b->core_cookie)
227 		return true;
228 
229 	if (a->core_cookie > b->core_cookie)
230 		return false;
231 
232 	/* flip prio, so high prio is leftmost */
233 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
234 		return true;
235 
236 	return false;
237 }
238 
239 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
240 
241 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
242 {
243 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
244 }
245 
246 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
247 {
248 	const struct task_struct *p = __node_2_sc(node);
249 	unsigned long cookie = (unsigned long)key;
250 
251 	if (cookie < p->core_cookie)
252 		return -1;
253 
254 	if (cookie > p->core_cookie)
255 		return 1;
256 
257 	return 0;
258 }
259 
260 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
261 {
262 	if (p->se.sched_delayed)
263 		return;
264 
265 	rq->core->core_task_seq++;
266 
267 	if (!p->core_cookie)
268 		return;
269 
270 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
271 }
272 
273 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
274 {
275 	if (p->se.sched_delayed)
276 		return;
277 
278 	rq->core->core_task_seq++;
279 
280 	if (sched_core_enqueued(p)) {
281 		rb_erase(&p->core_node, &rq->core_tree);
282 		RB_CLEAR_NODE(&p->core_node);
283 	}
284 
285 	/*
286 	 * Migrating the last task off the cpu, with the cpu in forced idle
287 	 * state. Reschedule to create an accounting edge for forced idle,
288 	 * and re-examine whether the core is still in forced idle state.
289 	 */
290 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
291 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
292 		resched_curr(rq);
293 }
294 
295 static int sched_task_is_throttled(struct task_struct *p, int cpu)
296 {
297 	if (p->sched_class->task_is_throttled)
298 		return p->sched_class->task_is_throttled(p, cpu);
299 
300 	return 0;
301 }
302 
303 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
304 {
305 	struct rb_node *node = &p->core_node;
306 	int cpu = task_cpu(p);
307 
308 	do {
309 		node = rb_next(node);
310 		if (!node)
311 			return NULL;
312 
313 		p = __node_2_sc(node);
314 		if (p->core_cookie != cookie)
315 			return NULL;
316 
317 	} while (sched_task_is_throttled(p, cpu));
318 
319 	return p;
320 }
321 
322 /*
323  * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
324  * If no suitable task is found, NULL will be returned.
325  */
326 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
327 {
328 	struct task_struct *p;
329 	struct rb_node *node;
330 
331 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
332 	if (!node)
333 		return NULL;
334 
335 	p = __node_2_sc(node);
336 	if (!sched_task_is_throttled(p, rq->cpu))
337 		return p;
338 
339 	return sched_core_next(p, cookie);
340 }
341 
342 /*
343  * Magic required such that:
344  *
345  *	raw_spin_rq_lock(rq);
346  *	...
347  *	raw_spin_rq_unlock(rq);
348  *
349  * ends up locking and unlocking the _same_ lock, and all CPUs
350  * always agree on what rq has what lock.
351  *
352  * XXX entirely possible to selectively enable cores, don't bother for now.
353  */
354 
355 static DEFINE_MUTEX(sched_core_mutex);
356 static atomic_t sched_core_count;
357 static struct cpumask sched_core_mask;
358 
359 static void sched_core_lock(int cpu, unsigned long *flags)
360 {
361 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
362 	int t, i = 0;
363 
364 	local_irq_save(*flags);
365 	for_each_cpu(t, smt_mask)
366 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
367 }
368 
369 static void sched_core_unlock(int cpu, unsigned long *flags)
370 {
371 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
372 	int t;
373 
374 	for_each_cpu(t, smt_mask)
375 		raw_spin_unlock(&cpu_rq(t)->__lock);
376 	local_irq_restore(*flags);
377 }
378 
379 static void __sched_core_flip(bool enabled)
380 {
381 	unsigned long flags;
382 	int cpu, t;
383 
384 	cpus_read_lock();
385 
386 	/*
387 	 * Toggle the online cores, one by one.
388 	 */
389 	cpumask_copy(&sched_core_mask, cpu_online_mask);
390 	for_each_cpu(cpu, &sched_core_mask) {
391 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
392 
393 		sched_core_lock(cpu, &flags);
394 
395 		for_each_cpu(t, smt_mask)
396 			cpu_rq(t)->core_enabled = enabled;
397 
398 		cpu_rq(cpu)->core->core_forceidle_start = 0;
399 
400 		sched_core_unlock(cpu, &flags);
401 
402 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
403 	}
404 
405 	/*
406 	 * Toggle the offline CPUs.
407 	 */
408 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
409 		cpu_rq(cpu)->core_enabled = enabled;
410 
411 	cpus_read_unlock();
412 }
413 
414 static void sched_core_assert_empty(void)
415 {
416 	int cpu;
417 
418 	for_each_possible_cpu(cpu)
419 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
420 }
421 
422 static void __sched_core_enable(void)
423 {
424 	static_branch_enable(&__sched_core_enabled);
425 	/*
426 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
427 	 * and future ones will observe !sched_core_disabled().
428 	 */
429 	synchronize_rcu();
430 	__sched_core_flip(true);
431 	sched_core_assert_empty();
432 }
433 
434 static void __sched_core_disable(void)
435 {
436 	sched_core_assert_empty();
437 	__sched_core_flip(false);
438 	static_branch_disable(&__sched_core_enabled);
439 }
440 
441 void sched_core_get(void)
442 {
443 	if (atomic_inc_not_zero(&sched_core_count))
444 		return;
445 
446 	mutex_lock(&sched_core_mutex);
447 	if (!atomic_read(&sched_core_count))
448 		__sched_core_enable();
449 
450 	smp_mb__before_atomic();
451 	atomic_inc(&sched_core_count);
452 	mutex_unlock(&sched_core_mutex);
453 }
454 
455 static void __sched_core_put(struct work_struct *work)
456 {
457 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
458 		__sched_core_disable();
459 		mutex_unlock(&sched_core_mutex);
460 	}
461 }
462 
463 void sched_core_put(void)
464 {
465 	static DECLARE_WORK(_work, __sched_core_put);
466 
467 	/*
468 	 * "There can be only one"
469 	 *
470 	 * Either this is the last one, or we don't actually need to do any
471 	 * 'work'. If it is the last *again*, we rely on
472 	 * WORK_STRUCT_PENDING_BIT.
473 	 */
474 	if (!atomic_add_unless(&sched_core_count, -1, 1))
475 		schedule_work(&_work);
476 }
477 
478 #else /* !CONFIG_SCHED_CORE */
479 
480 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
481 static inline void
482 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
483 
484 #endif /* CONFIG_SCHED_CORE */
485 
486 /*
487  * Serialization rules:
488  *
489  * Lock order:
490  *
491  *   p->pi_lock
492  *     rq->lock
493  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
494  *
495  *  rq1->lock
496  *    rq2->lock  where: rq1 < rq2
497  *
498  * Regular state:
499  *
500  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
501  * local CPU's rq->lock, it optionally removes the task from the runqueue and
502  * always looks at the local rq data structures to find the most eligible task
503  * to run next.
504  *
505  * Task enqueue is also under rq->lock, possibly taken from another CPU.
506  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
507  * the local CPU to avoid bouncing the runqueue state around [ see
508  * ttwu_queue_wakelist() ]
509  *
510  * Task wakeup, specifically wakeups that involve migration, are horribly
511  * complicated to avoid having to take two rq->locks.
512  *
513  * Special state:
514  *
515  * System-calls and anything external will use task_rq_lock() which acquires
516  * both p->pi_lock and rq->lock. As a consequence the state they change is
517  * stable while holding either lock:
518  *
519  *  - sched_setaffinity()/
520  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
521  *  - set_user_nice():		p->se.load, p->*prio
522  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
523  *				p->se.load, p->rt_priority,
524  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
525  *  - sched_setnuma():		p->numa_preferred_nid
526  *  - sched_move_task():	p->sched_task_group
527  *  - uclamp_update_active()	p->uclamp*
528  *
529  * p->state <- TASK_*:
530  *
531  *   is changed locklessly using set_current_state(), __set_current_state() or
532  *   set_special_state(), see their respective comments, or by
533  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
534  *   concurrent self.
535  *
536  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
537  *
538  *   is set by activate_task() and cleared by deactivate_task(), under
539  *   rq->lock. Non-zero indicates the task is runnable, the special
540  *   ON_RQ_MIGRATING state is used for migration without holding both
541  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
542  *
543  * p->on_cpu <- { 0, 1 }:
544  *
545  *   is set by prepare_task() and cleared by finish_task() such that it will be
546  *   set before p is scheduled-in and cleared after p is scheduled-out, both
547  *   under rq->lock. Non-zero indicates the task is running on its CPU.
548  *
549  *   [ The astute reader will observe that it is possible for two tasks on one
550  *     CPU to have ->on_cpu = 1 at the same time. ]
551  *
552  * task_cpu(p): is changed by set_task_cpu(), the rules are:
553  *
554  *  - Don't call set_task_cpu() on a blocked task:
555  *
556  *    We don't care what CPU we're not running on, this simplifies hotplug,
557  *    the CPU assignment of blocked tasks isn't required to be valid.
558  *
559  *  - for try_to_wake_up(), called under p->pi_lock:
560  *
561  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
562  *
563  *  - for migration called under rq->lock:
564  *    [ see task_on_rq_migrating() in task_rq_lock() ]
565  *
566  *    o move_queued_task()
567  *    o detach_task()
568  *
569  *  - for migration called under double_rq_lock():
570  *
571  *    o __migrate_swap_task()
572  *    o push_rt_task() / pull_rt_task()
573  *    o push_dl_task() / pull_dl_task()
574  *    o dl_task_offline_migration()
575  *
576  */
577 
578 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
579 {
580 	raw_spinlock_t *lock;
581 
582 	/* Matches synchronize_rcu() in __sched_core_enable() */
583 	preempt_disable();
584 	if (sched_core_disabled()) {
585 		raw_spin_lock_nested(&rq->__lock, subclass);
586 		/* preempt_count *MUST* be > 1 */
587 		preempt_enable_no_resched();
588 		return;
589 	}
590 
591 	for (;;) {
592 		lock = __rq_lockp(rq);
593 		raw_spin_lock_nested(lock, subclass);
594 		if (likely(lock == __rq_lockp(rq))) {
595 			/* preempt_count *MUST* be > 1 */
596 			preempt_enable_no_resched();
597 			return;
598 		}
599 		raw_spin_unlock(lock);
600 	}
601 }
602 
603 bool raw_spin_rq_trylock(struct rq *rq)
604 {
605 	raw_spinlock_t *lock;
606 	bool ret;
607 
608 	/* Matches synchronize_rcu() in __sched_core_enable() */
609 	preempt_disable();
610 	if (sched_core_disabled()) {
611 		ret = raw_spin_trylock(&rq->__lock);
612 		preempt_enable();
613 		return ret;
614 	}
615 
616 	for (;;) {
617 		lock = __rq_lockp(rq);
618 		ret = raw_spin_trylock(lock);
619 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
620 			preempt_enable();
621 			return ret;
622 		}
623 		raw_spin_unlock(lock);
624 	}
625 }
626 
627 void raw_spin_rq_unlock(struct rq *rq)
628 {
629 	raw_spin_unlock(rq_lockp(rq));
630 }
631 
632 #ifdef CONFIG_SMP
633 /*
634  * double_rq_lock - safely lock two runqueues
635  */
636 void double_rq_lock(struct rq *rq1, struct rq *rq2)
637 {
638 	lockdep_assert_irqs_disabled();
639 
640 	if (rq_order_less(rq2, rq1))
641 		swap(rq1, rq2);
642 
643 	raw_spin_rq_lock(rq1);
644 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
645 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
646 
647 	double_rq_clock_clear_update(rq1, rq2);
648 }
649 #endif
650 
651 /*
652  * __task_rq_lock - lock the rq @p resides on.
653  */
654 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
655 	__acquires(rq->lock)
656 {
657 	struct rq *rq;
658 
659 	lockdep_assert_held(&p->pi_lock);
660 
661 	for (;;) {
662 		rq = task_rq(p);
663 		raw_spin_rq_lock(rq);
664 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
665 			rq_pin_lock(rq, rf);
666 			return rq;
667 		}
668 		raw_spin_rq_unlock(rq);
669 
670 		while (unlikely(task_on_rq_migrating(p)))
671 			cpu_relax();
672 	}
673 }
674 
675 /*
676  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
677  */
678 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
679 	__acquires(p->pi_lock)
680 	__acquires(rq->lock)
681 {
682 	struct rq *rq;
683 
684 	for (;;) {
685 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
686 		rq = task_rq(p);
687 		raw_spin_rq_lock(rq);
688 		/*
689 		 *	move_queued_task()		task_rq_lock()
690 		 *
691 		 *	ACQUIRE (rq->lock)
692 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
693 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
694 		 *	[S] ->cpu = new_cpu		[L] task_rq()
695 		 *					[L] ->on_rq
696 		 *	RELEASE (rq->lock)
697 		 *
698 		 * If we observe the old CPU in task_rq_lock(), the acquire of
699 		 * the old rq->lock will fully serialize against the stores.
700 		 *
701 		 * If we observe the new CPU in task_rq_lock(), the address
702 		 * dependency headed by '[L] rq = task_rq()' and the acquire
703 		 * will pair with the WMB to ensure we then also see migrating.
704 		 */
705 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
706 			rq_pin_lock(rq, rf);
707 			return rq;
708 		}
709 		raw_spin_rq_unlock(rq);
710 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
711 
712 		while (unlikely(task_on_rq_migrating(p)))
713 			cpu_relax();
714 	}
715 }
716 
717 /*
718  * RQ-clock updating methods:
719  */
720 
721 static void update_rq_clock_task(struct rq *rq, s64 delta)
722 {
723 /*
724  * In theory, the compile should just see 0 here, and optimize out the call
725  * to sched_rt_avg_update. But I don't trust it...
726  */
727 	s64 __maybe_unused steal = 0, irq_delta = 0;
728 
729 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
730 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
731 
732 	/*
733 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
734 	 * this case when a previous update_rq_clock() happened inside a
735 	 * {soft,}IRQ region.
736 	 *
737 	 * When this happens, we stop ->clock_task and only update the
738 	 * prev_irq_time stamp to account for the part that fit, so that a next
739 	 * update will consume the rest. This ensures ->clock_task is
740 	 * monotonic.
741 	 *
742 	 * It does however cause some slight miss-attribution of {soft,}IRQ
743 	 * time, a more accurate solution would be to update the irq_time using
744 	 * the current rq->clock timestamp, except that would require using
745 	 * atomic ops.
746 	 */
747 	if (irq_delta > delta)
748 		irq_delta = delta;
749 
750 	rq->prev_irq_time += irq_delta;
751 	delta -= irq_delta;
752 	delayacct_irq(rq->curr, irq_delta);
753 #endif
754 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
755 	if (static_key_false((&paravirt_steal_rq_enabled))) {
756 		steal = paravirt_steal_clock(cpu_of(rq));
757 		steal -= rq->prev_steal_time_rq;
758 
759 		if (unlikely(steal > delta))
760 			steal = delta;
761 
762 		rq->prev_steal_time_rq += steal;
763 		delta -= steal;
764 	}
765 #endif
766 
767 	rq->clock_task += delta;
768 
769 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
770 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
771 		update_irq_load_avg(rq, irq_delta + steal);
772 #endif
773 	update_rq_clock_pelt(rq, delta);
774 }
775 
776 void update_rq_clock(struct rq *rq)
777 {
778 	s64 delta;
779 
780 	lockdep_assert_rq_held(rq);
781 
782 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
783 		return;
784 
785 #ifdef CONFIG_SCHED_DEBUG
786 	if (sched_feat(WARN_DOUBLE_CLOCK))
787 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
788 	rq->clock_update_flags |= RQCF_UPDATED;
789 #endif
790 
791 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
792 	if (delta < 0)
793 		return;
794 	rq->clock += delta;
795 	update_rq_clock_task(rq, delta);
796 }
797 
798 #ifdef CONFIG_SCHED_HRTICK
799 /*
800  * Use HR-timers to deliver accurate preemption points.
801  */
802 
803 static void hrtick_clear(struct rq *rq)
804 {
805 	if (hrtimer_active(&rq->hrtick_timer))
806 		hrtimer_cancel(&rq->hrtick_timer);
807 }
808 
809 /*
810  * High-resolution timer tick.
811  * Runs from hardirq context with interrupts disabled.
812  */
813 static enum hrtimer_restart hrtick(struct hrtimer *timer)
814 {
815 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
816 	struct rq_flags rf;
817 
818 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
819 
820 	rq_lock(rq, &rf);
821 	update_rq_clock(rq);
822 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
823 	rq_unlock(rq, &rf);
824 
825 	return HRTIMER_NORESTART;
826 }
827 
828 #ifdef CONFIG_SMP
829 
830 static void __hrtick_restart(struct rq *rq)
831 {
832 	struct hrtimer *timer = &rq->hrtick_timer;
833 	ktime_t time = rq->hrtick_time;
834 
835 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
836 }
837 
838 /*
839  * called from hardirq (IPI) context
840  */
841 static void __hrtick_start(void *arg)
842 {
843 	struct rq *rq = arg;
844 	struct rq_flags rf;
845 
846 	rq_lock(rq, &rf);
847 	__hrtick_restart(rq);
848 	rq_unlock(rq, &rf);
849 }
850 
851 /*
852  * Called to set the hrtick timer state.
853  *
854  * called with rq->lock held and IRQs disabled
855  */
856 void hrtick_start(struct rq *rq, u64 delay)
857 {
858 	struct hrtimer *timer = &rq->hrtick_timer;
859 	s64 delta;
860 
861 	/*
862 	 * Don't schedule slices shorter than 10000ns, that just
863 	 * doesn't make sense and can cause timer DoS.
864 	 */
865 	delta = max_t(s64, delay, 10000LL);
866 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
867 
868 	if (rq == this_rq())
869 		__hrtick_restart(rq);
870 	else
871 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
872 }
873 
874 #else
875 /*
876  * Called to set the hrtick timer state.
877  *
878  * called with rq->lock held and IRQs disabled
879  */
880 void hrtick_start(struct rq *rq, u64 delay)
881 {
882 	/*
883 	 * Don't schedule slices shorter than 10000ns, that just
884 	 * doesn't make sense. Rely on vruntime for fairness.
885 	 */
886 	delay = max_t(u64, delay, 10000LL);
887 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
888 		      HRTIMER_MODE_REL_PINNED_HARD);
889 }
890 
891 #endif /* CONFIG_SMP */
892 
893 static void hrtick_rq_init(struct rq *rq)
894 {
895 #ifdef CONFIG_SMP
896 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
897 #endif
898 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
899 	rq->hrtick_timer.function = hrtick;
900 }
901 #else	/* CONFIG_SCHED_HRTICK */
902 static inline void hrtick_clear(struct rq *rq)
903 {
904 }
905 
906 static inline void hrtick_rq_init(struct rq *rq)
907 {
908 }
909 #endif	/* CONFIG_SCHED_HRTICK */
910 
911 /*
912  * try_cmpxchg based fetch_or() macro so it works for different integer types:
913  */
914 #define fetch_or(ptr, mask)						\
915 	({								\
916 		typeof(ptr) _ptr = (ptr);				\
917 		typeof(mask) _mask = (mask);				\
918 		typeof(*_ptr) _val = *_ptr;				\
919 									\
920 		do {							\
921 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
922 	_val;								\
923 })
924 
925 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
926 /*
927  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
928  * this avoids any races wrt polling state changes and thereby avoids
929  * spurious IPIs.
930  */
931 static inline bool set_nr_and_not_polling(struct task_struct *p)
932 {
933 	struct thread_info *ti = task_thread_info(p);
934 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
935 }
936 
937 /*
938  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
939  *
940  * If this returns true, then the idle task promises to call
941  * sched_ttwu_pending() and reschedule soon.
942  */
943 static bool set_nr_if_polling(struct task_struct *p)
944 {
945 	struct thread_info *ti = task_thread_info(p);
946 	typeof(ti->flags) val = READ_ONCE(ti->flags);
947 
948 	do {
949 		if (!(val & _TIF_POLLING_NRFLAG))
950 			return false;
951 		if (val & _TIF_NEED_RESCHED)
952 			return true;
953 	} while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
954 
955 	return true;
956 }
957 
958 #else
959 static inline bool set_nr_and_not_polling(struct task_struct *p)
960 {
961 	set_tsk_need_resched(p);
962 	return true;
963 }
964 
965 #ifdef CONFIG_SMP
966 static inline bool set_nr_if_polling(struct task_struct *p)
967 {
968 	return false;
969 }
970 #endif
971 #endif
972 
973 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
974 {
975 	struct wake_q_node *node = &task->wake_q;
976 
977 	/*
978 	 * Atomically grab the task, if ->wake_q is !nil already it means
979 	 * it's already queued (either by us or someone else) and will get the
980 	 * wakeup due to that.
981 	 *
982 	 * In order to ensure that a pending wakeup will observe our pending
983 	 * state, even in the failed case, an explicit smp_mb() must be used.
984 	 */
985 	smp_mb__before_atomic();
986 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
987 		return false;
988 
989 	/*
990 	 * The head is context local, there can be no concurrency.
991 	 */
992 	*head->lastp = node;
993 	head->lastp = &node->next;
994 	return true;
995 }
996 
997 /**
998  * wake_q_add() - queue a wakeup for 'later' waking.
999  * @head: the wake_q_head to add @task to
1000  * @task: the task to queue for 'later' wakeup
1001  *
1002  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1003  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1004  * instantly.
1005  *
1006  * This function must be used as-if it were wake_up_process(); IOW the task
1007  * must be ready to be woken at this location.
1008  */
1009 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
1010 {
1011 	if (__wake_q_add(head, task))
1012 		get_task_struct(task);
1013 }
1014 
1015 /**
1016  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
1017  * @head: the wake_q_head to add @task to
1018  * @task: the task to queue for 'later' wakeup
1019  *
1020  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1021  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1022  * instantly.
1023  *
1024  * This function must be used as-if it were wake_up_process(); IOW the task
1025  * must be ready to be woken at this location.
1026  *
1027  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1028  * that already hold reference to @task can call the 'safe' version and trust
1029  * wake_q to do the right thing depending whether or not the @task is already
1030  * queued for wakeup.
1031  */
1032 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1033 {
1034 	if (!__wake_q_add(head, task))
1035 		put_task_struct(task);
1036 }
1037 
1038 void wake_up_q(struct wake_q_head *head)
1039 {
1040 	struct wake_q_node *node = head->first;
1041 
1042 	while (node != WAKE_Q_TAIL) {
1043 		struct task_struct *task;
1044 
1045 		task = container_of(node, struct task_struct, wake_q);
1046 		/* Task can safely be re-inserted now: */
1047 		node = node->next;
1048 		task->wake_q.next = NULL;
1049 
1050 		/*
1051 		 * wake_up_process() executes a full barrier, which pairs with
1052 		 * the queueing in wake_q_add() so as not to miss wakeups.
1053 		 */
1054 		wake_up_process(task);
1055 		put_task_struct(task);
1056 	}
1057 }
1058 
1059 /*
1060  * resched_curr - mark rq's current task 'to be rescheduled now'.
1061  *
1062  * On UP this means the setting of the need_resched flag, on SMP it
1063  * might also involve a cross-CPU call to trigger the scheduler on
1064  * the target CPU.
1065  */
1066 void resched_curr(struct rq *rq)
1067 {
1068 	struct task_struct *curr = rq->curr;
1069 	int cpu;
1070 
1071 	lockdep_assert_rq_held(rq);
1072 
1073 	if (test_tsk_need_resched(curr))
1074 		return;
1075 
1076 	cpu = cpu_of(rq);
1077 
1078 	if (cpu == smp_processor_id()) {
1079 		set_tsk_need_resched(curr);
1080 		set_preempt_need_resched();
1081 		return;
1082 	}
1083 
1084 	if (set_nr_and_not_polling(curr))
1085 		smp_send_reschedule(cpu);
1086 	else
1087 		trace_sched_wake_idle_without_ipi(cpu);
1088 }
1089 
1090 void resched_cpu(int cpu)
1091 {
1092 	struct rq *rq = cpu_rq(cpu);
1093 	unsigned long flags;
1094 
1095 	raw_spin_rq_lock_irqsave(rq, flags);
1096 	if (cpu_online(cpu) || cpu == smp_processor_id())
1097 		resched_curr(rq);
1098 	raw_spin_rq_unlock_irqrestore(rq, flags);
1099 }
1100 
1101 #ifdef CONFIG_SMP
1102 #ifdef CONFIG_NO_HZ_COMMON
1103 /*
1104  * In the semi idle case, use the nearest busy CPU for migrating timers
1105  * from an idle CPU.  This is good for power-savings.
1106  *
1107  * We don't do similar optimization for completely idle system, as
1108  * selecting an idle CPU will add more delays to the timers than intended
1109  * (as that CPU's timer base may not be up to date wrt jiffies etc).
1110  */
1111 int get_nohz_timer_target(void)
1112 {
1113 	int i, cpu = smp_processor_id(), default_cpu = -1;
1114 	struct sched_domain *sd;
1115 	const struct cpumask *hk_mask;
1116 
1117 	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1118 		if (!idle_cpu(cpu))
1119 			return cpu;
1120 		default_cpu = cpu;
1121 	}
1122 
1123 	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1124 
1125 	guard(rcu)();
1126 
1127 	for_each_domain(cpu, sd) {
1128 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1129 			if (cpu == i)
1130 				continue;
1131 
1132 			if (!idle_cpu(i))
1133 				return i;
1134 		}
1135 	}
1136 
1137 	if (default_cpu == -1)
1138 		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1139 
1140 	return default_cpu;
1141 }
1142 
1143 /*
1144  * When add_timer_on() enqueues a timer into the timer wheel of an
1145  * idle CPU then this timer might expire before the next timer event
1146  * which is scheduled to wake up that CPU. In case of a completely
1147  * idle system the next event might even be infinite time into the
1148  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1149  * leaves the inner idle loop so the newly added timer is taken into
1150  * account when the CPU goes back to idle and evaluates the timer
1151  * wheel for the next timer event.
1152  */
1153 static void wake_up_idle_cpu(int cpu)
1154 {
1155 	struct rq *rq = cpu_rq(cpu);
1156 
1157 	if (cpu == smp_processor_id())
1158 		return;
1159 
1160 	/*
1161 	 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
1162 	 * part of the idle loop. This forces an exit from the idle loop
1163 	 * and a round trip to schedule(). Now this could be optimized
1164 	 * because a simple new idle loop iteration is enough to
1165 	 * re-evaluate the next tick. Provided some re-ordering of tick
1166 	 * nohz functions that would need to follow TIF_NR_POLLING
1167 	 * clearing:
1168 	 *
1169 	 * - On most architectures, a simple fetch_or on ti::flags with a
1170 	 *   "0" value would be enough to know if an IPI needs to be sent.
1171 	 *
1172 	 * - x86 needs to perform a last need_resched() check between
1173 	 *   monitor and mwait which doesn't take timers into account.
1174 	 *   There a dedicated TIF_TIMER flag would be required to
1175 	 *   fetch_or here and be checked along with TIF_NEED_RESCHED
1176 	 *   before mwait().
1177 	 *
1178 	 * However, remote timer enqueue is not such a frequent event
1179 	 * and testing of the above solutions didn't appear to report
1180 	 * much benefits.
1181 	 */
1182 	if (set_nr_and_not_polling(rq->idle))
1183 		smp_send_reschedule(cpu);
1184 	else
1185 		trace_sched_wake_idle_without_ipi(cpu);
1186 }
1187 
1188 static bool wake_up_full_nohz_cpu(int cpu)
1189 {
1190 	/*
1191 	 * We just need the target to call irq_exit() and re-evaluate
1192 	 * the next tick. The nohz full kick at least implies that.
1193 	 * If needed we can still optimize that later with an
1194 	 * empty IRQ.
1195 	 */
1196 	if (cpu_is_offline(cpu))
1197 		return true;  /* Don't try to wake offline CPUs. */
1198 	if (tick_nohz_full_cpu(cpu)) {
1199 		if (cpu != smp_processor_id() ||
1200 		    tick_nohz_tick_stopped())
1201 			tick_nohz_full_kick_cpu(cpu);
1202 		return true;
1203 	}
1204 
1205 	return false;
1206 }
1207 
1208 /*
1209  * Wake up the specified CPU.  If the CPU is going offline, it is the
1210  * caller's responsibility to deal with the lost wakeup, for example,
1211  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1212  */
1213 void wake_up_nohz_cpu(int cpu)
1214 {
1215 	if (!wake_up_full_nohz_cpu(cpu))
1216 		wake_up_idle_cpu(cpu);
1217 }
1218 
1219 static void nohz_csd_func(void *info)
1220 {
1221 	struct rq *rq = info;
1222 	int cpu = cpu_of(rq);
1223 	unsigned int flags;
1224 
1225 	/*
1226 	 * Release the rq::nohz_csd.
1227 	 */
1228 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1229 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1230 
1231 	rq->idle_balance = idle_cpu(cpu);
1232 	if (rq->idle_balance && !need_resched()) {
1233 		rq->nohz_idle_balance = flags;
1234 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1235 	}
1236 }
1237 
1238 #endif /* CONFIG_NO_HZ_COMMON */
1239 
1240 #ifdef CONFIG_NO_HZ_FULL
1241 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1242 {
1243 	if (rq->nr_running != 1)
1244 		return false;
1245 
1246 	if (p->sched_class != &fair_sched_class)
1247 		return false;
1248 
1249 	if (!task_on_rq_queued(p))
1250 		return false;
1251 
1252 	return true;
1253 }
1254 
1255 bool sched_can_stop_tick(struct rq *rq)
1256 {
1257 	int fifo_nr_running;
1258 
1259 	/* Deadline tasks, even if single, need the tick */
1260 	if (rq->dl.dl_nr_running)
1261 		return false;
1262 
1263 	/*
1264 	 * If there are more than one RR tasks, we need the tick to affect the
1265 	 * actual RR behaviour.
1266 	 */
1267 	if (rq->rt.rr_nr_running) {
1268 		if (rq->rt.rr_nr_running == 1)
1269 			return true;
1270 		else
1271 			return false;
1272 	}
1273 
1274 	/*
1275 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1276 	 * forced preemption between FIFO tasks.
1277 	 */
1278 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1279 	if (fifo_nr_running)
1280 		return true;
1281 
1282 	/*
1283 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1284 	 * if there's more than one we need the tick for involuntary
1285 	 * preemption.
1286 	 */
1287 	if (rq->nr_running > 1)
1288 		return false;
1289 
1290 	/*
1291 	 * If there is one task and it has CFS runtime bandwidth constraints
1292 	 * and it's on the cpu now we don't want to stop the tick.
1293 	 * This check prevents clearing the bit if a newly enqueued task here is
1294 	 * dequeued by migrating while the constrained task continues to run.
1295 	 * E.g. going from 2->1 without going through pick_next_task().
1296 	 */
1297 	if (__need_bw_check(rq, rq->curr)) {
1298 		if (cfs_task_bw_constrained(rq->curr))
1299 			return false;
1300 	}
1301 
1302 	return true;
1303 }
1304 #endif /* CONFIG_NO_HZ_FULL */
1305 #endif /* CONFIG_SMP */
1306 
1307 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1308 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1309 /*
1310  * Iterate task_group tree rooted at *from, calling @down when first entering a
1311  * node and @up when leaving it for the final time.
1312  *
1313  * Caller must hold rcu_lock or sufficient equivalent.
1314  */
1315 int walk_tg_tree_from(struct task_group *from,
1316 			     tg_visitor down, tg_visitor up, void *data)
1317 {
1318 	struct task_group *parent, *child;
1319 	int ret;
1320 
1321 	parent = from;
1322 
1323 down:
1324 	ret = (*down)(parent, data);
1325 	if (ret)
1326 		goto out;
1327 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1328 		parent = child;
1329 		goto down;
1330 
1331 up:
1332 		continue;
1333 	}
1334 	ret = (*up)(parent, data);
1335 	if (ret || parent == from)
1336 		goto out;
1337 
1338 	child = parent;
1339 	parent = parent->parent;
1340 	if (parent)
1341 		goto up;
1342 out:
1343 	return ret;
1344 }
1345 
1346 int tg_nop(struct task_group *tg, void *data)
1347 {
1348 	return 0;
1349 }
1350 #endif
1351 
1352 void set_load_weight(struct task_struct *p, bool update_load)
1353 {
1354 	int prio = p->static_prio - MAX_RT_PRIO;
1355 	struct load_weight lw;
1356 
1357 	if (task_has_idle_policy(p)) {
1358 		lw.weight = scale_load(WEIGHT_IDLEPRIO);
1359 		lw.inv_weight = WMULT_IDLEPRIO;
1360 	} else {
1361 		lw.weight = scale_load(sched_prio_to_weight[prio]);
1362 		lw.inv_weight = sched_prio_to_wmult[prio];
1363 	}
1364 
1365 	/*
1366 	 * SCHED_OTHER tasks have to update their load when changing their
1367 	 * weight
1368 	 */
1369 	if (update_load && p->sched_class == &fair_sched_class)
1370 		reweight_task(p, &lw);
1371 	else
1372 		p->se.load = lw;
1373 }
1374 
1375 #ifdef CONFIG_UCLAMP_TASK
1376 /*
1377  * Serializes updates of utilization clamp values
1378  *
1379  * The (slow-path) user-space triggers utilization clamp value updates which
1380  * can require updates on (fast-path) scheduler's data structures used to
1381  * support enqueue/dequeue operations.
1382  * While the per-CPU rq lock protects fast-path update operations, user-space
1383  * requests are serialized using a mutex to reduce the risk of conflicting
1384  * updates or API abuses.
1385  */
1386 static DEFINE_MUTEX(uclamp_mutex);
1387 
1388 /* Max allowed minimum utilization */
1389 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1390 
1391 /* Max allowed maximum utilization */
1392 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1393 
1394 /*
1395  * By default RT tasks run at the maximum performance point/capacity of the
1396  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1397  * SCHED_CAPACITY_SCALE.
1398  *
1399  * This knob allows admins to change the default behavior when uclamp is being
1400  * used. In battery powered devices, particularly, running at the maximum
1401  * capacity and frequency will increase energy consumption and shorten the
1402  * battery life.
1403  *
1404  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1405  *
1406  * This knob will not override the system default sched_util_clamp_min defined
1407  * above.
1408  */
1409 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1410 
1411 /* All clamps are required to be less or equal than these values */
1412 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1413 
1414 /*
1415  * This static key is used to reduce the uclamp overhead in the fast path. It
1416  * primarily disables the call to uclamp_rq_{inc, dec}() in
1417  * enqueue/dequeue_task().
1418  *
1419  * This allows users to continue to enable uclamp in their kernel config with
1420  * minimum uclamp overhead in the fast path.
1421  *
1422  * As soon as userspace modifies any of the uclamp knobs, the static key is
1423  * enabled, since we have an actual users that make use of uclamp
1424  * functionality.
1425  *
1426  * The knobs that would enable this static key are:
1427  *
1428  *   * A task modifying its uclamp value with sched_setattr().
1429  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1430  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1431  */
1432 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1433 
1434 static inline unsigned int
1435 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1436 		  unsigned int clamp_value)
1437 {
1438 	/*
1439 	 * Avoid blocked utilization pushing up the frequency when we go
1440 	 * idle (which drops the max-clamp) by retaining the last known
1441 	 * max-clamp.
1442 	 */
1443 	if (clamp_id == UCLAMP_MAX) {
1444 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1445 		return clamp_value;
1446 	}
1447 
1448 	return uclamp_none(UCLAMP_MIN);
1449 }
1450 
1451 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1452 				     unsigned int clamp_value)
1453 {
1454 	/* Reset max-clamp retention only on idle exit */
1455 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1456 		return;
1457 
1458 	uclamp_rq_set(rq, clamp_id, clamp_value);
1459 }
1460 
1461 static inline
1462 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1463 				   unsigned int clamp_value)
1464 {
1465 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1466 	int bucket_id = UCLAMP_BUCKETS - 1;
1467 
1468 	/*
1469 	 * Since both min and max clamps are max aggregated, find the
1470 	 * top most bucket with tasks in.
1471 	 */
1472 	for ( ; bucket_id >= 0; bucket_id--) {
1473 		if (!bucket[bucket_id].tasks)
1474 			continue;
1475 		return bucket[bucket_id].value;
1476 	}
1477 
1478 	/* No tasks -- default clamp values */
1479 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1480 }
1481 
1482 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1483 {
1484 	unsigned int default_util_min;
1485 	struct uclamp_se *uc_se;
1486 
1487 	lockdep_assert_held(&p->pi_lock);
1488 
1489 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1490 
1491 	/* Only sync if user didn't override the default */
1492 	if (uc_se->user_defined)
1493 		return;
1494 
1495 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1496 	uclamp_se_set(uc_se, default_util_min, false);
1497 }
1498 
1499 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1500 {
1501 	if (!rt_task(p))
1502 		return;
1503 
1504 	/* Protect updates to p->uclamp_* */
1505 	guard(task_rq_lock)(p);
1506 	__uclamp_update_util_min_rt_default(p);
1507 }
1508 
1509 static inline struct uclamp_se
1510 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1511 {
1512 	/* Copy by value as we could modify it */
1513 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1514 #ifdef CONFIG_UCLAMP_TASK_GROUP
1515 	unsigned int tg_min, tg_max, value;
1516 
1517 	/*
1518 	 * Tasks in autogroups or root task group will be
1519 	 * restricted by system defaults.
1520 	 */
1521 	if (task_group_is_autogroup(task_group(p)))
1522 		return uc_req;
1523 	if (task_group(p) == &root_task_group)
1524 		return uc_req;
1525 
1526 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1527 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1528 	value = uc_req.value;
1529 	value = clamp(value, tg_min, tg_max);
1530 	uclamp_se_set(&uc_req, value, false);
1531 #endif
1532 
1533 	return uc_req;
1534 }
1535 
1536 /*
1537  * The effective clamp bucket index of a task depends on, by increasing
1538  * priority:
1539  * - the task specific clamp value, when explicitly requested from userspace
1540  * - the task group effective clamp value, for tasks not either in the root
1541  *   group or in an autogroup
1542  * - the system default clamp value, defined by the sysadmin
1543  */
1544 static inline struct uclamp_se
1545 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1546 {
1547 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1548 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1549 
1550 	/* System default restrictions always apply */
1551 	if (unlikely(uc_req.value > uc_max.value))
1552 		return uc_max;
1553 
1554 	return uc_req;
1555 }
1556 
1557 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1558 {
1559 	struct uclamp_se uc_eff;
1560 
1561 	/* Task currently refcounted: use back-annotated (effective) value */
1562 	if (p->uclamp[clamp_id].active)
1563 		return (unsigned long)p->uclamp[clamp_id].value;
1564 
1565 	uc_eff = uclamp_eff_get(p, clamp_id);
1566 
1567 	return (unsigned long)uc_eff.value;
1568 }
1569 
1570 /*
1571  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1572  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1573  * updates the rq's clamp value if required.
1574  *
1575  * Tasks can have a task-specific value requested from user-space, track
1576  * within each bucket the maximum value for tasks refcounted in it.
1577  * This "local max aggregation" allows to track the exact "requested" value
1578  * for each bucket when all its RUNNABLE tasks require the same clamp.
1579  */
1580 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1581 				    enum uclamp_id clamp_id)
1582 {
1583 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1584 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1585 	struct uclamp_bucket *bucket;
1586 
1587 	lockdep_assert_rq_held(rq);
1588 
1589 	/* Update task effective clamp */
1590 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1591 
1592 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1593 	bucket->tasks++;
1594 	uc_se->active = true;
1595 
1596 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1597 
1598 	/*
1599 	 * Local max aggregation: rq buckets always track the max
1600 	 * "requested" clamp value of its RUNNABLE tasks.
1601 	 */
1602 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1603 		bucket->value = uc_se->value;
1604 
1605 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1606 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1607 }
1608 
1609 /*
1610  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1611  * is released. If this is the last task reference counting the rq's max
1612  * active clamp value, then the rq's clamp value is updated.
1613  *
1614  * Both refcounted tasks and rq's cached clamp values are expected to be
1615  * always valid. If it's detected they are not, as defensive programming,
1616  * enforce the expected state and warn.
1617  */
1618 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1619 				    enum uclamp_id clamp_id)
1620 {
1621 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1622 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1623 	struct uclamp_bucket *bucket;
1624 	unsigned int bkt_clamp;
1625 	unsigned int rq_clamp;
1626 
1627 	lockdep_assert_rq_held(rq);
1628 
1629 	/*
1630 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1631 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1632 	 *
1633 	 * In this case the uc_se->active flag should be false since no uclamp
1634 	 * accounting was performed at enqueue time and we can just return
1635 	 * here.
1636 	 *
1637 	 * Need to be careful of the following enqueue/dequeue ordering
1638 	 * problem too
1639 	 *
1640 	 *	enqueue(taskA)
1641 	 *	// sched_uclamp_used gets enabled
1642 	 *	enqueue(taskB)
1643 	 *	dequeue(taskA)
1644 	 *	// Must not decrement bucket->tasks here
1645 	 *	dequeue(taskB)
1646 	 *
1647 	 * where we could end up with stale data in uc_se and
1648 	 * bucket[uc_se->bucket_id].
1649 	 *
1650 	 * The following check here eliminates the possibility of such race.
1651 	 */
1652 	if (unlikely(!uc_se->active))
1653 		return;
1654 
1655 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1656 
1657 	SCHED_WARN_ON(!bucket->tasks);
1658 	if (likely(bucket->tasks))
1659 		bucket->tasks--;
1660 
1661 	uc_se->active = false;
1662 
1663 	/*
1664 	 * Keep "local max aggregation" simple and accept to (possibly)
1665 	 * overboost some RUNNABLE tasks in the same bucket.
1666 	 * The rq clamp bucket value is reset to its base value whenever
1667 	 * there are no more RUNNABLE tasks refcounting it.
1668 	 */
1669 	if (likely(bucket->tasks))
1670 		return;
1671 
1672 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1673 	/*
1674 	 * Defensive programming: this should never happen. If it happens,
1675 	 * e.g. due to future modification, warn and fix up the expected value.
1676 	 */
1677 	SCHED_WARN_ON(bucket->value > rq_clamp);
1678 	if (bucket->value >= rq_clamp) {
1679 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1680 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1681 	}
1682 }
1683 
1684 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1685 {
1686 	enum uclamp_id clamp_id;
1687 
1688 	/*
1689 	 * Avoid any overhead until uclamp is actually used by the userspace.
1690 	 *
1691 	 * The condition is constructed such that a NOP is generated when
1692 	 * sched_uclamp_used is disabled.
1693 	 */
1694 	if (!static_branch_unlikely(&sched_uclamp_used))
1695 		return;
1696 
1697 	if (unlikely(!p->sched_class->uclamp_enabled))
1698 		return;
1699 
1700 	if (p->se.sched_delayed)
1701 		return;
1702 
1703 	for_each_clamp_id(clamp_id)
1704 		uclamp_rq_inc_id(rq, p, clamp_id);
1705 
1706 	/* Reset clamp idle holding when there is one RUNNABLE task */
1707 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1708 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1709 }
1710 
1711 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1712 {
1713 	enum uclamp_id clamp_id;
1714 
1715 	/*
1716 	 * Avoid any overhead until uclamp is actually used by the userspace.
1717 	 *
1718 	 * The condition is constructed such that a NOP is generated when
1719 	 * sched_uclamp_used is disabled.
1720 	 */
1721 	if (!static_branch_unlikely(&sched_uclamp_used))
1722 		return;
1723 
1724 	if (unlikely(!p->sched_class->uclamp_enabled))
1725 		return;
1726 
1727 	if (p->se.sched_delayed)
1728 		return;
1729 
1730 	for_each_clamp_id(clamp_id)
1731 		uclamp_rq_dec_id(rq, p, clamp_id);
1732 }
1733 
1734 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1735 				      enum uclamp_id clamp_id)
1736 {
1737 	if (!p->uclamp[clamp_id].active)
1738 		return;
1739 
1740 	uclamp_rq_dec_id(rq, p, clamp_id);
1741 	uclamp_rq_inc_id(rq, p, clamp_id);
1742 
1743 	/*
1744 	 * Make sure to clear the idle flag if we've transiently reached 0
1745 	 * active tasks on rq.
1746 	 */
1747 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1748 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1749 }
1750 
1751 static inline void
1752 uclamp_update_active(struct task_struct *p)
1753 {
1754 	enum uclamp_id clamp_id;
1755 	struct rq_flags rf;
1756 	struct rq *rq;
1757 
1758 	/*
1759 	 * Lock the task and the rq where the task is (or was) queued.
1760 	 *
1761 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1762 	 * price to pay to safely serialize util_{min,max} updates with
1763 	 * enqueues, dequeues and migration operations.
1764 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1765 	 */
1766 	rq = task_rq_lock(p, &rf);
1767 
1768 	/*
1769 	 * Setting the clamp bucket is serialized by task_rq_lock().
1770 	 * If the task is not yet RUNNABLE and its task_struct is not
1771 	 * affecting a valid clamp bucket, the next time it's enqueued,
1772 	 * it will already see the updated clamp bucket value.
1773 	 */
1774 	for_each_clamp_id(clamp_id)
1775 		uclamp_rq_reinc_id(rq, p, clamp_id);
1776 
1777 	task_rq_unlock(rq, p, &rf);
1778 }
1779 
1780 #ifdef CONFIG_UCLAMP_TASK_GROUP
1781 static inline void
1782 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1783 {
1784 	struct css_task_iter it;
1785 	struct task_struct *p;
1786 
1787 	css_task_iter_start(css, 0, &it);
1788 	while ((p = css_task_iter_next(&it)))
1789 		uclamp_update_active(p);
1790 	css_task_iter_end(&it);
1791 }
1792 
1793 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1794 #endif
1795 
1796 #ifdef CONFIG_SYSCTL
1797 #ifdef CONFIG_UCLAMP_TASK_GROUP
1798 static void uclamp_update_root_tg(void)
1799 {
1800 	struct task_group *tg = &root_task_group;
1801 
1802 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1803 		      sysctl_sched_uclamp_util_min, false);
1804 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1805 		      sysctl_sched_uclamp_util_max, false);
1806 
1807 	guard(rcu)();
1808 	cpu_util_update_eff(&root_task_group.css);
1809 }
1810 #else
1811 static void uclamp_update_root_tg(void) { }
1812 #endif
1813 
1814 static void uclamp_sync_util_min_rt_default(void)
1815 {
1816 	struct task_struct *g, *p;
1817 
1818 	/*
1819 	 * copy_process()			sysctl_uclamp
1820 	 *					  uclamp_min_rt = X;
1821 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1822 	 *   // link thread			  smp_mb__after_spinlock()
1823 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1824 	 *   sched_post_fork()			  for_each_process_thread()
1825 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1826 	 *
1827 	 * Ensures that either sched_post_fork() will observe the new
1828 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1829 	 * task.
1830 	 */
1831 	read_lock(&tasklist_lock);
1832 	smp_mb__after_spinlock();
1833 	read_unlock(&tasklist_lock);
1834 
1835 	guard(rcu)();
1836 	for_each_process_thread(g, p)
1837 		uclamp_update_util_min_rt_default(p);
1838 }
1839 
1840 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write,
1841 				void *buffer, size_t *lenp, loff_t *ppos)
1842 {
1843 	bool update_root_tg = false;
1844 	int old_min, old_max, old_min_rt;
1845 	int result;
1846 
1847 	guard(mutex)(&uclamp_mutex);
1848 
1849 	old_min = sysctl_sched_uclamp_util_min;
1850 	old_max = sysctl_sched_uclamp_util_max;
1851 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1852 
1853 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1854 	if (result)
1855 		goto undo;
1856 	if (!write)
1857 		return 0;
1858 
1859 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1860 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1861 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1862 
1863 		result = -EINVAL;
1864 		goto undo;
1865 	}
1866 
1867 	if (old_min != sysctl_sched_uclamp_util_min) {
1868 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1869 			      sysctl_sched_uclamp_util_min, false);
1870 		update_root_tg = true;
1871 	}
1872 	if (old_max != sysctl_sched_uclamp_util_max) {
1873 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1874 			      sysctl_sched_uclamp_util_max, false);
1875 		update_root_tg = true;
1876 	}
1877 
1878 	if (update_root_tg) {
1879 		static_branch_enable(&sched_uclamp_used);
1880 		uclamp_update_root_tg();
1881 	}
1882 
1883 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1884 		static_branch_enable(&sched_uclamp_used);
1885 		uclamp_sync_util_min_rt_default();
1886 	}
1887 
1888 	/*
1889 	 * We update all RUNNABLE tasks only when task groups are in use.
1890 	 * Otherwise, keep it simple and do just a lazy update at each next
1891 	 * task enqueue time.
1892 	 */
1893 	return 0;
1894 
1895 undo:
1896 	sysctl_sched_uclamp_util_min = old_min;
1897 	sysctl_sched_uclamp_util_max = old_max;
1898 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1899 	return result;
1900 }
1901 #endif
1902 
1903 static void uclamp_fork(struct task_struct *p)
1904 {
1905 	enum uclamp_id clamp_id;
1906 
1907 	/*
1908 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1909 	 * as the task is still at its early fork stages.
1910 	 */
1911 	for_each_clamp_id(clamp_id)
1912 		p->uclamp[clamp_id].active = false;
1913 
1914 	if (likely(!p->sched_reset_on_fork))
1915 		return;
1916 
1917 	for_each_clamp_id(clamp_id) {
1918 		uclamp_se_set(&p->uclamp_req[clamp_id],
1919 			      uclamp_none(clamp_id), false);
1920 	}
1921 }
1922 
1923 static void uclamp_post_fork(struct task_struct *p)
1924 {
1925 	uclamp_update_util_min_rt_default(p);
1926 }
1927 
1928 static void __init init_uclamp_rq(struct rq *rq)
1929 {
1930 	enum uclamp_id clamp_id;
1931 	struct uclamp_rq *uc_rq = rq->uclamp;
1932 
1933 	for_each_clamp_id(clamp_id) {
1934 		uc_rq[clamp_id] = (struct uclamp_rq) {
1935 			.value = uclamp_none(clamp_id)
1936 		};
1937 	}
1938 
1939 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1940 }
1941 
1942 static void __init init_uclamp(void)
1943 {
1944 	struct uclamp_se uc_max = {};
1945 	enum uclamp_id clamp_id;
1946 	int cpu;
1947 
1948 	for_each_possible_cpu(cpu)
1949 		init_uclamp_rq(cpu_rq(cpu));
1950 
1951 	for_each_clamp_id(clamp_id) {
1952 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1953 			      uclamp_none(clamp_id), false);
1954 	}
1955 
1956 	/* System defaults allow max clamp values for both indexes */
1957 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1958 	for_each_clamp_id(clamp_id) {
1959 		uclamp_default[clamp_id] = uc_max;
1960 #ifdef CONFIG_UCLAMP_TASK_GROUP
1961 		root_task_group.uclamp_req[clamp_id] = uc_max;
1962 		root_task_group.uclamp[clamp_id] = uc_max;
1963 #endif
1964 	}
1965 }
1966 
1967 #else /* !CONFIG_UCLAMP_TASK */
1968 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1969 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1970 static inline void uclamp_fork(struct task_struct *p) { }
1971 static inline void uclamp_post_fork(struct task_struct *p) { }
1972 static inline void init_uclamp(void) { }
1973 #endif /* CONFIG_UCLAMP_TASK */
1974 
1975 bool sched_task_on_rq(struct task_struct *p)
1976 {
1977 	return task_on_rq_queued(p);
1978 }
1979 
1980 unsigned long get_wchan(struct task_struct *p)
1981 {
1982 	unsigned long ip = 0;
1983 	unsigned int state;
1984 
1985 	if (!p || p == current)
1986 		return 0;
1987 
1988 	/* Only get wchan if task is blocked and we can keep it that way. */
1989 	raw_spin_lock_irq(&p->pi_lock);
1990 	state = READ_ONCE(p->__state);
1991 	smp_rmb(); /* see try_to_wake_up() */
1992 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
1993 		ip = __get_wchan(p);
1994 	raw_spin_unlock_irq(&p->pi_lock);
1995 
1996 	return ip;
1997 }
1998 
1999 void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2000 {
2001 	if (!(flags & ENQUEUE_NOCLOCK))
2002 		update_rq_clock(rq);
2003 
2004 	if (!(flags & ENQUEUE_RESTORE)) {
2005 		sched_info_enqueue(rq, p);
2006 		psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
2007 	}
2008 
2009 	p->sched_class->enqueue_task(rq, p, flags);
2010 	/*
2011 	 * Must be after ->enqueue_task() because ENQUEUE_DELAYED can clear
2012 	 * ->sched_delayed.
2013 	 */
2014 	uclamp_rq_inc(rq, p);
2015 
2016 	if (sched_core_enabled(rq))
2017 		sched_core_enqueue(rq, p);
2018 }
2019 
2020 /*
2021  * Must only return false when DEQUEUE_SLEEP.
2022  */
2023 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2024 {
2025 	if (sched_core_enabled(rq))
2026 		sched_core_dequeue(rq, p, flags);
2027 
2028 	if (!(flags & DEQUEUE_NOCLOCK))
2029 		update_rq_clock(rq);
2030 
2031 	if (!(flags & DEQUEUE_SAVE)) {
2032 		sched_info_dequeue(rq, p);
2033 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2034 	}
2035 
2036 	/*
2037 	 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail'
2038 	 * and mark the task ->sched_delayed.
2039 	 */
2040 	uclamp_rq_dec(rq, p);
2041 	return p->sched_class->dequeue_task(rq, p, flags);
2042 }
2043 
2044 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2045 {
2046 	if (task_on_rq_migrating(p))
2047 		flags |= ENQUEUE_MIGRATED;
2048 	if (flags & ENQUEUE_MIGRATED)
2049 		sched_mm_cid_migrate_to(rq, p);
2050 
2051 	enqueue_task(rq, p, flags);
2052 
2053 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
2054 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2055 }
2056 
2057 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2058 {
2059 	SCHED_WARN_ON(flags & DEQUEUE_SLEEP);
2060 
2061 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
2062 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2063 
2064 	/*
2065 	 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before*
2066 	 * dequeue_task() and cleared *after* enqueue_task().
2067 	 */
2068 
2069 	dequeue_task(rq, p, flags);
2070 }
2071 
2072 static void block_task(struct rq *rq, struct task_struct *p, int flags)
2073 {
2074 	if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags))
2075 		__block_task(rq, p);
2076 }
2077 
2078 /**
2079  * task_curr - is this task currently executing on a CPU?
2080  * @p: the task in question.
2081  *
2082  * Return: 1 if the task is currently executing. 0 otherwise.
2083  */
2084 inline int task_curr(const struct task_struct *p)
2085 {
2086 	return cpu_curr(task_cpu(p)) == p;
2087 }
2088 
2089 /*
2090  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2091  * use the balance_callback list if you want balancing.
2092  *
2093  * this means any call to check_class_changed() must be followed by a call to
2094  * balance_callback().
2095  */
2096 void check_class_changed(struct rq *rq, struct task_struct *p,
2097 			 const struct sched_class *prev_class,
2098 			 int oldprio)
2099 {
2100 	if (prev_class != p->sched_class) {
2101 		if (prev_class->switched_from)
2102 			prev_class->switched_from(rq, p);
2103 
2104 		p->sched_class->switched_to(rq, p);
2105 	} else if (oldprio != p->prio || dl_task(p))
2106 		p->sched_class->prio_changed(rq, p, oldprio);
2107 }
2108 
2109 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2110 {
2111 	if (p->sched_class == rq->curr->sched_class)
2112 		rq->curr->sched_class->wakeup_preempt(rq, p, flags);
2113 	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2114 		resched_curr(rq);
2115 
2116 	/*
2117 	 * A queue event has occurred, and we're going to schedule.  In
2118 	 * this case, we can save a useless back to back clock update.
2119 	 */
2120 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2121 		rq_clock_skip_update(rq);
2122 }
2123 
2124 static __always_inline
2125 int __task_state_match(struct task_struct *p, unsigned int state)
2126 {
2127 	if (READ_ONCE(p->__state) & state)
2128 		return 1;
2129 
2130 	if (READ_ONCE(p->saved_state) & state)
2131 		return -1;
2132 
2133 	return 0;
2134 }
2135 
2136 static __always_inline
2137 int task_state_match(struct task_struct *p, unsigned int state)
2138 {
2139 	/*
2140 	 * Serialize against current_save_and_set_rtlock_wait_state(),
2141 	 * current_restore_rtlock_saved_state(), and __refrigerator().
2142 	 */
2143 	guard(raw_spinlock_irq)(&p->pi_lock);
2144 	return __task_state_match(p, state);
2145 }
2146 
2147 /*
2148  * wait_task_inactive - wait for a thread to unschedule.
2149  *
2150  * Wait for the thread to block in any of the states set in @match_state.
2151  * If it changes, i.e. @p might have woken up, then return zero.  When we
2152  * succeed in waiting for @p to be off its CPU, we return a positive number
2153  * (its total switch count).  If a second call a short while later returns the
2154  * same number, the caller can be sure that @p has remained unscheduled the
2155  * whole time.
2156  *
2157  * The caller must ensure that the task *will* unschedule sometime soon,
2158  * else this function might spin for a *long* time. This function can't
2159  * be called with interrupts off, or it may introduce deadlock with
2160  * smp_call_function() if an IPI is sent by the same process we are
2161  * waiting to become inactive.
2162  */
2163 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2164 {
2165 	int running, queued, match;
2166 	struct rq_flags rf;
2167 	unsigned long ncsw;
2168 	struct rq *rq;
2169 
2170 	for (;;) {
2171 		/*
2172 		 * We do the initial early heuristics without holding
2173 		 * any task-queue locks at all. We'll only try to get
2174 		 * the runqueue lock when things look like they will
2175 		 * work out!
2176 		 */
2177 		rq = task_rq(p);
2178 
2179 		/*
2180 		 * If the task is actively running on another CPU
2181 		 * still, just relax and busy-wait without holding
2182 		 * any locks.
2183 		 *
2184 		 * NOTE! Since we don't hold any locks, it's not
2185 		 * even sure that "rq" stays as the right runqueue!
2186 		 * But we don't care, since "task_on_cpu()" will
2187 		 * return false if the runqueue has changed and p
2188 		 * is actually now running somewhere else!
2189 		 */
2190 		while (task_on_cpu(rq, p)) {
2191 			if (!task_state_match(p, match_state))
2192 				return 0;
2193 			cpu_relax();
2194 		}
2195 
2196 		/*
2197 		 * Ok, time to look more closely! We need the rq
2198 		 * lock now, to be *sure*. If we're wrong, we'll
2199 		 * just go back and repeat.
2200 		 */
2201 		rq = task_rq_lock(p, &rf);
2202 		trace_sched_wait_task(p);
2203 		running = task_on_cpu(rq, p);
2204 		queued = task_on_rq_queued(p);
2205 		ncsw = 0;
2206 		if ((match = __task_state_match(p, match_state))) {
2207 			/*
2208 			 * When matching on p->saved_state, consider this task
2209 			 * still queued so it will wait.
2210 			 */
2211 			if (match < 0)
2212 				queued = 1;
2213 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2214 		}
2215 		task_rq_unlock(rq, p, &rf);
2216 
2217 		/*
2218 		 * If it changed from the expected state, bail out now.
2219 		 */
2220 		if (unlikely(!ncsw))
2221 			break;
2222 
2223 		/*
2224 		 * Was it really running after all now that we
2225 		 * checked with the proper locks actually held?
2226 		 *
2227 		 * Oops. Go back and try again..
2228 		 */
2229 		if (unlikely(running)) {
2230 			cpu_relax();
2231 			continue;
2232 		}
2233 
2234 		/*
2235 		 * It's not enough that it's not actively running,
2236 		 * it must be off the runqueue _entirely_, and not
2237 		 * preempted!
2238 		 *
2239 		 * So if it was still runnable (but just not actively
2240 		 * running right now), it's preempted, and we should
2241 		 * yield - it could be a while.
2242 		 */
2243 		if (unlikely(queued)) {
2244 			ktime_t to = NSEC_PER_SEC / HZ;
2245 
2246 			set_current_state(TASK_UNINTERRUPTIBLE);
2247 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2248 			continue;
2249 		}
2250 
2251 		/*
2252 		 * Ahh, all good. It wasn't running, and it wasn't
2253 		 * runnable, which means that it will never become
2254 		 * running in the future either. We're all done!
2255 		 */
2256 		break;
2257 	}
2258 
2259 	return ncsw;
2260 }
2261 
2262 #ifdef CONFIG_SMP
2263 
2264 static void
2265 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2266 
2267 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2268 {
2269 	struct affinity_context ac = {
2270 		.new_mask  = cpumask_of(rq->cpu),
2271 		.flags     = SCA_MIGRATE_DISABLE,
2272 	};
2273 
2274 	if (likely(!p->migration_disabled))
2275 		return;
2276 
2277 	if (p->cpus_ptr != &p->cpus_mask)
2278 		return;
2279 
2280 	/*
2281 	 * Violates locking rules! See comment in __do_set_cpus_allowed().
2282 	 */
2283 	__do_set_cpus_allowed(p, &ac);
2284 }
2285 
2286 void migrate_disable(void)
2287 {
2288 	struct task_struct *p = current;
2289 
2290 	if (p->migration_disabled) {
2291 #ifdef CONFIG_DEBUG_PREEMPT
2292 		/*
2293 		 *Warn about overflow half-way through the range.
2294 		 */
2295 		WARN_ON_ONCE((s16)p->migration_disabled < 0);
2296 #endif
2297 		p->migration_disabled++;
2298 		return;
2299 	}
2300 
2301 	guard(preempt)();
2302 	this_rq()->nr_pinned++;
2303 	p->migration_disabled = 1;
2304 }
2305 EXPORT_SYMBOL_GPL(migrate_disable);
2306 
2307 void migrate_enable(void)
2308 {
2309 	struct task_struct *p = current;
2310 	struct affinity_context ac = {
2311 		.new_mask  = &p->cpus_mask,
2312 		.flags     = SCA_MIGRATE_ENABLE,
2313 	};
2314 
2315 #ifdef CONFIG_DEBUG_PREEMPT
2316 	/*
2317 	 * Check both overflow from migrate_disable() and superfluous
2318 	 * migrate_enable().
2319 	 */
2320 	if (WARN_ON_ONCE((s16)p->migration_disabled <= 0))
2321 		return;
2322 #endif
2323 
2324 	if (p->migration_disabled > 1) {
2325 		p->migration_disabled--;
2326 		return;
2327 	}
2328 
2329 	/*
2330 	 * Ensure stop_task runs either before or after this, and that
2331 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2332 	 */
2333 	guard(preempt)();
2334 	if (p->cpus_ptr != &p->cpus_mask)
2335 		__set_cpus_allowed_ptr(p, &ac);
2336 	/*
2337 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2338 	 * regular cpus_mask, otherwise things that race (eg.
2339 	 * select_fallback_rq) get confused.
2340 	 */
2341 	barrier();
2342 	p->migration_disabled = 0;
2343 	this_rq()->nr_pinned--;
2344 }
2345 EXPORT_SYMBOL_GPL(migrate_enable);
2346 
2347 static inline bool rq_has_pinned_tasks(struct rq *rq)
2348 {
2349 	return rq->nr_pinned;
2350 }
2351 
2352 /*
2353  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2354  * __set_cpus_allowed_ptr() and select_fallback_rq().
2355  */
2356 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2357 {
2358 	/* When not in the task's cpumask, no point in looking further. */
2359 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2360 		return false;
2361 
2362 	/* migrate_disabled() must be allowed to finish. */
2363 	if (is_migration_disabled(p))
2364 		return cpu_online(cpu);
2365 
2366 	/* Non kernel threads are not allowed during either online or offline. */
2367 	if (!(p->flags & PF_KTHREAD))
2368 		return cpu_active(cpu) && task_cpu_possible(cpu, p);
2369 
2370 	/* KTHREAD_IS_PER_CPU is always allowed. */
2371 	if (kthread_is_per_cpu(p))
2372 		return cpu_online(cpu);
2373 
2374 	/* Regular kernel threads don't get to stay during offline. */
2375 	if (cpu_dying(cpu))
2376 		return false;
2377 
2378 	/* But are allowed during online. */
2379 	return cpu_online(cpu);
2380 }
2381 
2382 /*
2383  * This is how migration works:
2384  *
2385  * 1) we invoke migration_cpu_stop() on the target CPU using
2386  *    stop_one_cpu().
2387  * 2) stopper starts to run (implicitly forcing the migrated thread
2388  *    off the CPU)
2389  * 3) it checks whether the migrated task is still in the wrong runqueue.
2390  * 4) if it's in the wrong runqueue then the migration thread removes
2391  *    it and puts it into the right queue.
2392  * 5) stopper completes and stop_one_cpu() returns and the migration
2393  *    is done.
2394  */
2395 
2396 /*
2397  * move_queued_task - move a queued task to new rq.
2398  *
2399  * Returns (locked) new rq. Old rq's lock is released.
2400  */
2401 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2402 				   struct task_struct *p, int new_cpu)
2403 {
2404 	lockdep_assert_rq_held(rq);
2405 
2406 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2407 	set_task_cpu(p, new_cpu);
2408 	rq_unlock(rq, rf);
2409 
2410 	rq = cpu_rq(new_cpu);
2411 
2412 	rq_lock(rq, rf);
2413 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2414 	activate_task(rq, p, 0);
2415 	wakeup_preempt(rq, p, 0);
2416 
2417 	return rq;
2418 }
2419 
2420 struct migration_arg {
2421 	struct task_struct		*task;
2422 	int				dest_cpu;
2423 	struct set_affinity_pending	*pending;
2424 };
2425 
2426 /*
2427  * @refs: number of wait_for_completion()
2428  * @stop_pending: is @stop_work in use
2429  */
2430 struct set_affinity_pending {
2431 	refcount_t		refs;
2432 	unsigned int		stop_pending;
2433 	struct completion	done;
2434 	struct cpu_stop_work	stop_work;
2435 	struct migration_arg	arg;
2436 };
2437 
2438 /*
2439  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2440  * this because either it can't run here any more (set_cpus_allowed()
2441  * away from this CPU, or CPU going down), or because we're
2442  * attempting to rebalance this task on exec (sched_exec).
2443  *
2444  * So we race with normal scheduler movements, but that's OK, as long
2445  * as the task is no longer on this CPU.
2446  */
2447 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2448 				 struct task_struct *p, int dest_cpu)
2449 {
2450 	/* Affinity changed (again). */
2451 	if (!is_cpu_allowed(p, dest_cpu))
2452 		return rq;
2453 
2454 	rq = move_queued_task(rq, rf, p, dest_cpu);
2455 
2456 	return rq;
2457 }
2458 
2459 /*
2460  * migration_cpu_stop - this will be executed by a high-prio stopper thread
2461  * and performs thread migration by bumping thread off CPU then
2462  * 'pushing' onto another runqueue.
2463  */
2464 static int migration_cpu_stop(void *data)
2465 {
2466 	struct migration_arg *arg = data;
2467 	struct set_affinity_pending *pending = arg->pending;
2468 	struct task_struct *p = arg->task;
2469 	struct rq *rq = this_rq();
2470 	bool complete = false;
2471 	struct rq_flags rf;
2472 
2473 	/*
2474 	 * The original target CPU might have gone down and we might
2475 	 * be on another CPU but it doesn't matter.
2476 	 */
2477 	local_irq_save(rf.flags);
2478 	/*
2479 	 * We need to explicitly wake pending tasks before running
2480 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2481 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2482 	 */
2483 	flush_smp_call_function_queue();
2484 
2485 	raw_spin_lock(&p->pi_lock);
2486 	rq_lock(rq, &rf);
2487 
2488 	/*
2489 	 * If we were passed a pending, then ->stop_pending was set, thus
2490 	 * p->migration_pending must have remained stable.
2491 	 */
2492 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2493 
2494 	/*
2495 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2496 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2497 	 * we're holding p->pi_lock.
2498 	 */
2499 	if (task_rq(p) == rq) {
2500 		if (is_migration_disabled(p))
2501 			goto out;
2502 
2503 		if (pending) {
2504 			p->migration_pending = NULL;
2505 			complete = true;
2506 
2507 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2508 				goto out;
2509 		}
2510 
2511 		if (task_on_rq_queued(p)) {
2512 			update_rq_clock(rq);
2513 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2514 		} else {
2515 			p->wake_cpu = arg->dest_cpu;
2516 		}
2517 
2518 		/*
2519 		 * XXX __migrate_task() can fail, at which point we might end
2520 		 * up running on a dodgy CPU, AFAICT this can only happen
2521 		 * during CPU hotplug, at which point we'll get pushed out
2522 		 * anyway, so it's probably not a big deal.
2523 		 */
2524 
2525 	} else if (pending) {
2526 		/*
2527 		 * This happens when we get migrated between migrate_enable()'s
2528 		 * preempt_enable() and scheduling the stopper task. At that
2529 		 * point we're a regular task again and not current anymore.
2530 		 *
2531 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2532 		 * more likely.
2533 		 */
2534 
2535 		/*
2536 		 * The task moved before the stopper got to run. We're holding
2537 		 * ->pi_lock, so the allowed mask is stable - if it got
2538 		 * somewhere allowed, we're done.
2539 		 */
2540 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2541 			p->migration_pending = NULL;
2542 			complete = true;
2543 			goto out;
2544 		}
2545 
2546 		/*
2547 		 * When migrate_enable() hits a rq mis-match we can't reliably
2548 		 * determine is_migration_disabled() and so have to chase after
2549 		 * it.
2550 		 */
2551 		WARN_ON_ONCE(!pending->stop_pending);
2552 		preempt_disable();
2553 		task_rq_unlock(rq, p, &rf);
2554 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2555 				    &pending->arg, &pending->stop_work);
2556 		preempt_enable();
2557 		return 0;
2558 	}
2559 out:
2560 	if (pending)
2561 		pending->stop_pending = false;
2562 	task_rq_unlock(rq, p, &rf);
2563 
2564 	if (complete)
2565 		complete_all(&pending->done);
2566 
2567 	return 0;
2568 }
2569 
2570 int push_cpu_stop(void *arg)
2571 {
2572 	struct rq *lowest_rq = NULL, *rq = this_rq();
2573 	struct task_struct *p = arg;
2574 
2575 	raw_spin_lock_irq(&p->pi_lock);
2576 	raw_spin_rq_lock(rq);
2577 
2578 	if (task_rq(p) != rq)
2579 		goto out_unlock;
2580 
2581 	if (is_migration_disabled(p)) {
2582 		p->migration_flags |= MDF_PUSH;
2583 		goto out_unlock;
2584 	}
2585 
2586 	p->migration_flags &= ~MDF_PUSH;
2587 
2588 	if (p->sched_class->find_lock_rq)
2589 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2590 
2591 	if (!lowest_rq)
2592 		goto out_unlock;
2593 
2594 	// XXX validate p is still the highest prio task
2595 	if (task_rq(p) == rq) {
2596 		deactivate_task(rq, p, 0);
2597 		set_task_cpu(p, lowest_rq->cpu);
2598 		activate_task(lowest_rq, p, 0);
2599 		resched_curr(lowest_rq);
2600 	}
2601 
2602 	double_unlock_balance(rq, lowest_rq);
2603 
2604 out_unlock:
2605 	rq->push_busy = false;
2606 	raw_spin_rq_unlock(rq);
2607 	raw_spin_unlock_irq(&p->pi_lock);
2608 
2609 	put_task_struct(p);
2610 	return 0;
2611 }
2612 
2613 /*
2614  * sched_class::set_cpus_allowed must do the below, but is not required to
2615  * actually call this function.
2616  */
2617 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2618 {
2619 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2620 		p->cpus_ptr = ctx->new_mask;
2621 		return;
2622 	}
2623 
2624 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2625 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2626 
2627 	/*
2628 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2629 	 */
2630 	if (ctx->flags & SCA_USER)
2631 		swap(p->user_cpus_ptr, ctx->user_mask);
2632 }
2633 
2634 static void
2635 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2636 {
2637 	struct rq *rq = task_rq(p);
2638 	bool queued, running;
2639 
2640 	/*
2641 	 * This here violates the locking rules for affinity, since we're only
2642 	 * supposed to change these variables while holding both rq->lock and
2643 	 * p->pi_lock.
2644 	 *
2645 	 * HOWEVER, it magically works, because ttwu() is the only code that
2646 	 * accesses these variables under p->pi_lock and only does so after
2647 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2648 	 * before finish_task().
2649 	 *
2650 	 * XXX do further audits, this smells like something putrid.
2651 	 */
2652 	if (ctx->flags & SCA_MIGRATE_DISABLE)
2653 		SCHED_WARN_ON(!p->on_cpu);
2654 	else
2655 		lockdep_assert_held(&p->pi_lock);
2656 
2657 	queued = task_on_rq_queued(p);
2658 	running = task_current(rq, p);
2659 
2660 	if (queued) {
2661 		/*
2662 		 * Because __kthread_bind() calls this on blocked tasks without
2663 		 * holding rq->lock.
2664 		 */
2665 		lockdep_assert_rq_held(rq);
2666 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2667 	}
2668 	if (running)
2669 		put_prev_task(rq, p);
2670 
2671 	p->sched_class->set_cpus_allowed(p, ctx);
2672 
2673 	if (queued)
2674 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2675 	if (running)
2676 		set_next_task(rq, p);
2677 }
2678 
2679 /*
2680  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2681  * affinity (if any) should be destroyed too.
2682  */
2683 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2684 {
2685 	struct affinity_context ac = {
2686 		.new_mask  = new_mask,
2687 		.user_mask = NULL,
2688 		.flags     = SCA_USER,	/* clear the user requested mask */
2689 	};
2690 	union cpumask_rcuhead {
2691 		cpumask_t cpumask;
2692 		struct rcu_head rcu;
2693 	};
2694 
2695 	__do_set_cpus_allowed(p, &ac);
2696 
2697 	/*
2698 	 * Because this is called with p->pi_lock held, it is not possible
2699 	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2700 	 * kfree_rcu().
2701 	 */
2702 	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2703 }
2704 
2705 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2706 		      int node)
2707 {
2708 	cpumask_t *user_mask;
2709 	unsigned long flags;
2710 
2711 	/*
2712 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2713 	 * may differ by now due to racing.
2714 	 */
2715 	dst->user_cpus_ptr = NULL;
2716 
2717 	/*
2718 	 * This check is racy and losing the race is a valid situation.
2719 	 * It is not worth the extra overhead of taking the pi_lock on
2720 	 * every fork/clone.
2721 	 */
2722 	if (data_race(!src->user_cpus_ptr))
2723 		return 0;
2724 
2725 	user_mask = alloc_user_cpus_ptr(node);
2726 	if (!user_mask)
2727 		return -ENOMEM;
2728 
2729 	/*
2730 	 * Use pi_lock to protect content of user_cpus_ptr
2731 	 *
2732 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2733 	 * do_set_cpus_allowed().
2734 	 */
2735 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2736 	if (src->user_cpus_ptr) {
2737 		swap(dst->user_cpus_ptr, user_mask);
2738 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2739 	}
2740 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2741 
2742 	if (unlikely(user_mask))
2743 		kfree(user_mask);
2744 
2745 	return 0;
2746 }
2747 
2748 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2749 {
2750 	struct cpumask *user_mask = NULL;
2751 
2752 	swap(p->user_cpus_ptr, user_mask);
2753 
2754 	return user_mask;
2755 }
2756 
2757 void release_user_cpus_ptr(struct task_struct *p)
2758 {
2759 	kfree(clear_user_cpus_ptr(p));
2760 }
2761 
2762 /*
2763  * This function is wildly self concurrent; here be dragons.
2764  *
2765  *
2766  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2767  * designated task is enqueued on an allowed CPU. If that task is currently
2768  * running, we have to kick it out using the CPU stopper.
2769  *
2770  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2771  * Consider:
2772  *
2773  *     Initial conditions: P0->cpus_mask = [0, 1]
2774  *
2775  *     P0@CPU0                  P1
2776  *
2777  *     migrate_disable();
2778  *     <preempted>
2779  *                              set_cpus_allowed_ptr(P0, [1]);
2780  *
2781  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2782  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2783  * This means we need the following scheme:
2784  *
2785  *     P0@CPU0                  P1
2786  *
2787  *     migrate_disable();
2788  *     <preempted>
2789  *                              set_cpus_allowed_ptr(P0, [1]);
2790  *                                <blocks>
2791  *     <resumes>
2792  *     migrate_enable();
2793  *       __set_cpus_allowed_ptr();
2794  *       <wakes local stopper>
2795  *                         `--> <woken on migration completion>
2796  *
2797  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2798  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2799  * task p are serialized by p->pi_lock, which we can leverage: the one that
2800  * should come into effect at the end of the Migrate-Disable region is the last
2801  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2802  * but we still need to properly signal those waiting tasks at the appropriate
2803  * moment.
2804  *
2805  * This is implemented using struct set_affinity_pending. The first
2806  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2807  * setup an instance of that struct and install it on the targeted task_struct.
2808  * Any and all further callers will reuse that instance. Those then wait for
2809  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2810  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2811  *
2812  *
2813  * (1) In the cases covered above. There is one more where the completion is
2814  * signaled within affine_move_task() itself: when a subsequent affinity request
2815  * occurs after the stopper bailed out due to the targeted task still being
2816  * Migrate-Disable. Consider:
2817  *
2818  *     Initial conditions: P0->cpus_mask = [0, 1]
2819  *
2820  *     CPU0		  P1				P2
2821  *     <P0>
2822  *       migrate_disable();
2823  *       <preempted>
2824  *                        set_cpus_allowed_ptr(P0, [1]);
2825  *                          <blocks>
2826  *     <migration/0>
2827  *       migration_cpu_stop()
2828  *         is_migration_disabled()
2829  *           <bails>
2830  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2831  *                                                         <signal completion>
2832  *                          <awakes>
2833  *
2834  * Note that the above is safe vs a concurrent migrate_enable(), as any
2835  * pending affinity completion is preceded by an uninstallation of
2836  * p->migration_pending done with p->pi_lock held.
2837  */
2838 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2839 			    int dest_cpu, unsigned int flags)
2840 	__releases(rq->lock)
2841 	__releases(p->pi_lock)
2842 {
2843 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2844 	bool stop_pending, complete = false;
2845 
2846 	/* Can the task run on the task's current CPU? If so, we're done */
2847 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2848 		struct task_struct *push_task = NULL;
2849 
2850 		if ((flags & SCA_MIGRATE_ENABLE) &&
2851 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2852 			rq->push_busy = true;
2853 			push_task = get_task_struct(p);
2854 		}
2855 
2856 		/*
2857 		 * If there are pending waiters, but no pending stop_work,
2858 		 * then complete now.
2859 		 */
2860 		pending = p->migration_pending;
2861 		if (pending && !pending->stop_pending) {
2862 			p->migration_pending = NULL;
2863 			complete = true;
2864 		}
2865 
2866 		preempt_disable();
2867 		task_rq_unlock(rq, p, rf);
2868 		if (push_task) {
2869 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2870 					    p, &rq->push_work);
2871 		}
2872 		preempt_enable();
2873 
2874 		if (complete)
2875 			complete_all(&pending->done);
2876 
2877 		return 0;
2878 	}
2879 
2880 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2881 		/* serialized by p->pi_lock */
2882 		if (!p->migration_pending) {
2883 			/* Install the request */
2884 			refcount_set(&my_pending.refs, 1);
2885 			init_completion(&my_pending.done);
2886 			my_pending.arg = (struct migration_arg) {
2887 				.task = p,
2888 				.dest_cpu = dest_cpu,
2889 				.pending = &my_pending,
2890 			};
2891 
2892 			p->migration_pending = &my_pending;
2893 		} else {
2894 			pending = p->migration_pending;
2895 			refcount_inc(&pending->refs);
2896 			/*
2897 			 * Affinity has changed, but we've already installed a
2898 			 * pending. migration_cpu_stop() *must* see this, else
2899 			 * we risk a completion of the pending despite having a
2900 			 * task on a disallowed CPU.
2901 			 *
2902 			 * Serialized by p->pi_lock, so this is safe.
2903 			 */
2904 			pending->arg.dest_cpu = dest_cpu;
2905 		}
2906 	}
2907 	pending = p->migration_pending;
2908 	/*
2909 	 * - !MIGRATE_ENABLE:
2910 	 *   we'll have installed a pending if there wasn't one already.
2911 	 *
2912 	 * - MIGRATE_ENABLE:
2913 	 *   we're here because the current CPU isn't matching anymore,
2914 	 *   the only way that can happen is because of a concurrent
2915 	 *   set_cpus_allowed_ptr() call, which should then still be
2916 	 *   pending completion.
2917 	 *
2918 	 * Either way, we really should have a @pending here.
2919 	 */
2920 	if (WARN_ON_ONCE(!pending)) {
2921 		task_rq_unlock(rq, p, rf);
2922 		return -EINVAL;
2923 	}
2924 
2925 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2926 		/*
2927 		 * MIGRATE_ENABLE gets here because 'p == current', but for
2928 		 * anything else we cannot do is_migration_disabled(), punt
2929 		 * and have the stopper function handle it all race-free.
2930 		 */
2931 		stop_pending = pending->stop_pending;
2932 		if (!stop_pending)
2933 			pending->stop_pending = true;
2934 
2935 		if (flags & SCA_MIGRATE_ENABLE)
2936 			p->migration_flags &= ~MDF_PUSH;
2937 
2938 		preempt_disable();
2939 		task_rq_unlock(rq, p, rf);
2940 		if (!stop_pending) {
2941 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2942 					    &pending->arg, &pending->stop_work);
2943 		}
2944 		preempt_enable();
2945 
2946 		if (flags & SCA_MIGRATE_ENABLE)
2947 			return 0;
2948 	} else {
2949 
2950 		if (!is_migration_disabled(p)) {
2951 			if (task_on_rq_queued(p))
2952 				rq = move_queued_task(rq, rf, p, dest_cpu);
2953 
2954 			if (!pending->stop_pending) {
2955 				p->migration_pending = NULL;
2956 				complete = true;
2957 			}
2958 		}
2959 		task_rq_unlock(rq, p, rf);
2960 
2961 		if (complete)
2962 			complete_all(&pending->done);
2963 	}
2964 
2965 	wait_for_completion(&pending->done);
2966 
2967 	if (refcount_dec_and_test(&pending->refs))
2968 		wake_up_var(&pending->refs); /* No UaF, just an address */
2969 
2970 	/*
2971 	 * Block the original owner of &pending until all subsequent callers
2972 	 * have seen the completion and decremented the refcount
2973 	 */
2974 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2975 
2976 	/* ARGH */
2977 	WARN_ON_ONCE(my_pending.stop_pending);
2978 
2979 	return 0;
2980 }
2981 
2982 /*
2983  * Called with both p->pi_lock and rq->lock held; drops both before returning.
2984  */
2985 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
2986 					 struct affinity_context *ctx,
2987 					 struct rq *rq,
2988 					 struct rq_flags *rf)
2989 	__releases(rq->lock)
2990 	__releases(p->pi_lock)
2991 {
2992 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
2993 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2994 	bool kthread = p->flags & PF_KTHREAD;
2995 	unsigned int dest_cpu;
2996 	int ret = 0;
2997 
2998 	update_rq_clock(rq);
2999 
3000 	if (kthread || is_migration_disabled(p)) {
3001 		/*
3002 		 * Kernel threads are allowed on online && !active CPUs,
3003 		 * however, during cpu-hot-unplug, even these might get pushed
3004 		 * away if not KTHREAD_IS_PER_CPU.
3005 		 *
3006 		 * Specifically, migration_disabled() tasks must not fail the
3007 		 * cpumask_any_and_distribute() pick below, esp. so on
3008 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3009 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3010 		 */
3011 		cpu_valid_mask = cpu_online_mask;
3012 	}
3013 
3014 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3015 		ret = -EINVAL;
3016 		goto out;
3017 	}
3018 
3019 	/*
3020 	 * Must re-check here, to close a race against __kthread_bind(),
3021 	 * sched_setaffinity() is not guaranteed to observe the flag.
3022 	 */
3023 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3024 		ret = -EINVAL;
3025 		goto out;
3026 	}
3027 
3028 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3029 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3030 			if (ctx->flags & SCA_USER)
3031 				swap(p->user_cpus_ptr, ctx->user_mask);
3032 			goto out;
3033 		}
3034 
3035 		if (WARN_ON_ONCE(p == current &&
3036 				 is_migration_disabled(p) &&
3037 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3038 			ret = -EBUSY;
3039 			goto out;
3040 		}
3041 	}
3042 
3043 	/*
3044 	 * Picking a ~random cpu helps in cases where we are changing affinity
3045 	 * for groups of tasks (ie. cpuset), so that load balancing is not
3046 	 * immediately required to distribute the tasks within their new mask.
3047 	 */
3048 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3049 	if (dest_cpu >= nr_cpu_ids) {
3050 		ret = -EINVAL;
3051 		goto out;
3052 	}
3053 
3054 	__do_set_cpus_allowed(p, ctx);
3055 
3056 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3057 
3058 out:
3059 	task_rq_unlock(rq, p, rf);
3060 
3061 	return ret;
3062 }
3063 
3064 /*
3065  * Change a given task's CPU affinity. Migrate the thread to a
3066  * proper CPU and schedule it away if the CPU it's executing on
3067  * is removed from the allowed bitmask.
3068  *
3069  * NOTE: the caller must have a valid reference to the task, the
3070  * task must not exit() & deallocate itself prematurely. The
3071  * call is not atomic; no spinlocks may be held.
3072  */
3073 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx)
3074 {
3075 	struct rq_flags rf;
3076 	struct rq *rq;
3077 
3078 	rq = task_rq_lock(p, &rf);
3079 	/*
3080 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3081 	 * flags are set.
3082 	 */
3083 	if (p->user_cpus_ptr &&
3084 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3085 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3086 		ctx->new_mask = rq->scratch_mask;
3087 
3088 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3089 }
3090 
3091 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3092 {
3093 	struct affinity_context ac = {
3094 		.new_mask  = new_mask,
3095 		.flags     = 0,
3096 	};
3097 
3098 	return __set_cpus_allowed_ptr(p, &ac);
3099 }
3100 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3101 
3102 /*
3103  * Change a given task's CPU affinity to the intersection of its current
3104  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3105  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3106  * affinity or use cpu_online_mask instead.
3107  *
3108  * If the resulting mask is empty, leave the affinity unchanged and return
3109  * -EINVAL.
3110  */
3111 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3112 				     struct cpumask *new_mask,
3113 				     const struct cpumask *subset_mask)
3114 {
3115 	struct affinity_context ac = {
3116 		.new_mask  = new_mask,
3117 		.flags     = 0,
3118 	};
3119 	struct rq_flags rf;
3120 	struct rq *rq;
3121 	int err;
3122 
3123 	rq = task_rq_lock(p, &rf);
3124 
3125 	/*
3126 	 * Forcefully restricting the affinity of a deadline task is
3127 	 * likely to cause problems, so fail and noisily override the
3128 	 * mask entirely.
3129 	 */
3130 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3131 		err = -EPERM;
3132 		goto err_unlock;
3133 	}
3134 
3135 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3136 		err = -EINVAL;
3137 		goto err_unlock;
3138 	}
3139 
3140 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3141 
3142 err_unlock:
3143 	task_rq_unlock(rq, p, &rf);
3144 	return err;
3145 }
3146 
3147 /*
3148  * Restrict the CPU affinity of task @p so that it is a subset of
3149  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3150  * old affinity mask. If the resulting mask is empty, we warn and walk
3151  * up the cpuset hierarchy until we find a suitable mask.
3152  */
3153 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3154 {
3155 	cpumask_var_t new_mask;
3156 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3157 
3158 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3159 
3160 	/*
3161 	 * __migrate_task() can fail silently in the face of concurrent
3162 	 * offlining of the chosen destination CPU, so take the hotplug
3163 	 * lock to ensure that the migration succeeds.
3164 	 */
3165 	cpus_read_lock();
3166 	if (!cpumask_available(new_mask))
3167 		goto out_set_mask;
3168 
3169 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3170 		goto out_free_mask;
3171 
3172 	/*
3173 	 * We failed to find a valid subset of the affinity mask for the
3174 	 * task, so override it based on its cpuset hierarchy.
3175 	 */
3176 	cpuset_cpus_allowed(p, new_mask);
3177 	override_mask = new_mask;
3178 
3179 out_set_mask:
3180 	if (printk_ratelimit()) {
3181 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3182 				task_pid_nr(p), p->comm,
3183 				cpumask_pr_args(override_mask));
3184 	}
3185 
3186 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3187 out_free_mask:
3188 	cpus_read_unlock();
3189 	free_cpumask_var(new_mask);
3190 }
3191 
3192 /*
3193  * Restore the affinity of a task @p which was previously restricted by a
3194  * call to force_compatible_cpus_allowed_ptr().
3195  *
3196  * It is the caller's responsibility to serialise this with any calls to
3197  * force_compatible_cpus_allowed_ptr(@p).
3198  */
3199 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3200 {
3201 	struct affinity_context ac = {
3202 		.new_mask  = task_user_cpus(p),
3203 		.flags     = 0,
3204 	};
3205 	int ret;
3206 
3207 	/*
3208 	 * Try to restore the old affinity mask with __sched_setaffinity().
3209 	 * Cpuset masking will be done there too.
3210 	 */
3211 	ret = __sched_setaffinity(p, &ac);
3212 	WARN_ON_ONCE(ret);
3213 }
3214 
3215 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3216 {
3217 #ifdef CONFIG_SCHED_DEBUG
3218 	unsigned int state = READ_ONCE(p->__state);
3219 
3220 	/*
3221 	 * We should never call set_task_cpu() on a blocked task,
3222 	 * ttwu() will sort out the placement.
3223 	 */
3224 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3225 
3226 	/*
3227 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3228 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3229 	 * time relying on p->on_rq.
3230 	 */
3231 	WARN_ON_ONCE(state == TASK_RUNNING &&
3232 		     p->sched_class == &fair_sched_class &&
3233 		     (p->on_rq && !task_on_rq_migrating(p)));
3234 
3235 #ifdef CONFIG_LOCKDEP
3236 	/*
3237 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3238 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3239 	 *
3240 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3241 	 * see task_group().
3242 	 *
3243 	 * Furthermore, all task_rq users should acquire both locks, see
3244 	 * task_rq_lock().
3245 	 */
3246 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3247 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3248 #endif
3249 	/*
3250 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3251 	 */
3252 	WARN_ON_ONCE(!cpu_online(new_cpu));
3253 
3254 	WARN_ON_ONCE(is_migration_disabled(p));
3255 #endif
3256 
3257 	trace_sched_migrate_task(p, new_cpu);
3258 
3259 	if (task_cpu(p) != new_cpu) {
3260 		if (p->sched_class->migrate_task_rq)
3261 			p->sched_class->migrate_task_rq(p, new_cpu);
3262 		p->se.nr_migrations++;
3263 		rseq_migrate(p);
3264 		sched_mm_cid_migrate_from(p);
3265 		perf_event_task_migrate(p);
3266 	}
3267 
3268 	__set_task_cpu(p, new_cpu);
3269 }
3270 
3271 #ifdef CONFIG_NUMA_BALANCING
3272 static void __migrate_swap_task(struct task_struct *p, int cpu)
3273 {
3274 	if (task_on_rq_queued(p)) {
3275 		struct rq *src_rq, *dst_rq;
3276 		struct rq_flags srf, drf;
3277 
3278 		src_rq = task_rq(p);
3279 		dst_rq = cpu_rq(cpu);
3280 
3281 		rq_pin_lock(src_rq, &srf);
3282 		rq_pin_lock(dst_rq, &drf);
3283 
3284 		deactivate_task(src_rq, p, 0);
3285 		set_task_cpu(p, cpu);
3286 		activate_task(dst_rq, p, 0);
3287 		wakeup_preempt(dst_rq, p, 0);
3288 
3289 		rq_unpin_lock(dst_rq, &drf);
3290 		rq_unpin_lock(src_rq, &srf);
3291 
3292 	} else {
3293 		/*
3294 		 * Task isn't running anymore; make it appear like we migrated
3295 		 * it before it went to sleep. This means on wakeup we make the
3296 		 * previous CPU our target instead of where it really is.
3297 		 */
3298 		p->wake_cpu = cpu;
3299 	}
3300 }
3301 
3302 struct migration_swap_arg {
3303 	struct task_struct *src_task, *dst_task;
3304 	int src_cpu, dst_cpu;
3305 };
3306 
3307 static int migrate_swap_stop(void *data)
3308 {
3309 	struct migration_swap_arg *arg = data;
3310 	struct rq *src_rq, *dst_rq;
3311 
3312 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3313 		return -EAGAIN;
3314 
3315 	src_rq = cpu_rq(arg->src_cpu);
3316 	dst_rq = cpu_rq(arg->dst_cpu);
3317 
3318 	guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3319 	guard(double_rq_lock)(src_rq, dst_rq);
3320 
3321 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3322 		return -EAGAIN;
3323 
3324 	if (task_cpu(arg->src_task) != arg->src_cpu)
3325 		return -EAGAIN;
3326 
3327 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3328 		return -EAGAIN;
3329 
3330 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3331 		return -EAGAIN;
3332 
3333 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3334 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3335 
3336 	return 0;
3337 }
3338 
3339 /*
3340  * Cross migrate two tasks
3341  */
3342 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3343 		int target_cpu, int curr_cpu)
3344 {
3345 	struct migration_swap_arg arg;
3346 	int ret = -EINVAL;
3347 
3348 	arg = (struct migration_swap_arg){
3349 		.src_task = cur,
3350 		.src_cpu = curr_cpu,
3351 		.dst_task = p,
3352 		.dst_cpu = target_cpu,
3353 	};
3354 
3355 	if (arg.src_cpu == arg.dst_cpu)
3356 		goto out;
3357 
3358 	/*
3359 	 * These three tests are all lockless; this is OK since all of them
3360 	 * will be re-checked with proper locks held further down the line.
3361 	 */
3362 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3363 		goto out;
3364 
3365 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3366 		goto out;
3367 
3368 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3369 		goto out;
3370 
3371 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3372 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3373 
3374 out:
3375 	return ret;
3376 }
3377 #endif /* CONFIG_NUMA_BALANCING */
3378 
3379 /***
3380  * kick_process - kick a running thread to enter/exit the kernel
3381  * @p: the to-be-kicked thread
3382  *
3383  * Cause a process which is running on another CPU to enter
3384  * kernel-mode, without any delay. (to get signals handled.)
3385  *
3386  * NOTE: this function doesn't have to take the runqueue lock,
3387  * because all it wants to ensure is that the remote task enters
3388  * the kernel. If the IPI races and the task has been migrated
3389  * to another CPU then no harm is done and the purpose has been
3390  * achieved as well.
3391  */
3392 void kick_process(struct task_struct *p)
3393 {
3394 	guard(preempt)();
3395 	int cpu = task_cpu(p);
3396 
3397 	if ((cpu != smp_processor_id()) && task_curr(p))
3398 		smp_send_reschedule(cpu);
3399 }
3400 EXPORT_SYMBOL_GPL(kick_process);
3401 
3402 /*
3403  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3404  *
3405  * A few notes on cpu_active vs cpu_online:
3406  *
3407  *  - cpu_active must be a subset of cpu_online
3408  *
3409  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3410  *    see __set_cpus_allowed_ptr(). At this point the newly online
3411  *    CPU isn't yet part of the sched domains, and balancing will not
3412  *    see it.
3413  *
3414  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3415  *    avoid the load balancer to place new tasks on the to be removed
3416  *    CPU. Existing tasks will remain running there and will be taken
3417  *    off.
3418  *
3419  * This means that fallback selection must not select !active CPUs.
3420  * And can assume that any active CPU must be online. Conversely
3421  * select_task_rq() below may allow selection of !active CPUs in order
3422  * to satisfy the above rules.
3423  */
3424 static int select_fallback_rq(int cpu, struct task_struct *p)
3425 {
3426 	int nid = cpu_to_node(cpu);
3427 	const struct cpumask *nodemask = NULL;
3428 	enum { cpuset, possible, fail } state = cpuset;
3429 	int dest_cpu;
3430 
3431 	/*
3432 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3433 	 * will return -1. There is no CPU on the node, and we should
3434 	 * select the CPU on the other node.
3435 	 */
3436 	if (nid != -1) {
3437 		nodemask = cpumask_of_node(nid);
3438 
3439 		/* Look for allowed, online CPU in same node. */
3440 		for_each_cpu(dest_cpu, nodemask) {
3441 			if (is_cpu_allowed(p, dest_cpu))
3442 				return dest_cpu;
3443 		}
3444 	}
3445 
3446 	for (;;) {
3447 		/* Any allowed, online CPU? */
3448 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3449 			if (!is_cpu_allowed(p, dest_cpu))
3450 				continue;
3451 
3452 			goto out;
3453 		}
3454 
3455 		/* No more Mr. Nice Guy. */
3456 		switch (state) {
3457 		case cpuset:
3458 			if (cpuset_cpus_allowed_fallback(p)) {
3459 				state = possible;
3460 				break;
3461 			}
3462 			fallthrough;
3463 		case possible:
3464 			/*
3465 			 * XXX When called from select_task_rq() we only
3466 			 * hold p->pi_lock and again violate locking order.
3467 			 *
3468 			 * More yuck to audit.
3469 			 */
3470 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3471 			state = fail;
3472 			break;
3473 		case fail:
3474 			BUG();
3475 			break;
3476 		}
3477 	}
3478 
3479 out:
3480 	if (state != cpuset) {
3481 		/*
3482 		 * Don't tell them about moving exiting tasks or
3483 		 * kernel threads (both mm NULL), since they never
3484 		 * leave kernel.
3485 		 */
3486 		if (p->mm && printk_ratelimit()) {
3487 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3488 					task_pid_nr(p), p->comm, cpu);
3489 		}
3490 	}
3491 
3492 	return dest_cpu;
3493 }
3494 
3495 /*
3496  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3497  */
3498 static inline
3499 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3500 {
3501 	lockdep_assert_held(&p->pi_lock);
3502 
3503 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3504 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3505 	else
3506 		cpu = cpumask_any(p->cpus_ptr);
3507 
3508 	/*
3509 	 * In order not to call set_task_cpu() on a blocking task we need
3510 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3511 	 * CPU.
3512 	 *
3513 	 * Since this is common to all placement strategies, this lives here.
3514 	 *
3515 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3516 	 *   not worry about this generic constraint ]
3517 	 */
3518 	if (unlikely(!is_cpu_allowed(p, cpu)))
3519 		cpu = select_fallback_rq(task_cpu(p), p);
3520 
3521 	return cpu;
3522 }
3523 
3524 void sched_set_stop_task(int cpu, struct task_struct *stop)
3525 {
3526 	static struct lock_class_key stop_pi_lock;
3527 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3528 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3529 
3530 	if (stop) {
3531 		/*
3532 		 * Make it appear like a SCHED_FIFO task, its something
3533 		 * userspace knows about and won't get confused about.
3534 		 *
3535 		 * Also, it will make PI more or less work without too
3536 		 * much confusion -- but then, stop work should not
3537 		 * rely on PI working anyway.
3538 		 */
3539 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3540 
3541 		stop->sched_class = &stop_sched_class;
3542 
3543 		/*
3544 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3545 		 * adjust the effective priority of a task. As a result,
3546 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3547 		 * which can then trigger wakeups of the stop thread to push
3548 		 * around the current task.
3549 		 *
3550 		 * The stop task itself will never be part of the PI-chain, it
3551 		 * never blocks, therefore that ->pi_lock recursion is safe.
3552 		 * Tell lockdep about this by placing the stop->pi_lock in its
3553 		 * own class.
3554 		 */
3555 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3556 	}
3557 
3558 	cpu_rq(cpu)->stop = stop;
3559 
3560 	if (old_stop) {
3561 		/*
3562 		 * Reset it back to a normal scheduling class so that
3563 		 * it can die in pieces.
3564 		 */
3565 		old_stop->sched_class = &rt_sched_class;
3566 	}
3567 }
3568 
3569 #else /* CONFIG_SMP */
3570 
3571 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3572 
3573 static inline bool rq_has_pinned_tasks(struct rq *rq)
3574 {
3575 	return false;
3576 }
3577 
3578 #endif /* !CONFIG_SMP */
3579 
3580 static void
3581 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3582 {
3583 	struct rq *rq;
3584 
3585 	if (!schedstat_enabled())
3586 		return;
3587 
3588 	rq = this_rq();
3589 
3590 #ifdef CONFIG_SMP
3591 	if (cpu == rq->cpu) {
3592 		__schedstat_inc(rq->ttwu_local);
3593 		__schedstat_inc(p->stats.nr_wakeups_local);
3594 	} else {
3595 		struct sched_domain *sd;
3596 
3597 		__schedstat_inc(p->stats.nr_wakeups_remote);
3598 
3599 		guard(rcu)();
3600 		for_each_domain(rq->cpu, sd) {
3601 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3602 				__schedstat_inc(sd->ttwu_wake_remote);
3603 				break;
3604 			}
3605 		}
3606 	}
3607 
3608 	if (wake_flags & WF_MIGRATED)
3609 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3610 #endif /* CONFIG_SMP */
3611 
3612 	__schedstat_inc(rq->ttwu_count);
3613 	__schedstat_inc(p->stats.nr_wakeups);
3614 
3615 	if (wake_flags & WF_SYNC)
3616 		__schedstat_inc(p->stats.nr_wakeups_sync);
3617 }
3618 
3619 /*
3620  * Mark the task runnable.
3621  */
3622 static inline void ttwu_do_wakeup(struct task_struct *p)
3623 {
3624 	WRITE_ONCE(p->__state, TASK_RUNNING);
3625 	trace_sched_wakeup(p);
3626 }
3627 
3628 static void
3629 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3630 		 struct rq_flags *rf)
3631 {
3632 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3633 
3634 	lockdep_assert_rq_held(rq);
3635 
3636 	if (p->sched_contributes_to_load)
3637 		rq->nr_uninterruptible--;
3638 
3639 #ifdef CONFIG_SMP
3640 	if (wake_flags & WF_MIGRATED)
3641 		en_flags |= ENQUEUE_MIGRATED;
3642 	else
3643 #endif
3644 	if (p->in_iowait) {
3645 		delayacct_blkio_end(p);
3646 		atomic_dec(&task_rq(p)->nr_iowait);
3647 	}
3648 
3649 	activate_task(rq, p, en_flags);
3650 	wakeup_preempt(rq, p, wake_flags);
3651 
3652 	ttwu_do_wakeup(p);
3653 
3654 #ifdef CONFIG_SMP
3655 	if (p->sched_class->task_woken) {
3656 		/*
3657 		 * Our task @p is fully woken up and running; so it's safe to
3658 		 * drop the rq->lock, hereafter rq is only used for statistics.
3659 		 */
3660 		rq_unpin_lock(rq, rf);
3661 		p->sched_class->task_woken(rq, p);
3662 		rq_repin_lock(rq, rf);
3663 	}
3664 
3665 	if (rq->idle_stamp) {
3666 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3667 		u64 max = 2*rq->max_idle_balance_cost;
3668 
3669 		update_avg(&rq->avg_idle, delta);
3670 
3671 		if (rq->avg_idle > max)
3672 			rq->avg_idle = max;
3673 
3674 		rq->idle_stamp = 0;
3675 	}
3676 #endif
3677 }
3678 
3679 /*
3680  * Consider @p being inside a wait loop:
3681  *
3682  *   for (;;) {
3683  *      set_current_state(TASK_UNINTERRUPTIBLE);
3684  *
3685  *      if (CONDITION)
3686  *         break;
3687  *
3688  *      schedule();
3689  *   }
3690  *   __set_current_state(TASK_RUNNING);
3691  *
3692  * between set_current_state() and schedule(). In this case @p is still
3693  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3694  * an atomic manner.
3695  *
3696  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3697  * then schedule() must still happen and p->state can be changed to
3698  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3699  * need to do a full wakeup with enqueue.
3700  *
3701  * Returns: %true when the wakeup is done,
3702  *          %false otherwise.
3703  */
3704 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3705 {
3706 	struct rq_flags rf;
3707 	struct rq *rq;
3708 	int ret = 0;
3709 
3710 	rq = __task_rq_lock(p, &rf);
3711 	if (task_on_rq_queued(p)) {
3712 		update_rq_clock(rq);
3713 		if (p->se.sched_delayed)
3714 			enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED);
3715 		if (!task_on_cpu(rq, p)) {
3716 			/*
3717 			 * When on_rq && !on_cpu the task is preempted, see if
3718 			 * it should preempt the task that is current now.
3719 			 */
3720 			wakeup_preempt(rq, p, wake_flags);
3721 		}
3722 		ttwu_do_wakeup(p);
3723 		ret = 1;
3724 	}
3725 	__task_rq_unlock(rq, &rf);
3726 
3727 	return ret;
3728 }
3729 
3730 #ifdef CONFIG_SMP
3731 void sched_ttwu_pending(void *arg)
3732 {
3733 	struct llist_node *llist = arg;
3734 	struct rq *rq = this_rq();
3735 	struct task_struct *p, *t;
3736 	struct rq_flags rf;
3737 
3738 	if (!llist)
3739 		return;
3740 
3741 	rq_lock_irqsave(rq, &rf);
3742 	update_rq_clock(rq);
3743 
3744 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3745 		if (WARN_ON_ONCE(p->on_cpu))
3746 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3747 
3748 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3749 			set_task_cpu(p, cpu_of(rq));
3750 
3751 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3752 	}
3753 
3754 	/*
3755 	 * Must be after enqueueing at least once task such that
3756 	 * idle_cpu() does not observe a false-negative -- if it does,
3757 	 * it is possible for select_idle_siblings() to stack a number
3758 	 * of tasks on this CPU during that window.
3759 	 *
3760 	 * It is OK to clear ttwu_pending when another task pending.
3761 	 * We will receive IPI after local IRQ enabled and then enqueue it.
3762 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3763 	 */
3764 	WRITE_ONCE(rq->ttwu_pending, 0);
3765 	rq_unlock_irqrestore(rq, &rf);
3766 }
3767 
3768 /*
3769  * Prepare the scene for sending an IPI for a remote smp_call
3770  *
3771  * Returns true if the caller can proceed with sending the IPI.
3772  * Returns false otherwise.
3773  */
3774 bool call_function_single_prep_ipi(int cpu)
3775 {
3776 	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3777 		trace_sched_wake_idle_without_ipi(cpu);
3778 		return false;
3779 	}
3780 
3781 	return true;
3782 }
3783 
3784 /*
3785  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3786  * necessary. The wakee CPU on receipt of the IPI will queue the task
3787  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3788  * of the wakeup instead of the waker.
3789  */
3790 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3791 {
3792 	struct rq *rq = cpu_rq(cpu);
3793 
3794 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3795 
3796 	WRITE_ONCE(rq->ttwu_pending, 1);
3797 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3798 }
3799 
3800 void wake_up_if_idle(int cpu)
3801 {
3802 	struct rq *rq = cpu_rq(cpu);
3803 
3804 	guard(rcu)();
3805 	if (is_idle_task(rcu_dereference(rq->curr))) {
3806 		guard(rq_lock_irqsave)(rq);
3807 		if (is_idle_task(rq->curr))
3808 			resched_curr(rq);
3809 	}
3810 }
3811 
3812 bool cpus_equal_capacity(int this_cpu, int that_cpu)
3813 {
3814 	if (!sched_asym_cpucap_active())
3815 		return true;
3816 
3817 	if (this_cpu == that_cpu)
3818 		return true;
3819 
3820 	return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
3821 }
3822 
3823 bool cpus_share_cache(int this_cpu, int that_cpu)
3824 {
3825 	if (this_cpu == that_cpu)
3826 		return true;
3827 
3828 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3829 }
3830 
3831 /*
3832  * Whether CPUs are share cache resources, which means LLC on non-cluster
3833  * machines and LLC tag or L2 on machines with clusters.
3834  */
3835 bool cpus_share_resources(int this_cpu, int that_cpu)
3836 {
3837 	if (this_cpu == that_cpu)
3838 		return true;
3839 
3840 	return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
3841 }
3842 
3843 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3844 {
3845 	/*
3846 	 * Do not complicate things with the async wake_list while the CPU is
3847 	 * in hotplug state.
3848 	 */
3849 	if (!cpu_active(cpu))
3850 		return false;
3851 
3852 	/* Ensure the task will still be allowed to run on the CPU. */
3853 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3854 		return false;
3855 
3856 	/*
3857 	 * If the CPU does not share cache, then queue the task on the
3858 	 * remote rqs wakelist to avoid accessing remote data.
3859 	 */
3860 	if (!cpus_share_cache(smp_processor_id(), cpu))
3861 		return true;
3862 
3863 	if (cpu == smp_processor_id())
3864 		return false;
3865 
3866 	/*
3867 	 * If the wakee cpu is idle, or the task is descheduling and the
3868 	 * only running task on the CPU, then use the wakelist to offload
3869 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3870 	 * the current CPU is likely busy. nr_running is checked to
3871 	 * avoid unnecessary task stacking.
3872 	 *
3873 	 * Note that we can only get here with (wakee) p->on_rq=0,
3874 	 * p->on_cpu can be whatever, we've done the dequeue, so
3875 	 * the wakee has been accounted out of ->nr_running.
3876 	 */
3877 	if (!cpu_rq(cpu)->nr_running)
3878 		return true;
3879 
3880 	return false;
3881 }
3882 
3883 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3884 {
3885 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3886 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3887 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3888 		return true;
3889 	}
3890 
3891 	return false;
3892 }
3893 
3894 #else /* !CONFIG_SMP */
3895 
3896 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3897 {
3898 	return false;
3899 }
3900 
3901 #endif /* CONFIG_SMP */
3902 
3903 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3904 {
3905 	struct rq *rq = cpu_rq(cpu);
3906 	struct rq_flags rf;
3907 
3908 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3909 		return;
3910 
3911 	rq_lock(rq, &rf);
3912 	update_rq_clock(rq);
3913 	ttwu_do_activate(rq, p, wake_flags, &rf);
3914 	rq_unlock(rq, &rf);
3915 }
3916 
3917 /*
3918  * Invoked from try_to_wake_up() to check whether the task can be woken up.
3919  *
3920  * The caller holds p::pi_lock if p != current or has preemption
3921  * disabled when p == current.
3922  *
3923  * The rules of saved_state:
3924  *
3925  *   The related locking code always holds p::pi_lock when updating
3926  *   p::saved_state, which means the code is fully serialized in both cases.
3927  *
3928  *   For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
3929  *   No other bits set. This allows to distinguish all wakeup scenarios.
3930  *
3931  *   For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
3932  *   allows us to prevent early wakeup of tasks before they can be run on
3933  *   asymmetric ISA architectures (eg ARMv9).
3934  */
3935 static __always_inline
3936 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3937 {
3938 	int match;
3939 
3940 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3941 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3942 			     state != TASK_RTLOCK_WAIT);
3943 	}
3944 
3945 	*success = !!(match = __task_state_match(p, state));
3946 
3947 	/*
3948 	 * Saved state preserves the task state across blocking on
3949 	 * an RT lock or TASK_FREEZABLE tasks.  If the state matches,
3950 	 * set p::saved_state to TASK_RUNNING, but do not wake the task
3951 	 * because it waits for a lock wakeup or __thaw_task(). Also
3952 	 * indicate success because from the regular waker's point of
3953 	 * view this has succeeded.
3954 	 *
3955 	 * After acquiring the lock the task will restore p::__state
3956 	 * from p::saved_state which ensures that the regular
3957 	 * wakeup is not lost. The restore will also set
3958 	 * p::saved_state to TASK_RUNNING so any further tests will
3959 	 * not result in false positives vs. @success
3960 	 */
3961 	if (match < 0)
3962 		p->saved_state = TASK_RUNNING;
3963 
3964 	return match > 0;
3965 }
3966 
3967 /*
3968  * Notes on Program-Order guarantees on SMP systems.
3969  *
3970  *  MIGRATION
3971  *
3972  * The basic program-order guarantee on SMP systems is that when a task [t]
3973  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3974  * execution on its new CPU [c1].
3975  *
3976  * For migration (of runnable tasks) this is provided by the following means:
3977  *
3978  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3979  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3980  *     rq(c1)->lock (if not at the same time, then in that order).
3981  *  C) LOCK of the rq(c1)->lock scheduling in task
3982  *
3983  * Release/acquire chaining guarantees that B happens after A and C after B.
3984  * Note: the CPU doing B need not be c0 or c1
3985  *
3986  * Example:
3987  *
3988  *   CPU0            CPU1            CPU2
3989  *
3990  *   LOCK rq(0)->lock
3991  *   sched-out X
3992  *   sched-in Y
3993  *   UNLOCK rq(0)->lock
3994  *
3995  *                                   LOCK rq(0)->lock // orders against CPU0
3996  *                                   dequeue X
3997  *                                   UNLOCK rq(0)->lock
3998  *
3999  *                                   LOCK rq(1)->lock
4000  *                                   enqueue X
4001  *                                   UNLOCK rq(1)->lock
4002  *
4003  *                   LOCK rq(1)->lock // orders against CPU2
4004  *                   sched-out Z
4005  *                   sched-in X
4006  *                   UNLOCK rq(1)->lock
4007  *
4008  *
4009  *  BLOCKING -- aka. SLEEP + WAKEUP
4010  *
4011  * For blocking we (obviously) need to provide the same guarantee as for
4012  * migration. However the means are completely different as there is no lock
4013  * chain to provide order. Instead we do:
4014  *
4015  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4016  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4017  *
4018  * Example:
4019  *
4020  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4021  *
4022  *   LOCK rq(0)->lock LOCK X->pi_lock
4023  *   dequeue X
4024  *   sched-out X
4025  *   smp_store_release(X->on_cpu, 0);
4026  *
4027  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4028  *                    X->state = WAKING
4029  *                    set_task_cpu(X,2)
4030  *
4031  *                    LOCK rq(2)->lock
4032  *                    enqueue X
4033  *                    X->state = RUNNING
4034  *                    UNLOCK rq(2)->lock
4035  *
4036  *                                          LOCK rq(2)->lock // orders against CPU1
4037  *                                          sched-out Z
4038  *                                          sched-in X
4039  *                                          UNLOCK rq(2)->lock
4040  *
4041  *                    UNLOCK X->pi_lock
4042  *   UNLOCK rq(0)->lock
4043  *
4044  *
4045  * However, for wakeups there is a second guarantee we must provide, namely we
4046  * must ensure that CONDITION=1 done by the caller can not be reordered with
4047  * accesses to the task state; see try_to_wake_up() and set_current_state().
4048  */
4049 
4050 /**
4051  * try_to_wake_up - wake up a thread
4052  * @p: the thread to be awakened
4053  * @state: the mask of task states that can be woken
4054  * @wake_flags: wake modifier flags (WF_*)
4055  *
4056  * Conceptually does:
4057  *
4058  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4059  *
4060  * If the task was not queued/runnable, also place it back on a runqueue.
4061  *
4062  * This function is atomic against schedule() which would dequeue the task.
4063  *
4064  * It issues a full memory barrier before accessing @p->state, see the comment
4065  * with set_current_state().
4066  *
4067  * Uses p->pi_lock to serialize against concurrent wake-ups.
4068  *
4069  * Relies on p->pi_lock stabilizing:
4070  *  - p->sched_class
4071  *  - p->cpus_ptr
4072  *  - p->sched_task_group
4073  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4074  *
4075  * Tries really hard to only take one task_rq(p)->lock for performance.
4076  * Takes rq->lock in:
4077  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4078  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4079  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4080  *
4081  * As a consequence we race really badly with just about everything. See the
4082  * many memory barriers and their comments for details.
4083  *
4084  * Return: %true if @p->state changes (an actual wakeup was done),
4085  *	   %false otherwise.
4086  */
4087 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4088 {
4089 	guard(preempt)();
4090 	int cpu, success = 0;
4091 
4092 	if (p == current) {
4093 		/*
4094 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4095 		 * == smp_processor_id()'. Together this means we can special
4096 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4097 		 * without taking any locks.
4098 		 *
4099 		 * Specifically, given current runs ttwu() we must be before
4100 		 * schedule()'s block_task(), as such this must not observe
4101 		 * sched_delayed.
4102 		 *
4103 		 * In particular:
4104 		 *  - we rely on Program-Order guarantees for all the ordering,
4105 		 *  - we're serialized against set_special_state() by virtue of
4106 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4107 		 */
4108 		SCHED_WARN_ON(p->se.sched_delayed);
4109 		if (!ttwu_state_match(p, state, &success))
4110 			goto out;
4111 
4112 		trace_sched_waking(p);
4113 		ttwu_do_wakeup(p);
4114 		goto out;
4115 	}
4116 
4117 	/*
4118 	 * If we are going to wake up a thread waiting for CONDITION we
4119 	 * need to ensure that CONDITION=1 done by the caller can not be
4120 	 * reordered with p->state check below. This pairs with smp_store_mb()
4121 	 * in set_current_state() that the waiting thread does.
4122 	 */
4123 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4124 		smp_mb__after_spinlock();
4125 		if (!ttwu_state_match(p, state, &success))
4126 			break;
4127 
4128 		trace_sched_waking(p);
4129 
4130 		/*
4131 		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4132 		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4133 		 * in smp_cond_load_acquire() below.
4134 		 *
4135 		 * sched_ttwu_pending()			try_to_wake_up()
4136 		 *   STORE p->on_rq = 1			  LOAD p->state
4137 		 *   UNLOCK rq->lock
4138 		 *
4139 		 * __schedule() (switch to task 'p')
4140 		 *   LOCK rq->lock			  smp_rmb();
4141 		 *   smp_mb__after_spinlock();
4142 		 *   UNLOCK rq->lock
4143 		 *
4144 		 * [task p]
4145 		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4146 		 *
4147 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4148 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4149 		 *
4150 		 * A similar smp_rmb() lives in __task_needs_rq_lock().
4151 		 */
4152 		smp_rmb();
4153 		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4154 			break;
4155 
4156 #ifdef CONFIG_SMP
4157 		/*
4158 		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4159 		 * possible to, falsely, observe p->on_cpu == 0.
4160 		 *
4161 		 * One must be running (->on_cpu == 1) in order to remove oneself
4162 		 * from the runqueue.
4163 		 *
4164 		 * __schedule() (switch to task 'p')	try_to_wake_up()
4165 		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4166 		 *   UNLOCK rq->lock
4167 		 *
4168 		 * __schedule() (put 'p' to sleep)
4169 		 *   LOCK rq->lock			  smp_rmb();
4170 		 *   smp_mb__after_spinlock();
4171 		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4172 		 *
4173 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4174 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4175 		 *
4176 		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4177 		 * schedule()'s deactivate_task() has 'happened' and p will no longer
4178 		 * care about it's own p->state. See the comment in __schedule().
4179 		 */
4180 		smp_acquire__after_ctrl_dep();
4181 
4182 		/*
4183 		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4184 		 * == 0), which means we need to do an enqueue, change p->state to
4185 		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4186 		 * enqueue, such as ttwu_queue_wakelist().
4187 		 */
4188 		WRITE_ONCE(p->__state, TASK_WAKING);
4189 
4190 		/*
4191 		 * If the owning (remote) CPU is still in the middle of schedule() with
4192 		 * this task as prev, considering queueing p on the remote CPUs wake_list
4193 		 * which potentially sends an IPI instead of spinning on p->on_cpu to
4194 		 * let the waker make forward progress. This is safe because IRQs are
4195 		 * disabled and the IPI will deliver after on_cpu is cleared.
4196 		 *
4197 		 * Ensure we load task_cpu(p) after p->on_cpu:
4198 		 *
4199 		 * set_task_cpu(p, cpu);
4200 		 *   STORE p->cpu = @cpu
4201 		 * __schedule() (switch to task 'p')
4202 		 *   LOCK rq->lock
4203 		 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4204 		 *   STORE p->on_cpu = 1		LOAD p->cpu
4205 		 *
4206 		 * to ensure we observe the correct CPU on which the task is currently
4207 		 * scheduling.
4208 		 */
4209 		if (smp_load_acquire(&p->on_cpu) &&
4210 		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4211 			break;
4212 
4213 		/*
4214 		 * If the owning (remote) CPU is still in the middle of schedule() with
4215 		 * this task as prev, wait until it's done referencing the task.
4216 		 *
4217 		 * Pairs with the smp_store_release() in finish_task().
4218 		 *
4219 		 * This ensures that tasks getting woken will be fully ordered against
4220 		 * their previous state and preserve Program Order.
4221 		 */
4222 		smp_cond_load_acquire(&p->on_cpu, !VAL);
4223 
4224 		cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4225 		if (task_cpu(p) != cpu) {
4226 			if (p->in_iowait) {
4227 				delayacct_blkio_end(p);
4228 				atomic_dec(&task_rq(p)->nr_iowait);
4229 			}
4230 
4231 			wake_flags |= WF_MIGRATED;
4232 			psi_ttwu_dequeue(p);
4233 			set_task_cpu(p, cpu);
4234 		}
4235 #else
4236 		cpu = task_cpu(p);
4237 #endif /* CONFIG_SMP */
4238 
4239 		ttwu_queue(p, cpu, wake_flags);
4240 	}
4241 out:
4242 	if (success)
4243 		ttwu_stat(p, task_cpu(p), wake_flags);
4244 
4245 	return success;
4246 }
4247 
4248 static bool __task_needs_rq_lock(struct task_struct *p)
4249 {
4250 	unsigned int state = READ_ONCE(p->__state);
4251 
4252 	/*
4253 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4254 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4255 	 * locks at the end, see ttwu_queue_wakelist().
4256 	 */
4257 	if (state == TASK_RUNNING || state == TASK_WAKING)
4258 		return true;
4259 
4260 	/*
4261 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4262 	 * possible to, falsely, observe p->on_rq == 0.
4263 	 *
4264 	 * See try_to_wake_up() for a longer comment.
4265 	 */
4266 	smp_rmb();
4267 	if (p->on_rq)
4268 		return true;
4269 
4270 #ifdef CONFIG_SMP
4271 	/*
4272 	 * Ensure the task has finished __schedule() and will not be referenced
4273 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4274 	 */
4275 	smp_rmb();
4276 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4277 #endif
4278 
4279 	return false;
4280 }
4281 
4282 /**
4283  * task_call_func - Invoke a function on task in fixed state
4284  * @p: Process for which the function is to be invoked, can be @current.
4285  * @func: Function to invoke.
4286  * @arg: Argument to function.
4287  *
4288  * Fix the task in it's current state by avoiding wakeups and or rq operations
4289  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4290  * to work out what the state is, if required.  Given that @func can be invoked
4291  * with a runqueue lock held, it had better be quite lightweight.
4292  *
4293  * Returns:
4294  *   Whatever @func returns
4295  */
4296 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4297 {
4298 	struct rq *rq = NULL;
4299 	struct rq_flags rf;
4300 	int ret;
4301 
4302 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4303 
4304 	if (__task_needs_rq_lock(p))
4305 		rq = __task_rq_lock(p, &rf);
4306 
4307 	/*
4308 	 * At this point the task is pinned; either:
4309 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4310 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4311 	 *  - queued, and we're holding off schedule	 (rq->lock)
4312 	 *  - running, and we're holding off de-schedule (rq->lock)
4313 	 *
4314 	 * The called function (@func) can use: task_curr(), p->on_rq and
4315 	 * p->__state to differentiate between these states.
4316 	 */
4317 	ret = func(p, arg);
4318 
4319 	if (rq)
4320 		rq_unlock(rq, &rf);
4321 
4322 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4323 	return ret;
4324 }
4325 
4326 /**
4327  * cpu_curr_snapshot - Return a snapshot of the currently running task
4328  * @cpu: The CPU on which to snapshot the task.
4329  *
4330  * Returns the task_struct pointer of the task "currently" running on
4331  * the specified CPU.
4332  *
4333  * If the specified CPU was offline, the return value is whatever it
4334  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4335  * task, but there is no guarantee.  Callers wishing a useful return
4336  * value must take some action to ensure that the specified CPU remains
4337  * online throughout.
4338  *
4339  * This function executes full memory barriers before and after fetching
4340  * the pointer, which permits the caller to confine this function's fetch
4341  * with respect to the caller's accesses to other shared variables.
4342  */
4343 struct task_struct *cpu_curr_snapshot(int cpu)
4344 {
4345 	struct rq *rq = cpu_rq(cpu);
4346 	struct task_struct *t;
4347 	struct rq_flags rf;
4348 
4349 	rq_lock_irqsave(rq, &rf);
4350 	smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
4351 	t = rcu_dereference(cpu_curr(cpu));
4352 	rq_unlock_irqrestore(rq, &rf);
4353 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4354 
4355 	return t;
4356 }
4357 
4358 /**
4359  * wake_up_process - Wake up a specific process
4360  * @p: The process to be woken up.
4361  *
4362  * Attempt to wake up the nominated process and move it to the set of runnable
4363  * processes.
4364  *
4365  * Return: 1 if the process was woken up, 0 if it was already running.
4366  *
4367  * This function executes a full memory barrier before accessing the task state.
4368  */
4369 int wake_up_process(struct task_struct *p)
4370 {
4371 	return try_to_wake_up(p, TASK_NORMAL, 0);
4372 }
4373 EXPORT_SYMBOL(wake_up_process);
4374 
4375 int wake_up_state(struct task_struct *p, unsigned int state)
4376 {
4377 	return try_to_wake_up(p, state, 0);
4378 }
4379 
4380 /*
4381  * Perform scheduler related setup for a newly forked process p.
4382  * p is forked by current.
4383  *
4384  * __sched_fork() is basic setup used by init_idle() too:
4385  */
4386 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4387 {
4388 	p->on_rq			= 0;
4389 
4390 	p->se.on_rq			= 0;
4391 	p->se.exec_start		= 0;
4392 	p->se.sum_exec_runtime		= 0;
4393 	p->se.prev_sum_exec_runtime	= 0;
4394 	p->se.nr_migrations		= 0;
4395 	p->se.vruntime			= 0;
4396 	p->se.vlag			= 0;
4397 	INIT_LIST_HEAD(&p->se.group_node);
4398 
4399 	/* A delayed task cannot be in clone(). */
4400 	SCHED_WARN_ON(p->se.sched_delayed);
4401 
4402 #ifdef CONFIG_FAIR_GROUP_SCHED
4403 	p->se.cfs_rq			= NULL;
4404 #endif
4405 
4406 #ifdef CONFIG_SCHEDSTATS
4407 	/* Even if schedstat is disabled, there should not be garbage */
4408 	memset(&p->stats, 0, sizeof(p->stats));
4409 #endif
4410 
4411 	init_dl_entity(&p->dl);
4412 
4413 	INIT_LIST_HEAD(&p->rt.run_list);
4414 	p->rt.timeout		= 0;
4415 	p->rt.time_slice	= sched_rr_timeslice;
4416 	p->rt.on_rq		= 0;
4417 	p->rt.on_list		= 0;
4418 
4419 #ifdef CONFIG_PREEMPT_NOTIFIERS
4420 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4421 #endif
4422 
4423 #ifdef CONFIG_COMPACTION
4424 	p->capture_control = NULL;
4425 #endif
4426 	init_numa_balancing(clone_flags, p);
4427 #ifdef CONFIG_SMP
4428 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4429 	p->migration_pending = NULL;
4430 #endif
4431 	init_sched_mm_cid(p);
4432 }
4433 
4434 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4435 
4436 #ifdef CONFIG_NUMA_BALANCING
4437 
4438 int sysctl_numa_balancing_mode;
4439 
4440 static void __set_numabalancing_state(bool enabled)
4441 {
4442 	if (enabled)
4443 		static_branch_enable(&sched_numa_balancing);
4444 	else
4445 		static_branch_disable(&sched_numa_balancing);
4446 }
4447 
4448 void set_numabalancing_state(bool enabled)
4449 {
4450 	if (enabled)
4451 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4452 	else
4453 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4454 	__set_numabalancing_state(enabled);
4455 }
4456 
4457 #ifdef CONFIG_PROC_SYSCTL
4458 static void reset_memory_tiering(void)
4459 {
4460 	struct pglist_data *pgdat;
4461 
4462 	for_each_online_pgdat(pgdat) {
4463 		pgdat->nbp_threshold = 0;
4464 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4465 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4466 	}
4467 }
4468 
4469 static int sysctl_numa_balancing(const struct ctl_table *table, int write,
4470 			  void *buffer, size_t *lenp, loff_t *ppos)
4471 {
4472 	struct ctl_table t;
4473 	int err;
4474 	int state = sysctl_numa_balancing_mode;
4475 
4476 	if (write && !capable(CAP_SYS_ADMIN))
4477 		return -EPERM;
4478 
4479 	t = *table;
4480 	t.data = &state;
4481 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4482 	if (err < 0)
4483 		return err;
4484 	if (write) {
4485 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4486 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4487 			reset_memory_tiering();
4488 		sysctl_numa_balancing_mode = state;
4489 		__set_numabalancing_state(state);
4490 	}
4491 	return err;
4492 }
4493 #endif
4494 #endif
4495 
4496 #ifdef CONFIG_SCHEDSTATS
4497 
4498 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4499 
4500 static void set_schedstats(bool enabled)
4501 {
4502 	if (enabled)
4503 		static_branch_enable(&sched_schedstats);
4504 	else
4505 		static_branch_disable(&sched_schedstats);
4506 }
4507 
4508 void force_schedstat_enabled(void)
4509 {
4510 	if (!schedstat_enabled()) {
4511 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4512 		static_branch_enable(&sched_schedstats);
4513 	}
4514 }
4515 
4516 static int __init setup_schedstats(char *str)
4517 {
4518 	int ret = 0;
4519 	if (!str)
4520 		goto out;
4521 
4522 	if (!strcmp(str, "enable")) {
4523 		set_schedstats(true);
4524 		ret = 1;
4525 	} else if (!strcmp(str, "disable")) {
4526 		set_schedstats(false);
4527 		ret = 1;
4528 	}
4529 out:
4530 	if (!ret)
4531 		pr_warn("Unable to parse schedstats=\n");
4532 
4533 	return ret;
4534 }
4535 __setup("schedstats=", setup_schedstats);
4536 
4537 #ifdef CONFIG_PROC_SYSCTL
4538 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer,
4539 		size_t *lenp, loff_t *ppos)
4540 {
4541 	struct ctl_table t;
4542 	int err;
4543 	int state = static_branch_likely(&sched_schedstats);
4544 
4545 	if (write && !capable(CAP_SYS_ADMIN))
4546 		return -EPERM;
4547 
4548 	t = *table;
4549 	t.data = &state;
4550 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4551 	if (err < 0)
4552 		return err;
4553 	if (write)
4554 		set_schedstats(state);
4555 	return err;
4556 }
4557 #endif /* CONFIG_PROC_SYSCTL */
4558 #endif /* CONFIG_SCHEDSTATS */
4559 
4560 #ifdef CONFIG_SYSCTL
4561 static struct ctl_table sched_core_sysctls[] = {
4562 #ifdef CONFIG_SCHEDSTATS
4563 	{
4564 		.procname       = "sched_schedstats",
4565 		.data           = NULL,
4566 		.maxlen         = sizeof(unsigned int),
4567 		.mode           = 0644,
4568 		.proc_handler   = sysctl_schedstats,
4569 		.extra1         = SYSCTL_ZERO,
4570 		.extra2         = SYSCTL_ONE,
4571 	},
4572 #endif /* CONFIG_SCHEDSTATS */
4573 #ifdef CONFIG_UCLAMP_TASK
4574 	{
4575 		.procname       = "sched_util_clamp_min",
4576 		.data           = &sysctl_sched_uclamp_util_min,
4577 		.maxlen         = sizeof(unsigned int),
4578 		.mode           = 0644,
4579 		.proc_handler   = sysctl_sched_uclamp_handler,
4580 	},
4581 	{
4582 		.procname       = "sched_util_clamp_max",
4583 		.data           = &sysctl_sched_uclamp_util_max,
4584 		.maxlen         = sizeof(unsigned int),
4585 		.mode           = 0644,
4586 		.proc_handler   = sysctl_sched_uclamp_handler,
4587 	},
4588 	{
4589 		.procname       = "sched_util_clamp_min_rt_default",
4590 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4591 		.maxlen         = sizeof(unsigned int),
4592 		.mode           = 0644,
4593 		.proc_handler   = sysctl_sched_uclamp_handler,
4594 	},
4595 #endif /* CONFIG_UCLAMP_TASK */
4596 #ifdef CONFIG_NUMA_BALANCING
4597 	{
4598 		.procname	= "numa_balancing",
4599 		.data		= NULL, /* filled in by handler */
4600 		.maxlen		= sizeof(unsigned int),
4601 		.mode		= 0644,
4602 		.proc_handler	= sysctl_numa_balancing,
4603 		.extra1		= SYSCTL_ZERO,
4604 		.extra2		= SYSCTL_FOUR,
4605 	},
4606 #endif /* CONFIG_NUMA_BALANCING */
4607 };
4608 static int __init sched_core_sysctl_init(void)
4609 {
4610 	register_sysctl_init("kernel", sched_core_sysctls);
4611 	return 0;
4612 }
4613 late_initcall(sched_core_sysctl_init);
4614 #endif /* CONFIG_SYSCTL */
4615 
4616 /*
4617  * fork()/clone()-time setup:
4618  */
4619 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4620 {
4621 	__sched_fork(clone_flags, p);
4622 	/*
4623 	 * We mark the process as NEW here. This guarantees that
4624 	 * nobody will actually run it, and a signal or other external
4625 	 * event cannot wake it up and insert it on the runqueue either.
4626 	 */
4627 	p->__state = TASK_NEW;
4628 
4629 	/*
4630 	 * Make sure we do not leak PI boosting priority to the child.
4631 	 */
4632 	p->prio = current->normal_prio;
4633 
4634 	uclamp_fork(p);
4635 
4636 	/*
4637 	 * Revert to default priority/policy on fork if requested.
4638 	 */
4639 	if (unlikely(p->sched_reset_on_fork)) {
4640 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4641 			p->policy = SCHED_NORMAL;
4642 			p->static_prio = NICE_TO_PRIO(0);
4643 			p->rt_priority = 0;
4644 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4645 			p->static_prio = NICE_TO_PRIO(0);
4646 
4647 		p->prio = p->normal_prio = p->static_prio;
4648 		set_load_weight(p, false);
4649 		p->se.custom_slice = 0;
4650 		p->se.slice = sysctl_sched_base_slice;
4651 
4652 		/*
4653 		 * We don't need the reset flag anymore after the fork. It has
4654 		 * fulfilled its duty:
4655 		 */
4656 		p->sched_reset_on_fork = 0;
4657 	}
4658 
4659 	if (dl_prio(p->prio))
4660 		return -EAGAIN;
4661 	else if (rt_prio(p->prio))
4662 		p->sched_class = &rt_sched_class;
4663 	else
4664 		p->sched_class = &fair_sched_class;
4665 
4666 	init_entity_runnable_average(&p->se);
4667 
4668 
4669 #ifdef CONFIG_SCHED_INFO
4670 	if (likely(sched_info_on()))
4671 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4672 #endif
4673 #if defined(CONFIG_SMP)
4674 	p->on_cpu = 0;
4675 #endif
4676 	init_task_preempt_count(p);
4677 #ifdef CONFIG_SMP
4678 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4679 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4680 #endif
4681 	return 0;
4682 }
4683 
4684 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4685 {
4686 	unsigned long flags;
4687 
4688 	/*
4689 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4690 	 * required yet, but lockdep gets upset if rules are violated.
4691 	 */
4692 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4693 #ifdef CONFIG_CGROUP_SCHED
4694 	if (1) {
4695 		struct task_group *tg;
4696 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4697 				  struct task_group, css);
4698 		tg = autogroup_task_group(p, tg);
4699 		p->sched_task_group = tg;
4700 	}
4701 #endif
4702 	rseq_migrate(p);
4703 	/*
4704 	 * We're setting the CPU for the first time, we don't migrate,
4705 	 * so use __set_task_cpu().
4706 	 */
4707 	__set_task_cpu(p, smp_processor_id());
4708 	if (p->sched_class->task_fork)
4709 		p->sched_class->task_fork(p);
4710 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4711 }
4712 
4713 void sched_post_fork(struct task_struct *p)
4714 {
4715 	uclamp_post_fork(p);
4716 }
4717 
4718 unsigned long to_ratio(u64 period, u64 runtime)
4719 {
4720 	if (runtime == RUNTIME_INF)
4721 		return BW_UNIT;
4722 
4723 	/*
4724 	 * Doing this here saves a lot of checks in all
4725 	 * the calling paths, and returning zero seems
4726 	 * safe for them anyway.
4727 	 */
4728 	if (period == 0)
4729 		return 0;
4730 
4731 	return div64_u64(runtime << BW_SHIFT, period);
4732 }
4733 
4734 /*
4735  * wake_up_new_task - wake up a newly created task for the first time.
4736  *
4737  * This function will do some initial scheduler statistics housekeeping
4738  * that must be done for every newly created context, then puts the task
4739  * on the runqueue and wakes it.
4740  */
4741 void wake_up_new_task(struct task_struct *p)
4742 {
4743 	struct rq_flags rf;
4744 	struct rq *rq;
4745 
4746 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4747 	WRITE_ONCE(p->__state, TASK_RUNNING);
4748 #ifdef CONFIG_SMP
4749 	/*
4750 	 * Fork balancing, do it here and not earlier because:
4751 	 *  - cpus_ptr can change in the fork path
4752 	 *  - any previously selected CPU might disappear through hotplug
4753 	 *
4754 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4755 	 * as we're not fully set-up yet.
4756 	 */
4757 	p->recent_used_cpu = task_cpu(p);
4758 	rseq_migrate(p);
4759 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4760 #endif
4761 	rq = __task_rq_lock(p, &rf);
4762 	update_rq_clock(rq);
4763 	post_init_entity_util_avg(p);
4764 
4765 	activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL);
4766 	trace_sched_wakeup_new(p);
4767 	wakeup_preempt(rq, p, WF_FORK);
4768 #ifdef CONFIG_SMP
4769 	if (p->sched_class->task_woken) {
4770 		/*
4771 		 * Nothing relies on rq->lock after this, so it's fine to
4772 		 * drop it.
4773 		 */
4774 		rq_unpin_lock(rq, &rf);
4775 		p->sched_class->task_woken(rq, p);
4776 		rq_repin_lock(rq, &rf);
4777 	}
4778 #endif
4779 	task_rq_unlock(rq, p, &rf);
4780 }
4781 
4782 #ifdef CONFIG_PREEMPT_NOTIFIERS
4783 
4784 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4785 
4786 void preempt_notifier_inc(void)
4787 {
4788 	static_branch_inc(&preempt_notifier_key);
4789 }
4790 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4791 
4792 void preempt_notifier_dec(void)
4793 {
4794 	static_branch_dec(&preempt_notifier_key);
4795 }
4796 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4797 
4798 /**
4799  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4800  * @notifier: notifier struct to register
4801  */
4802 void preempt_notifier_register(struct preempt_notifier *notifier)
4803 {
4804 	if (!static_branch_unlikely(&preempt_notifier_key))
4805 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4806 
4807 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4808 }
4809 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4810 
4811 /**
4812  * preempt_notifier_unregister - no longer interested in preemption notifications
4813  * @notifier: notifier struct to unregister
4814  *
4815  * This is *not* safe to call from within a preemption notifier.
4816  */
4817 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4818 {
4819 	hlist_del(&notifier->link);
4820 }
4821 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4822 
4823 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4824 {
4825 	struct preempt_notifier *notifier;
4826 
4827 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4828 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4829 }
4830 
4831 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4832 {
4833 	if (static_branch_unlikely(&preempt_notifier_key))
4834 		__fire_sched_in_preempt_notifiers(curr);
4835 }
4836 
4837 static void
4838 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4839 				   struct task_struct *next)
4840 {
4841 	struct preempt_notifier *notifier;
4842 
4843 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4844 		notifier->ops->sched_out(notifier, next);
4845 }
4846 
4847 static __always_inline void
4848 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4849 				 struct task_struct *next)
4850 {
4851 	if (static_branch_unlikely(&preempt_notifier_key))
4852 		__fire_sched_out_preempt_notifiers(curr, next);
4853 }
4854 
4855 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4856 
4857 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4858 {
4859 }
4860 
4861 static inline void
4862 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4863 				 struct task_struct *next)
4864 {
4865 }
4866 
4867 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4868 
4869 static inline void prepare_task(struct task_struct *next)
4870 {
4871 #ifdef CONFIG_SMP
4872 	/*
4873 	 * Claim the task as running, we do this before switching to it
4874 	 * such that any running task will have this set.
4875 	 *
4876 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4877 	 * its ordering comment.
4878 	 */
4879 	WRITE_ONCE(next->on_cpu, 1);
4880 #endif
4881 }
4882 
4883 static inline void finish_task(struct task_struct *prev)
4884 {
4885 #ifdef CONFIG_SMP
4886 	/*
4887 	 * This must be the very last reference to @prev from this CPU. After
4888 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4889 	 * must ensure this doesn't happen until the switch is completely
4890 	 * finished.
4891 	 *
4892 	 * In particular, the load of prev->state in finish_task_switch() must
4893 	 * happen before this.
4894 	 *
4895 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4896 	 */
4897 	smp_store_release(&prev->on_cpu, 0);
4898 #endif
4899 }
4900 
4901 #ifdef CONFIG_SMP
4902 
4903 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
4904 {
4905 	void (*func)(struct rq *rq);
4906 	struct balance_callback *next;
4907 
4908 	lockdep_assert_rq_held(rq);
4909 
4910 	while (head) {
4911 		func = (void (*)(struct rq *))head->func;
4912 		next = head->next;
4913 		head->next = NULL;
4914 		head = next;
4915 
4916 		func(rq);
4917 	}
4918 }
4919 
4920 static void balance_push(struct rq *rq);
4921 
4922 /*
4923  * balance_push_callback is a right abuse of the callback interface and plays
4924  * by significantly different rules.
4925  *
4926  * Where the normal balance_callback's purpose is to be ran in the same context
4927  * that queued it (only later, when it's safe to drop rq->lock again),
4928  * balance_push_callback is specifically targeted at __schedule().
4929  *
4930  * This abuse is tolerated because it places all the unlikely/odd cases behind
4931  * a single test, namely: rq->balance_callback == NULL.
4932  */
4933 struct balance_callback balance_push_callback = {
4934 	.next = NULL,
4935 	.func = balance_push,
4936 };
4937 
4938 static inline struct balance_callback *
4939 __splice_balance_callbacks(struct rq *rq, bool split)
4940 {
4941 	struct balance_callback *head = rq->balance_callback;
4942 
4943 	if (likely(!head))
4944 		return NULL;
4945 
4946 	lockdep_assert_rq_held(rq);
4947 	/*
4948 	 * Must not take balance_push_callback off the list when
4949 	 * splice_balance_callbacks() and balance_callbacks() are not
4950 	 * in the same rq->lock section.
4951 	 *
4952 	 * In that case it would be possible for __schedule() to interleave
4953 	 * and observe the list empty.
4954 	 */
4955 	if (split && head == &balance_push_callback)
4956 		head = NULL;
4957 	else
4958 		rq->balance_callback = NULL;
4959 
4960 	return head;
4961 }
4962 
4963 struct balance_callback *splice_balance_callbacks(struct rq *rq)
4964 {
4965 	return __splice_balance_callbacks(rq, true);
4966 }
4967 
4968 static void __balance_callbacks(struct rq *rq)
4969 {
4970 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
4971 }
4972 
4973 void balance_callbacks(struct rq *rq, struct balance_callback *head)
4974 {
4975 	unsigned long flags;
4976 
4977 	if (unlikely(head)) {
4978 		raw_spin_rq_lock_irqsave(rq, flags);
4979 		do_balance_callbacks(rq, head);
4980 		raw_spin_rq_unlock_irqrestore(rq, flags);
4981 	}
4982 }
4983 
4984 #else
4985 
4986 static inline void __balance_callbacks(struct rq *rq)
4987 {
4988 }
4989 
4990 #endif
4991 
4992 static inline void
4993 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4994 {
4995 	/*
4996 	 * Since the runqueue lock will be released by the next
4997 	 * task (which is an invalid locking op but in the case
4998 	 * of the scheduler it's an obvious special-case), so we
4999 	 * do an early lockdep release here:
5000 	 */
5001 	rq_unpin_lock(rq, rf);
5002 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5003 #ifdef CONFIG_DEBUG_SPINLOCK
5004 	/* this is a valid case when another task releases the spinlock */
5005 	rq_lockp(rq)->owner = next;
5006 #endif
5007 }
5008 
5009 static inline void finish_lock_switch(struct rq *rq)
5010 {
5011 	/*
5012 	 * If we are tracking spinlock dependencies then we have to
5013 	 * fix up the runqueue lock - which gets 'carried over' from
5014 	 * prev into current:
5015 	 */
5016 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5017 	__balance_callbacks(rq);
5018 	raw_spin_rq_unlock_irq(rq);
5019 }
5020 
5021 /*
5022  * NOP if the arch has not defined these:
5023  */
5024 
5025 #ifndef prepare_arch_switch
5026 # define prepare_arch_switch(next)	do { } while (0)
5027 #endif
5028 
5029 #ifndef finish_arch_post_lock_switch
5030 # define finish_arch_post_lock_switch()	do { } while (0)
5031 #endif
5032 
5033 static inline void kmap_local_sched_out(void)
5034 {
5035 #ifdef CONFIG_KMAP_LOCAL
5036 	if (unlikely(current->kmap_ctrl.idx))
5037 		__kmap_local_sched_out();
5038 #endif
5039 }
5040 
5041 static inline void kmap_local_sched_in(void)
5042 {
5043 #ifdef CONFIG_KMAP_LOCAL
5044 	if (unlikely(current->kmap_ctrl.idx))
5045 		__kmap_local_sched_in();
5046 #endif
5047 }
5048 
5049 /**
5050  * prepare_task_switch - prepare to switch tasks
5051  * @rq: the runqueue preparing to switch
5052  * @prev: the current task that is being switched out
5053  * @next: the task we are going to switch to.
5054  *
5055  * This is called with the rq lock held and interrupts off. It must
5056  * be paired with a subsequent finish_task_switch after the context
5057  * switch.
5058  *
5059  * prepare_task_switch sets up locking and calls architecture specific
5060  * hooks.
5061  */
5062 static inline void
5063 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5064 		    struct task_struct *next)
5065 {
5066 	kcov_prepare_switch(prev);
5067 	sched_info_switch(rq, prev, next);
5068 	perf_event_task_sched_out(prev, next);
5069 	rseq_preempt(prev);
5070 	fire_sched_out_preempt_notifiers(prev, next);
5071 	kmap_local_sched_out();
5072 	prepare_task(next);
5073 	prepare_arch_switch(next);
5074 }
5075 
5076 /**
5077  * finish_task_switch - clean up after a task-switch
5078  * @prev: the thread we just switched away from.
5079  *
5080  * finish_task_switch must be called after the context switch, paired
5081  * with a prepare_task_switch call before the context switch.
5082  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5083  * and do any other architecture-specific cleanup actions.
5084  *
5085  * Note that we may have delayed dropping an mm in context_switch(). If
5086  * so, we finish that here outside of the runqueue lock. (Doing it
5087  * with the lock held can cause deadlocks; see schedule() for
5088  * details.)
5089  *
5090  * The context switch have flipped the stack from under us and restored the
5091  * local variables which were saved when this task called schedule() in the
5092  * past. 'prev == current' is still correct but we need to recalculate this_rq
5093  * because prev may have moved to another CPU.
5094  */
5095 static struct rq *finish_task_switch(struct task_struct *prev)
5096 	__releases(rq->lock)
5097 {
5098 	struct rq *rq = this_rq();
5099 	struct mm_struct *mm = rq->prev_mm;
5100 	unsigned int prev_state;
5101 
5102 	/*
5103 	 * The previous task will have left us with a preempt_count of 2
5104 	 * because it left us after:
5105 	 *
5106 	 *	schedule()
5107 	 *	  preempt_disable();			// 1
5108 	 *	  __schedule()
5109 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5110 	 *
5111 	 * Also, see FORK_PREEMPT_COUNT.
5112 	 */
5113 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5114 		      "corrupted preempt_count: %s/%d/0x%x\n",
5115 		      current->comm, current->pid, preempt_count()))
5116 		preempt_count_set(FORK_PREEMPT_COUNT);
5117 
5118 	rq->prev_mm = NULL;
5119 
5120 	/*
5121 	 * A task struct has one reference for the use as "current".
5122 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5123 	 * schedule one last time. The schedule call will never return, and
5124 	 * the scheduled task must drop that reference.
5125 	 *
5126 	 * We must observe prev->state before clearing prev->on_cpu (in
5127 	 * finish_task), otherwise a concurrent wakeup can get prev
5128 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5129 	 * transition, resulting in a double drop.
5130 	 */
5131 	prev_state = READ_ONCE(prev->__state);
5132 	vtime_task_switch(prev);
5133 	perf_event_task_sched_in(prev, current);
5134 	finish_task(prev);
5135 	tick_nohz_task_switch();
5136 	finish_lock_switch(rq);
5137 	finish_arch_post_lock_switch();
5138 	kcov_finish_switch(current);
5139 	/*
5140 	 * kmap_local_sched_out() is invoked with rq::lock held and
5141 	 * interrupts disabled. There is no requirement for that, but the
5142 	 * sched out code does not have an interrupt enabled section.
5143 	 * Restoring the maps on sched in does not require interrupts being
5144 	 * disabled either.
5145 	 */
5146 	kmap_local_sched_in();
5147 
5148 	fire_sched_in_preempt_notifiers(current);
5149 	/*
5150 	 * When switching through a kernel thread, the loop in
5151 	 * membarrier_{private,global}_expedited() may have observed that
5152 	 * kernel thread and not issued an IPI. It is therefore possible to
5153 	 * schedule between user->kernel->user threads without passing though
5154 	 * switch_mm(). Membarrier requires a barrier after storing to
5155 	 * rq->curr, before returning to userspace, so provide them here:
5156 	 *
5157 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5158 	 *   provided by mmdrop_lazy_tlb(),
5159 	 * - a sync_core for SYNC_CORE.
5160 	 */
5161 	if (mm) {
5162 		membarrier_mm_sync_core_before_usermode(mm);
5163 		mmdrop_lazy_tlb_sched(mm);
5164 	}
5165 
5166 	if (unlikely(prev_state == TASK_DEAD)) {
5167 		if (prev->sched_class->task_dead)
5168 			prev->sched_class->task_dead(prev);
5169 
5170 		/* Task is done with its stack. */
5171 		put_task_stack(prev);
5172 
5173 		put_task_struct_rcu_user(prev);
5174 	}
5175 
5176 	return rq;
5177 }
5178 
5179 /**
5180  * schedule_tail - first thing a freshly forked thread must call.
5181  * @prev: the thread we just switched away from.
5182  */
5183 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5184 	__releases(rq->lock)
5185 {
5186 	/*
5187 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5188 	 * finish_task_switch() for details.
5189 	 *
5190 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5191 	 * and the preempt_enable() will end up enabling preemption (on
5192 	 * PREEMPT_COUNT kernels).
5193 	 */
5194 
5195 	finish_task_switch(prev);
5196 	preempt_enable();
5197 
5198 	if (current->set_child_tid)
5199 		put_user(task_pid_vnr(current), current->set_child_tid);
5200 
5201 	calculate_sigpending();
5202 }
5203 
5204 /*
5205  * context_switch - switch to the new MM and the new thread's register state.
5206  */
5207 static __always_inline struct rq *
5208 context_switch(struct rq *rq, struct task_struct *prev,
5209 	       struct task_struct *next, struct rq_flags *rf)
5210 {
5211 	prepare_task_switch(rq, prev, next);
5212 
5213 	/*
5214 	 * For paravirt, this is coupled with an exit in switch_to to
5215 	 * combine the page table reload and the switch backend into
5216 	 * one hypercall.
5217 	 */
5218 	arch_start_context_switch(prev);
5219 
5220 	/*
5221 	 * kernel -> kernel   lazy + transfer active
5222 	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
5223 	 *
5224 	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
5225 	 *   user ->   user   switch
5226 	 *
5227 	 * switch_mm_cid() needs to be updated if the barriers provided
5228 	 * by context_switch() are modified.
5229 	 */
5230 	if (!next->mm) {                                // to kernel
5231 		enter_lazy_tlb(prev->active_mm, next);
5232 
5233 		next->active_mm = prev->active_mm;
5234 		if (prev->mm)                           // from user
5235 			mmgrab_lazy_tlb(prev->active_mm);
5236 		else
5237 			prev->active_mm = NULL;
5238 	} else {                                        // to user
5239 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5240 		/*
5241 		 * sys_membarrier() requires an smp_mb() between setting
5242 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5243 		 *
5244 		 * The below provides this either through switch_mm(), or in
5245 		 * case 'prev->active_mm == next->mm' through
5246 		 * finish_task_switch()'s mmdrop().
5247 		 */
5248 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5249 		lru_gen_use_mm(next->mm);
5250 
5251 		if (!prev->mm) {                        // from kernel
5252 			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
5253 			rq->prev_mm = prev->active_mm;
5254 			prev->active_mm = NULL;
5255 		}
5256 	}
5257 
5258 	/* switch_mm_cid() requires the memory barriers above. */
5259 	switch_mm_cid(rq, prev, next);
5260 
5261 	prepare_lock_switch(rq, next, rf);
5262 
5263 	/* Here we just switch the register state and the stack. */
5264 	switch_to(prev, next, prev);
5265 	barrier();
5266 
5267 	return finish_task_switch(prev);
5268 }
5269 
5270 /*
5271  * nr_running and nr_context_switches:
5272  *
5273  * externally visible scheduler statistics: current number of runnable
5274  * threads, total number of context switches performed since bootup.
5275  */
5276 unsigned int nr_running(void)
5277 {
5278 	unsigned int i, sum = 0;
5279 
5280 	for_each_online_cpu(i)
5281 		sum += cpu_rq(i)->nr_running;
5282 
5283 	return sum;
5284 }
5285 
5286 /*
5287  * Check if only the current task is running on the CPU.
5288  *
5289  * Caution: this function does not check that the caller has disabled
5290  * preemption, thus the result might have a time-of-check-to-time-of-use
5291  * race.  The caller is responsible to use it correctly, for example:
5292  *
5293  * - from a non-preemptible section (of course)
5294  *
5295  * - from a thread that is bound to a single CPU
5296  *
5297  * - in a loop with very short iterations (e.g. a polling loop)
5298  */
5299 bool single_task_running(void)
5300 {
5301 	return raw_rq()->nr_running == 1;
5302 }
5303 EXPORT_SYMBOL(single_task_running);
5304 
5305 unsigned long long nr_context_switches_cpu(int cpu)
5306 {
5307 	return cpu_rq(cpu)->nr_switches;
5308 }
5309 
5310 unsigned long long nr_context_switches(void)
5311 {
5312 	int i;
5313 	unsigned long long sum = 0;
5314 
5315 	for_each_possible_cpu(i)
5316 		sum += cpu_rq(i)->nr_switches;
5317 
5318 	return sum;
5319 }
5320 
5321 /*
5322  * Consumers of these two interfaces, like for example the cpuidle menu
5323  * governor, are using nonsensical data. Preferring shallow idle state selection
5324  * for a CPU that has IO-wait which might not even end up running the task when
5325  * it does become runnable.
5326  */
5327 
5328 unsigned int nr_iowait_cpu(int cpu)
5329 {
5330 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5331 }
5332 
5333 /*
5334  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5335  *
5336  * The idea behind IO-wait account is to account the idle time that we could
5337  * have spend running if it were not for IO. That is, if we were to improve the
5338  * storage performance, we'd have a proportional reduction in IO-wait time.
5339  *
5340  * This all works nicely on UP, where, when a task blocks on IO, we account
5341  * idle time as IO-wait, because if the storage were faster, it could've been
5342  * running and we'd not be idle.
5343  *
5344  * This has been extended to SMP, by doing the same for each CPU. This however
5345  * is broken.
5346  *
5347  * Imagine for instance the case where two tasks block on one CPU, only the one
5348  * CPU will have IO-wait accounted, while the other has regular idle. Even
5349  * though, if the storage were faster, both could've ran at the same time,
5350  * utilising both CPUs.
5351  *
5352  * This means, that when looking globally, the current IO-wait accounting on
5353  * SMP is a lower bound, by reason of under accounting.
5354  *
5355  * Worse, since the numbers are provided per CPU, they are sometimes
5356  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5357  * associated with any one particular CPU, it can wake to another CPU than it
5358  * blocked on. This means the per CPU IO-wait number is meaningless.
5359  *
5360  * Task CPU affinities can make all that even more 'interesting'.
5361  */
5362 
5363 unsigned int nr_iowait(void)
5364 {
5365 	unsigned int i, sum = 0;
5366 
5367 	for_each_possible_cpu(i)
5368 		sum += nr_iowait_cpu(i);
5369 
5370 	return sum;
5371 }
5372 
5373 #ifdef CONFIG_SMP
5374 
5375 /*
5376  * sched_exec - execve() is a valuable balancing opportunity, because at
5377  * this point the task has the smallest effective memory and cache footprint.
5378  */
5379 void sched_exec(void)
5380 {
5381 	struct task_struct *p = current;
5382 	struct migration_arg arg;
5383 	int dest_cpu;
5384 
5385 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5386 		dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5387 		if (dest_cpu == smp_processor_id())
5388 			return;
5389 
5390 		if (unlikely(!cpu_active(dest_cpu)))
5391 			return;
5392 
5393 		arg = (struct migration_arg){ p, dest_cpu };
5394 	}
5395 	stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5396 }
5397 
5398 #endif
5399 
5400 DEFINE_PER_CPU(struct kernel_stat, kstat);
5401 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5402 
5403 EXPORT_PER_CPU_SYMBOL(kstat);
5404 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5405 
5406 /*
5407  * The function fair_sched_class.update_curr accesses the struct curr
5408  * and its field curr->exec_start; when called from task_sched_runtime(),
5409  * we observe a high rate of cache misses in practice.
5410  * Prefetching this data results in improved performance.
5411  */
5412 static inline void prefetch_curr_exec_start(struct task_struct *p)
5413 {
5414 #ifdef CONFIG_FAIR_GROUP_SCHED
5415 	struct sched_entity *curr = p->se.cfs_rq->curr;
5416 #else
5417 	struct sched_entity *curr = task_rq(p)->cfs.curr;
5418 #endif
5419 	prefetch(curr);
5420 	prefetch(&curr->exec_start);
5421 }
5422 
5423 /*
5424  * Return accounted runtime for the task.
5425  * In case the task is currently running, return the runtime plus current's
5426  * pending runtime that have not been accounted yet.
5427  */
5428 unsigned long long task_sched_runtime(struct task_struct *p)
5429 {
5430 	struct rq_flags rf;
5431 	struct rq *rq;
5432 	u64 ns;
5433 
5434 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5435 	/*
5436 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5437 	 * So we have a optimization chance when the task's delta_exec is 0.
5438 	 * Reading ->on_cpu is racy, but this is OK.
5439 	 *
5440 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5441 	 * If we race with it entering CPU, unaccounted time is 0. This is
5442 	 * indistinguishable from the read occurring a few cycles earlier.
5443 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5444 	 * been accounted, so we're correct here as well.
5445 	 */
5446 	if (!p->on_cpu || !task_on_rq_queued(p))
5447 		return p->se.sum_exec_runtime;
5448 #endif
5449 
5450 	rq = task_rq_lock(p, &rf);
5451 	/*
5452 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5453 	 * project cycles that may never be accounted to this
5454 	 * thread, breaking clock_gettime().
5455 	 */
5456 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5457 		prefetch_curr_exec_start(p);
5458 		update_rq_clock(rq);
5459 		p->sched_class->update_curr(rq);
5460 	}
5461 	ns = p->se.sum_exec_runtime;
5462 	task_rq_unlock(rq, p, &rf);
5463 
5464 	return ns;
5465 }
5466 
5467 #ifdef CONFIG_SCHED_DEBUG
5468 static u64 cpu_resched_latency(struct rq *rq)
5469 {
5470 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5471 	u64 resched_latency, now = rq_clock(rq);
5472 	static bool warned_once;
5473 
5474 	if (sysctl_resched_latency_warn_once && warned_once)
5475 		return 0;
5476 
5477 	if (!need_resched() || !latency_warn_ms)
5478 		return 0;
5479 
5480 	if (system_state == SYSTEM_BOOTING)
5481 		return 0;
5482 
5483 	if (!rq->last_seen_need_resched_ns) {
5484 		rq->last_seen_need_resched_ns = now;
5485 		rq->ticks_without_resched = 0;
5486 		return 0;
5487 	}
5488 
5489 	rq->ticks_without_resched++;
5490 	resched_latency = now - rq->last_seen_need_resched_ns;
5491 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5492 		return 0;
5493 
5494 	warned_once = true;
5495 
5496 	return resched_latency;
5497 }
5498 
5499 static int __init setup_resched_latency_warn_ms(char *str)
5500 {
5501 	long val;
5502 
5503 	if ((kstrtol(str, 0, &val))) {
5504 		pr_warn("Unable to set resched_latency_warn_ms\n");
5505 		return 1;
5506 	}
5507 
5508 	sysctl_resched_latency_warn_ms = val;
5509 	return 1;
5510 }
5511 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5512 #else
5513 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5514 #endif /* CONFIG_SCHED_DEBUG */
5515 
5516 /*
5517  * This function gets called by the timer code, with HZ frequency.
5518  * We call it with interrupts disabled.
5519  */
5520 void sched_tick(void)
5521 {
5522 	int cpu = smp_processor_id();
5523 	struct rq *rq = cpu_rq(cpu);
5524 	struct task_struct *curr;
5525 	struct rq_flags rf;
5526 	unsigned long hw_pressure;
5527 	u64 resched_latency;
5528 
5529 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5530 		arch_scale_freq_tick();
5531 
5532 	sched_clock_tick();
5533 
5534 	rq_lock(rq, &rf);
5535 
5536 	curr = rq->curr;
5537 	psi_account_irqtime(rq, curr, NULL);
5538 
5539 	update_rq_clock(rq);
5540 	hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
5541 	update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure);
5542 	curr->sched_class->task_tick(rq, curr, 0);
5543 	if (sched_feat(LATENCY_WARN))
5544 		resched_latency = cpu_resched_latency(rq);
5545 	calc_global_load_tick(rq);
5546 	sched_core_tick(rq);
5547 	task_tick_mm_cid(rq, curr);
5548 
5549 	rq_unlock(rq, &rf);
5550 
5551 	if (sched_feat(LATENCY_WARN) && resched_latency)
5552 		resched_latency_warn(cpu, resched_latency);
5553 
5554 	perf_event_task_tick();
5555 
5556 	if (curr->flags & PF_WQ_WORKER)
5557 		wq_worker_tick(curr);
5558 
5559 #ifdef CONFIG_SMP
5560 	rq->idle_balance = idle_cpu(cpu);
5561 	sched_balance_trigger(rq);
5562 #endif
5563 }
5564 
5565 #ifdef CONFIG_NO_HZ_FULL
5566 
5567 struct tick_work {
5568 	int			cpu;
5569 	atomic_t		state;
5570 	struct delayed_work	work;
5571 };
5572 /* Values for ->state, see diagram below. */
5573 #define TICK_SCHED_REMOTE_OFFLINE	0
5574 #define TICK_SCHED_REMOTE_OFFLINING	1
5575 #define TICK_SCHED_REMOTE_RUNNING	2
5576 
5577 /*
5578  * State diagram for ->state:
5579  *
5580  *
5581  *          TICK_SCHED_REMOTE_OFFLINE
5582  *                    |   ^
5583  *                    |   |
5584  *                    |   | sched_tick_remote()
5585  *                    |   |
5586  *                    |   |
5587  *                    +--TICK_SCHED_REMOTE_OFFLINING
5588  *                    |   ^
5589  *                    |   |
5590  * sched_tick_start() |   | sched_tick_stop()
5591  *                    |   |
5592  *                    V   |
5593  *          TICK_SCHED_REMOTE_RUNNING
5594  *
5595  *
5596  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5597  * and sched_tick_start() are happy to leave the state in RUNNING.
5598  */
5599 
5600 static struct tick_work __percpu *tick_work_cpu;
5601 
5602 static void sched_tick_remote(struct work_struct *work)
5603 {
5604 	struct delayed_work *dwork = to_delayed_work(work);
5605 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5606 	int cpu = twork->cpu;
5607 	struct rq *rq = cpu_rq(cpu);
5608 	int os;
5609 
5610 	/*
5611 	 * Handle the tick only if it appears the remote CPU is running in full
5612 	 * dynticks mode. The check is racy by nature, but missing a tick or
5613 	 * having one too much is no big deal because the scheduler tick updates
5614 	 * statistics and checks timeslices in a time-independent way, regardless
5615 	 * of when exactly it is running.
5616 	 */
5617 	if (tick_nohz_tick_stopped_cpu(cpu)) {
5618 		guard(rq_lock_irq)(rq);
5619 		struct task_struct *curr = rq->curr;
5620 
5621 		if (cpu_online(cpu)) {
5622 			update_rq_clock(rq);
5623 
5624 			if (!is_idle_task(curr)) {
5625 				/*
5626 				 * Make sure the next tick runs within a
5627 				 * reasonable amount of time.
5628 				 */
5629 				u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5630 				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5631 			}
5632 			curr->sched_class->task_tick(rq, curr, 0);
5633 
5634 			calc_load_nohz_remote(rq);
5635 		}
5636 	}
5637 
5638 	/*
5639 	 * Run the remote tick once per second (1Hz). This arbitrary
5640 	 * frequency is large enough to avoid overload but short enough
5641 	 * to keep scheduler internal stats reasonably up to date.  But
5642 	 * first update state to reflect hotplug activity if required.
5643 	 */
5644 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5645 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5646 	if (os == TICK_SCHED_REMOTE_RUNNING)
5647 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5648 }
5649 
5650 static void sched_tick_start(int cpu)
5651 {
5652 	int os;
5653 	struct tick_work *twork;
5654 
5655 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5656 		return;
5657 
5658 	WARN_ON_ONCE(!tick_work_cpu);
5659 
5660 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5661 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5662 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5663 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5664 		twork->cpu = cpu;
5665 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5666 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5667 	}
5668 }
5669 
5670 #ifdef CONFIG_HOTPLUG_CPU
5671 static void sched_tick_stop(int cpu)
5672 {
5673 	struct tick_work *twork;
5674 	int os;
5675 
5676 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5677 		return;
5678 
5679 	WARN_ON_ONCE(!tick_work_cpu);
5680 
5681 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5682 	/* There cannot be competing actions, but don't rely on stop-machine. */
5683 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5684 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5685 	/* Don't cancel, as this would mess up the state machine. */
5686 }
5687 #endif /* CONFIG_HOTPLUG_CPU */
5688 
5689 int __init sched_tick_offload_init(void)
5690 {
5691 	tick_work_cpu = alloc_percpu(struct tick_work);
5692 	BUG_ON(!tick_work_cpu);
5693 	return 0;
5694 }
5695 
5696 #else /* !CONFIG_NO_HZ_FULL */
5697 static inline void sched_tick_start(int cpu) { }
5698 static inline void sched_tick_stop(int cpu) { }
5699 #endif
5700 
5701 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5702 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5703 /*
5704  * If the value passed in is equal to the current preempt count
5705  * then we just disabled preemption. Start timing the latency.
5706  */
5707 static inline void preempt_latency_start(int val)
5708 {
5709 	if (preempt_count() == val) {
5710 		unsigned long ip = get_lock_parent_ip();
5711 #ifdef CONFIG_DEBUG_PREEMPT
5712 		current->preempt_disable_ip = ip;
5713 #endif
5714 		trace_preempt_off(CALLER_ADDR0, ip);
5715 	}
5716 }
5717 
5718 void preempt_count_add(int val)
5719 {
5720 #ifdef CONFIG_DEBUG_PREEMPT
5721 	/*
5722 	 * Underflow?
5723 	 */
5724 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5725 		return;
5726 #endif
5727 	__preempt_count_add(val);
5728 #ifdef CONFIG_DEBUG_PREEMPT
5729 	/*
5730 	 * Spinlock count overflowing soon?
5731 	 */
5732 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5733 				PREEMPT_MASK - 10);
5734 #endif
5735 	preempt_latency_start(val);
5736 }
5737 EXPORT_SYMBOL(preempt_count_add);
5738 NOKPROBE_SYMBOL(preempt_count_add);
5739 
5740 /*
5741  * If the value passed in equals to the current preempt count
5742  * then we just enabled preemption. Stop timing the latency.
5743  */
5744 static inline void preempt_latency_stop(int val)
5745 {
5746 	if (preempt_count() == val)
5747 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5748 }
5749 
5750 void preempt_count_sub(int val)
5751 {
5752 #ifdef CONFIG_DEBUG_PREEMPT
5753 	/*
5754 	 * Underflow?
5755 	 */
5756 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5757 		return;
5758 	/*
5759 	 * Is the spinlock portion underflowing?
5760 	 */
5761 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5762 			!(preempt_count() & PREEMPT_MASK)))
5763 		return;
5764 #endif
5765 
5766 	preempt_latency_stop(val);
5767 	__preempt_count_sub(val);
5768 }
5769 EXPORT_SYMBOL(preempt_count_sub);
5770 NOKPROBE_SYMBOL(preempt_count_sub);
5771 
5772 #else
5773 static inline void preempt_latency_start(int val) { }
5774 static inline void preempt_latency_stop(int val) { }
5775 #endif
5776 
5777 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5778 {
5779 #ifdef CONFIG_DEBUG_PREEMPT
5780 	return p->preempt_disable_ip;
5781 #else
5782 	return 0;
5783 #endif
5784 }
5785 
5786 /*
5787  * Print scheduling while atomic bug:
5788  */
5789 static noinline void __schedule_bug(struct task_struct *prev)
5790 {
5791 	/* Save this before calling printk(), since that will clobber it */
5792 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5793 
5794 	if (oops_in_progress)
5795 		return;
5796 
5797 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5798 		prev->comm, prev->pid, preempt_count());
5799 
5800 	debug_show_held_locks(prev);
5801 	print_modules();
5802 	if (irqs_disabled())
5803 		print_irqtrace_events(prev);
5804 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
5805 		pr_err("Preemption disabled at:");
5806 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5807 	}
5808 	check_panic_on_warn("scheduling while atomic");
5809 
5810 	dump_stack();
5811 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5812 }
5813 
5814 /*
5815  * Various schedule()-time debugging checks and statistics:
5816  */
5817 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5818 {
5819 #ifdef CONFIG_SCHED_STACK_END_CHECK
5820 	if (task_stack_end_corrupted(prev))
5821 		panic("corrupted stack end detected inside scheduler\n");
5822 
5823 	if (task_scs_end_corrupted(prev))
5824 		panic("corrupted shadow stack detected inside scheduler\n");
5825 #endif
5826 
5827 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5828 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5829 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5830 			prev->comm, prev->pid, prev->non_block_count);
5831 		dump_stack();
5832 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5833 	}
5834 #endif
5835 
5836 	if (unlikely(in_atomic_preempt_off())) {
5837 		__schedule_bug(prev);
5838 		preempt_count_set(PREEMPT_DISABLED);
5839 	}
5840 	rcu_sleep_check();
5841 	SCHED_WARN_ON(ct_state() == CT_STATE_USER);
5842 
5843 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5844 
5845 	schedstat_inc(this_rq()->sched_count);
5846 }
5847 
5848 static void prev_balance(struct rq *rq, struct task_struct *prev,
5849 			 struct rq_flags *rf)
5850 {
5851 #ifdef CONFIG_SMP
5852 	const struct sched_class *class;
5853 	/*
5854 	 * We must do the balancing pass before put_prev_task(), such
5855 	 * that when we release the rq->lock the task is in the same
5856 	 * state as before we took rq->lock.
5857 	 *
5858 	 * We can terminate the balance pass as soon as we know there is
5859 	 * a runnable task of @class priority or higher.
5860 	 */
5861 	for_class_range(class, prev->sched_class, &idle_sched_class) {
5862 		if (class->balance(rq, prev, rf))
5863 			break;
5864 	}
5865 #endif
5866 }
5867 
5868 /*
5869  * Pick up the highest-prio task:
5870  */
5871 static inline struct task_struct *
5872 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5873 {
5874 	const struct sched_class *class;
5875 	struct task_struct *p;
5876 
5877 	rq->dl_server = NULL;
5878 
5879 	/*
5880 	 * Optimization: we know that if all tasks are in the fair class we can
5881 	 * call that function directly, but only if the @prev task wasn't of a
5882 	 * higher scheduling class, because otherwise those lose the
5883 	 * opportunity to pull in more work from other CPUs.
5884 	 */
5885 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
5886 		   rq->nr_running == rq->cfs.h_nr_running)) {
5887 
5888 		p = pick_next_task_fair(rq, prev, rf);
5889 		if (unlikely(p == RETRY_TASK))
5890 			goto restart;
5891 
5892 		/* Assume the next prioritized class is idle_sched_class */
5893 		if (!p) {
5894 			p = pick_task_idle(rq);
5895 			put_prev_set_next_task(rq, prev, p);
5896 		}
5897 
5898 		return p;
5899 	}
5900 
5901 restart:
5902 	prev_balance(rq, prev, rf);
5903 
5904 	for_each_class(class) {
5905 		if (class->pick_next_task) {
5906 			p = class->pick_next_task(rq, prev);
5907 			if (p)
5908 				return p;
5909 		} else {
5910 			p = class->pick_task(rq);
5911 			if (p) {
5912 				put_prev_set_next_task(rq, prev, p);
5913 				return p;
5914 			}
5915 		}
5916 	}
5917 
5918 	BUG(); /* The idle class should always have a runnable task. */
5919 }
5920 
5921 #ifdef CONFIG_SCHED_CORE
5922 static inline bool is_task_rq_idle(struct task_struct *t)
5923 {
5924 	return (task_rq(t)->idle == t);
5925 }
5926 
5927 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5928 {
5929 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
5930 }
5931 
5932 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5933 {
5934 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
5935 		return true;
5936 
5937 	return a->core_cookie == b->core_cookie;
5938 }
5939 
5940 static inline struct task_struct *pick_task(struct rq *rq)
5941 {
5942 	const struct sched_class *class;
5943 	struct task_struct *p;
5944 
5945 	rq->dl_server = NULL;
5946 
5947 	for_each_class(class) {
5948 		p = class->pick_task(rq);
5949 		if (p)
5950 			return p;
5951 	}
5952 
5953 	BUG(); /* The idle class should always have a runnable task. */
5954 }
5955 
5956 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5957 
5958 static void queue_core_balance(struct rq *rq);
5959 
5960 static struct task_struct *
5961 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5962 {
5963 	struct task_struct *next, *p, *max = NULL;
5964 	const struct cpumask *smt_mask;
5965 	bool fi_before = false;
5966 	bool core_clock_updated = (rq == rq->core);
5967 	unsigned long cookie;
5968 	int i, cpu, occ = 0;
5969 	struct rq *rq_i;
5970 	bool need_sync;
5971 
5972 	if (!sched_core_enabled(rq))
5973 		return __pick_next_task(rq, prev, rf);
5974 
5975 	cpu = cpu_of(rq);
5976 
5977 	/* Stopper task is switching into idle, no need core-wide selection. */
5978 	if (cpu_is_offline(cpu)) {
5979 		/*
5980 		 * Reset core_pick so that we don't enter the fastpath when
5981 		 * coming online. core_pick would already be migrated to
5982 		 * another cpu during offline.
5983 		 */
5984 		rq->core_pick = NULL;
5985 		rq->core_dl_server = NULL;
5986 		return __pick_next_task(rq, prev, rf);
5987 	}
5988 
5989 	/*
5990 	 * If there were no {en,de}queues since we picked (IOW, the task
5991 	 * pointers are all still valid), and we haven't scheduled the last
5992 	 * pick yet, do so now.
5993 	 *
5994 	 * rq->core_pick can be NULL if no selection was made for a CPU because
5995 	 * it was either offline or went offline during a sibling's core-wide
5996 	 * selection. In this case, do a core-wide selection.
5997 	 */
5998 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5999 	    rq->core->core_pick_seq != rq->core_sched_seq &&
6000 	    rq->core_pick) {
6001 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6002 
6003 		next = rq->core_pick;
6004 		rq->dl_server = rq->core_dl_server;
6005 		rq->core_pick = NULL;
6006 		rq->core_dl_server = NULL;
6007 		goto out_set_next;
6008 	}
6009 
6010 	prev_balance(rq, prev, rf);
6011 
6012 	smt_mask = cpu_smt_mask(cpu);
6013 	need_sync = !!rq->core->core_cookie;
6014 
6015 	/* reset state */
6016 	rq->core->core_cookie = 0UL;
6017 	if (rq->core->core_forceidle_count) {
6018 		if (!core_clock_updated) {
6019 			update_rq_clock(rq->core);
6020 			core_clock_updated = true;
6021 		}
6022 		sched_core_account_forceidle(rq);
6023 		/* reset after accounting force idle */
6024 		rq->core->core_forceidle_start = 0;
6025 		rq->core->core_forceidle_count = 0;
6026 		rq->core->core_forceidle_occupation = 0;
6027 		need_sync = true;
6028 		fi_before = true;
6029 	}
6030 
6031 	/*
6032 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6033 	 *
6034 	 * @task_seq guards the task state ({en,de}queues)
6035 	 * @pick_seq is the @task_seq we did a selection on
6036 	 * @sched_seq is the @pick_seq we scheduled
6037 	 *
6038 	 * However, preemptions can cause multiple picks on the same task set.
6039 	 * 'Fix' this by also increasing @task_seq for every pick.
6040 	 */
6041 	rq->core->core_task_seq++;
6042 
6043 	/*
6044 	 * Optimize for common case where this CPU has no cookies
6045 	 * and there are no cookied tasks running on siblings.
6046 	 */
6047 	if (!need_sync) {
6048 		next = pick_task(rq);
6049 		if (!next->core_cookie) {
6050 			rq->core_pick = NULL;
6051 			rq->core_dl_server = NULL;
6052 			/*
6053 			 * For robustness, update the min_vruntime_fi for
6054 			 * unconstrained picks as well.
6055 			 */
6056 			WARN_ON_ONCE(fi_before);
6057 			task_vruntime_update(rq, next, false);
6058 			goto out_set_next;
6059 		}
6060 	}
6061 
6062 	/*
6063 	 * For each thread: do the regular task pick and find the max prio task
6064 	 * amongst them.
6065 	 *
6066 	 * Tie-break prio towards the current CPU
6067 	 */
6068 	for_each_cpu_wrap(i, smt_mask, cpu) {
6069 		rq_i = cpu_rq(i);
6070 
6071 		/*
6072 		 * Current cpu always has its clock updated on entrance to
6073 		 * pick_next_task(). If the current cpu is not the core,
6074 		 * the core may also have been updated above.
6075 		 */
6076 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6077 			update_rq_clock(rq_i);
6078 
6079 		rq_i->core_pick = p = pick_task(rq_i);
6080 		rq_i->core_dl_server = rq_i->dl_server;
6081 
6082 		if (!max || prio_less(max, p, fi_before))
6083 			max = p;
6084 	}
6085 
6086 	cookie = rq->core->core_cookie = max->core_cookie;
6087 
6088 	/*
6089 	 * For each thread: try and find a runnable task that matches @max or
6090 	 * force idle.
6091 	 */
6092 	for_each_cpu(i, smt_mask) {
6093 		rq_i = cpu_rq(i);
6094 		p = rq_i->core_pick;
6095 
6096 		if (!cookie_equals(p, cookie)) {
6097 			p = NULL;
6098 			if (cookie)
6099 				p = sched_core_find(rq_i, cookie);
6100 			if (!p)
6101 				p = idle_sched_class.pick_task(rq_i);
6102 		}
6103 
6104 		rq_i->core_pick = p;
6105 		rq_i->core_dl_server = NULL;
6106 
6107 		if (p == rq_i->idle) {
6108 			if (rq_i->nr_running) {
6109 				rq->core->core_forceidle_count++;
6110 				if (!fi_before)
6111 					rq->core->core_forceidle_seq++;
6112 			}
6113 		} else {
6114 			occ++;
6115 		}
6116 	}
6117 
6118 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6119 		rq->core->core_forceidle_start = rq_clock(rq->core);
6120 		rq->core->core_forceidle_occupation = occ;
6121 	}
6122 
6123 	rq->core->core_pick_seq = rq->core->core_task_seq;
6124 	next = rq->core_pick;
6125 	rq->core_sched_seq = rq->core->core_pick_seq;
6126 
6127 	/* Something should have been selected for current CPU */
6128 	WARN_ON_ONCE(!next);
6129 
6130 	/*
6131 	 * Reschedule siblings
6132 	 *
6133 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6134 	 * sending an IPI (below) ensures the sibling will no longer be running
6135 	 * their task. This ensures there is no inter-sibling overlap between
6136 	 * non-matching user state.
6137 	 */
6138 	for_each_cpu(i, smt_mask) {
6139 		rq_i = cpu_rq(i);
6140 
6141 		/*
6142 		 * An online sibling might have gone offline before a task
6143 		 * could be picked for it, or it might be offline but later
6144 		 * happen to come online, but its too late and nothing was
6145 		 * picked for it.  That's Ok - it will pick tasks for itself,
6146 		 * so ignore it.
6147 		 */
6148 		if (!rq_i->core_pick)
6149 			continue;
6150 
6151 		/*
6152 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6153 		 * fi_before     fi      update?
6154 		 *  0            0       1
6155 		 *  0            1       1
6156 		 *  1            0       1
6157 		 *  1            1       0
6158 		 */
6159 		if (!(fi_before && rq->core->core_forceidle_count))
6160 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6161 
6162 		rq_i->core_pick->core_occupation = occ;
6163 
6164 		if (i == cpu) {
6165 			rq_i->core_pick = NULL;
6166 			rq_i->core_dl_server = NULL;
6167 			continue;
6168 		}
6169 
6170 		/* Did we break L1TF mitigation requirements? */
6171 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6172 
6173 		if (rq_i->curr == rq_i->core_pick) {
6174 			rq_i->core_pick = NULL;
6175 			rq_i->core_dl_server = NULL;
6176 			continue;
6177 		}
6178 
6179 		resched_curr(rq_i);
6180 	}
6181 
6182 out_set_next:
6183 	put_prev_set_next_task(rq, prev, next);
6184 	if (rq->core->core_forceidle_count && next == rq->idle)
6185 		queue_core_balance(rq);
6186 
6187 	return next;
6188 }
6189 
6190 static bool try_steal_cookie(int this, int that)
6191 {
6192 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6193 	struct task_struct *p;
6194 	unsigned long cookie;
6195 	bool success = false;
6196 
6197 	guard(irq)();
6198 	guard(double_rq_lock)(dst, src);
6199 
6200 	cookie = dst->core->core_cookie;
6201 	if (!cookie)
6202 		return false;
6203 
6204 	if (dst->curr != dst->idle)
6205 		return false;
6206 
6207 	p = sched_core_find(src, cookie);
6208 	if (!p)
6209 		return false;
6210 
6211 	do {
6212 		if (p == src->core_pick || p == src->curr)
6213 			goto next;
6214 
6215 		if (!is_cpu_allowed(p, this))
6216 			goto next;
6217 
6218 		if (p->core_occupation > dst->idle->core_occupation)
6219 			goto next;
6220 		/*
6221 		 * sched_core_find() and sched_core_next() will ensure
6222 		 * that task @p is not throttled now, we also need to
6223 		 * check whether the runqueue of the destination CPU is
6224 		 * being throttled.
6225 		 */
6226 		if (sched_task_is_throttled(p, this))
6227 			goto next;
6228 
6229 		deactivate_task(src, p, 0);
6230 		set_task_cpu(p, this);
6231 		activate_task(dst, p, 0);
6232 
6233 		resched_curr(dst);
6234 
6235 		success = true;
6236 		break;
6237 
6238 next:
6239 		p = sched_core_next(p, cookie);
6240 	} while (p);
6241 
6242 	return success;
6243 }
6244 
6245 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6246 {
6247 	int i;
6248 
6249 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6250 		if (i == cpu)
6251 			continue;
6252 
6253 		if (need_resched())
6254 			break;
6255 
6256 		if (try_steal_cookie(cpu, i))
6257 			return true;
6258 	}
6259 
6260 	return false;
6261 }
6262 
6263 static void sched_core_balance(struct rq *rq)
6264 {
6265 	struct sched_domain *sd;
6266 	int cpu = cpu_of(rq);
6267 
6268 	guard(preempt)();
6269 	guard(rcu)();
6270 
6271 	raw_spin_rq_unlock_irq(rq);
6272 	for_each_domain(cpu, sd) {
6273 		if (need_resched())
6274 			break;
6275 
6276 		if (steal_cookie_task(cpu, sd))
6277 			break;
6278 	}
6279 	raw_spin_rq_lock_irq(rq);
6280 }
6281 
6282 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6283 
6284 static void queue_core_balance(struct rq *rq)
6285 {
6286 	if (!sched_core_enabled(rq))
6287 		return;
6288 
6289 	if (!rq->core->core_cookie)
6290 		return;
6291 
6292 	if (!rq->nr_running) /* not forced idle */
6293 		return;
6294 
6295 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6296 }
6297 
6298 DEFINE_LOCK_GUARD_1(core_lock, int,
6299 		    sched_core_lock(*_T->lock, &_T->flags),
6300 		    sched_core_unlock(*_T->lock, &_T->flags),
6301 		    unsigned long flags)
6302 
6303 static void sched_core_cpu_starting(unsigned int cpu)
6304 {
6305 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6306 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6307 	int t;
6308 
6309 	guard(core_lock)(&cpu);
6310 
6311 	WARN_ON_ONCE(rq->core != rq);
6312 
6313 	/* if we're the first, we'll be our own leader */
6314 	if (cpumask_weight(smt_mask) == 1)
6315 		return;
6316 
6317 	/* find the leader */
6318 	for_each_cpu(t, smt_mask) {
6319 		if (t == cpu)
6320 			continue;
6321 		rq = cpu_rq(t);
6322 		if (rq->core == rq) {
6323 			core_rq = rq;
6324 			break;
6325 		}
6326 	}
6327 
6328 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6329 		return;
6330 
6331 	/* install and validate core_rq */
6332 	for_each_cpu(t, smt_mask) {
6333 		rq = cpu_rq(t);
6334 
6335 		if (t == cpu)
6336 			rq->core = core_rq;
6337 
6338 		WARN_ON_ONCE(rq->core != core_rq);
6339 	}
6340 }
6341 
6342 static void sched_core_cpu_deactivate(unsigned int cpu)
6343 {
6344 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6345 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6346 	int t;
6347 
6348 	guard(core_lock)(&cpu);
6349 
6350 	/* if we're the last man standing, nothing to do */
6351 	if (cpumask_weight(smt_mask) == 1) {
6352 		WARN_ON_ONCE(rq->core != rq);
6353 		return;
6354 	}
6355 
6356 	/* if we're not the leader, nothing to do */
6357 	if (rq->core != rq)
6358 		return;
6359 
6360 	/* find a new leader */
6361 	for_each_cpu(t, smt_mask) {
6362 		if (t == cpu)
6363 			continue;
6364 		core_rq = cpu_rq(t);
6365 		break;
6366 	}
6367 
6368 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6369 		return;
6370 
6371 	/* copy the shared state to the new leader */
6372 	core_rq->core_task_seq             = rq->core_task_seq;
6373 	core_rq->core_pick_seq             = rq->core_pick_seq;
6374 	core_rq->core_cookie               = rq->core_cookie;
6375 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6376 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6377 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6378 
6379 	/*
6380 	 * Accounting edge for forced idle is handled in pick_next_task().
6381 	 * Don't need another one here, since the hotplug thread shouldn't
6382 	 * have a cookie.
6383 	 */
6384 	core_rq->core_forceidle_start = 0;
6385 
6386 	/* install new leader */
6387 	for_each_cpu(t, smt_mask) {
6388 		rq = cpu_rq(t);
6389 		rq->core = core_rq;
6390 	}
6391 }
6392 
6393 static inline void sched_core_cpu_dying(unsigned int cpu)
6394 {
6395 	struct rq *rq = cpu_rq(cpu);
6396 
6397 	if (rq->core != rq)
6398 		rq->core = rq;
6399 }
6400 
6401 #else /* !CONFIG_SCHED_CORE */
6402 
6403 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6404 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6405 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6406 
6407 static struct task_struct *
6408 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6409 {
6410 	return __pick_next_task(rq, prev, rf);
6411 }
6412 
6413 #endif /* CONFIG_SCHED_CORE */
6414 
6415 /*
6416  * Constants for the sched_mode argument of __schedule().
6417  *
6418  * The mode argument allows RT enabled kernels to differentiate a
6419  * preemption from blocking on an 'sleeping' spin/rwlock.
6420  */
6421 #define SM_IDLE			(-1)
6422 #define SM_NONE			0
6423 #define SM_PREEMPT		1
6424 #define SM_RTLOCK_WAIT		2
6425 
6426 /*
6427  * __schedule() is the main scheduler function.
6428  *
6429  * The main means of driving the scheduler and thus entering this function are:
6430  *
6431  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6432  *
6433  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6434  *      paths. For example, see arch/x86/entry_64.S.
6435  *
6436  *      To drive preemption between tasks, the scheduler sets the flag in timer
6437  *      interrupt handler sched_tick().
6438  *
6439  *   3. Wakeups don't really cause entry into schedule(). They add a
6440  *      task to the run-queue and that's it.
6441  *
6442  *      Now, if the new task added to the run-queue preempts the current
6443  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6444  *      called on the nearest possible occasion:
6445  *
6446  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6447  *
6448  *         - in syscall or exception context, at the next outmost
6449  *           preempt_enable(). (this might be as soon as the wake_up()'s
6450  *           spin_unlock()!)
6451  *
6452  *         - in IRQ context, return from interrupt-handler to
6453  *           preemptible context
6454  *
6455  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6456  *         then at the next:
6457  *
6458  *          - cond_resched() call
6459  *          - explicit schedule() call
6460  *          - return from syscall or exception to user-space
6461  *          - return from interrupt-handler to user-space
6462  *
6463  * WARNING: must be called with preemption disabled!
6464  */
6465 static void __sched notrace __schedule(int sched_mode)
6466 {
6467 	struct task_struct *prev, *next;
6468 	/*
6469 	 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted
6470 	 * as a preemption by schedule_debug() and RCU.
6471 	 */
6472 	bool preempt = sched_mode > SM_NONE;
6473 	unsigned long *switch_count;
6474 	unsigned long prev_state;
6475 	struct rq_flags rf;
6476 	struct rq *rq;
6477 	int cpu;
6478 
6479 	cpu = smp_processor_id();
6480 	rq = cpu_rq(cpu);
6481 	prev = rq->curr;
6482 
6483 	schedule_debug(prev, preempt);
6484 
6485 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6486 		hrtick_clear(rq);
6487 
6488 	local_irq_disable();
6489 	rcu_note_context_switch(preempt);
6490 
6491 	/*
6492 	 * Make sure that signal_pending_state()->signal_pending() below
6493 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6494 	 * done by the caller to avoid the race with signal_wake_up():
6495 	 *
6496 	 * __set_current_state(@state)		signal_wake_up()
6497 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6498 	 *					  wake_up_state(p, state)
6499 	 *   LOCK rq->lock			    LOCK p->pi_state
6500 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6501 	 *     if (signal_pending_state())	    if (p->state & @state)
6502 	 *
6503 	 * Also, the membarrier system call requires a full memory barrier
6504 	 * after coming from user-space, before storing to rq->curr; this
6505 	 * barrier matches a full barrier in the proximity of the membarrier
6506 	 * system call exit.
6507 	 */
6508 	rq_lock(rq, &rf);
6509 	smp_mb__after_spinlock();
6510 
6511 	/* Promote REQ to ACT */
6512 	rq->clock_update_flags <<= 1;
6513 	update_rq_clock(rq);
6514 	rq->clock_update_flags = RQCF_UPDATED;
6515 
6516 	switch_count = &prev->nivcsw;
6517 
6518 	/* Task state changes only considers SM_PREEMPT as preemption */
6519 	preempt = sched_mode == SM_PREEMPT;
6520 
6521 	/*
6522 	 * We must load prev->state once (task_struct::state is volatile), such
6523 	 * that we form a control dependency vs deactivate_task() below.
6524 	 */
6525 	prev_state = READ_ONCE(prev->__state);
6526 	if (sched_mode == SM_IDLE) {
6527 		if (!rq->nr_running) {
6528 			next = prev;
6529 			goto picked;
6530 		}
6531 	} else if (!preempt && prev_state) {
6532 		if (signal_pending_state(prev_state, prev)) {
6533 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6534 		} else {
6535 			int flags = DEQUEUE_NOCLOCK;
6536 
6537 			prev->sched_contributes_to_load =
6538 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6539 				!(prev_state & TASK_NOLOAD) &&
6540 				!(prev_state & TASK_FROZEN);
6541 
6542 			if (unlikely(is_special_task_state(prev_state)))
6543 				flags |= DEQUEUE_SPECIAL;
6544 
6545 			/*
6546 			 * __schedule()			ttwu()
6547 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6548 			 *   if (prev_state)		    goto out;
6549 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6550 			 *				  p->state = TASK_WAKING
6551 			 *
6552 			 * Where __schedule() and ttwu() have matching control dependencies.
6553 			 *
6554 			 * After this, schedule() must not care about p->state any more.
6555 			 */
6556 			block_task(rq, prev, flags);
6557 		}
6558 		switch_count = &prev->nvcsw;
6559 	}
6560 
6561 	next = pick_next_task(rq, prev, &rf);
6562 picked:
6563 	clear_tsk_need_resched(prev);
6564 	clear_preempt_need_resched();
6565 #ifdef CONFIG_SCHED_DEBUG
6566 	rq->last_seen_need_resched_ns = 0;
6567 #endif
6568 
6569 	if (likely(prev != next)) {
6570 		rq->nr_switches++;
6571 		/*
6572 		 * RCU users of rcu_dereference(rq->curr) may not see
6573 		 * changes to task_struct made by pick_next_task().
6574 		 */
6575 		RCU_INIT_POINTER(rq->curr, next);
6576 		/*
6577 		 * The membarrier system call requires each architecture
6578 		 * to have a full memory barrier after updating
6579 		 * rq->curr, before returning to user-space.
6580 		 *
6581 		 * Here are the schemes providing that barrier on the
6582 		 * various architectures:
6583 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
6584 		 *   RISC-V.  switch_mm() relies on membarrier_arch_switch_mm()
6585 		 *   on PowerPC and on RISC-V.
6586 		 * - finish_lock_switch() for weakly-ordered
6587 		 *   architectures where spin_unlock is a full barrier,
6588 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6589 		 *   is a RELEASE barrier),
6590 		 *
6591 		 * The barrier matches a full barrier in the proximity of
6592 		 * the membarrier system call entry.
6593 		 *
6594 		 * On RISC-V, this barrier pairing is also needed for the
6595 		 * SYNC_CORE command when switching between processes, cf.
6596 		 * the inline comments in membarrier_arch_switch_mm().
6597 		 */
6598 		++*switch_count;
6599 
6600 		migrate_disable_switch(rq, prev);
6601 		psi_account_irqtime(rq, prev, next);
6602 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6603 
6604 		trace_sched_switch(preempt, prev, next, prev_state);
6605 
6606 		/* Also unlocks the rq: */
6607 		rq = context_switch(rq, prev, next, &rf);
6608 	} else {
6609 		rq_unpin_lock(rq, &rf);
6610 		__balance_callbacks(rq);
6611 		raw_spin_rq_unlock_irq(rq);
6612 	}
6613 }
6614 
6615 void __noreturn do_task_dead(void)
6616 {
6617 	/* Causes final put_task_struct in finish_task_switch(): */
6618 	set_special_state(TASK_DEAD);
6619 
6620 	/* Tell freezer to ignore us: */
6621 	current->flags |= PF_NOFREEZE;
6622 
6623 	__schedule(SM_NONE);
6624 	BUG();
6625 
6626 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6627 	for (;;)
6628 		cpu_relax();
6629 }
6630 
6631 static inline void sched_submit_work(struct task_struct *tsk)
6632 {
6633 	static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
6634 	unsigned int task_flags;
6635 
6636 	/*
6637 	 * Establish LD_WAIT_CONFIG context to ensure none of the code called
6638 	 * will use a blocking primitive -- which would lead to recursion.
6639 	 */
6640 	lock_map_acquire_try(&sched_map);
6641 
6642 	task_flags = tsk->flags;
6643 	/*
6644 	 * If a worker goes to sleep, notify and ask workqueue whether it
6645 	 * wants to wake up a task to maintain concurrency.
6646 	 */
6647 	if (task_flags & PF_WQ_WORKER)
6648 		wq_worker_sleeping(tsk);
6649 	else if (task_flags & PF_IO_WORKER)
6650 		io_wq_worker_sleeping(tsk);
6651 
6652 	/*
6653 	 * spinlock and rwlock must not flush block requests.  This will
6654 	 * deadlock if the callback attempts to acquire a lock which is
6655 	 * already acquired.
6656 	 */
6657 	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6658 
6659 	/*
6660 	 * If we are going to sleep and we have plugged IO queued,
6661 	 * make sure to submit it to avoid deadlocks.
6662 	 */
6663 	blk_flush_plug(tsk->plug, true);
6664 
6665 	lock_map_release(&sched_map);
6666 }
6667 
6668 static void sched_update_worker(struct task_struct *tsk)
6669 {
6670 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) {
6671 		if (tsk->flags & PF_BLOCK_TS)
6672 			blk_plug_invalidate_ts(tsk);
6673 		if (tsk->flags & PF_WQ_WORKER)
6674 			wq_worker_running(tsk);
6675 		else if (tsk->flags & PF_IO_WORKER)
6676 			io_wq_worker_running(tsk);
6677 	}
6678 }
6679 
6680 static __always_inline void __schedule_loop(int sched_mode)
6681 {
6682 	do {
6683 		preempt_disable();
6684 		__schedule(sched_mode);
6685 		sched_preempt_enable_no_resched();
6686 	} while (need_resched());
6687 }
6688 
6689 asmlinkage __visible void __sched schedule(void)
6690 {
6691 	struct task_struct *tsk = current;
6692 
6693 #ifdef CONFIG_RT_MUTEXES
6694 	lockdep_assert(!tsk->sched_rt_mutex);
6695 #endif
6696 
6697 	if (!task_is_running(tsk))
6698 		sched_submit_work(tsk);
6699 	__schedule_loop(SM_NONE);
6700 	sched_update_worker(tsk);
6701 }
6702 EXPORT_SYMBOL(schedule);
6703 
6704 /*
6705  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6706  * state (have scheduled out non-voluntarily) by making sure that all
6707  * tasks have either left the run queue or have gone into user space.
6708  * As idle tasks do not do either, they must not ever be preempted
6709  * (schedule out non-voluntarily).
6710  *
6711  * schedule_idle() is similar to schedule_preempt_disable() except that it
6712  * never enables preemption because it does not call sched_submit_work().
6713  */
6714 void __sched schedule_idle(void)
6715 {
6716 	/*
6717 	 * As this skips calling sched_submit_work(), which the idle task does
6718 	 * regardless because that function is a NOP when the task is in a
6719 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6720 	 * current task can be in any other state. Note, idle is always in the
6721 	 * TASK_RUNNING state.
6722 	 */
6723 	WARN_ON_ONCE(current->__state);
6724 	do {
6725 		__schedule(SM_IDLE);
6726 	} while (need_resched());
6727 }
6728 
6729 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6730 asmlinkage __visible void __sched schedule_user(void)
6731 {
6732 	/*
6733 	 * If we come here after a random call to set_need_resched(),
6734 	 * or we have been woken up remotely but the IPI has not yet arrived,
6735 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6736 	 * we find a better solution.
6737 	 *
6738 	 * NB: There are buggy callers of this function.  Ideally we
6739 	 * should warn if prev_state != CT_STATE_USER, but that will trigger
6740 	 * too frequently to make sense yet.
6741 	 */
6742 	enum ctx_state prev_state = exception_enter();
6743 	schedule();
6744 	exception_exit(prev_state);
6745 }
6746 #endif
6747 
6748 /**
6749  * schedule_preempt_disabled - called with preemption disabled
6750  *
6751  * Returns with preemption disabled. Note: preempt_count must be 1
6752  */
6753 void __sched schedule_preempt_disabled(void)
6754 {
6755 	sched_preempt_enable_no_resched();
6756 	schedule();
6757 	preempt_disable();
6758 }
6759 
6760 #ifdef CONFIG_PREEMPT_RT
6761 void __sched notrace schedule_rtlock(void)
6762 {
6763 	__schedule_loop(SM_RTLOCK_WAIT);
6764 }
6765 NOKPROBE_SYMBOL(schedule_rtlock);
6766 #endif
6767 
6768 static void __sched notrace preempt_schedule_common(void)
6769 {
6770 	do {
6771 		/*
6772 		 * Because the function tracer can trace preempt_count_sub()
6773 		 * and it also uses preempt_enable/disable_notrace(), if
6774 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6775 		 * by the function tracer will call this function again and
6776 		 * cause infinite recursion.
6777 		 *
6778 		 * Preemption must be disabled here before the function
6779 		 * tracer can trace. Break up preempt_disable() into two
6780 		 * calls. One to disable preemption without fear of being
6781 		 * traced. The other to still record the preemption latency,
6782 		 * which can also be traced by the function tracer.
6783 		 */
6784 		preempt_disable_notrace();
6785 		preempt_latency_start(1);
6786 		__schedule(SM_PREEMPT);
6787 		preempt_latency_stop(1);
6788 		preempt_enable_no_resched_notrace();
6789 
6790 		/*
6791 		 * Check again in case we missed a preemption opportunity
6792 		 * between schedule and now.
6793 		 */
6794 	} while (need_resched());
6795 }
6796 
6797 #ifdef CONFIG_PREEMPTION
6798 /*
6799  * This is the entry point to schedule() from in-kernel preemption
6800  * off of preempt_enable.
6801  */
6802 asmlinkage __visible void __sched notrace preempt_schedule(void)
6803 {
6804 	/*
6805 	 * If there is a non-zero preempt_count or interrupts are disabled,
6806 	 * we do not want to preempt the current task. Just return..
6807 	 */
6808 	if (likely(!preemptible()))
6809 		return;
6810 	preempt_schedule_common();
6811 }
6812 NOKPROBE_SYMBOL(preempt_schedule);
6813 EXPORT_SYMBOL(preempt_schedule);
6814 
6815 #ifdef CONFIG_PREEMPT_DYNAMIC
6816 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6817 #ifndef preempt_schedule_dynamic_enabled
6818 #define preempt_schedule_dynamic_enabled	preempt_schedule
6819 #define preempt_schedule_dynamic_disabled	NULL
6820 #endif
6821 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6822 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6823 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6824 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6825 void __sched notrace dynamic_preempt_schedule(void)
6826 {
6827 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6828 		return;
6829 	preempt_schedule();
6830 }
6831 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6832 EXPORT_SYMBOL(dynamic_preempt_schedule);
6833 #endif
6834 #endif
6835 
6836 /**
6837  * preempt_schedule_notrace - preempt_schedule called by tracing
6838  *
6839  * The tracing infrastructure uses preempt_enable_notrace to prevent
6840  * recursion and tracing preempt enabling caused by the tracing
6841  * infrastructure itself. But as tracing can happen in areas coming
6842  * from userspace or just about to enter userspace, a preempt enable
6843  * can occur before user_exit() is called. This will cause the scheduler
6844  * to be called when the system is still in usermode.
6845  *
6846  * To prevent this, the preempt_enable_notrace will use this function
6847  * instead of preempt_schedule() to exit user context if needed before
6848  * calling the scheduler.
6849  */
6850 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6851 {
6852 	enum ctx_state prev_ctx;
6853 
6854 	if (likely(!preemptible()))
6855 		return;
6856 
6857 	do {
6858 		/*
6859 		 * Because the function tracer can trace preempt_count_sub()
6860 		 * and it also uses preempt_enable/disable_notrace(), if
6861 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6862 		 * by the function tracer will call this function again and
6863 		 * cause infinite recursion.
6864 		 *
6865 		 * Preemption must be disabled here before the function
6866 		 * tracer can trace. Break up preempt_disable() into two
6867 		 * calls. One to disable preemption without fear of being
6868 		 * traced. The other to still record the preemption latency,
6869 		 * which can also be traced by the function tracer.
6870 		 */
6871 		preempt_disable_notrace();
6872 		preempt_latency_start(1);
6873 		/*
6874 		 * Needs preempt disabled in case user_exit() is traced
6875 		 * and the tracer calls preempt_enable_notrace() causing
6876 		 * an infinite recursion.
6877 		 */
6878 		prev_ctx = exception_enter();
6879 		__schedule(SM_PREEMPT);
6880 		exception_exit(prev_ctx);
6881 
6882 		preempt_latency_stop(1);
6883 		preempt_enable_no_resched_notrace();
6884 	} while (need_resched());
6885 }
6886 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6887 
6888 #ifdef CONFIG_PREEMPT_DYNAMIC
6889 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6890 #ifndef preempt_schedule_notrace_dynamic_enabled
6891 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
6892 #define preempt_schedule_notrace_dynamic_disabled	NULL
6893 #endif
6894 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6895 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6896 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6897 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
6898 void __sched notrace dynamic_preempt_schedule_notrace(void)
6899 {
6900 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6901 		return;
6902 	preempt_schedule_notrace();
6903 }
6904 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6905 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6906 #endif
6907 #endif
6908 
6909 #endif /* CONFIG_PREEMPTION */
6910 
6911 /*
6912  * This is the entry point to schedule() from kernel preemption
6913  * off of IRQ context.
6914  * Note, that this is called and return with IRQs disabled. This will
6915  * protect us against recursive calling from IRQ contexts.
6916  */
6917 asmlinkage __visible void __sched preempt_schedule_irq(void)
6918 {
6919 	enum ctx_state prev_state;
6920 
6921 	/* Catch callers which need to be fixed */
6922 	BUG_ON(preempt_count() || !irqs_disabled());
6923 
6924 	prev_state = exception_enter();
6925 
6926 	do {
6927 		preempt_disable();
6928 		local_irq_enable();
6929 		__schedule(SM_PREEMPT);
6930 		local_irq_disable();
6931 		sched_preempt_enable_no_resched();
6932 	} while (need_resched());
6933 
6934 	exception_exit(prev_state);
6935 }
6936 
6937 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6938 			  void *key)
6939 {
6940 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
6941 	return try_to_wake_up(curr->private, mode, wake_flags);
6942 }
6943 EXPORT_SYMBOL(default_wake_function);
6944 
6945 void __setscheduler_prio(struct task_struct *p, int prio)
6946 {
6947 	if (dl_prio(prio))
6948 		p->sched_class = &dl_sched_class;
6949 	else if (rt_prio(prio))
6950 		p->sched_class = &rt_sched_class;
6951 	else
6952 		p->sched_class = &fair_sched_class;
6953 
6954 	p->prio = prio;
6955 }
6956 
6957 #ifdef CONFIG_RT_MUTEXES
6958 
6959 /*
6960  * Would be more useful with typeof()/auto_type but they don't mix with
6961  * bit-fields. Since it's a local thing, use int. Keep the generic sounding
6962  * name such that if someone were to implement this function we get to compare
6963  * notes.
6964  */
6965 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
6966 
6967 void rt_mutex_pre_schedule(void)
6968 {
6969 	lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
6970 	sched_submit_work(current);
6971 }
6972 
6973 void rt_mutex_schedule(void)
6974 {
6975 	lockdep_assert(current->sched_rt_mutex);
6976 	__schedule_loop(SM_NONE);
6977 }
6978 
6979 void rt_mutex_post_schedule(void)
6980 {
6981 	sched_update_worker(current);
6982 	lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
6983 }
6984 
6985 /*
6986  * rt_mutex_setprio - set the current priority of a task
6987  * @p: task to boost
6988  * @pi_task: donor task
6989  *
6990  * This function changes the 'effective' priority of a task. It does
6991  * not touch ->normal_prio like __setscheduler().
6992  *
6993  * Used by the rt_mutex code to implement priority inheritance
6994  * logic. Call site only calls if the priority of the task changed.
6995  */
6996 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
6997 {
6998 	int prio, oldprio, queued, running, queue_flag =
6999 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7000 	const struct sched_class *prev_class;
7001 	struct rq_flags rf;
7002 	struct rq *rq;
7003 
7004 	/* XXX used to be waiter->prio, not waiter->task->prio */
7005 	prio = __rt_effective_prio(pi_task, p->normal_prio);
7006 
7007 	/*
7008 	 * If nothing changed; bail early.
7009 	 */
7010 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7011 		return;
7012 
7013 	rq = __task_rq_lock(p, &rf);
7014 	update_rq_clock(rq);
7015 	/*
7016 	 * Set under pi_lock && rq->lock, such that the value can be used under
7017 	 * either lock.
7018 	 *
7019 	 * Note that there is loads of tricky to make this pointer cache work
7020 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7021 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
7022 	 * task is allowed to run again (and can exit). This ensures the pointer
7023 	 * points to a blocked task -- which guarantees the task is present.
7024 	 */
7025 	p->pi_top_task = pi_task;
7026 
7027 	/*
7028 	 * For FIFO/RR we only need to set prio, if that matches we're done.
7029 	 */
7030 	if (prio == p->prio && !dl_prio(prio))
7031 		goto out_unlock;
7032 
7033 	/*
7034 	 * Idle task boosting is a no-no in general. There is one
7035 	 * exception, when PREEMPT_RT and NOHZ is active:
7036 	 *
7037 	 * The idle task calls get_next_timer_interrupt() and holds
7038 	 * the timer wheel base->lock on the CPU and another CPU wants
7039 	 * to access the timer (probably to cancel it). We can safely
7040 	 * ignore the boosting request, as the idle CPU runs this code
7041 	 * with interrupts disabled and will complete the lock
7042 	 * protected section without being interrupted. So there is no
7043 	 * real need to boost.
7044 	 */
7045 	if (unlikely(p == rq->idle)) {
7046 		WARN_ON(p != rq->curr);
7047 		WARN_ON(p->pi_blocked_on);
7048 		goto out_unlock;
7049 	}
7050 
7051 	trace_sched_pi_setprio(p, pi_task);
7052 	oldprio = p->prio;
7053 
7054 	if (oldprio == prio)
7055 		queue_flag &= ~DEQUEUE_MOVE;
7056 
7057 	prev_class = p->sched_class;
7058 	queued = task_on_rq_queued(p);
7059 	running = task_current(rq, p);
7060 	if (queued)
7061 		dequeue_task(rq, p, queue_flag);
7062 	if (running)
7063 		put_prev_task(rq, p);
7064 
7065 	/*
7066 	 * Boosting condition are:
7067 	 * 1. -rt task is running and holds mutex A
7068 	 *      --> -dl task blocks on mutex A
7069 	 *
7070 	 * 2. -dl task is running and holds mutex A
7071 	 *      --> -dl task blocks on mutex A and could preempt the
7072 	 *          running task
7073 	 */
7074 	if (dl_prio(prio)) {
7075 		if (!dl_prio(p->normal_prio) ||
7076 		    (pi_task && dl_prio(pi_task->prio) &&
7077 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7078 			p->dl.pi_se = pi_task->dl.pi_se;
7079 			queue_flag |= ENQUEUE_REPLENISH;
7080 		} else {
7081 			p->dl.pi_se = &p->dl;
7082 		}
7083 	} else if (rt_prio(prio)) {
7084 		if (dl_prio(oldprio))
7085 			p->dl.pi_se = &p->dl;
7086 		if (oldprio < prio)
7087 			queue_flag |= ENQUEUE_HEAD;
7088 	} else {
7089 		if (dl_prio(oldprio))
7090 			p->dl.pi_se = &p->dl;
7091 		if (rt_prio(oldprio))
7092 			p->rt.timeout = 0;
7093 	}
7094 
7095 	__setscheduler_prio(p, prio);
7096 
7097 	if (queued)
7098 		enqueue_task(rq, p, queue_flag);
7099 	if (running)
7100 		set_next_task(rq, p);
7101 
7102 	check_class_changed(rq, p, prev_class, oldprio);
7103 out_unlock:
7104 	/* Avoid rq from going away on us: */
7105 	preempt_disable();
7106 
7107 	rq_unpin_lock(rq, &rf);
7108 	__balance_callbacks(rq);
7109 	raw_spin_rq_unlock(rq);
7110 
7111 	preempt_enable();
7112 }
7113 #endif
7114 
7115 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
7116 int __sched __cond_resched(void)
7117 {
7118 	if (should_resched(0)) {
7119 		preempt_schedule_common();
7120 		return 1;
7121 	}
7122 	/*
7123 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
7124 	 * whether the current CPU is in an RCU read-side critical section,
7125 	 * so the tick can report quiescent states even for CPUs looping
7126 	 * in kernel context.  In contrast, in non-preemptible kernels,
7127 	 * RCU readers leave no in-memory hints, which means that CPU-bound
7128 	 * processes executing in kernel context might never report an
7129 	 * RCU quiescent state.  Therefore, the following code causes
7130 	 * cond_resched() to report a quiescent state, but only when RCU
7131 	 * is in urgent need of one.
7132 	 */
7133 #ifndef CONFIG_PREEMPT_RCU
7134 	rcu_all_qs();
7135 #endif
7136 	return 0;
7137 }
7138 EXPORT_SYMBOL(__cond_resched);
7139 #endif
7140 
7141 #ifdef CONFIG_PREEMPT_DYNAMIC
7142 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7143 #define cond_resched_dynamic_enabled	__cond_resched
7144 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
7145 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
7146 EXPORT_STATIC_CALL_TRAMP(cond_resched);
7147 
7148 #define might_resched_dynamic_enabled	__cond_resched
7149 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
7150 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
7151 EXPORT_STATIC_CALL_TRAMP(might_resched);
7152 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7153 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
7154 int __sched dynamic_cond_resched(void)
7155 {
7156 	klp_sched_try_switch();
7157 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
7158 		return 0;
7159 	return __cond_resched();
7160 }
7161 EXPORT_SYMBOL(dynamic_cond_resched);
7162 
7163 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
7164 int __sched dynamic_might_resched(void)
7165 {
7166 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
7167 		return 0;
7168 	return __cond_resched();
7169 }
7170 EXPORT_SYMBOL(dynamic_might_resched);
7171 #endif
7172 #endif
7173 
7174 /*
7175  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
7176  * call schedule, and on return reacquire the lock.
7177  *
7178  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
7179  * operations here to prevent schedule() from being called twice (once via
7180  * spin_unlock(), once by hand).
7181  */
7182 int __cond_resched_lock(spinlock_t *lock)
7183 {
7184 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7185 	int ret = 0;
7186 
7187 	lockdep_assert_held(lock);
7188 
7189 	if (spin_needbreak(lock) || resched) {
7190 		spin_unlock(lock);
7191 		if (!_cond_resched())
7192 			cpu_relax();
7193 		ret = 1;
7194 		spin_lock(lock);
7195 	}
7196 	return ret;
7197 }
7198 EXPORT_SYMBOL(__cond_resched_lock);
7199 
7200 int __cond_resched_rwlock_read(rwlock_t *lock)
7201 {
7202 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7203 	int ret = 0;
7204 
7205 	lockdep_assert_held_read(lock);
7206 
7207 	if (rwlock_needbreak(lock) || resched) {
7208 		read_unlock(lock);
7209 		if (!_cond_resched())
7210 			cpu_relax();
7211 		ret = 1;
7212 		read_lock(lock);
7213 	}
7214 	return ret;
7215 }
7216 EXPORT_SYMBOL(__cond_resched_rwlock_read);
7217 
7218 int __cond_resched_rwlock_write(rwlock_t *lock)
7219 {
7220 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7221 	int ret = 0;
7222 
7223 	lockdep_assert_held_write(lock);
7224 
7225 	if (rwlock_needbreak(lock) || resched) {
7226 		write_unlock(lock);
7227 		if (!_cond_resched())
7228 			cpu_relax();
7229 		ret = 1;
7230 		write_lock(lock);
7231 	}
7232 	return ret;
7233 }
7234 EXPORT_SYMBOL(__cond_resched_rwlock_write);
7235 
7236 #ifdef CONFIG_PREEMPT_DYNAMIC
7237 
7238 #ifdef CONFIG_GENERIC_ENTRY
7239 #include <linux/entry-common.h>
7240 #endif
7241 
7242 /*
7243  * SC:cond_resched
7244  * SC:might_resched
7245  * SC:preempt_schedule
7246  * SC:preempt_schedule_notrace
7247  * SC:irqentry_exit_cond_resched
7248  *
7249  *
7250  * NONE:
7251  *   cond_resched               <- __cond_resched
7252  *   might_resched              <- RET0
7253  *   preempt_schedule           <- NOP
7254  *   preempt_schedule_notrace   <- NOP
7255  *   irqentry_exit_cond_resched <- NOP
7256  *
7257  * VOLUNTARY:
7258  *   cond_resched               <- __cond_resched
7259  *   might_resched              <- __cond_resched
7260  *   preempt_schedule           <- NOP
7261  *   preempt_schedule_notrace   <- NOP
7262  *   irqentry_exit_cond_resched <- NOP
7263  *
7264  * FULL:
7265  *   cond_resched               <- RET0
7266  *   might_resched              <- RET0
7267  *   preempt_schedule           <- preempt_schedule
7268  *   preempt_schedule_notrace   <- preempt_schedule_notrace
7269  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7270  */
7271 
7272 enum {
7273 	preempt_dynamic_undefined = -1,
7274 	preempt_dynamic_none,
7275 	preempt_dynamic_voluntary,
7276 	preempt_dynamic_full,
7277 };
7278 
7279 int preempt_dynamic_mode = preempt_dynamic_undefined;
7280 
7281 int sched_dynamic_mode(const char *str)
7282 {
7283 	if (!strcmp(str, "none"))
7284 		return preempt_dynamic_none;
7285 
7286 	if (!strcmp(str, "voluntary"))
7287 		return preempt_dynamic_voluntary;
7288 
7289 	if (!strcmp(str, "full"))
7290 		return preempt_dynamic_full;
7291 
7292 	return -EINVAL;
7293 }
7294 
7295 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7296 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
7297 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
7298 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7299 #define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
7300 #define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
7301 #else
7302 #error "Unsupported PREEMPT_DYNAMIC mechanism"
7303 #endif
7304 
7305 static DEFINE_MUTEX(sched_dynamic_mutex);
7306 static bool klp_override;
7307 
7308 static void __sched_dynamic_update(int mode)
7309 {
7310 	/*
7311 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
7312 	 * the ZERO state, which is invalid.
7313 	 */
7314 	if (!klp_override)
7315 		preempt_dynamic_enable(cond_resched);
7316 	preempt_dynamic_enable(might_resched);
7317 	preempt_dynamic_enable(preempt_schedule);
7318 	preempt_dynamic_enable(preempt_schedule_notrace);
7319 	preempt_dynamic_enable(irqentry_exit_cond_resched);
7320 
7321 	switch (mode) {
7322 	case preempt_dynamic_none:
7323 		if (!klp_override)
7324 			preempt_dynamic_enable(cond_resched);
7325 		preempt_dynamic_disable(might_resched);
7326 		preempt_dynamic_disable(preempt_schedule);
7327 		preempt_dynamic_disable(preempt_schedule_notrace);
7328 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7329 		if (mode != preempt_dynamic_mode)
7330 			pr_info("Dynamic Preempt: none\n");
7331 		break;
7332 
7333 	case preempt_dynamic_voluntary:
7334 		if (!klp_override)
7335 			preempt_dynamic_enable(cond_resched);
7336 		preempt_dynamic_enable(might_resched);
7337 		preempt_dynamic_disable(preempt_schedule);
7338 		preempt_dynamic_disable(preempt_schedule_notrace);
7339 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7340 		if (mode != preempt_dynamic_mode)
7341 			pr_info("Dynamic Preempt: voluntary\n");
7342 		break;
7343 
7344 	case preempt_dynamic_full:
7345 		if (!klp_override)
7346 			preempt_dynamic_disable(cond_resched);
7347 		preempt_dynamic_disable(might_resched);
7348 		preempt_dynamic_enable(preempt_schedule);
7349 		preempt_dynamic_enable(preempt_schedule_notrace);
7350 		preempt_dynamic_enable(irqentry_exit_cond_resched);
7351 		if (mode != preempt_dynamic_mode)
7352 			pr_info("Dynamic Preempt: full\n");
7353 		break;
7354 	}
7355 
7356 	preempt_dynamic_mode = mode;
7357 }
7358 
7359 void sched_dynamic_update(int mode)
7360 {
7361 	mutex_lock(&sched_dynamic_mutex);
7362 	__sched_dynamic_update(mode);
7363 	mutex_unlock(&sched_dynamic_mutex);
7364 }
7365 
7366 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
7367 
7368 static int klp_cond_resched(void)
7369 {
7370 	__klp_sched_try_switch();
7371 	return __cond_resched();
7372 }
7373 
7374 void sched_dynamic_klp_enable(void)
7375 {
7376 	mutex_lock(&sched_dynamic_mutex);
7377 
7378 	klp_override = true;
7379 	static_call_update(cond_resched, klp_cond_resched);
7380 
7381 	mutex_unlock(&sched_dynamic_mutex);
7382 }
7383 
7384 void sched_dynamic_klp_disable(void)
7385 {
7386 	mutex_lock(&sched_dynamic_mutex);
7387 
7388 	klp_override = false;
7389 	__sched_dynamic_update(preempt_dynamic_mode);
7390 
7391 	mutex_unlock(&sched_dynamic_mutex);
7392 }
7393 
7394 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
7395 
7396 static int __init setup_preempt_mode(char *str)
7397 {
7398 	int mode = sched_dynamic_mode(str);
7399 	if (mode < 0) {
7400 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
7401 		return 0;
7402 	}
7403 
7404 	sched_dynamic_update(mode);
7405 	return 1;
7406 }
7407 __setup("preempt=", setup_preempt_mode);
7408 
7409 static void __init preempt_dynamic_init(void)
7410 {
7411 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
7412 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
7413 			sched_dynamic_update(preempt_dynamic_none);
7414 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
7415 			sched_dynamic_update(preempt_dynamic_voluntary);
7416 		} else {
7417 			/* Default static call setting, nothing to do */
7418 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
7419 			preempt_dynamic_mode = preempt_dynamic_full;
7420 			pr_info("Dynamic Preempt: full\n");
7421 		}
7422 	}
7423 }
7424 
7425 #define PREEMPT_MODEL_ACCESSOR(mode) \
7426 	bool preempt_model_##mode(void)						 \
7427 	{									 \
7428 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
7429 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
7430 	}									 \
7431 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
7432 
7433 PREEMPT_MODEL_ACCESSOR(none);
7434 PREEMPT_MODEL_ACCESSOR(voluntary);
7435 PREEMPT_MODEL_ACCESSOR(full);
7436 
7437 #else /* !CONFIG_PREEMPT_DYNAMIC: */
7438 
7439 static inline void preempt_dynamic_init(void) { }
7440 
7441 #endif /* CONFIG_PREEMPT_DYNAMIC */
7442 
7443 int io_schedule_prepare(void)
7444 {
7445 	int old_iowait = current->in_iowait;
7446 
7447 	current->in_iowait = 1;
7448 	blk_flush_plug(current->plug, true);
7449 	return old_iowait;
7450 }
7451 
7452 void io_schedule_finish(int token)
7453 {
7454 	current->in_iowait = token;
7455 }
7456 
7457 /*
7458  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
7459  * that process accounting knows that this is a task in IO wait state.
7460  */
7461 long __sched io_schedule_timeout(long timeout)
7462 {
7463 	int token;
7464 	long ret;
7465 
7466 	token = io_schedule_prepare();
7467 	ret = schedule_timeout(timeout);
7468 	io_schedule_finish(token);
7469 
7470 	return ret;
7471 }
7472 EXPORT_SYMBOL(io_schedule_timeout);
7473 
7474 void __sched io_schedule(void)
7475 {
7476 	int token;
7477 
7478 	token = io_schedule_prepare();
7479 	schedule();
7480 	io_schedule_finish(token);
7481 }
7482 EXPORT_SYMBOL(io_schedule);
7483 
7484 void sched_show_task(struct task_struct *p)
7485 {
7486 	unsigned long free = 0;
7487 	int ppid;
7488 
7489 	if (!try_get_task_stack(p))
7490 		return;
7491 
7492 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
7493 
7494 	if (task_is_running(p))
7495 		pr_cont("  running task    ");
7496 #ifdef CONFIG_DEBUG_STACK_USAGE
7497 	free = stack_not_used(p);
7498 #endif
7499 	ppid = 0;
7500 	rcu_read_lock();
7501 	if (pid_alive(p))
7502 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
7503 	rcu_read_unlock();
7504 	pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n",
7505 		free, task_pid_nr(p), task_tgid_nr(p),
7506 		ppid, read_task_thread_flags(p));
7507 
7508 	print_worker_info(KERN_INFO, p);
7509 	print_stop_info(KERN_INFO, p);
7510 	show_stack(p, NULL, KERN_INFO);
7511 	put_task_stack(p);
7512 }
7513 EXPORT_SYMBOL_GPL(sched_show_task);
7514 
7515 static inline bool
7516 state_filter_match(unsigned long state_filter, struct task_struct *p)
7517 {
7518 	unsigned int state = READ_ONCE(p->__state);
7519 
7520 	/* no filter, everything matches */
7521 	if (!state_filter)
7522 		return true;
7523 
7524 	/* filter, but doesn't match */
7525 	if (!(state & state_filter))
7526 		return false;
7527 
7528 	/*
7529 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7530 	 * TASK_KILLABLE).
7531 	 */
7532 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
7533 		return false;
7534 
7535 	return true;
7536 }
7537 
7538 
7539 void show_state_filter(unsigned int state_filter)
7540 {
7541 	struct task_struct *g, *p;
7542 
7543 	rcu_read_lock();
7544 	for_each_process_thread(g, p) {
7545 		/*
7546 		 * reset the NMI-timeout, listing all files on a slow
7547 		 * console might take a lot of time:
7548 		 * Also, reset softlockup watchdogs on all CPUs, because
7549 		 * another CPU might be blocked waiting for us to process
7550 		 * an IPI.
7551 		 */
7552 		touch_nmi_watchdog();
7553 		touch_all_softlockup_watchdogs();
7554 		if (state_filter_match(state_filter, p))
7555 			sched_show_task(p);
7556 	}
7557 
7558 #ifdef CONFIG_SCHED_DEBUG
7559 	if (!state_filter)
7560 		sysrq_sched_debug_show();
7561 #endif
7562 	rcu_read_unlock();
7563 	/*
7564 	 * Only show locks if all tasks are dumped:
7565 	 */
7566 	if (!state_filter)
7567 		debug_show_all_locks();
7568 }
7569 
7570 /**
7571  * init_idle - set up an idle thread for a given CPU
7572  * @idle: task in question
7573  * @cpu: CPU the idle task belongs to
7574  *
7575  * NOTE: this function does not set the idle thread's NEED_RESCHED
7576  * flag, to make booting more robust.
7577  */
7578 void __init init_idle(struct task_struct *idle, int cpu)
7579 {
7580 #ifdef CONFIG_SMP
7581 	struct affinity_context ac = (struct affinity_context) {
7582 		.new_mask  = cpumask_of(cpu),
7583 		.flags     = 0,
7584 	};
7585 #endif
7586 	struct rq *rq = cpu_rq(cpu);
7587 	unsigned long flags;
7588 
7589 	__sched_fork(0, idle);
7590 
7591 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
7592 	raw_spin_rq_lock(rq);
7593 
7594 	idle->__state = TASK_RUNNING;
7595 	idle->se.exec_start = sched_clock();
7596 	/*
7597 	 * PF_KTHREAD should already be set at this point; regardless, make it
7598 	 * look like a proper per-CPU kthread.
7599 	 */
7600 	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
7601 	kthread_set_per_cpu(idle, cpu);
7602 
7603 #ifdef CONFIG_SMP
7604 	/*
7605 	 * It's possible that init_idle() gets called multiple times on a task,
7606 	 * in that case do_set_cpus_allowed() will not do the right thing.
7607 	 *
7608 	 * And since this is boot we can forgo the serialization.
7609 	 */
7610 	set_cpus_allowed_common(idle, &ac);
7611 #endif
7612 	/*
7613 	 * We're having a chicken and egg problem, even though we are
7614 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
7615 	 * lockdep check in task_group() will fail.
7616 	 *
7617 	 * Similar case to sched_fork(). / Alternatively we could
7618 	 * use task_rq_lock() here and obtain the other rq->lock.
7619 	 *
7620 	 * Silence PROVE_RCU
7621 	 */
7622 	rcu_read_lock();
7623 	__set_task_cpu(idle, cpu);
7624 	rcu_read_unlock();
7625 
7626 	rq->idle = idle;
7627 	rcu_assign_pointer(rq->curr, idle);
7628 	idle->on_rq = TASK_ON_RQ_QUEUED;
7629 #ifdef CONFIG_SMP
7630 	idle->on_cpu = 1;
7631 #endif
7632 	raw_spin_rq_unlock(rq);
7633 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7634 
7635 	/* Set the preempt count _outside_ the spinlocks! */
7636 	init_idle_preempt_count(idle, cpu);
7637 
7638 	/*
7639 	 * The idle tasks have their own, simple scheduling class:
7640 	 */
7641 	idle->sched_class = &idle_sched_class;
7642 	ftrace_graph_init_idle_task(idle, cpu);
7643 	vtime_init_idle(idle, cpu);
7644 #ifdef CONFIG_SMP
7645 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7646 #endif
7647 }
7648 
7649 #ifdef CONFIG_SMP
7650 
7651 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7652 			      const struct cpumask *trial)
7653 {
7654 	int ret = 1;
7655 
7656 	if (cpumask_empty(cur))
7657 		return ret;
7658 
7659 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7660 
7661 	return ret;
7662 }
7663 
7664 int task_can_attach(struct task_struct *p)
7665 {
7666 	int ret = 0;
7667 
7668 	/*
7669 	 * Kthreads which disallow setaffinity shouldn't be moved
7670 	 * to a new cpuset; we don't want to change their CPU
7671 	 * affinity and isolating such threads by their set of
7672 	 * allowed nodes is unnecessary.  Thus, cpusets are not
7673 	 * applicable for such threads.  This prevents checking for
7674 	 * success of set_cpus_allowed_ptr() on all attached tasks
7675 	 * before cpus_mask may be changed.
7676 	 */
7677 	if (p->flags & PF_NO_SETAFFINITY)
7678 		ret = -EINVAL;
7679 
7680 	return ret;
7681 }
7682 
7683 bool sched_smp_initialized __read_mostly;
7684 
7685 #ifdef CONFIG_NUMA_BALANCING
7686 /* Migrate current task p to target_cpu */
7687 int migrate_task_to(struct task_struct *p, int target_cpu)
7688 {
7689 	struct migration_arg arg = { p, target_cpu };
7690 	int curr_cpu = task_cpu(p);
7691 
7692 	if (curr_cpu == target_cpu)
7693 		return 0;
7694 
7695 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7696 		return -EINVAL;
7697 
7698 	/* TODO: This is not properly updating schedstats */
7699 
7700 	trace_sched_move_numa(p, curr_cpu, target_cpu);
7701 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7702 }
7703 
7704 /*
7705  * Requeue a task on a given node and accurately track the number of NUMA
7706  * tasks on the runqueues
7707  */
7708 void sched_setnuma(struct task_struct *p, int nid)
7709 {
7710 	bool queued, running;
7711 	struct rq_flags rf;
7712 	struct rq *rq;
7713 
7714 	rq = task_rq_lock(p, &rf);
7715 	queued = task_on_rq_queued(p);
7716 	running = task_current(rq, p);
7717 
7718 	if (queued)
7719 		dequeue_task(rq, p, DEQUEUE_SAVE);
7720 	if (running)
7721 		put_prev_task(rq, p);
7722 
7723 	p->numa_preferred_nid = nid;
7724 
7725 	if (queued)
7726 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7727 	if (running)
7728 		set_next_task(rq, p);
7729 	task_rq_unlock(rq, p, &rf);
7730 }
7731 #endif /* CONFIG_NUMA_BALANCING */
7732 
7733 #ifdef CONFIG_HOTPLUG_CPU
7734 /*
7735  * Ensure that the idle task is using init_mm right before its CPU goes
7736  * offline.
7737  */
7738 void idle_task_exit(void)
7739 {
7740 	struct mm_struct *mm = current->active_mm;
7741 
7742 	BUG_ON(cpu_online(smp_processor_id()));
7743 	BUG_ON(current != this_rq()->idle);
7744 
7745 	if (mm != &init_mm) {
7746 		switch_mm(mm, &init_mm, current);
7747 		finish_arch_post_lock_switch();
7748 	}
7749 
7750 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
7751 }
7752 
7753 static int __balance_push_cpu_stop(void *arg)
7754 {
7755 	struct task_struct *p = arg;
7756 	struct rq *rq = this_rq();
7757 	struct rq_flags rf;
7758 	int cpu;
7759 
7760 	raw_spin_lock_irq(&p->pi_lock);
7761 	rq_lock(rq, &rf);
7762 
7763 	update_rq_clock(rq);
7764 
7765 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
7766 		cpu = select_fallback_rq(rq->cpu, p);
7767 		rq = __migrate_task(rq, &rf, p, cpu);
7768 	}
7769 
7770 	rq_unlock(rq, &rf);
7771 	raw_spin_unlock_irq(&p->pi_lock);
7772 
7773 	put_task_struct(p);
7774 
7775 	return 0;
7776 }
7777 
7778 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
7779 
7780 /*
7781  * Ensure we only run per-cpu kthreads once the CPU goes !active.
7782  *
7783  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
7784  * effective when the hotplug motion is down.
7785  */
7786 static void balance_push(struct rq *rq)
7787 {
7788 	struct task_struct *push_task = rq->curr;
7789 
7790 	lockdep_assert_rq_held(rq);
7791 
7792 	/*
7793 	 * Ensure the thing is persistent until balance_push_set(.on = false);
7794 	 */
7795 	rq->balance_callback = &balance_push_callback;
7796 
7797 	/*
7798 	 * Only active while going offline and when invoked on the outgoing
7799 	 * CPU.
7800 	 */
7801 	if (!cpu_dying(rq->cpu) || rq != this_rq())
7802 		return;
7803 
7804 	/*
7805 	 * Both the cpu-hotplug and stop task are in this case and are
7806 	 * required to complete the hotplug process.
7807 	 */
7808 	if (kthread_is_per_cpu(push_task) ||
7809 	    is_migration_disabled(push_task)) {
7810 
7811 		/*
7812 		 * If this is the idle task on the outgoing CPU try to wake
7813 		 * up the hotplug control thread which might wait for the
7814 		 * last task to vanish. The rcuwait_active() check is
7815 		 * accurate here because the waiter is pinned on this CPU
7816 		 * and can't obviously be running in parallel.
7817 		 *
7818 		 * On RT kernels this also has to check whether there are
7819 		 * pinned and scheduled out tasks on the runqueue. They
7820 		 * need to leave the migrate disabled section first.
7821 		 */
7822 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
7823 		    rcuwait_active(&rq->hotplug_wait)) {
7824 			raw_spin_rq_unlock(rq);
7825 			rcuwait_wake_up(&rq->hotplug_wait);
7826 			raw_spin_rq_lock(rq);
7827 		}
7828 		return;
7829 	}
7830 
7831 	get_task_struct(push_task);
7832 	/*
7833 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
7834 	 * Both preemption and IRQs are still disabled.
7835 	 */
7836 	preempt_disable();
7837 	raw_spin_rq_unlock(rq);
7838 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
7839 			    this_cpu_ptr(&push_work));
7840 	preempt_enable();
7841 	/*
7842 	 * At this point need_resched() is true and we'll take the loop in
7843 	 * schedule(). The next pick is obviously going to be the stop task
7844 	 * which kthread_is_per_cpu() and will push this task away.
7845 	 */
7846 	raw_spin_rq_lock(rq);
7847 }
7848 
7849 static void balance_push_set(int cpu, bool on)
7850 {
7851 	struct rq *rq = cpu_rq(cpu);
7852 	struct rq_flags rf;
7853 
7854 	rq_lock_irqsave(rq, &rf);
7855 	if (on) {
7856 		WARN_ON_ONCE(rq->balance_callback);
7857 		rq->balance_callback = &balance_push_callback;
7858 	} else if (rq->balance_callback == &balance_push_callback) {
7859 		rq->balance_callback = NULL;
7860 	}
7861 	rq_unlock_irqrestore(rq, &rf);
7862 }
7863 
7864 /*
7865  * Invoked from a CPUs hotplug control thread after the CPU has been marked
7866  * inactive. All tasks which are not per CPU kernel threads are either
7867  * pushed off this CPU now via balance_push() or placed on a different CPU
7868  * during wakeup. Wait until the CPU is quiescent.
7869  */
7870 static void balance_hotplug_wait(void)
7871 {
7872 	struct rq *rq = this_rq();
7873 
7874 	rcuwait_wait_event(&rq->hotplug_wait,
7875 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
7876 			   TASK_UNINTERRUPTIBLE);
7877 }
7878 
7879 #else
7880 
7881 static inline void balance_push(struct rq *rq)
7882 {
7883 }
7884 
7885 static inline void balance_push_set(int cpu, bool on)
7886 {
7887 }
7888 
7889 static inline void balance_hotplug_wait(void)
7890 {
7891 }
7892 
7893 #endif /* CONFIG_HOTPLUG_CPU */
7894 
7895 void set_rq_online(struct rq *rq)
7896 {
7897 	if (!rq->online) {
7898 		const struct sched_class *class;
7899 
7900 		cpumask_set_cpu(rq->cpu, rq->rd->online);
7901 		rq->online = 1;
7902 
7903 		for_each_class(class) {
7904 			if (class->rq_online)
7905 				class->rq_online(rq);
7906 		}
7907 	}
7908 }
7909 
7910 void set_rq_offline(struct rq *rq)
7911 {
7912 	if (rq->online) {
7913 		const struct sched_class *class;
7914 
7915 		update_rq_clock(rq);
7916 		for_each_class(class) {
7917 			if (class->rq_offline)
7918 				class->rq_offline(rq);
7919 		}
7920 
7921 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7922 		rq->online = 0;
7923 	}
7924 }
7925 
7926 static inline void sched_set_rq_online(struct rq *rq, int cpu)
7927 {
7928 	struct rq_flags rf;
7929 
7930 	rq_lock_irqsave(rq, &rf);
7931 	if (rq->rd) {
7932 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7933 		set_rq_online(rq);
7934 	}
7935 	rq_unlock_irqrestore(rq, &rf);
7936 }
7937 
7938 static inline void sched_set_rq_offline(struct rq *rq, int cpu)
7939 {
7940 	struct rq_flags rf;
7941 
7942 	rq_lock_irqsave(rq, &rf);
7943 	if (rq->rd) {
7944 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7945 		set_rq_offline(rq);
7946 	}
7947 	rq_unlock_irqrestore(rq, &rf);
7948 }
7949 
7950 /*
7951  * used to mark begin/end of suspend/resume:
7952  */
7953 static int num_cpus_frozen;
7954 
7955 /*
7956  * Update cpusets according to cpu_active mask.  If cpusets are
7957  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7958  * around partition_sched_domains().
7959  *
7960  * If we come here as part of a suspend/resume, don't touch cpusets because we
7961  * want to restore it back to its original state upon resume anyway.
7962  */
7963 static void cpuset_cpu_active(void)
7964 {
7965 	if (cpuhp_tasks_frozen) {
7966 		/*
7967 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7968 		 * resume sequence. As long as this is not the last online
7969 		 * operation in the resume sequence, just build a single sched
7970 		 * domain, ignoring cpusets.
7971 		 */
7972 		partition_sched_domains(1, NULL, NULL);
7973 		if (--num_cpus_frozen)
7974 			return;
7975 		/*
7976 		 * This is the last CPU online operation. So fall through and
7977 		 * restore the original sched domains by considering the
7978 		 * cpuset configurations.
7979 		 */
7980 		cpuset_force_rebuild();
7981 	}
7982 	cpuset_update_active_cpus();
7983 }
7984 
7985 static int cpuset_cpu_inactive(unsigned int cpu)
7986 {
7987 	if (!cpuhp_tasks_frozen) {
7988 		int ret = dl_bw_check_overflow(cpu);
7989 
7990 		if (ret)
7991 			return ret;
7992 		cpuset_update_active_cpus();
7993 	} else {
7994 		num_cpus_frozen++;
7995 		partition_sched_domains(1, NULL, NULL);
7996 	}
7997 	return 0;
7998 }
7999 
8000 static inline void sched_smt_present_inc(int cpu)
8001 {
8002 #ifdef CONFIG_SCHED_SMT
8003 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8004 		static_branch_inc_cpuslocked(&sched_smt_present);
8005 #endif
8006 }
8007 
8008 static inline void sched_smt_present_dec(int cpu)
8009 {
8010 #ifdef CONFIG_SCHED_SMT
8011 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8012 		static_branch_dec_cpuslocked(&sched_smt_present);
8013 #endif
8014 }
8015 
8016 int sched_cpu_activate(unsigned int cpu)
8017 {
8018 	struct rq *rq = cpu_rq(cpu);
8019 
8020 	/*
8021 	 * Clear the balance_push callback and prepare to schedule
8022 	 * regular tasks.
8023 	 */
8024 	balance_push_set(cpu, false);
8025 
8026 	/*
8027 	 * When going up, increment the number of cores with SMT present.
8028 	 */
8029 	sched_smt_present_inc(cpu);
8030 	set_cpu_active(cpu, true);
8031 
8032 	if (sched_smp_initialized) {
8033 		sched_update_numa(cpu, true);
8034 		sched_domains_numa_masks_set(cpu);
8035 		cpuset_cpu_active();
8036 	}
8037 
8038 	/*
8039 	 * Put the rq online, if not already. This happens:
8040 	 *
8041 	 * 1) In the early boot process, because we build the real domains
8042 	 *    after all CPUs have been brought up.
8043 	 *
8044 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
8045 	 *    domains.
8046 	 */
8047 	sched_set_rq_online(rq, cpu);
8048 
8049 	return 0;
8050 }
8051 
8052 int sched_cpu_deactivate(unsigned int cpu)
8053 {
8054 	struct rq *rq = cpu_rq(cpu);
8055 	int ret;
8056 
8057 	/*
8058 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
8059 	 * load balancing when not active
8060 	 */
8061 	nohz_balance_exit_idle(rq);
8062 
8063 	set_cpu_active(cpu, false);
8064 
8065 	/*
8066 	 * From this point forward, this CPU will refuse to run any task that
8067 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
8068 	 * push those tasks away until this gets cleared, see
8069 	 * sched_cpu_dying().
8070 	 */
8071 	balance_push_set(cpu, true);
8072 
8073 	/*
8074 	 * We've cleared cpu_active_mask / set balance_push, wait for all
8075 	 * preempt-disabled and RCU users of this state to go away such that
8076 	 * all new such users will observe it.
8077 	 *
8078 	 * Specifically, we rely on ttwu to no longer target this CPU, see
8079 	 * ttwu_queue_cond() and is_cpu_allowed().
8080 	 *
8081 	 * Do sync before park smpboot threads to take care the RCU boost case.
8082 	 */
8083 	synchronize_rcu();
8084 
8085 	sched_set_rq_offline(rq, cpu);
8086 
8087 	/*
8088 	 * When going down, decrement the number of cores with SMT present.
8089 	 */
8090 	sched_smt_present_dec(cpu);
8091 
8092 #ifdef CONFIG_SCHED_SMT
8093 	sched_core_cpu_deactivate(cpu);
8094 #endif
8095 
8096 	if (!sched_smp_initialized)
8097 		return 0;
8098 
8099 	sched_update_numa(cpu, false);
8100 	ret = cpuset_cpu_inactive(cpu);
8101 	if (ret) {
8102 		sched_smt_present_inc(cpu);
8103 		sched_set_rq_online(rq, cpu);
8104 		balance_push_set(cpu, false);
8105 		set_cpu_active(cpu, true);
8106 		sched_update_numa(cpu, true);
8107 		return ret;
8108 	}
8109 	sched_domains_numa_masks_clear(cpu);
8110 	return 0;
8111 }
8112 
8113 static void sched_rq_cpu_starting(unsigned int cpu)
8114 {
8115 	struct rq *rq = cpu_rq(cpu);
8116 
8117 	rq->calc_load_update = calc_load_update;
8118 	update_max_interval();
8119 }
8120 
8121 int sched_cpu_starting(unsigned int cpu)
8122 {
8123 	sched_core_cpu_starting(cpu);
8124 	sched_rq_cpu_starting(cpu);
8125 	sched_tick_start(cpu);
8126 	return 0;
8127 }
8128 
8129 #ifdef CONFIG_HOTPLUG_CPU
8130 
8131 /*
8132  * Invoked immediately before the stopper thread is invoked to bring the
8133  * CPU down completely. At this point all per CPU kthreads except the
8134  * hotplug thread (current) and the stopper thread (inactive) have been
8135  * either parked or have been unbound from the outgoing CPU. Ensure that
8136  * any of those which might be on the way out are gone.
8137  *
8138  * If after this point a bound task is being woken on this CPU then the
8139  * responsible hotplug callback has failed to do it's job.
8140  * sched_cpu_dying() will catch it with the appropriate fireworks.
8141  */
8142 int sched_cpu_wait_empty(unsigned int cpu)
8143 {
8144 	balance_hotplug_wait();
8145 	return 0;
8146 }
8147 
8148 /*
8149  * Since this CPU is going 'away' for a while, fold any nr_active delta we
8150  * might have. Called from the CPU stopper task after ensuring that the
8151  * stopper is the last running task on the CPU, so nr_active count is
8152  * stable. We need to take the tear-down thread which is calling this into
8153  * account, so we hand in adjust = 1 to the load calculation.
8154  *
8155  * Also see the comment "Global load-average calculations".
8156  */
8157 static void calc_load_migrate(struct rq *rq)
8158 {
8159 	long delta = calc_load_fold_active(rq, 1);
8160 
8161 	if (delta)
8162 		atomic_long_add(delta, &calc_load_tasks);
8163 }
8164 
8165 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
8166 {
8167 	struct task_struct *g, *p;
8168 	int cpu = cpu_of(rq);
8169 
8170 	lockdep_assert_rq_held(rq);
8171 
8172 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8173 	for_each_process_thread(g, p) {
8174 		if (task_cpu(p) != cpu)
8175 			continue;
8176 
8177 		if (!task_on_rq_queued(p))
8178 			continue;
8179 
8180 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8181 	}
8182 }
8183 
8184 int sched_cpu_dying(unsigned int cpu)
8185 {
8186 	struct rq *rq = cpu_rq(cpu);
8187 	struct rq_flags rf;
8188 
8189 	/* Handle pending wakeups and then migrate everything off */
8190 	sched_tick_stop(cpu);
8191 
8192 	rq_lock_irqsave(rq, &rf);
8193 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8194 		WARN(true, "Dying CPU not properly vacated!");
8195 		dump_rq_tasks(rq, KERN_WARNING);
8196 	}
8197 	rq_unlock_irqrestore(rq, &rf);
8198 
8199 	calc_load_migrate(rq);
8200 	update_max_interval();
8201 	hrtick_clear(rq);
8202 	sched_core_cpu_dying(cpu);
8203 	return 0;
8204 }
8205 #endif
8206 
8207 void __init sched_init_smp(void)
8208 {
8209 	sched_init_numa(NUMA_NO_NODE);
8210 
8211 	/*
8212 	 * There's no userspace yet to cause hotplug operations; hence all the
8213 	 * CPU masks are stable and all blatant races in the below code cannot
8214 	 * happen.
8215 	 */
8216 	mutex_lock(&sched_domains_mutex);
8217 	sched_init_domains(cpu_active_mask);
8218 	mutex_unlock(&sched_domains_mutex);
8219 
8220 	/* Move init over to a non-isolated CPU */
8221 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
8222 		BUG();
8223 	current->flags &= ~PF_NO_SETAFFINITY;
8224 	sched_init_granularity();
8225 
8226 	init_sched_rt_class();
8227 	init_sched_dl_class();
8228 
8229 	sched_smp_initialized = true;
8230 }
8231 
8232 static int __init migration_init(void)
8233 {
8234 	sched_cpu_starting(smp_processor_id());
8235 	return 0;
8236 }
8237 early_initcall(migration_init);
8238 
8239 #else
8240 void __init sched_init_smp(void)
8241 {
8242 	sched_init_granularity();
8243 }
8244 #endif /* CONFIG_SMP */
8245 
8246 int in_sched_functions(unsigned long addr)
8247 {
8248 	return in_lock_functions(addr) ||
8249 		(addr >= (unsigned long)__sched_text_start
8250 		&& addr < (unsigned long)__sched_text_end);
8251 }
8252 
8253 #ifdef CONFIG_CGROUP_SCHED
8254 /*
8255  * Default task group.
8256  * Every task in system belongs to this group at bootup.
8257  */
8258 struct task_group root_task_group;
8259 LIST_HEAD(task_groups);
8260 
8261 /* Cacheline aligned slab cache for task_group */
8262 static struct kmem_cache *task_group_cache __ro_after_init;
8263 #endif
8264 
8265 void __init sched_init(void)
8266 {
8267 	unsigned long ptr = 0;
8268 	int i;
8269 
8270 	/* Make sure the linker didn't screw up */
8271 	BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
8272 	       &fair_sched_class != &rt_sched_class + 1 ||
8273 	       &rt_sched_class   != &dl_sched_class + 1);
8274 #ifdef CONFIG_SMP
8275 	BUG_ON(&dl_sched_class != &stop_sched_class + 1);
8276 #endif
8277 
8278 	wait_bit_init();
8279 
8280 #ifdef CONFIG_FAIR_GROUP_SCHED
8281 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8282 #endif
8283 #ifdef CONFIG_RT_GROUP_SCHED
8284 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8285 #endif
8286 	if (ptr) {
8287 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
8288 
8289 #ifdef CONFIG_FAIR_GROUP_SCHED
8290 		root_task_group.se = (struct sched_entity **)ptr;
8291 		ptr += nr_cpu_ids * sizeof(void **);
8292 
8293 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8294 		ptr += nr_cpu_ids * sizeof(void **);
8295 
8296 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8297 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
8298 #endif /* CONFIG_FAIR_GROUP_SCHED */
8299 #ifdef CONFIG_RT_GROUP_SCHED
8300 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8301 		ptr += nr_cpu_ids * sizeof(void **);
8302 
8303 		root_task_group.rt_rq = (struct rt_rq **)ptr;
8304 		ptr += nr_cpu_ids * sizeof(void **);
8305 
8306 #endif /* CONFIG_RT_GROUP_SCHED */
8307 	}
8308 
8309 #ifdef CONFIG_SMP
8310 	init_defrootdomain();
8311 #endif
8312 
8313 #ifdef CONFIG_RT_GROUP_SCHED
8314 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8315 			global_rt_period(), global_rt_runtime());
8316 #endif /* CONFIG_RT_GROUP_SCHED */
8317 
8318 #ifdef CONFIG_CGROUP_SCHED
8319 	task_group_cache = KMEM_CACHE(task_group, 0);
8320 
8321 	list_add(&root_task_group.list, &task_groups);
8322 	INIT_LIST_HEAD(&root_task_group.children);
8323 	INIT_LIST_HEAD(&root_task_group.siblings);
8324 	autogroup_init(&init_task);
8325 #endif /* CONFIG_CGROUP_SCHED */
8326 
8327 	for_each_possible_cpu(i) {
8328 		struct rq *rq;
8329 
8330 		rq = cpu_rq(i);
8331 		raw_spin_lock_init(&rq->__lock);
8332 		rq->nr_running = 0;
8333 		rq->calc_load_active = 0;
8334 		rq->calc_load_update = jiffies + LOAD_FREQ;
8335 		init_cfs_rq(&rq->cfs);
8336 		init_rt_rq(&rq->rt);
8337 		init_dl_rq(&rq->dl);
8338 #ifdef CONFIG_FAIR_GROUP_SCHED
8339 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8340 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
8341 		/*
8342 		 * How much CPU bandwidth does root_task_group get?
8343 		 *
8344 		 * In case of task-groups formed through the cgroup filesystem, it
8345 		 * gets 100% of the CPU resources in the system. This overall
8346 		 * system CPU resource is divided among the tasks of
8347 		 * root_task_group and its child task-groups in a fair manner,
8348 		 * based on each entity's (task or task-group's) weight
8349 		 * (se->load.weight).
8350 		 *
8351 		 * In other words, if root_task_group has 10 tasks of weight
8352 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8353 		 * then A0's share of the CPU resource is:
8354 		 *
8355 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8356 		 *
8357 		 * We achieve this by letting root_task_group's tasks sit
8358 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8359 		 */
8360 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8361 #endif /* CONFIG_FAIR_GROUP_SCHED */
8362 
8363 #ifdef CONFIG_RT_GROUP_SCHED
8364 		/*
8365 		 * This is required for init cpu because rt.c:__enable_runtime()
8366 		 * starts working after scheduler_running, which is not the case
8367 		 * yet.
8368 		 */
8369 		rq->rt.rt_runtime = global_rt_runtime();
8370 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8371 #endif
8372 #ifdef CONFIG_SMP
8373 		rq->sd = NULL;
8374 		rq->rd = NULL;
8375 		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
8376 		rq->balance_callback = &balance_push_callback;
8377 		rq->active_balance = 0;
8378 		rq->next_balance = jiffies;
8379 		rq->push_cpu = 0;
8380 		rq->cpu = i;
8381 		rq->online = 0;
8382 		rq->idle_stamp = 0;
8383 		rq->avg_idle = 2*sysctl_sched_migration_cost;
8384 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
8385 
8386 		INIT_LIST_HEAD(&rq->cfs_tasks);
8387 
8388 		rq_attach_root(rq, &def_root_domain);
8389 #ifdef CONFIG_NO_HZ_COMMON
8390 		rq->last_blocked_load_update_tick = jiffies;
8391 		atomic_set(&rq->nohz_flags, 0);
8392 
8393 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
8394 #endif
8395 #ifdef CONFIG_HOTPLUG_CPU
8396 		rcuwait_init(&rq->hotplug_wait);
8397 #endif
8398 #endif /* CONFIG_SMP */
8399 		hrtick_rq_init(rq);
8400 		atomic_set(&rq->nr_iowait, 0);
8401 		fair_server_init(rq);
8402 
8403 #ifdef CONFIG_SCHED_CORE
8404 		rq->core = rq;
8405 		rq->core_pick = NULL;
8406 		rq->core_dl_server = NULL;
8407 		rq->core_enabled = 0;
8408 		rq->core_tree = RB_ROOT;
8409 		rq->core_forceidle_count = 0;
8410 		rq->core_forceidle_occupation = 0;
8411 		rq->core_forceidle_start = 0;
8412 
8413 		rq->core_cookie = 0UL;
8414 #endif
8415 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
8416 	}
8417 
8418 	set_load_weight(&init_task, false);
8419 	init_task.se.slice = sysctl_sched_base_slice,
8420 
8421 	/*
8422 	 * The boot idle thread does lazy MMU switching as well:
8423 	 */
8424 	mmgrab_lazy_tlb(&init_mm);
8425 	enter_lazy_tlb(&init_mm, current);
8426 
8427 	/*
8428 	 * The idle task doesn't need the kthread struct to function, but it
8429 	 * is dressed up as a per-CPU kthread and thus needs to play the part
8430 	 * if we want to avoid special-casing it in code that deals with per-CPU
8431 	 * kthreads.
8432 	 */
8433 	WARN_ON(!set_kthread_struct(current));
8434 
8435 	/*
8436 	 * Make us the idle thread. Technically, schedule() should not be
8437 	 * called from this thread, however somewhere below it might be,
8438 	 * but because we are the idle thread, we just pick up running again
8439 	 * when this runqueue becomes "idle".
8440 	 */
8441 	init_idle(current, smp_processor_id());
8442 
8443 	calc_load_update = jiffies + LOAD_FREQ;
8444 
8445 #ifdef CONFIG_SMP
8446 	idle_thread_set_boot_cpu();
8447 	balance_push_set(smp_processor_id(), false);
8448 #endif
8449 	init_sched_fair_class();
8450 
8451 	psi_init();
8452 
8453 	init_uclamp();
8454 
8455 	preempt_dynamic_init();
8456 
8457 	scheduler_running = 1;
8458 }
8459 
8460 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8461 
8462 void __might_sleep(const char *file, int line)
8463 {
8464 	unsigned int state = get_current_state();
8465 	/*
8466 	 * Blocking primitives will set (and therefore destroy) current->state,
8467 	 * since we will exit with TASK_RUNNING make sure we enter with it,
8468 	 * otherwise we will destroy state.
8469 	 */
8470 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
8471 			"do not call blocking ops when !TASK_RUNNING; "
8472 			"state=%x set at [<%p>] %pS\n", state,
8473 			(void *)current->task_state_change,
8474 			(void *)current->task_state_change);
8475 
8476 	__might_resched(file, line, 0);
8477 }
8478 EXPORT_SYMBOL(__might_sleep);
8479 
8480 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
8481 {
8482 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
8483 		return;
8484 
8485 	if (preempt_count() == preempt_offset)
8486 		return;
8487 
8488 	pr_err("Preemption disabled at:");
8489 	print_ip_sym(KERN_ERR, ip);
8490 }
8491 
8492 static inline bool resched_offsets_ok(unsigned int offsets)
8493 {
8494 	unsigned int nested = preempt_count();
8495 
8496 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
8497 
8498 	return nested == offsets;
8499 }
8500 
8501 void __might_resched(const char *file, int line, unsigned int offsets)
8502 {
8503 	/* Ratelimiting timestamp: */
8504 	static unsigned long prev_jiffy;
8505 
8506 	unsigned long preempt_disable_ip;
8507 
8508 	/* WARN_ON_ONCE() by default, no rate limit required: */
8509 	rcu_sleep_check();
8510 
8511 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
8512 	     !is_idle_task(current) && !current->non_block_count) ||
8513 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
8514 	    oops_in_progress)
8515 		return;
8516 
8517 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8518 		return;
8519 	prev_jiffy = jiffies;
8520 
8521 	/* Save this before calling printk(), since that will clobber it: */
8522 	preempt_disable_ip = get_preempt_disable_ip(current);
8523 
8524 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
8525 	       file, line);
8526 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
8527 	       in_atomic(), irqs_disabled(), current->non_block_count,
8528 	       current->pid, current->comm);
8529 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
8530 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
8531 
8532 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
8533 		pr_err("RCU nest depth: %d, expected: %u\n",
8534 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
8535 	}
8536 
8537 	if (task_stack_end_corrupted(current))
8538 		pr_emerg("Thread overran stack, or stack corrupted\n");
8539 
8540 	debug_show_held_locks(current);
8541 	if (irqs_disabled())
8542 		print_irqtrace_events(current);
8543 
8544 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
8545 				 preempt_disable_ip);
8546 
8547 	dump_stack();
8548 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8549 }
8550 EXPORT_SYMBOL(__might_resched);
8551 
8552 void __cant_sleep(const char *file, int line, int preempt_offset)
8553 {
8554 	static unsigned long prev_jiffy;
8555 
8556 	if (irqs_disabled())
8557 		return;
8558 
8559 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8560 		return;
8561 
8562 	if (preempt_count() > preempt_offset)
8563 		return;
8564 
8565 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8566 		return;
8567 	prev_jiffy = jiffies;
8568 
8569 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8570 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8571 			in_atomic(), irqs_disabled(),
8572 			current->pid, current->comm);
8573 
8574 	debug_show_held_locks(current);
8575 	dump_stack();
8576 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8577 }
8578 EXPORT_SYMBOL_GPL(__cant_sleep);
8579 
8580 #ifdef CONFIG_SMP
8581 void __cant_migrate(const char *file, int line)
8582 {
8583 	static unsigned long prev_jiffy;
8584 
8585 	if (irqs_disabled())
8586 		return;
8587 
8588 	if (is_migration_disabled(current))
8589 		return;
8590 
8591 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8592 		return;
8593 
8594 	if (preempt_count() > 0)
8595 		return;
8596 
8597 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8598 		return;
8599 	prev_jiffy = jiffies;
8600 
8601 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8602 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8603 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
8604 	       current->pid, current->comm);
8605 
8606 	debug_show_held_locks(current);
8607 	dump_stack();
8608 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8609 }
8610 EXPORT_SYMBOL_GPL(__cant_migrate);
8611 #endif
8612 #endif
8613 
8614 #ifdef CONFIG_MAGIC_SYSRQ
8615 void normalize_rt_tasks(void)
8616 {
8617 	struct task_struct *g, *p;
8618 	struct sched_attr attr = {
8619 		.sched_policy = SCHED_NORMAL,
8620 	};
8621 
8622 	read_lock(&tasklist_lock);
8623 	for_each_process_thread(g, p) {
8624 		/*
8625 		 * Only normalize user tasks:
8626 		 */
8627 		if (p->flags & PF_KTHREAD)
8628 			continue;
8629 
8630 		p->se.exec_start = 0;
8631 		schedstat_set(p->stats.wait_start,  0);
8632 		schedstat_set(p->stats.sleep_start, 0);
8633 		schedstat_set(p->stats.block_start, 0);
8634 
8635 		if (!rt_or_dl_task(p)) {
8636 			/*
8637 			 * Renice negative nice level userspace
8638 			 * tasks back to 0:
8639 			 */
8640 			if (task_nice(p) < 0)
8641 				set_user_nice(p, 0);
8642 			continue;
8643 		}
8644 
8645 		__sched_setscheduler(p, &attr, false, false);
8646 	}
8647 	read_unlock(&tasklist_lock);
8648 }
8649 
8650 #endif /* CONFIG_MAGIC_SYSRQ */
8651 
8652 #if defined(CONFIG_KGDB_KDB)
8653 /*
8654  * These functions are only useful for KDB.
8655  *
8656  * They can only be called when the whole system has been
8657  * stopped - every CPU needs to be quiescent, and no scheduling
8658  * activity can take place. Using them for anything else would
8659  * be a serious bug, and as a result, they aren't even visible
8660  * under any other configuration.
8661  */
8662 
8663 /**
8664  * curr_task - return the current task for a given CPU.
8665  * @cpu: the processor in question.
8666  *
8667  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8668  *
8669  * Return: The current task for @cpu.
8670  */
8671 struct task_struct *curr_task(int cpu)
8672 {
8673 	return cpu_curr(cpu);
8674 }
8675 
8676 #endif /* defined(CONFIG_KGDB_KDB) */
8677 
8678 #ifdef CONFIG_CGROUP_SCHED
8679 /* task_group_lock serializes the addition/removal of task groups */
8680 static DEFINE_SPINLOCK(task_group_lock);
8681 
8682 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8683 					    struct task_group *parent)
8684 {
8685 #ifdef CONFIG_UCLAMP_TASK_GROUP
8686 	enum uclamp_id clamp_id;
8687 
8688 	for_each_clamp_id(clamp_id) {
8689 		uclamp_se_set(&tg->uclamp_req[clamp_id],
8690 			      uclamp_none(clamp_id), false);
8691 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8692 	}
8693 #endif
8694 }
8695 
8696 static void sched_free_group(struct task_group *tg)
8697 {
8698 	free_fair_sched_group(tg);
8699 	free_rt_sched_group(tg);
8700 	autogroup_free(tg);
8701 	kmem_cache_free(task_group_cache, tg);
8702 }
8703 
8704 static void sched_free_group_rcu(struct rcu_head *rcu)
8705 {
8706 	sched_free_group(container_of(rcu, struct task_group, rcu));
8707 }
8708 
8709 static void sched_unregister_group(struct task_group *tg)
8710 {
8711 	unregister_fair_sched_group(tg);
8712 	unregister_rt_sched_group(tg);
8713 	/*
8714 	 * We have to wait for yet another RCU grace period to expire, as
8715 	 * print_cfs_stats() might run concurrently.
8716 	 */
8717 	call_rcu(&tg->rcu, sched_free_group_rcu);
8718 }
8719 
8720 /* allocate runqueue etc for a new task group */
8721 struct task_group *sched_create_group(struct task_group *parent)
8722 {
8723 	struct task_group *tg;
8724 
8725 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8726 	if (!tg)
8727 		return ERR_PTR(-ENOMEM);
8728 
8729 	if (!alloc_fair_sched_group(tg, parent))
8730 		goto err;
8731 
8732 	if (!alloc_rt_sched_group(tg, parent))
8733 		goto err;
8734 
8735 	alloc_uclamp_sched_group(tg, parent);
8736 
8737 	return tg;
8738 
8739 err:
8740 	sched_free_group(tg);
8741 	return ERR_PTR(-ENOMEM);
8742 }
8743 
8744 void sched_online_group(struct task_group *tg, struct task_group *parent)
8745 {
8746 	unsigned long flags;
8747 
8748 	spin_lock_irqsave(&task_group_lock, flags);
8749 	list_add_rcu(&tg->list, &task_groups);
8750 
8751 	/* Root should already exist: */
8752 	WARN_ON(!parent);
8753 
8754 	tg->parent = parent;
8755 	INIT_LIST_HEAD(&tg->children);
8756 	list_add_rcu(&tg->siblings, &parent->children);
8757 	spin_unlock_irqrestore(&task_group_lock, flags);
8758 
8759 	online_fair_sched_group(tg);
8760 }
8761 
8762 /* RCU callback to free various structures associated with a task group */
8763 static void sched_unregister_group_rcu(struct rcu_head *rhp)
8764 {
8765 	/* Now it should be safe to free those cfs_rqs: */
8766 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
8767 }
8768 
8769 void sched_destroy_group(struct task_group *tg)
8770 {
8771 	/* Wait for possible concurrent references to cfs_rqs complete: */
8772 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
8773 }
8774 
8775 void sched_release_group(struct task_group *tg)
8776 {
8777 	unsigned long flags;
8778 
8779 	/*
8780 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
8781 	 * sched_cfs_period_timer()).
8782 	 *
8783 	 * For this to be effective, we have to wait for all pending users of
8784 	 * this task group to leave their RCU critical section to ensure no new
8785 	 * user will see our dying task group any more. Specifically ensure
8786 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
8787 	 *
8788 	 * We therefore defer calling unregister_fair_sched_group() to
8789 	 * sched_unregister_group() which is guarantied to get called only after the
8790 	 * current RCU grace period has expired.
8791 	 */
8792 	spin_lock_irqsave(&task_group_lock, flags);
8793 	list_del_rcu(&tg->list);
8794 	list_del_rcu(&tg->siblings);
8795 	spin_unlock_irqrestore(&task_group_lock, flags);
8796 }
8797 
8798 static struct task_group *sched_get_task_group(struct task_struct *tsk)
8799 {
8800 	struct task_group *tg;
8801 
8802 	/*
8803 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
8804 	 * which is pointless here. Thus, we pass "true" to task_css_check()
8805 	 * to prevent lockdep warnings.
8806 	 */
8807 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8808 			  struct task_group, css);
8809 	tg = autogroup_task_group(tsk, tg);
8810 
8811 	return tg;
8812 }
8813 
8814 static void sched_change_group(struct task_struct *tsk, struct task_group *group)
8815 {
8816 	tsk->sched_task_group = group;
8817 
8818 #ifdef CONFIG_FAIR_GROUP_SCHED
8819 	if (tsk->sched_class->task_change_group)
8820 		tsk->sched_class->task_change_group(tsk);
8821 	else
8822 #endif
8823 		set_task_rq(tsk, task_cpu(tsk));
8824 }
8825 
8826 /*
8827  * Change task's runqueue when it moves between groups.
8828  *
8829  * The caller of this function should have put the task in its new group by
8830  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8831  * its new group.
8832  */
8833 void sched_move_task(struct task_struct *tsk)
8834 {
8835 	int queued, running, queue_flags =
8836 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
8837 	struct task_group *group;
8838 	struct rq *rq;
8839 
8840 	CLASS(task_rq_lock, rq_guard)(tsk);
8841 	rq = rq_guard.rq;
8842 
8843 	/*
8844 	 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
8845 	 * group changes.
8846 	 */
8847 	group = sched_get_task_group(tsk);
8848 	if (group == tsk->sched_task_group)
8849 		return;
8850 
8851 	update_rq_clock(rq);
8852 
8853 	running = task_current(rq, tsk);
8854 	queued = task_on_rq_queued(tsk);
8855 
8856 	if (queued)
8857 		dequeue_task(rq, tsk, queue_flags);
8858 	if (running)
8859 		put_prev_task(rq, tsk);
8860 
8861 	sched_change_group(tsk, group);
8862 
8863 	if (queued)
8864 		enqueue_task(rq, tsk, queue_flags);
8865 	if (running) {
8866 		set_next_task(rq, tsk);
8867 		/*
8868 		 * After changing group, the running task may have joined a
8869 		 * throttled one but it's still the running task. Trigger a
8870 		 * resched to make sure that task can still run.
8871 		 */
8872 		resched_curr(rq);
8873 	}
8874 }
8875 
8876 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8877 {
8878 	return css ? container_of(css, struct task_group, css) : NULL;
8879 }
8880 
8881 static struct cgroup_subsys_state *
8882 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8883 {
8884 	struct task_group *parent = css_tg(parent_css);
8885 	struct task_group *tg;
8886 
8887 	if (!parent) {
8888 		/* This is early initialization for the top cgroup */
8889 		return &root_task_group.css;
8890 	}
8891 
8892 	tg = sched_create_group(parent);
8893 	if (IS_ERR(tg))
8894 		return ERR_PTR(-ENOMEM);
8895 
8896 	return &tg->css;
8897 }
8898 
8899 /* Expose task group only after completing cgroup initialization */
8900 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8901 {
8902 	struct task_group *tg = css_tg(css);
8903 	struct task_group *parent = css_tg(css->parent);
8904 
8905 	if (parent)
8906 		sched_online_group(tg, parent);
8907 
8908 #ifdef CONFIG_UCLAMP_TASK_GROUP
8909 	/* Propagate the effective uclamp value for the new group */
8910 	guard(mutex)(&uclamp_mutex);
8911 	guard(rcu)();
8912 	cpu_util_update_eff(css);
8913 #endif
8914 
8915 	return 0;
8916 }
8917 
8918 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8919 {
8920 	struct task_group *tg = css_tg(css);
8921 
8922 	sched_release_group(tg);
8923 }
8924 
8925 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8926 {
8927 	struct task_group *tg = css_tg(css);
8928 
8929 	/*
8930 	 * Relies on the RCU grace period between css_released() and this.
8931 	 */
8932 	sched_unregister_group(tg);
8933 }
8934 
8935 #ifdef CONFIG_RT_GROUP_SCHED
8936 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8937 {
8938 	struct task_struct *task;
8939 	struct cgroup_subsys_state *css;
8940 
8941 	cgroup_taskset_for_each(task, css, tset) {
8942 		if (!sched_rt_can_attach(css_tg(css), task))
8943 			return -EINVAL;
8944 	}
8945 	return 0;
8946 }
8947 #endif
8948 
8949 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8950 {
8951 	struct task_struct *task;
8952 	struct cgroup_subsys_state *css;
8953 
8954 	cgroup_taskset_for_each(task, css, tset)
8955 		sched_move_task(task);
8956 }
8957 
8958 #ifdef CONFIG_UCLAMP_TASK_GROUP
8959 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
8960 {
8961 	struct cgroup_subsys_state *top_css = css;
8962 	struct uclamp_se *uc_parent = NULL;
8963 	struct uclamp_se *uc_se = NULL;
8964 	unsigned int eff[UCLAMP_CNT];
8965 	enum uclamp_id clamp_id;
8966 	unsigned int clamps;
8967 
8968 	lockdep_assert_held(&uclamp_mutex);
8969 	SCHED_WARN_ON(!rcu_read_lock_held());
8970 
8971 	css_for_each_descendant_pre(css, top_css) {
8972 		uc_parent = css_tg(css)->parent
8973 			? css_tg(css)->parent->uclamp : NULL;
8974 
8975 		for_each_clamp_id(clamp_id) {
8976 			/* Assume effective clamps matches requested clamps */
8977 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
8978 			/* Cap effective clamps with parent's effective clamps */
8979 			if (uc_parent &&
8980 			    eff[clamp_id] > uc_parent[clamp_id].value) {
8981 				eff[clamp_id] = uc_parent[clamp_id].value;
8982 			}
8983 		}
8984 		/* Ensure protection is always capped by limit */
8985 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
8986 
8987 		/* Propagate most restrictive effective clamps */
8988 		clamps = 0x0;
8989 		uc_se = css_tg(css)->uclamp;
8990 		for_each_clamp_id(clamp_id) {
8991 			if (eff[clamp_id] == uc_se[clamp_id].value)
8992 				continue;
8993 			uc_se[clamp_id].value = eff[clamp_id];
8994 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
8995 			clamps |= (0x1 << clamp_id);
8996 		}
8997 		if (!clamps) {
8998 			css = css_rightmost_descendant(css);
8999 			continue;
9000 		}
9001 
9002 		/* Immediately update descendants RUNNABLE tasks */
9003 		uclamp_update_active_tasks(css);
9004 	}
9005 }
9006 
9007 /*
9008  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
9009  * C expression. Since there is no way to convert a macro argument (N) into a
9010  * character constant, use two levels of macros.
9011  */
9012 #define _POW10(exp) ((unsigned int)1e##exp)
9013 #define POW10(exp) _POW10(exp)
9014 
9015 struct uclamp_request {
9016 #define UCLAMP_PERCENT_SHIFT	2
9017 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
9018 	s64 percent;
9019 	u64 util;
9020 	int ret;
9021 };
9022 
9023 static inline struct uclamp_request
9024 capacity_from_percent(char *buf)
9025 {
9026 	struct uclamp_request req = {
9027 		.percent = UCLAMP_PERCENT_SCALE,
9028 		.util = SCHED_CAPACITY_SCALE,
9029 		.ret = 0,
9030 	};
9031 
9032 	buf = strim(buf);
9033 	if (strcmp(buf, "max")) {
9034 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
9035 					     &req.percent);
9036 		if (req.ret)
9037 			return req;
9038 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
9039 			req.ret = -ERANGE;
9040 			return req;
9041 		}
9042 
9043 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
9044 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
9045 	}
9046 
9047 	return req;
9048 }
9049 
9050 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
9051 				size_t nbytes, loff_t off,
9052 				enum uclamp_id clamp_id)
9053 {
9054 	struct uclamp_request req;
9055 	struct task_group *tg;
9056 
9057 	req = capacity_from_percent(buf);
9058 	if (req.ret)
9059 		return req.ret;
9060 
9061 	static_branch_enable(&sched_uclamp_used);
9062 
9063 	guard(mutex)(&uclamp_mutex);
9064 	guard(rcu)();
9065 
9066 	tg = css_tg(of_css(of));
9067 	if (tg->uclamp_req[clamp_id].value != req.util)
9068 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
9069 
9070 	/*
9071 	 * Because of not recoverable conversion rounding we keep track of the
9072 	 * exact requested value
9073 	 */
9074 	tg->uclamp_pct[clamp_id] = req.percent;
9075 
9076 	/* Update effective clamps to track the most restrictive value */
9077 	cpu_util_update_eff(of_css(of));
9078 
9079 	return nbytes;
9080 }
9081 
9082 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
9083 				    char *buf, size_t nbytes,
9084 				    loff_t off)
9085 {
9086 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
9087 }
9088 
9089 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
9090 				    char *buf, size_t nbytes,
9091 				    loff_t off)
9092 {
9093 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
9094 }
9095 
9096 static inline void cpu_uclamp_print(struct seq_file *sf,
9097 				    enum uclamp_id clamp_id)
9098 {
9099 	struct task_group *tg;
9100 	u64 util_clamp;
9101 	u64 percent;
9102 	u32 rem;
9103 
9104 	scoped_guard (rcu) {
9105 		tg = css_tg(seq_css(sf));
9106 		util_clamp = tg->uclamp_req[clamp_id].value;
9107 	}
9108 
9109 	if (util_clamp == SCHED_CAPACITY_SCALE) {
9110 		seq_puts(sf, "max\n");
9111 		return;
9112 	}
9113 
9114 	percent = tg->uclamp_pct[clamp_id];
9115 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
9116 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
9117 }
9118 
9119 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
9120 {
9121 	cpu_uclamp_print(sf, UCLAMP_MIN);
9122 	return 0;
9123 }
9124 
9125 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
9126 {
9127 	cpu_uclamp_print(sf, UCLAMP_MAX);
9128 	return 0;
9129 }
9130 #endif /* CONFIG_UCLAMP_TASK_GROUP */
9131 
9132 #ifdef CONFIG_FAIR_GROUP_SCHED
9133 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
9134 				struct cftype *cftype, u64 shareval)
9135 {
9136 	if (shareval > scale_load_down(ULONG_MAX))
9137 		shareval = MAX_SHARES;
9138 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
9139 }
9140 
9141 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
9142 			       struct cftype *cft)
9143 {
9144 	struct task_group *tg = css_tg(css);
9145 
9146 	return (u64) scale_load_down(tg->shares);
9147 }
9148 
9149 #ifdef CONFIG_CFS_BANDWIDTH
9150 static DEFINE_MUTEX(cfs_constraints_mutex);
9151 
9152 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9153 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9154 /* More than 203 days if BW_SHIFT equals 20. */
9155 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
9156 
9157 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9158 
9159 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
9160 				u64 burst)
9161 {
9162 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
9163 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9164 
9165 	if (tg == &root_task_group)
9166 		return -EINVAL;
9167 
9168 	/*
9169 	 * Ensure we have at some amount of bandwidth every period.  This is
9170 	 * to prevent reaching a state of large arrears when throttled via
9171 	 * entity_tick() resulting in prolonged exit starvation.
9172 	 */
9173 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9174 		return -EINVAL;
9175 
9176 	/*
9177 	 * Likewise, bound things on the other side by preventing insane quota
9178 	 * periods.  This also allows us to normalize in computing quota
9179 	 * feasibility.
9180 	 */
9181 	if (period > max_cfs_quota_period)
9182 		return -EINVAL;
9183 
9184 	/*
9185 	 * Bound quota to defend quota against overflow during bandwidth shift.
9186 	 */
9187 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
9188 		return -EINVAL;
9189 
9190 	if (quota != RUNTIME_INF && (burst > quota ||
9191 				     burst + quota > max_cfs_runtime))
9192 		return -EINVAL;
9193 
9194 	/*
9195 	 * Prevent race between setting of cfs_rq->runtime_enabled and
9196 	 * unthrottle_offline_cfs_rqs().
9197 	 */
9198 	guard(cpus_read_lock)();
9199 	guard(mutex)(&cfs_constraints_mutex);
9200 
9201 	ret = __cfs_schedulable(tg, period, quota);
9202 	if (ret)
9203 		return ret;
9204 
9205 	runtime_enabled = quota != RUNTIME_INF;
9206 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
9207 	/*
9208 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
9209 	 * before making related changes, and on->off must occur afterwards
9210 	 */
9211 	if (runtime_enabled && !runtime_was_enabled)
9212 		cfs_bandwidth_usage_inc();
9213 
9214 	scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
9215 		cfs_b->period = ns_to_ktime(period);
9216 		cfs_b->quota = quota;
9217 		cfs_b->burst = burst;
9218 
9219 		__refill_cfs_bandwidth_runtime(cfs_b);
9220 
9221 		/*
9222 		 * Restart the period timer (if active) to handle new
9223 		 * period expiry:
9224 		 */
9225 		if (runtime_enabled)
9226 			start_cfs_bandwidth(cfs_b);
9227 	}
9228 
9229 	for_each_online_cpu(i) {
9230 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9231 		struct rq *rq = cfs_rq->rq;
9232 
9233 		guard(rq_lock_irq)(rq);
9234 		cfs_rq->runtime_enabled = runtime_enabled;
9235 		cfs_rq->runtime_remaining = 0;
9236 
9237 		if (cfs_rq->throttled)
9238 			unthrottle_cfs_rq(cfs_rq);
9239 	}
9240 
9241 	if (runtime_was_enabled && !runtime_enabled)
9242 		cfs_bandwidth_usage_dec();
9243 
9244 	return 0;
9245 }
9246 
9247 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9248 {
9249 	u64 quota, period, burst;
9250 
9251 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9252 	burst = tg->cfs_bandwidth.burst;
9253 	if (cfs_quota_us < 0)
9254 		quota = RUNTIME_INF;
9255 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
9256 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9257 	else
9258 		return -EINVAL;
9259 
9260 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9261 }
9262 
9263 static long tg_get_cfs_quota(struct task_group *tg)
9264 {
9265 	u64 quota_us;
9266 
9267 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9268 		return -1;
9269 
9270 	quota_us = tg->cfs_bandwidth.quota;
9271 	do_div(quota_us, NSEC_PER_USEC);
9272 
9273 	return quota_us;
9274 }
9275 
9276 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9277 {
9278 	u64 quota, period, burst;
9279 
9280 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9281 		return -EINVAL;
9282 
9283 	period = (u64)cfs_period_us * NSEC_PER_USEC;
9284 	quota = tg->cfs_bandwidth.quota;
9285 	burst = tg->cfs_bandwidth.burst;
9286 
9287 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9288 }
9289 
9290 static long tg_get_cfs_period(struct task_group *tg)
9291 {
9292 	u64 cfs_period_us;
9293 
9294 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
9295 	do_div(cfs_period_us, NSEC_PER_USEC);
9296 
9297 	return cfs_period_us;
9298 }
9299 
9300 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
9301 {
9302 	u64 quota, period, burst;
9303 
9304 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
9305 		return -EINVAL;
9306 
9307 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
9308 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9309 	quota = tg->cfs_bandwidth.quota;
9310 
9311 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9312 }
9313 
9314 static long tg_get_cfs_burst(struct task_group *tg)
9315 {
9316 	u64 burst_us;
9317 
9318 	burst_us = tg->cfs_bandwidth.burst;
9319 	do_div(burst_us, NSEC_PER_USEC);
9320 
9321 	return burst_us;
9322 }
9323 
9324 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
9325 				  struct cftype *cft)
9326 {
9327 	return tg_get_cfs_quota(css_tg(css));
9328 }
9329 
9330 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
9331 				   struct cftype *cftype, s64 cfs_quota_us)
9332 {
9333 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
9334 }
9335 
9336 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
9337 				   struct cftype *cft)
9338 {
9339 	return tg_get_cfs_period(css_tg(css));
9340 }
9341 
9342 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
9343 				    struct cftype *cftype, u64 cfs_period_us)
9344 {
9345 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
9346 }
9347 
9348 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
9349 				  struct cftype *cft)
9350 {
9351 	return tg_get_cfs_burst(css_tg(css));
9352 }
9353 
9354 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
9355 				   struct cftype *cftype, u64 cfs_burst_us)
9356 {
9357 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
9358 }
9359 
9360 struct cfs_schedulable_data {
9361 	struct task_group *tg;
9362 	u64 period, quota;
9363 };
9364 
9365 /*
9366  * normalize group quota/period to be quota/max_period
9367  * note: units are usecs
9368  */
9369 static u64 normalize_cfs_quota(struct task_group *tg,
9370 			       struct cfs_schedulable_data *d)
9371 {
9372 	u64 quota, period;
9373 
9374 	if (tg == d->tg) {
9375 		period = d->period;
9376 		quota = d->quota;
9377 	} else {
9378 		period = tg_get_cfs_period(tg);
9379 		quota = tg_get_cfs_quota(tg);
9380 	}
9381 
9382 	/* note: these should typically be equivalent */
9383 	if (quota == RUNTIME_INF || quota == -1)
9384 		return RUNTIME_INF;
9385 
9386 	return to_ratio(period, quota);
9387 }
9388 
9389 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9390 {
9391 	struct cfs_schedulable_data *d = data;
9392 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9393 	s64 quota = 0, parent_quota = -1;
9394 
9395 	if (!tg->parent) {
9396 		quota = RUNTIME_INF;
9397 	} else {
9398 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
9399 
9400 		quota = normalize_cfs_quota(tg, d);
9401 		parent_quota = parent_b->hierarchical_quota;
9402 
9403 		/*
9404 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
9405 		 * always take the non-RUNTIME_INF min.  On cgroup1, only
9406 		 * inherit when no limit is set. In both cases this is used
9407 		 * by the scheduler to determine if a given CFS task has a
9408 		 * bandwidth constraint at some higher level.
9409 		 */
9410 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
9411 			if (quota == RUNTIME_INF)
9412 				quota = parent_quota;
9413 			else if (parent_quota != RUNTIME_INF)
9414 				quota = min(quota, parent_quota);
9415 		} else {
9416 			if (quota == RUNTIME_INF)
9417 				quota = parent_quota;
9418 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9419 				return -EINVAL;
9420 		}
9421 	}
9422 	cfs_b->hierarchical_quota = quota;
9423 
9424 	return 0;
9425 }
9426 
9427 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9428 {
9429 	struct cfs_schedulable_data data = {
9430 		.tg = tg,
9431 		.period = period,
9432 		.quota = quota,
9433 	};
9434 
9435 	if (quota != RUNTIME_INF) {
9436 		do_div(data.period, NSEC_PER_USEC);
9437 		do_div(data.quota, NSEC_PER_USEC);
9438 	}
9439 
9440 	guard(rcu)();
9441 	return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9442 }
9443 
9444 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
9445 {
9446 	struct task_group *tg = css_tg(seq_css(sf));
9447 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9448 
9449 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
9450 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
9451 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
9452 
9453 	if (schedstat_enabled() && tg != &root_task_group) {
9454 		struct sched_statistics *stats;
9455 		u64 ws = 0;
9456 		int i;
9457 
9458 		for_each_possible_cpu(i) {
9459 			stats = __schedstats_from_se(tg->se[i]);
9460 			ws += schedstat_val(stats->wait_sum);
9461 		}
9462 
9463 		seq_printf(sf, "wait_sum %llu\n", ws);
9464 	}
9465 
9466 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
9467 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
9468 
9469 	return 0;
9470 }
9471 
9472 static u64 throttled_time_self(struct task_group *tg)
9473 {
9474 	int i;
9475 	u64 total = 0;
9476 
9477 	for_each_possible_cpu(i) {
9478 		total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
9479 	}
9480 
9481 	return total;
9482 }
9483 
9484 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
9485 {
9486 	struct task_group *tg = css_tg(seq_css(sf));
9487 
9488 	seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
9489 
9490 	return 0;
9491 }
9492 #endif /* CONFIG_CFS_BANDWIDTH */
9493 #endif /* CONFIG_FAIR_GROUP_SCHED */
9494 
9495 #ifdef CONFIG_RT_GROUP_SCHED
9496 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
9497 				struct cftype *cft, s64 val)
9498 {
9499 	return sched_group_set_rt_runtime(css_tg(css), val);
9500 }
9501 
9502 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
9503 			       struct cftype *cft)
9504 {
9505 	return sched_group_rt_runtime(css_tg(css));
9506 }
9507 
9508 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9509 				    struct cftype *cftype, u64 rt_period_us)
9510 {
9511 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
9512 }
9513 
9514 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9515 				   struct cftype *cft)
9516 {
9517 	return sched_group_rt_period(css_tg(css));
9518 }
9519 #endif /* CONFIG_RT_GROUP_SCHED */
9520 
9521 #ifdef CONFIG_FAIR_GROUP_SCHED
9522 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
9523 			       struct cftype *cft)
9524 {
9525 	return css_tg(css)->idle;
9526 }
9527 
9528 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
9529 				struct cftype *cft, s64 idle)
9530 {
9531 	return sched_group_set_idle(css_tg(css), idle);
9532 }
9533 #endif
9534 
9535 static struct cftype cpu_legacy_files[] = {
9536 #ifdef CONFIG_FAIR_GROUP_SCHED
9537 	{
9538 		.name = "shares",
9539 		.read_u64 = cpu_shares_read_u64,
9540 		.write_u64 = cpu_shares_write_u64,
9541 	},
9542 	{
9543 		.name = "idle",
9544 		.read_s64 = cpu_idle_read_s64,
9545 		.write_s64 = cpu_idle_write_s64,
9546 	},
9547 #endif
9548 #ifdef CONFIG_CFS_BANDWIDTH
9549 	{
9550 		.name = "cfs_quota_us",
9551 		.read_s64 = cpu_cfs_quota_read_s64,
9552 		.write_s64 = cpu_cfs_quota_write_s64,
9553 	},
9554 	{
9555 		.name = "cfs_period_us",
9556 		.read_u64 = cpu_cfs_period_read_u64,
9557 		.write_u64 = cpu_cfs_period_write_u64,
9558 	},
9559 	{
9560 		.name = "cfs_burst_us",
9561 		.read_u64 = cpu_cfs_burst_read_u64,
9562 		.write_u64 = cpu_cfs_burst_write_u64,
9563 	},
9564 	{
9565 		.name = "stat",
9566 		.seq_show = cpu_cfs_stat_show,
9567 	},
9568 	{
9569 		.name = "stat.local",
9570 		.seq_show = cpu_cfs_local_stat_show,
9571 	},
9572 #endif
9573 #ifdef CONFIG_RT_GROUP_SCHED
9574 	{
9575 		.name = "rt_runtime_us",
9576 		.read_s64 = cpu_rt_runtime_read,
9577 		.write_s64 = cpu_rt_runtime_write,
9578 	},
9579 	{
9580 		.name = "rt_period_us",
9581 		.read_u64 = cpu_rt_period_read_uint,
9582 		.write_u64 = cpu_rt_period_write_uint,
9583 	},
9584 #endif
9585 #ifdef CONFIG_UCLAMP_TASK_GROUP
9586 	{
9587 		.name = "uclamp.min",
9588 		.flags = CFTYPE_NOT_ON_ROOT,
9589 		.seq_show = cpu_uclamp_min_show,
9590 		.write = cpu_uclamp_min_write,
9591 	},
9592 	{
9593 		.name = "uclamp.max",
9594 		.flags = CFTYPE_NOT_ON_ROOT,
9595 		.seq_show = cpu_uclamp_max_show,
9596 		.write = cpu_uclamp_max_write,
9597 	},
9598 #endif
9599 	{ }	/* Terminate */
9600 };
9601 
9602 static int cpu_extra_stat_show(struct seq_file *sf,
9603 			       struct cgroup_subsys_state *css)
9604 {
9605 #ifdef CONFIG_CFS_BANDWIDTH
9606 	{
9607 		struct task_group *tg = css_tg(css);
9608 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9609 		u64 throttled_usec, burst_usec;
9610 
9611 		throttled_usec = cfs_b->throttled_time;
9612 		do_div(throttled_usec, NSEC_PER_USEC);
9613 		burst_usec = cfs_b->burst_time;
9614 		do_div(burst_usec, NSEC_PER_USEC);
9615 
9616 		seq_printf(sf, "nr_periods %d\n"
9617 			   "nr_throttled %d\n"
9618 			   "throttled_usec %llu\n"
9619 			   "nr_bursts %d\n"
9620 			   "burst_usec %llu\n",
9621 			   cfs_b->nr_periods, cfs_b->nr_throttled,
9622 			   throttled_usec, cfs_b->nr_burst, burst_usec);
9623 	}
9624 #endif
9625 	return 0;
9626 }
9627 
9628 static int cpu_local_stat_show(struct seq_file *sf,
9629 			       struct cgroup_subsys_state *css)
9630 {
9631 #ifdef CONFIG_CFS_BANDWIDTH
9632 	{
9633 		struct task_group *tg = css_tg(css);
9634 		u64 throttled_self_usec;
9635 
9636 		throttled_self_usec = throttled_time_self(tg);
9637 		do_div(throttled_self_usec, NSEC_PER_USEC);
9638 
9639 		seq_printf(sf, "throttled_usec %llu\n",
9640 			   throttled_self_usec);
9641 	}
9642 #endif
9643 	return 0;
9644 }
9645 
9646 #ifdef CONFIG_FAIR_GROUP_SCHED
9647 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
9648 			       struct cftype *cft)
9649 {
9650 	struct task_group *tg = css_tg(css);
9651 	u64 weight = scale_load_down(tg->shares);
9652 
9653 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
9654 }
9655 
9656 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
9657 				struct cftype *cft, u64 weight)
9658 {
9659 	/*
9660 	 * cgroup weight knobs should use the common MIN, DFL and MAX
9661 	 * values which are 1, 100 and 10000 respectively.  While it loses
9662 	 * a bit of range on both ends, it maps pretty well onto the shares
9663 	 * value used by scheduler and the round-trip conversions preserve
9664 	 * the original value over the entire range.
9665 	 */
9666 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
9667 		return -ERANGE;
9668 
9669 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
9670 
9671 	return sched_group_set_shares(css_tg(css), scale_load(weight));
9672 }
9673 
9674 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
9675 				    struct cftype *cft)
9676 {
9677 	unsigned long weight = scale_load_down(css_tg(css)->shares);
9678 	int last_delta = INT_MAX;
9679 	int prio, delta;
9680 
9681 	/* find the closest nice value to the current weight */
9682 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
9683 		delta = abs(sched_prio_to_weight[prio] - weight);
9684 		if (delta >= last_delta)
9685 			break;
9686 		last_delta = delta;
9687 	}
9688 
9689 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
9690 }
9691 
9692 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
9693 				     struct cftype *cft, s64 nice)
9694 {
9695 	unsigned long weight;
9696 	int idx;
9697 
9698 	if (nice < MIN_NICE || nice > MAX_NICE)
9699 		return -ERANGE;
9700 
9701 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
9702 	idx = array_index_nospec(idx, 40);
9703 	weight = sched_prio_to_weight[idx];
9704 
9705 	return sched_group_set_shares(css_tg(css), scale_load(weight));
9706 }
9707 #endif
9708 
9709 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
9710 						  long period, long quota)
9711 {
9712 	if (quota < 0)
9713 		seq_puts(sf, "max");
9714 	else
9715 		seq_printf(sf, "%ld", quota);
9716 
9717 	seq_printf(sf, " %ld\n", period);
9718 }
9719 
9720 /* caller should put the current value in *@periodp before calling */
9721 static int __maybe_unused cpu_period_quota_parse(char *buf,
9722 						 u64 *periodp, u64 *quotap)
9723 {
9724 	char tok[21];	/* U64_MAX */
9725 
9726 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
9727 		return -EINVAL;
9728 
9729 	*periodp *= NSEC_PER_USEC;
9730 
9731 	if (sscanf(tok, "%llu", quotap))
9732 		*quotap *= NSEC_PER_USEC;
9733 	else if (!strcmp(tok, "max"))
9734 		*quotap = RUNTIME_INF;
9735 	else
9736 		return -EINVAL;
9737 
9738 	return 0;
9739 }
9740 
9741 #ifdef CONFIG_CFS_BANDWIDTH
9742 static int cpu_max_show(struct seq_file *sf, void *v)
9743 {
9744 	struct task_group *tg = css_tg(seq_css(sf));
9745 
9746 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
9747 	return 0;
9748 }
9749 
9750 static ssize_t cpu_max_write(struct kernfs_open_file *of,
9751 			     char *buf, size_t nbytes, loff_t off)
9752 {
9753 	struct task_group *tg = css_tg(of_css(of));
9754 	u64 period = tg_get_cfs_period(tg);
9755 	u64 burst = tg->cfs_bandwidth.burst;
9756 	u64 quota;
9757 	int ret;
9758 
9759 	ret = cpu_period_quota_parse(buf, &period, &quota);
9760 	if (!ret)
9761 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
9762 	return ret ?: nbytes;
9763 }
9764 #endif
9765 
9766 static struct cftype cpu_files[] = {
9767 #ifdef CONFIG_FAIR_GROUP_SCHED
9768 	{
9769 		.name = "weight",
9770 		.flags = CFTYPE_NOT_ON_ROOT,
9771 		.read_u64 = cpu_weight_read_u64,
9772 		.write_u64 = cpu_weight_write_u64,
9773 	},
9774 	{
9775 		.name = "weight.nice",
9776 		.flags = CFTYPE_NOT_ON_ROOT,
9777 		.read_s64 = cpu_weight_nice_read_s64,
9778 		.write_s64 = cpu_weight_nice_write_s64,
9779 	},
9780 	{
9781 		.name = "idle",
9782 		.flags = CFTYPE_NOT_ON_ROOT,
9783 		.read_s64 = cpu_idle_read_s64,
9784 		.write_s64 = cpu_idle_write_s64,
9785 	},
9786 #endif
9787 #ifdef CONFIG_CFS_BANDWIDTH
9788 	{
9789 		.name = "max",
9790 		.flags = CFTYPE_NOT_ON_ROOT,
9791 		.seq_show = cpu_max_show,
9792 		.write = cpu_max_write,
9793 	},
9794 	{
9795 		.name = "max.burst",
9796 		.flags = CFTYPE_NOT_ON_ROOT,
9797 		.read_u64 = cpu_cfs_burst_read_u64,
9798 		.write_u64 = cpu_cfs_burst_write_u64,
9799 	},
9800 #endif
9801 #ifdef CONFIG_UCLAMP_TASK_GROUP
9802 	{
9803 		.name = "uclamp.min",
9804 		.flags = CFTYPE_NOT_ON_ROOT,
9805 		.seq_show = cpu_uclamp_min_show,
9806 		.write = cpu_uclamp_min_write,
9807 	},
9808 	{
9809 		.name = "uclamp.max",
9810 		.flags = CFTYPE_NOT_ON_ROOT,
9811 		.seq_show = cpu_uclamp_max_show,
9812 		.write = cpu_uclamp_max_write,
9813 	},
9814 #endif
9815 	{ }	/* terminate */
9816 };
9817 
9818 struct cgroup_subsys cpu_cgrp_subsys = {
9819 	.css_alloc	= cpu_cgroup_css_alloc,
9820 	.css_online	= cpu_cgroup_css_online,
9821 	.css_released	= cpu_cgroup_css_released,
9822 	.css_free	= cpu_cgroup_css_free,
9823 	.css_extra_stat_show = cpu_extra_stat_show,
9824 	.css_local_stat_show = cpu_local_stat_show,
9825 #ifdef CONFIG_RT_GROUP_SCHED
9826 	.can_attach	= cpu_cgroup_can_attach,
9827 #endif
9828 	.attach		= cpu_cgroup_attach,
9829 	.legacy_cftypes	= cpu_legacy_files,
9830 	.dfl_cftypes	= cpu_files,
9831 	.early_init	= true,
9832 	.threaded	= true,
9833 };
9834 
9835 #endif	/* CONFIG_CGROUP_SCHED */
9836 
9837 void dump_cpu_task(int cpu)
9838 {
9839 	if (in_hardirq() && cpu == smp_processor_id()) {
9840 		struct pt_regs *regs;
9841 
9842 		regs = get_irq_regs();
9843 		if (regs) {
9844 			show_regs(regs);
9845 			return;
9846 		}
9847 	}
9848 
9849 	if (trigger_single_cpu_backtrace(cpu))
9850 		return;
9851 
9852 	pr_info("Task dump for CPU %d:\n", cpu);
9853 	sched_show_task(cpu_curr(cpu));
9854 }
9855 
9856 /*
9857  * Nice levels are multiplicative, with a gentle 10% change for every
9858  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
9859  * nice 1, it will get ~10% less CPU time than another CPU-bound task
9860  * that remained on nice 0.
9861  *
9862  * The "10% effect" is relative and cumulative: from _any_ nice level,
9863  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
9864  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
9865  * If a task goes up by ~10% and another task goes down by ~10% then
9866  * the relative distance between them is ~25%.)
9867  */
9868 const int sched_prio_to_weight[40] = {
9869  /* -20 */     88761,     71755,     56483,     46273,     36291,
9870  /* -15 */     29154,     23254,     18705,     14949,     11916,
9871  /* -10 */      9548,      7620,      6100,      4904,      3906,
9872  /*  -5 */      3121,      2501,      1991,      1586,      1277,
9873  /*   0 */      1024,       820,       655,       526,       423,
9874  /*   5 */       335,       272,       215,       172,       137,
9875  /*  10 */       110,        87,        70,        56,        45,
9876  /*  15 */        36,        29,        23,        18,        15,
9877 };
9878 
9879 /*
9880  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated.
9881  *
9882  * In cases where the weight does not change often, we can use the
9883  * pre-calculated inverse to speed up arithmetics by turning divisions
9884  * into multiplications:
9885  */
9886 const u32 sched_prio_to_wmult[40] = {
9887  /* -20 */     48388,     59856,     76040,     92818,    118348,
9888  /* -15 */    147320,    184698,    229616,    287308,    360437,
9889  /* -10 */    449829,    563644,    704093,    875809,   1099582,
9890  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
9891  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
9892  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
9893  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
9894  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
9895 };
9896 
9897 void call_trace_sched_update_nr_running(struct rq *rq, int count)
9898 {
9899         trace_sched_update_nr_running_tp(rq, count);
9900 }
9901 
9902 #ifdef CONFIG_SCHED_MM_CID
9903 
9904 /*
9905  * @cid_lock: Guarantee forward-progress of cid allocation.
9906  *
9907  * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
9908  * is only used when contention is detected by the lock-free allocation so
9909  * forward progress can be guaranteed.
9910  */
9911 DEFINE_RAW_SPINLOCK(cid_lock);
9912 
9913 /*
9914  * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
9915  *
9916  * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
9917  * detected, it is set to 1 to ensure that all newly coming allocations are
9918  * serialized by @cid_lock until the allocation which detected contention
9919  * completes and sets @use_cid_lock back to 0. This guarantees forward progress
9920  * of a cid allocation.
9921  */
9922 int use_cid_lock;
9923 
9924 /*
9925  * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
9926  * concurrently with respect to the execution of the source runqueue context
9927  * switch.
9928  *
9929  * There is one basic properties we want to guarantee here:
9930  *
9931  * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
9932  * used by a task. That would lead to concurrent allocation of the cid and
9933  * userspace corruption.
9934  *
9935  * Provide this guarantee by introducing a Dekker memory ordering to guarantee
9936  * that a pair of loads observe at least one of a pair of stores, which can be
9937  * shown as:
9938  *
9939  *      X = Y = 0
9940  *
9941  *      w[X]=1          w[Y]=1
9942  *      MB              MB
9943  *      r[Y]=y          r[X]=x
9944  *
9945  * Which guarantees that x==0 && y==0 is impossible. But rather than using
9946  * values 0 and 1, this algorithm cares about specific state transitions of the
9947  * runqueue current task (as updated by the scheduler context switch), and the
9948  * per-mm/cpu cid value.
9949  *
9950  * Let's introduce task (Y) which has task->mm == mm and task (N) which has
9951  * task->mm != mm for the rest of the discussion. There are two scheduler state
9952  * transitions on context switch we care about:
9953  *
9954  * (TSA) Store to rq->curr with transition from (N) to (Y)
9955  *
9956  * (TSB) Store to rq->curr with transition from (Y) to (N)
9957  *
9958  * On the remote-clear side, there is one transition we care about:
9959  *
9960  * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
9961  *
9962  * There is also a transition to UNSET state which can be performed from all
9963  * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
9964  * guarantees that only a single thread will succeed:
9965  *
9966  * (TMB) cmpxchg to *pcpu_cid to mark UNSET
9967  *
9968  * Just to be clear, what we do _not_ want to happen is a transition to UNSET
9969  * when a thread is actively using the cid (property (1)).
9970  *
9971  * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
9972  *
9973  * Scenario A) (TSA)+(TMA) (from next task perspective)
9974  *
9975  * CPU0                                      CPU1
9976  *
9977  * Context switch CS-1                       Remote-clear
9978  *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
9979  *                                             (implied barrier after cmpxchg)
9980  *   - switch_mm_cid()
9981  *     - memory barrier (see switch_mm_cid()
9982  *       comment explaining how this barrier
9983  *       is combined with other scheduler
9984  *       barriers)
9985  *     - mm_cid_get (next)
9986  *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
9987  *
9988  * This Dekker ensures that either task (Y) is observed by the
9989  * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
9990  * observed.
9991  *
9992  * If task (Y) store is observed by rcu_dereference(), it means that there is
9993  * still an active task on the cpu. Remote-clear will therefore not transition
9994  * to UNSET, which fulfills property (1).
9995  *
9996  * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
9997  * it will move its state to UNSET, which clears the percpu cid perhaps
9998  * uselessly (which is not an issue for correctness). Because task (Y) is not
9999  * observed, CPU1 can move ahead to set the state to UNSET. Because moving
10000  * state to UNSET is done with a cmpxchg expecting that the old state has the
10001  * LAZY flag set, only one thread will successfully UNSET.
10002  *
10003  * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
10004  * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
10005  * CPU1 will observe task (Y) and do nothing more, which is fine.
10006  *
10007  * What we are effectively preventing with this Dekker is a scenario where
10008  * neither LAZY flag nor store (Y) are observed, which would fail property (1)
10009  * because this would UNSET a cid which is actively used.
10010  */
10011 
10012 void sched_mm_cid_migrate_from(struct task_struct *t)
10013 {
10014 	t->migrate_from_cpu = task_cpu(t);
10015 }
10016 
10017 static
10018 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
10019 					  struct task_struct *t,
10020 					  struct mm_cid *src_pcpu_cid)
10021 {
10022 	struct mm_struct *mm = t->mm;
10023 	struct task_struct *src_task;
10024 	int src_cid, last_mm_cid;
10025 
10026 	if (!mm)
10027 		return -1;
10028 
10029 	last_mm_cid = t->last_mm_cid;
10030 	/*
10031 	 * If the migrated task has no last cid, or if the current
10032 	 * task on src rq uses the cid, it means the source cid does not need
10033 	 * to be moved to the destination cpu.
10034 	 */
10035 	if (last_mm_cid == -1)
10036 		return -1;
10037 	src_cid = READ_ONCE(src_pcpu_cid->cid);
10038 	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
10039 		return -1;
10040 
10041 	/*
10042 	 * If we observe an active task using the mm on this rq, it means we
10043 	 * are not the last task to be migrated from this cpu for this mm, so
10044 	 * there is no need to move src_cid to the destination cpu.
10045 	 */
10046 	guard(rcu)();
10047 	src_task = rcu_dereference(src_rq->curr);
10048 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10049 		t->last_mm_cid = -1;
10050 		return -1;
10051 	}
10052 
10053 	return src_cid;
10054 }
10055 
10056 static
10057 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
10058 					      struct task_struct *t,
10059 					      struct mm_cid *src_pcpu_cid,
10060 					      int src_cid)
10061 {
10062 	struct task_struct *src_task;
10063 	struct mm_struct *mm = t->mm;
10064 	int lazy_cid;
10065 
10066 	if (src_cid == -1)
10067 		return -1;
10068 
10069 	/*
10070 	 * Attempt to clear the source cpu cid to move it to the destination
10071 	 * cpu.
10072 	 */
10073 	lazy_cid = mm_cid_set_lazy_put(src_cid);
10074 	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
10075 		return -1;
10076 
10077 	/*
10078 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10079 	 * rq->curr->mm matches the scheduler barrier in context_switch()
10080 	 * between store to rq->curr and load of prev and next task's
10081 	 * per-mm/cpu cid.
10082 	 *
10083 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10084 	 * rq->curr->mm_cid_active matches the barrier in
10085 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10086 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10087 	 * load of per-mm/cpu cid.
10088 	 */
10089 
10090 	/*
10091 	 * If we observe an active task using the mm on this rq after setting
10092 	 * the lazy-put flag, this task will be responsible for transitioning
10093 	 * from lazy-put flag set to MM_CID_UNSET.
10094 	 */
10095 	scoped_guard (rcu) {
10096 		src_task = rcu_dereference(src_rq->curr);
10097 		if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10098 			/*
10099 			 * We observed an active task for this mm, there is therefore
10100 			 * no point in moving this cid to the destination cpu.
10101 			 */
10102 			t->last_mm_cid = -1;
10103 			return -1;
10104 		}
10105 	}
10106 
10107 	/*
10108 	 * The src_cid is unused, so it can be unset.
10109 	 */
10110 	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10111 		return -1;
10112 	return src_cid;
10113 }
10114 
10115 /*
10116  * Migration to dst cpu. Called with dst_rq lock held.
10117  * Interrupts are disabled, which keeps the window of cid ownership without the
10118  * source rq lock held small.
10119  */
10120 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
10121 {
10122 	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
10123 	struct mm_struct *mm = t->mm;
10124 	int src_cid, dst_cid, src_cpu;
10125 	struct rq *src_rq;
10126 
10127 	lockdep_assert_rq_held(dst_rq);
10128 
10129 	if (!mm)
10130 		return;
10131 	src_cpu = t->migrate_from_cpu;
10132 	if (src_cpu == -1) {
10133 		t->last_mm_cid = -1;
10134 		return;
10135 	}
10136 	/*
10137 	 * Move the src cid if the dst cid is unset. This keeps id
10138 	 * allocation closest to 0 in cases where few threads migrate around
10139 	 * many CPUs.
10140 	 *
10141 	 * If destination cid is already set, we may have to just clear
10142 	 * the src cid to ensure compactness in frequent migrations
10143 	 * scenarios.
10144 	 *
10145 	 * It is not useful to clear the src cid when the number of threads is
10146 	 * greater or equal to the number of allowed CPUs, because user-space
10147 	 * can expect that the number of allowed cids can reach the number of
10148 	 * allowed CPUs.
10149 	 */
10150 	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
10151 	dst_cid = READ_ONCE(dst_pcpu_cid->cid);
10152 	if (!mm_cid_is_unset(dst_cid) &&
10153 	    atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
10154 		return;
10155 	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
10156 	src_rq = cpu_rq(src_cpu);
10157 	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
10158 	if (src_cid == -1)
10159 		return;
10160 	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
10161 							    src_cid);
10162 	if (src_cid == -1)
10163 		return;
10164 	if (!mm_cid_is_unset(dst_cid)) {
10165 		__mm_cid_put(mm, src_cid);
10166 		return;
10167 	}
10168 	/* Move src_cid to dst cpu. */
10169 	mm_cid_snapshot_time(dst_rq, mm);
10170 	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
10171 }
10172 
10173 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
10174 				      int cpu)
10175 {
10176 	struct rq *rq = cpu_rq(cpu);
10177 	struct task_struct *t;
10178 	int cid, lazy_cid;
10179 
10180 	cid = READ_ONCE(pcpu_cid->cid);
10181 	if (!mm_cid_is_valid(cid))
10182 		return;
10183 
10184 	/*
10185 	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
10186 	 * there happens to be other tasks left on the source cpu using this
10187 	 * mm, the next task using this mm will reallocate its cid on context
10188 	 * switch.
10189 	 */
10190 	lazy_cid = mm_cid_set_lazy_put(cid);
10191 	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
10192 		return;
10193 
10194 	/*
10195 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10196 	 * rq->curr->mm matches the scheduler barrier in context_switch()
10197 	 * between store to rq->curr and load of prev and next task's
10198 	 * per-mm/cpu cid.
10199 	 *
10200 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10201 	 * rq->curr->mm_cid_active matches the barrier in
10202 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10203 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10204 	 * load of per-mm/cpu cid.
10205 	 */
10206 
10207 	/*
10208 	 * If we observe an active task using the mm on this rq after setting
10209 	 * the lazy-put flag, that task will be responsible for transitioning
10210 	 * from lazy-put flag set to MM_CID_UNSET.
10211 	 */
10212 	scoped_guard (rcu) {
10213 		t = rcu_dereference(rq->curr);
10214 		if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
10215 			return;
10216 	}
10217 
10218 	/*
10219 	 * The cid is unused, so it can be unset.
10220 	 * Disable interrupts to keep the window of cid ownership without rq
10221 	 * lock small.
10222 	 */
10223 	scoped_guard (irqsave) {
10224 		if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10225 			__mm_cid_put(mm, cid);
10226 	}
10227 }
10228 
10229 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
10230 {
10231 	struct rq *rq = cpu_rq(cpu);
10232 	struct mm_cid *pcpu_cid;
10233 	struct task_struct *curr;
10234 	u64 rq_clock;
10235 
10236 	/*
10237 	 * rq->clock load is racy on 32-bit but one spurious clear once in a
10238 	 * while is irrelevant.
10239 	 */
10240 	rq_clock = READ_ONCE(rq->clock);
10241 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10242 
10243 	/*
10244 	 * In order to take care of infrequently scheduled tasks, bump the time
10245 	 * snapshot associated with this cid if an active task using the mm is
10246 	 * observed on this rq.
10247 	 */
10248 	scoped_guard (rcu) {
10249 		curr = rcu_dereference(rq->curr);
10250 		if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
10251 			WRITE_ONCE(pcpu_cid->time, rq_clock);
10252 			return;
10253 		}
10254 	}
10255 
10256 	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
10257 		return;
10258 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10259 }
10260 
10261 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
10262 					     int weight)
10263 {
10264 	struct mm_cid *pcpu_cid;
10265 	int cid;
10266 
10267 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10268 	cid = READ_ONCE(pcpu_cid->cid);
10269 	if (!mm_cid_is_valid(cid) || cid < weight)
10270 		return;
10271 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10272 }
10273 
10274 static void task_mm_cid_work(struct callback_head *work)
10275 {
10276 	unsigned long now = jiffies, old_scan, next_scan;
10277 	struct task_struct *t = current;
10278 	struct cpumask *cidmask;
10279 	struct mm_struct *mm;
10280 	int weight, cpu;
10281 
10282 	SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
10283 
10284 	work->next = work;	/* Prevent double-add */
10285 	if (t->flags & PF_EXITING)
10286 		return;
10287 	mm = t->mm;
10288 	if (!mm)
10289 		return;
10290 	old_scan = READ_ONCE(mm->mm_cid_next_scan);
10291 	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10292 	if (!old_scan) {
10293 		unsigned long res;
10294 
10295 		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
10296 		if (res != old_scan)
10297 			old_scan = res;
10298 		else
10299 			old_scan = next_scan;
10300 	}
10301 	if (time_before(now, old_scan))
10302 		return;
10303 	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
10304 		return;
10305 	cidmask = mm_cidmask(mm);
10306 	/* Clear cids that were not recently used. */
10307 	for_each_possible_cpu(cpu)
10308 		sched_mm_cid_remote_clear_old(mm, cpu);
10309 	weight = cpumask_weight(cidmask);
10310 	/*
10311 	 * Clear cids that are greater or equal to the cidmask weight to
10312 	 * recompact it.
10313 	 */
10314 	for_each_possible_cpu(cpu)
10315 		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
10316 }
10317 
10318 void init_sched_mm_cid(struct task_struct *t)
10319 {
10320 	struct mm_struct *mm = t->mm;
10321 	int mm_users = 0;
10322 
10323 	if (mm) {
10324 		mm_users = atomic_read(&mm->mm_users);
10325 		if (mm_users == 1)
10326 			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10327 	}
10328 	t->cid_work.next = &t->cid_work;	/* Protect against double add */
10329 	init_task_work(&t->cid_work, task_mm_cid_work);
10330 }
10331 
10332 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
10333 {
10334 	struct callback_head *work = &curr->cid_work;
10335 	unsigned long now = jiffies;
10336 
10337 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
10338 	    work->next != work)
10339 		return;
10340 	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
10341 		return;
10342 	task_work_add(curr, work, TWA_RESUME);
10343 }
10344 
10345 void sched_mm_cid_exit_signals(struct task_struct *t)
10346 {
10347 	struct mm_struct *mm = t->mm;
10348 	struct rq *rq;
10349 
10350 	if (!mm)
10351 		return;
10352 
10353 	preempt_disable();
10354 	rq = this_rq();
10355 	guard(rq_lock_irqsave)(rq);
10356 	preempt_enable_no_resched();	/* holding spinlock */
10357 	WRITE_ONCE(t->mm_cid_active, 0);
10358 	/*
10359 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10360 	 * Matches barrier in sched_mm_cid_remote_clear_old().
10361 	 */
10362 	smp_mb();
10363 	mm_cid_put(mm);
10364 	t->last_mm_cid = t->mm_cid = -1;
10365 }
10366 
10367 void sched_mm_cid_before_execve(struct task_struct *t)
10368 {
10369 	struct mm_struct *mm = t->mm;
10370 	struct rq *rq;
10371 
10372 	if (!mm)
10373 		return;
10374 
10375 	preempt_disable();
10376 	rq = this_rq();
10377 	guard(rq_lock_irqsave)(rq);
10378 	preempt_enable_no_resched();	/* holding spinlock */
10379 	WRITE_ONCE(t->mm_cid_active, 0);
10380 	/*
10381 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10382 	 * Matches barrier in sched_mm_cid_remote_clear_old().
10383 	 */
10384 	smp_mb();
10385 	mm_cid_put(mm);
10386 	t->last_mm_cid = t->mm_cid = -1;
10387 }
10388 
10389 void sched_mm_cid_after_execve(struct task_struct *t)
10390 {
10391 	struct mm_struct *mm = t->mm;
10392 	struct rq *rq;
10393 
10394 	if (!mm)
10395 		return;
10396 
10397 	preempt_disable();
10398 	rq = this_rq();
10399 	scoped_guard (rq_lock_irqsave, rq) {
10400 		preempt_enable_no_resched();	/* holding spinlock */
10401 		WRITE_ONCE(t->mm_cid_active, 1);
10402 		/*
10403 		 * Store t->mm_cid_active before loading per-mm/cpu cid.
10404 		 * Matches barrier in sched_mm_cid_remote_clear_old().
10405 		 */
10406 		smp_mb();
10407 		t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
10408 	}
10409 	rseq_set_notify_resume(t);
10410 }
10411 
10412 void sched_mm_cid_fork(struct task_struct *t)
10413 {
10414 	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
10415 	t->mm_cid_active = 1;
10416 }
10417 #endif
10418