1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/resource.c
4 *
5 * Copyright (C) 1999 Linus Torvalds
6 * Copyright (C) 1999 Martin Mares <mj@ucw.cz>
7 *
8 * Arbitrary resource management.
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/export.h>
14 #include <linux/errno.h>
15 #include <linux/ioport.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/proc_fs.h>
21 #include <linux/pseudo_fs.h>
22 #include <linux/sched.h>
23 #include <linux/seq_file.h>
24 #include <linux/device.h>
25 #include <linux/pfn.h>
26 #include <linux/mm.h>
27 #include <linux/mount.h>
28 #include <linux/resource_ext.h>
29 #include <uapi/linux/magic.h>
30 #include <linux/string.h>
31 #include <linux/vmalloc.h>
32 #include <asm/io.h>
33
34
35 struct resource ioport_resource = {
36 .name = "PCI IO",
37 .start = 0,
38 .end = IO_SPACE_LIMIT,
39 .flags = IORESOURCE_IO,
40 };
41 EXPORT_SYMBOL(ioport_resource);
42
43 struct resource iomem_resource = {
44 .name = "PCI mem",
45 .start = 0,
46 .end = -1,
47 .flags = IORESOURCE_MEM,
48 };
49 EXPORT_SYMBOL(iomem_resource);
50
51 static DEFINE_RWLOCK(resource_lock);
52
53 /*
54 * Return the next node of @p in pre-order tree traversal. If
55 * @skip_children is true, skip the descendant nodes of @p in
56 * traversal. If @p is a descendant of @subtree_root, only traverse
57 * the subtree under @subtree_root.
58 */
next_resource(struct resource * p,bool skip_children,struct resource * subtree_root)59 static struct resource *next_resource(struct resource *p, bool skip_children,
60 struct resource *subtree_root)
61 {
62 if (!skip_children && p->child)
63 return p->child;
64 while (!p->sibling && p->parent) {
65 p = p->parent;
66 if (p == subtree_root)
67 return NULL;
68 }
69 return p->sibling;
70 }
71
72 /*
73 * Traverse the resource subtree under @_root in pre-order, excluding
74 * @_root itself.
75 *
76 * NOTE: '__p' is introduced to avoid shadowing '_p' outside of loop.
77 * And it is referenced to avoid unused variable warning.
78 */
79 #define for_each_resource(_root, _p, _skip_children) \
80 for (typeof(_root) __root = (_root), __p = _p = __root->child; \
81 __p && _p; _p = next_resource(_p, _skip_children, __root))
82
83 #ifdef CONFIG_PROC_FS
84
85 enum { MAX_IORES_LEVEL = 5 };
86
r_start(struct seq_file * m,loff_t * pos)87 static void *r_start(struct seq_file *m, loff_t *pos)
88 __acquires(resource_lock)
89 {
90 struct resource *root = pde_data(file_inode(m->file));
91 struct resource *p;
92 loff_t l = *pos;
93
94 read_lock(&resource_lock);
95 for_each_resource(root, p, false) {
96 if (l-- == 0)
97 break;
98 }
99
100 return p;
101 }
102
r_next(struct seq_file * m,void * v,loff_t * pos)103 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
104 {
105 struct resource *p = v;
106
107 (*pos)++;
108
109 return (void *)next_resource(p, false, NULL);
110 }
111
r_stop(struct seq_file * m,void * v)112 static void r_stop(struct seq_file *m, void *v)
113 __releases(resource_lock)
114 {
115 read_unlock(&resource_lock);
116 }
117
r_show(struct seq_file * m,void * v)118 static int r_show(struct seq_file *m, void *v)
119 {
120 struct resource *root = pde_data(file_inode(m->file));
121 struct resource *r = v, *p;
122 unsigned long long start, end;
123 int width = root->end < 0x10000 ? 4 : 8;
124 int depth;
125
126 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
127 if (p->parent == root)
128 break;
129
130 if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
131 start = r->start;
132 end = r->end;
133 } else {
134 start = end = 0;
135 }
136
137 seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
138 depth * 2, "",
139 width, start,
140 width, end,
141 r->name ? r->name : "<BAD>");
142 return 0;
143 }
144
145 static const struct seq_operations resource_op = {
146 .start = r_start,
147 .next = r_next,
148 .stop = r_stop,
149 .show = r_show,
150 };
151
ioresources_init(void)152 static int __init ioresources_init(void)
153 {
154 proc_create_seq_data("ioports", 0, NULL, &resource_op,
155 &ioport_resource);
156 proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
157 return 0;
158 }
159 __initcall(ioresources_init);
160
161 #endif /* CONFIG_PROC_FS */
162
free_resource(struct resource * res)163 static void free_resource(struct resource *res)
164 {
165 /**
166 * If the resource was allocated using memblock early during boot
167 * we'll leak it here: we can only return full pages back to the
168 * buddy and trying to be smart and reusing them eventually in
169 * alloc_resource() overcomplicates resource handling.
170 */
171 if (res && PageSlab(virt_to_head_page(res)))
172 kfree(res);
173 }
174
alloc_resource(gfp_t flags)175 static struct resource *alloc_resource(gfp_t flags)
176 {
177 return kzalloc(sizeof(struct resource), flags);
178 }
179
180 /* Return the conflict entry if you can't request it */
__request_resource(struct resource * root,struct resource * new)181 static struct resource * __request_resource(struct resource *root, struct resource *new)
182 {
183 resource_size_t start = new->start;
184 resource_size_t end = new->end;
185 struct resource *tmp, **p;
186
187 if (end < start)
188 return root;
189 if (start < root->start)
190 return root;
191 if (end > root->end)
192 return root;
193 p = &root->child;
194 for (;;) {
195 tmp = *p;
196 if (!tmp || tmp->start > end) {
197 new->sibling = tmp;
198 *p = new;
199 new->parent = root;
200 return NULL;
201 }
202 p = &tmp->sibling;
203 if (tmp->end < start)
204 continue;
205 return tmp;
206 }
207 }
208
__release_resource(struct resource * old,bool release_child)209 static int __release_resource(struct resource *old, bool release_child)
210 {
211 struct resource *tmp, **p, *chd;
212
213 p = &old->parent->child;
214 for (;;) {
215 tmp = *p;
216 if (!tmp)
217 break;
218 if (tmp == old) {
219 if (release_child || !(tmp->child)) {
220 *p = tmp->sibling;
221 } else {
222 for (chd = tmp->child;; chd = chd->sibling) {
223 chd->parent = tmp->parent;
224 if (!(chd->sibling))
225 break;
226 }
227 *p = tmp->child;
228 chd->sibling = tmp->sibling;
229 }
230 old->parent = NULL;
231 return 0;
232 }
233 p = &tmp->sibling;
234 }
235 return -EINVAL;
236 }
237
__release_child_resources(struct resource * r)238 static void __release_child_resources(struct resource *r)
239 {
240 struct resource *tmp, *p;
241 resource_size_t size;
242
243 p = r->child;
244 r->child = NULL;
245 while (p) {
246 tmp = p;
247 p = p->sibling;
248
249 tmp->parent = NULL;
250 tmp->sibling = NULL;
251 __release_child_resources(tmp);
252
253 printk(KERN_DEBUG "release child resource %pR\n", tmp);
254 /* need to restore size, and keep flags */
255 size = resource_size(tmp);
256 tmp->start = 0;
257 tmp->end = size - 1;
258 }
259 }
260
release_child_resources(struct resource * r)261 void release_child_resources(struct resource *r)
262 {
263 write_lock(&resource_lock);
264 __release_child_resources(r);
265 write_unlock(&resource_lock);
266 }
267
268 /**
269 * request_resource_conflict - request and reserve an I/O or memory resource
270 * @root: root resource descriptor
271 * @new: resource descriptor desired by caller
272 *
273 * Returns 0 for success, conflict resource on error.
274 */
request_resource_conflict(struct resource * root,struct resource * new)275 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
276 {
277 struct resource *conflict;
278
279 write_lock(&resource_lock);
280 conflict = __request_resource(root, new);
281 write_unlock(&resource_lock);
282 return conflict;
283 }
284
285 /**
286 * request_resource - request and reserve an I/O or memory resource
287 * @root: root resource descriptor
288 * @new: resource descriptor desired by caller
289 *
290 * Returns 0 for success, negative error code on error.
291 */
request_resource(struct resource * root,struct resource * new)292 int request_resource(struct resource *root, struct resource *new)
293 {
294 struct resource *conflict;
295
296 conflict = request_resource_conflict(root, new);
297 return conflict ? -EBUSY : 0;
298 }
299
300 EXPORT_SYMBOL(request_resource);
301
302 /**
303 * release_resource - release a previously reserved resource
304 * @old: resource pointer
305 */
release_resource(struct resource * old)306 int release_resource(struct resource *old)
307 {
308 int retval;
309
310 write_lock(&resource_lock);
311 retval = __release_resource(old, true);
312 write_unlock(&resource_lock);
313 return retval;
314 }
315
316 EXPORT_SYMBOL(release_resource);
317
is_type_match(struct resource * p,unsigned long flags,unsigned long desc)318 static bool is_type_match(struct resource *p, unsigned long flags, unsigned long desc)
319 {
320 return (p->flags & flags) == flags && (desc == IORES_DESC_NONE || desc == p->desc);
321 }
322
323 /**
324 * find_next_iomem_res - Finds the lowest iomem resource that covers part of
325 * [@start..@end].
326 *
327 * If a resource is found, returns 0 and @*res is overwritten with the part
328 * of the resource that's within [@start..@end]; if none is found, returns
329 * -ENODEV. Returns -EINVAL for invalid parameters.
330 *
331 * @start: start address of the resource searched for
332 * @end: end address of same resource
333 * @flags: flags which the resource must have
334 * @desc: descriptor the resource must have
335 * @res: return ptr, if resource found
336 *
337 * The caller must specify @start, @end, @flags, and @desc
338 * (which may be IORES_DESC_NONE).
339 */
find_next_iomem_res(resource_size_t start,resource_size_t end,unsigned long flags,unsigned long desc,struct resource * res)340 static int find_next_iomem_res(resource_size_t start, resource_size_t end,
341 unsigned long flags, unsigned long desc,
342 struct resource *res)
343 {
344 /* Skip children until we find a top level range that matches */
345 bool skip_children = true;
346 struct resource *p;
347
348 if (!res)
349 return -EINVAL;
350
351 if (start >= end)
352 return -EINVAL;
353
354 read_lock(&resource_lock);
355
356 for_each_resource(&iomem_resource, p, skip_children) {
357 /* If we passed the resource we are looking for, stop */
358 if (p->start > end) {
359 p = NULL;
360 break;
361 }
362
363 /* Skip until we find a range that matches what we look for */
364 if (p->end < start)
365 continue;
366
367 /*
368 * We found a top level range that matches what we are looking
369 * for. Time to start checking children too.
370 */
371 skip_children = false;
372
373 /* Found a match, break */
374 if (is_type_match(p, flags, desc))
375 break;
376 }
377
378 if (p) {
379 /* copy data */
380 *res = (struct resource) {
381 .start = max(start, p->start),
382 .end = min(end, p->end),
383 .flags = p->flags,
384 .desc = p->desc,
385 .parent = p->parent,
386 };
387 }
388
389 read_unlock(&resource_lock);
390 return p ? 0 : -ENODEV;
391 }
392
__walk_iomem_res_desc(resource_size_t start,resource_size_t end,unsigned long flags,unsigned long desc,void * arg,int (* func)(struct resource *,void *))393 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
394 unsigned long flags, unsigned long desc,
395 void *arg,
396 int (*func)(struct resource *, void *))
397 {
398 struct resource res;
399 int ret = -EINVAL;
400
401 while (start < end &&
402 !find_next_iomem_res(start, end, flags, desc, &res)) {
403 ret = (*func)(&res, arg);
404 if (ret)
405 break;
406
407 start = res.end + 1;
408 }
409
410 return ret;
411 }
412
413 /**
414 * walk_iomem_res_desc - Walks through iomem resources and calls func()
415 * with matching resource ranges.
416 * *
417 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
418 * @flags: I/O resource flags
419 * @start: start addr
420 * @end: end addr
421 * @arg: function argument for the callback @func
422 * @func: callback function that is called for each qualifying resource area
423 *
424 * All the memory ranges which overlap start,end and also match flags and
425 * desc are valid candidates.
426 *
427 * NOTE: For a new descriptor search, define a new IORES_DESC in
428 * <linux/ioport.h> and set it in 'desc' of a target resource entry.
429 */
walk_iomem_res_desc(unsigned long desc,unsigned long flags,u64 start,u64 end,void * arg,int (* func)(struct resource *,void *))430 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
431 u64 end, void *arg, int (*func)(struct resource *, void *))
432 {
433 return __walk_iomem_res_desc(start, end, flags, desc, arg, func);
434 }
435 EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
436
437 /*
438 * This function calls the @func callback against all memory ranges of type
439 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
440 * Now, this function is only for System RAM, it deals with full ranges and
441 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
442 * ranges.
443 */
walk_system_ram_res(u64 start,u64 end,void * arg,int (* func)(struct resource *,void *))444 int walk_system_ram_res(u64 start, u64 end, void *arg,
445 int (*func)(struct resource *, void *))
446 {
447 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
448
449 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
450 func);
451 }
452
453 /*
454 * This function, being a variant of walk_system_ram_res(), calls the @func
455 * callback against all memory ranges of type System RAM which are marked as
456 * IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY in reversed order, i.e., from
457 * higher to lower.
458 */
walk_system_ram_res_rev(u64 start,u64 end,void * arg,int (* func)(struct resource *,void *))459 int walk_system_ram_res_rev(u64 start, u64 end, void *arg,
460 int (*func)(struct resource *, void *))
461 {
462 struct resource res, *rams;
463 int rams_size = 16, i;
464 unsigned long flags;
465 int ret = -1;
466
467 /* create a list */
468 rams = kvcalloc(rams_size, sizeof(struct resource), GFP_KERNEL);
469 if (!rams)
470 return ret;
471
472 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
473 i = 0;
474 while ((start < end) &&
475 (!find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res))) {
476 if (i >= rams_size) {
477 /* re-alloc */
478 struct resource *rams_new;
479
480 rams_new = kvrealloc(rams, (rams_size + 16) * sizeof(struct resource),
481 GFP_KERNEL);
482 if (!rams_new)
483 goto out;
484
485 rams = rams_new;
486 rams_size += 16;
487 }
488
489 rams[i++] = res;
490 start = res.end + 1;
491 }
492
493 /* go reverse */
494 for (i--; i >= 0; i--) {
495 ret = (*func)(&rams[i], arg);
496 if (ret)
497 break;
498 }
499
500 out:
501 kvfree(rams);
502 return ret;
503 }
504
505 /*
506 * This function calls the @func callback against all memory ranges, which
507 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
508 */
walk_mem_res(u64 start,u64 end,void * arg,int (* func)(struct resource *,void *))509 int walk_mem_res(u64 start, u64 end, void *arg,
510 int (*func)(struct resource *, void *))
511 {
512 unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
513
514 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
515 func);
516 }
517
518 /*
519 * This function calls the @func callback against all memory ranges of type
520 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
521 * It is to be used only for System RAM.
522 */
walk_system_ram_range(unsigned long start_pfn,unsigned long nr_pages,void * arg,int (* func)(unsigned long,unsigned long,void *))523 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
524 void *arg, int (*func)(unsigned long, unsigned long, void *))
525 {
526 resource_size_t start, end;
527 unsigned long flags;
528 struct resource res;
529 unsigned long pfn, end_pfn;
530 int ret = -EINVAL;
531
532 start = (u64) start_pfn << PAGE_SHIFT;
533 end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
534 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
535 while (start < end &&
536 !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) {
537 pfn = PFN_UP(res.start);
538 end_pfn = PFN_DOWN(res.end + 1);
539 if (end_pfn > pfn)
540 ret = (*func)(pfn, end_pfn - pfn, arg);
541 if (ret)
542 break;
543 start = res.end + 1;
544 }
545 return ret;
546 }
547
__is_ram(unsigned long pfn,unsigned long nr_pages,void * arg)548 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
549 {
550 return 1;
551 }
552
553 /*
554 * This generic page_is_ram() returns true if specified address is
555 * registered as System RAM in iomem_resource list.
556 */
page_is_ram(unsigned long pfn)557 int __weak page_is_ram(unsigned long pfn)
558 {
559 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
560 }
561 EXPORT_SYMBOL_GPL(page_is_ram);
562
__region_intersects(struct resource * parent,resource_size_t start,size_t size,unsigned long flags,unsigned long desc)563 static int __region_intersects(struct resource *parent, resource_size_t start,
564 size_t size, unsigned long flags,
565 unsigned long desc)
566 {
567 int type = 0; int other = 0;
568 struct resource *p, *dp;
569 struct resource res, o;
570 bool covered;
571
572 res = DEFINE_RES(start, size, 0);
573
574 for (p = parent->child; p ; p = p->sibling) {
575 if (!resource_intersection(p, &res, &o))
576 continue;
577 if (is_type_match(p, flags, desc)) {
578 type++;
579 continue;
580 }
581 /*
582 * Continue to search in descendant resources as if the
583 * matched descendant resources cover some ranges of 'p'.
584 *
585 * |------------- "CXL Window 0" ------------|
586 * |-- "System RAM" --|
587 *
588 * will behave similar as the following fake resource
589 * tree when searching "System RAM".
590 *
591 * |-- "System RAM" --||-- "CXL Window 0a" --|
592 */
593 covered = false;
594 for_each_resource(p, dp, false) {
595 if (!resource_overlaps(dp, &res))
596 continue;
597 if (is_type_match(dp, flags, desc)) {
598 type++;
599 /*
600 * Range from 'o.start' to 'dp->start'
601 * isn't covered by matched resource.
602 */
603 if (dp->start > o.start)
604 break;
605 if (dp->end >= o.end) {
606 covered = true;
607 break;
608 }
609 /* Remove covered range */
610 o.start = max(o.start, dp->end + 1);
611 }
612 }
613 if (!covered)
614 other++;
615 }
616
617 if (type == 0)
618 return REGION_DISJOINT;
619
620 if (other == 0)
621 return REGION_INTERSECTS;
622
623 return REGION_MIXED;
624 }
625
626 /**
627 * region_intersects() - determine intersection of region with known resources
628 * @start: region start address
629 * @size: size of region
630 * @flags: flags of resource (in iomem_resource)
631 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
632 *
633 * Check if the specified region partially overlaps or fully eclipses a
634 * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
635 * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
636 * return REGION_MIXED if the region overlaps @flags/@desc and another
637 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
638 * and no other defined resource. Note that REGION_INTERSECTS is also
639 * returned in the case when the specified region overlaps RAM and undefined
640 * memory holes.
641 *
642 * region_intersect() is used by memory remapping functions to ensure
643 * the user is not remapping RAM and is a vast speed up over walking
644 * through the resource table page by page.
645 */
region_intersects(resource_size_t start,size_t size,unsigned long flags,unsigned long desc)646 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
647 unsigned long desc)
648 {
649 int ret;
650
651 read_lock(&resource_lock);
652 ret = __region_intersects(&iomem_resource, start, size, flags, desc);
653 read_unlock(&resource_lock);
654
655 return ret;
656 }
657 EXPORT_SYMBOL_GPL(region_intersects);
658
arch_remove_reservations(struct resource * avail)659 void __weak arch_remove_reservations(struct resource *avail)
660 {
661 }
662
resource_clip(struct resource * res,resource_size_t min,resource_size_t max)663 static void resource_clip(struct resource *res, resource_size_t min,
664 resource_size_t max)
665 {
666 if (res->start < min)
667 res->start = min;
668 if (res->end > max)
669 res->end = max;
670 }
671
672 /*
673 * Find empty space in the resource tree with the given range and
674 * alignment constraints
675 */
__find_resource_space(struct resource * root,struct resource * old,struct resource * new,resource_size_t size,struct resource_constraint * constraint)676 static int __find_resource_space(struct resource *root, struct resource *old,
677 struct resource *new, resource_size_t size,
678 struct resource_constraint *constraint)
679 {
680 struct resource *this = root->child;
681 struct resource tmp = *new, avail, alloc;
682 resource_alignf alignf = constraint->alignf;
683
684 tmp.start = root->start;
685 /*
686 * Skip past an allocated resource that starts at 0, since the assignment
687 * of this->start - 1 to tmp->end below would cause an underflow.
688 */
689 if (this && this->start == root->start) {
690 tmp.start = (this == old) ? old->start : this->end + 1;
691 this = this->sibling;
692 }
693 for(;;) {
694 if (this)
695 tmp.end = (this == old) ? this->end : this->start - 1;
696 else
697 tmp.end = root->end;
698
699 if (tmp.end < tmp.start)
700 goto next;
701
702 resource_clip(&tmp, constraint->min, constraint->max);
703 arch_remove_reservations(&tmp);
704
705 /* Check for overflow after ALIGN() */
706 avail.start = ALIGN(tmp.start, constraint->align);
707 avail.end = tmp.end;
708 avail.flags = new->flags & ~IORESOURCE_UNSET;
709 if (avail.start >= tmp.start) {
710 alloc.flags = avail.flags;
711 if (alignf) {
712 alloc.start = alignf(constraint->alignf_data,
713 &avail, size, constraint->align);
714 } else {
715 alloc.start = avail.start;
716 }
717 alloc.end = alloc.start + size - 1;
718 if (alloc.start <= alloc.end &&
719 resource_contains(&avail, &alloc)) {
720 new->start = alloc.start;
721 new->end = alloc.end;
722 return 0;
723 }
724 }
725
726 next: if (!this || this->end == root->end)
727 break;
728
729 if (this != old)
730 tmp.start = this->end + 1;
731 this = this->sibling;
732 }
733 return -EBUSY;
734 }
735
736 /**
737 * find_resource_space - Find empty space in the resource tree
738 * @root: Root resource descriptor
739 * @new: Resource descriptor awaiting an empty resource space
740 * @size: The minimum size of the empty space
741 * @constraint: The range and alignment constraints to be met
742 *
743 * Finds an empty space under @root in the resource tree satisfying range and
744 * alignment @constraints.
745 *
746 * Return:
747 * * %0 - if successful, @new members start, end, and flags are altered.
748 * * %-EBUSY - if no empty space was found.
749 */
find_resource_space(struct resource * root,struct resource * new,resource_size_t size,struct resource_constraint * constraint)750 int find_resource_space(struct resource *root, struct resource *new,
751 resource_size_t size,
752 struct resource_constraint *constraint)
753 {
754 return __find_resource_space(root, NULL, new, size, constraint);
755 }
756 EXPORT_SYMBOL_GPL(find_resource_space);
757
758 /**
759 * reallocate_resource - allocate a slot in the resource tree given range & alignment.
760 * The resource will be relocated if the new size cannot be reallocated in the
761 * current location.
762 *
763 * @root: root resource descriptor
764 * @old: resource descriptor desired by caller
765 * @newsize: new size of the resource descriptor
766 * @constraint: the memory range and alignment constraints to be met.
767 */
reallocate_resource(struct resource * root,struct resource * old,resource_size_t newsize,struct resource_constraint * constraint)768 static int reallocate_resource(struct resource *root, struct resource *old,
769 resource_size_t newsize,
770 struct resource_constraint *constraint)
771 {
772 int err=0;
773 struct resource new = *old;
774 struct resource *conflict;
775
776 write_lock(&resource_lock);
777
778 if ((err = __find_resource_space(root, old, &new, newsize, constraint)))
779 goto out;
780
781 if (resource_contains(&new, old)) {
782 old->start = new.start;
783 old->end = new.end;
784 goto out;
785 }
786
787 if (old->child) {
788 err = -EBUSY;
789 goto out;
790 }
791
792 if (resource_contains(old, &new)) {
793 old->start = new.start;
794 old->end = new.end;
795 } else {
796 __release_resource(old, true);
797 *old = new;
798 conflict = __request_resource(root, old);
799 BUG_ON(conflict);
800 }
801 out:
802 write_unlock(&resource_lock);
803 return err;
804 }
805
806
807 /**
808 * allocate_resource - allocate empty slot in the resource tree given range & alignment.
809 * The resource will be reallocated with a new size if it was already allocated
810 * @root: root resource descriptor
811 * @new: resource descriptor desired by caller
812 * @size: requested resource region size
813 * @min: minimum boundary to allocate
814 * @max: maximum boundary to allocate
815 * @align: alignment requested, in bytes
816 * @alignf: alignment function, optional, called if not NULL
817 * @alignf_data: arbitrary data to pass to the @alignf function
818 */
allocate_resource(struct resource * root,struct resource * new,resource_size_t size,resource_size_t min,resource_size_t max,resource_size_t align,resource_alignf alignf,void * alignf_data)819 int allocate_resource(struct resource *root, struct resource *new,
820 resource_size_t size, resource_size_t min,
821 resource_size_t max, resource_size_t align,
822 resource_alignf alignf,
823 void *alignf_data)
824 {
825 int err;
826 struct resource_constraint constraint;
827
828 constraint.min = min;
829 constraint.max = max;
830 constraint.align = align;
831 constraint.alignf = alignf;
832 constraint.alignf_data = alignf_data;
833
834 if ( new->parent ) {
835 /* resource is already allocated, try reallocating with
836 the new constraints */
837 return reallocate_resource(root, new, size, &constraint);
838 }
839
840 write_lock(&resource_lock);
841 err = find_resource_space(root, new, size, &constraint);
842 if (err >= 0 && __request_resource(root, new))
843 err = -EBUSY;
844 write_unlock(&resource_lock);
845 return err;
846 }
847
848 EXPORT_SYMBOL(allocate_resource);
849
850 /**
851 * lookup_resource - find an existing resource by a resource start address
852 * @root: root resource descriptor
853 * @start: resource start address
854 *
855 * Returns a pointer to the resource if found, NULL otherwise
856 */
lookup_resource(struct resource * root,resource_size_t start)857 struct resource *lookup_resource(struct resource *root, resource_size_t start)
858 {
859 struct resource *res;
860
861 read_lock(&resource_lock);
862 for (res = root->child; res; res = res->sibling) {
863 if (res->start == start)
864 break;
865 }
866 read_unlock(&resource_lock);
867
868 return res;
869 }
870
871 /*
872 * Insert a resource into the resource tree. If successful, return NULL,
873 * otherwise return the conflicting resource (compare to __request_resource())
874 */
__insert_resource(struct resource * parent,struct resource * new)875 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
876 {
877 struct resource *first, *next;
878
879 for (;; parent = first) {
880 first = __request_resource(parent, new);
881 if (!first)
882 return first;
883
884 if (first == parent)
885 return first;
886 if (WARN_ON(first == new)) /* duplicated insertion */
887 return first;
888
889 if ((first->start > new->start) || (first->end < new->end))
890 break;
891 if ((first->start == new->start) && (first->end == new->end))
892 break;
893 }
894
895 for (next = first; ; next = next->sibling) {
896 /* Partial overlap? Bad, and unfixable */
897 if (next->start < new->start || next->end > new->end)
898 return next;
899 if (!next->sibling)
900 break;
901 if (next->sibling->start > new->end)
902 break;
903 }
904
905 new->parent = parent;
906 new->sibling = next->sibling;
907 new->child = first;
908
909 next->sibling = NULL;
910 for (next = first; next; next = next->sibling)
911 next->parent = new;
912
913 if (parent->child == first) {
914 parent->child = new;
915 } else {
916 next = parent->child;
917 while (next->sibling != first)
918 next = next->sibling;
919 next->sibling = new;
920 }
921 return NULL;
922 }
923
924 /**
925 * insert_resource_conflict - Inserts resource in the resource tree
926 * @parent: parent of the new resource
927 * @new: new resource to insert
928 *
929 * Returns 0 on success, conflict resource if the resource can't be inserted.
930 *
931 * This function is equivalent to request_resource_conflict when no conflict
932 * happens. If a conflict happens, and the conflicting resources
933 * entirely fit within the range of the new resource, then the new
934 * resource is inserted and the conflicting resources become children of
935 * the new resource.
936 *
937 * This function is intended for producers of resources, such as FW modules
938 * and bus drivers.
939 */
insert_resource_conflict(struct resource * parent,struct resource * new)940 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
941 {
942 struct resource *conflict;
943
944 write_lock(&resource_lock);
945 conflict = __insert_resource(parent, new);
946 write_unlock(&resource_lock);
947 return conflict;
948 }
949
950 /**
951 * insert_resource - Inserts a resource in the resource tree
952 * @parent: parent of the new resource
953 * @new: new resource to insert
954 *
955 * Returns 0 on success, -EBUSY if the resource can't be inserted.
956 *
957 * This function is intended for producers of resources, such as FW modules
958 * and bus drivers.
959 */
insert_resource(struct resource * parent,struct resource * new)960 int insert_resource(struct resource *parent, struct resource *new)
961 {
962 struct resource *conflict;
963
964 conflict = insert_resource_conflict(parent, new);
965 return conflict ? -EBUSY : 0;
966 }
967 EXPORT_SYMBOL_GPL(insert_resource);
968
969 /**
970 * insert_resource_expand_to_fit - Insert a resource into the resource tree
971 * @root: root resource descriptor
972 * @new: new resource to insert
973 *
974 * Insert a resource into the resource tree, possibly expanding it in order
975 * to make it encompass any conflicting resources.
976 */
insert_resource_expand_to_fit(struct resource * root,struct resource * new)977 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
978 {
979 if (new->parent)
980 return;
981
982 write_lock(&resource_lock);
983 for (;;) {
984 struct resource *conflict;
985
986 conflict = __insert_resource(root, new);
987 if (!conflict)
988 break;
989 if (conflict == root)
990 break;
991
992 /* Ok, expand resource to cover the conflict, then try again .. */
993 if (conflict->start < new->start)
994 new->start = conflict->start;
995 if (conflict->end > new->end)
996 new->end = conflict->end;
997
998 pr_info("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
999 }
1000 write_unlock(&resource_lock);
1001 }
1002 /*
1003 * Not for general consumption, only early boot memory map parsing, PCI
1004 * resource discovery, and late discovery of CXL resources are expected
1005 * to use this interface. The former are built-in and only the latter,
1006 * CXL, is a module.
1007 */
1008 EXPORT_SYMBOL_NS_GPL(insert_resource_expand_to_fit, "CXL");
1009
1010 /**
1011 * remove_resource - Remove a resource in the resource tree
1012 * @old: resource to remove
1013 *
1014 * Returns 0 on success, -EINVAL if the resource is not valid.
1015 *
1016 * This function removes a resource previously inserted by insert_resource()
1017 * or insert_resource_conflict(), and moves the children (if any) up to
1018 * where they were before. insert_resource() and insert_resource_conflict()
1019 * insert a new resource, and move any conflicting resources down to the
1020 * children of the new resource.
1021 *
1022 * insert_resource(), insert_resource_conflict() and remove_resource() are
1023 * intended for producers of resources, such as FW modules and bus drivers.
1024 */
remove_resource(struct resource * old)1025 int remove_resource(struct resource *old)
1026 {
1027 int retval;
1028
1029 write_lock(&resource_lock);
1030 retval = __release_resource(old, false);
1031 write_unlock(&resource_lock);
1032 return retval;
1033 }
1034 EXPORT_SYMBOL_GPL(remove_resource);
1035
__adjust_resource(struct resource * res,resource_size_t start,resource_size_t size)1036 static int __adjust_resource(struct resource *res, resource_size_t start,
1037 resource_size_t size)
1038 {
1039 struct resource *tmp, *parent = res->parent;
1040 resource_size_t end = start + size - 1;
1041 int result = -EBUSY;
1042
1043 if (!parent)
1044 goto skip;
1045
1046 if ((start < parent->start) || (end > parent->end))
1047 goto out;
1048
1049 if (res->sibling && (res->sibling->start <= end))
1050 goto out;
1051
1052 tmp = parent->child;
1053 if (tmp != res) {
1054 while (tmp->sibling != res)
1055 tmp = tmp->sibling;
1056 if (start <= tmp->end)
1057 goto out;
1058 }
1059
1060 skip:
1061 for (tmp = res->child; tmp; tmp = tmp->sibling)
1062 if ((tmp->start < start) || (tmp->end > end))
1063 goto out;
1064
1065 res->start = start;
1066 res->end = end;
1067 result = 0;
1068
1069 out:
1070 return result;
1071 }
1072
1073 /**
1074 * adjust_resource - modify a resource's start and size
1075 * @res: resource to modify
1076 * @start: new start value
1077 * @size: new size
1078 *
1079 * Given an existing resource, change its start and size to match the
1080 * arguments. Returns 0 on success, -EBUSY if it can't fit.
1081 * Existing children of the resource are assumed to be immutable.
1082 */
adjust_resource(struct resource * res,resource_size_t start,resource_size_t size)1083 int adjust_resource(struct resource *res, resource_size_t start,
1084 resource_size_t size)
1085 {
1086 int result;
1087
1088 write_lock(&resource_lock);
1089 result = __adjust_resource(res, start, size);
1090 write_unlock(&resource_lock);
1091 return result;
1092 }
1093 EXPORT_SYMBOL(adjust_resource);
1094
1095 static void __init
__reserve_region_with_split(struct resource * root,resource_size_t start,resource_size_t end,const char * name)1096 __reserve_region_with_split(struct resource *root, resource_size_t start,
1097 resource_size_t end, const char *name)
1098 {
1099 struct resource *parent = root;
1100 struct resource *conflict;
1101 struct resource *res = alloc_resource(GFP_ATOMIC);
1102 struct resource *next_res = NULL;
1103 int type = resource_type(root);
1104
1105 if (!res)
1106 return;
1107
1108 res->name = name;
1109 res->start = start;
1110 res->end = end;
1111 res->flags = type | IORESOURCE_BUSY;
1112 res->desc = IORES_DESC_NONE;
1113
1114 while (1) {
1115
1116 conflict = __request_resource(parent, res);
1117 if (!conflict) {
1118 if (!next_res)
1119 break;
1120 res = next_res;
1121 next_res = NULL;
1122 continue;
1123 }
1124
1125 /* conflict covered whole area */
1126 if (conflict->start <= res->start &&
1127 conflict->end >= res->end) {
1128 free_resource(res);
1129 WARN_ON(next_res);
1130 break;
1131 }
1132
1133 /* failed, split and try again */
1134 if (conflict->start > res->start) {
1135 end = res->end;
1136 res->end = conflict->start - 1;
1137 if (conflict->end < end) {
1138 next_res = alloc_resource(GFP_ATOMIC);
1139 if (!next_res) {
1140 free_resource(res);
1141 break;
1142 }
1143 next_res->name = name;
1144 next_res->start = conflict->end + 1;
1145 next_res->end = end;
1146 next_res->flags = type | IORESOURCE_BUSY;
1147 next_res->desc = IORES_DESC_NONE;
1148 }
1149 } else {
1150 res->start = conflict->end + 1;
1151 }
1152 }
1153
1154 }
1155
1156 void __init
reserve_region_with_split(struct resource * root,resource_size_t start,resource_size_t end,const char * name)1157 reserve_region_with_split(struct resource *root, resource_size_t start,
1158 resource_size_t end, const char *name)
1159 {
1160 int abort = 0;
1161
1162 write_lock(&resource_lock);
1163 if (root->start > start || root->end < end) {
1164 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1165 (unsigned long long)start, (unsigned long long)end,
1166 root);
1167 if (start > root->end || end < root->start)
1168 abort = 1;
1169 else {
1170 if (end > root->end)
1171 end = root->end;
1172 if (start < root->start)
1173 start = root->start;
1174 pr_err("fixing request to [0x%llx-0x%llx]\n",
1175 (unsigned long long)start,
1176 (unsigned long long)end);
1177 }
1178 dump_stack();
1179 }
1180 if (!abort)
1181 __reserve_region_with_split(root, start, end, name);
1182 write_unlock(&resource_lock);
1183 }
1184
1185 /**
1186 * resource_alignment - calculate resource's alignment
1187 * @res: resource pointer
1188 *
1189 * Returns alignment on success, 0 (invalid alignment) on failure.
1190 */
resource_alignment(struct resource * res)1191 resource_size_t resource_alignment(struct resource *res)
1192 {
1193 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1194 case IORESOURCE_SIZEALIGN:
1195 return resource_size(res);
1196 case IORESOURCE_STARTALIGN:
1197 return res->start;
1198 default:
1199 return 0;
1200 }
1201 }
1202
1203 /*
1204 * This is compatibility stuff for IO resources.
1205 *
1206 * Note how this, unlike the above, knows about
1207 * the IO flag meanings (busy etc).
1208 *
1209 * request_region creates a new busy region.
1210 *
1211 * release_region releases a matching busy region.
1212 */
1213
1214 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1215
1216 static struct inode *iomem_inode;
1217
1218 #ifdef CONFIG_IO_STRICT_DEVMEM
revoke_iomem(struct resource * res)1219 static void revoke_iomem(struct resource *res)
1220 {
1221 /* pairs with smp_store_release() in iomem_init_inode() */
1222 struct inode *inode = smp_load_acquire(&iomem_inode);
1223
1224 /*
1225 * Check that the initialization has completed. Losing the race
1226 * is ok because it means drivers are claiming resources before
1227 * the fs_initcall level of init and prevent iomem_get_mapping users
1228 * from establishing mappings.
1229 */
1230 if (!inode)
1231 return;
1232
1233 /*
1234 * The expectation is that the driver has successfully marked
1235 * the resource busy by this point, so devmem_is_allowed()
1236 * should start returning false, however for performance this
1237 * does not iterate the entire resource range.
1238 */
1239 if (devmem_is_allowed(PHYS_PFN(res->start)) &&
1240 devmem_is_allowed(PHYS_PFN(res->end))) {
1241 /*
1242 * *cringe* iomem=relaxed says "go ahead, what's the
1243 * worst that can happen?"
1244 */
1245 return;
1246 }
1247
1248 unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1);
1249 }
1250 #else
revoke_iomem(struct resource * res)1251 static void revoke_iomem(struct resource *res) {}
1252 #endif
1253
iomem_get_mapping(void)1254 struct address_space *iomem_get_mapping(void)
1255 {
1256 /*
1257 * This function is only called from file open paths, hence guaranteed
1258 * that fs_initcalls have completed and no need to check for NULL. But
1259 * since revoke_iomem can be called before the initcall we still need
1260 * the barrier to appease checkers.
1261 */
1262 return smp_load_acquire(&iomem_inode)->i_mapping;
1263 }
1264
__request_region_locked(struct resource * res,struct resource * parent,resource_size_t start,resource_size_t n,const char * name,int flags)1265 static int __request_region_locked(struct resource *res, struct resource *parent,
1266 resource_size_t start, resource_size_t n,
1267 const char *name, int flags)
1268 {
1269 DECLARE_WAITQUEUE(wait, current);
1270
1271 res->name = name;
1272 res->start = start;
1273 res->end = start + n - 1;
1274
1275 for (;;) {
1276 struct resource *conflict;
1277
1278 res->flags = resource_type(parent) | resource_ext_type(parent);
1279 res->flags |= IORESOURCE_BUSY | flags;
1280 res->desc = parent->desc;
1281
1282 conflict = __request_resource(parent, res);
1283 if (!conflict)
1284 break;
1285 /*
1286 * mm/hmm.c reserves physical addresses which then
1287 * become unavailable to other users. Conflicts are
1288 * not expected. Warn to aid debugging if encountered.
1289 */
1290 if (parent == &iomem_resource &&
1291 conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1292 pr_warn("Unaddressable device %s %pR conflicts with %pR\n",
1293 conflict->name, conflict, res);
1294 }
1295 if (conflict != parent) {
1296 if (!(conflict->flags & IORESOURCE_BUSY)) {
1297 parent = conflict;
1298 continue;
1299 }
1300 }
1301 if (conflict->flags & flags & IORESOURCE_MUXED) {
1302 add_wait_queue(&muxed_resource_wait, &wait);
1303 write_unlock(&resource_lock);
1304 set_current_state(TASK_UNINTERRUPTIBLE);
1305 schedule();
1306 remove_wait_queue(&muxed_resource_wait, &wait);
1307 write_lock(&resource_lock);
1308 continue;
1309 }
1310 /* Uhhuh, that didn't work out.. */
1311 return -EBUSY;
1312 }
1313
1314 return 0;
1315 }
1316
1317 /**
1318 * __request_region - create a new busy resource region
1319 * @parent: parent resource descriptor
1320 * @start: resource start address
1321 * @n: resource region size
1322 * @name: reserving caller's ID string
1323 * @flags: IO resource flags
1324 */
__request_region(struct resource * parent,resource_size_t start,resource_size_t n,const char * name,int flags)1325 struct resource *__request_region(struct resource *parent,
1326 resource_size_t start, resource_size_t n,
1327 const char *name, int flags)
1328 {
1329 struct resource *res = alloc_resource(GFP_KERNEL);
1330 int ret;
1331
1332 if (!res)
1333 return NULL;
1334
1335 write_lock(&resource_lock);
1336 ret = __request_region_locked(res, parent, start, n, name, flags);
1337 write_unlock(&resource_lock);
1338
1339 if (ret) {
1340 free_resource(res);
1341 return NULL;
1342 }
1343
1344 if (parent == &iomem_resource)
1345 revoke_iomem(res);
1346
1347 return res;
1348 }
1349 EXPORT_SYMBOL(__request_region);
1350
1351 /**
1352 * __release_region - release a previously reserved resource region
1353 * @parent: parent resource descriptor
1354 * @start: resource start address
1355 * @n: resource region size
1356 *
1357 * The described resource region must match a currently busy region.
1358 */
__release_region(struct resource * parent,resource_size_t start,resource_size_t n)1359 void __release_region(struct resource *parent, resource_size_t start,
1360 resource_size_t n)
1361 {
1362 struct resource **p;
1363 resource_size_t end;
1364
1365 p = &parent->child;
1366 end = start + n - 1;
1367
1368 write_lock(&resource_lock);
1369
1370 for (;;) {
1371 struct resource *res = *p;
1372
1373 if (!res)
1374 break;
1375 if (res->start <= start && res->end >= end) {
1376 if (!(res->flags & IORESOURCE_BUSY)) {
1377 p = &res->child;
1378 continue;
1379 }
1380 if (res->start != start || res->end != end)
1381 break;
1382 *p = res->sibling;
1383 write_unlock(&resource_lock);
1384 if (res->flags & IORESOURCE_MUXED)
1385 wake_up(&muxed_resource_wait);
1386 free_resource(res);
1387 return;
1388 }
1389 p = &res->sibling;
1390 }
1391
1392 write_unlock(&resource_lock);
1393
1394 pr_warn("Trying to free nonexistent resource <%pa-%pa>\n", &start, &end);
1395 }
1396 EXPORT_SYMBOL(__release_region);
1397
1398 #ifdef CONFIG_MEMORY_HOTREMOVE
append_child_to_parent(struct resource * new_parent,struct resource * new_child)1399 static void append_child_to_parent(struct resource *new_parent, struct resource *new_child)
1400 {
1401 struct resource *child;
1402
1403 child = new_parent->child;
1404 if (child) {
1405 while (child->sibling)
1406 child = child->sibling;
1407 child->sibling = new_child;
1408 } else {
1409 new_parent->child = new_child;
1410 }
1411 new_child->parent = new_parent;
1412 new_child->sibling = NULL;
1413 }
1414
1415 /*
1416 * Reparent all child resources that no longer belong to "low" after a split to
1417 * "high". Note that "high" does not have any children, because "low" is the
1418 * original resource and "high" is a new resource. Treat "low" as the original
1419 * resource being split and defer its range adjustment to __adjust_resource().
1420 */
reparent_children_after_split(struct resource * low,struct resource * high,resource_size_t split_addr)1421 static void reparent_children_after_split(struct resource *low,
1422 struct resource *high,
1423 resource_size_t split_addr)
1424 {
1425 struct resource *child, *next, **p;
1426
1427 p = &low->child;
1428 while ((child = *p)) {
1429 next = child->sibling;
1430 if (child->start > split_addr) {
1431 /* unlink child */
1432 *p = next;
1433 append_child_to_parent(high, child);
1434 } else {
1435 p = &child->sibling;
1436 }
1437 }
1438 }
1439
1440 /**
1441 * release_mem_region_adjustable - release a previously reserved memory region
1442 * @start: resource start address
1443 * @size: resource region size
1444 *
1445 * This interface is intended for memory hot-delete. The requested region
1446 * is released from a currently busy memory resource. The requested region
1447 * must either match exactly or fit into a single busy resource entry. In
1448 * the latter case, the remaining resource is adjusted accordingly.
1449 *
1450 * Note:
1451 * - Additional release conditions, such as overlapping region, can be
1452 * supported after they are confirmed as valid cases.
1453 * - When a busy memory resource gets split into two entries, its children are
1454 * reassigned to the correct parent based on their range. If a child memory
1455 * resource overlaps with more than one parent, enhance the logic as needed.
1456 */
release_mem_region_adjustable(resource_size_t start,resource_size_t size)1457 void release_mem_region_adjustable(resource_size_t start, resource_size_t size)
1458 {
1459 struct resource *parent = &iomem_resource;
1460 struct resource *new_res = NULL;
1461 bool alloc_nofail = false;
1462 struct resource **p;
1463 struct resource *res;
1464 resource_size_t end;
1465
1466 end = start + size - 1;
1467 if (WARN_ON_ONCE((start < parent->start) || (end > parent->end)))
1468 return;
1469
1470 /*
1471 * We free up quite a lot of memory on memory hotunplug (esp., memap),
1472 * just before releasing the region. This is highly unlikely to
1473 * fail - let's play save and make it never fail as the caller cannot
1474 * perform any error handling (e.g., trying to re-add memory will fail
1475 * similarly).
1476 */
1477 retry:
1478 new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0));
1479
1480 p = &parent->child;
1481 write_lock(&resource_lock);
1482
1483 while ((res = *p)) {
1484 if (res->start >= end)
1485 break;
1486
1487 /* look for the next resource if it does not fit into */
1488 if (res->start > start || res->end < end) {
1489 p = &res->sibling;
1490 continue;
1491 }
1492
1493 if (!(res->flags & IORESOURCE_MEM))
1494 break;
1495
1496 if (!(res->flags & IORESOURCE_BUSY)) {
1497 p = &res->child;
1498 continue;
1499 }
1500
1501 /* found the target resource; let's adjust accordingly */
1502 if (res->start == start && res->end == end) {
1503 /* free the whole entry */
1504 *p = res->sibling;
1505 free_resource(res);
1506 } else if (res->start == start && res->end != end) {
1507 /* adjust the start */
1508 WARN_ON_ONCE(__adjust_resource(res, end + 1,
1509 res->end - end));
1510 } else if (res->start != start && res->end == end) {
1511 /* adjust the end */
1512 WARN_ON_ONCE(__adjust_resource(res, res->start,
1513 start - res->start));
1514 } else {
1515 /* split into two entries - we need a new resource */
1516 if (!new_res) {
1517 new_res = alloc_resource(GFP_ATOMIC);
1518 if (!new_res) {
1519 alloc_nofail = true;
1520 write_unlock(&resource_lock);
1521 goto retry;
1522 }
1523 }
1524 new_res->name = res->name;
1525 new_res->start = end + 1;
1526 new_res->end = res->end;
1527 new_res->flags = res->flags;
1528 new_res->desc = res->desc;
1529 new_res->parent = res->parent;
1530 new_res->sibling = res->sibling;
1531 new_res->child = NULL;
1532 reparent_children_after_split(res, new_res, end);
1533
1534 if (WARN_ON_ONCE(__adjust_resource(res, res->start,
1535 start - res->start)))
1536 break;
1537 res->sibling = new_res;
1538 new_res = NULL;
1539 }
1540
1541 break;
1542 }
1543
1544 write_unlock(&resource_lock);
1545 free_resource(new_res);
1546 }
1547 #endif /* CONFIG_MEMORY_HOTREMOVE */
1548
1549 #ifdef CONFIG_MEMORY_HOTPLUG
system_ram_resources_mergeable(struct resource * r1,struct resource * r2)1550 static bool system_ram_resources_mergeable(struct resource *r1,
1551 struct resource *r2)
1552 {
1553 /* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */
1554 return r1->flags == r2->flags && r1->end + 1 == r2->start &&
1555 r1->name == r2->name && r1->desc == r2->desc &&
1556 !r1->child && !r2->child;
1557 }
1558
1559 /**
1560 * merge_system_ram_resource - mark the System RAM resource mergeable and try to
1561 * merge it with adjacent, mergeable resources
1562 * @res: resource descriptor
1563 *
1564 * This interface is intended for memory hotplug, whereby lots of contiguous
1565 * system ram resources are added (e.g., via add_memory*()) by a driver, and
1566 * the actual resource boundaries are not of interest (e.g., it might be
1567 * relevant for DIMMs). Only resources that are marked mergeable, that have the
1568 * same parent, and that don't have any children are considered. All mergeable
1569 * resources must be immutable during the request.
1570 *
1571 * Note:
1572 * - The caller has to make sure that no pointers to resources that are
1573 * marked mergeable are used anymore after this call - the resource might
1574 * be freed and the pointer might be stale!
1575 * - release_mem_region_adjustable() will split on demand on memory hotunplug
1576 */
merge_system_ram_resource(struct resource * res)1577 void merge_system_ram_resource(struct resource *res)
1578 {
1579 const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
1580 struct resource *cur;
1581
1582 if (WARN_ON_ONCE((res->flags & flags) != flags))
1583 return;
1584
1585 write_lock(&resource_lock);
1586 res->flags |= IORESOURCE_SYSRAM_MERGEABLE;
1587
1588 /* Try to merge with next item in the list. */
1589 cur = res->sibling;
1590 if (cur && system_ram_resources_mergeable(res, cur)) {
1591 res->end = cur->end;
1592 res->sibling = cur->sibling;
1593 free_resource(cur);
1594 }
1595
1596 /* Try to merge with previous item in the list. */
1597 cur = res->parent->child;
1598 while (cur && cur->sibling != res)
1599 cur = cur->sibling;
1600 if (cur && system_ram_resources_mergeable(cur, res)) {
1601 cur->end = res->end;
1602 cur->sibling = res->sibling;
1603 free_resource(res);
1604 }
1605 write_unlock(&resource_lock);
1606 }
1607 #endif /* CONFIG_MEMORY_HOTPLUG */
1608
1609 /*
1610 * Managed region resource
1611 */
devm_resource_release(struct device * dev,void * ptr)1612 static void devm_resource_release(struct device *dev, void *ptr)
1613 {
1614 struct resource **r = ptr;
1615
1616 release_resource(*r);
1617 }
1618
1619 /**
1620 * devm_request_resource() - request and reserve an I/O or memory resource
1621 * @dev: device for which to request the resource
1622 * @root: root of the resource tree from which to request the resource
1623 * @new: descriptor of the resource to request
1624 *
1625 * This is a device-managed version of request_resource(). There is usually
1626 * no need to release resources requested by this function explicitly since
1627 * that will be taken care of when the device is unbound from its driver.
1628 * If for some reason the resource needs to be released explicitly, because
1629 * of ordering issues for example, drivers must call devm_release_resource()
1630 * rather than the regular release_resource().
1631 *
1632 * When a conflict is detected between any existing resources and the newly
1633 * requested resource, an error message will be printed.
1634 *
1635 * Returns 0 on success or a negative error code on failure.
1636 */
devm_request_resource(struct device * dev,struct resource * root,struct resource * new)1637 int devm_request_resource(struct device *dev, struct resource *root,
1638 struct resource *new)
1639 {
1640 struct resource *conflict, **ptr;
1641
1642 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1643 if (!ptr)
1644 return -ENOMEM;
1645
1646 *ptr = new;
1647
1648 conflict = request_resource_conflict(root, new);
1649 if (conflict) {
1650 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1651 new, conflict->name, conflict);
1652 devres_free(ptr);
1653 return -EBUSY;
1654 }
1655
1656 devres_add(dev, ptr);
1657 return 0;
1658 }
1659 EXPORT_SYMBOL(devm_request_resource);
1660
devm_resource_match(struct device * dev,void * res,void * data)1661 static int devm_resource_match(struct device *dev, void *res, void *data)
1662 {
1663 struct resource **ptr = res;
1664
1665 return *ptr == data;
1666 }
1667
1668 /**
1669 * devm_release_resource() - release a previously requested resource
1670 * @dev: device for which to release the resource
1671 * @new: descriptor of the resource to release
1672 *
1673 * Releases a resource previously requested using devm_request_resource().
1674 */
devm_release_resource(struct device * dev,struct resource * new)1675 void devm_release_resource(struct device *dev, struct resource *new)
1676 {
1677 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1678 new));
1679 }
1680 EXPORT_SYMBOL(devm_release_resource);
1681
1682 struct region_devres {
1683 struct resource *parent;
1684 resource_size_t start;
1685 resource_size_t n;
1686 };
1687
devm_region_release(struct device * dev,void * res)1688 static void devm_region_release(struct device *dev, void *res)
1689 {
1690 struct region_devres *this = res;
1691
1692 __release_region(this->parent, this->start, this->n);
1693 }
1694
devm_region_match(struct device * dev,void * res,void * match_data)1695 static int devm_region_match(struct device *dev, void *res, void *match_data)
1696 {
1697 struct region_devres *this = res, *match = match_data;
1698
1699 return this->parent == match->parent &&
1700 this->start == match->start && this->n == match->n;
1701 }
1702
1703 struct resource *
__devm_request_region(struct device * dev,struct resource * parent,resource_size_t start,resource_size_t n,const char * name)1704 __devm_request_region(struct device *dev, struct resource *parent,
1705 resource_size_t start, resource_size_t n, const char *name)
1706 {
1707 struct region_devres *dr = NULL;
1708 struct resource *res;
1709
1710 dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1711 GFP_KERNEL);
1712 if (!dr)
1713 return NULL;
1714
1715 dr->parent = parent;
1716 dr->start = start;
1717 dr->n = n;
1718
1719 res = __request_region(parent, start, n, name, 0);
1720 if (res)
1721 devres_add(dev, dr);
1722 else
1723 devres_free(dr);
1724
1725 return res;
1726 }
1727 EXPORT_SYMBOL(__devm_request_region);
1728
__devm_release_region(struct device * dev,struct resource * parent,resource_size_t start,resource_size_t n)1729 void __devm_release_region(struct device *dev, struct resource *parent,
1730 resource_size_t start, resource_size_t n)
1731 {
1732 struct region_devres match_data = { parent, start, n };
1733
1734 WARN_ON(devres_release(dev, devm_region_release, devm_region_match,
1735 &match_data));
1736 }
1737 EXPORT_SYMBOL(__devm_release_region);
1738
1739 /*
1740 * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1741 */
1742 #define MAXRESERVE 4
reserve_setup(char * str)1743 static int __init reserve_setup(char *str)
1744 {
1745 static int reserved;
1746 static struct resource reserve[MAXRESERVE];
1747
1748 for (;;) {
1749 unsigned int io_start, io_num;
1750 int x = reserved;
1751 struct resource *parent;
1752
1753 if (get_option(&str, &io_start) != 2)
1754 break;
1755 if (get_option(&str, &io_num) == 0)
1756 break;
1757 if (x < MAXRESERVE) {
1758 struct resource *res = reserve + x;
1759
1760 /*
1761 * If the region starts below 0x10000, we assume it's
1762 * I/O port space; otherwise assume it's memory.
1763 */
1764 if (io_start < 0x10000) {
1765 *res = DEFINE_RES_IO_NAMED(io_start, io_num, "reserved");
1766 parent = &ioport_resource;
1767 } else {
1768 *res = DEFINE_RES_MEM_NAMED(io_start, io_num, "reserved");
1769 parent = &iomem_resource;
1770 }
1771 res->flags |= IORESOURCE_BUSY;
1772 if (request_resource(parent, res) == 0)
1773 reserved = x+1;
1774 }
1775 }
1776 return 1;
1777 }
1778 __setup("reserve=", reserve_setup);
1779
1780 /*
1781 * Check if the requested addr and size spans more than any slot in the
1782 * iomem resource tree.
1783 */
iomem_map_sanity_check(resource_size_t addr,unsigned long size)1784 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1785 {
1786 resource_size_t end = addr + size - 1;
1787 struct resource *p;
1788 int err = 0;
1789
1790 read_lock(&resource_lock);
1791 for_each_resource(&iomem_resource, p, false) {
1792 /*
1793 * We can probably skip the resources without
1794 * IORESOURCE_IO attribute?
1795 */
1796 if (p->start > end)
1797 continue;
1798 if (p->end < addr)
1799 continue;
1800 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1801 PFN_DOWN(p->end) >= PFN_DOWN(end))
1802 continue;
1803 /*
1804 * if a resource is "BUSY", it's not a hardware resource
1805 * but a driver mapping of such a resource; we don't want
1806 * to warn for those; some drivers legitimately map only
1807 * partial hardware resources. (example: vesafb)
1808 */
1809 if (p->flags & IORESOURCE_BUSY)
1810 continue;
1811
1812 pr_warn("resource sanity check: requesting [mem %pa-%pa], which spans more than %s %pR\n",
1813 &addr, &end, p->name, p);
1814 err = -1;
1815 break;
1816 }
1817 read_unlock(&resource_lock);
1818
1819 return err;
1820 }
1821
1822 #ifdef CONFIG_STRICT_DEVMEM
1823 static int strict_iomem_checks = 1;
1824 #else
1825 static int strict_iomem_checks;
1826 #endif
1827
1828 /*
1829 * Check if an address is exclusive to the kernel and must not be mapped to
1830 * user space, for example, via /dev/mem.
1831 *
1832 * Returns true if exclusive to the kernel, otherwise returns false.
1833 */
resource_is_exclusive(struct resource * root,u64 addr,resource_size_t size)1834 bool resource_is_exclusive(struct resource *root, u64 addr, resource_size_t size)
1835 {
1836 const unsigned int exclusive_system_ram = IORESOURCE_SYSTEM_RAM |
1837 IORESOURCE_EXCLUSIVE;
1838 bool skip_children = false, err = false;
1839 struct resource *p;
1840
1841 read_lock(&resource_lock);
1842 for_each_resource(root, p, skip_children) {
1843 if (p->start >= addr + size)
1844 break;
1845 if (p->end < addr) {
1846 skip_children = true;
1847 continue;
1848 }
1849 skip_children = false;
1850
1851 /*
1852 * IORESOURCE_SYSTEM_RAM resources are exclusive if
1853 * IORESOURCE_EXCLUSIVE is set, even if they
1854 * are not busy and even if "iomem=relaxed" is set. The
1855 * responsible driver dynamically adds/removes system RAM within
1856 * such an area and uncontrolled access is dangerous.
1857 */
1858 if ((p->flags & exclusive_system_ram) == exclusive_system_ram) {
1859 err = true;
1860 break;
1861 }
1862
1863 /*
1864 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1865 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1866 * resource is busy.
1867 */
1868 if (!strict_iomem_checks || !(p->flags & IORESOURCE_BUSY))
1869 continue;
1870 if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1871 || p->flags & IORESOURCE_EXCLUSIVE) {
1872 err = true;
1873 break;
1874 }
1875 }
1876 read_unlock(&resource_lock);
1877
1878 return err;
1879 }
1880
iomem_is_exclusive(u64 addr)1881 bool iomem_is_exclusive(u64 addr)
1882 {
1883 return resource_is_exclusive(&iomem_resource, addr & PAGE_MASK,
1884 PAGE_SIZE);
1885 }
1886
resource_list_create_entry(struct resource * res,size_t extra_size)1887 struct resource_entry *resource_list_create_entry(struct resource *res,
1888 size_t extra_size)
1889 {
1890 struct resource_entry *entry;
1891
1892 entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1893 if (entry) {
1894 INIT_LIST_HEAD(&entry->node);
1895 entry->res = res ? res : &entry->__res;
1896 }
1897
1898 return entry;
1899 }
1900 EXPORT_SYMBOL(resource_list_create_entry);
1901
resource_list_free(struct list_head * head)1902 void resource_list_free(struct list_head *head)
1903 {
1904 struct resource_entry *entry, *tmp;
1905
1906 list_for_each_entry_safe(entry, tmp, head, node)
1907 resource_list_destroy_entry(entry);
1908 }
1909 EXPORT_SYMBOL(resource_list_free);
1910
1911 #ifdef CONFIG_GET_FREE_REGION
1912 #define GFR_DESCENDING (1UL << 0)
1913 #define GFR_REQUEST_REGION (1UL << 1)
1914 #ifdef PA_SECTION_SHIFT
1915 #define GFR_DEFAULT_ALIGN (1UL << PA_SECTION_SHIFT)
1916 #else
1917 #define GFR_DEFAULT_ALIGN PAGE_SIZE
1918 #endif
1919
gfr_start(struct resource * base,resource_size_t size,resource_size_t align,unsigned long flags)1920 static resource_size_t gfr_start(struct resource *base, resource_size_t size,
1921 resource_size_t align, unsigned long flags)
1922 {
1923 if (flags & GFR_DESCENDING) {
1924 resource_size_t end;
1925
1926 end = min_t(resource_size_t, base->end, DIRECT_MAP_PHYSMEM_END);
1927 return end - size + 1;
1928 }
1929
1930 return ALIGN(max(base->start, align), align);
1931 }
1932
gfr_continue(struct resource * base,resource_size_t addr,resource_size_t size,unsigned long flags)1933 static bool gfr_continue(struct resource *base, resource_size_t addr,
1934 resource_size_t size, unsigned long flags)
1935 {
1936 if (flags & GFR_DESCENDING)
1937 return addr > size && addr >= base->start;
1938 /*
1939 * In the ascend case be careful that the last increment by
1940 * @size did not wrap 0.
1941 */
1942 return addr > addr - size &&
1943 addr <= min_t(resource_size_t, base->end, DIRECT_MAP_PHYSMEM_END);
1944 }
1945
gfr_next(resource_size_t addr,resource_size_t size,unsigned long flags)1946 static resource_size_t gfr_next(resource_size_t addr, resource_size_t size,
1947 unsigned long flags)
1948 {
1949 if (flags & GFR_DESCENDING)
1950 return addr - size;
1951 return addr + size;
1952 }
1953
remove_free_mem_region(void * _res)1954 static void remove_free_mem_region(void *_res)
1955 {
1956 struct resource *res = _res;
1957
1958 if (res->parent)
1959 remove_resource(res);
1960 free_resource(res);
1961 }
1962
1963 static struct resource *
get_free_mem_region(struct device * dev,struct resource * base,resource_size_t size,const unsigned long align,const char * name,const unsigned long desc,const unsigned long flags)1964 get_free_mem_region(struct device *dev, struct resource *base,
1965 resource_size_t size, const unsigned long align,
1966 const char *name, const unsigned long desc,
1967 const unsigned long flags)
1968 {
1969 resource_size_t addr;
1970 struct resource *res;
1971 struct region_devres *dr = NULL;
1972
1973 size = ALIGN(size, align);
1974
1975 res = alloc_resource(GFP_KERNEL);
1976 if (!res)
1977 return ERR_PTR(-ENOMEM);
1978
1979 if (dev && (flags & GFR_REQUEST_REGION)) {
1980 dr = devres_alloc(devm_region_release,
1981 sizeof(struct region_devres), GFP_KERNEL);
1982 if (!dr) {
1983 free_resource(res);
1984 return ERR_PTR(-ENOMEM);
1985 }
1986 } else if (dev) {
1987 if (devm_add_action_or_reset(dev, remove_free_mem_region, res))
1988 return ERR_PTR(-ENOMEM);
1989 }
1990
1991 write_lock(&resource_lock);
1992 for (addr = gfr_start(base, size, align, flags);
1993 gfr_continue(base, addr, align, flags);
1994 addr = gfr_next(addr, align, flags)) {
1995 if (__region_intersects(base, addr, size, 0, IORES_DESC_NONE) !=
1996 REGION_DISJOINT)
1997 continue;
1998
1999 if (flags & GFR_REQUEST_REGION) {
2000 if (__request_region_locked(res, &iomem_resource, addr,
2001 size, name, 0))
2002 break;
2003
2004 if (dev) {
2005 dr->parent = &iomem_resource;
2006 dr->start = addr;
2007 dr->n = size;
2008 devres_add(dev, dr);
2009 }
2010
2011 res->desc = desc;
2012 write_unlock(&resource_lock);
2013
2014
2015 /*
2016 * A driver is claiming this region so revoke any
2017 * mappings.
2018 */
2019 revoke_iomem(res);
2020 } else {
2021 *res = DEFINE_RES_NAMED_DESC(addr, size, name, IORESOURCE_MEM, desc);
2022
2023 /*
2024 * Only succeed if the resource hosts an exclusive
2025 * range after the insert
2026 */
2027 if (__insert_resource(base, res) || res->child)
2028 break;
2029
2030 write_unlock(&resource_lock);
2031 }
2032
2033 return res;
2034 }
2035 write_unlock(&resource_lock);
2036
2037 if (flags & GFR_REQUEST_REGION) {
2038 free_resource(res);
2039 devres_free(dr);
2040 } else if (dev)
2041 devm_release_action(dev, remove_free_mem_region, res);
2042
2043 return ERR_PTR(-ERANGE);
2044 }
2045
2046 /**
2047 * devm_request_free_mem_region - find free region for device private memory
2048 *
2049 * @dev: device struct to bind the resource to
2050 * @size: size in bytes of the device memory to add
2051 * @base: resource tree to look in
2052 *
2053 * This function tries to find an empty range of physical address big enough to
2054 * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE
2055 * memory, which in turn allocates struct pages.
2056 */
devm_request_free_mem_region(struct device * dev,struct resource * base,unsigned long size)2057 struct resource *devm_request_free_mem_region(struct device *dev,
2058 struct resource *base, unsigned long size)
2059 {
2060 unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
2061
2062 return get_free_mem_region(dev, base, size, GFR_DEFAULT_ALIGN,
2063 dev_name(dev),
2064 IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
2065 }
2066 EXPORT_SYMBOL_GPL(devm_request_free_mem_region);
2067
request_free_mem_region(struct resource * base,unsigned long size,const char * name)2068 struct resource *request_free_mem_region(struct resource *base,
2069 unsigned long size, const char *name)
2070 {
2071 unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
2072
2073 return get_free_mem_region(NULL, base, size, GFR_DEFAULT_ALIGN, name,
2074 IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
2075 }
2076 EXPORT_SYMBOL_GPL(request_free_mem_region);
2077
2078 /**
2079 * alloc_free_mem_region - find a free region relative to @base
2080 * @base: resource that will parent the new resource
2081 * @size: size in bytes of memory to allocate from @base
2082 * @align: alignment requirements for the allocation
2083 * @name: resource name
2084 *
2085 * Buses like CXL, that can dynamically instantiate new memory regions,
2086 * need a method to allocate physical address space for those regions.
2087 * Allocate and insert a new resource to cover a free, unclaimed by a
2088 * descendant of @base, range in the span of @base.
2089 */
alloc_free_mem_region(struct resource * base,unsigned long size,unsigned long align,const char * name)2090 struct resource *alloc_free_mem_region(struct resource *base,
2091 unsigned long size, unsigned long align,
2092 const char *name)
2093 {
2094 /* Default of ascending direction and insert resource */
2095 unsigned long flags = 0;
2096
2097 return get_free_mem_region(NULL, base, size, align, name,
2098 IORES_DESC_NONE, flags);
2099 }
2100 EXPORT_SYMBOL_GPL(alloc_free_mem_region);
2101 #endif /* CONFIG_GET_FREE_REGION */
2102
strict_iomem(char * str)2103 static int __init strict_iomem(char *str)
2104 {
2105 if (strstr(str, "relaxed"))
2106 strict_iomem_checks = 0;
2107 if (strstr(str, "strict"))
2108 strict_iomem_checks = 1;
2109 return 1;
2110 }
2111
iomem_fs_init_fs_context(struct fs_context * fc)2112 static int iomem_fs_init_fs_context(struct fs_context *fc)
2113 {
2114 return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM;
2115 }
2116
2117 static struct file_system_type iomem_fs_type = {
2118 .name = "iomem",
2119 .owner = THIS_MODULE,
2120 .init_fs_context = iomem_fs_init_fs_context,
2121 .kill_sb = kill_anon_super,
2122 };
2123
iomem_init_inode(void)2124 static int __init iomem_init_inode(void)
2125 {
2126 static struct vfsmount *iomem_vfs_mount;
2127 static int iomem_fs_cnt;
2128 struct inode *inode;
2129 int rc;
2130
2131 rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt);
2132 if (rc < 0) {
2133 pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc);
2134 return rc;
2135 }
2136
2137 inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb);
2138 if (IS_ERR(inode)) {
2139 rc = PTR_ERR(inode);
2140 pr_err("Cannot allocate inode for iomem: %d\n", rc);
2141 simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt);
2142 return rc;
2143 }
2144
2145 /*
2146 * Publish iomem revocation inode initialized.
2147 * Pairs with smp_load_acquire() in revoke_iomem().
2148 */
2149 smp_store_release(&iomem_inode, inode);
2150
2151 return 0;
2152 }
2153
2154 fs_initcall(iomem_init_inode);
2155
2156 __setup("iomem=", strict_iomem);
2157