1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4 * policies)
5 */
6
7 #include "sched.h"
8 #include "pelt.h"
9
10 int sched_rr_timeslice = RR_TIMESLICE;
11 /* More than 4 hours if BW_SHIFT equals 20. */
12 static const u64 max_rt_runtime = MAX_BW;
13
14 /*
15 * period over which we measure -rt task CPU usage in us.
16 * default: 1s
17 */
18 int sysctl_sched_rt_period = 1000000;
19
20 /*
21 * part of the period that we allow rt tasks to run in us.
22 * default: 0.95s
23 */
24 int sysctl_sched_rt_runtime = 950000;
25
26 #ifdef CONFIG_SYSCTL
27 static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ;
28 static int sched_rt_handler(const struct ctl_table *table, int write, void *buffer,
29 size_t *lenp, loff_t *ppos);
30 static int sched_rr_handler(const struct ctl_table *table, int write, void *buffer,
31 size_t *lenp, loff_t *ppos);
32 static const struct ctl_table sched_rt_sysctls[] = {
33 {
34 .procname = "sched_rt_period_us",
35 .data = &sysctl_sched_rt_period,
36 .maxlen = sizeof(int),
37 .mode = 0644,
38 .proc_handler = sched_rt_handler,
39 .extra1 = SYSCTL_ONE,
40 .extra2 = SYSCTL_INT_MAX,
41 },
42 {
43 .procname = "sched_rt_runtime_us",
44 .data = &sysctl_sched_rt_runtime,
45 .maxlen = sizeof(int),
46 .mode = 0644,
47 .proc_handler = sched_rt_handler,
48 .extra1 = SYSCTL_NEG_ONE,
49 .extra2 = (void *)&sysctl_sched_rt_period,
50 },
51 {
52 .procname = "sched_rr_timeslice_ms",
53 .data = &sysctl_sched_rr_timeslice,
54 .maxlen = sizeof(int),
55 .mode = 0644,
56 .proc_handler = sched_rr_handler,
57 },
58 };
59
sched_rt_sysctl_init(void)60 static int __init sched_rt_sysctl_init(void)
61 {
62 register_sysctl_init("kernel", sched_rt_sysctls);
63 return 0;
64 }
65 late_initcall(sched_rt_sysctl_init);
66 #endif /* CONFIG_SYSCTL */
67
init_rt_rq(struct rt_rq * rt_rq)68 void init_rt_rq(struct rt_rq *rt_rq)
69 {
70 struct rt_prio_array *array;
71 int i;
72
73 array = &rt_rq->active;
74 for (i = 0; i < MAX_RT_PRIO; i++) {
75 INIT_LIST_HEAD(array->queue + i);
76 __clear_bit(i, array->bitmap);
77 }
78 /* delimiter for bitsearch: */
79 __set_bit(MAX_RT_PRIO, array->bitmap);
80
81 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
82 rt_rq->highest_prio.next = MAX_RT_PRIO-1;
83 rt_rq->overloaded = 0;
84 plist_head_init(&rt_rq->pushable_tasks);
85 /* We start is dequeued state, because no RT tasks are queued */
86 rt_rq->rt_queued = 0;
87
88 #ifdef CONFIG_RT_GROUP_SCHED
89 rt_rq->rt_time = 0;
90 rt_rq->rt_throttled = 0;
91 rt_rq->rt_runtime = 0;
92 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
93 rt_rq->tg = &root_task_group;
94 #endif
95 }
96
97 #ifdef CONFIG_RT_GROUP_SCHED
98
99 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
100
sched_rt_period_timer(struct hrtimer * timer)101 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
102 {
103 struct rt_bandwidth *rt_b =
104 container_of(timer, struct rt_bandwidth, rt_period_timer);
105 int idle = 0;
106 int overrun;
107
108 raw_spin_lock(&rt_b->rt_runtime_lock);
109 for (;;) {
110 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
111 if (!overrun)
112 break;
113
114 raw_spin_unlock(&rt_b->rt_runtime_lock);
115 idle = do_sched_rt_period_timer(rt_b, overrun);
116 raw_spin_lock(&rt_b->rt_runtime_lock);
117 }
118 if (idle)
119 rt_b->rt_period_active = 0;
120 raw_spin_unlock(&rt_b->rt_runtime_lock);
121
122 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
123 }
124
init_rt_bandwidth(struct rt_bandwidth * rt_b,u64 period,u64 runtime)125 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
126 {
127 rt_b->rt_period = ns_to_ktime(period);
128 rt_b->rt_runtime = runtime;
129
130 raw_spin_lock_init(&rt_b->rt_runtime_lock);
131
132 hrtimer_setup(&rt_b->rt_period_timer, sched_rt_period_timer, CLOCK_MONOTONIC,
133 HRTIMER_MODE_REL_HARD);
134 }
135
do_start_rt_bandwidth(struct rt_bandwidth * rt_b)136 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
137 {
138 raw_spin_lock(&rt_b->rt_runtime_lock);
139 if (!rt_b->rt_period_active) {
140 rt_b->rt_period_active = 1;
141 /*
142 * SCHED_DEADLINE updates the bandwidth, as a run away
143 * RT task with a DL task could hog a CPU. But DL does
144 * not reset the period. If a deadline task was running
145 * without an RT task running, it can cause RT tasks to
146 * throttle when they start up. Kick the timer right away
147 * to update the period.
148 */
149 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
150 hrtimer_start_expires(&rt_b->rt_period_timer,
151 HRTIMER_MODE_ABS_PINNED_HARD);
152 }
153 raw_spin_unlock(&rt_b->rt_runtime_lock);
154 }
155
start_rt_bandwidth(struct rt_bandwidth * rt_b)156 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
157 {
158 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
159 return;
160
161 do_start_rt_bandwidth(rt_b);
162 }
163
destroy_rt_bandwidth(struct rt_bandwidth * rt_b)164 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
165 {
166 hrtimer_cancel(&rt_b->rt_period_timer);
167 }
168
169 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
170
rt_task_of(struct sched_rt_entity * rt_se)171 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
172 {
173 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
174
175 return container_of(rt_se, struct task_struct, rt);
176 }
177
rq_of_rt_rq(struct rt_rq * rt_rq)178 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
179 {
180 /* Cannot fold with non-CONFIG_RT_GROUP_SCHED version, layout */
181 WARN_ON(!rt_group_sched_enabled() && rt_rq->tg != &root_task_group);
182 return rt_rq->rq;
183 }
184
rt_rq_of_se(struct sched_rt_entity * rt_se)185 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
186 {
187 WARN_ON(!rt_group_sched_enabled() && rt_se->rt_rq->tg != &root_task_group);
188 return rt_se->rt_rq;
189 }
190
rq_of_rt_se(struct sched_rt_entity * rt_se)191 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
192 {
193 struct rt_rq *rt_rq = rt_se->rt_rq;
194
195 WARN_ON(!rt_group_sched_enabled() && rt_rq->tg != &root_task_group);
196 return rt_rq->rq;
197 }
198
unregister_rt_sched_group(struct task_group * tg)199 void unregister_rt_sched_group(struct task_group *tg)
200 {
201 if (!rt_group_sched_enabled())
202 return;
203
204 if (tg->rt_se)
205 destroy_rt_bandwidth(&tg->rt_bandwidth);
206 }
207
free_rt_sched_group(struct task_group * tg)208 void free_rt_sched_group(struct task_group *tg)
209 {
210 int i;
211
212 if (!rt_group_sched_enabled())
213 return;
214
215 for_each_possible_cpu(i) {
216 if (tg->rt_rq)
217 kfree(tg->rt_rq[i]);
218 if (tg->rt_se)
219 kfree(tg->rt_se[i]);
220 }
221
222 kfree(tg->rt_rq);
223 kfree(tg->rt_se);
224 }
225
init_tg_rt_entry(struct task_group * tg,struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int cpu,struct sched_rt_entity * parent)226 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
227 struct sched_rt_entity *rt_se, int cpu,
228 struct sched_rt_entity *parent)
229 {
230 struct rq *rq = cpu_rq(cpu);
231
232 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
233 rt_rq->rt_nr_boosted = 0;
234 rt_rq->rq = rq;
235 rt_rq->tg = tg;
236
237 tg->rt_rq[cpu] = rt_rq;
238 tg->rt_se[cpu] = rt_se;
239
240 if (!rt_se)
241 return;
242
243 if (!parent)
244 rt_se->rt_rq = &rq->rt;
245 else
246 rt_se->rt_rq = parent->my_q;
247
248 rt_se->my_q = rt_rq;
249 rt_se->parent = parent;
250 INIT_LIST_HEAD(&rt_se->run_list);
251 }
252
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)253 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
254 {
255 struct rt_rq *rt_rq;
256 struct sched_rt_entity *rt_se;
257 int i;
258
259 if (!rt_group_sched_enabled())
260 return 1;
261
262 tg->rt_rq = kzalloc_objs(rt_rq, nr_cpu_ids, GFP_KERNEL);
263 if (!tg->rt_rq)
264 goto err;
265 tg->rt_se = kzalloc_objs(rt_se, nr_cpu_ids, GFP_KERNEL);
266 if (!tg->rt_se)
267 goto err;
268
269 init_rt_bandwidth(&tg->rt_bandwidth, ktime_to_ns(global_rt_period()), 0);
270
271 for_each_possible_cpu(i) {
272 rt_rq = kzalloc_node(sizeof(struct rt_rq),
273 GFP_KERNEL, cpu_to_node(i));
274 if (!rt_rq)
275 goto err;
276
277 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
278 GFP_KERNEL, cpu_to_node(i));
279 if (!rt_se)
280 goto err_free_rq;
281
282 init_rt_rq(rt_rq);
283 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
284 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
285 }
286
287 return 1;
288
289 err_free_rq:
290 kfree(rt_rq);
291 err:
292 return 0;
293 }
294
295 #else /* !CONFIG_RT_GROUP_SCHED: */
296
297 #define rt_entity_is_task(rt_se) (1)
298
rt_task_of(struct sched_rt_entity * rt_se)299 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
300 {
301 return container_of(rt_se, struct task_struct, rt);
302 }
303
rq_of_rt_rq(struct rt_rq * rt_rq)304 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
305 {
306 return container_of(rt_rq, struct rq, rt);
307 }
308
rq_of_rt_se(struct sched_rt_entity * rt_se)309 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
310 {
311 struct task_struct *p = rt_task_of(rt_se);
312
313 return task_rq(p);
314 }
315
rt_rq_of_se(struct sched_rt_entity * rt_se)316 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
317 {
318 struct rq *rq = rq_of_rt_se(rt_se);
319
320 return &rq->rt;
321 }
322
unregister_rt_sched_group(struct task_group * tg)323 void unregister_rt_sched_group(struct task_group *tg) { }
324
free_rt_sched_group(struct task_group * tg)325 void free_rt_sched_group(struct task_group *tg) { }
326
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)327 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
328 {
329 return 1;
330 }
331 #endif /* !CONFIG_RT_GROUP_SCHED */
332
need_pull_rt_task(struct rq * rq,struct task_struct * prev)333 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
334 {
335 /* Try to pull RT tasks here if we lower this rq's prio */
336 return rq->online && rq->rt.highest_prio.curr > prev->prio;
337 }
338
rt_overloaded(struct rq * rq)339 static inline int rt_overloaded(struct rq *rq)
340 {
341 return atomic_read(&rq->rd->rto_count);
342 }
343
rt_set_overload(struct rq * rq)344 static inline void rt_set_overload(struct rq *rq)
345 {
346 if (!rq->online)
347 return;
348
349 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
350 /*
351 * Make sure the mask is visible before we set
352 * the overload count. That is checked to determine
353 * if we should look at the mask. It would be a shame
354 * if we looked at the mask, but the mask was not
355 * updated yet.
356 *
357 * Matched by the barrier in pull_rt_task().
358 */
359 smp_wmb();
360 atomic_inc(&rq->rd->rto_count);
361 }
362
rt_clear_overload(struct rq * rq)363 static inline void rt_clear_overload(struct rq *rq)
364 {
365 if (!rq->online)
366 return;
367
368 /* the order here really doesn't matter */
369 atomic_dec(&rq->rd->rto_count);
370 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
371 }
372
has_pushable_tasks(struct rq * rq)373 static inline int has_pushable_tasks(struct rq *rq)
374 {
375 return !plist_head_empty(&rq->rt.pushable_tasks);
376 }
377
378 static DEFINE_PER_CPU(struct balance_callback, rt_push_head);
379 static DEFINE_PER_CPU(struct balance_callback, rt_pull_head);
380
381 static void push_rt_tasks(struct rq *);
382 static void pull_rt_task(struct rq *);
383
rt_queue_push_tasks(struct rq * rq)384 static inline void rt_queue_push_tasks(struct rq *rq)
385 {
386 if (!has_pushable_tasks(rq))
387 return;
388
389 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
390 }
391
rt_queue_pull_task(struct rq * rq)392 static inline void rt_queue_pull_task(struct rq *rq)
393 {
394 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
395 }
396
enqueue_pushable_task(struct rq * rq,struct task_struct * p)397 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
398 {
399 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
400 plist_node_init(&p->pushable_tasks, p->prio);
401 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
402
403 /* Update the highest prio pushable task */
404 if (p->prio < rq->rt.highest_prio.next)
405 rq->rt.highest_prio.next = p->prio;
406
407 if (!rq->rt.overloaded) {
408 rt_set_overload(rq);
409 rq->rt.overloaded = 1;
410 }
411 }
412
dequeue_pushable_task(struct rq * rq,struct task_struct * p)413 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
414 {
415 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
416
417 /* Update the new highest prio pushable task */
418 if (has_pushable_tasks(rq)) {
419 p = plist_first_entry(&rq->rt.pushable_tasks,
420 struct task_struct, pushable_tasks);
421 rq->rt.highest_prio.next = p->prio;
422 } else {
423 rq->rt.highest_prio.next = MAX_RT_PRIO-1;
424
425 if (rq->rt.overloaded) {
426 rt_clear_overload(rq);
427 rq->rt.overloaded = 0;
428 }
429 }
430 }
431
432 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
433 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
434
on_rt_rq(struct sched_rt_entity * rt_se)435 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
436 {
437 return rt_se->on_rq;
438 }
439
440 #ifdef CONFIG_UCLAMP_TASK
441 /*
442 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
443 * settings.
444 *
445 * This check is only important for heterogeneous systems where uclamp_min value
446 * is higher than the capacity of a @cpu. For non-heterogeneous system this
447 * function will always return true.
448 *
449 * The function will return true if the capacity of the @cpu is >= the
450 * uclamp_min and false otherwise.
451 *
452 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
453 * > uclamp_max.
454 */
rt_task_fits_capacity(struct task_struct * p,int cpu)455 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
456 {
457 unsigned int min_cap;
458 unsigned int max_cap;
459 unsigned int cpu_cap;
460
461 /* Only heterogeneous systems can benefit from this check */
462 if (!sched_asym_cpucap_active())
463 return true;
464
465 min_cap = uclamp_eff_value(p, UCLAMP_MIN);
466 max_cap = uclamp_eff_value(p, UCLAMP_MAX);
467
468 cpu_cap = arch_scale_cpu_capacity(cpu);
469
470 return cpu_cap >= min(min_cap, max_cap);
471 }
472 #else /* !CONFIG_UCLAMP_TASK: */
rt_task_fits_capacity(struct task_struct * p,int cpu)473 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
474 {
475 return true;
476 }
477 #endif /* !CONFIG_UCLAMP_TASK */
478
479 #ifdef CONFIG_RT_GROUP_SCHED
480
sched_rt_runtime(struct rt_rq * rt_rq)481 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
482 {
483 return rt_rq->rt_runtime;
484 }
485
sched_rt_period(struct rt_rq * rt_rq)486 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
487 {
488 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
489 }
490
491 typedef struct task_group *rt_rq_iter_t;
492
next_task_group(struct task_group * tg)493 static inline struct task_group *next_task_group(struct task_group *tg)
494 {
495 if (!rt_group_sched_enabled()) {
496 WARN_ON(tg != &root_task_group);
497 return NULL;
498 }
499
500 do {
501 tg = list_entry_rcu(tg->list.next,
502 typeof(struct task_group), list);
503 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
504
505 if (&tg->list == &task_groups)
506 tg = NULL;
507
508 return tg;
509 }
510
511 #define for_each_rt_rq(rt_rq, iter, rq) \
512 for (iter = &root_task_group; \
513 iter && (rt_rq = iter->rt_rq[cpu_of(rq)]); \
514 iter = next_task_group(iter))
515
516 #define for_each_sched_rt_entity(rt_se) \
517 for (; rt_se; rt_se = rt_se->parent)
518
group_rt_rq(struct sched_rt_entity * rt_se)519 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
520 {
521 return rt_se->my_q;
522 }
523
524 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
525 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
526
sched_rt_rq_enqueue(struct rt_rq * rt_rq)527 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
528 {
529 struct task_struct *donor = rq_of_rt_rq(rt_rq)->donor;
530 struct rq *rq = rq_of_rt_rq(rt_rq);
531 struct sched_rt_entity *rt_se;
532
533 int cpu = cpu_of(rq);
534
535 rt_se = rt_rq->tg->rt_se[cpu];
536
537 if (rt_rq->rt_nr_running) {
538 if (!rt_se)
539 enqueue_top_rt_rq(rt_rq);
540 else if (!on_rt_rq(rt_se))
541 enqueue_rt_entity(rt_se, 0);
542
543 if (rt_rq->highest_prio.curr < donor->prio)
544 resched_curr(rq);
545 }
546 }
547
sched_rt_rq_dequeue(struct rt_rq * rt_rq)548 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
549 {
550 struct sched_rt_entity *rt_se;
551 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
552
553 rt_se = rt_rq->tg->rt_se[cpu];
554
555 if (!rt_se) {
556 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
557 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
558 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
559 }
560 else if (on_rt_rq(rt_se))
561 dequeue_rt_entity(rt_se, 0);
562 }
563
rt_rq_throttled(struct rt_rq * rt_rq)564 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
565 {
566 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
567 }
568
rt_se_boosted(struct sched_rt_entity * rt_se)569 static int rt_se_boosted(struct sched_rt_entity *rt_se)
570 {
571 struct rt_rq *rt_rq = group_rt_rq(rt_se);
572 struct task_struct *p;
573
574 if (rt_rq)
575 return !!rt_rq->rt_nr_boosted;
576
577 p = rt_task_of(rt_se);
578 return p->prio != p->normal_prio;
579 }
580
sched_rt_period_mask(void)581 static inline const struct cpumask *sched_rt_period_mask(void)
582 {
583 return this_rq()->rd->span;
584 }
585
586 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)587 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
588 {
589 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
590 }
591
sched_rt_bandwidth(struct rt_rq * rt_rq)592 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
593 {
594 return &rt_rq->tg->rt_bandwidth;
595 }
596
sched_rt_bandwidth_account(struct rt_rq * rt_rq)597 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
598 {
599 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
600
601 return (hrtimer_active(&rt_b->rt_period_timer) ||
602 rt_rq->rt_time < rt_b->rt_runtime);
603 }
604
605 /*
606 * We ran out of runtime, see if we can borrow some from our neighbours.
607 */
do_balance_runtime(struct rt_rq * rt_rq)608 static void do_balance_runtime(struct rt_rq *rt_rq)
609 {
610 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
611 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
612 int i, weight;
613 u64 rt_period;
614
615 weight = cpumask_weight(rd->span);
616
617 raw_spin_lock(&rt_b->rt_runtime_lock);
618 rt_period = ktime_to_ns(rt_b->rt_period);
619 for_each_cpu(i, rd->span) {
620 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
621 s64 diff;
622
623 if (iter == rt_rq)
624 continue;
625
626 raw_spin_lock(&iter->rt_runtime_lock);
627 /*
628 * Either all rqs have inf runtime and there's nothing to steal
629 * or __disable_runtime() below sets a specific rq to inf to
630 * indicate its been disabled and disallow stealing.
631 */
632 if (iter->rt_runtime == RUNTIME_INF)
633 goto next;
634
635 /*
636 * From runqueues with spare time, take 1/n part of their
637 * spare time, but no more than our period.
638 */
639 diff = iter->rt_runtime - iter->rt_time;
640 if (diff > 0) {
641 diff = div_u64((u64)diff, weight);
642 if (rt_rq->rt_runtime + diff > rt_period)
643 diff = rt_period - rt_rq->rt_runtime;
644 iter->rt_runtime -= diff;
645 rt_rq->rt_runtime += diff;
646 if (rt_rq->rt_runtime == rt_period) {
647 raw_spin_unlock(&iter->rt_runtime_lock);
648 break;
649 }
650 }
651 next:
652 raw_spin_unlock(&iter->rt_runtime_lock);
653 }
654 raw_spin_unlock(&rt_b->rt_runtime_lock);
655 }
656
657 /*
658 * Ensure this RQ takes back all the runtime it lend to its neighbours.
659 */
__disable_runtime(struct rq * rq)660 static void __disable_runtime(struct rq *rq)
661 {
662 struct root_domain *rd = rq->rd;
663 rt_rq_iter_t iter;
664 struct rt_rq *rt_rq;
665
666 if (unlikely(!scheduler_running))
667 return;
668
669 for_each_rt_rq(rt_rq, iter, rq) {
670 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
671 s64 want;
672 int i;
673
674 raw_spin_lock(&rt_b->rt_runtime_lock);
675 raw_spin_lock(&rt_rq->rt_runtime_lock);
676 /*
677 * Either we're all inf and nobody needs to borrow, or we're
678 * already disabled and thus have nothing to do, or we have
679 * exactly the right amount of runtime to take out.
680 */
681 if (rt_rq->rt_runtime == RUNTIME_INF ||
682 rt_rq->rt_runtime == rt_b->rt_runtime)
683 goto balanced;
684 raw_spin_unlock(&rt_rq->rt_runtime_lock);
685
686 /*
687 * Calculate the difference between what we started out with
688 * and what we current have, that's the amount of runtime
689 * we lend and now have to reclaim.
690 */
691 want = rt_b->rt_runtime - rt_rq->rt_runtime;
692
693 /*
694 * Greedy reclaim, take back as much as we can.
695 */
696 for_each_cpu(i, rd->span) {
697 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
698 s64 diff;
699
700 /*
701 * Can't reclaim from ourselves or disabled runqueues.
702 */
703 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
704 continue;
705
706 raw_spin_lock(&iter->rt_runtime_lock);
707 if (want > 0) {
708 diff = min_t(s64, iter->rt_runtime, want);
709 iter->rt_runtime -= diff;
710 want -= diff;
711 } else {
712 iter->rt_runtime -= want;
713 want -= want;
714 }
715 raw_spin_unlock(&iter->rt_runtime_lock);
716
717 if (!want)
718 break;
719 }
720
721 raw_spin_lock(&rt_rq->rt_runtime_lock);
722 /*
723 * We cannot be left wanting - that would mean some runtime
724 * leaked out of the system.
725 */
726 WARN_ON_ONCE(want);
727 balanced:
728 /*
729 * Disable all the borrow logic by pretending we have inf
730 * runtime - in which case borrowing doesn't make sense.
731 */
732 rt_rq->rt_runtime = RUNTIME_INF;
733 rt_rq->rt_throttled = 0;
734 raw_spin_unlock(&rt_rq->rt_runtime_lock);
735 raw_spin_unlock(&rt_b->rt_runtime_lock);
736
737 /* Make rt_rq available for pick_next_task() */
738 sched_rt_rq_enqueue(rt_rq);
739 }
740 }
741
__enable_runtime(struct rq * rq)742 static void __enable_runtime(struct rq *rq)
743 {
744 rt_rq_iter_t iter;
745 struct rt_rq *rt_rq;
746
747 if (unlikely(!scheduler_running))
748 return;
749
750 /*
751 * Reset each runqueue's bandwidth settings
752 */
753 for_each_rt_rq(rt_rq, iter, rq) {
754 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
755
756 raw_spin_lock(&rt_b->rt_runtime_lock);
757 raw_spin_lock(&rt_rq->rt_runtime_lock);
758 rt_rq->rt_runtime = rt_b->rt_runtime;
759 rt_rq->rt_time = 0;
760 rt_rq->rt_throttled = 0;
761 raw_spin_unlock(&rt_rq->rt_runtime_lock);
762 raw_spin_unlock(&rt_b->rt_runtime_lock);
763 }
764 }
765
balance_runtime(struct rt_rq * rt_rq)766 static void balance_runtime(struct rt_rq *rt_rq)
767 {
768 if (!sched_feat(RT_RUNTIME_SHARE))
769 return;
770
771 if (rt_rq->rt_time > rt_rq->rt_runtime) {
772 raw_spin_unlock(&rt_rq->rt_runtime_lock);
773 do_balance_runtime(rt_rq);
774 raw_spin_lock(&rt_rq->rt_runtime_lock);
775 }
776 }
777
do_sched_rt_period_timer(struct rt_bandwidth * rt_b,int overrun)778 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
779 {
780 int i, idle = 1, throttled = 0;
781 const struct cpumask *span;
782
783 span = sched_rt_period_mask();
784
785 /*
786 * FIXME: isolated CPUs should really leave the root task group,
787 * whether they are isolcpus or were isolated via cpusets, lest
788 * the timer run on a CPU which does not service all runqueues,
789 * potentially leaving other CPUs indefinitely throttled. If
790 * isolation is really required, the user will turn the throttle
791 * off to kill the perturbations it causes anyway. Meanwhile,
792 * this maintains functionality for boot and/or troubleshooting.
793 */
794 if (rt_b == &root_task_group.rt_bandwidth)
795 span = cpu_online_mask;
796
797 for_each_cpu(i, span) {
798 int enqueue = 0;
799 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
800 struct rq *rq = rq_of_rt_rq(rt_rq);
801 struct rq_flags rf;
802 int skip;
803
804 /*
805 * When span == cpu_online_mask, taking each rq->lock
806 * can be time-consuming. Try to avoid it when possible.
807 */
808 raw_spin_lock(&rt_rq->rt_runtime_lock);
809 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
810 rt_rq->rt_runtime = rt_b->rt_runtime;
811 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
812 raw_spin_unlock(&rt_rq->rt_runtime_lock);
813 if (skip)
814 continue;
815
816 rq_lock(rq, &rf);
817 update_rq_clock(rq);
818
819 if (rt_rq->rt_time) {
820 u64 runtime;
821
822 raw_spin_lock(&rt_rq->rt_runtime_lock);
823 if (rt_rq->rt_throttled)
824 balance_runtime(rt_rq);
825 runtime = rt_rq->rt_runtime;
826 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
827 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
828 rt_rq->rt_throttled = 0;
829 enqueue = 1;
830
831 /*
832 * When we're idle and a woken (rt) task is
833 * throttled wakeup_preempt() will set
834 * skip_update and the time between the wakeup
835 * and this unthrottle will get accounted as
836 * 'runtime'.
837 */
838 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
839 rq_clock_cancel_skipupdate(rq);
840 }
841 if (rt_rq->rt_time || rt_rq->rt_nr_running)
842 idle = 0;
843 raw_spin_unlock(&rt_rq->rt_runtime_lock);
844 } else if (rt_rq->rt_nr_running) {
845 idle = 0;
846 if (!rt_rq_throttled(rt_rq))
847 enqueue = 1;
848 }
849 if (rt_rq->rt_throttled)
850 throttled = 1;
851
852 if (enqueue)
853 sched_rt_rq_enqueue(rt_rq);
854 rq_unlock(rq, &rf);
855 }
856
857 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
858 return 1;
859
860 return idle;
861 }
862
sched_rt_runtime_exceeded(struct rt_rq * rt_rq)863 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
864 {
865 u64 runtime = sched_rt_runtime(rt_rq);
866
867 if (rt_rq->rt_throttled)
868 return rt_rq_throttled(rt_rq);
869
870 if (runtime >= sched_rt_period(rt_rq))
871 return 0;
872
873 balance_runtime(rt_rq);
874 runtime = sched_rt_runtime(rt_rq);
875 if (runtime == RUNTIME_INF)
876 return 0;
877
878 if (rt_rq->rt_time > runtime) {
879 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
880
881 /*
882 * Don't actually throttle groups that have no runtime assigned
883 * but accrue some time due to boosting.
884 */
885 if (likely(rt_b->rt_runtime)) {
886 rt_rq->rt_throttled = 1;
887 printk_deferred_once("sched: RT throttling activated\n");
888 } else {
889 /*
890 * In case we did anyway, make it go away,
891 * replenishment is a joke, since it will replenish us
892 * with exactly 0 ns.
893 */
894 rt_rq->rt_time = 0;
895 }
896
897 if (rt_rq_throttled(rt_rq)) {
898 sched_rt_rq_dequeue(rt_rq);
899 return 1;
900 }
901 }
902
903 return 0;
904 }
905
906 #else /* !CONFIG_RT_GROUP_SCHED: */
907
908 typedef struct rt_rq *rt_rq_iter_t;
909
910 #define for_each_rt_rq(rt_rq, iter, rq) \
911 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
912
913 #define for_each_sched_rt_entity(rt_se) \
914 for (; rt_se; rt_se = NULL)
915
group_rt_rq(struct sched_rt_entity * rt_se)916 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
917 {
918 return NULL;
919 }
920
sched_rt_rq_enqueue(struct rt_rq * rt_rq)921 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
922 {
923 struct rq *rq = rq_of_rt_rq(rt_rq);
924
925 if (!rt_rq->rt_nr_running)
926 return;
927
928 enqueue_top_rt_rq(rt_rq);
929 resched_curr(rq);
930 }
931
sched_rt_rq_dequeue(struct rt_rq * rt_rq)932 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
933 {
934 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
935 }
936
rt_rq_throttled(struct rt_rq * rt_rq)937 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
938 {
939 return false;
940 }
941
sched_rt_period_mask(void)942 static inline const struct cpumask *sched_rt_period_mask(void)
943 {
944 return cpu_online_mask;
945 }
946
947 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)948 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
949 {
950 return &cpu_rq(cpu)->rt;
951 }
952
__enable_runtime(struct rq * rq)953 static void __enable_runtime(struct rq *rq) { }
__disable_runtime(struct rq * rq)954 static void __disable_runtime(struct rq *rq) { }
955
956 #endif /* !CONFIG_RT_GROUP_SCHED */
957
rt_se_prio(struct sched_rt_entity * rt_se)958 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
959 {
960 #ifdef CONFIG_RT_GROUP_SCHED
961 struct rt_rq *rt_rq = group_rt_rq(rt_se);
962
963 if (rt_rq)
964 return rt_rq->highest_prio.curr;
965 #endif
966
967 return rt_task_of(rt_se)->prio;
968 }
969
970 /*
971 * Update the current task's runtime statistics. Skip current tasks that
972 * are not in our scheduling class.
973 */
update_curr_rt(struct rq * rq)974 static void update_curr_rt(struct rq *rq)
975 {
976 struct task_struct *donor = rq->donor;
977 s64 delta_exec;
978
979 if (donor->sched_class != &rt_sched_class)
980 return;
981
982 delta_exec = update_curr_common(rq);
983 if (unlikely(delta_exec <= 0))
984 return;
985
986 #ifdef CONFIG_RT_GROUP_SCHED
987 struct sched_rt_entity *rt_se = &donor->rt;
988
989 if (!rt_bandwidth_enabled())
990 return;
991
992 for_each_sched_rt_entity(rt_se) {
993 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
994 int exceeded;
995
996 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
997 raw_spin_lock(&rt_rq->rt_runtime_lock);
998 rt_rq->rt_time += delta_exec;
999 exceeded = sched_rt_runtime_exceeded(rt_rq);
1000 if (exceeded)
1001 resched_curr(rq);
1002 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1003 if (exceeded)
1004 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1005 }
1006 }
1007 #endif /* CONFIG_RT_GROUP_SCHED */
1008 }
1009
1010 static void
dequeue_top_rt_rq(struct rt_rq * rt_rq,unsigned int count)1011 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1012 {
1013 struct rq *rq = rq_of_rt_rq(rt_rq);
1014
1015 BUG_ON(&rq->rt != rt_rq);
1016
1017 if (!rt_rq->rt_queued)
1018 return;
1019
1020 BUG_ON(!rq->nr_running);
1021
1022 sub_nr_running(rq, count);
1023 rt_rq->rt_queued = 0;
1024
1025 }
1026
1027 static void
enqueue_top_rt_rq(struct rt_rq * rt_rq)1028 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1029 {
1030 struct rq *rq = rq_of_rt_rq(rt_rq);
1031
1032 BUG_ON(&rq->rt != rt_rq);
1033
1034 if (rt_rq->rt_queued)
1035 return;
1036
1037 if (rt_rq_throttled(rt_rq))
1038 return;
1039
1040 if (rt_rq->rt_nr_running) {
1041 add_nr_running(rq, rt_rq->rt_nr_running);
1042 rt_rq->rt_queued = 1;
1043 }
1044
1045 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1046 cpufreq_update_util(rq, 0);
1047 }
1048
1049 static void
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1050 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1051 {
1052 struct rq *rq = rq_of_rt_rq(rt_rq);
1053
1054 /*
1055 * Change rq's cpupri only if rt_rq is the top queue.
1056 */
1057 if (IS_ENABLED(CONFIG_RT_GROUP_SCHED) && &rq->rt != rt_rq)
1058 return;
1059
1060 if (rq->online && prio < prev_prio)
1061 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1062 }
1063
1064 static void
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1065 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1066 {
1067 struct rq *rq = rq_of_rt_rq(rt_rq);
1068
1069 /*
1070 * Change rq's cpupri only if rt_rq is the top queue.
1071 */
1072 if (IS_ENABLED(CONFIG_RT_GROUP_SCHED) && &rq->rt != rt_rq)
1073 return;
1074
1075 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1076 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1077 }
1078
1079 static void
inc_rt_prio(struct rt_rq * rt_rq,int prio)1080 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1081 {
1082 int prev_prio = rt_rq->highest_prio.curr;
1083
1084 if (prio < prev_prio)
1085 rt_rq->highest_prio.curr = prio;
1086
1087 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1088 }
1089
1090 static void
dec_rt_prio(struct rt_rq * rt_rq,int prio)1091 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1092 {
1093 int prev_prio = rt_rq->highest_prio.curr;
1094
1095 if (rt_rq->rt_nr_running) {
1096
1097 WARN_ON(prio < prev_prio);
1098
1099 /*
1100 * This may have been our highest task, and therefore
1101 * we may have some re-computation to do
1102 */
1103 if (prio == prev_prio) {
1104 struct rt_prio_array *array = &rt_rq->active;
1105
1106 rt_rq->highest_prio.curr =
1107 sched_find_first_bit(array->bitmap);
1108 }
1109
1110 } else {
1111 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1112 }
1113
1114 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1115 }
1116
1117 #ifdef CONFIG_RT_GROUP_SCHED
1118
1119 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1120 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1121 {
1122 if (rt_se_boosted(rt_se))
1123 rt_rq->rt_nr_boosted++;
1124
1125 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1126 }
1127
1128 static void
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1129 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1130 {
1131 if (rt_se_boosted(rt_se))
1132 rt_rq->rt_nr_boosted--;
1133
1134 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1135 }
1136
1137 #else /* !CONFIG_RT_GROUP_SCHED: */
1138
1139 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1140 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1141 {
1142 }
1143
1144 static inline
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1145 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1146
1147 #endif /* !CONFIG_RT_GROUP_SCHED */
1148
1149 static inline
rt_se_nr_running(struct sched_rt_entity * rt_se)1150 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1151 {
1152 struct rt_rq *group_rq = group_rt_rq(rt_se);
1153
1154 if (group_rq)
1155 return group_rq->rt_nr_running;
1156 else
1157 return 1;
1158 }
1159
1160 static inline
rt_se_rr_nr_running(struct sched_rt_entity * rt_se)1161 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1162 {
1163 struct rt_rq *group_rq = group_rt_rq(rt_se);
1164 struct task_struct *tsk;
1165
1166 if (group_rq)
1167 return group_rq->rr_nr_running;
1168
1169 tsk = rt_task_of(rt_se);
1170
1171 return (tsk->policy == SCHED_RR) ? 1 : 0;
1172 }
1173
1174 static inline
inc_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1175 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1176 {
1177 int prio = rt_se_prio(rt_se);
1178
1179 WARN_ON(!rt_prio(prio));
1180 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1181 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1182
1183 inc_rt_prio(rt_rq, prio);
1184 inc_rt_group(rt_se, rt_rq);
1185 }
1186
1187 static inline
dec_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1188 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1189 {
1190 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1191 WARN_ON(!rt_rq->rt_nr_running);
1192 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1193 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1194
1195 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1196 dec_rt_group(rt_se, rt_rq);
1197 }
1198
1199 /*
1200 * Change rt_se->run_list location unless SAVE && !MOVE
1201 *
1202 * assumes ENQUEUE/DEQUEUE flags match
1203 */
move_entity(unsigned int flags)1204 static inline bool move_entity(unsigned int flags)
1205 {
1206 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1207 return false;
1208
1209 return true;
1210 }
1211
__delist_rt_entity(struct sched_rt_entity * rt_se,struct rt_prio_array * array)1212 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1213 {
1214 list_del_init(&rt_se->run_list);
1215
1216 if (list_empty(array->queue + rt_se_prio(rt_se)))
1217 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1218
1219 rt_se->on_list = 0;
1220 }
1221
1222 static inline struct sched_statistics *
__schedstats_from_rt_se(struct sched_rt_entity * rt_se)1223 __schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1224 {
1225 /* schedstats is not supported for rt group. */
1226 if (!rt_entity_is_task(rt_se))
1227 return NULL;
1228
1229 return &rt_task_of(rt_se)->stats;
1230 }
1231
1232 static inline void
update_stats_wait_start_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se)1233 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1234 {
1235 struct sched_statistics *stats;
1236 struct task_struct *p = NULL;
1237
1238 if (!schedstat_enabled())
1239 return;
1240
1241 if (rt_entity_is_task(rt_se))
1242 p = rt_task_of(rt_se);
1243
1244 stats = __schedstats_from_rt_se(rt_se);
1245 if (!stats)
1246 return;
1247
1248 __update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1249 }
1250
1251 static inline void
update_stats_enqueue_sleeper_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se)1252 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1253 {
1254 struct sched_statistics *stats;
1255 struct task_struct *p = NULL;
1256
1257 if (!schedstat_enabled())
1258 return;
1259
1260 if (rt_entity_is_task(rt_se))
1261 p = rt_task_of(rt_se);
1262
1263 stats = __schedstats_from_rt_se(rt_se);
1264 if (!stats)
1265 return;
1266
1267 __update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1268 }
1269
1270 static inline void
update_stats_enqueue_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int flags)1271 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1272 int flags)
1273 {
1274 if (!schedstat_enabled())
1275 return;
1276
1277 if (flags & ENQUEUE_WAKEUP)
1278 update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1279 }
1280
1281 static inline void
update_stats_wait_end_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se)1282 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1283 {
1284 struct sched_statistics *stats;
1285 struct task_struct *p = NULL;
1286
1287 if (!schedstat_enabled())
1288 return;
1289
1290 if (rt_entity_is_task(rt_se))
1291 p = rt_task_of(rt_se);
1292
1293 stats = __schedstats_from_rt_se(rt_se);
1294 if (!stats)
1295 return;
1296
1297 __update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1298 }
1299
1300 static inline void
update_stats_dequeue_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int flags)1301 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1302 int flags)
1303 {
1304 struct task_struct *p = NULL;
1305
1306 if (!schedstat_enabled())
1307 return;
1308
1309 if (rt_entity_is_task(rt_se))
1310 p = rt_task_of(rt_se);
1311
1312 if ((flags & DEQUEUE_SLEEP) && p) {
1313 unsigned int state;
1314
1315 state = READ_ONCE(p->__state);
1316 if (state & TASK_INTERRUPTIBLE)
1317 __schedstat_set(p->stats.sleep_start,
1318 rq_clock(rq_of_rt_rq(rt_rq)));
1319
1320 if (state & TASK_UNINTERRUPTIBLE)
1321 __schedstat_set(p->stats.block_start,
1322 rq_clock(rq_of_rt_rq(rt_rq)));
1323 }
1324 }
1325
__enqueue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1326 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1327 {
1328 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1329 struct rt_prio_array *array = &rt_rq->active;
1330 struct rt_rq *group_rq = group_rt_rq(rt_se);
1331 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1332
1333 /*
1334 * Don't enqueue the group if its throttled, or when empty.
1335 * The latter is a consequence of the former when a child group
1336 * get throttled and the current group doesn't have any other
1337 * active members.
1338 */
1339 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1340 if (rt_se->on_list)
1341 __delist_rt_entity(rt_se, array);
1342 return;
1343 }
1344
1345 if (move_entity(flags)) {
1346 WARN_ON_ONCE(rt_se->on_list);
1347 if (flags & ENQUEUE_HEAD)
1348 list_add(&rt_se->run_list, queue);
1349 else
1350 list_add_tail(&rt_se->run_list, queue);
1351
1352 __set_bit(rt_se_prio(rt_se), array->bitmap);
1353 rt_se->on_list = 1;
1354 }
1355 rt_se->on_rq = 1;
1356
1357 inc_rt_tasks(rt_se, rt_rq);
1358 }
1359
__dequeue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1360 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1361 {
1362 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1363 struct rt_prio_array *array = &rt_rq->active;
1364
1365 if (move_entity(flags)) {
1366 WARN_ON_ONCE(!rt_se->on_list);
1367 __delist_rt_entity(rt_se, array);
1368 }
1369 rt_se->on_rq = 0;
1370
1371 dec_rt_tasks(rt_se, rt_rq);
1372 }
1373
1374 /*
1375 * Because the prio of an upper entry depends on the lower
1376 * entries, we must remove entries top - down.
1377 */
dequeue_rt_stack(struct sched_rt_entity * rt_se,unsigned int flags)1378 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1379 {
1380 struct sched_rt_entity *back = NULL;
1381 unsigned int rt_nr_running;
1382
1383 for_each_sched_rt_entity(rt_se) {
1384 rt_se->back = back;
1385 back = rt_se;
1386 }
1387
1388 rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1389
1390 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1391 if (on_rt_rq(rt_se))
1392 __dequeue_rt_entity(rt_se, flags);
1393 }
1394
1395 dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1396 }
1397
enqueue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1398 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1399 {
1400 struct rq *rq = rq_of_rt_se(rt_se);
1401
1402 update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1403
1404 dequeue_rt_stack(rt_se, flags);
1405 for_each_sched_rt_entity(rt_se)
1406 __enqueue_rt_entity(rt_se, flags);
1407 enqueue_top_rt_rq(&rq->rt);
1408 }
1409
dequeue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1410 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1411 {
1412 struct rq *rq = rq_of_rt_se(rt_se);
1413
1414 update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1415
1416 dequeue_rt_stack(rt_se, flags);
1417
1418 for_each_sched_rt_entity(rt_se) {
1419 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1420
1421 if (rt_rq && rt_rq->rt_nr_running)
1422 __enqueue_rt_entity(rt_se, flags);
1423 }
1424 enqueue_top_rt_rq(&rq->rt);
1425 }
1426
1427 /*
1428 * Adding/removing a task to/from a priority array:
1429 */
1430 static void
enqueue_task_rt(struct rq * rq,struct task_struct * p,int flags)1431 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1432 {
1433 struct sched_rt_entity *rt_se = &p->rt;
1434
1435 if (flags & ENQUEUE_WAKEUP)
1436 rt_se->timeout = 0;
1437
1438 check_schedstat_required();
1439 update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1440
1441 enqueue_rt_entity(rt_se, flags);
1442
1443 if (task_is_blocked(p))
1444 return;
1445
1446 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1447 enqueue_pushable_task(rq, p);
1448 }
1449
dequeue_task_rt(struct rq * rq,struct task_struct * p,int flags)1450 static bool dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1451 {
1452 struct sched_rt_entity *rt_se = &p->rt;
1453
1454 update_curr_rt(rq);
1455 dequeue_rt_entity(rt_se, flags);
1456
1457 dequeue_pushable_task(rq, p);
1458
1459 return true;
1460 }
1461
1462 /*
1463 * Put task to the head or the end of the run list without the overhead of
1464 * dequeue followed by enqueue.
1465 */
1466 static void
requeue_rt_entity(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int head)1467 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1468 {
1469 if (on_rt_rq(rt_se)) {
1470 struct rt_prio_array *array = &rt_rq->active;
1471 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1472
1473 if (head)
1474 list_move(&rt_se->run_list, queue);
1475 else
1476 list_move_tail(&rt_se->run_list, queue);
1477 }
1478 }
1479
requeue_task_rt(struct rq * rq,struct task_struct * p,int head)1480 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1481 {
1482 struct sched_rt_entity *rt_se = &p->rt;
1483 struct rt_rq *rt_rq;
1484
1485 for_each_sched_rt_entity(rt_se) {
1486 rt_rq = rt_rq_of_se(rt_se);
1487 requeue_rt_entity(rt_rq, rt_se, head);
1488 }
1489 }
1490
yield_task_rt(struct rq * rq)1491 static void yield_task_rt(struct rq *rq)
1492 {
1493 requeue_task_rt(rq, rq->donor, 0);
1494 }
1495
1496 static int find_lowest_rq(struct task_struct *task);
1497
1498 static int
select_task_rq_rt(struct task_struct * p,int cpu,int flags)1499 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1500 {
1501 struct task_struct *curr, *donor;
1502 struct rq *rq;
1503 bool test;
1504
1505 /* For anything but wake ups, just return the task_cpu */
1506 if (!(flags & (WF_TTWU | WF_FORK)))
1507 goto out;
1508
1509 rq = cpu_rq(cpu);
1510
1511 rcu_read_lock();
1512 curr = READ_ONCE(rq->curr); /* unlocked access */
1513 donor = READ_ONCE(rq->donor);
1514
1515 /*
1516 * If the current task on @p's runqueue is an RT task, then
1517 * try to see if we can wake this RT task up on another
1518 * runqueue. Otherwise simply start this RT task
1519 * on its current runqueue.
1520 *
1521 * We want to avoid overloading runqueues. If the woken
1522 * task is a higher priority, then it will stay on this CPU
1523 * and the lower prio task should be moved to another CPU.
1524 * Even though this will probably make the lower prio task
1525 * lose its cache, we do not want to bounce a higher task
1526 * around just because it gave up its CPU, perhaps for a
1527 * lock?
1528 *
1529 * For equal prio tasks, we just let the scheduler sort it out.
1530 *
1531 * Otherwise, just let it ride on the affine RQ and the
1532 * post-schedule router will push the preempted task away
1533 *
1534 * This test is optimistic, if we get it wrong the load-balancer
1535 * will have to sort it out.
1536 *
1537 * We take into account the capacity of the CPU to ensure it fits the
1538 * requirement of the task - which is only important on heterogeneous
1539 * systems like big.LITTLE.
1540 */
1541 test = curr &&
1542 unlikely(rt_task(donor)) &&
1543 (curr->nr_cpus_allowed < 2 || donor->prio <= p->prio);
1544
1545 if (test || !rt_task_fits_capacity(p, cpu)) {
1546 int target = find_lowest_rq(p);
1547
1548 /*
1549 * Bail out if we were forcing a migration to find a better
1550 * fitting CPU but our search failed.
1551 */
1552 if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1553 goto out_unlock;
1554
1555 /*
1556 * Don't bother moving it if the destination CPU is
1557 * not running a lower priority task.
1558 */
1559 if (target != -1 &&
1560 p->prio < cpu_rq(target)->rt.highest_prio.curr)
1561 cpu = target;
1562 }
1563
1564 out_unlock:
1565 rcu_read_unlock();
1566
1567 out:
1568 return cpu;
1569 }
1570
check_preempt_equal_prio(struct rq * rq,struct task_struct * p)1571 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1572 {
1573 if (rq->curr->nr_cpus_allowed == 1 ||
1574 !cpupri_find(&rq->rd->cpupri, rq->donor, NULL))
1575 return;
1576
1577 /*
1578 * p is migratable, so let's not schedule it and
1579 * see if it is pushed or pulled somewhere else.
1580 */
1581 if (p->nr_cpus_allowed != 1 &&
1582 cpupri_find(&rq->rd->cpupri, p, NULL))
1583 return;
1584
1585 /*
1586 * There appear to be other CPUs that can accept
1587 * the current task but none can run 'p', so lets reschedule
1588 * to try and push the current task away:
1589 */
1590 requeue_task_rt(rq, p, 1);
1591 resched_curr(rq);
1592 }
1593
balance_rt(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1594 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1595 {
1596 if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1597 /*
1598 * This is OK, because current is on_cpu, which avoids it being
1599 * picked for load-balance and preemption/IRQs are still
1600 * disabled avoiding further scheduler activity on it and we've
1601 * not yet started the picking loop.
1602 */
1603 rq_unpin_lock(rq, rf);
1604 pull_rt_task(rq);
1605 rq_repin_lock(rq, rf);
1606 }
1607
1608 return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1609 }
1610
1611 /*
1612 * Preempt the current task with a newly woken task if needed:
1613 */
wakeup_preempt_rt(struct rq * rq,struct task_struct * p,int flags)1614 static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags)
1615 {
1616 struct task_struct *donor = rq->donor;
1617
1618 /*
1619 * XXX If we're preempted by DL, queue a push?
1620 */
1621 if (p->sched_class != &rt_sched_class)
1622 return;
1623
1624 if (p->prio < donor->prio) {
1625 resched_curr(rq);
1626 return;
1627 }
1628
1629 /*
1630 * If:
1631 *
1632 * - the newly woken task is of equal priority to the current task
1633 * - the newly woken task is non-migratable while current is migratable
1634 * - current will be preempted on the next reschedule
1635 *
1636 * we should check to see if current can readily move to a different
1637 * cpu. If so, we will reschedule to allow the push logic to try
1638 * to move current somewhere else, making room for our non-migratable
1639 * task.
1640 */
1641 if (p->prio == donor->prio && !test_tsk_need_resched(rq->curr))
1642 check_preempt_equal_prio(rq, p);
1643 }
1644
set_next_task_rt(struct rq * rq,struct task_struct * p,bool first)1645 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1646 {
1647 struct sched_rt_entity *rt_se = &p->rt;
1648 struct rt_rq *rt_rq = &rq->rt;
1649
1650 p->se.exec_start = rq_clock_task(rq);
1651 if (on_rt_rq(&p->rt))
1652 update_stats_wait_end_rt(rt_rq, rt_se);
1653
1654 /* The running task is never eligible for pushing */
1655 dequeue_pushable_task(rq, p);
1656
1657 if (!first)
1658 return;
1659
1660 /*
1661 * If prev task was rt, put_prev_task() has already updated the
1662 * utilization. We only care of the case where we start to schedule a
1663 * rt task
1664 */
1665 if (rq->donor->sched_class != &rt_sched_class)
1666 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1667
1668 rt_queue_push_tasks(rq);
1669 }
1670
pick_next_rt_entity(struct rt_rq * rt_rq)1671 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1672 {
1673 struct rt_prio_array *array = &rt_rq->active;
1674 struct sched_rt_entity *next = NULL;
1675 struct list_head *queue;
1676 int idx;
1677
1678 idx = sched_find_first_bit(array->bitmap);
1679 BUG_ON(idx >= MAX_RT_PRIO);
1680
1681 queue = array->queue + idx;
1682 if (WARN_ON_ONCE(list_empty(queue)))
1683 return NULL;
1684 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1685
1686 return next;
1687 }
1688
_pick_next_task_rt(struct rq * rq)1689 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1690 {
1691 struct sched_rt_entity *rt_se;
1692 struct rt_rq *rt_rq = &rq->rt;
1693
1694 do {
1695 rt_se = pick_next_rt_entity(rt_rq);
1696 if (unlikely(!rt_se))
1697 return NULL;
1698 rt_rq = group_rt_rq(rt_se);
1699 } while (rt_rq);
1700
1701 return rt_task_of(rt_se);
1702 }
1703
pick_task_rt(struct rq * rq,struct rq_flags * rf)1704 static struct task_struct *pick_task_rt(struct rq *rq, struct rq_flags *rf)
1705 {
1706 struct task_struct *p;
1707
1708 if (!sched_rt_runnable(rq))
1709 return NULL;
1710
1711 p = _pick_next_task_rt(rq);
1712
1713 return p;
1714 }
1715
put_prev_task_rt(struct rq * rq,struct task_struct * p,struct task_struct * next)1716 static void put_prev_task_rt(struct rq *rq, struct task_struct *p, struct task_struct *next)
1717 {
1718 struct sched_rt_entity *rt_se = &p->rt;
1719 struct rt_rq *rt_rq = &rq->rt;
1720
1721 if (on_rt_rq(&p->rt))
1722 update_stats_wait_start_rt(rt_rq, rt_se);
1723
1724 update_curr_rt(rq);
1725
1726 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1727
1728 if (task_is_blocked(p))
1729 return;
1730 /*
1731 * The previous task needs to be made eligible for pushing
1732 * if it is still active
1733 */
1734 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1735 enqueue_pushable_task(rq, p);
1736 }
1737
1738 /* Only try algorithms three times */
1739 #define RT_MAX_TRIES 3
1740
1741 /*
1742 * Return the highest pushable rq's task, which is suitable to be executed
1743 * on the CPU, NULL otherwise
1744 */
pick_highest_pushable_task(struct rq * rq,int cpu)1745 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1746 {
1747 struct plist_head *head = &rq->rt.pushable_tasks;
1748 struct task_struct *p;
1749
1750 if (!has_pushable_tasks(rq))
1751 return NULL;
1752
1753 plist_for_each_entry(p, head, pushable_tasks) {
1754 if (task_is_pushable(rq, p, cpu))
1755 return p;
1756 }
1757
1758 return NULL;
1759 }
1760
1761 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1762
find_lowest_rq(struct task_struct * task)1763 static int find_lowest_rq(struct task_struct *task)
1764 {
1765 struct sched_domain *sd;
1766 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1767 int this_cpu = smp_processor_id();
1768 int cpu = task_cpu(task);
1769 int ret;
1770
1771 /* Make sure the mask is initialized first */
1772 if (unlikely(!lowest_mask))
1773 return -1;
1774
1775 if (task->nr_cpus_allowed == 1)
1776 return -1; /* No other targets possible */
1777
1778 /*
1779 * If we're on asym system ensure we consider the different capacities
1780 * of the CPUs when searching for the lowest_mask.
1781 */
1782 if (sched_asym_cpucap_active()) {
1783
1784 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1785 task, lowest_mask,
1786 rt_task_fits_capacity);
1787 } else {
1788
1789 ret = cpupri_find(&task_rq(task)->rd->cpupri,
1790 task, lowest_mask);
1791 }
1792
1793 if (!ret)
1794 return -1; /* No targets found */
1795
1796 /*
1797 * At this point we have built a mask of CPUs representing the
1798 * lowest priority tasks in the system. Now we want to elect
1799 * the best one based on our affinity and topology.
1800 *
1801 * We prioritize the last CPU that the task executed on since
1802 * it is most likely cache-hot in that location.
1803 */
1804 if (cpumask_test_cpu(cpu, lowest_mask))
1805 return cpu;
1806
1807 /*
1808 * Otherwise, we consult the sched_domains span maps to figure
1809 * out which CPU is logically closest to our hot cache data.
1810 */
1811 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1812 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1813
1814 rcu_read_lock();
1815 for_each_domain(cpu, sd) {
1816 if (sd->flags & SD_WAKE_AFFINE) {
1817 int best_cpu;
1818
1819 /*
1820 * "this_cpu" is cheaper to preempt than a
1821 * remote processor.
1822 */
1823 if (this_cpu != -1 &&
1824 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1825 rcu_read_unlock();
1826 return this_cpu;
1827 }
1828
1829 best_cpu = cpumask_any_and_distribute(lowest_mask,
1830 sched_domain_span(sd));
1831 if (best_cpu < nr_cpu_ids) {
1832 rcu_read_unlock();
1833 return best_cpu;
1834 }
1835 }
1836 }
1837 rcu_read_unlock();
1838
1839 /*
1840 * And finally, if there were no matches within the domains
1841 * just give the caller *something* to work with from the compatible
1842 * locations.
1843 */
1844 if (this_cpu != -1)
1845 return this_cpu;
1846
1847 cpu = cpumask_any_distribute(lowest_mask);
1848 if (cpu < nr_cpu_ids)
1849 return cpu;
1850
1851 return -1;
1852 }
1853
pick_next_pushable_task(struct rq * rq)1854 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1855 {
1856 struct task_struct *p;
1857
1858 if (!has_pushable_tasks(rq))
1859 return NULL;
1860
1861 p = plist_first_entry(&rq->rt.pushable_tasks,
1862 struct task_struct, pushable_tasks);
1863
1864 BUG_ON(rq->cpu != task_cpu(p));
1865 BUG_ON(task_current(rq, p));
1866 BUG_ON(task_current_donor(rq, p));
1867 BUG_ON(p->nr_cpus_allowed <= 1);
1868
1869 BUG_ON(!task_on_rq_queued(p));
1870 BUG_ON(!rt_task(p));
1871
1872 return p;
1873 }
1874
1875 /* Will lock the rq it finds */
find_lock_lowest_rq(struct task_struct * task,struct rq * rq)1876 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1877 {
1878 struct rq *lowest_rq = NULL;
1879 int tries;
1880 int cpu;
1881
1882 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1883 cpu = find_lowest_rq(task);
1884
1885 if ((cpu == -1) || (cpu == rq->cpu))
1886 break;
1887
1888 lowest_rq = cpu_rq(cpu);
1889
1890 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1891 /*
1892 * Target rq has tasks of equal or higher priority,
1893 * retrying does not release any lock and is unlikely
1894 * to yield a different result.
1895 */
1896 lowest_rq = NULL;
1897 break;
1898 }
1899
1900 /* if the prio of this runqueue changed, try again */
1901 if (double_lock_balance(rq, lowest_rq)) {
1902 /*
1903 * We had to unlock the run queue. In
1904 * the mean time, task could have
1905 * migrated already or had its affinity changed,
1906 * therefore check if the task is still at the
1907 * head of the pushable tasks list.
1908 * It is possible the task was scheduled, set
1909 * "migrate_disabled" and then got preempted, so we must
1910 * check the task migration disable flag here too.
1911 */
1912 if (unlikely(is_migration_disabled(task) ||
1913 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
1914 task != pick_next_pushable_task(rq))) {
1915
1916 double_unlock_balance(rq, lowest_rq);
1917 lowest_rq = NULL;
1918 break;
1919 }
1920 }
1921
1922 /* If this rq is still suitable use it. */
1923 if (lowest_rq->rt.highest_prio.curr > task->prio)
1924 break;
1925
1926 /* try again */
1927 double_unlock_balance(rq, lowest_rq);
1928 lowest_rq = NULL;
1929 }
1930
1931 return lowest_rq;
1932 }
1933
1934 /*
1935 * If the current CPU has more than one RT task, see if the non
1936 * running task can migrate over to a CPU that is running a task
1937 * of lesser priority.
1938 */
push_rt_task(struct rq * rq,bool pull)1939 static int push_rt_task(struct rq *rq, bool pull)
1940 {
1941 struct task_struct *next_task;
1942 struct rq *lowest_rq;
1943 int ret = 0;
1944
1945 if (!rq->rt.overloaded)
1946 return 0;
1947
1948 next_task = pick_next_pushable_task(rq);
1949 if (!next_task)
1950 return 0;
1951
1952 retry:
1953 /*
1954 * It's possible that the next_task slipped in of
1955 * higher priority than current. If that's the case
1956 * just reschedule current.
1957 */
1958 if (unlikely(next_task->prio < rq->donor->prio)) {
1959 resched_curr(rq);
1960 return 0;
1961 }
1962
1963 if (is_migration_disabled(next_task)) {
1964 struct task_struct *push_task = NULL;
1965 int cpu;
1966
1967 if (!pull || rq->push_busy)
1968 return 0;
1969
1970 /*
1971 * Invoking find_lowest_rq() on anything but an RT task doesn't
1972 * make sense. Per the above priority check, curr has to
1973 * be of higher priority than next_task, so no need to
1974 * reschedule when bailing out.
1975 *
1976 * Note that the stoppers are masqueraded as SCHED_FIFO
1977 * (cf. sched_set_stop_task()), so we can't rely on rt_task().
1978 */
1979 if (rq->donor->sched_class != &rt_sched_class)
1980 return 0;
1981
1982 cpu = find_lowest_rq(rq->curr);
1983 if (cpu == -1 || cpu == rq->cpu)
1984 return 0;
1985
1986 /*
1987 * Given we found a CPU with lower priority than @next_task,
1988 * therefore it should be running. However we cannot migrate it
1989 * to this other CPU, instead attempt to push the current
1990 * running task on this CPU away.
1991 */
1992 push_task = get_push_task(rq);
1993 if (push_task) {
1994 preempt_disable();
1995 raw_spin_rq_unlock(rq);
1996 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
1997 push_task, &rq->push_work);
1998 preempt_enable();
1999 raw_spin_rq_lock(rq);
2000 }
2001
2002 return 0;
2003 }
2004
2005 if (WARN_ON(next_task == rq->curr))
2006 return 0;
2007
2008 /* We might release rq lock */
2009 get_task_struct(next_task);
2010
2011 /* find_lock_lowest_rq locks the rq if found */
2012 lowest_rq = find_lock_lowest_rq(next_task, rq);
2013 if (!lowest_rq) {
2014 struct task_struct *task;
2015 /*
2016 * find_lock_lowest_rq releases rq->lock
2017 * so it is possible that next_task has migrated.
2018 *
2019 * We need to make sure that the task is still on the same
2020 * run-queue and is also still the next task eligible for
2021 * pushing.
2022 */
2023 task = pick_next_pushable_task(rq);
2024 if (task == next_task) {
2025 /*
2026 * The task hasn't migrated, and is still the next
2027 * eligible task, but we failed to find a run-queue
2028 * to push it to. Do not retry in this case, since
2029 * other CPUs will pull from us when ready.
2030 */
2031 goto out;
2032 }
2033
2034 if (!task)
2035 /* No more tasks, just exit */
2036 goto out;
2037
2038 /*
2039 * Something has shifted, try again.
2040 */
2041 put_task_struct(next_task);
2042 next_task = task;
2043 goto retry;
2044 }
2045
2046 move_queued_task_locked(rq, lowest_rq, next_task);
2047 resched_curr(lowest_rq);
2048 ret = 1;
2049
2050 double_unlock_balance(rq, lowest_rq);
2051 out:
2052 put_task_struct(next_task);
2053
2054 return ret;
2055 }
2056
push_rt_tasks(struct rq * rq)2057 static void push_rt_tasks(struct rq *rq)
2058 {
2059 /* push_rt_task will return true if it moved an RT */
2060 while (push_rt_task(rq, false))
2061 ;
2062 }
2063
2064 #ifdef HAVE_RT_PUSH_IPI
2065
2066 /*
2067 * When a high priority task schedules out from a CPU and a lower priority
2068 * task is scheduled in, a check is made to see if there's any RT tasks
2069 * on other CPUs that are waiting to run because a higher priority RT task
2070 * is currently running on its CPU. In this case, the CPU with multiple RT
2071 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2072 * up that may be able to run one of its non-running queued RT tasks.
2073 *
2074 * All CPUs with overloaded RT tasks need to be notified as there is currently
2075 * no way to know which of these CPUs have the highest priority task waiting
2076 * to run. Instead of trying to take a spinlock on each of these CPUs,
2077 * which has shown to cause large latency when done on machines with many
2078 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2079 * RT tasks waiting to run.
2080 *
2081 * Just sending an IPI to each of the CPUs is also an issue, as on large
2082 * count CPU machines, this can cause an IPI storm on a CPU, especially
2083 * if its the only CPU with multiple RT tasks queued, and a large number
2084 * of CPUs scheduling a lower priority task at the same time.
2085 *
2086 * Each root domain has its own IRQ work function that can iterate over
2087 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2088 * task must be checked if there's one or many CPUs that are lowering
2089 * their priority, there's a single IRQ work iterator that will try to
2090 * push off RT tasks that are waiting to run.
2091 *
2092 * When a CPU schedules a lower priority task, it will kick off the
2093 * IRQ work iterator that will jump to each CPU with overloaded RT tasks.
2094 * As it only takes the first CPU that schedules a lower priority task
2095 * to start the process, the rto_start variable is incremented and if
2096 * the atomic result is one, then that CPU will try to take the rto_lock.
2097 * This prevents high contention on the lock as the process handles all
2098 * CPUs scheduling lower priority tasks.
2099 *
2100 * All CPUs that are scheduling a lower priority task will increment the
2101 * rt_loop_next variable. This will make sure that the IRQ work iterator
2102 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2103 * priority task, even if the iterator is in the middle of a scan. Incrementing
2104 * the rt_loop_next will cause the iterator to perform another scan.
2105 *
2106 */
rto_next_cpu(struct root_domain * rd)2107 static int rto_next_cpu(struct root_domain *rd)
2108 {
2109 int this_cpu = smp_processor_id();
2110 int next;
2111 int cpu;
2112
2113 /*
2114 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2115 * rt_next_cpu() will simply return the first CPU found in
2116 * the rto_mask.
2117 *
2118 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2119 * will return the next CPU found in the rto_mask.
2120 *
2121 * If there are no more CPUs left in the rto_mask, then a check is made
2122 * against rto_loop and rto_loop_next. rto_loop is only updated with
2123 * the rto_lock held, but any CPU may increment the rto_loop_next
2124 * without any locking.
2125 */
2126 for (;;) {
2127
2128 /* When rto_cpu is -1 this acts like cpumask_first() */
2129 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2130
2131 rd->rto_cpu = cpu;
2132
2133 /* Do not send IPI to self */
2134 if (cpu == this_cpu)
2135 continue;
2136
2137 if (cpu < nr_cpu_ids)
2138 return cpu;
2139
2140 rd->rto_cpu = -1;
2141
2142 /*
2143 * ACQUIRE ensures we see the @rto_mask changes
2144 * made prior to the @next value observed.
2145 *
2146 * Matches WMB in rt_set_overload().
2147 */
2148 next = atomic_read_acquire(&rd->rto_loop_next);
2149
2150 if (rd->rto_loop == next)
2151 break;
2152
2153 rd->rto_loop = next;
2154 }
2155
2156 return -1;
2157 }
2158
rto_start_trylock(atomic_t * v)2159 static inline bool rto_start_trylock(atomic_t *v)
2160 {
2161 return !atomic_cmpxchg_acquire(v, 0, 1);
2162 }
2163
rto_start_unlock(atomic_t * v)2164 static inline void rto_start_unlock(atomic_t *v)
2165 {
2166 atomic_set_release(v, 0);
2167 }
2168
tell_cpu_to_push(struct rq * rq)2169 static void tell_cpu_to_push(struct rq *rq)
2170 {
2171 int cpu = -1;
2172
2173 /* Keep the loop going if the IPI is currently active */
2174 atomic_inc(&rq->rd->rto_loop_next);
2175
2176 /* Only one CPU can initiate a loop at a time */
2177 if (!rto_start_trylock(&rq->rd->rto_loop_start))
2178 return;
2179
2180 raw_spin_lock(&rq->rd->rto_lock);
2181
2182 /*
2183 * The rto_cpu is updated under the lock, if it has a valid CPU
2184 * then the IPI is still running and will continue due to the
2185 * update to loop_next, and nothing needs to be done here.
2186 * Otherwise it is finishing up and an IPI needs to be sent.
2187 */
2188 if (rq->rd->rto_cpu < 0)
2189 cpu = rto_next_cpu(rq->rd);
2190
2191 raw_spin_unlock(&rq->rd->rto_lock);
2192
2193 rto_start_unlock(&rq->rd->rto_loop_start);
2194
2195 if (cpu >= 0) {
2196 /* Make sure the rd does not get freed while pushing */
2197 sched_get_rd(rq->rd);
2198 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2199 }
2200 }
2201
2202 /* Called from hardirq context */
rto_push_irq_work_func(struct irq_work * work)2203 void rto_push_irq_work_func(struct irq_work *work)
2204 {
2205 struct root_domain *rd =
2206 container_of(work, struct root_domain, rto_push_work);
2207 struct rq *rq;
2208 int cpu;
2209
2210 rq = this_rq();
2211
2212 /*
2213 * We do not need to grab the lock to check for has_pushable_tasks.
2214 * When it gets updated, a check is made if a push is possible.
2215 */
2216 if (has_pushable_tasks(rq)) {
2217 raw_spin_rq_lock(rq);
2218 while (push_rt_task(rq, true))
2219 ;
2220 raw_spin_rq_unlock(rq);
2221 }
2222
2223 raw_spin_lock(&rd->rto_lock);
2224
2225 /* Pass the IPI to the next rt overloaded queue */
2226 cpu = rto_next_cpu(rd);
2227
2228 raw_spin_unlock(&rd->rto_lock);
2229
2230 if (cpu < 0) {
2231 sched_put_rd(rd);
2232 return;
2233 }
2234
2235 /* Try the next RT overloaded CPU */
2236 irq_work_queue_on(&rd->rto_push_work, cpu);
2237 }
2238 #endif /* HAVE_RT_PUSH_IPI */
2239
pull_rt_task(struct rq * this_rq)2240 static void pull_rt_task(struct rq *this_rq)
2241 {
2242 int this_cpu = this_rq->cpu, cpu;
2243 bool resched = false;
2244 struct task_struct *p, *push_task;
2245 struct rq *src_rq;
2246 int rt_overload_count = rt_overloaded(this_rq);
2247
2248 if (likely(!rt_overload_count))
2249 return;
2250
2251 /*
2252 * Match the barrier from rt_set_overloaded; this guarantees that if we
2253 * see overloaded we must also see the rto_mask bit.
2254 */
2255 smp_rmb();
2256
2257 /* If we are the only overloaded CPU do nothing */
2258 if (rt_overload_count == 1 &&
2259 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2260 return;
2261
2262 #ifdef HAVE_RT_PUSH_IPI
2263 if (sched_feat(RT_PUSH_IPI)) {
2264 tell_cpu_to_push(this_rq);
2265 return;
2266 }
2267 #endif
2268
2269 for_each_cpu(cpu, this_rq->rd->rto_mask) {
2270 if (this_cpu == cpu)
2271 continue;
2272
2273 src_rq = cpu_rq(cpu);
2274
2275 /*
2276 * Don't bother taking the src_rq->lock if the next highest
2277 * task is known to be lower-priority than our current task.
2278 * This may look racy, but if this value is about to go
2279 * logically higher, the src_rq will push this task away.
2280 * And if its going logically lower, we do not care
2281 */
2282 if (src_rq->rt.highest_prio.next >=
2283 this_rq->rt.highest_prio.curr)
2284 continue;
2285
2286 /*
2287 * We can potentially drop this_rq's lock in
2288 * double_lock_balance, and another CPU could
2289 * alter this_rq
2290 */
2291 push_task = NULL;
2292 double_lock_balance(this_rq, src_rq);
2293
2294 /*
2295 * We can pull only a task, which is pushable
2296 * on its rq, and no others.
2297 */
2298 p = pick_highest_pushable_task(src_rq, this_cpu);
2299
2300 /*
2301 * Do we have an RT task that preempts
2302 * the to-be-scheduled task?
2303 */
2304 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2305 WARN_ON(p == src_rq->curr);
2306 WARN_ON(!task_on_rq_queued(p));
2307
2308 /*
2309 * There's a chance that p is higher in priority
2310 * than what's currently running on its CPU.
2311 * This is just that p is waking up and hasn't
2312 * had a chance to schedule. We only pull
2313 * p if it is lower in priority than the
2314 * current task on the run queue
2315 */
2316 if (p->prio < src_rq->donor->prio)
2317 goto skip;
2318
2319 if (is_migration_disabled(p)) {
2320 push_task = get_push_task(src_rq);
2321 } else {
2322 move_queued_task_locked(src_rq, this_rq, p);
2323 resched = true;
2324 }
2325 /*
2326 * We continue with the search, just in
2327 * case there's an even higher prio task
2328 * in another runqueue. (low likelihood
2329 * but possible)
2330 */
2331 }
2332 skip:
2333 double_unlock_balance(this_rq, src_rq);
2334
2335 if (push_task) {
2336 preempt_disable();
2337 raw_spin_rq_unlock(this_rq);
2338 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2339 push_task, &src_rq->push_work);
2340 preempt_enable();
2341 raw_spin_rq_lock(this_rq);
2342 }
2343 }
2344
2345 if (resched)
2346 resched_curr(this_rq);
2347 }
2348
2349 /*
2350 * If we are not running and we are not going to reschedule soon, we should
2351 * try to push tasks away now
2352 */
task_woken_rt(struct rq * rq,struct task_struct * p)2353 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2354 {
2355 bool need_to_push = !task_on_cpu(rq, p) &&
2356 !test_tsk_need_resched(rq->curr) &&
2357 p->nr_cpus_allowed > 1 &&
2358 (dl_task(rq->donor) || rt_task(rq->donor)) &&
2359 (rq->curr->nr_cpus_allowed < 2 ||
2360 rq->donor->prio <= p->prio);
2361
2362 if (need_to_push)
2363 push_rt_tasks(rq);
2364 }
2365
2366 /* Assumes rq->lock is held */
rq_online_rt(struct rq * rq)2367 static void rq_online_rt(struct rq *rq)
2368 {
2369 if (rq->rt.overloaded)
2370 rt_set_overload(rq);
2371
2372 __enable_runtime(rq);
2373
2374 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2375 }
2376
2377 /* Assumes rq->lock is held */
rq_offline_rt(struct rq * rq)2378 static void rq_offline_rt(struct rq *rq)
2379 {
2380 if (rq->rt.overloaded)
2381 rt_clear_overload(rq);
2382
2383 __disable_runtime(rq);
2384
2385 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2386 }
2387
2388 /*
2389 * When switch from the rt queue, we bring ourselves to a position
2390 * that we might want to pull RT tasks from other runqueues.
2391 */
switched_from_rt(struct rq * rq,struct task_struct * p)2392 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2393 {
2394 /*
2395 * If there are other RT tasks then we will reschedule
2396 * and the scheduling of the other RT tasks will handle
2397 * the balancing. But if we are the last RT task
2398 * we may need to handle the pulling of RT tasks
2399 * now.
2400 */
2401 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2402 return;
2403
2404 rt_queue_pull_task(rq);
2405 }
2406
init_sched_rt_class(void)2407 void __init init_sched_rt_class(void)
2408 {
2409 unsigned int i;
2410
2411 for_each_possible_cpu(i) {
2412 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2413 GFP_KERNEL, cpu_to_node(i));
2414 }
2415 }
2416
2417 /*
2418 * When switching a task to RT, we may overload the runqueue
2419 * with RT tasks. In this case we try to push them off to
2420 * other runqueues.
2421 */
switched_to_rt(struct rq * rq,struct task_struct * p)2422 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2423 {
2424 /*
2425 * If we are running, update the avg_rt tracking, as the running time
2426 * will now on be accounted into the latter.
2427 */
2428 if (task_current(rq, p)) {
2429 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2430 return;
2431 }
2432
2433 /*
2434 * If we are not running we may need to preempt the current
2435 * running task. If that current running task is also an RT task
2436 * then see if we can move to another run queue.
2437 */
2438 if (task_on_rq_queued(p)) {
2439 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2440 rt_queue_push_tasks(rq);
2441 if (p->prio < rq->donor->prio && cpu_online(cpu_of(rq)))
2442 resched_curr(rq);
2443 }
2444 }
2445
2446 /*
2447 * Priority of the task has changed. This may cause
2448 * us to initiate a push or pull.
2449 */
2450 static void
prio_changed_rt(struct rq * rq,struct task_struct * p,u64 oldprio)2451 prio_changed_rt(struct rq *rq, struct task_struct *p, u64 oldprio)
2452 {
2453 if (!task_on_rq_queued(p))
2454 return;
2455
2456 if (p->prio == oldprio)
2457 return;
2458
2459 if (task_current_donor(rq, p)) {
2460 /*
2461 * If our priority decreases while running, we
2462 * may need to pull tasks to this runqueue.
2463 */
2464 if (oldprio < p->prio)
2465 rt_queue_pull_task(rq);
2466
2467 /*
2468 * If there's a higher priority task waiting to run
2469 * then reschedule.
2470 */
2471 if (p->prio > rq->rt.highest_prio.curr)
2472 resched_curr(rq);
2473 } else {
2474 /*
2475 * This task is not running, but if it is
2476 * greater than the current running task
2477 * then reschedule.
2478 */
2479 if (p->prio < rq->donor->prio)
2480 resched_curr(rq);
2481 }
2482 }
2483
2484 #ifdef CONFIG_POSIX_TIMERS
watchdog(struct rq * rq,struct task_struct * p)2485 static void watchdog(struct rq *rq, struct task_struct *p)
2486 {
2487 unsigned long soft, hard;
2488
2489 /* max may change after cur was read, this will be fixed next tick */
2490 soft = task_rlimit(p, RLIMIT_RTTIME);
2491 hard = task_rlimit_max(p, RLIMIT_RTTIME);
2492
2493 if (soft != RLIM_INFINITY) {
2494 unsigned long next;
2495
2496 if (p->rt.watchdog_stamp != jiffies) {
2497 p->rt.timeout++;
2498 p->rt.watchdog_stamp = jiffies;
2499 }
2500
2501 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2502 if (p->rt.timeout > next) {
2503 posix_cputimers_rt_watchdog(&p->posix_cputimers,
2504 p->se.sum_exec_runtime);
2505 }
2506 }
2507 }
2508 #else /* !CONFIG_POSIX_TIMERS: */
watchdog(struct rq * rq,struct task_struct * p)2509 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2510 #endif /* !CONFIG_POSIX_TIMERS */
2511
2512 /*
2513 * scheduler tick hitting a task of our scheduling class.
2514 *
2515 * NOTE: This function can be called remotely by the tick offload that
2516 * goes along full dynticks. Therefore no local assumption can be made
2517 * and everything must be accessed through the @rq and @curr passed in
2518 * parameters.
2519 */
task_tick_rt(struct rq * rq,struct task_struct * p,int queued)2520 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2521 {
2522 struct sched_rt_entity *rt_se = &p->rt;
2523
2524 update_curr_rt(rq);
2525 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2526
2527 watchdog(rq, p);
2528
2529 /*
2530 * RR tasks need a special form of time-slice management.
2531 * FIFO tasks have no timeslices.
2532 */
2533 if (p->policy != SCHED_RR)
2534 return;
2535
2536 if (--p->rt.time_slice)
2537 return;
2538
2539 p->rt.time_slice = sched_rr_timeslice;
2540
2541 /*
2542 * Requeue to the end of queue if we (and all of our ancestors) are not
2543 * the only element on the queue
2544 */
2545 for_each_sched_rt_entity(rt_se) {
2546 if (rt_se->run_list.prev != rt_se->run_list.next) {
2547 requeue_task_rt(rq, p, 0);
2548 resched_curr(rq);
2549 return;
2550 }
2551 }
2552 }
2553
get_rr_interval_rt(struct rq * rq,struct task_struct * task)2554 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2555 {
2556 /*
2557 * Time slice is 0 for SCHED_FIFO tasks
2558 */
2559 if (task->policy == SCHED_RR)
2560 return sched_rr_timeslice;
2561 else
2562 return 0;
2563 }
2564
2565 #ifdef CONFIG_SCHED_CORE
task_is_throttled_rt(struct task_struct * p,int cpu)2566 static int task_is_throttled_rt(struct task_struct *p, int cpu)
2567 {
2568 struct rt_rq *rt_rq;
2569
2570 #ifdef CONFIG_RT_GROUP_SCHED // XXX maybe add task_rt_rq(), see also sched_rt_period_rt_rq
2571 rt_rq = task_group(p)->rt_rq[cpu];
2572 WARN_ON(!rt_group_sched_enabled() && rt_rq->tg != &root_task_group);
2573 #else
2574 rt_rq = &cpu_rq(cpu)->rt;
2575 #endif
2576
2577 return rt_rq_throttled(rt_rq);
2578 }
2579 #endif /* CONFIG_SCHED_CORE */
2580
2581 DEFINE_SCHED_CLASS(rt) = {
2582 .enqueue_task = enqueue_task_rt,
2583 .dequeue_task = dequeue_task_rt,
2584 .yield_task = yield_task_rt,
2585
2586 .wakeup_preempt = wakeup_preempt_rt,
2587
2588 .pick_task = pick_task_rt,
2589 .put_prev_task = put_prev_task_rt,
2590 .set_next_task = set_next_task_rt,
2591
2592 .balance = balance_rt,
2593 .select_task_rq = select_task_rq_rt,
2594 .set_cpus_allowed = set_cpus_allowed_common,
2595 .rq_online = rq_online_rt,
2596 .rq_offline = rq_offline_rt,
2597 .task_woken = task_woken_rt,
2598 .switched_from = switched_from_rt,
2599 .find_lock_rq = find_lock_lowest_rq,
2600
2601 .task_tick = task_tick_rt,
2602
2603 .get_rr_interval = get_rr_interval_rt,
2604
2605 .switched_to = switched_to_rt,
2606 .prio_changed = prio_changed_rt,
2607
2608 .update_curr = update_curr_rt,
2609
2610 #ifdef CONFIG_SCHED_CORE
2611 .task_is_throttled = task_is_throttled_rt,
2612 #endif
2613
2614 #ifdef CONFIG_UCLAMP_TASK
2615 .uclamp_enabled = 1,
2616 #endif
2617 };
2618
2619 #ifdef CONFIG_RT_GROUP_SCHED
2620 /*
2621 * Ensure that the real time constraints are schedulable.
2622 */
2623 static DEFINE_MUTEX(rt_constraints_mutex);
2624
tg_has_rt_tasks(struct task_group * tg)2625 static inline int tg_has_rt_tasks(struct task_group *tg)
2626 {
2627 struct task_struct *task;
2628 struct css_task_iter it;
2629 int ret = 0;
2630
2631 /*
2632 * Autogroups do not have RT tasks; see autogroup_create().
2633 */
2634 if (task_group_is_autogroup(tg))
2635 return 0;
2636
2637 css_task_iter_start(&tg->css, 0, &it);
2638 while (!ret && (task = css_task_iter_next(&it)))
2639 ret |= rt_task(task);
2640 css_task_iter_end(&it);
2641
2642 return ret;
2643 }
2644
2645 struct rt_schedulable_data {
2646 struct task_group *tg;
2647 u64 rt_period;
2648 u64 rt_runtime;
2649 };
2650
tg_rt_schedulable(struct task_group * tg,void * data)2651 static int tg_rt_schedulable(struct task_group *tg, void *data)
2652 {
2653 struct rt_schedulable_data *d = data;
2654 struct task_group *child;
2655 unsigned long total, sum = 0;
2656 u64 period, runtime;
2657
2658 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2659 runtime = tg->rt_bandwidth.rt_runtime;
2660
2661 if (tg == d->tg) {
2662 period = d->rt_period;
2663 runtime = d->rt_runtime;
2664 }
2665
2666 /*
2667 * Cannot have more runtime than the period.
2668 */
2669 if (runtime > period && runtime != RUNTIME_INF)
2670 return -EINVAL;
2671
2672 /*
2673 * Ensure we don't starve existing RT tasks if runtime turns zero.
2674 */
2675 if (rt_bandwidth_enabled() && !runtime &&
2676 tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2677 return -EBUSY;
2678
2679 if (WARN_ON(!rt_group_sched_enabled() && tg != &root_task_group))
2680 return -EBUSY;
2681
2682 total = to_ratio(period, runtime);
2683
2684 /*
2685 * Nobody can have more than the global setting allows.
2686 */
2687 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2688 return -EINVAL;
2689
2690 /*
2691 * The sum of our children's runtime should not exceed our own.
2692 */
2693 list_for_each_entry_rcu(child, &tg->children, siblings) {
2694 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2695 runtime = child->rt_bandwidth.rt_runtime;
2696
2697 if (child == d->tg) {
2698 period = d->rt_period;
2699 runtime = d->rt_runtime;
2700 }
2701
2702 sum += to_ratio(period, runtime);
2703 }
2704
2705 if (sum > total)
2706 return -EINVAL;
2707
2708 return 0;
2709 }
2710
__rt_schedulable(struct task_group * tg,u64 period,u64 runtime)2711 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2712 {
2713 int ret;
2714
2715 struct rt_schedulable_data data = {
2716 .tg = tg,
2717 .rt_period = period,
2718 .rt_runtime = runtime,
2719 };
2720
2721 rcu_read_lock();
2722 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2723 rcu_read_unlock();
2724
2725 return ret;
2726 }
2727
tg_set_rt_bandwidth(struct task_group * tg,u64 rt_period,u64 rt_runtime)2728 static int tg_set_rt_bandwidth(struct task_group *tg,
2729 u64 rt_period, u64 rt_runtime)
2730 {
2731 int i, err = 0;
2732
2733 /*
2734 * Disallowing the root group RT runtime is BAD, it would disallow the
2735 * kernel creating (and or operating) RT threads.
2736 */
2737 if (tg == &root_task_group && rt_runtime == 0)
2738 return -EINVAL;
2739
2740 /* No period doesn't make any sense. */
2741 if (rt_period == 0)
2742 return -EINVAL;
2743
2744 /*
2745 * Bound quota to defend quota against overflow during bandwidth shift.
2746 */
2747 if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2748 return -EINVAL;
2749
2750 mutex_lock(&rt_constraints_mutex);
2751 err = __rt_schedulable(tg, rt_period, rt_runtime);
2752 if (err)
2753 goto unlock;
2754
2755 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2756 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2757 tg->rt_bandwidth.rt_runtime = rt_runtime;
2758
2759 for_each_possible_cpu(i) {
2760 struct rt_rq *rt_rq = tg->rt_rq[i];
2761
2762 raw_spin_lock(&rt_rq->rt_runtime_lock);
2763 rt_rq->rt_runtime = rt_runtime;
2764 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2765 }
2766 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2767 unlock:
2768 mutex_unlock(&rt_constraints_mutex);
2769
2770 return err;
2771 }
2772
sched_group_set_rt_runtime(struct task_group * tg,long rt_runtime_us)2773 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2774 {
2775 u64 rt_runtime, rt_period;
2776
2777 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2778 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2779 if (rt_runtime_us < 0)
2780 rt_runtime = RUNTIME_INF;
2781 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2782 return -EINVAL;
2783
2784 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2785 }
2786
sched_group_rt_runtime(struct task_group * tg)2787 long sched_group_rt_runtime(struct task_group *tg)
2788 {
2789 u64 rt_runtime_us;
2790
2791 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2792 return -1;
2793
2794 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2795 do_div(rt_runtime_us, NSEC_PER_USEC);
2796 return rt_runtime_us;
2797 }
2798
sched_group_set_rt_period(struct task_group * tg,u64 rt_period_us)2799 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2800 {
2801 u64 rt_runtime, rt_period;
2802
2803 if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2804 return -EINVAL;
2805
2806 rt_period = rt_period_us * NSEC_PER_USEC;
2807 rt_runtime = tg->rt_bandwidth.rt_runtime;
2808
2809 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2810 }
2811
sched_group_rt_period(struct task_group * tg)2812 long sched_group_rt_period(struct task_group *tg)
2813 {
2814 u64 rt_period_us;
2815
2816 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2817 do_div(rt_period_us, NSEC_PER_USEC);
2818 return rt_period_us;
2819 }
2820
2821 #ifdef CONFIG_SYSCTL
sched_rt_global_constraints(void)2822 static int sched_rt_global_constraints(void)
2823 {
2824 int ret = 0;
2825
2826 mutex_lock(&rt_constraints_mutex);
2827 ret = __rt_schedulable(NULL, 0, 0);
2828 mutex_unlock(&rt_constraints_mutex);
2829
2830 return ret;
2831 }
2832 #endif /* CONFIG_SYSCTL */
2833
sched_rt_can_attach(struct task_group * tg,struct task_struct * tsk)2834 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2835 {
2836 /* Don't accept real-time tasks when there is no way for them to run */
2837 if (rt_group_sched_enabled() && rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2838 return 0;
2839
2840 return 1;
2841 }
2842
2843 #else /* !CONFIG_RT_GROUP_SCHED: */
2844
2845 #ifdef CONFIG_SYSCTL
sched_rt_global_constraints(void)2846 static int sched_rt_global_constraints(void)
2847 {
2848 return 0;
2849 }
2850 #endif /* CONFIG_SYSCTL */
2851 #endif /* !CONFIG_RT_GROUP_SCHED */
2852
2853 #ifdef CONFIG_SYSCTL
sched_rt_global_validate(void)2854 static int sched_rt_global_validate(void)
2855 {
2856 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2857 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2858 ((u64)sysctl_sched_rt_runtime *
2859 NSEC_PER_USEC > max_rt_runtime)))
2860 return -EINVAL;
2861
2862 return 0;
2863 }
2864
sched_rt_do_global(void)2865 static void sched_rt_do_global(void)
2866 {
2867 }
2868
sched_rt_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2869 static int sched_rt_handler(const struct ctl_table *table, int write, void *buffer,
2870 size_t *lenp, loff_t *ppos)
2871 {
2872 int old_period, old_runtime;
2873 static DEFINE_MUTEX(mutex);
2874 int ret;
2875
2876 mutex_lock(&mutex);
2877 sched_domains_mutex_lock();
2878 old_period = sysctl_sched_rt_period;
2879 old_runtime = sysctl_sched_rt_runtime;
2880
2881 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2882
2883 if (!ret && write) {
2884 ret = sched_rt_global_validate();
2885 if (ret)
2886 goto undo;
2887
2888 ret = sched_dl_global_validate();
2889 if (ret)
2890 goto undo;
2891
2892 ret = sched_rt_global_constraints();
2893 if (ret)
2894 goto undo;
2895
2896 sched_rt_do_global();
2897 sched_dl_do_global();
2898 }
2899 if (0) {
2900 undo:
2901 sysctl_sched_rt_period = old_period;
2902 sysctl_sched_rt_runtime = old_runtime;
2903 }
2904 sched_domains_mutex_unlock();
2905 mutex_unlock(&mutex);
2906
2907 /*
2908 * After changing maximum available bandwidth for DEADLINE, we need to
2909 * recompute per root domain and per cpus variables accordingly.
2910 */
2911 rebuild_sched_domains();
2912
2913 return ret;
2914 }
2915
sched_rr_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2916 static int sched_rr_handler(const struct ctl_table *table, int write, void *buffer,
2917 size_t *lenp, loff_t *ppos)
2918 {
2919 int ret;
2920 static DEFINE_MUTEX(mutex);
2921
2922 mutex_lock(&mutex);
2923 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2924 /*
2925 * Make sure that internally we keep jiffies.
2926 * Also, writing zero resets the time-slice to default:
2927 */
2928 if (!ret && write) {
2929 sched_rr_timeslice =
2930 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2931 msecs_to_jiffies(sysctl_sched_rr_timeslice);
2932
2933 if (sysctl_sched_rr_timeslice <= 0)
2934 sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE);
2935 }
2936 mutex_unlock(&mutex);
2937
2938 return ret;
2939 }
2940 #endif /* CONFIG_SYSCTL */
2941
print_rt_stats(struct seq_file * m,int cpu)2942 void print_rt_stats(struct seq_file *m, int cpu)
2943 {
2944 rt_rq_iter_t iter;
2945 struct rt_rq *rt_rq;
2946
2947 rcu_read_lock();
2948 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2949 print_rt_rq(m, cpu, rt_rq);
2950 rcu_read_unlock();
2951 }
2952