xref: /linux/drivers/crypto/hisilicon/hpre/hpre_crypto.c (revision d8768fb12a14c30436bd0466b4fc28edeef45078)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 #include <crypto/akcipher.h>
4 #include <crypto/dh.h>
5 #include <crypto/ecc_curve.h>
6 #include <crypto/ecdh.h>
7 #include <crypto/rng.h>
8 #include <crypto/internal/akcipher.h>
9 #include <crypto/internal/kpp.h>
10 #include <crypto/internal/rsa.h>
11 #include <crypto/kpp.h>
12 #include <crypto/scatterwalk.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/fips.h>
15 #include <linux/module.h>
16 #include <linux/time.h>
17 #include "hpre.h"
18 
19 struct hpre_ctx;
20 
21 #define HPRE_CRYPTO_ALG_PRI	1000
22 #define HPRE_ALIGN_SZ		64
23 #define HPRE_BITS_2_BYTES_SHIFT	3
24 #define HPRE_RSA_512BITS_KSZ	64
25 #define HPRE_RSA_1536BITS_KSZ	192
26 #define HPRE_CRT_PRMS		5
27 #define HPRE_CRT_Q		2
28 #define HPRE_CRT_P		3
29 #define HPRE_CRT_INV		4
30 #define HPRE_DH_G_FLAG		0x02
31 #define HPRE_TRY_SEND_TIMES	100
32 #define HPRE_INVLD_REQ_ID		(-1)
33 
34 #define HPRE_SQE_ALG_BITS	5
35 #define HPRE_SQE_DONE_SHIFT	30
36 #define HPRE_DH_MAX_P_SZ	512
37 
38 #define HPRE_DFX_SEC_TO_US	1000000
39 #define HPRE_DFX_US_TO_NS	1000
40 
41 #define HPRE_ENABLE_HPCORE_SHIFT	7
42 
43 /* due to nist p521  */
44 #define HPRE_ECC_MAX_KSZ	66
45 
46 /* size in bytes of the n prime */
47 #define HPRE_ECC_NIST_P192_N_SIZE	24
48 #define HPRE_ECC_NIST_P256_N_SIZE	32
49 #define HPRE_ECC_NIST_P384_N_SIZE	48
50 
51 /* size in bytes */
52 #define HPRE_ECC_HW256_KSZ_B	32
53 #define HPRE_ECC_HW384_KSZ_B	48
54 
55 /* capability register mask of driver */
56 #define HPRE_DRV_RSA_MASK_CAP		BIT(0)
57 #define HPRE_DRV_DH_MASK_CAP		BIT(1)
58 #define HPRE_DRV_ECDH_MASK_CAP		BIT(2)
59 #define HPRE_DRV_X25519_MASK_CAP	BIT(5)
60 
61 static DEFINE_MUTEX(hpre_algs_lock);
62 static unsigned int hpre_available_devs;
63 
64 typedef void (*hpre_cb)(struct hpre_ctx *ctx, void *sqe);
65 
66 struct hpre_rsa_ctx {
67 	/* low address: e--->n */
68 	char *pubkey;
69 	dma_addr_t dma_pubkey;
70 
71 	/* low address: d--->n */
72 	char *prikey;
73 	dma_addr_t dma_prikey;
74 
75 	/* low address: dq->dp->q->p->qinv */
76 	char *crt_prikey;
77 	dma_addr_t dma_crt_prikey;
78 
79 	struct crypto_akcipher *soft_tfm;
80 };
81 
82 struct hpre_dh_ctx {
83 	/*
84 	 * If base is g we compute the public key
85 	 *	ya = g^xa mod p; [RFC2631 sec 2.1.1]
86 	 * else if base if the counterpart public key we
87 	 * compute the shared secret
88 	 *	ZZ = yb^xa mod p; [RFC2631 sec 2.1.1]
89 	 * low address: d--->n, please refer to Hisilicon HPRE UM
90 	 */
91 	char *xa_p;
92 	dma_addr_t dma_xa_p;
93 
94 	char *g; /* m */
95 	dma_addr_t dma_g;
96 };
97 
98 struct hpre_ecdh_ctx {
99 	/* low address: p->a->k->b */
100 	unsigned char *p;
101 	dma_addr_t dma_p;
102 
103 	/* low address: x->y */
104 	unsigned char *g;
105 	dma_addr_t dma_g;
106 };
107 
108 struct hpre_ctx {
109 	struct hisi_qp *qp;
110 	struct device *dev;
111 	struct hpre_asym_request **req_list;
112 	struct hpre *hpre;
113 	spinlock_t req_lock;
114 	unsigned int key_sz;
115 	bool crt_g2_mode;
116 	struct idr req_idr;
117 	union {
118 		struct hpre_rsa_ctx rsa;
119 		struct hpre_dh_ctx dh;
120 		struct hpre_ecdh_ctx ecdh;
121 	};
122 	/* for ecc algorithms */
123 	unsigned int curve_id;
124 	/* for high performance core */
125 	u8 enable_hpcore;
126 };
127 
128 struct hpre_asym_request {
129 	char *src;
130 	char *dst;
131 	struct hpre_sqe req;
132 	struct hpre_ctx *ctx;
133 	union {
134 		struct akcipher_request *rsa;
135 		struct kpp_request *dh;
136 		struct kpp_request *ecdh;
137 	} areq;
138 	int err;
139 	int req_id;
140 	hpre_cb cb;
141 	struct timespec64 req_time;
142 };
143 
hpre_align_sz(void)144 static inline unsigned int hpre_align_sz(void)
145 {
146 	return ((crypto_dma_align() - 1) | (HPRE_ALIGN_SZ - 1)) + 1;
147 }
148 
hpre_align_pd(void)149 static inline unsigned int hpre_align_pd(void)
150 {
151 	return (hpre_align_sz() - 1) & ~(crypto_tfm_ctx_alignment() - 1);
152 }
153 
hpre_alloc_req_id(struct hpre_ctx * ctx)154 static int hpre_alloc_req_id(struct hpre_ctx *ctx)
155 {
156 	unsigned long flags;
157 	int id;
158 
159 	spin_lock_irqsave(&ctx->req_lock, flags);
160 	id = idr_alloc(&ctx->req_idr, NULL, 0, ctx->qp->sq_depth, GFP_ATOMIC);
161 	spin_unlock_irqrestore(&ctx->req_lock, flags);
162 
163 	return id;
164 }
165 
hpre_free_req_id(struct hpre_ctx * ctx,int req_id)166 static void hpre_free_req_id(struct hpre_ctx *ctx, int req_id)
167 {
168 	unsigned long flags;
169 
170 	spin_lock_irqsave(&ctx->req_lock, flags);
171 	idr_remove(&ctx->req_idr, req_id);
172 	spin_unlock_irqrestore(&ctx->req_lock, flags);
173 }
174 
hpre_add_req_to_ctx(struct hpre_asym_request * hpre_req)175 static int hpre_add_req_to_ctx(struct hpre_asym_request *hpre_req)
176 {
177 	struct hpre_ctx *ctx;
178 	struct hpre_dfx *dfx;
179 	int id;
180 
181 	ctx = hpre_req->ctx;
182 	id = hpre_alloc_req_id(ctx);
183 	if (unlikely(id < 0))
184 		return -EINVAL;
185 
186 	ctx->req_list[id] = hpre_req;
187 	hpre_req->req_id = id;
188 
189 	dfx = ctx->hpre->debug.dfx;
190 	if (atomic64_read(&dfx[HPRE_OVERTIME_THRHLD].value))
191 		ktime_get_ts64(&hpre_req->req_time);
192 
193 	return id;
194 }
195 
hpre_rm_req_from_ctx(struct hpre_asym_request * hpre_req)196 static void hpre_rm_req_from_ctx(struct hpre_asym_request *hpre_req)
197 {
198 	struct hpre_ctx *ctx = hpre_req->ctx;
199 	int id = hpre_req->req_id;
200 
201 	if (hpre_req->req_id >= 0) {
202 		hpre_req->req_id = HPRE_INVLD_REQ_ID;
203 		ctx->req_list[id] = NULL;
204 		hpre_free_req_id(ctx, id);
205 	}
206 }
207 
hpre_get_qp_and_start(u8 type)208 static struct hisi_qp *hpre_get_qp_and_start(u8 type)
209 {
210 	struct hisi_qp *qp;
211 	int ret;
212 
213 	qp = hpre_create_qp(type);
214 	if (!qp) {
215 		pr_err("Can not create hpre qp!\n");
216 		return ERR_PTR(-ENODEV);
217 	}
218 
219 	ret = hisi_qm_start_qp(qp, 0);
220 	if (ret < 0) {
221 		hisi_qm_free_qps(&qp, 1);
222 		pci_err(qp->qm->pdev, "Can not start qp!\n");
223 		return ERR_PTR(-EINVAL);
224 	}
225 
226 	return qp;
227 }
228 
hpre_get_data_dma_addr(struct hpre_asym_request * hpre_req,struct scatterlist * data,unsigned int len,int is_src,dma_addr_t * tmp)229 static int hpre_get_data_dma_addr(struct hpre_asym_request *hpre_req,
230 				  struct scatterlist *data, unsigned int len,
231 				  int is_src, dma_addr_t *tmp)
232 {
233 	struct device *dev = hpre_req->ctx->dev;
234 	enum dma_data_direction dma_dir;
235 
236 	if (is_src) {
237 		hpre_req->src = NULL;
238 		dma_dir = DMA_TO_DEVICE;
239 	} else {
240 		hpre_req->dst = NULL;
241 		dma_dir = DMA_FROM_DEVICE;
242 	}
243 	*tmp = dma_map_single(dev, sg_virt(data), len, dma_dir);
244 	if (unlikely(dma_mapping_error(dev, *tmp))) {
245 		dev_err(dev, "dma map data err!\n");
246 		return -ENOMEM;
247 	}
248 
249 	return 0;
250 }
251 
hpre_prepare_dma_buf(struct hpre_asym_request * hpre_req,struct scatterlist * data,unsigned int len,int is_src,dma_addr_t * tmp)252 static int hpre_prepare_dma_buf(struct hpre_asym_request *hpre_req,
253 				struct scatterlist *data, unsigned int len,
254 				int is_src, dma_addr_t *tmp)
255 {
256 	struct hpre_ctx *ctx = hpre_req->ctx;
257 	struct device *dev = ctx->dev;
258 	void *ptr;
259 	int shift;
260 
261 	shift = ctx->key_sz - len;
262 	if (unlikely(shift < 0))
263 		return -EINVAL;
264 
265 	ptr = dma_alloc_coherent(dev, ctx->key_sz, tmp, GFP_ATOMIC);
266 	if (unlikely(!ptr))
267 		return -ENOMEM;
268 
269 	if (is_src) {
270 		scatterwalk_map_and_copy(ptr + shift, data, 0, len, 0);
271 		hpre_req->src = ptr;
272 	} else {
273 		hpre_req->dst = ptr;
274 	}
275 
276 	return 0;
277 }
278 
hpre_hw_data_init(struct hpre_asym_request * hpre_req,struct scatterlist * data,unsigned int len,int is_src,int is_dh)279 static int hpre_hw_data_init(struct hpre_asym_request *hpre_req,
280 			     struct scatterlist *data, unsigned int len,
281 			     int is_src, int is_dh)
282 {
283 	struct hpre_sqe *msg = &hpre_req->req;
284 	struct hpre_ctx *ctx = hpre_req->ctx;
285 	dma_addr_t tmp = 0;
286 	int ret;
287 
288 	/* when the data is dh's source, we should format it */
289 	if ((sg_is_last(data) && len == ctx->key_sz) &&
290 	    ((is_dh && !is_src) || !is_dh))
291 		ret = hpre_get_data_dma_addr(hpre_req, data, len, is_src, &tmp);
292 	else
293 		ret = hpre_prepare_dma_buf(hpre_req, data, len, is_src, &tmp);
294 
295 	if (unlikely(ret))
296 		return ret;
297 
298 	if (is_src)
299 		msg->in = cpu_to_le64(tmp);
300 	else
301 		msg->out = cpu_to_le64(tmp);
302 
303 	return 0;
304 }
305 
hpre_hw_data_clr_all(struct hpre_ctx * ctx,struct hpre_asym_request * req,struct scatterlist * dst,struct scatterlist * src)306 static void hpre_hw_data_clr_all(struct hpre_ctx *ctx,
307 				 struct hpre_asym_request *req,
308 				 struct scatterlist *dst,
309 				 struct scatterlist *src)
310 {
311 	struct device *dev = ctx->dev;
312 	struct hpre_sqe *sqe = &req->req;
313 	dma_addr_t tmp;
314 
315 	tmp = le64_to_cpu(sqe->in);
316 	if (unlikely(dma_mapping_error(dev, tmp)))
317 		return;
318 
319 	if (src) {
320 		if (req->src)
321 			dma_free_coherent(dev, ctx->key_sz, req->src, tmp);
322 		else
323 			dma_unmap_single(dev, tmp, ctx->key_sz, DMA_TO_DEVICE);
324 	}
325 
326 	tmp = le64_to_cpu(sqe->out);
327 	if (unlikely(dma_mapping_error(dev, tmp)))
328 		return;
329 
330 	if (req->dst) {
331 		if (dst)
332 			scatterwalk_map_and_copy(req->dst, dst, 0,
333 						 ctx->key_sz, 1);
334 		dma_free_coherent(dev, ctx->key_sz, req->dst, tmp);
335 	} else {
336 		dma_unmap_single(dev, tmp, ctx->key_sz, DMA_FROM_DEVICE);
337 	}
338 }
339 
hpre_alg_res_post_hf(struct hpre_ctx * ctx,struct hpre_sqe * sqe,void ** kreq)340 static int hpre_alg_res_post_hf(struct hpre_ctx *ctx, struct hpre_sqe *sqe,
341 				void **kreq)
342 {
343 	struct hpre_asym_request *req;
344 	unsigned int err, done, alg;
345 	int id;
346 
347 #define HPRE_NO_HW_ERR		0
348 #define HPRE_HW_TASK_DONE	3
349 #define HREE_HW_ERR_MASK	GENMASK(10, 0)
350 #define HREE_SQE_DONE_MASK	GENMASK(1, 0)
351 #define HREE_ALG_TYPE_MASK	GENMASK(4, 0)
352 	id = (int)le16_to_cpu(sqe->tag);
353 	req = ctx->req_list[id];
354 	hpre_rm_req_from_ctx(req);
355 	*kreq = req;
356 
357 	err = (le32_to_cpu(sqe->dw0) >> HPRE_SQE_ALG_BITS) &
358 		HREE_HW_ERR_MASK;
359 
360 	done = (le32_to_cpu(sqe->dw0) >> HPRE_SQE_DONE_SHIFT) &
361 		HREE_SQE_DONE_MASK;
362 
363 	if (likely(err == HPRE_NO_HW_ERR && done == HPRE_HW_TASK_DONE))
364 		return 0;
365 
366 	alg = le32_to_cpu(sqe->dw0) & HREE_ALG_TYPE_MASK;
367 	dev_err_ratelimited(ctx->dev, "alg[0x%x] error: done[0x%x], etype[0x%x]\n",
368 		alg, done, err);
369 
370 	return -EINVAL;
371 }
372 
hpre_ctx_set(struct hpre_ctx * ctx,struct hisi_qp * qp,int qlen)373 static int hpre_ctx_set(struct hpre_ctx *ctx, struct hisi_qp *qp, int qlen)
374 {
375 	struct hpre *hpre;
376 
377 	if (!ctx || !qp || qlen < 0)
378 		return -EINVAL;
379 
380 	spin_lock_init(&ctx->req_lock);
381 	ctx->qp = qp;
382 	ctx->dev = &qp->qm->pdev->dev;
383 
384 	hpre = container_of(ctx->qp->qm, struct hpre, qm);
385 	ctx->hpre = hpre;
386 	ctx->req_list = kcalloc(qlen, sizeof(void *), GFP_KERNEL);
387 	if (!ctx->req_list)
388 		return -ENOMEM;
389 	ctx->key_sz = 0;
390 	ctx->crt_g2_mode = false;
391 	idr_init(&ctx->req_idr);
392 
393 	return 0;
394 }
395 
hpre_ctx_clear(struct hpre_ctx * ctx,bool is_clear_all)396 static void hpre_ctx_clear(struct hpre_ctx *ctx, bool is_clear_all)
397 {
398 	if (is_clear_all) {
399 		idr_destroy(&ctx->req_idr);
400 		kfree(ctx->req_list);
401 		hisi_qm_free_qps(&ctx->qp, 1);
402 	}
403 
404 	ctx->crt_g2_mode = false;
405 	ctx->key_sz = 0;
406 }
407 
hpre_is_bd_timeout(struct hpre_asym_request * req,u64 overtime_thrhld)408 static bool hpre_is_bd_timeout(struct hpre_asym_request *req,
409 			       u64 overtime_thrhld)
410 {
411 	struct timespec64 reply_time;
412 	u64 time_use_us;
413 
414 	ktime_get_ts64(&reply_time);
415 	time_use_us = (reply_time.tv_sec - req->req_time.tv_sec) *
416 		HPRE_DFX_SEC_TO_US +
417 		(reply_time.tv_nsec - req->req_time.tv_nsec) /
418 		HPRE_DFX_US_TO_NS;
419 
420 	if (time_use_us <= overtime_thrhld)
421 		return false;
422 
423 	return true;
424 }
425 
hpre_dh_cb(struct hpre_ctx * ctx,void * resp)426 static void hpre_dh_cb(struct hpre_ctx *ctx, void *resp)
427 {
428 	struct hpre_dfx *dfx = ctx->hpre->debug.dfx;
429 	struct hpre_asym_request *req;
430 	struct kpp_request *areq;
431 	u64 overtime_thrhld;
432 	int ret;
433 
434 	ret = hpre_alg_res_post_hf(ctx, resp, (void **)&req);
435 	areq = req->areq.dh;
436 	areq->dst_len = ctx->key_sz;
437 
438 	overtime_thrhld = atomic64_read(&dfx[HPRE_OVERTIME_THRHLD].value);
439 	if (overtime_thrhld && hpre_is_bd_timeout(req, overtime_thrhld))
440 		atomic64_inc(&dfx[HPRE_OVER_THRHLD_CNT].value);
441 
442 	hpre_hw_data_clr_all(ctx, req, areq->dst, areq->src);
443 	kpp_request_complete(areq, ret);
444 	atomic64_inc(&dfx[HPRE_RECV_CNT].value);
445 }
446 
hpre_rsa_cb(struct hpre_ctx * ctx,void * resp)447 static void hpre_rsa_cb(struct hpre_ctx *ctx, void *resp)
448 {
449 	struct hpre_dfx *dfx = ctx->hpre->debug.dfx;
450 	struct hpre_asym_request *req;
451 	struct akcipher_request *areq;
452 	u64 overtime_thrhld;
453 	int ret;
454 
455 	ret = hpre_alg_res_post_hf(ctx, resp, (void **)&req);
456 
457 	overtime_thrhld = atomic64_read(&dfx[HPRE_OVERTIME_THRHLD].value);
458 	if (overtime_thrhld && hpre_is_bd_timeout(req, overtime_thrhld))
459 		atomic64_inc(&dfx[HPRE_OVER_THRHLD_CNT].value);
460 
461 	areq = req->areq.rsa;
462 	areq->dst_len = ctx->key_sz;
463 	hpre_hw_data_clr_all(ctx, req, areq->dst, areq->src);
464 	akcipher_request_complete(areq, ret);
465 	atomic64_inc(&dfx[HPRE_RECV_CNT].value);
466 }
467 
hpre_alg_cb(struct hisi_qp * qp,void * resp)468 static void hpre_alg_cb(struct hisi_qp *qp, void *resp)
469 {
470 	struct hpre_ctx *ctx = qp->qp_ctx;
471 	struct hpre_dfx *dfx = ctx->hpre->debug.dfx;
472 	struct hpre_sqe *sqe = resp;
473 	struct hpre_asym_request *req = ctx->req_list[le16_to_cpu(sqe->tag)];
474 
475 	if (unlikely(!req)) {
476 		atomic64_inc(&dfx[HPRE_INVALID_REQ_CNT].value);
477 		return;
478 	}
479 
480 	req->cb(ctx, resp);
481 }
482 
hpre_stop_qp_and_put(struct hisi_qp * qp)483 static void hpre_stop_qp_and_put(struct hisi_qp *qp)
484 {
485 	hisi_qm_stop_qp(qp);
486 	hisi_qm_free_qps(&qp, 1);
487 }
488 
hpre_ctx_init(struct hpre_ctx * ctx,u8 type)489 static int hpre_ctx_init(struct hpre_ctx *ctx, u8 type)
490 {
491 	struct hisi_qp *qp;
492 	int ret;
493 
494 	qp = hpre_get_qp_and_start(type);
495 	if (IS_ERR(qp))
496 		return PTR_ERR(qp);
497 
498 	qp->qp_ctx = ctx;
499 	qp->req_cb = hpre_alg_cb;
500 
501 	ret = hpre_ctx_set(ctx, qp, qp->sq_depth);
502 	if (ret)
503 		hpre_stop_qp_and_put(qp);
504 
505 	return ret;
506 }
507 
hpre_msg_request_set(struct hpre_ctx * ctx,void * req,bool is_rsa)508 static int hpre_msg_request_set(struct hpre_ctx *ctx, void *req, bool is_rsa)
509 {
510 	struct hpre_asym_request *h_req;
511 	struct hpre_sqe *msg;
512 	int req_id;
513 	void *tmp;
514 
515 	if (is_rsa) {
516 		struct akcipher_request *akreq = req;
517 
518 		if (akreq->dst_len < ctx->key_sz) {
519 			akreq->dst_len = ctx->key_sz;
520 			return -EOVERFLOW;
521 		}
522 
523 		tmp = akcipher_request_ctx(akreq);
524 		h_req = PTR_ALIGN(tmp, hpre_align_sz());
525 		h_req->cb = hpre_rsa_cb;
526 		h_req->areq.rsa = akreq;
527 		msg = &h_req->req;
528 		memset(msg, 0, sizeof(*msg));
529 	} else {
530 		struct kpp_request *kreq = req;
531 
532 		if (kreq->dst_len < ctx->key_sz) {
533 			kreq->dst_len = ctx->key_sz;
534 			return -EOVERFLOW;
535 		}
536 
537 		tmp = kpp_request_ctx(kreq);
538 		h_req = PTR_ALIGN(tmp, hpre_align_sz());
539 		h_req->cb = hpre_dh_cb;
540 		h_req->areq.dh = kreq;
541 		msg = &h_req->req;
542 		memset(msg, 0, sizeof(*msg));
543 		msg->key = cpu_to_le64(ctx->dh.dma_xa_p);
544 	}
545 
546 	msg->in = cpu_to_le64(DMA_MAPPING_ERROR);
547 	msg->out = cpu_to_le64(DMA_MAPPING_ERROR);
548 	msg->dw0 |= cpu_to_le32(0x1 << HPRE_SQE_DONE_SHIFT);
549 	msg->task_len1 = (ctx->key_sz >> HPRE_BITS_2_BYTES_SHIFT) - 1;
550 	h_req->ctx = ctx;
551 
552 	req_id = hpre_add_req_to_ctx(h_req);
553 	if (req_id < 0)
554 		return -EBUSY;
555 
556 	msg->tag = cpu_to_le16((u16)req_id);
557 
558 	return 0;
559 }
560 
hpre_send(struct hpre_ctx * ctx,struct hpre_sqe * msg)561 static int hpre_send(struct hpre_ctx *ctx, struct hpre_sqe *msg)
562 {
563 	struct hpre_dfx *dfx = ctx->hpre->debug.dfx;
564 	int ctr = 0;
565 	int ret;
566 
567 	do {
568 		atomic64_inc(&dfx[HPRE_SEND_CNT].value);
569 		spin_lock_bh(&ctx->req_lock);
570 		ret = hisi_qp_send(ctx->qp, msg);
571 		spin_unlock_bh(&ctx->req_lock);
572 		if (ret != -EBUSY)
573 			break;
574 		atomic64_inc(&dfx[HPRE_SEND_BUSY_CNT].value);
575 	} while (ctr++ < HPRE_TRY_SEND_TIMES);
576 
577 	if (likely(!ret))
578 		return ret;
579 
580 	if (ret != -EBUSY)
581 		atomic64_inc(&dfx[HPRE_SEND_FAIL_CNT].value);
582 
583 	return ret;
584 }
585 
hpre_dh_compute_value(struct kpp_request * req)586 static int hpre_dh_compute_value(struct kpp_request *req)
587 {
588 	struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
589 	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
590 	void *tmp = kpp_request_ctx(req);
591 	struct hpre_asym_request *hpre_req = PTR_ALIGN(tmp, hpre_align_sz());
592 	struct hpre_sqe *msg = &hpre_req->req;
593 	int ret;
594 
595 	ret = hpre_msg_request_set(ctx, req, false);
596 	if (unlikely(ret))
597 		return ret;
598 
599 	if (req->src) {
600 		ret = hpre_hw_data_init(hpre_req, req->src, req->src_len, 1, 1);
601 		if (unlikely(ret))
602 			goto clear_all;
603 	} else {
604 		msg->in = cpu_to_le64(ctx->dh.dma_g);
605 	}
606 
607 	ret = hpre_hw_data_init(hpre_req, req->dst, req->dst_len, 0, 1);
608 	if (unlikely(ret))
609 		goto clear_all;
610 
611 	if (ctx->crt_g2_mode && !req->src)
612 		msg->dw0 = cpu_to_le32(le32_to_cpu(msg->dw0) | HPRE_ALG_DH_G2);
613 	else
614 		msg->dw0 = cpu_to_le32(le32_to_cpu(msg->dw0) | HPRE_ALG_DH);
615 
616 	/* success */
617 	ret = hpre_send(ctx, msg);
618 	if (likely(!ret))
619 		return -EINPROGRESS;
620 
621 clear_all:
622 	hpre_rm_req_from_ctx(hpre_req);
623 	hpre_hw_data_clr_all(ctx, hpre_req, req->dst, req->src);
624 
625 	return ret;
626 }
627 
hpre_is_dh_params_length_valid(unsigned int key_sz)628 static int hpre_is_dh_params_length_valid(unsigned int key_sz)
629 {
630 #define _HPRE_DH_GRP1		768
631 #define _HPRE_DH_GRP2		1024
632 #define _HPRE_DH_GRP5		1536
633 #define _HPRE_DH_GRP14		2048
634 #define _HPRE_DH_GRP15		3072
635 #define _HPRE_DH_GRP16		4096
636 	switch (key_sz) {
637 	case _HPRE_DH_GRP1:
638 	case _HPRE_DH_GRP2:
639 	case _HPRE_DH_GRP5:
640 	case _HPRE_DH_GRP14:
641 	case _HPRE_DH_GRP15:
642 	case _HPRE_DH_GRP16:
643 		return 0;
644 	default:
645 		return -EINVAL;
646 	}
647 }
648 
hpre_dh_set_params(struct hpre_ctx * ctx,struct dh * params)649 static int hpre_dh_set_params(struct hpre_ctx *ctx, struct dh *params)
650 {
651 	struct device *dev = ctx->dev;
652 	unsigned int sz;
653 
654 	if (params->p_size > HPRE_DH_MAX_P_SZ)
655 		return -EINVAL;
656 
657 	if (hpre_is_dh_params_length_valid(params->p_size <<
658 					   HPRE_BITS_2_BYTES_SHIFT))
659 		return -EINVAL;
660 
661 	sz = ctx->key_sz = params->p_size;
662 	ctx->dh.xa_p = dma_alloc_coherent(dev, sz << 1,
663 					  &ctx->dh.dma_xa_p, GFP_KERNEL);
664 	if (!ctx->dh.xa_p)
665 		return -ENOMEM;
666 
667 	memcpy(ctx->dh.xa_p + sz, params->p, sz);
668 
669 	/* If g equals 2 don't copy it */
670 	if (params->g_size == 1 && *(char *)params->g == HPRE_DH_G_FLAG) {
671 		ctx->crt_g2_mode = true;
672 		return 0;
673 	}
674 
675 	ctx->dh.g = dma_alloc_coherent(dev, sz, &ctx->dh.dma_g, GFP_KERNEL);
676 	if (!ctx->dh.g) {
677 		dma_free_coherent(dev, sz << 1, ctx->dh.xa_p,
678 				  ctx->dh.dma_xa_p);
679 		ctx->dh.xa_p = NULL;
680 		return -ENOMEM;
681 	}
682 
683 	memcpy(ctx->dh.g + (sz - params->g_size), params->g, params->g_size);
684 
685 	return 0;
686 }
687 
hpre_dh_clear_ctx(struct hpre_ctx * ctx,bool is_clear_all)688 static void hpre_dh_clear_ctx(struct hpre_ctx *ctx, bool is_clear_all)
689 {
690 	struct device *dev = ctx->dev;
691 	unsigned int sz = ctx->key_sz;
692 
693 	if (is_clear_all)
694 		hisi_qm_stop_qp(ctx->qp);
695 
696 	if (ctx->dh.g) {
697 		dma_free_coherent(dev, sz, ctx->dh.g, ctx->dh.dma_g);
698 		ctx->dh.g = NULL;
699 	}
700 
701 	if (ctx->dh.xa_p) {
702 		memzero_explicit(ctx->dh.xa_p, sz);
703 		dma_free_coherent(dev, sz << 1, ctx->dh.xa_p,
704 				  ctx->dh.dma_xa_p);
705 		ctx->dh.xa_p = NULL;
706 	}
707 
708 	hpre_ctx_clear(ctx, is_clear_all);
709 }
710 
hpre_dh_set_secret(struct crypto_kpp * tfm,const void * buf,unsigned int len)711 static int hpre_dh_set_secret(struct crypto_kpp *tfm, const void *buf,
712 			      unsigned int len)
713 {
714 	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
715 	struct dh params;
716 	int ret;
717 
718 	if (crypto_dh_decode_key(buf, len, &params) < 0)
719 		return -EINVAL;
720 
721 	/* Free old secret if any */
722 	hpre_dh_clear_ctx(ctx, false);
723 
724 	ret = hpre_dh_set_params(ctx, &params);
725 	if (ret < 0)
726 		goto err_clear_ctx;
727 
728 	memcpy(ctx->dh.xa_p + (ctx->key_sz - params.key_size), params.key,
729 	       params.key_size);
730 
731 	return 0;
732 
733 err_clear_ctx:
734 	hpre_dh_clear_ctx(ctx, false);
735 	return ret;
736 }
737 
hpre_dh_max_size(struct crypto_kpp * tfm)738 static unsigned int hpre_dh_max_size(struct crypto_kpp *tfm)
739 {
740 	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
741 
742 	return ctx->key_sz;
743 }
744 
hpre_dh_init_tfm(struct crypto_kpp * tfm)745 static int hpre_dh_init_tfm(struct crypto_kpp *tfm)
746 {
747 	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
748 
749 	kpp_set_reqsize(tfm, sizeof(struct hpre_asym_request) + hpre_align_pd());
750 
751 	return hpre_ctx_init(ctx, HPRE_V2_ALG_TYPE);
752 }
753 
hpre_dh_exit_tfm(struct crypto_kpp * tfm)754 static void hpre_dh_exit_tfm(struct crypto_kpp *tfm)
755 {
756 	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
757 
758 	hpre_dh_clear_ctx(ctx, true);
759 }
760 
hpre_rsa_drop_leading_zeros(const char ** ptr,size_t * len)761 static void hpre_rsa_drop_leading_zeros(const char **ptr, size_t *len)
762 {
763 	while (!**ptr && *len) {
764 		(*ptr)++;
765 		(*len)--;
766 	}
767 }
768 
hpre_rsa_key_size_is_support(unsigned int len)769 static bool hpre_rsa_key_size_is_support(unsigned int len)
770 {
771 	unsigned int bits = len << HPRE_BITS_2_BYTES_SHIFT;
772 
773 #define _RSA_1024BITS_KEY_WDTH		1024
774 #define _RSA_2048BITS_KEY_WDTH		2048
775 #define _RSA_3072BITS_KEY_WDTH		3072
776 #define _RSA_4096BITS_KEY_WDTH		4096
777 
778 	switch (bits) {
779 	case _RSA_1024BITS_KEY_WDTH:
780 	case _RSA_2048BITS_KEY_WDTH:
781 	case _RSA_3072BITS_KEY_WDTH:
782 	case _RSA_4096BITS_KEY_WDTH:
783 		return true;
784 	default:
785 		return false;
786 	}
787 }
788 
hpre_rsa_enc(struct akcipher_request * req)789 static int hpre_rsa_enc(struct akcipher_request *req)
790 {
791 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
792 	struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);
793 	void *tmp = akcipher_request_ctx(req);
794 	struct hpre_asym_request *hpre_req = PTR_ALIGN(tmp, hpre_align_sz());
795 	struct hpre_sqe *msg = &hpre_req->req;
796 	int ret;
797 
798 	/* For 512 and 1536 bits key size, use soft tfm instead */
799 	if (ctx->key_sz == HPRE_RSA_512BITS_KSZ ||
800 	    ctx->key_sz == HPRE_RSA_1536BITS_KSZ) {
801 		akcipher_request_set_tfm(req, ctx->rsa.soft_tfm);
802 		ret = crypto_akcipher_encrypt(req);
803 		akcipher_request_set_tfm(req, tfm);
804 		return ret;
805 	}
806 
807 	if (unlikely(!ctx->rsa.pubkey))
808 		return -EINVAL;
809 
810 	ret = hpre_msg_request_set(ctx, req, true);
811 	if (unlikely(ret))
812 		return ret;
813 
814 	msg->dw0 |= cpu_to_le32(HPRE_ALG_NC_NCRT);
815 	msg->key = cpu_to_le64(ctx->rsa.dma_pubkey);
816 
817 	ret = hpre_hw_data_init(hpre_req, req->src, req->src_len, 1, 0);
818 	if (unlikely(ret))
819 		goto clear_all;
820 
821 	ret = hpre_hw_data_init(hpre_req, req->dst, req->dst_len, 0, 0);
822 	if (unlikely(ret))
823 		goto clear_all;
824 
825 	/* success */
826 	ret = hpre_send(ctx, msg);
827 	if (likely(!ret))
828 		return -EINPROGRESS;
829 
830 clear_all:
831 	hpre_rm_req_from_ctx(hpre_req);
832 	hpre_hw_data_clr_all(ctx, hpre_req, req->dst, req->src);
833 
834 	return ret;
835 }
836 
hpre_rsa_dec(struct akcipher_request * req)837 static int hpre_rsa_dec(struct akcipher_request *req)
838 {
839 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
840 	struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);
841 	void *tmp = akcipher_request_ctx(req);
842 	struct hpre_asym_request *hpre_req = PTR_ALIGN(tmp, hpre_align_sz());
843 	struct hpre_sqe *msg = &hpre_req->req;
844 	int ret;
845 
846 	/* For 512 and 1536 bits key size, use soft tfm instead */
847 	if (ctx->key_sz == HPRE_RSA_512BITS_KSZ ||
848 	    ctx->key_sz == HPRE_RSA_1536BITS_KSZ) {
849 		akcipher_request_set_tfm(req, ctx->rsa.soft_tfm);
850 		ret = crypto_akcipher_decrypt(req);
851 		akcipher_request_set_tfm(req, tfm);
852 		return ret;
853 	}
854 
855 	if (unlikely(!ctx->rsa.prikey))
856 		return -EINVAL;
857 
858 	ret = hpre_msg_request_set(ctx, req, true);
859 	if (unlikely(ret))
860 		return ret;
861 
862 	if (ctx->crt_g2_mode) {
863 		msg->key = cpu_to_le64(ctx->rsa.dma_crt_prikey);
864 		msg->dw0 = cpu_to_le32(le32_to_cpu(msg->dw0) |
865 				       HPRE_ALG_NC_CRT);
866 	} else {
867 		msg->key = cpu_to_le64(ctx->rsa.dma_prikey);
868 		msg->dw0 = cpu_to_le32(le32_to_cpu(msg->dw0) |
869 				       HPRE_ALG_NC_NCRT);
870 	}
871 
872 	ret = hpre_hw_data_init(hpre_req, req->src, req->src_len, 1, 0);
873 	if (unlikely(ret))
874 		goto clear_all;
875 
876 	ret = hpre_hw_data_init(hpre_req, req->dst, req->dst_len, 0, 0);
877 	if (unlikely(ret))
878 		goto clear_all;
879 
880 	/* success */
881 	ret = hpre_send(ctx, msg);
882 	if (likely(!ret))
883 		return -EINPROGRESS;
884 
885 clear_all:
886 	hpre_rm_req_from_ctx(hpre_req);
887 	hpre_hw_data_clr_all(ctx, hpre_req, req->dst, req->src);
888 
889 	return ret;
890 }
891 
hpre_rsa_set_n(struct hpre_ctx * ctx,const char * value,size_t vlen,bool private)892 static int hpre_rsa_set_n(struct hpre_ctx *ctx, const char *value,
893 			  size_t vlen, bool private)
894 {
895 	const char *ptr = value;
896 
897 	hpre_rsa_drop_leading_zeros(&ptr, &vlen);
898 
899 	ctx->key_sz = vlen;
900 
901 	/* if invalid key size provided, we use software tfm */
902 	if (!hpre_rsa_key_size_is_support(ctx->key_sz))
903 		return 0;
904 
905 	ctx->rsa.pubkey = dma_alloc_coherent(ctx->dev, vlen << 1,
906 					     &ctx->rsa.dma_pubkey,
907 					     GFP_KERNEL);
908 	if (!ctx->rsa.pubkey)
909 		return -ENOMEM;
910 
911 	if (private) {
912 		ctx->rsa.prikey = dma_alloc_coherent(ctx->dev, vlen << 1,
913 						     &ctx->rsa.dma_prikey,
914 						     GFP_KERNEL);
915 		if (!ctx->rsa.prikey) {
916 			dma_free_coherent(ctx->dev, vlen << 1,
917 					  ctx->rsa.pubkey,
918 					  ctx->rsa.dma_pubkey);
919 			ctx->rsa.pubkey = NULL;
920 			return -ENOMEM;
921 		}
922 		memcpy(ctx->rsa.prikey + vlen, ptr, vlen);
923 	}
924 	memcpy(ctx->rsa.pubkey + vlen, ptr, vlen);
925 
926 	/* Using hardware HPRE to do RSA */
927 	return 1;
928 }
929 
hpre_rsa_set_e(struct hpre_ctx * ctx,const char * value,size_t vlen)930 static int hpre_rsa_set_e(struct hpre_ctx *ctx, const char *value,
931 			  size_t vlen)
932 {
933 	const char *ptr = value;
934 
935 	hpre_rsa_drop_leading_zeros(&ptr, &vlen);
936 
937 	if (!ctx->key_sz || !vlen || vlen > ctx->key_sz)
938 		return -EINVAL;
939 
940 	memcpy(ctx->rsa.pubkey + ctx->key_sz - vlen, ptr, vlen);
941 
942 	return 0;
943 }
944 
hpre_rsa_set_d(struct hpre_ctx * ctx,const char * value,size_t vlen)945 static int hpre_rsa_set_d(struct hpre_ctx *ctx, const char *value,
946 			  size_t vlen)
947 {
948 	const char *ptr = value;
949 
950 	hpre_rsa_drop_leading_zeros(&ptr, &vlen);
951 
952 	if (!ctx->key_sz || !vlen || vlen > ctx->key_sz)
953 		return -EINVAL;
954 
955 	memcpy(ctx->rsa.prikey + ctx->key_sz - vlen, ptr, vlen);
956 
957 	return 0;
958 }
959 
hpre_crt_para_get(char * para,size_t para_sz,const char * raw,size_t raw_sz)960 static int hpre_crt_para_get(char *para, size_t para_sz,
961 			     const char *raw, size_t raw_sz)
962 {
963 	const char *ptr = raw;
964 	size_t len = raw_sz;
965 
966 	hpre_rsa_drop_leading_zeros(&ptr, &len);
967 	if (!len || len > para_sz)
968 		return -EINVAL;
969 
970 	memcpy(para + para_sz - len, ptr, len);
971 
972 	return 0;
973 }
974 
hpre_rsa_setkey_crt(struct hpre_ctx * ctx,struct rsa_key * rsa_key)975 static int hpre_rsa_setkey_crt(struct hpre_ctx *ctx, struct rsa_key *rsa_key)
976 {
977 	unsigned int hlf_ksz = ctx->key_sz >> 1;
978 	struct device *dev = ctx->dev;
979 	u64 offset;
980 	int ret;
981 
982 	ctx->rsa.crt_prikey = dma_alloc_coherent(dev, hlf_ksz * HPRE_CRT_PRMS,
983 					&ctx->rsa.dma_crt_prikey,
984 					GFP_KERNEL);
985 	if (!ctx->rsa.crt_prikey)
986 		return -ENOMEM;
987 
988 	ret = hpre_crt_para_get(ctx->rsa.crt_prikey, hlf_ksz,
989 				rsa_key->dq, rsa_key->dq_sz);
990 	if (ret)
991 		goto free_key;
992 
993 	offset = hlf_ksz;
994 	ret = hpre_crt_para_get(ctx->rsa.crt_prikey + offset, hlf_ksz,
995 				rsa_key->dp, rsa_key->dp_sz);
996 	if (ret)
997 		goto free_key;
998 
999 	offset = hlf_ksz * HPRE_CRT_Q;
1000 	ret = hpre_crt_para_get(ctx->rsa.crt_prikey + offset, hlf_ksz,
1001 				rsa_key->q, rsa_key->q_sz);
1002 	if (ret)
1003 		goto free_key;
1004 
1005 	offset = hlf_ksz * HPRE_CRT_P;
1006 	ret = hpre_crt_para_get(ctx->rsa.crt_prikey + offset, hlf_ksz,
1007 				rsa_key->p, rsa_key->p_sz);
1008 	if (ret)
1009 		goto free_key;
1010 
1011 	offset = hlf_ksz * HPRE_CRT_INV;
1012 	ret = hpre_crt_para_get(ctx->rsa.crt_prikey + offset, hlf_ksz,
1013 				rsa_key->qinv, rsa_key->qinv_sz);
1014 	if (ret)
1015 		goto free_key;
1016 
1017 	ctx->crt_g2_mode = true;
1018 
1019 	return 0;
1020 
1021 free_key:
1022 	offset = hlf_ksz * HPRE_CRT_PRMS;
1023 	memzero_explicit(ctx->rsa.crt_prikey, offset);
1024 	dma_free_coherent(dev, hlf_ksz * HPRE_CRT_PRMS, ctx->rsa.crt_prikey,
1025 			  ctx->rsa.dma_crt_prikey);
1026 	ctx->rsa.crt_prikey = NULL;
1027 	ctx->crt_g2_mode = false;
1028 
1029 	return ret;
1030 }
1031 
1032 /* If it is clear all, all the resources of the QP will be cleaned. */
hpre_rsa_clear_ctx(struct hpre_ctx * ctx,bool is_clear_all)1033 static void hpre_rsa_clear_ctx(struct hpre_ctx *ctx, bool is_clear_all)
1034 {
1035 	unsigned int half_key_sz = ctx->key_sz >> 1;
1036 	struct device *dev = ctx->dev;
1037 
1038 	if (is_clear_all)
1039 		hisi_qm_stop_qp(ctx->qp);
1040 
1041 	if (ctx->rsa.pubkey) {
1042 		dma_free_coherent(dev, ctx->key_sz << 1,
1043 				  ctx->rsa.pubkey, ctx->rsa.dma_pubkey);
1044 		ctx->rsa.pubkey = NULL;
1045 	}
1046 
1047 	if (ctx->rsa.crt_prikey) {
1048 		memzero_explicit(ctx->rsa.crt_prikey,
1049 				 half_key_sz * HPRE_CRT_PRMS);
1050 		dma_free_coherent(dev, half_key_sz * HPRE_CRT_PRMS,
1051 				  ctx->rsa.crt_prikey, ctx->rsa.dma_crt_prikey);
1052 		ctx->rsa.crt_prikey = NULL;
1053 	}
1054 
1055 	if (ctx->rsa.prikey) {
1056 		memzero_explicit(ctx->rsa.prikey, ctx->key_sz);
1057 		dma_free_coherent(dev, ctx->key_sz << 1, ctx->rsa.prikey,
1058 				  ctx->rsa.dma_prikey);
1059 		ctx->rsa.prikey = NULL;
1060 	}
1061 
1062 	hpre_ctx_clear(ctx, is_clear_all);
1063 }
1064 
1065 /*
1066  * we should judge if it is CRT or not,
1067  * CRT: return true,  N-CRT: return false .
1068  */
hpre_is_crt_key(struct rsa_key * key)1069 static bool hpre_is_crt_key(struct rsa_key *key)
1070 {
1071 	u16 len = key->p_sz + key->q_sz + key->dp_sz + key->dq_sz +
1072 		  key->qinv_sz;
1073 
1074 #define LEN_OF_NCRT_PARA	5
1075 
1076 	/* N-CRT less than 5 parameters */
1077 	return len > LEN_OF_NCRT_PARA;
1078 }
1079 
hpre_rsa_setkey(struct hpre_ctx * ctx,const void * key,unsigned int keylen,bool private)1080 static int hpre_rsa_setkey(struct hpre_ctx *ctx, const void *key,
1081 			   unsigned int keylen, bool private)
1082 {
1083 	struct rsa_key rsa_key;
1084 	int ret;
1085 
1086 	hpre_rsa_clear_ctx(ctx, false);
1087 
1088 	if (private)
1089 		ret = rsa_parse_priv_key(&rsa_key, key, keylen);
1090 	else
1091 		ret = rsa_parse_pub_key(&rsa_key, key, keylen);
1092 	if (ret < 0)
1093 		return ret;
1094 
1095 	ret = hpre_rsa_set_n(ctx, rsa_key.n, rsa_key.n_sz, private);
1096 	if (ret <= 0)
1097 		return ret;
1098 
1099 	if (private) {
1100 		ret = hpre_rsa_set_d(ctx, rsa_key.d, rsa_key.d_sz);
1101 		if (ret < 0)
1102 			goto free;
1103 
1104 		if (hpre_is_crt_key(&rsa_key)) {
1105 			ret = hpre_rsa_setkey_crt(ctx, &rsa_key);
1106 			if (ret < 0)
1107 				goto free;
1108 		}
1109 	}
1110 
1111 	ret = hpre_rsa_set_e(ctx, rsa_key.e, rsa_key.e_sz);
1112 	if (ret < 0)
1113 		goto free;
1114 
1115 	if ((private && !ctx->rsa.prikey) || !ctx->rsa.pubkey) {
1116 		ret = -EINVAL;
1117 		goto free;
1118 	}
1119 
1120 	return 0;
1121 
1122 free:
1123 	hpre_rsa_clear_ctx(ctx, false);
1124 	return ret;
1125 }
1126 
hpre_rsa_setpubkey(struct crypto_akcipher * tfm,const void * key,unsigned int keylen)1127 static int hpre_rsa_setpubkey(struct crypto_akcipher *tfm, const void *key,
1128 			      unsigned int keylen)
1129 {
1130 	struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);
1131 	int ret;
1132 
1133 	ret = crypto_akcipher_set_pub_key(ctx->rsa.soft_tfm, key, keylen);
1134 	if (ret)
1135 		return ret;
1136 
1137 	return hpre_rsa_setkey(ctx, key, keylen, false);
1138 }
1139 
hpre_rsa_setprivkey(struct crypto_akcipher * tfm,const void * key,unsigned int keylen)1140 static int hpre_rsa_setprivkey(struct crypto_akcipher *tfm, const void *key,
1141 			       unsigned int keylen)
1142 {
1143 	struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);
1144 	int ret;
1145 
1146 	ret = crypto_akcipher_set_priv_key(ctx->rsa.soft_tfm, key, keylen);
1147 	if (ret)
1148 		return ret;
1149 
1150 	return hpre_rsa_setkey(ctx, key, keylen, true);
1151 }
1152 
hpre_rsa_max_size(struct crypto_akcipher * tfm)1153 static unsigned int hpre_rsa_max_size(struct crypto_akcipher *tfm)
1154 {
1155 	struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);
1156 
1157 	/* For 512 and 1536 bits key size, use soft tfm instead */
1158 	if (ctx->key_sz == HPRE_RSA_512BITS_KSZ ||
1159 	    ctx->key_sz == HPRE_RSA_1536BITS_KSZ)
1160 		return crypto_akcipher_maxsize(ctx->rsa.soft_tfm);
1161 
1162 	return ctx->key_sz;
1163 }
1164 
hpre_rsa_init_tfm(struct crypto_akcipher * tfm)1165 static int hpre_rsa_init_tfm(struct crypto_akcipher *tfm)
1166 {
1167 	struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);
1168 	int ret;
1169 
1170 	ctx->rsa.soft_tfm = crypto_alloc_akcipher("rsa-generic", 0, 0);
1171 	if (IS_ERR(ctx->rsa.soft_tfm)) {
1172 		pr_err("Can not alloc_akcipher!\n");
1173 		return PTR_ERR(ctx->rsa.soft_tfm);
1174 	}
1175 
1176 	akcipher_set_reqsize(tfm, sizeof(struct hpre_asym_request) +
1177 				  hpre_align_pd());
1178 
1179 	ret = hpre_ctx_init(ctx, HPRE_V2_ALG_TYPE);
1180 	if (ret)
1181 		crypto_free_akcipher(ctx->rsa.soft_tfm);
1182 
1183 	return ret;
1184 }
1185 
hpre_rsa_exit_tfm(struct crypto_akcipher * tfm)1186 static void hpre_rsa_exit_tfm(struct crypto_akcipher *tfm)
1187 {
1188 	struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);
1189 
1190 	hpre_rsa_clear_ctx(ctx, true);
1191 	crypto_free_akcipher(ctx->rsa.soft_tfm);
1192 }
1193 
hpre_key_to_big_end(u8 * data,int len)1194 static void hpre_key_to_big_end(u8 *data, int len)
1195 {
1196 	int i, j;
1197 
1198 	for (i = 0; i < len / 2; i++) {
1199 		j = len - i - 1;
1200 		swap(data[j], data[i]);
1201 	}
1202 }
1203 
hpre_ecc_clear_ctx(struct hpre_ctx * ctx,bool is_clear_all)1204 static void hpre_ecc_clear_ctx(struct hpre_ctx *ctx, bool is_clear_all)
1205 {
1206 	struct device *dev = ctx->dev;
1207 	unsigned int sz = ctx->key_sz;
1208 	unsigned int shift = sz << 1;
1209 
1210 	if (is_clear_all)
1211 		hisi_qm_stop_qp(ctx->qp);
1212 
1213 	if (ctx->ecdh.p) {
1214 		/* ecdh: p->a->k->b */
1215 		memzero_explicit(ctx->ecdh.p + shift, sz);
1216 		dma_free_coherent(dev, sz << 3, ctx->ecdh.p, ctx->ecdh.dma_p);
1217 		ctx->ecdh.p = NULL;
1218 	}
1219 
1220 	hpre_ctx_clear(ctx, is_clear_all);
1221 }
1222 
1223 /*
1224  * The bits of 192/224/256/384/521 are supported by HPRE,
1225  * and convert the bits like:
1226  * bits<=256, bits=256; 256<bits<=384, bits=384; 384<bits<=576, bits=576;
1227  * If the parameter bit width is insufficient, then we fill in the
1228  * high-order zeros by soft, so TASK_LENGTH1 is 0x3/0x5/0x8;
1229  */
hpre_ecdh_supported_curve(unsigned short id)1230 static unsigned int hpre_ecdh_supported_curve(unsigned short id)
1231 {
1232 	switch (id) {
1233 	case ECC_CURVE_NIST_P192:
1234 	case ECC_CURVE_NIST_P256:
1235 		return HPRE_ECC_HW256_KSZ_B;
1236 	case ECC_CURVE_NIST_P384:
1237 		return HPRE_ECC_HW384_KSZ_B;
1238 	default:
1239 		break;
1240 	}
1241 
1242 	return 0;
1243 }
1244 
fill_curve_param(void * addr,u64 * param,unsigned int cur_sz,u8 ndigits)1245 static void fill_curve_param(void *addr, u64 *param, unsigned int cur_sz, u8 ndigits)
1246 {
1247 	unsigned int sz = cur_sz - (ndigits - 1) * sizeof(u64);
1248 	u8 i = 0;
1249 
1250 	while (i < ndigits - 1) {
1251 		memcpy(addr + sizeof(u64) * i, &param[i], sizeof(u64));
1252 		i++;
1253 	}
1254 
1255 	memcpy(addr + sizeof(u64) * i, &param[ndigits - 1], sz);
1256 	hpre_key_to_big_end((u8 *)addr, cur_sz);
1257 }
1258 
hpre_ecdh_fill_curve(struct hpre_ctx * ctx,struct ecdh * params,unsigned int cur_sz)1259 static int hpre_ecdh_fill_curve(struct hpre_ctx *ctx, struct ecdh *params,
1260 				unsigned int cur_sz)
1261 {
1262 	unsigned int shifta = ctx->key_sz << 1;
1263 	unsigned int shiftb = ctx->key_sz << 2;
1264 	void *p = ctx->ecdh.p + ctx->key_sz - cur_sz;
1265 	void *a = ctx->ecdh.p + shifta - cur_sz;
1266 	void *b = ctx->ecdh.p + shiftb - cur_sz;
1267 	void *x = ctx->ecdh.g + ctx->key_sz - cur_sz;
1268 	void *y = ctx->ecdh.g + shifta - cur_sz;
1269 	const struct ecc_curve *curve = ecc_get_curve(ctx->curve_id);
1270 	char *n;
1271 
1272 	if (unlikely(!curve))
1273 		return -EINVAL;
1274 
1275 	n = kzalloc(ctx->key_sz, GFP_KERNEL);
1276 	if (!n)
1277 		return -ENOMEM;
1278 
1279 	fill_curve_param(p, curve->p, cur_sz, curve->g.ndigits);
1280 	fill_curve_param(a, curve->a, cur_sz, curve->g.ndigits);
1281 	fill_curve_param(b, curve->b, cur_sz, curve->g.ndigits);
1282 	fill_curve_param(x, curve->g.x, cur_sz, curve->g.ndigits);
1283 	fill_curve_param(y, curve->g.y, cur_sz, curve->g.ndigits);
1284 	fill_curve_param(n, curve->n, cur_sz, curve->g.ndigits);
1285 
1286 	if (params->key_size == cur_sz && memcmp(params->key, n, cur_sz) >= 0) {
1287 		kfree(n);
1288 		return -EINVAL;
1289 	}
1290 
1291 	kfree(n);
1292 	return 0;
1293 }
1294 
hpre_ecdh_get_curvesz(unsigned short id)1295 static unsigned int hpre_ecdh_get_curvesz(unsigned short id)
1296 {
1297 	switch (id) {
1298 	case ECC_CURVE_NIST_P192:
1299 		return HPRE_ECC_NIST_P192_N_SIZE;
1300 	case ECC_CURVE_NIST_P256:
1301 		return HPRE_ECC_NIST_P256_N_SIZE;
1302 	case ECC_CURVE_NIST_P384:
1303 		return HPRE_ECC_NIST_P384_N_SIZE;
1304 	default:
1305 		break;
1306 	}
1307 
1308 	return 0;
1309 }
1310 
hpre_ecdh_set_param(struct hpre_ctx * ctx,struct ecdh * params)1311 static int hpre_ecdh_set_param(struct hpre_ctx *ctx, struct ecdh *params)
1312 {
1313 	struct device *dev = ctx->dev;
1314 	unsigned int sz, shift, curve_sz;
1315 	int ret;
1316 
1317 	ctx->key_sz = hpre_ecdh_supported_curve(ctx->curve_id);
1318 	if (!ctx->key_sz)
1319 		return -EINVAL;
1320 
1321 	curve_sz = hpre_ecdh_get_curvesz(ctx->curve_id);
1322 	if (!curve_sz || params->key_size > curve_sz)
1323 		return -EINVAL;
1324 
1325 	sz = ctx->key_sz;
1326 
1327 	if (!ctx->ecdh.p) {
1328 		ctx->ecdh.p = dma_alloc_coherent(dev, sz << 3, &ctx->ecdh.dma_p,
1329 						 GFP_KERNEL);
1330 		if (!ctx->ecdh.p)
1331 			return -ENOMEM;
1332 	}
1333 
1334 	shift = sz << 2;
1335 	ctx->ecdh.g = ctx->ecdh.p + shift;
1336 	ctx->ecdh.dma_g = ctx->ecdh.dma_p + shift;
1337 
1338 	ret = hpre_ecdh_fill_curve(ctx, params, curve_sz);
1339 	if (ret) {
1340 		dev_err(dev, "failed to fill curve_param, ret = %d!\n", ret);
1341 		dma_free_coherent(dev, sz << 3, ctx->ecdh.p, ctx->ecdh.dma_p);
1342 		ctx->ecdh.p = NULL;
1343 		return ret;
1344 	}
1345 
1346 	return 0;
1347 }
1348 
hpre_key_is_zero(char * key,unsigned short key_sz)1349 static bool hpre_key_is_zero(char *key, unsigned short key_sz)
1350 {
1351 	int i;
1352 
1353 	for (i = 0; i < key_sz; i++)
1354 		if (key[i])
1355 			return false;
1356 
1357 	return true;
1358 }
1359 
ecdh_gen_privkey(struct hpre_ctx * ctx,struct ecdh * params)1360 static int ecdh_gen_privkey(struct hpre_ctx *ctx, struct ecdh *params)
1361 {
1362 	struct device *dev = ctx->dev;
1363 	int ret;
1364 
1365 	ret = crypto_get_default_rng();
1366 	if (ret) {
1367 		dev_err(dev, "failed to get default rng, ret = %d!\n", ret);
1368 		return ret;
1369 	}
1370 
1371 	ret = crypto_rng_get_bytes(crypto_default_rng, (u8 *)params->key,
1372 				   params->key_size);
1373 	crypto_put_default_rng();
1374 	if (ret)
1375 		dev_err(dev, "failed to get rng, ret = %d!\n", ret);
1376 
1377 	return ret;
1378 }
1379 
hpre_ecdh_set_secret(struct crypto_kpp * tfm,const void * buf,unsigned int len)1380 static int hpre_ecdh_set_secret(struct crypto_kpp *tfm, const void *buf,
1381 				unsigned int len)
1382 {
1383 	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
1384 	unsigned int sz, sz_shift, curve_sz;
1385 	struct device *dev = ctx->dev;
1386 	char key[HPRE_ECC_MAX_KSZ];
1387 	struct ecdh params;
1388 	int ret;
1389 
1390 	if (crypto_ecdh_decode_key(buf, len, &params) < 0) {
1391 		dev_err(dev, "failed to decode ecdh key!\n");
1392 		return -EINVAL;
1393 	}
1394 
1395 	/* Use stdrng to generate private key */
1396 	if (!params.key || !params.key_size) {
1397 		params.key = key;
1398 		curve_sz = hpre_ecdh_get_curvesz(ctx->curve_id);
1399 		if (!curve_sz) {
1400 			dev_err(dev, "Invalid curve size!\n");
1401 			return -EINVAL;
1402 		}
1403 
1404 		params.key_size = curve_sz - 1;
1405 		ret = ecdh_gen_privkey(ctx, &params);
1406 		if (ret)
1407 			return ret;
1408 	}
1409 
1410 	if (hpre_key_is_zero(params.key, params.key_size)) {
1411 		dev_err(dev, "Invalid hpre key!\n");
1412 		return -EINVAL;
1413 	}
1414 
1415 	hpre_ecc_clear_ctx(ctx, false);
1416 
1417 	ret = hpre_ecdh_set_param(ctx, &params);
1418 	if (ret < 0) {
1419 		dev_err(dev, "failed to set hpre param, ret = %d!\n", ret);
1420 		return ret;
1421 	}
1422 
1423 	sz = ctx->key_sz;
1424 	sz_shift = (sz << 1) + sz - params.key_size;
1425 	memcpy(ctx->ecdh.p + sz_shift, params.key, params.key_size);
1426 
1427 	return 0;
1428 }
1429 
hpre_ecdh_hw_data_clr_all(struct hpre_ctx * ctx,struct hpre_asym_request * req,struct scatterlist * dst,struct scatterlist * src)1430 static void hpre_ecdh_hw_data_clr_all(struct hpre_ctx *ctx,
1431 				      struct hpre_asym_request *req,
1432 				      struct scatterlist *dst,
1433 				      struct scatterlist *src)
1434 {
1435 	struct device *dev = ctx->dev;
1436 	struct hpre_sqe *sqe = &req->req;
1437 	dma_addr_t dma;
1438 
1439 	dma = le64_to_cpu(sqe->in);
1440 	if (unlikely(dma_mapping_error(dev, dma)))
1441 		return;
1442 
1443 	if (src && req->src)
1444 		dma_free_coherent(dev, ctx->key_sz << 2, req->src, dma);
1445 
1446 	dma = le64_to_cpu(sqe->out);
1447 	if (unlikely(dma_mapping_error(dev, dma)))
1448 		return;
1449 
1450 	if (req->dst)
1451 		dma_free_coherent(dev, ctx->key_sz << 1, req->dst, dma);
1452 	if (dst)
1453 		dma_unmap_single(dev, dma, ctx->key_sz << 1, DMA_FROM_DEVICE);
1454 }
1455 
hpre_ecdh_cb(struct hpre_ctx * ctx,void * resp)1456 static void hpre_ecdh_cb(struct hpre_ctx *ctx, void *resp)
1457 {
1458 	unsigned int curve_sz = hpre_ecdh_get_curvesz(ctx->curve_id);
1459 	struct hpre_dfx *dfx = ctx->hpre->debug.dfx;
1460 	struct hpre_asym_request *req = NULL;
1461 	struct kpp_request *areq;
1462 	u64 overtime_thrhld;
1463 	char *p;
1464 	int ret;
1465 
1466 	ret = hpre_alg_res_post_hf(ctx, resp, (void **)&req);
1467 	areq = req->areq.ecdh;
1468 	areq->dst_len = ctx->key_sz << 1;
1469 
1470 	overtime_thrhld = atomic64_read(&dfx[HPRE_OVERTIME_THRHLD].value);
1471 	if (overtime_thrhld && hpre_is_bd_timeout(req, overtime_thrhld))
1472 		atomic64_inc(&dfx[HPRE_OVER_THRHLD_CNT].value);
1473 
1474 	/* Do unmap before data processing */
1475 	hpre_ecdh_hw_data_clr_all(ctx, req, areq->dst, areq->src);
1476 
1477 	p = sg_virt(areq->dst);
1478 	memmove(p, p + ctx->key_sz - curve_sz, curve_sz);
1479 	memmove(p + curve_sz, p + areq->dst_len - curve_sz, curve_sz);
1480 
1481 	kpp_request_complete(areq, ret);
1482 
1483 	atomic64_inc(&dfx[HPRE_RECV_CNT].value);
1484 }
1485 
hpre_ecdh_msg_request_set(struct hpre_ctx * ctx,struct kpp_request * req)1486 static int hpre_ecdh_msg_request_set(struct hpre_ctx *ctx,
1487 				     struct kpp_request *req)
1488 {
1489 	struct hpre_asym_request *h_req;
1490 	struct hpre_sqe *msg;
1491 	int req_id;
1492 	void *tmp;
1493 
1494 	if (req->dst_len < ctx->key_sz << 1) {
1495 		req->dst_len = ctx->key_sz << 1;
1496 		return -EINVAL;
1497 	}
1498 
1499 	tmp = kpp_request_ctx(req);
1500 	h_req = PTR_ALIGN(tmp, hpre_align_sz());
1501 	h_req->cb = hpre_ecdh_cb;
1502 	h_req->areq.ecdh = req;
1503 	msg = &h_req->req;
1504 	memset(msg, 0, sizeof(*msg));
1505 	msg->in = cpu_to_le64(DMA_MAPPING_ERROR);
1506 	msg->out = cpu_to_le64(DMA_MAPPING_ERROR);
1507 	msg->key = cpu_to_le64(ctx->ecdh.dma_p);
1508 
1509 	msg->dw0 |= cpu_to_le32(0x1U << HPRE_SQE_DONE_SHIFT);
1510 	msg->task_len1 = (ctx->key_sz >> HPRE_BITS_2_BYTES_SHIFT) - 1;
1511 	h_req->ctx = ctx;
1512 
1513 	req_id = hpre_add_req_to_ctx(h_req);
1514 	if (req_id < 0)
1515 		return -EBUSY;
1516 
1517 	msg->tag = cpu_to_le16((u16)req_id);
1518 	return 0;
1519 }
1520 
hpre_ecdh_src_data_init(struct hpre_asym_request * hpre_req,struct scatterlist * data,unsigned int len)1521 static int hpre_ecdh_src_data_init(struct hpre_asym_request *hpre_req,
1522 				   struct scatterlist *data, unsigned int len)
1523 {
1524 	struct hpre_sqe *msg = &hpre_req->req;
1525 	struct hpre_ctx *ctx = hpre_req->ctx;
1526 	struct device *dev = ctx->dev;
1527 	unsigned int tmpshift;
1528 	dma_addr_t dma = 0;
1529 	void *ptr;
1530 	int shift;
1531 
1532 	/* Src_data include gx and gy. */
1533 	shift = ctx->key_sz - (len >> 1);
1534 	if (unlikely(shift < 0))
1535 		return -EINVAL;
1536 
1537 	ptr = dma_alloc_coherent(dev, ctx->key_sz << 2, &dma, GFP_KERNEL);
1538 	if (unlikely(!ptr))
1539 		return -ENOMEM;
1540 
1541 	tmpshift = ctx->key_sz << 1;
1542 	scatterwalk_map_and_copy(ptr + tmpshift, data, 0, len, 0);
1543 	memcpy(ptr + shift, ptr + tmpshift, len >> 1);
1544 	memcpy(ptr + ctx->key_sz + shift, ptr + tmpshift + (len >> 1), len >> 1);
1545 
1546 	hpre_req->src = ptr;
1547 	msg->in = cpu_to_le64(dma);
1548 	return 0;
1549 }
1550 
hpre_ecdh_dst_data_init(struct hpre_asym_request * hpre_req,struct scatterlist * data,unsigned int len)1551 static int hpre_ecdh_dst_data_init(struct hpre_asym_request *hpre_req,
1552 				   struct scatterlist *data, unsigned int len)
1553 {
1554 	struct hpre_sqe *msg = &hpre_req->req;
1555 	struct hpre_ctx *ctx = hpre_req->ctx;
1556 	struct device *dev = ctx->dev;
1557 	dma_addr_t dma;
1558 
1559 	if (unlikely(!data || !sg_is_last(data) || len != ctx->key_sz << 1)) {
1560 		dev_err(dev, "data or data length is illegal!\n");
1561 		return -EINVAL;
1562 	}
1563 
1564 	hpre_req->dst = NULL;
1565 	dma = dma_map_single(dev, sg_virt(data), len, DMA_FROM_DEVICE);
1566 	if (unlikely(dma_mapping_error(dev, dma))) {
1567 		dev_err(dev, "dma map data err!\n");
1568 		return -ENOMEM;
1569 	}
1570 
1571 	msg->out = cpu_to_le64(dma);
1572 	return 0;
1573 }
1574 
hpre_ecdh_compute_value(struct kpp_request * req)1575 static int hpre_ecdh_compute_value(struct kpp_request *req)
1576 {
1577 	struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
1578 	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
1579 	struct device *dev = ctx->dev;
1580 	void *tmp = kpp_request_ctx(req);
1581 	struct hpre_asym_request *hpre_req = PTR_ALIGN(tmp, hpre_align_sz());
1582 	struct hpre_sqe *msg = &hpre_req->req;
1583 	int ret;
1584 
1585 	ret = hpre_ecdh_msg_request_set(ctx, req);
1586 	if (unlikely(ret)) {
1587 		dev_err(dev, "failed to set ecdh request, ret = %d!\n", ret);
1588 		return ret;
1589 	}
1590 
1591 	if (req->src) {
1592 		ret = hpre_ecdh_src_data_init(hpre_req, req->src, req->src_len);
1593 		if (unlikely(ret)) {
1594 			dev_err(dev, "failed to init src data, ret = %d!\n", ret);
1595 			goto clear_all;
1596 		}
1597 	} else {
1598 		msg->in = cpu_to_le64(ctx->ecdh.dma_g);
1599 	}
1600 
1601 	ret = hpre_ecdh_dst_data_init(hpre_req, req->dst, req->dst_len);
1602 	if (unlikely(ret)) {
1603 		dev_err(dev, "failed to init dst data, ret = %d!\n", ret);
1604 		goto clear_all;
1605 	}
1606 
1607 	msg->dw0 = cpu_to_le32(le32_to_cpu(msg->dw0) | HPRE_ALG_ECC_MUL);
1608 	msg->resv1 = ctx->enable_hpcore << HPRE_ENABLE_HPCORE_SHIFT;
1609 
1610 	ret = hpre_send(ctx, msg);
1611 	if (likely(!ret))
1612 		return -EINPROGRESS;
1613 
1614 clear_all:
1615 	hpre_rm_req_from_ctx(hpre_req);
1616 	hpre_ecdh_hw_data_clr_all(ctx, hpre_req, req->dst, req->src);
1617 	return ret;
1618 }
1619 
hpre_ecdh_max_size(struct crypto_kpp * tfm)1620 static unsigned int hpre_ecdh_max_size(struct crypto_kpp *tfm)
1621 {
1622 	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
1623 
1624 	/* max size is the pub_key_size, include x and y */
1625 	return ctx->key_sz << 1;
1626 }
1627 
hpre_ecdh_nist_p192_init_tfm(struct crypto_kpp * tfm)1628 static int hpre_ecdh_nist_p192_init_tfm(struct crypto_kpp *tfm)
1629 {
1630 	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
1631 
1632 	ctx->curve_id = ECC_CURVE_NIST_P192;
1633 
1634 	kpp_set_reqsize(tfm, sizeof(struct hpre_asym_request) + hpre_align_pd());
1635 
1636 	return hpre_ctx_init(ctx, HPRE_V3_ECC_ALG_TYPE);
1637 }
1638 
hpre_ecdh_nist_p256_init_tfm(struct crypto_kpp * tfm)1639 static int hpre_ecdh_nist_p256_init_tfm(struct crypto_kpp *tfm)
1640 {
1641 	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
1642 
1643 	ctx->curve_id = ECC_CURVE_NIST_P256;
1644 	ctx->enable_hpcore = 1;
1645 
1646 	kpp_set_reqsize(tfm, sizeof(struct hpre_asym_request) + hpre_align_pd());
1647 
1648 	return hpre_ctx_init(ctx, HPRE_V3_ECC_ALG_TYPE);
1649 }
1650 
hpre_ecdh_nist_p384_init_tfm(struct crypto_kpp * tfm)1651 static int hpre_ecdh_nist_p384_init_tfm(struct crypto_kpp *tfm)
1652 {
1653 	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
1654 
1655 	ctx->curve_id = ECC_CURVE_NIST_P384;
1656 
1657 	kpp_set_reqsize(tfm, sizeof(struct hpre_asym_request) + hpre_align_pd());
1658 
1659 	return hpre_ctx_init(ctx, HPRE_V3_ECC_ALG_TYPE);
1660 }
1661 
hpre_ecdh_exit_tfm(struct crypto_kpp * tfm)1662 static void hpre_ecdh_exit_tfm(struct crypto_kpp *tfm)
1663 {
1664 	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
1665 
1666 	hpre_ecc_clear_ctx(ctx, true);
1667 }
1668 
1669 static struct akcipher_alg rsa = {
1670 	.encrypt = hpre_rsa_enc,
1671 	.decrypt = hpre_rsa_dec,
1672 	.set_pub_key = hpre_rsa_setpubkey,
1673 	.set_priv_key = hpre_rsa_setprivkey,
1674 	.max_size = hpre_rsa_max_size,
1675 	.init = hpre_rsa_init_tfm,
1676 	.exit = hpre_rsa_exit_tfm,
1677 	.base = {
1678 		.cra_ctxsize = sizeof(struct hpre_ctx),
1679 		.cra_priority = HPRE_CRYPTO_ALG_PRI,
1680 		.cra_name = "rsa",
1681 		.cra_driver_name = "hpre-rsa",
1682 		.cra_module = THIS_MODULE,
1683 	},
1684 };
1685 
1686 static struct kpp_alg dh = {
1687 	.set_secret = hpre_dh_set_secret,
1688 	.generate_public_key = hpre_dh_compute_value,
1689 	.compute_shared_secret = hpre_dh_compute_value,
1690 	.max_size = hpre_dh_max_size,
1691 	.init = hpre_dh_init_tfm,
1692 	.exit = hpre_dh_exit_tfm,
1693 	.base = {
1694 		.cra_ctxsize = sizeof(struct hpre_ctx),
1695 		.cra_priority = HPRE_CRYPTO_ALG_PRI,
1696 		.cra_name = "dh",
1697 		.cra_driver_name = "hpre-dh",
1698 		.cra_module = THIS_MODULE,
1699 	},
1700 };
1701 
1702 static struct kpp_alg ecdh_curves[] = {
1703 	{
1704 		.set_secret = hpre_ecdh_set_secret,
1705 		.generate_public_key = hpre_ecdh_compute_value,
1706 		.compute_shared_secret = hpre_ecdh_compute_value,
1707 		.max_size = hpre_ecdh_max_size,
1708 		.init = hpre_ecdh_nist_p192_init_tfm,
1709 		.exit = hpre_ecdh_exit_tfm,
1710 		.base = {
1711 			.cra_ctxsize = sizeof(struct hpre_ctx),
1712 			.cra_priority = HPRE_CRYPTO_ALG_PRI,
1713 			.cra_name = "ecdh-nist-p192",
1714 			.cra_driver_name = "hpre-ecdh-nist-p192",
1715 			.cra_module = THIS_MODULE,
1716 		},
1717 	}, {
1718 		.set_secret = hpre_ecdh_set_secret,
1719 		.generate_public_key = hpre_ecdh_compute_value,
1720 		.compute_shared_secret = hpre_ecdh_compute_value,
1721 		.max_size = hpre_ecdh_max_size,
1722 		.init = hpre_ecdh_nist_p256_init_tfm,
1723 		.exit = hpre_ecdh_exit_tfm,
1724 		.base = {
1725 			.cra_ctxsize = sizeof(struct hpre_ctx),
1726 			.cra_priority = HPRE_CRYPTO_ALG_PRI,
1727 			.cra_name = "ecdh-nist-p256",
1728 			.cra_driver_name = "hpre-ecdh-nist-p256",
1729 			.cra_module = THIS_MODULE,
1730 		},
1731 	}, {
1732 		.set_secret = hpre_ecdh_set_secret,
1733 		.generate_public_key = hpre_ecdh_compute_value,
1734 		.compute_shared_secret = hpre_ecdh_compute_value,
1735 		.max_size = hpre_ecdh_max_size,
1736 		.init = hpre_ecdh_nist_p384_init_tfm,
1737 		.exit = hpre_ecdh_exit_tfm,
1738 		.base = {
1739 			.cra_ctxsize = sizeof(struct hpre_ctx),
1740 			.cra_priority = HPRE_CRYPTO_ALG_PRI,
1741 			.cra_name = "ecdh-nist-p384",
1742 			.cra_driver_name = "hpre-ecdh-nist-p384",
1743 			.cra_module = THIS_MODULE,
1744 		},
1745 	}
1746 };
1747 
hpre_register_rsa(struct hisi_qm * qm)1748 static int hpre_register_rsa(struct hisi_qm *qm)
1749 {
1750 	int ret;
1751 
1752 	if (!hpre_check_alg_support(qm, HPRE_DRV_RSA_MASK_CAP))
1753 		return 0;
1754 
1755 	rsa.base.cra_flags = 0;
1756 	ret = crypto_register_akcipher(&rsa);
1757 	if (ret)
1758 		dev_err(&qm->pdev->dev, "failed to register rsa (%d)!\n", ret);
1759 
1760 	return ret;
1761 }
1762 
hpre_unregister_rsa(struct hisi_qm * qm)1763 static void hpre_unregister_rsa(struct hisi_qm *qm)
1764 {
1765 	if (!hpre_check_alg_support(qm, HPRE_DRV_RSA_MASK_CAP))
1766 		return;
1767 
1768 	crypto_unregister_akcipher(&rsa);
1769 }
1770 
hpre_register_dh(struct hisi_qm * qm)1771 static int hpre_register_dh(struct hisi_qm *qm)
1772 {
1773 	int ret;
1774 
1775 	if (!hpre_check_alg_support(qm, HPRE_DRV_DH_MASK_CAP))
1776 		return 0;
1777 
1778 	ret = crypto_register_kpp(&dh);
1779 	if (ret)
1780 		dev_err(&qm->pdev->dev, "failed to register dh (%d)!\n", ret);
1781 
1782 	return ret;
1783 }
1784 
hpre_unregister_dh(struct hisi_qm * qm)1785 static void hpre_unregister_dh(struct hisi_qm *qm)
1786 {
1787 	if (!hpre_check_alg_support(qm, HPRE_DRV_DH_MASK_CAP))
1788 		return;
1789 
1790 	crypto_unregister_kpp(&dh);
1791 }
1792 
hpre_register_ecdh(struct hisi_qm * qm)1793 static int hpre_register_ecdh(struct hisi_qm *qm)
1794 {
1795 	int ret, i;
1796 
1797 	if (!hpre_check_alg_support(qm, HPRE_DRV_ECDH_MASK_CAP))
1798 		return 0;
1799 
1800 	for (i = 0; i < ARRAY_SIZE(ecdh_curves); i++) {
1801 		ret = crypto_register_kpp(&ecdh_curves[i]);
1802 		if (ret) {
1803 			dev_err(&qm->pdev->dev, "failed to register %s (%d)!\n",
1804 				ecdh_curves[i].base.cra_name, ret);
1805 			goto unreg_kpp;
1806 		}
1807 	}
1808 
1809 	return 0;
1810 
1811 unreg_kpp:
1812 	for (--i; i >= 0; --i)
1813 		crypto_unregister_kpp(&ecdh_curves[i]);
1814 
1815 	return ret;
1816 }
1817 
hpre_unregister_ecdh(struct hisi_qm * qm)1818 static void hpre_unregister_ecdh(struct hisi_qm *qm)
1819 {
1820 	int i;
1821 
1822 	if (!hpre_check_alg_support(qm, HPRE_DRV_ECDH_MASK_CAP))
1823 		return;
1824 
1825 	for (i = ARRAY_SIZE(ecdh_curves) - 1; i >= 0; --i)
1826 		crypto_unregister_kpp(&ecdh_curves[i]);
1827 }
1828 
hpre_algs_register(struct hisi_qm * qm)1829 int hpre_algs_register(struct hisi_qm *qm)
1830 {
1831 	int ret = 0;
1832 
1833 	mutex_lock(&hpre_algs_lock);
1834 	if (hpre_available_devs) {
1835 		hpre_available_devs++;
1836 		goto unlock;
1837 	}
1838 
1839 	ret = hpre_register_rsa(qm);
1840 	if (ret)
1841 		goto unlock;
1842 
1843 	ret = hpre_register_dh(qm);
1844 	if (ret)
1845 		goto unreg_rsa;
1846 
1847 	ret = hpre_register_ecdh(qm);
1848 	if (ret)
1849 		goto unreg_dh;
1850 
1851 	hpre_available_devs++;
1852 	mutex_unlock(&hpre_algs_lock);
1853 
1854 	return ret;
1855 
1856 unreg_dh:
1857 	hpre_unregister_dh(qm);
1858 unreg_rsa:
1859 	hpre_unregister_rsa(qm);
1860 unlock:
1861 	mutex_unlock(&hpre_algs_lock);
1862 	return ret;
1863 }
1864 
hpre_algs_unregister(struct hisi_qm * qm)1865 void hpre_algs_unregister(struct hisi_qm *qm)
1866 {
1867 	mutex_lock(&hpre_algs_lock);
1868 	if (--hpre_available_devs)
1869 		goto unlock;
1870 
1871 	hpre_unregister_ecdh(qm);
1872 	hpre_unregister_dh(qm);
1873 	hpre_unregister_rsa(qm);
1874 
1875 unlock:
1876 	mutex_unlock(&hpre_algs_lock);
1877 }
1878