xref: /linux/include/linux/spi/spi.h (revision 3fd6c59042dbba50391e30862beac979491145fe)
1 /* SPDX-License-Identifier: GPL-2.0-or-later
2  *
3  * Copyright (C) 2005 David Brownell
4  */
5 
6 #ifndef __LINUX_SPI_H
7 #define __LINUX_SPI_H
8 
9 #include <linux/acpi.h>
10 #include <linux/bits.h>
11 #include <linux/completion.h>
12 #include <linux/device.h>
13 #include <linux/gpio/consumer.h>
14 #include <linux/kthread.h>
15 #include <linux/mod_devicetable.h>
16 #include <linux/overflow.h>
17 #include <linux/scatterlist.h>
18 #include <linux/slab.h>
19 #include <linux/u64_stats_sync.h>
20 
21 #include <uapi/linux/spi/spi.h>
22 
23 /* Max no. of CS supported per spi device */
24 #define SPI_CS_CNT_MAX 16
25 
26 struct dma_chan;
27 struct software_node;
28 struct ptp_system_timestamp;
29 struct spi_controller;
30 struct spi_transfer;
31 struct spi_controller_mem_ops;
32 struct spi_controller_mem_caps;
33 struct spi_message;
34 
35 /*
36  * INTERFACES between SPI master-side drivers and SPI slave protocol handlers,
37  * and SPI infrastructure.
38  */
39 extern const struct bus_type spi_bus_type;
40 
41 /**
42  * struct spi_statistics - statistics for spi transfers
43  * @syncp:         seqcount to protect members in this struct for per-cpu update
44  *                 on 32-bit systems
45  *
46  * @messages:      number of spi-messages handled
47  * @transfers:     number of spi_transfers handled
48  * @errors:        number of errors during spi_transfer
49  * @timedout:      number of timeouts during spi_transfer
50  *
51  * @spi_sync:      number of times spi_sync is used
52  * @spi_sync_immediate:
53  *                 number of times spi_sync is executed immediately
54  *                 in calling context without queuing and scheduling
55  * @spi_async:     number of times spi_async is used
56  *
57  * @bytes:         number of bytes transferred to/from device
58  * @bytes_tx:      number of bytes sent to device
59  * @bytes_rx:      number of bytes received from device
60  *
61  * @transfer_bytes_histo:
62  *                 transfer bytes histogram
63  *
64  * @transfers_split_maxsize:
65  *                 number of transfers that have been split because of
66  *                 maxsize limit
67  */
68 struct spi_statistics {
69 	struct u64_stats_sync	syncp;
70 
71 	u64_stats_t		messages;
72 	u64_stats_t		transfers;
73 	u64_stats_t		errors;
74 	u64_stats_t		timedout;
75 
76 	u64_stats_t		spi_sync;
77 	u64_stats_t		spi_sync_immediate;
78 	u64_stats_t		spi_async;
79 
80 	u64_stats_t		bytes;
81 	u64_stats_t		bytes_rx;
82 	u64_stats_t		bytes_tx;
83 
84 #define SPI_STATISTICS_HISTO_SIZE 17
85 	u64_stats_t	transfer_bytes_histo[SPI_STATISTICS_HISTO_SIZE];
86 
87 	u64_stats_t	transfers_split_maxsize;
88 };
89 
90 #define SPI_STATISTICS_ADD_TO_FIELD(pcpu_stats, field, count)		\
91 	do {								\
92 		struct spi_statistics *__lstats;			\
93 		get_cpu();						\
94 		__lstats = this_cpu_ptr(pcpu_stats);			\
95 		u64_stats_update_begin(&__lstats->syncp);		\
96 		u64_stats_add(&__lstats->field, count);			\
97 		u64_stats_update_end(&__lstats->syncp);			\
98 		put_cpu();						\
99 	} while (0)
100 
101 #define SPI_STATISTICS_INCREMENT_FIELD(pcpu_stats, field)		\
102 	do {								\
103 		struct spi_statistics *__lstats;			\
104 		get_cpu();						\
105 		__lstats = this_cpu_ptr(pcpu_stats);			\
106 		u64_stats_update_begin(&__lstats->syncp);		\
107 		u64_stats_inc(&__lstats->field);			\
108 		u64_stats_update_end(&__lstats->syncp);			\
109 		put_cpu();						\
110 	} while (0)
111 
112 /**
113  * struct spi_delay - SPI delay information
114  * @value: Value for the delay
115  * @unit: Unit for the delay
116  */
117 struct spi_delay {
118 #define SPI_DELAY_UNIT_USECS	0
119 #define SPI_DELAY_UNIT_NSECS	1
120 #define SPI_DELAY_UNIT_SCK	2
121 	u16	value;
122 	u8	unit;
123 };
124 
125 extern int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer);
126 extern int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer);
127 extern void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
128 						  struct spi_transfer *xfer);
129 
130 /**
131  * struct spi_device - Controller side proxy for an SPI slave device
132  * @dev: Driver model representation of the device.
133  * @controller: SPI controller used with the device.
134  * @max_speed_hz: Maximum clock rate to be used with this chip
135  *	(on this board); may be changed by the device's driver.
136  *	The spi_transfer.speed_hz can override this for each transfer.
137  * @chip_select: Array of physical chipselect, spi->chipselect[i] gives
138  *	the corresponding physical CS for logical CS i.
139  * @mode: The spi mode defines how data is clocked out and in.
140  *	This may be changed by the device's driver.
141  *	The "active low" default for chipselect mode can be overridden
142  *	(by specifying SPI_CS_HIGH) as can the "MSB first" default for
143  *	each word in a transfer (by specifying SPI_LSB_FIRST).
144  * @bits_per_word: Data transfers involve one or more words; word sizes
145  *	like eight or 12 bits are common.  In-memory wordsizes are
146  *	powers of two bytes (e.g. 20 bit samples use 32 bits).
147  *	This may be changed by the device's driver, or left at the
148  *	default (0) indicating protocol words are eight bit bytes.
149  *	The spi_transfer.bits_per_word can override this for each transfer.
150  * @rt: Make the pump thread real time priority.
151  * @irq: Negative, or the number passed to request_irq() to receive
152  *	interrupts from this device.
153  * @controller_state: Controller's runtime state
154  * @controller_data: Board-specific definitions for controller, such as
155  *	FIFO initialization parameters; from board_info.controller_data
156  * @modalias: Name of the driver to use with this device, or an alias
157  *	for that name.  This appears in the sysfs "modalias" attribute
158  *	for driver coldplugging, and in uevents used for hotplugging
159  * @driver_override: If the name of a driver is written to this attribute, then
160  *	the device will bind to the named driver and only the named driver.
161  *	Do not set directly, because core frees it; use driver_set_override() to
162  *	set or clear it.
163  * @cs_gpiod: Array of GPIO descriptors of the corresponding chipselect lines
164  *	(optional, NULL when not using a GPIO line)
165  * @word_delay: delay to be inserted between consecutive
166  *	words of a transfer
167  * @cs_setup: delay to be introduced by the controller after CS is asserted
168  * @cs_hold: delay to be introduced by the controller before CS is deasserted
169  * @cs_inactive: delay to be introduced by the controller after CS is
170  *	deasserted. If @cs_change_delay is used from @spi_transfer, then the
171  *	two delays will be added up.
172  * @pcpu_statistics: statistics for the spi_device
173  * @cs_index_mask: Bit mask of the active chipselect(s) in the chipselect array
174  *
175  * A @spi_device is used to interchange data between an SPI slave
176  * (usually a discrete chip) and CPU memory.
177  *
178  * In @dev, the platform_data is used to hold information about this
179  * device that's meaningful to the device's protocol driver, but not
180  * to its controller.  One example might be an identifier for a chip
181  * variant with slightly different functionality; another might be
182  * information about how this particular board wires the chip's pins.
183  */
184 struct spi_device {
185 	struct device		dev;
186 	struct spi_controller	*controller;
187 	u32			max_speed_hz;
188 	u8			chip_select[SPI_CS_CNT_MAX];
189 	u8			bits_per_word;
190 	bool			rt;
191 #define SPI_NO_TX		BIT(31)		/* No transmit wire */
192 #define SPI_NO_RX		BIT(30)		/* No receive wire */
193 	/*
194 	 * TPM specification defines flow control over SPI. Client device
195 	 * can insert a wait state on MISO when address is transmitted by
196 	 * controller on MOSI. Detecting the wait state in software is only
197 	 * possible for full duplex controllers. For controllers that support
198 	 * only half-duplex, the wait state detection needs to be implemented
199 	 * in hardware. TPM devices would set this flag when hardware flow
200 	 * control is expected from SPI controller.
201 	 */
202 #define SPI_TPM_HW_FLOW		BIT(29)		/* TPM HW flow control */
203 	/*
204 	 * All bits defined above should be covered by SPI_MODE_KERNEL_MASK.
205 	 * The SPI_MODE_KERNEL_MASK has the SPI_MODE_USER_MASK counterpart,
206 	 * which is defined in 'include/uapi/linux/spi/spi.h'.
207 	 * The bits defined here are from bit 31 downwards, while in
208 	 * SPI_MODE_USER_MASK are from 0 upwards.
209 	 * These bits must not overlap. A static assert check should make sure of that.
210 	 * If adding extra bits, make sure to decrease the bit index below as well.
211 	 */
212 #define SPI_MODE_KERNEL_MASK	(~(BIT(29) - 1))
213 	u32			mode;
214 	int			irq;
215 	void			*controller_state;
216 	void			*controller_data;
217 	char			modalias[SPI_NAME_SIZE];
218 	const char		*driver_override;
219 	struct gpio_desc	*cs_gpiod[SPI_CS_CNT_MAX];	/* Chip select gpio desc */
220 	struct spi_delay	word_delay; /* Inter-word delay */
221 	/* CS delays */
222 	struct spi_delay	cs_setup;
223 	struct spi_delay	cs_hold;
224 	struct spi_delay	cs_inactive;
225 
226 	/* The statistics */
227 	struct spi_statistics __percpu	*pcpu_statistics;
228 
229 	/* Bit mask of the chipselect(s) that the driver need to use from
230 	 * the chipselect array.When the controller is capable to handle
231 	 * multiple chip selects & memories are connected in parallel
232 	 * then more than one bit need to be set in cs_index_mask.
233 	 */
234 	u32			cs_index_mask : SPI_CS_CNT_MAX;
235 
236 	/*
237 	 * Likely need more hooks for more protocol options affecting how
238 	 * the controller talks to each chip, like:
239 	 *  - memory packing (12 bit samples into low bits, others zeroed)
240 	 *  - priority
241 	 *  - chipselect delays
242 	 *  - ...
243 	 */
244 };
245 
246 /* Make sure that SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK don't overlap */
247 static_assert((SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK) == 0,
248 	      "SPI_MODE_USER_MASK & SPI_MODE_KERNEL_MASK must not overlap");
249 
to_spi_device(const struct device * dev)250 static inline struct spi_device *to_spi_device(const struct device *dev)
251 {
252 	return dev ? container_of(dev, struct spi_device, dev) : NULL;
253 }
254 
255 /* Most drivers won't need to care about device refcounting */
spi_dev_get(struct spi_device * spi)256 static inline struct spi_device *spi_dev_get(struct spi_device *spi)
257 {
258 	return (spi && get_device(&spi->dev)) ? spi : NULL;
259 }
260 
spi_dev_put(struct spi_device * spi)261 static inline void spi_dev_put(struct spi_device *spi)
262 {
263 	if (spi)
264 		put_device(&spi->dev);
265 }
266 
267 /* ctldata is for the bus_controller driver's runtime state */
spi_get_ctldata(const struct spi_device * spi)268 static inline void *spi_get_ctldata(const struct spi_device *spi)
269 {
270 	return spi->controller_state;
271 }
272 
spi_set_ctldata(struct spi_device * spi,void * state)273 static inline void spi_set_ctldata(struct spi_device *spi, void *state)
274 {
275 	spi->controller_state = state;
276 }
277 
278 /* Device driver data */
279 
spi_set_drvdata(struct spi_device * spi,void * data)280 static inline void spi_set_drvdata(struct spi_device *spi, void *data)
281 {
282 	dev_set_drvdata(&spi->dev, data);
283 }
284 
spi_get_drvdata(const struct spi_device * spi)285 static inline void *spi_get_drvdata(const struct spi_device *spi)
286 {
287 	return dev_get_drvdata(&spi->dev);
288 }
289 
spi_get_chipselect(const struct spi_device * spi,u8 idx)290 static inline u8 spi_get_chipselect(const struct spi_device *spi, u8 idx)
291 {
292 	return spi->chip_select[idx];
293 }
294 
spi_set_chipselect(struct spi_device * spi,u8 idx,u8 chipselect)295 static inline void spi_set_chipselect(struct spi_device *spi, u8 idx, u8 chipselect)
296 {
297 	spi->chip_select[idx] = chipselect;
298 }
299 
spi_get_csgpiod(const struct spi_device * spi,u8 idx)300 static inline struct gpio_desc *spi_get_csgpiod(const struct spi_device *spi, u8 idx)
301 {
302 	return spi->cs_gpiod[idx];
303 }
304 
spi_set_csgpiod(struct spi_device * spi,u8 idx,struct gpio_desc * csgpiod)305 static inline void spi_set_csgpiod(struct spi_device *spi, u8 idx, struct gpio_desc *csgpiod)
306 {
307 	spi->cs_gpiod[idx] = csgpiod;
308 }
309 
spi_is_csgpiod(struct spi_device * spi)310 static inline bool spi_is_csgpiod(struct spi_device *spi)
311 {
312 	u8 idx;
313 
314 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
315 		if (spi_get_csgpiod(spi, idx))
316 			return true;
317 	}
318 	return false;
319 }
320 
321 /**
322  * struct spi_driver - Host side "protocol" driver
323  * @id_table: List of SPI devices supported by this driver
324  * @probe: Binds this driver to the SPI device.  Drivers can verify
325  *	that the device is actually present, and may need to configure
326  *	characteristics (such as bits_per_word) which weren't needed for
327  *	the initial configuration done during system setup.
328  * @remove: Unbinds this driver from the SPI device
329  * @shutdown: Standard shutdown callback used during system state
330  *	transitions such as powerdown/halt and kexec
331  * @driver: SPI device drivers should initialize the name and owner
332  *	field of this structure.
333  *
334  * This represents the kind of device driver that uses SPI messages to
335  * interact with the hardware at the other end of a SPI link.  It's called
336  * a "protocol" driver because it works through messages rather than talking
337  * directly to SPI hardware (which is what the underlying SPI controller
338  * driver does to pass those messages).  These protocols are defined in the
339  * specification for the device(s) supported by the driver.
340  *
341  * As a rule, those device protocols represent the lowest level interface
342  * supported by a driver, and it will support upper level interfaces too.
343  * Examples of such upper levels include frameworks like MTD, networking,
344  * MMC, RTC, filesystem character device nodes, and hardware monitoring.
345  */
346 struct spi_driver {
347 	const struct spi_device_id *id_table;
348 	int			(*probe)(struct spi_device *spi);
349 	void			(*remove)(struct spi_device *spi);
350 	void			(*shutdown)(struct spi_device *spi);
351 	struct device_driver	driver;
352 };
353 
354 #define to_spi_driver(__drv)   \
355 	( __drv ? container_of_const(__drv, struct spi_driver, driver) : NULL )
356 
357 extern int __spi_register_driver(struct module *owner, struct spi_driver *sdrv);
358 
359 /**
360  * spi_unregister_driver - reverse effect of spi_register_driver
361  * @sdrv: the driver to unregister
362  * Context: can sleep
363  */
spi_unregister_driver(struct spi_driver * sdrv)364 static inline void spi_unregister_driver(struct spi_driver *sdrv)
365 {
366 	if (sdrv)
367 		driver_unregister(&sdrv->driver);
368 }
369 
370 extern struct spi_device *spi_new_ancillary_device(struct spi_device *spi, u8 chip_select);
371 
372 /* Use a define to avoid include chaining to get THIS_MODULE */
373 #define spi_register_driver(driver) \
374 	__spi_register_driver(THIS_MODULE, driver)
375 
376 /**
377  * module_spi_driver() - Helper macro for registering a SPI driver
378  * @__spi_driver: spi_driver struct
379  *
380  * Helper macro for SPI drivers which do not do anything special in module
381  * init/exit. This eliminates a lot of boilerplate. Each module may only
382  * use this macro once, and calling it replaces module_init() and module_exit()
383  */
384 #define module_spi_driver(__spi_driver) \
385 	module_driver(__spi_driver, spi_register_driver, \
386 			spi_unregister_driver)
387 
388 /**
389  * struct spi_controller - interface to SPI master or slave controller
390  * @dev: device interface to this driver
391  * @list: link with the global spi_controller list
392  * @bus_num: board-specific (and often SOC-specific) identifier for a
393  *	given SPI controller.
394  * @num_chipselect: chipselects are used to distinguish individual
395  *	SPI slaves, and are numbered from zero to num_chipselects.
396  *	each slave has a chipselect signal, but it's common that not
397  *	every chipselect is connected to a slave.
398  * @dma_alignment: SPI controller constraint on DMA buffers alignment.
399  * @mode_bits: flags understood by this controller driver
400  * @buswidth_override_bits: flags to override for this controller driver
401  * @bits_per_word_mask: A mask indicating which values of bits_per_word are
402  *	supported by the driver. Bit n indicates that a bits_per_word n+1 is
403  *	supported. If set, the SPI core will reject any transfer with an
404  *	unsupported bits_per_word. If not set, this value is simply ignored,
405  *	and it's up to the individual driver to perform any validation.
406  * @min_speed_hz: Lowest supported transfer speed
407  * @max_speed_hz: Highest supported transfer speed
408  * @flags: other constraints relevant to this driver
409  * @slave: indicates that this is an SPI slave controller
410  * @target: indicates that this is an SPI target controller
411  * @devm_allocated: whether the allocation of this struct is devres-managed
412  * @max_transfer_size: function that returns the max transfer size for
413  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
414  * @max_message_size: function that returns the max message size for
415  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
416  * @io_mutex: mutex for physical bus access
417  * @add_lock: mutex to avoid adding devices to the same chipselect
418  * @bus_lock_spinlock: spinlock for SPI bus locking
419  * @bus_lock_mutex: mutex for exclusion of multiple callers
420  * @bus_lock_flag: indicates that the SPI bus is locked for exclusive use
421  * @setup: updates the device mode and clocking records used by a
422  *	device's SPI controller; protocol code may call this.  This
423  *	must fail if an unrecognized or unsupported mode is requested.
424  *	It's always safe to call this unless transfers are pending on
425  *	the device whose settings are being modified.
426  * @set_cs_timing: optional hook for SPI devices to request SPI master
427  * controller for configuring specific CS setup time, hold time and inactive
428  * delay interms of clock counts
429  * @transfer: adds a message to the controller's transfer queue.
430  * @cleanup: frees controller-specific state
431  * @can_dma: determine whether this controller supports DMA
432  * @dma_map_dev: device which can be used for DMA mapping
433  * @cur_rx_dma_dev: device which is currently used for RX DMA mapping
434  * @cur_tx_dma_dev: device which is currently used for TX DMA mapping
435  * @queued: whether this controller is providing an internal message queue
436  * @kworker: pointer to thread struct for message pump
437  * @pump_messages: work struct for scheduling work to the message pump
438  * @queue_lock: spinlock to synchronise access to message queue
439  * @queue: message queue
440  * @cur_msg: the currently in-flight message
441  * @cur_msg_completion: a completion for the current in-flight message
442  * @cur_msg_incomplete: Flag used internally to opportunistically skip
443  *	the @cur_msg_completion. This flag is used to check if the driver has
444  *	already called spi_finalize_current_message().
445  * @cur_msg_need_completion: Flag used internally to opportunistically skip
446  *	the @cur_msg_completion. This flag is used to signal the context that
447  *	is running spi_finalize_current_message() that it needs to complete()
448  * @fallback: fallback to PIO if DMA transfer return failure with
449  *	SPI_TRANS_FAIL_NO_START.
450  * @last_cs_mode_high: was (mode & SPI_CS_HIGH) true on the last call to set_cs.
451  * @last_cs: the last chip_select that is recorded by set_cs, -1 on non chip
452  *           selected
453  * @last_cs_index_mask: bit mask the last chip selects that were used
454  * @xfer_completion: used by core transfer_one_message()
455  * @busy: message pump is busy
456  * @running: message pump is running
457  * @rt: whether this queue is set to run as a realtime task
458  * @auto_runtime_pm: the core should ensure a runtime PM reference is held
459  *                   while the hardware is prepared, using the parent
460  *                   device for the spidev
461  * @max_dma_len: Maximum length of a DMA transfer for the device.
462  * @prepare_transfer_hardware: a message will soon arrive from the queue
463  *	so the subsystem requests the driver to prepare the transfer hardware
464  *	by issuing this call
465  * @transfer_one_message: the subsystem calls the driver to transfer a single
466  *	message while queuing transfers that arrive in the meantime. When the
467  *	driver is finished with this message, it must call
468  *	spi_finalize_current_message() so the subsystem can issue the next
469  *	message
470  * @unprepare_transfer_hardware: there are currently no more messages on the
471  *	queue so the subsystem notifies the driver that it may relax the
472  *	hardware by issuing this call
473  *
474  * @set_cs: set the logic level of the chip select line.  May be called
475  *          from interrupt context.
476  * @optimize_message: optimize the message for reuse
477  * @unoptimize_message: release resources allocated by optimize_message
478  * @prepare_message: set up the controller to transfer a single message,
479  *                   for example doing DMA mapping.  Called from threaded
480  *                   context.
481  * @transfer_one: transfer a single spi_transfer.
482  *
483  *                  - return 0 if the transfer is finished,
484  *                  - return 1 if the transfer is still in progress. When
485  *                    the driver is finished with this transfer it must
486  *                    call spi_finalize_current_transfer() so the subsystem
487  *                    can issue the next transfer. If the transfer fails, the
488  *                    driver must set the flag SPI_TRANS_FAIL_IO to
489  *                    spi_transfer->error first, before calling
490  *                    spi_finalize_current_transfer().
491  *                    Note: transfer_one and transfer_one_message are mutually
492  *                    exclusive; when both are set, the generic subsystem does
493  *                    not call your transfer_one callback.
494  * @handle_err: the subsystem calls the driver to handle an error that occurs
495  *		in the generic implementation of transfer_one_message().
496  * @mem_ops: optimized/dedicated operations for interactions with SPI memory.
497  *	     This field is optional and should only be implemented if the
498  *	     controller has native support for memory like operations.
499  * @mem_caps: controller capabilities for the handling of memory operations.
500  * @unprepare_message: undo any work done by prepare_message().
501  * @target_abort: abort the ongoing transfer request on an SPI target controller
502  * @cs_gpiods: Array of GPIO descriptors to use as chip select lines; one per CS
503  *	number. Any individual value may be NULL for CS lines that
504  *	are not GPIOs (driven by the SPI controller itself).
505  * @use_gpio_descriptors: Turns on the code in the SPI core to parse and grab
506  *	GPIO descriptors. This will fill in @cs_gpiods and SPI devices will have
507  *	the cs_gpiod assigned if a GPIO line is found for the chipselect.
508  * @unused_native_cs: When cs_gpiods is used, spi_register_controller() will
509  *	fill in this field with the first unused native CS, to be used by SPI
510  *	controller drivers that need to drive a native CS when using GPIO CS.
511  * @max_native_cs: When cs_gpiods is used, and this field is filled in,
512  *	spi_register_controller() will validate all native CS (including the
513  *	unused native CS) against this value.
514  * @pcpu_statistics: statistics for the spi_controller
515  * @dma_tx: DMA transmit channel
516  * @dma_rx: DMA receive channel
517  * @dummy_rx: dummy receive buffer for full-duplex devices
518  * @dummy_tx: dummy transmit buffer for full-duplex devices
519  * @fw_translate_cs: If the boot firmware uses different numbering scheme
520  *	what Linux expects, this optional hook can be used to translate
521  *	between the two.
522  * @ptp_sts_supported: If the driver sets this to true, it must provide a
523  *	time snapshot in @spi_transfer->ptp_sts as close as possible to the
524  *	moment in time when @spi_transfer->ptp_sts_word_pre and
525  *	@spi_transfer->ptp_sts_word_post were transmitted.
526  *	If the driver does not set this, the SPI core takes the snapshot as
527  *	close to the driver hand-over as possible.
528  * @irq_flags: Interrupt enable state during PTP system timestamping
529  * @queue_empty: signal green light for opportunistically skipping the queue
530  *	for spi_sync transfers.
531  * @must_async: disable all fast paths in the core
532  * @defer_optimize_message: set to true if controller cannot pre-optimize messages
533  *	and needs to defer the optimization step until the message is actually
534  *	being transferred
535  *
536  * Each SPI controller can communicate with one or more @spi_device
537  * children.  These make a small bus, sharing MOSI, MISO and SCK signals
538  * but not chip select signals.  Each device may be configured to use a
539  * different clock rate, since those shared signals are ignored unless
540  * the chip is selected.
541  *
542  * The driver for an SPI controller manages access to those devices through
543  * a queue of spi_message transactions, copying data between CPU memory and
544  * an SPI slave device.  For each such message it queues, it calls the
545  * message's completion function when the transaction completes.
546  */
547 struct spi_controller {
548 	struct device	dev;
549 
550 	struct list_head list;
551 
552 	/*
553 	 * Other than negative (== assign one dynamically), bus_num is fully
554 	 * board-specific. Usually that simplifies to being SoC-specific.
555 	 * example: one SoC has three SPI controllers, numbered 0..2,
556 	 * and one board's schematics might show it using SPI-2. Software
557 	 * would normally use bus_num=2 for that controller.
558 	 */
559 	s16			bus_num;
560 
561 	/*
562 	 * Chipselects will be integral to many controllers; some others
563 	 * might use board-specific GPIOs.
564 	 */
565 	u16			num_chipselect;
566 
567 	/* Some SPI controllers pose alignment requirements on DMAable
568 	 * buffers; let protocol drivers know about these requirements.
569 	 */
570 	u16			dma_alignment;
571 
572 	/* spi_device.mode flags understood by this controller driver */
573 	u32			mode_bits;
574 
575 	/* spi_device.mode flags override flags for this controller */
576 	u32			buswidth_override_bits;
577 
578 	/* Bitmask of supported bits_per_word for transfers */
579 	u32			bits_per_word_mask;
580 #define SPI_BPW_MASK(bits) BIT((bits) - 1)
581 #define SPI_BPW_RANGE_MASK(min, max) GENMASK((max) - 1, (min) - 1)
582 
583 	/* Limits on transfer speed */
584 	u32			min_speed_hz;
585 	u32			max_speed_hz;
586 
587 	/* Other constraints relevant to this driver */
588 	u16			flags;
589 #define SPI_CONTROLLER_HALF_DUPLEX	BIT(0)	/* Can't do full duplex */
590 #define SPI_CONTROLLER_NO_RX		BIT(1)	/* Can't do buffer read */
591 #define SPI_CONTROLLER_NO_TX		BIT(2)	/* Can't do buffer write */
592 #define SPI_CONTROLLER_MUST_RX		BIT(3)	/* Requires rx */
593 #define SPI_CONTROLLER_MUST_TX		BIT(4)	/* Requires tx */
594 #define SPI_CONTROLLER_GPIO_SS		BIT(5)	/* GPIO CS must select slave */
595 #define SPI_CONTROLLER_SUSPENDED	BIT(6)	/* Currently suspended */
596 	/*
597 	 * The spi-controller has multi chip select capability and can
598 	 * assert/de-assert more than one chip select at once.
599 	 */
600 #define SPI_CONTROLLER_MULTI_CS		BIT(7)
601 
602 	/* Flag indicating if the allocation of this struct is devres-managed */
603 	bool			devm_allocated;
604 
605 	union {
606 		/* Flag indicating this is an SPI slave controller */
607 		bool			slave;
608 		/* Flag indicating this is an SPI target controller */
609 		bool			target;
610 	};
611 
612 	/*
613 	 * On some hardware transfer / message size may be constrained
614 	 * the limit may depend on device transfer settings.
615 	 */
616 	size_t (*max_transfer_size)(struct spi_device *spi);
617 	size_t (*max_message_size)(struct spi_device *spi);
618 
619 	/* I/O mutex */
620 	struct mutex		io_mutex;
621 
622 	/* Used to avoid adding the same CS twice */
623 	struct mutex		add_lock;
624 
625 	/* Lock and mutex for SPI bus locking */
626 	spinlock_t		bus_lock_spinlock;
627 	struct mutex		bus_lock_mutex;
628 
629 	/* Flag indicating that the SPI bus is locked for exclusive use */
630 	bool			bus_lock_flag;
631 
632 	/*
633 	 * Setup mode and clock, etc (SPI driver may call many times).
634 	 *
635 	 * IMPORTANT:  this may be called when transfers to another
636 	 * device are active.  DO NOT UPDATE SHARED REGISTERS in ways
637 	 * which could break those transfers.
638 	 */
639 	int			(*setup)(struct spi_device *spi);
640 
641 	/*
642 	 * set_cs_timing() method is for SPI controllers that supports
643 	 * configuring CS timing.
644 	 *
645 	 * This hook allows SPI client drivers to request SPI controllers
646 	 * to configure specific CS timing through spi_set_cs_timing() after
647 	 * spi_setup().
648 	 */
649 	int (*set_cs_timing)(struct spi_device *spi);
650 
651 	/*
652 	 * Bidirectional bulk transfers
653 	 *
654 	 * + The transfer() method may not sleep; its main role is
655 	 *   just to add the message to the queue.
656 	 * + For now there's no remove-from-queue operation, or
657 	 *   any other request management
658 	 * + To a given spi_device, message queueing is pure FIFO
659 	 *
660 	 * + The controller's main job is to process its message queue,
661 	 *   selecting a chip (for masters), then transferring data
662 	 * + If there are multiple spi_device children, the i/o queue
663 	 *   arbitration algorithm is unspecified (round robin, FIFO,
664 	 *   priority, reservations, preemption, etc)
665 	 *
666 	 * + Chipselect stays active during the entire message
667 	 *   (unless modified by spi_transfer.cs_change != 0).
668 	 * + The message transfers use clock and SPI mode parameters
669 	 *   previously established by setup() for this device
670 	 */
671 	int			(*transfer)(struct spi_device *spi,
672 						struct spi_message *mesg);
673 
674 	/* Called on release() to free memory provided by spi_controller */
675 	void			(*cleanup)(struct spi_device *spi);
676 
677 	/*
678 	 * Used to enable core support for DMA handling, if can_dma()
679 	 * exists and returns true then the transfer will be mapped
680 	 * prior to transfer_one() being called.  The driver should
681 	 * not modify or store xfer and dma_tx and dma_rx must be set
682 	 * while the device is prepared.
683 	 */
684 	bool			(*can_dma)(struct spi_controller *ctlr,
685 					   struct spi_device *spi,
686 					   struct spi_transfer *xfer);
687 	struct device *dma_map_dev;
688 	struct device *cur_rx_dma_dev;
689 	struct device *cur_tx_dma_dev;
690 
691 	/*
692 	 * These hooks are for drivers that want to use the generic
693 	 * controller transfer queueing mechanism. If these are used, the
694 	 * transfer() function above must NOT be specified by the driver.
695 	 * Over time we expect SPI drivers to be phased over to this API.
696 	 */
697 	bool				queued;
698 	struct kthread_worker		*kworker;
699 	struct kthread_work		pump_messages;
700 	spinlock_t			queue_lock;
701 	struct list_head		queue;
702 	struct spi_message		*cur_msg;
703 	struct completion               cur_msg_completion;
704 	bool				cur_msg_incomplete;
705 	bool				cur_msg_need_completion;
706 	bool				busy;
707 	bool				running;
708 	bool				rt;
709 	bool				auto_runtime_pm;
710 	bool                            fallback;
711 	bool				last_cs_mode_high;
712 	s8				last_cs[SPI_CS_CNT_MAX];
713 	u32				last_cs_index_mask : SPI_CS_CNT_MAX;
714 	struct completion               xfer_completion;
715 	size_t				max_dma_len;
716 
717 	int (*optimize_message)(struct spi_message *msg);
718 	int (*unoptimize_message)(struct spi_message *msg);
719 	int (*prepare_transfer_hardware)(struct spi_controller *ctlr);
720 	int (*transfer_one_message)(struct spi_controller *ctlr,
721 				    struct spi_message *mesg);
722 	int (*unprepare_transfer_hardware)(struct spi_controller *ctlr);
723 	int (*prepare_message)(struct spi_controller *ctlr,
724 			       struct spi_message *message);
725 	int (*unprepare_message)(struct spi_controller *ctlr,
726 				 struct spi_message *message);
727 	int (*target_abort)(struct spi_controller *ctlr);
728 
729 	/*
730 	 * These hooks are for drivers that use a generic implementation
731 	 * of transfer_one_message() provided by the core.
732 	 */
733 	void (*set_cs)(struct spi_device *spi, bool enable);
734 	int (*transfer_one)(struct spi_controller *ctlr, struct spi_device *spi,
735 			    struct spi_transfer *transfer);
736 	void (*handle_err)(struct spi_controller *ctlr,
737 			   struct spi_message *message);
738 
739 	/* Optimized handlers for SPI memory-like operations. */
740 	const struct spi_controller_mem_ops *mem_ops;
741 	const struct spi_controller_mem_caps *mem_caps;
742 
743 	/* GPIO chip select */
744 	struct gpio_desc	**cs_gpiods;
745 	bool			use_gpio_descriptors;
746 	s8			unused_native_cs;
747 	s8			max_native_cs;
748 
749 	/* Statistics */
750 	struct spi_statistics __percpu	*pcpu_statistics;
751 
752 	/* DMA channels for use with core dmaengine helpers */
753 	struct dma_chan		*dma_tx;
754 	struct dma_chan		*dma_rx;
755 
756 	/* Dummy data for full duplex devices */
757 	void			*dummy_rx;
758 	void			*dummy_tx;
759 
760 	int (*fw_translate_cs)(struct spi_controller *ctlr, unsigned cs);
761 
762 	/*
763 	 * Driver sets this field to indicate it is able to snapshot SPI
764 	 * transfers (needed e.g. for reading the time of POSIX clocks)
765 	 */
766 	bool			ptp_sts_supported;
767 
768 	/* Interrupt enable state during PTP system timestamping */
769 	unsigned long		irq_flags;
770 
771 	/* Flag for enabling opportunistic skipping of the queue in spi_sync */
772 	bool			queue_empty;
773 	bool			must_async;
774 	bool			defer_optimize_message;
775 };
776 
spi_controller_get_devdata(struct spi_controller * ctlr)777 static inline void *spi_controller_get_devdata(struct spi_controller *ctlr)
778 {
779 	return dev_get_drvdata(&ctlr->dev);
780 }
781 
spi_controller_set_devdata(struct spi_controller * ctlr,void * data)782 static inline void spi_controller_set_devdata(struct spi_controller *ctlr,
783 					      void *data)
784 {
785 	dev_set_drvdata(&ctlr->dev, data);
786 }
787 
spi_controller_get(struct spi_controller * ctlr)788 static inline struct spi_controller *spi_controller_get(struct spi_controller *ctlr)
789 {
790 	if (!ctlr || !get_device(&ctlr->dev))
791 		return NULL;
792 	return ctlr;
793 }
794 
spi_controller_put(struct spi_controller * ctlr)795 static inline void spi_controller_put(struct spi_controller *ctlr)
796 {
797 	if (ctlr)
798 		put_device(&ctlr->dev);
799 }
800 
spi_controller_is_target(struct spi_controller * ctlr)801 static inline bool spi_controller_is_target(struct spi_controller *ctlr)
802 {
803 	return IS_ENABLED(CONFIG_SPI_SLAVE) && ctlr->target;
804 }
805 
806 /* PM calls that need to be issued by the driver */
807 extern int spi_controller_suspend(struct spi_controller *ctlr);
808 extern int spi_controller_resume(struct spi_controller *ctlr);
809 
810 /* Calls the driver make to interact with the message queue */
811 extern struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr);
812 extern void spi_finalize_current_message(struct spi_controller *ctlr);
813 extern void spi_finalize_current_transfer(struct spi_controller *ctlr);
814 
815 /* Helper calls for driver to timestamp transfer */
816 void spi_take_timestamp_pre(struct spi_controller *ctlr,
817 			    struct spi_transfer *xfer,
818 			    size_t progress, bool irqs_off);
819 void spi_take_timestamp_post(struct spi_controller *ctlr,
820 			     struct spi_transfer *xfer,
821 			     size_t progress, bool irqs_off);
822 
823 /* The SPI driver core manages memory for the spi_controller classdev */
824 extern struct spi_controller *__spi_alloc_controller(struct device *host,
825 						unsigned int size, bool slave);
826 
spi_alloc_host(struct device * dev,unsigned int size)827 static inline struct spi_controller *spi_alloc_host(struct device *dev,
828 						    unsigned int size)
829 {
830 	return __spi_alloc_controller(dev, size, false);
831 }
832 
spi_alloc_target(struct device * dev,unsigned int size)833 static inline struct spi_controller *spi_alloc_target(struct device *dev,
834 						      unsigned int size)
835 {
836 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
837 		return NULL;
838 
839 	return __spi_alloc_controller(dev, size, true);
840 }
841 
842 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
843 						   unsigned int size,
844 						   bool slave);
845 
devm_spi_alloc_host(struct device * dev,unsigned int size)846 static inline struct spi_controller *devm_spi_alloc_host(struct device *dev,
847 							 unsigned int size)
848 {
849 	return __devm_spi_alloc_controller(dev, size, false);
850 }
851 
devm_spi_alloc_target(struct device * dev,unsigned int size)852 static inline struct spi_controller *devm_spi_alloc_target(struct device *dev,
853 							   unsigned int size)
854 {
855 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
856 		return NULL;
857 
858 	return __devm_spi_alloc_controller(dev, size, true);
859 }
860 
861 extern int spi_register_controller(struct spi_controller *ctlr);
862 extern int devm_spi_register_controller(struct device *dev,
863 					struct spi_controller *ctlr);
864 extern void spi_unregister_controller(struct spi_controller *ctlr);
865 
866 #if IS_ENABLED(CONFIG_ACPI) && IS_ENABLED(CONFIG_SPI_MASTER)
867 extern struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
868 extern struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
869 						struct acpi_device *adev,
870 						int index);
871 int acpi_spi_count_resources(struct acpi_device *adev);
872 #else
acpi_spi_find_controller_by_adev(struct acpi_device * adev)873 static inline struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
874 {
875 	return NULL;
876 }
877 
acpi_spi_device_alloc(struct spi_controller * ctlr,struct acpi_device * adev,int index)878 static inline struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
879 						       struct acpi_device *adev,
880 						       int index)
881 {
882 	return ERR_PTR(-ENODEV);
883 }
884 
acpi_spi_count_resources(struct acpi_device * adev)885 static inline int acpi_spi_count_resources(struct acpi_device *adev)
886 {
887 	return 0;
888 }
889 #endif
890 
891 /*
892  * SPI resource management while processing a SPI message
893  */
894 
895 typedef void (*spi_res_release_t)(struct spi_controller *ctlr,
896 				  struct spi_message *msg,
897 				  void *res);
898 
899 /**
900  * struct spi_res - SPI resource management structure
901  * @entry:   list entry
902  * @release: release code called prior to freeing this resource
903  * @data:    extra data allocated for the specific use-case
904  *
905  * This is based on ideas from devres, but focused on life-cycle
906  * management during spi_message processing.
907  */
908 struct spi_res {
909 	struct list_head        entry;
910 	spi_res_release_t       release;
911 	unsigned long long      data[]; /* Guarantee ull alignment */
912 };
913 
914 /*---------------------------------------------------------------------------*/
915 
916 /*
917  * I/O INTERFACE between SPI controller and protocol drivers
918  *
919  * Protocol drivers use a queue of spi_messages, each transferring data
920  * between the controller and memory buffers.
921  *
922  * The spi_messages themselves consist of a series of read+write transfer
923  * segments.  Those segments always read the same number of bits as they
924  * write; but one or the other is easily ignored by passing a NULL buffer
925  * pointer.  (This is unlike most types of I/O API, because SPI hardware
926  * is full duplex.)
927  *
928  * NOTE:  Allocation of spi_transfer and spi_message memory is entirely
929  * up to the protocol driver, which guarantees the integrity of both (as
930  * well as the data buffers) for as long as the message is queued.
931  */
932 
933 /**
934  * struct spi_transfer - a read/write buffer pair
935  * @tx_buf: data to be written (DMA-safe memory), or NULL
936  * @rx_buf: data to be read (DMA-safe memory), or NULL
937  * @tx_dma: DMA address of tx_buf, currently not for client use
938  * @rx_dma: DMA address of rx_buf, currently not for client use
939  * @tx_nbits: number of bits used for writing. If 0 the default
940  *      (SPI_NBITS_SINGLE) is used.
941  * @rx_nbits: number of bits used for reading. If 0 the default
942  *      (SPI_NBITS_SINGLE) is used.
943  * @len: size of rx and tx buffers (in bytes)
944  * @speed_hz: Select a speed other than the device default for this
945  *      transfer. If 0 the default (from @spi_device) is used.
946  * @bits_per_word: select a bits_per_word other than the device default
947  *      for this transfer. If 0 the default (from @spi_device) is used.
948  * @dummy_data: indicates transfer is dummy bytes transfer.
949  * @cs_off: performs the transfer with chipselect off.
950  * @cs_change: affects chipselect after this transfer completes
951  * @cs_change_delay: delay between cs deassert and assert when
952  *      @cs_change is set and @spi_transfer is not the last in @spi_message
953  * @delay: delay to be introduced after this transfer before
954  *	(optionally) changing the chipselect status, then starting
955  *	the next transfer or completing this @spi_message.
956  * @word_delay: inter word delay to be introduced after each word size
957  *	(set by bits_per_word) transmission.
958  * @effective_speed_hz: the effective SCK-speed that was used to
959  *      transfer this transfer. Set to 0 if the SPI bus driver does
960  *      not support it.
961  * @transfer_list: transfers are sequenced through @spi_message.transfers
962  * @tx_sg_mapped: If true, the @tx_sg is mapped for DMA
963  * @rx_sg_mapped: If true, the @rx_sg is mapped for DMA
964  * @tx_sg: Scatterlist for transmit, currently not for client use
965  * @rx_sg: Scatterlist for receive, currently not for client use
966  * @ptp_sts_word_pre: The word (subject to bits_per_word semantics) offset
967  *	within @tx_buf for which the SPI device is requesting that the time
968  *	snapshot for this transfer begins. Upon completing the SPI transfer,
969  *	this value may have changed compared to what was requested, depending
970  *	on the available snapshotting resolution (DMA transfer,
971  *	@ptp_sts_supported is false, etc).
972  * @ptp_sts_word_post: See @ptp_sts_word_post. The two can be equal (meaning
973  *	that a single byte should be snapshotted).
974  *	If the core takes care of the timestamp (if @ptp_sts_supported is false
975  *	for this controller), it will set @ptp_sts_word_pre to 0, and
976  *	@ptp_sts_word_post to the length of the transfer. This is done
977  *	purposefully (instead of setting to spi_transfer->len - 1) to denote
978  *	that a transfer-level snapshot taken from within the driver may still
979  *	be of higher quality.
980  * @ptp_sts: Pointer to a memory location held by the SPI slave device where a
981  *	PTP system timestamp structure may lie. If drivers use PIO or their
982  *	hardware has some sort of assist for retrieving exact transfer timing,
983  *	they can (and should) assert @ptp_sts_supported and populate this
984  *	structure using the ptp_read_system_*ts helper functions.
985  *	The timestamp must represent the time at which the SPI slave device has
986  *	processed the word, i.e. the "pre" timestamp should be taken before
987  *	transmitting the "pre" word, and the "post" timestamp after receiving
988  *	transmit confirmation from the controller for the "post" word.
989  * @timestamped: true if the transfer has been timestamped
990  * @error: Error status logged by SPI controller driver.
991  *
992  * SPI transfers always write the same number of bytes as they read.
993  * Protocol drivers should always provide @rx_buf and/or @tx_buf.
994  * In some cases, they may also want to provide DMA addresses for
995  * the data being transferred; that may reduce overhead, when the
996  * underlying driver uses DMA.
997  *
998  * If the transmit buffer is NULL, zeroes will be shifted out
999  * while filling @rx_buf.  If the receive buffer is NULL, the data
1000  * shifted in will be discarded.  Only "len" bytes shift out (or in).
1001  * It's an error to try to shift out a partial word.  (For example, by
1002  * shifting out three bytes with word size of sixteen or twenty bits;
1003  * the former uses two bytes per word, the latter uses four bytes.)
1004  *
1005  * In-memory data values are always in native CPU byte order, translated
1006  * from the wire byte order (big-endian except with SPI_LSB_FIRST).  So
1007  * for example when bits_per_word is sixteen, buffers are 2N bytes long
1008  * (@len = 2N) and hold N sixteen bit words in CPU byte order.
1009  *
1010  * When the word size of the SPI transfer is not a power-of-two multiple
1011  * of eight bits, those in-memory words include extra bits.  In-memory
1012  * words are always seen by protocol drivers as right-justified, so the
1013  * undefined (rx) or unused (tx) bits are always the most significant bits.
1014  *
1015  * All SPI transfers start with the relevant chipselect active.  Normally
1016  * it stays selected until after the last transfer in a message.  Drivers
1017  * can affect the chipselect signal using cs_change.
1018  *
1019  * (i) If the transfer isn't the last one in the message, this flag is
1020  * used to make the chipselect briefly go inactive in the middle of the
1021  * message.  Toggling chipselect in this way may be needed to terminate
1022  * a chip command, letting a single spi_message perform all of group of
1023  * chip transactions together.
1024  *
1025  * (ii) When the transfer is the last one in the message, the chip may
1026  * stay selected until the next transfer.  On multi-device SPI busses
1027  * with nothing blocking messages going to other devices, this is just
1028  * a performance hint; starting a message to another device deselects
1029  * this one.  But in other cases, this can be used to ensure correctness.
1030  * Some devices need protocol transactions to be built from a series of
1031  * spi_message submissions, where the content of one message is determined
1032  * by the results of previous messages and where the whole transaction
1033  * ends when the chipselect goes inactive.
1034  *
1035  * When SPI can transfer in 1x,2x or 4x. It can get this transfer information
1036  * from device through @tx_nbits and @rx_nbits. In Bi-direction, these
1037  * two should both be set. User can set transfer mode with SPI_NBITS_SINGLE(1x)
1038  * SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three transfer.
1039  *
1040  * The code that submits an spi_message (and its spi_transfers)
1041  * to the lower layers is responsible for managing its memory.
1042  * Zero-initialize every field you don't set up explicitly, to
1043  * insulate against future API updates.  After you submit a message
1044  * and its transfers, ignore them until its completion callback.
1045  */
1046 struct spi_transfer {
1047 	/*
1048 	 * It's okay if tx_buf == rx_buf (right?).
1049 	 * For MicroWire, one buffer must be NULL.
1050 	 * Buffers must work with dma_*map_single() calls.
1051 	 */
1052 	const void	*tx_buf;
1053 	void		*rx_buf;
1054 	unsigned	len;
1055 
1056 #define SPI_TRANS_FAIL_NO_START	BIT(0)
1057 #define SPI_TRANS_FAIL_IO	BIT(1)
1058 	u16		error;
1059 
1060 	bool		tx_sg_mapped;
1061 	bool		rx_sg_mapped;
1062 
1063 	struct sg_table tx_sg;
1064 	struct sg_table rx_sg;
1065 	dma_addr_t	tx_dma;
1066 	dma_addr_t	rx_dma;
1067 
1068 	unsigned	dummy_data:1;
1069 	unsigned	cs_off:1;
1070 	unsigned	cs_change:1;
1071 	unsigned	tx_nbits:4;
1072 	unsigned	rx_nbits:4;
1073 	unsigned	timestamped:1;
1074 #define	SPI_NBITS_SINGLE	0x01 /* 1-bit transfer */
1075 #define	SPI_NBITS_DUAL		0x02 /* 2-bit transfer */
1076 #define	SPI_NBITS_QUAD		0x04 /* 4-bit transfer */
1077 #define	SPI_NBITS_OCTAL	0x08 /* 8-bit transfer */
1078 	u8		bits_per_word;
1079 	struct spi_delay	delay;
1080 	struct spi_delay	cs_change_delay;
1081 	struct spi_delay	word_delay;
1082 	u32		speed_hz;
1083 
1084 	u32		effective_speed_hz;
1085 
1086 	unsigned int	ptp_sts_word_pre;
1087 	unsigned int	ptp_sts_word_post;
1088 
1089 	struct ptp_system_timestamp *ptp_sts;
1090 
1091 	struct list_head transfer_list;
1092 };
1093 
1094 /**
1095  * struct spi_message - one multi-segment SPI transaction
1096  * @transfers: list of transfer segments in this transaction
1097  * @spi: SPI device to which the transaction is queued
1098  * @pre_optimized: peripheral driver pre-optimized the message
1099  * @optimized: the message is in the optimized state
1100  * @prepared: spi_prepare_message was called for the this message
1101  * @status: zero for success, else negative errno
1102  * @complete: called to report transaction completions
1103  * @context: the argument to complete() when it's called
1104  * @frame_length: the total number of bytes in the message
1105  * @actual_length: the total number of bytes that were transferred in all
1106  *	successful segments
1107  * @queue: for use by whichever driver currently owns the message
1108  * @state: for use by whichever driver currently owns the message
1109  * @opt_state: for use by whichever driver currently owns the message
1110  * @resources: for resource management when the SPI message is processed
1111  *
1112  * A @spi_message is used to execute an atomic sequence of data transfers,
1113  * each represented by a struct spi_transfer.  The sequence is "atomic"
1114  * in the sense that no other spi_message may use that SPI bus until that
1115  * sequence completes.  On some systems, many such sequences can execute as
1116  * a single programmed DMA transfer.  On all systems, these messages are
1117  * queued, and might complete after transactions to other devices.  Messages
1118  * sent to a given spi_device are always executed in FIFO order.
1119  *
1120  * The code that submits an spi_message (and its spi_transfers)
1121  * to the lower layers is responsible for managing its memory.
1122  * Zero-initialize every field you don't set up explicitly, to
1123  * insulate against future API updates.  After you submit a message
1124  * and its transfers, ignore them until its completion callback.
1125  */
1126 struct spi_message {
1127 	struct list_head	transfers;
1128 
1129 	struct spi_device	*spi;
1130 
1131 	/* spi_optimize_message() was called for this message */
1132 	bool			pre_optimized;
1133 	/* __spi_optimize_message() was called for this message */
1134 	bool			optimized;
1135 
1136 	/* spi_prepare_message() was called for this message */
1137 	bool			prepared;
1138 
1139 	/*
1140 	 * REVISIT: we might want a flag affecting the behavior of the
1141 	 * last transfer ... allowing things like "read 16 bit length L"
1142 	 * immediately followed by "read L bytes".  Basically imposing
1143 	 * a specific message scheduling algorithm.
1144 	 *
1145 	 * Some controller drivers (message-at-a-time queue processing)
1146 	 * could provide that as their default scheduling algorithm.  But
1147 	 * others (with multi-message pipelines) could need a flag to
1148 	 * tell them about such special cases.
1149 	 */
1150 
1151 	/* Completion is reported through a callback */
1152 	int			status;
1153 	void			(*complete)(void *context);
1154 	void			*context;
1155 	unsigned		frame_length;
1156 	unsigned		actual_length;
1157 
1158 	/*
1159 	 * For optional use by whatever driver currently owns the
1160 	 * spi_message ...  between calls to spi_async and then later
1161 	 * complete(), that's the spi_controller controller driver.
1162 	 */
1163 	struct list_head	queue;
1164 	void			*state;
1165 	/*
1166 	 * Optional state for use by controller driver between calls to
1167 	 * __spi_optimize_message() and __spi_unoptimize_message().
1168 	 */
1169 	void			*opt_state;
1170 
1171 	/* List of spi_res resources when the SPI message is processed */
1172 	struct list_head        resources;
1173 };
1174 
spi_message_init_no_memset(struct spi_message * m)1175 static inline void spi_message_init_no_memset(struct spi_message *m)
1176 {
1177 	INIT_LIST_HEAD(&m->transfers);
1178 	INIT_LIST_HEAD(&m->resources);
1179 }
1180 
spi_message_init(struct spi_message * m)1181 static inline void spi_message_init(struct spi_message *m)
1182 {
1183 	memset(m, 0, sizeof *m);
1184 	spi_message_init_no_memset(m);
1185 }
1186 
1187 static inline void
spi_message_add_tail(struct spi_transfer * t,struct spi_message * m)1188 spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
1189 {
1190 	list_add_tail(&t->transfer_list, &m->transfers);
1191 }
1192 
1193 static inline void
spi_transfer_del(struct spi_transfer * t)1194 spi_transfer_del(struct spi_transfer *t)
1195 {
1196 	list_del(&t->transfer_list);
1197 }
1198 
1199 static inline int
spi_transfer_delay_exec(struct spi_transfer * t)1200 spi_transfer_delay_exec(struct spi_transfer *t)
1201 {
1202 	return spi_delay_exec(&t->delay, t);
1203 }
1204 
1205 /**
1206  * spi_message_init_with_transfers - Initialize spi_message and append transfers
1207  * @m: spi_message to be initialized
1208  * @xfers: An array of SPI transfers
1209  * @num_xfers: Number of items in the xfer array
1210  *
1211  * This function initializes the given spi_message and adds each spi_transfer in
1212  * the given array to the message.
1213  */
1214 static inline void
spi_message_init_with_transfers(struct spi_message * m,struct spi_transfer * xfers,unsigned int num_xfers)1215 spi_message_init_with_transfers(struct spi_message *m,
1216 struct spi_transfer *xfers, unsigned int num_xfers)
1217 {
1218 	unsigned int i;
1219 
1220 	spi_message_init(m);
1221 	for (i = 0; i < num_xfers; ++i)
1222 		spi_message_add_tail(&xfers[i], m);
1223 }
1224 
1225 /*
1226  * It's fine to embed message and transaction structures in other data
1227  * structures so long as you don't free them while they're in use.
1228  */
spi_message_alloc(unsigned ntrans,gfp_t flags)1229 static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
1230 {
1231 	struct spi_message_with_transfers {
1232 		struct spi_message m;
1233 		struct spi_transfer t[];
1234 	} *mwt;
1235 	unsigned i;
1236 
1237 	mwt = kzalloc(struct_size(mwt, t, ntrans), flags);
1238 	if (!mwt)
1239 		return NULL;
1240 
1241 	spi_message_init_no_memset(&mwt->m);
1242 	for (i = 0; i < ntrans; i++)
1243 		spi_message_add_tail(&mwt->t[i], &mwt->m);
1244 
1245 	return &mwt->m;
1246 }
1247 
spi_message_free(struct spi_message * m)1248 static inline void spi_message_free(struct spi_message *m)
1249 {
1250 	kfree(m);
1251 }
1252 
1253 extern int spi_optimize_message(struct spi_device *spi, struct spi_message *msg);
1254 extern void spi_unoptimize_message(struct spi_message *msg);
1255 extern int devm_spi_optimize_message(struct device *dev, struct spi_device *spi,
1256 				     struct spi_message *msg);
1257 
1258 extern int spi_setup(struct spi_device *spi);
1259 extern int spi_async(struct spi_device *spi, struct spi_message *message);
1260 extern int spi_target_abort(struct spi_device *spi);
1261 
1262 static inline size_t
spi_max_message_size(struct spi_device * spi)1263 spi_max_message_size(struct spi_device *spi)
1264 {
1265 	struct spi_controller *ctlr = spi->controller;
1266 
1267 	if (!ctlr->max_message_size)
1268 		return SIZE_MAX;
1269 	return ctlr->max_message_size(spi);
1270 }
1271 
1272 static inline size_t
spi_max_transfer_size(struct spi_device * spi)1273 spi_max_transfer_size(struct spi_device *spi)
1274 {
1275 	struct spi_controller *ctlr = spi->controller;
1276 	size_t tr_max = SIZE_MAX;
1277 	size_t msg_max = spi_max_message_size(spi);
1278 
1279 	if (ctlr->max_transfer_size)
1280 		tr_max = ctlr->max_transfer_size(spi);
1281 
1282 	/* Transfer size limit must not be greater than message size limit */
1283 	return min(tr_max, msg_max);
1284 }
1285 
1286 /**
1287  * spi_is_bpw_supported - Check if bits per word is supported
1288  * @spi: SPI device
1289  * @bpw: Bits per word
1290  *
1291  * This function checks to see if the SPI controller supports @bpw.
1292  *
1293  * Returns:
1294  * True if @bpw is supported, false otherwise.
1295  */
spi_is_bpw_supported(struct spi_device * spi,u32 bpw)1296 static inline bool spi_is_bpw_supported(struct spi_device *spi, u32 bpw)
1297 {
1298 	u32 bpw_mask = spi->controller->bits_per_word_mask;
1299 
1300 	if (bpw == 8 || (bpw <= 32 && bpw_mask & SPI_BPW_MASK(bpw)))
1301 		return true;
1302 
1303 	return false;
1304 }
1305 
1306 /**
1307  * spi_controller_xfer_timeout - Compute a suitable timeout value
1308  * @ctlr: SPI device
1309  * @xfer: Transfer descriptor
1310  *
1311  * Compute a relevant timeout value for the given transfer. We derive the time
1312  * that it would take on a single data line and take twice this amount of time
1313  * with a minimum of 500ms to avoid false positives on loaded systems.
1314  *
1315  * Returns: Transfer timeout value in milliseconds.
1316  */
spi_controller_xfer_timeout(struct spi_controller * ctlr,struct spi_transfer * xfer)1317 static inline unsigned int spi_controller_xfer_timeout(struct spi_controller *ctlr,
1318 						       struct spi_transfer *xfer)
1319 {
1320 	return max(xfer->len * 8 * 2 / (xfer->speed_hz / 1000), 500U);
1321 }
1322 
1323 /*---------------------------------------------------------------------------*/
1324 
1325 /* SPI transfer replacement methods which make use of spi_res */
1326 
1327 struct spi_replaced_transfers;
1328 typedef void (*spi_replaced_release_t)(struct spi_controller *ctlr,
1329 				       struct spi_message *msg,
1330 				       struct spi_replaced_transfers *res);
1331 /**
1332  * struct spi_replaced_transfers - structure describing the spi_transfer
1333  *                                 replacements that have occurred
1334  *                                 so that they can get reverted
1335  * @release:            some extra release code to get executed prior to
1336  *                      releasing this structure
1337  * @extradata:          pointer to some extra data if requested or NULL
1338  * @replaced_transfers: transfers that have been replaced and which need
1339  *                      to get restored
1340  * @replaced_after:     the transfer after which the @replaced_transfers
1341  *                      are to get re-inserted
1342  * @inserted:           number of transfers inserted
1343  * @inserted_transfers: array of spi_transfers of array-size @inserted,
1344  *                      that have been replacing replaced_transfers
1345  *
1346  * Note: that @extradata will point to @inserted_transfers[@inserted]
1347  * if some extra allocation is requested, so alignment will be the same
1348  * as for spi_transfers.
1349  */
1350 struct spi_replaced_transfers {
1351 	spi_replaced_release_t release;
1352 	void *extradata;
1353 	struct list_head replaced_transfers;
1354 	struct list_head *replaced_after;
1355 	size_t inserted;
1356 	struct spi_transfer inserted_transfers[];
1357 };
1358 
1359 /*---------------------------------------------------------------------------*/
1360 
1361 /* SPI transfer transformation methods */
1362 
1363 extern int spi_split_transfers_maxsize(struct spi_controller *ctlr,
1364 				       struct spi_message *msg,
1365 				       size_t maxsize);
1366 extern int spi_split_transfers_maxwords(struct spi_controller *ctlr,
1367 					struct spi_message *msg,
1368 					size_t maxwords);
1369 
1370 /*---------------------------------------------------------------------------*/
1371 
1372 /*
1373  * All these synchronous SPI transfer routines are utilities layered
1374  * over the core async transfer primitive.  Here, "synchronous" means
1375  * they will sleep uninterruptibly until the async transfer completes.
1376  */
1377 
1378 extern int spi_sync(struct spi_device *spi, struct spi_message *message);
1379 extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message);
1380 extern int spi_bus_lock(struct spi_controller *ctlr);
1381 extern int spi_bus_unlock(struct spi_controller *ctlr);
1382 
1383 /**
1384  * spi_sync_transfer - synchronous SPI data transfer
1385  * @spi: device with which data will be exchanged
1386  * @xfers: An array of spi_transfers
1387  * @num_xfers: Number of items in the xfer array
1388  * Context: can sleep
1389  *
1390  * Does a synchronous SPI data transfer of the given spi_transfer array.
1391  *
1392  * For more specific semantics see spi_sync().
1393  *
1394  * Return: zero on success, else a negative error code.
1395  */
1396 static inline int
spi_sync_transfer(struct spi_device * spi,struct spi_transfer * xfers,unsigned int num_xfers)1397 spi_sync_transfer(struct spi_device *spi, struct spi_transfer *xfers,
1398 	unsigned int num_xfers)
1399 {
1400 	struct spi_message msg;
1401 
1402 	spi_message_init_with_transfers(&msg, xfers, num_xfers);
1403 
1404 	return spi_sync(spi, &msg);
1405 }
1406 
1407 /**
1408  * spi_write - SPI synchronous write
1409  * @spi: device to which data will be written
1410  * @buf: data buffer
1411  * @len: data buffer size
1412  * Context: can sleep
1413  *
1414  * This function writes the buffer @buf.
1415  * Callable only from contexts that can sleep.
1416  *
1417  * Return: zero on success, else a negative error code.
1418  */
1419 static inline int
spi_write(struct spi_device * spi,const void * buf,size_t len)1420 spi_write(struct spi_device *spi, const void *buf, size_t len)
1421 {
1422 	struct spi_transfer	t = {
1423 			.tx_buf		= buf,
1424 			.len		= len,
1425 		};
1426 
1427 	return spi_sync_transfer(spi, &t, 1);
1428 }
1429 
1430 /**
1431  * spi_read - SPI synchronous read
1432  * @spi: device from which data will be read
1433  * @buf: data buffer
1434  * @len: data buffer size
1435  * Context: can sleep
1436  *
1437  * This function reads the buffer @buf.
1438  * Callable only from contexts that can sleep.
1439  *
1440  * Return: zero on success, else a negative error code.
1441  */
1442 static inline int
spi_read(struct spi_device * spi,void * buf,size_t len)1443 spi_read(struct spi_device *spi, void *buf, size_t len)
1444 {
1445 	struct spi_transfer	t = {
1446 			.rx_buf		= buf,
1447 			.len		= len,
1448 		};
1449 
1450 	return spi_sync_transfer(spi, &t, 1);
1451 }
1452 
1453 /* This copies txbuf and rxbuf data; for small transfers only! */
1454 extern int spi_write_then_read(struct spi_device *spi,
1455 		const void *txbuf, unsigned n_tx,
1456 		void *rxbuf, unsigned n_rx);
1457 
1458 /**
1459  * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
1460  * @spi: device with which data will be exchanged
1461  * @cmd: command to be written before data is read back
1462  * Context: can sleep
1463  *
1464  * Callable only from contexts that can sleep.
1465  *
1466  * Return: the (unsigned) eight bit number returned by the
1467  * device, or else a negative error code.
1468  */
spi_w8r8(struct spi_device * spi,u8 cmd)1469 static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
1470 {
1471 	ssize_t			status;
1472 	u8			result;
1473 
1474 	status = spi_write_then_read(spi, &cmd, 1, &result, 1);
1475 
1476 	/* Return negative errno or unsigned value */
1477 	return (status < 0) ? status : result;
1478 }
1479 
1480 /**
1481  * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
1482  * @spi: device with which data will be exchanged
1483  * @cmd: command to be written before data is read back
1484  * Context: can sleep
1485  *
1486  * The number is returned in wire-order, which is at least sometimes
1487  * big-endian.
1488  *
1489  * Callable only from contexts that can sleep.
1490  *
1491  * Return: the (unsigned) sixteen bit number returned by the
1492  * device, or else a negative error code.
1493  */
spi_w8r16(struct spi_device * spi,u8 cmd)1494 static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
1495 {
1496 	ssize_t			status;
1497 	u16			result;
1498 
1499 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1500 
1501 	/* Return negative errno or unsigned value */
1502 	return (status < 0) ? status : result;
1503 }
1504 
1505 /**
1506  * spi_w8r16be - SPI synchronous 8 bit write followed by 16 bit big-endian read
1507  * @spi: device with which data will be exchanged
1508  * @cmd: command to be written before data is read back
1509  * Context: can sleep
1510  *
1511  * This function is similar to spi_w8r16, with the exception that it will
1512  * convert the read 16 bit data word from big-endian to native endianness.
1513  *
1514  * Callable only from contexts that can sleep.
1515  *
1516  * Return: the (unsigned) sixteen bit number returned by the device in CPU
1517  * endianness, or else a negative error code.
1518  */
spi_w8r16be(struct spi_device * spi,u8 cmd)1519 static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
1520 
1521 {
1522 	ssize_t status;
1523 	__be16 result;
1524 
1525 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1526 	if (status < 0)
1527 		return status;
1528 
1529 	return be16_to_cpu(result);
1530 }
1531 
1532 /*---------------------------------------------------------------------------*/
1533 
1534 /*
1535  * INTERFACE between board init code and SPI infrastructure.
1536  *
1537  * No SPI driver ever sees these SPI device table segments, but
1538  * it's how the SPI core (or adapters that get hotplugged) grows
1539  * the driver model tree.
1540  *
1541  * As a rule, SPI devices can't be probed.  Instead, board init code
1542  * provides a table listing the devices which are present, with enough
1543  * information to bind and set up the device's driver.  There's basic
1544  * support for non-static configurations too; enough to handle adding
1545  * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
1546  */
1547 
1548 /**
1549  * struct spi_board_info - board-specific template for a SPI device
1550  * @modalias: Initializes spi_device.modalias; identifies the driver.
1551  * @platform_data: Initializes spi_device.platform_data; the particular
1552  *	data stored there is driver-specific.
1553  * @swnode: Software node for the device.
1554  * @controller_data: Initializes spi_device.controller_data; some
1555  *	controllers need hints about hardware setup, e.g. for DMA.
1556  * @irq: Initializes spi_device.irq; depends on how the board is wired.
1557  * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits
1558  *	from the chip datasheet and board-specific signal quality issues.
1559  * @bus_num: Identifies which spi_controller parents the spi_device; unused
1560  *	by spi_new_device(), and otherwise depends on board wiring.
1561  * @chip_select: Initializes spi_device.chip_select; depends on how
1562  *	the board is wired.
1563  * @mode: Initializes spi_device.mode; based on the chip datasheet, board
1564  *	wiring (some devices support both 3WIRE and standard modes), and
1565  *	possibly presence of an inverter in the chipselect path.
1566  *
1567  * When adding new SPI devices to the device tree, these structures serve
1568  * as a partial device template.  They hold information which can't always
1569  * be determined by drivers.  Information that probe() can establish (such
1570  * as the default transfer wordsize) is not included here.
1571  *
1572  * These structures are used in two places.  Their primary role is to
1573  * be stored in tables of board-specific device descriptors, which are
1574  * declared early in board initialization and then used (much later) to
1575  * populate a controller's device tree after the that controller's driver
1576  * initializes.  A secondary (and atypical) role is as a parameter to
1577  * spi_new_device() call, which happens after those controller drivers
1578  * are active in some dynamic board configuration models.
1579  */
1580 struct spi_board_info {
1581 	/*
1582 	 * The device name and module name are coupled, like platform_bus;
1583 	 * "modalias" is normally the driver name.
1584 	 *
1585 	 * platform_data goes to spi_device.dev.platform_data,
1586 	 * controller_data goes to spi_device.controller_data,
1587 	 * IRQ is copied too.
1588 	 */
1589 	char		modalias[SPI_NAME_SIZE];
1590 	const void	*platform_data;
1591 	const struct software_node *swnode;
1592 	void		*controller_data;
1593 	int		irq;
1594 
1595 	/* Slower signaling on noisy or low voltage boards */
1596 	u32		max_speed_hz;
1597 
1598 
1599 	/*
1600 	 * bus_num is board specific and matches the bus_num of some
1601 	 * spi_controller that will probably be registered later.
1602 	 *
1603 	 * chip_select reflects how this chip is wired to that master;
1604 	 * it's less than num_chipselect.
1605 	 */
1606 	u16		bus_num;
1607 	u16		chip_select;
1608 
1609 	/*
1610 	 * mode becomes spi_device.mode, and is essential for chips
1611 	 * where the default of SPI_CS_HIGH = 0 is wrong.
1612 	 */
1613 	u32		mode;
1614 
1615 	/*
1616 	 * ... may need additional spi_device chip config data here.
1617 	 * avoid stuff protocol drivers can set; but include stuff
1618 	 * needed to behave without being bound to a driver:
1619 	 *  - quirks like clock rate mattering when not selected
1620 	 */
1621 };
1622 
1623 #ifdef	CONFIG_SPI
1624 extern int
1625 spi_register_board_info(struct spi_board_info const *info, unsigned n);
1626 #else
1627 /* Board init code may ignore whether SPI is configured or not */
1628 static inline int
spi_register_board_info(struct spi_board_info const * info,unsigned n)1629 spi_register_board_info(struct spi_board_info const *info, unsigned n)
1630 	{ return 0; }
1631 #endif
1632 
1633 /*
1634  * If you're hotplugging an adapter with devices (parport, USB, etc)
1635  * use spi_new_device() to describe each device.  You can also call
1636  * spi_unregister_device() to start making that device vanish, but
1637  * normally that would be handled by spi_unregister_controller().
1638  *
1639  * You can also use spi_alloc_device() and spi_add_device() to use a two
1640  * stage registration sequence for each spi_device. This gives the caller
1641  * some more control over the spi_device structure before it is registered,
1642  * but requires that caller to initialize fields that would otherwise
1643  * be defined using the board info.
1644  */
1645 extern struct spi_device *
1646 spi_alloc_device(struct spi_controller *ctlr);
1647 
1648 extern int
1649 spi_add_device(struct spi_device *spi);
1650 
1651 extern struct spi_device *
1652 spi_new_device(struct spi_controller *, struct spi_board_info *);
1653 
1654 extern void spi_unregister_device(struct spi_device *spi);
1655 
1656 extern const struct spi_device_id *
1657 spi_get_device_id(const struct spi_device *sdev);
1658 
1659 extern const void *
1660 spi_get_device_match_data(const struct spi_device *sdev);
1661 
1662 static inline bool
spi_transfer_is_last(struct spi_controller * ctlr,struct spi_transfer * xfer)1663 spi_transfer_is_last(struct spi_controller *ctlr, struct spi_transfer *xfer)
1664 {
1665 	return list_is_last(&xfer->transfer_list, &ctlr->cur_msg->transfers);
1666 }
1667 
1668 #endif /* __LINUX_SPI_H */
1669