xref: /linux/kernel/livepatch/core.c (revision 9e676a024fa1fa2bd8150c2d2ba85478280353bc)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * core.c - Kernel Live Patching Core
4   *
5   * Copyright (C) 2014 Seth Jennings <sjenning@redhat.com>
6   * Copyright (C) 2014 SUSE
7   */
8  
9  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10  
11  #include <linux/module.h>
12  #include <linux/kernel.h>
13  #include <linux/mutex.h>
14  #include <linux/slab.h>
15  #include <linux/list.h>
16  #include <linux/kallsyms.h>
17  #include <linux/livepatch.h>
18  #include <linux/elf.h>
19  #include <linux/moduleloader.h>
20  #include <linux/completion.h>
21  #include <linux/memory.h>
22  #include <linux/rcupdate.h>
23  #include <asm/cacheflush.h>
24  #include "core.h"
25  #include "patch.h"
26  #include "state.h"
27  #include "transition.h"
28  
29  /*
30   * klp_mutex is a coarse lock which serializes access to klp data.  All
31   * accesses to klp-related variables and structures must have mutex protection,
32   * except within the following functions which carefully avoid the need for it:
33   *
34   * - klp_ftrace_handler()
35   * - klp_update_patch_state()
36   * - __klp_sched_try_switch()
37   */
38  DEFINE_MUTEX(klp_mutex);
39  
40  /*
41   * Actively used patches: enabled or in transition. Note that replaced
42   * or disabled patches are not listed even though the related kernel
43   * module still can be loaded.
44   */
45  LIST_HEAD(klp_patches);
46  
47  static struct kobject *klp_root_kobj;
48  
49  static bool klp_is_module(struct klp_object *obj)
50  {
51  	return obj->name;
52  }
53  
54  /* sets obj->mod if object is not vmlinux and module is found */
55  static void klp_find_object_module(struct klp_object *obj)
56  {
57  	struct module *mod;
58  
59  	if (!klp_is_module(obj))
60  		return;
61  
62  	rcu_read_lock_sched();
63  	/*
64  	 * We do not want to block removal of patched modules and therefore
65  	 * we do not take a reference here. The patches are removed by
66  	 * klp_module_going() instead.
67  	 */
68  	mod = find_module(obj->name);
69  	/*
70  	 * Do not mess work of klp_module_coming() and klp_module_going().
71  	 * Note that the patch might still be needed before klp_module_going()
72  	 * is called. Module functions can be called even in the GOING state
73  	 * until mod->exit() finishes. This is especially important for
74  	 * patches that modify semantic of the functions.
75  	 */
76  	if (mod && mod->klp_alive)
77  		obj->mod = mod;
78  
79  	rcu_read_unlock_sched();
80  }
81  
82  static bool klp_initialized(void)
83  {
84  	return !!klp_root_kobj;
85  }
86  
87  static struct klp_func *klp_find_func(struct klp_object *obj,
88  				      struct klp_func *old_func)
89  {
90  	struct klp_func *func;
91  
92  	klp_for_each_func(obj, func) {
93  		if ((strcmp(old_func->old_name, func->old_name) == 0) &&
94  		    (old_func->old_sympos == func->old_sympos)) {
95  			return func;
96  		}
97  	}
98  
99  	return NULL;
100  }
101  
102  static struct klp_object *klp_find_object(struct klp_patch *patch,
103  					  struct klp_object *old_obj)
104  {
105  	struct klp_object *obj;
106  
107  	klp_for_each_object(patch, obj) {
108  		if (klp_is_module(old_obj)) {
109  			if (klp_is_module(obj) &&
110  			    strcmp(old_obj->name, obj->name) == 0) {
111  				return obj;
112  			}
113  		} else if (!klp_is_module(obj)) {
114  			return obj;
115  		}
116  	}
117  
118  	return NULL;
119  }
120  
121  struct klp_find_arg {
122  	const char *name;
123  	unsigned long addr;
124  	unsigned long count;
125  	unsigned long pos;
126  };
127  
128  static int klp_match_callback(void *data, unsigned long addr)
129  {
130  	struct klp_find_arg *args = data;
131  
132  	args->addr = addr;
133  	args->count++;
134  
135  	/*
136  	 * Finish the search when the symbol is found for the desired position
137  	 * or the position is not defined for a non-unique symbol.
138  	 */
139  	if ((args->pos && (args->count == args->pos)) ||
140  	    (!args->pos && (args->count > 1)))
141  		return 1;
142  
143  	return 0;
144  }
145  
146  static int klp_find_callback(void *data, const char *name, unsigned long addr)
147  {
148  	struct klp_find_arg *args = data;
149  
150  	if (strcmp(args->name, name))
151  		return 0;
152  
153  	return klp_match_callback(data, addr);
154  }
155  
156  static int klp_find_object_symbol(const char *objname, const char *name,
157  				  unsigned long sympos, unsigned long *addr)
158  {
159  	struct klp_find_arg args = {
160  		.name = name,
161  		.addr = 0,
162  		.count = 0,
163  		.pos = sympos,
164  	};
165  
166  	if (objname)
167  		module_kallsyms_on_each_symbol(objname, klp_find_callback, &args);
168  	else
169  		kallsyms_on_each_match_symbol(klp_match_callback, name, &args);
170  
171  	/*
172  	 * Ensure an address was found. If sympos is 0, ensure symbol is unique;
173  	 * otherwise ensure the symbol position count matches sympos.
174  	 */
175  	if (args.addr == 0)
176  		pr_err("symbol '%s' not found in symbol table\n", name);
177  	else if (args.count > 1 && sympos == 0) {
178  		pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n",
179  		       name, objname);
180  	} else if (sympos != args.count && sympos > 0) {
181  		pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n",
182  		       sympos, name, objname ? objname : "vmlinux");
183  	} else {
184  		*addr = args.addr;
185  		return 0;
186  	}
187  
188  	*addr = 0;
189  	return -EINVAL;
190  }
191  
192  static int klp_resolve_symbols(Elf_Shdr *sechdrs, const char *strtab,
193  			       unsigned int symndx, Elf_Shdr *relasec,
194  			       const char *sec_objname)
195  {
196  	int i, cnt, ret;
197  	char sym_objname[MODULE_NAME_LEN];
198  	char sym_name[KSYM_NAME_LEN];
199  	Elf_Rela *relas;
200  	Elf_Sym *sym;
201  	unsigned long sympos, addr;
202  	bool sym_vmlinux;
203  	bool sec_vmlinux = !strcmp(sec_objname, "vmlinux");
204  
205  	/*
206  	 * Since the field widths for sym_objname and sym_name in the sscanf()
207  	 * call are hard-coded and correspond to MODULE_NAME_LEN and
208  	 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN
209  	 * and KSYM_NAME_LEN have the values we expect them to have.
210  	 *
211  	 * Because the value of MODULE_NAME_LEN can differ among architectures,
212  	 * we use the smallest/strictest upper bound possible (56, based on
213  	 * the current definition of MODULE_NAME_LEN) to prevent overflows.
214  	 */
215  	BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 512);
216  
217  	relas = (Elf_Rela *) relasec->sh_addr;
218  	/* For each rela in this klp relocation section */
219  	for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) {
220  		sym = (Elf_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info);
221  		if (sym->st_shndx != SHN_LIVEPATCH) {
222  			pr_err("symbol %s is not marked as a livepatch symbol\n",
223  			       strtab + sym->st_name);
224  			return -EINVAL;
225  		}
226  
227  		/* Format: .klp.sym.sym_objname.sym_name,sympos */
228  		cnt = sscanf(strtab + sym->st_name,
229  			     ".klp.sym.%55[^.].%511[^,],%lu",
230  			     sym_objname, sym_name, &sympos);
231  		if (cnt != 3) {
232  			pr_err("symbol %s has an incorrectly formatted name\n",
233  			       strtab + sym->st_name);
234  			return -EINVAL;
235  		}
236  
237  		sym_vmlinux = !strcmp(sym_objname, "vmlinux");
238  
239  		/*
240  		 * Prevent module-specific KLP rela sections from referencing
241  		 * vmlinux symbols.  This helps prevent ordering issues with
242  		 * module special section initializations.  Presumably such
243  		 * symbols are exported and normal relas can be used instead.
244  		 */
245  		if (!sec_vmlinux && sym_vmlinux) {
246  			pr_err("invalid access to vmlinux symbol '%s' from module-specific livepatch relocation section\n",
247  			       sym_name);
248  			return -EINVAL;
249  		}
250  
251  		/* klp_find_object_symbol() treats a NULL objname as vmlinux */
252  		ret = klp_find_object_symbol(sym_vmlinux ? NULL : sym_objname,
253  					     sym_name, sympos, &addr);
254  		if (ret)
255  			return ret;
256  
257  		sym->st_value = addr;
258  	}
259  
260  	return 0;
261  }
262  
263  void __weak clear_relocate_add(Elf_Shdr *sechdrs,
264  		   const char *strtab,
265  		   unsigned int symindex,
266  		   unsigned int relsec,
267  		   struct module *me)
268  {
269  }
270  
271  /*
272   * At a high-level, there are two types of klp relocation sections: those which
273   * reference symbols which live in vmlinux; and those which reference symbols
274   * which live in other modules.  This function is called for both types:
275   *
276   * 1) When a klp module itself loads, the module code calls this function to
277   *    write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections).
278   *    These relocations are written to the klp module text to allow the patched
279   *    code/data to reference unexported vmlinux symbols.  They're written as
280   *    early as possible to ensure that other module init code (.e.g.,
281   *    jump_label_apply_nops) can access any unexported vmlinux symbols which
282   *    might be referenced by the klp module's special sections.
283   *
284   * 2) When a to-be-patched module loads -- or is already loaded when a
285   *    corresponding klp module loads -- klp code calls this function to write
286   *    module-specific klp relocations (.klp.rela.{module}.* sections).  These
287   *    are written to the klp module text to allow the patched code/data to
288   *    reference symbols which live in the to-be-patched module or one of its
289   *    module dependencies.  Exported symbols are supported, in addition to
290   *    unexported symbols, in order to enable late module patching, which allows
291   *    the to-be-patched module to be loaded and patched sometime *after* the
292   *    klp module is loaded.
293   */
294  static int klp_write_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
295  				    const char *shstrtab, const char *strtab,
296  				    unsigned int symndx, unsigned int secndx,
297  				    const char *objname, bool apply)
298  {
299  	int cnt, ret;
300  	char sec_objname[MODULE_NAME_LEN];
301  	Elf_Shdr *sec = sechdrs + secndx;
302  
303  	/*
304  	 * Format: .klp.rela.sec_objname.section_name
305  	 * See comment in klp_resolve_symbols() for an explanation
306  	 * of the selected field width value.
307  	 */
308  	cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]",
309  		     sec_objname);
310  	if (cnt != 1) {
311  		pr_err("section %s has an incorrectly formatted name\n",
312  		       shstrtab + sec->sh_name);
313  		return -EINVAL;
314  	}
315  
316  	if (strcmp(objname ? objname : "vmlinux", sec_objname))
317  		return 0;
318  
319  	if (apply) {
320  		ret = klp_resolve_symbols(sechdrs, strtab, symndx,
321  					  sec, sec_objname);
322  		if (ret)
323  			return ret;
324  
325  		return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
326  	}
327  
328  	clear_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
329  	return 0;
330  }
331  
332  int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
333  			     const char *shstrtab, const char *strtab,
334  			     unsigned int symndx, unsigned int secndx,
335  			     const char *objname)
336  {
337  	return klp_write_section_relocs(pmod, sechdrs, shstrtab, strtab, symndx,
338  					secndx, objname, true);
339  }
340  
341  /*
342   * Sysfs Interface
343   *
344   * /sys/kernel/livepatch
345   * /sys/kernel/livepatch/<patch>
346   * /sys/kernel/livepatch/<patch>/enabled
347   * /sys/kernel/livepatch/<patch>/transition
348   * /sys/kernel/livepatch/<patch>/force
349   * /sys/kernel/livepatch/<patch>/replace
350   * /sys/kernel/livepatch/<patch>/stack_order
351   * /sys/kernel/livepatch/<patch>/<object>
352   * /sys/kernel/livepatch/<patch>/<object>/patched
353   * /sys/kernel/livepatch/<patch>/<object>/<function,sympos>
354   */
355  static int __klp_disable_patch(struct klp_patch *patch);
356  
357  static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
358  			     const char *buf, size_t count)
359  {
360  	struct klp_patch *patch;
361  	int ret;
362  	bool enabled;
363  
364  	ret = kstrtobool(buf, &enabled);
365  	if (ret)
366  		return ret;
367  
368  	patch = container_of(kobj, struct klp_patch, kobj);
369  
370  	mutex_lock(&klp_mutex);
371  
372  	if (patch->enabled == enabled) {
373  		/* already in requested state */
374  		ret = -EINVAL;
375  		goto out;
376  	}
377  
378  	/*
379  	 * Allow to reverse a pending transition in both ways. It might be
380  	 * necessary to complete the transition without forcing and breaking
381  	 * the system integrity.
382  	 *
383  	 * Do not allow to re-enable a disabled patch.
384  	 */
385  	if (patch == klp_transition_patch)
386  		klp_reverse_transition();
387  	else if (!enabled)
388  		ret = __klp_disable_patch(patch);
389  	else
390  		ret = -EINVAL;
391  
392  out:
393  	mutex_unlock(&klp_mutex);
394  
395  	if (ret)
396  		return ret;
397  	return count;
398  }
399  
400  static ssize_t enabled_show(struct kobject *kobj,
401  			    struct kobj_attribute *attr, char *buf)
402  {
403  	struct klp_patch *patch;
404  
405  	patch = container_of(kobj, struct klp_patch, kobj);
406  	return sysfs_emit(buf, "%d\n", patch->enabled);
407  }
408  
409  static ssize_t transition_show(struct kobject *kobj,
410  			       struct kobj_attribute *attr, char *buf)
411  {
412  	struct klp_patch *patch;
413  
414  	patch = container_of(kobj, struct klp_patch, kobj);
415  	return sysfs_emit(buf, "%d\n", patch == klp_transition_patch);
416  }
417  
418  static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
419  			   const char *buf, size_t count)
420  {
421  	struct klp_patch *patch;
422  	int ret;
423  	bool val;
424  
425  	ret = kstrtobool(buf, &val);
426  	if (ret)
427  		return ret;
428  
429  	if (!val)
430  		return count;
431  
432  	mutex_lock(&klp_mutex);
433  
434  	patch = container_of(kobj, struct klp_patch, kobj);
435  	if (patch != klp_transition_patch) {
436  		mutex_unlock(&klp_mutex);
437  		return -EINVAL;
438  	}
439  
440  	klp_force_transition();
441  
442  	mutex_unlock(&klp_mutex);
443  
444  	return count;
445  }
446  
447  static ssize_t replace_show(struct kobject *kobj,
448  			    struct kobj_attribute *attr, char *buf)
449  {
450  	struct klp_patch *patch;
451  
452  	patch = container_of(kobj, struct klp_patch, kobj);
453  	return sysfs_emit(buf, "%d\n", patch->replace);
454  }
455  
456  static ssize_t stack_order_show(struct kobject *kobj,
457  				struct kobj_attribute *attr, char *buf)
458  {
459  	struct klp_patch *patch, *this_patch;
460  	int stack_order = 0;
461  
462  	this_patch = container_of(kobj, struct klp_patch, kobj);
463  
464  	mutex_lock(&klp_mutex);
465  
466  	klp_for_each_patch(patch) {
467  		stack_order++;
468  		if (patch == this_patch)
469  			break;
470  	}
471  
472  	mutex_unlock(&klp_mutex);
473  
474  	return sysfs_emit(buf, "%d\n", stack_order);
475  }
476  
477  static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled);
478  static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition);
479  static struct kobj_attribute force_kobj_attr = __ATTR_WO(force);
480  static struct kobj_attribute replace_kobj_attr = __ATTR_RO(replace);
481  static struct kobj_attribute stack_order_kobj_attr = __ATTR_RO(stack_order);
482  static struct attribute *klp_patch_attrs[] = {
483  	&enabled_kobj_attr.attr,
484  	&transition_kobj_attr.attr,
485  	&force_kobj_attr.attr,
486  	&replace_kobj_attr.attr,
487  	&stack_order_kobj_attr.attr,
488  	NULL
489  };
490  ATTRIBUTE_GROUPS(klp_patch);
491  
492  static ssize_t patched_show(struct kobject *kobj,
493  			    struct kobj_attribute *attr, char *buf)
494  {
495  	struct klp_object *obj;
496  
497  	obj = container_of(kobj, struct klp_object, kobj);
498  	return sysfs_emit(buf, "%d\n", obj->patched);
499  }
500  
501  static struct kobj_attribute patched_kobj_attr = __ATTR_RO(patched);
502  static struct attribute *klp_object_attrs[] = {
503  	&patched_kobj_attr.attr,
504  	NULL,
505  };
506  ATTRIBUTE_GROUPS(klp_object);
507  
508  static void klp_free_object_dynamic(struct klp_object *obj)
509  {
510  	kfree(obj->name);
511  	kfree(obj);
512  }
513  
514  static void klp_init_func_early(struct klp_object *obj,
515  				struct klp_func *func);
516  static void klp_init_object_early(struct klp_patch *patch,
517  				  struct klp_object *obj);
518  
519  static struct klp_object *klp_alloc_object_dynamic(const char *name,
520  						   struct klp_patch *patch)
521  {
522  	struct klp_object *obj;
523  
524  	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
525  	if (!obj)
526  		return NULL;
527  
528  	if (name) {
529  		obj->name = kstrdup(name, GFP_KERNEL);
530  		if (!obj->name) {
531  			kfree(obj);
532  			return NULL;
533  		}
534  	}
535  
536  	klp_init_object_early(patch, obj);
537  	obj->dynamic = true;
538  
539  	return obj;
540  }
541  
542  static void klp_free_func_nop(struct klp_func *func)
543  {
544  	kfree(func->old_name);
545  	kfree(func);
546  }
547  
548  static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func,
549  					   struct klp_object *obj)
550  {
551  	struct klp_func *func;
552  
553  	func = kzalloc(sizeof(*func), GFP_KERNEL);
554  	if (!func)
555  		return NULL;
556  
557  	if (old_func->old_name) {
558  		func->old_name = kstrdup(old_func->old_name, GFP_KERNEL);
559  		if (!func->old_name) {
560  			kfree(func);
561  			return NULL;
562  		}
563  	}
564  
565  	klp_init_func_early(obj, func);
566  	/*
567  	 * func->new_func is same as func->old_func. These addresses are
568  	 * set when the object is loaded, see klp_init_object_loaded().
569  	 */
570  	func->old_sympos = old_func->old_sympos;
571  	func->nop = true;
572  
573  	return func;
574  }
575  
576  static int klp_add_object_nops(struct klp_patch *patch,
577  			       struct klp_object *old_obj)
578  {
579  	struct klp_object *obj;
580  	struct klp_func *func, *old_func;
581  
582  	obj = klp_find_object(patch, old_obj);
583  
584  	if (!obj) {
585  		obj = klp_alloc_object_dynamic(old_obj->name, patch);
586  		if (!obj)
587  			return -ENOMEM;
588  	}
589  
590  	klp_for_each_func(old_obj, old_func) {
591  		func = klp_find_func(obj, old_func);
592  		if (func)
593  			continue;
594  
595  		func = klp_alloc_func_nop(old_func, obj);
596  		if (!func)
597  			return -ENOMEM;
598  	}
599  
600  	return 0;
601  }
602  
603  /*
604   * Add 'nop' functions which simply return to the caller to run
605   * the original function. The 'nop' functions are added to a
606   * patch to facilitate a 'replace' mode.
607   */
608  static int klp_add_nops(struct klp_patch *patch)
609  {
610  	struct klp_patch *old_patch;
611  	struct klp_object *old_obj;
612  
613  	klp_for_each_patch(old_patch) {
614  		klp_for_each_object(old_patch, old_obj) {
615  			int err;
616  
617  			err = klp_add_object_nops(patch, old_obj);
618  			if (err)
619  				return err;
620  		}
621  	}
622  
623  	return 0;
624  }
625  
626  static void klp_kobj_release_patch(struct kobject *kobj)
627  {
628  	struct klp_patch *patch;
629  
630  	patch = container_of(kobj, struct klp_patch, kobj);
631  	complete(&patch->finish);
632  }
633  
634  static const struct kobj_type klp_ktype_patch = {
635  	.release = klp_kobj_release_patch,
636  	.sysfs_ops = &kobj_sysfs_ops,
637  	.default_groups = klp_patch_groups,
638  };
639  
640  static void klp_kobj_release_object(struct kobject *kobj)
641  {
642  	struct klp_object *obj;
643  
644  	obj = container_of(kobj, struct klp_object, kobj);
645  
646  	if (obj->dynamic)
647  		klp_free_object_dynamic(obj);
648  }
649  
650  static const struct kobj_type klp_ktype_object = {
651  	.release = klp_kobj_release_object,
652  	.sysfs_ops = &kobj_sysfs_ops,
653  	.default_groups = klp_object_groups,
654  };
655  
656  static void klp_kobj_release_func(struct kobject *kobj)
657  {
658  	struct klp_func *func;
659  
660  	func = container_of(kobj, struct klp_func, kobj);
661  
662  	if (func->nop)
663  		klp_free_func_nop(func);
664  }
665  
666  static const struct kobj_type klp_ktype_func = {
667  	.release = klp_kobj_release_func,
668  	.sysfs_ops = &kobj_sysfs_ops,
669  };
670  
671  static void __klp_free_funcs(struct klp_object *obj, bool nops_only)
672  {
673  	struct klp_func *func, *tmp_func;
674  
675  	klp_for_each_func_safe(obj, func, tmp_func) {
676  		if (nops_only && !func->nop)
677  			continue;
678  
679  		list_del(&func->node);
680  		kobject_put(&func->kobj);
681  	}
682  }
683  
684  /* Clean up when a patched object is unloaded */
685  static void klp_free_object_loaded(struct klp_object *obj)
686  {
687  	struct klp_func *func;
688  
689  	obj->mod = NULL;
690  
691  	klp_for_each_func(obj, func) {
692  		func->old_func = NULL;
693  
694  		if (func->nop)
695  			func->new_func = NULL;
696  	}
697  }
698  
699  static void __klp_free_objects(struct klp_patch *patch, bool nops_only)
700  {
701  	struct klp_object *obj, *tmp_obj;
702  
703  	klp_for_each_object_safe(patch, obj, tmp_obj) {
704  		__klp_free_funcs(obj, nops_only);
705  
706  		if (nops_only && !obj->dynamic)
707  			continue;
708  
709  		list_del(&obj->node);
710  		kobject_put(&obj->kobj);
711  	}
712  }
713  
714  static void klp_free_objects(struct klp_patch *patch)
715  {
716  	__klp_free_objects(patch, false);
717  }
718  
719  static void klp_free_objects_dynamic(struct klp_patch *patch)
720  {
721  	__klp_free_objects(patch, true);
722  }
723  
724  /*
725   * This function implements the free operations that can be called safely
726   * under klp_mutex.
727   *
728   * The operation must be completed by calling klp_free_patch_finish()
729   * outside klp_mutex.
730   */
731  static void klp_free_patch_start(struct klp_patch *patch)
732  {
733  	if (!list_empty(&patch->list))
734  		list_del(&patch->list);
735  
736  	klp_free_objects(patch);
737  }
738  
739  /*
740   * This function implements the free part that must be called outside
741   * klp_mutex.
742   *
743   * It must be called after klp_free_patch_start(). And it has to be
744   * the last function accessing the livepatch structures when the patch
745   * gets disabled.
746   */
747  static void klp_free_patch_finish(struct klp_patch *patch)
748  {
749  	/*
750  	 * Avoid deadlock with enabled_store() sysfs callback by
751  	 * calling this outside klp_mutex. It is safe because
752  	 * this is called when the patch gets disabled and it
753  	 * cannot get enabled again.
754  	 */
755  	kobject_put(&patch->kobj);
756  	wait_for_completion(&patch->finish);
757  
758  	/* Put the module after the last access to struct klp_patch. */
759  	if (!patch->forced)
760  		module_put(patch->mod);
761  }
762  
763  /*
764   * The livepatch might be freed from sysfs interface created by the patch.
765   * This work allows to wait until the interface is destroyed in a separate
766   * context.
767   */
768  static void klp_free_patch_work_fn(struct work_struct *work)
769  {
770  	struct klp_patch *patch =
771  		container_of(work, struct klp_patch, free_work);
772  
773  	klp_free_patch_finish(patch);
774  }
775  
776  void klp_free_patch_async(struct klp_patch *patch)
777  {
778  	klp_free_patch_start(patch);
779  	schedule_work(&patch->free_work);
780  }
781  
782  void klp_free_replaced_patches_async(struct klp_patch *new_patch)
783  {
784  	struct klp_patch *old_patch, *tmp_patch;
785  
786  	klp_for_each_patch_safe(old_patch, tmp_patch) {
787  		if (old_patch == new_patch)
788  			return;
789  		klp_free_patch_async(old_patch);
790  	}
791  }
792  
793  static int klp_init_func(struct klp_object *obj, struct klp_func *func)
794  {
795  	if (!func->old_name)
796  		return -EINVAL;
797  
798  	/*
799  	 * NOPs get the address later. The patched module must be loaded,
800  	 * see klp_init_object_loaded().
801  	 */
802  	if (!func->new_func && !func->nop)
803  		return -EINVAL;
804  
805  	if (strlen(func->old_name) >= KSYM_NAME_LEN)
806  		return -EINVAL;
807  
808  	INIT_LIST_HEAD(&func->stack_node);
809  	func->patched = false;
810  	func->transition = false;
811  
812  	/* The format for the sysfs directory is <function,sympos> where sympos
813  	 * is the nth occurrence of this symbol in kallsyms for the patched
814  	 * object. If the user selects 0 for old_sympos, then 1 will be used
815  	 * since a unique symbol will be the first occurrence.
816  	 */
817  	return kobject_add(&func->kobj, &obj->kobj, "%s,%lu",
818  			   func->old_name,
819  			   func->old_sympos ? func->old_sympos : 1);
820  }
821  
822  static int klp_write_object_relocs(struct klp_patch *patch,
823  				   struct klp_object *obj,
824  				   bool apply)
825  {
826  	int i, ret;
827  	struct klp_modinfo *info = patch->mod->klp_info;
828  
829  	for (i = 1; i < info->hdr.e_shnum; i++) {
830  		Elf_Shdr *sec = info->sechdrs + i;
831  
832  		if (!(sec->sh_flags & SHF_RELA_LIVEPATCH))
833  			continue;
834  
835  		ret = klp_write_section_relocs(patch->mod, info->sechdrs,
836  					       info->secstrings,
837  					       patch->mod->core_kallsyms.strtab,
838  					       info->symndx, i, obj->name, apply);
839  		if (ret)
840  			return ret;
841  	}
842  
843  	return 0;
844  }
845  
846  static int klp_apply_object_relocs(struct klp_patch *patch,
847  				   struct klp_object *obj)
848  {
849  	return klp_write_object_relocs(patch, obj, true);
850  }
851  
852  static void klp_clear_object_relocs(struct klp_patch *patch,
853  				    struct klp_object *obj)
854  {
855  	klp_write_object_relocs(patch, obj, false);
856  }
857  
858  /* parts of the initialization that is done only when the object is loaded */
859  static int klp_init_object_loaded(struct klp_patch *patch,
860  				  struct klp_object *obj)
861  {
862  	struct klp_func *func;
863  	int ret;
864  
865  	if (klp_is_module(obj)) {
866  		/*
867  		 * Only write module-specific relocations here
868  		 * (.klp.rela.{module}.*).  vmlinux-specific relocations were
869  		 * written earlier during the initialization of the klp module
870  		 * itself.
871  		 */
872  		ret = klp_apply_object_relocs(patch, obj);
873  		if (ret)
874  			return ret;
875  	}
876  
877  	klp_for_each_func(obj, func) {
878  		ret = klp_find_object_symbol(obj->name, func->old_name,
879  					     func->old_sympos,
880  					     (unsigned long *)&func->old_func);
881  		if (ret)
882  			return ret;
883  
884  		ret = kallsyms_lookup_size_offset((unsigned long)func->old_func,
885  						  &func->old_size, NULL);
886  		if (!ret) {
887  			pr_err("kallsyms size lookup failed for '%s'\n",
888  			       func->old_name);
889  			return -ENOENT;
890  		}
891  
892  		if (func->nop)
893  			func->new_func = func->old_func;
894  
895  		ret = kallsyms_lookup_size_offset((unsigned long)func->new_func,
896  						  &func->new_size, NULL);
897  		if (!ret) {
898  			pr_err("kallsyms size lookup failed for '%s' replacement\n",
899  			       func->old_name);
900  			return -ENOENT;
901  		}
902  	}
903  
904  	return 0;
905  }
906  
907  static int klp_init_object(struct klp_patch *patch, struct klp_object *obj)
908  {
909  	struct klp_func *func;
910  	int ret;
911  	const char *name;
912  
913  	if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN)
914  		return -EINVAL;
915  
916  	obj->patched = false;
917  	obj->mod = NULL;
918  
919  	klp_find_object_module(obj);
920  
921  	name = klp_is_module(obj) ? obj->name : "vmlinux";
922  	ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name);
923  	if (ret)
924  		return ret;
925  
926  	klp_for_each_func(obj, func) {
927  		ret = klp_init_func(obj, func);
928  		if (ret)
929  			return ret;
930  	}
931  
932  	if (klp_is_object_loaded(obj))
933  		ret = klp_init_object_loaded(patch, obj);
934  
935  	return ret;
936  }
937  
938  static void klp_init_func_early(struct klp_object *obj,
939  				struct klp_func *func)
940  {
941  	kobject_init(&func->kobj, &klp_ktype_func);
942  	list_add_tail(&func->node, &obj->func_list);
943  }
944  
945  static void klp_init_object_early(struct klp_patch *patch,
946  				  struct klp_object *obj)
947  {
948  	INIT_LIST_HEAD(&obj->func_list);
949  	kobject_init(&obj->kobj, &klp_ktype_object);
950  	list_add_tail(&obj->node, &patch->obj_list);
951  }
952  
953  static void klp_init_patch_early(struct klp_patch *patch)
954  {
955  	struct klp_object *obj;
956  	struct klp_func *func;
957  
958  	INIT_LIST_HEAD(&patch->list);
959  	INIT_LIST_HEAD(&patch->obj_list);
960  	kobject_init(&patch->kobj, &klp_ktype_patch);
961  	patch->enabled = false;
962  	patch->forced = false;
963  	INIT_WORK(&patch->free_work, klp_free_patch_work_fn);
964  	init_completion(&patch->finish);
965  
966  	klp_for_each_object_static(patch, obj) {
967  		klp_init_object_early(patch, obj);
968  
969  		klp_for_each_func_static(obj, func) {
970  			klp_init_func_early(obj, func);
971  		}
972  	}
973  }
974  
975  static int klp_init_patch(struct klp_patch *patch)
976  {
977  	struct klp_object *obj;
978  	int ret;
979  
980  	ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name);
981  	if (ret)
982  		return ret;
983  
984  	if (patch->replace) {
985  		ret = klp_add_nops(patch);
986  		if (ret)
987  			return ret;
988  	}
989  
990  	klp_for_each_object(patch, obj) {
991  		ret = klp_init_object(patch, obj);
992  		if (ret)
993  			return ret;
994  	}
995  
996  	list_add_tail(&patch->list, &klp_patches);
997  
998  	return 0;
999  }
1000  
1001  static int __klp_disable_patch(struct klp_patch *patch)
1002  {
1003  	struct klp_object *obj;
1004  
1005  	if (WARN_ON(!patch->enabled))
1006  		return -EINVAL;
1007  
1008  	if (klp_transition_patch)
1009  		return -EBUSY;
1010  
1011  	klp_init_transition(patch, KLP_TRANSITION_UNPATCHED);
1012  
1013  	klp_for_each_object(patch, obj)
1014  		if (obj->patched)
1015  			klp_pre_unpatch_callback(obj);
1016  
1017  	/*
1018  	 * Enforce the order of the func->transition writes in
1019  	 * klp_init_transition() and the TIF_PATCH_PENDING writes in
1020  	 * klp_start_transition().  In the rare case where klp_ftrace_handler()
1021  	 * is called shortly after klp_update_patch_state() switches the task,
1022  	 * this ensures the handler sees that func->transition is set.
1023  	 */
1024  	smp_wmb();
1025  
1026  	klp_start_transition();
1027  	patch->enabled = false;
1028  	klp_try_complete_transition();
1029  
1030  	return 0;
1031  }
1032  
1033  static int __klp_enable_patch(struct klp_patch *patch)
1034  {
1035  	struct klp_object *obj;
1036  	int ret;
1037  
1038  	if (klp_transition_patch)
1039  		return -EBUSY;
1040  
1041  	if (WARN_ON(patch->enabled))
1042  		return -EINVAL;
1043  
1044  	pr_notice("enabling patch '%s'\n", patch->mod->name);
1045  
1046  	klp_init_transition(patch, KLP_TRANSITION_PATCHED);
1047  
1048  	/*
1049  	 * Enforce the order of the func->transition writes in
1050  	 * klp_init_transition() and the ops->func_stack writes in
1051  	 * klp_patch_object(), so that klp_ftrace_handler() will see the
1052  	 * func->transition updates before the handler is registered and the
1053  	 * new funcs become visible to the handler.
1054  	 */
1055  	smp_wmb();
1056  
1057  	klp_for_each_object(patch, obj) {
1058  		if (!klp_is_object_loaded(obj))
1059  			continue;
1060  
1061  		ret = klp_pre_patch_callback(obj);
1062  		if (ret) {
1063  			pr_warn("pre-patch callback failed for object '%s'\n",
1064  				klp_is_module(obj) ? obj->name : "vmlinux");
1065  			goto err;
1066  		}
1067  
1068  		ret = klp_patch_object(obj);
1069  		if (ret) {
1070  			pr_warn("failed to patch object '%s'\n",
1071  				klp_is_module(obj) ? obj->name : "vmlinux");
1072  			goto err;
1073  		}
1074  	}
1075  
1076  	klp_start_transition();
1077  	patch->enabled = true;
1078  	klp_try_complete_transition();
1079  
1080  	return 0;
1081  err:
1082  	pr_warn("failed to enable patch '%s'\n", patch->mod->name);
1083  
1084  	klp_cancel_transition();
1085  	return ret;
1086  }
1087  
1088  /**
1089   * klp_enable_patch() - enable the livepatch
1090   * @patch:	patch to be enabled
1091   *
1092   * Initializes the data structure associated with the patch, creates the sysfs
1093   * interface, performs the needed symbol lookups and code relocations,
1094   * registers the patched functions with ftrace.
1095   *
1096   * This function is supposed to be called from the livepatch module_init()
1097   * callback.
1098   *
1099   * Return: 0 on success, otherwise error
1100   */
1101  int klp_enable_patch(struct klp_patch *patch)
1102  {
1103  	int ret;
1104  	struct klp_object *obj;
1105  
1106  	if (!patch || !patch->mod || !patch->objs)
1107  		return -EINVAL;
1108  
1109  	klp_for_each_object_static(patch, obj) {
1110  		if (!obj->funcs)
1111  			return -EINVAL;
1112  	}
1113  
1114  
1115  	if (!is_livepatch_module(patch->mod)) {
1116  		pr_err("module %s is not marked as a livepatch module\n",
1117  		       patch->mod->name);
1118  		return -EINVAL;
1119  	}
1120  
1121  	if (!klp_initialized())
1122  		return -ENODEV;
1123  
1124  	if (!klp_have_reliable_stack()) {
1125  		pr_warn("This architecture doesn't have support for the livepatch consistency model.\n");
1126  		pr_warn("The livepatch transition may never complete.\n");
1127  	}
1128  
1129  	mutex_lock(&klp_mutex);
1130  
1131  	if (!klp_is_patch_compatible(patch)) {
1132  		pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n",
1133  			patch->mod->name);
1134  		mutex_unlock(&klp_mutex);
1135  		return -EINVAL;
1136  	}
1137  
1138  	if (!try_module_get(patch->mod)) {
1139  		mutex_unlock(&klp_mutex);
1140  		return -ENODEV;
1141  	}
1142  
1143  	klp_init_patch_early(patch);
1144  
1145  	ret = klp_init_patch(patch);
1146  	if (ret)
1147  		goto err;
1148  
1149  	ret = __klp_enable_patch(patch);
1150  	if (ret)
1151  		goto err;
1152  
1153  	mutex_unlock(&klp_mutex);
1154  
1155  	return 0;
1156  
1157  err:
1158  	klp_free_patch_start(patch);
1159  
1160  	mutex_unlock(&klp_mutex);
1161  
1162  	klp_free_patch_finish(patch);
1163  
1164  	return ret;
1165  }
1166  EXPORT_SYMBOL_GPL(klp_enable_patch);
1167  
1168  /*
1169   * This function unpatches objects from the replaced livepatches.
1170   *
1171   * We could be pretty aggressive here. It is called in the situation where
1172   * these structures are no longer accessed from the ftrace handler.
1173   * All functions are redirected by the klp_transition_patch. They
1174   * use either a new code or they are in the original code because
1175   * of the special nop function patches.
1176   *
1177   * The only exception is when the transition was forced. In this case,
1178   * klp_ftrace_handler() might still see the replaced patch on the stack.
1179   * Fortunately, it is carefully designed to work with removed functions
1180   * thanks to RCU. We only have to keep the patches on the system. Also
1181   * this is handled transparently by patch->module_put.
1182   */
1183  void klp_unpatch_replaced_patches(struct klp_patch *new_patch)
1184  {
1185  	struct klp_patch *old_patch;
1186  
1187  	klp_for_each_patch(old_patch) {
1188  		if (old_patch == new_patch)
1189  			return;
1190  
1191  		old_patch->enabled = false;
1192  		klp_unpatch_objects(old_patch);
1193  	}
1194  }
1195  
1196  /*
1197   * This function removes the dynamically allocated 'nop' functions.
1198   *
1199   * We could be pretty aggressive. NOPs do not change the existing
1200   * behavior except for adding unnecessary delay by the ftrace handler.
1201   *
1202   * It is safe even when the transition was forced. The ftrace handler
1203   * will see a valid ops->func_stack entry thanks to RCU.
1204   *
1205   * We could even free the NOPs structures. They must be the last entry
1206   * in ops->func_stack. Therefore unregister_ftrace_function() is called.
1207   * It does the same as klp_synchronize_transition() to make sure that
1208   * nobody is inside the ftrace handler once the operation finishes.
1209   *
1210   * IMPORTANT: It must be called right after removing the replaced patches!
1211   */
1212  void klp_discard_nops(struct klp_patch *new_patch)
1213  {
1214  	klp_unpatch_objects_dynamic(klp_transition_patch);
1215  	klp_free_objects_dynamic(klp_transition_patch);
1216  }
1217  
1218  /*
1219   * Remove parts of patches that touch a given kernel module. The list of
1220   * patches processed might be limited. When limit is NULL, all patches
1221   * will be handled.
1222   */
1223  static void klp_cleanup_module_patches_limited(struct module *mod,
1224  					       struct klp_patch *limit)
1225  {
1226  	struct klp_patch *patch;
1227  	struct klp_object *obj;
1228  
1229  	klp_for_each_patch(patch) {
1230  		if (patch == limit)
1231  			break;
1232  
1233  		klp_for_each_object(patch, obj) {
1234  			if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1235  				continue;
1236  
1237  			if (patch != klp_transition_patch)
1238  				klp_pre_unpatch_callback(obj);
1239  
1240  			pr_notice("reverting patch '%s' on unloading module '%s'\n",
1241  				  patch->mod->name, obj->mod->name);
1242  			klp_unpatch_object(obj);
1243  
1244  			klp_post_unpatch_callback(obj);
1245  			klp_clear_object_relocs(patch, obj);
1246  			klp_free_object_loaded(obj);
1247  			break;
1248  		}
1249  	}
1250  }
1251  
1252  int klp_module_coming(struct module *mod)
1253  {
1254  	int ret;
1255  	struct klp_patch *patch;
1256  	struct klp_object *obj;
1257  
1258  	if (WARN_ON(mod->state != MODULE_STATE_COMING))
1259  		return -EINVAL;
1260  
1261  	if (!strcmp(mod->name, "vmlinux")) {
1262  		pr_err("vmlinux.ko: invalid module name\n");
1263  		return -EINVAL;
1264  	}
1265  
1266  	mutex_lock(&klp_mutex);
1267  	/*
1268  	 * Each module has to know that klp_module_coming()
1269  	 * has been called. We never know what module will
1270  	 * get patched by a new patch.
1271  	 */
1272  	mod->klp_alive = true;
1273  
1274  	klp_for_each_patch(patch) {
1275  		klp_for_each_object(patch, obj) {
1276  			if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1277  				continue;
1278  
1279  			obj->mod = mod;
1280  
1281  			ret = klp_init_object_loaded(patch, obj);
1282  			if (ret) {
1283  				pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n",
1284  					patch->mod->name, obj->mod->name, ret);
1285  				goto err;
1286  			}
1287  
1288  			pr_notice("applying patch '%s' to loading module '%s'\n",
1289  				  patch->mod->name, obj->mod->name);
1290  
1291  			ret = klp_pre_patch_callback(obj);
1292  			if (ret) {
1293  				pr_warn("pre-patch callback failed for object '%s'\n",
1294  					obj->name);
1295  				goto err;
1296  			}
1297  
1298  			ret = klp_patch_object(obj);
1299  			if (ret) {
1300  				pr_warn("failed to apply patch '%s' to module '%s' (%d)\n",
1301  					patch->mod->name, obj->mod->name, ret);
1302  
1303  				klp_post_unpatch_callback(obj);
1304  				goto err;
1305  			}
1306  
1307  			if (patch != klp_transition_patch)
1308  				klp_post_patch_callback(obj);
1309  
1310  			break;
1311  		}
1312  	}
1313  
1314  	mutex_unlock(&klp_mutex);
1315  
1316  	return 0;
1317  
1318  err:
1319  	/*
1320  	 * If a patch is unsuccessfully applied, return
1321  	 * error to the module loader.
1322  	 */
1323  	pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n",
1324  		patch->mod->name, obj->mod->name, obj->mod->name);
1325  	mod->klp_alive = false;
1326  	obj->mod = NULL;
1327  	klp_cleanup_module_patches_limited(mod, patch);
1328  	mutex_unlock(&klp_mutex);
1329  
1330  	return ret;
1331  }
1332  
1333  void klp_module_going(struct module *mod)
1334  {
1335  	if (WARN_ON(mod->state != MODULE_STATE_GOING &&
1336  		    mod->state != MODULE_STATE_COMING))
1337  		return;
1338  
1339  	mutex_lock(&klp_mutex);
1340  	/*
1341  	 * Each module has to know that klp_module_going()
1342  	 * has been called. We never know what module will
1343  	 * get patched by a new patch.
1344  	 */
1345  	mod->klp_alive = false;
1346  
1347  	klp_cleanup_module_patches_limited(mod, NULL);
1348  
1349  	mutex_unlock(&klp_mutex);
1350  }
1351  
1352  static int __init klp_init(void)
1353  {
1354  	klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj);
1355  	if (!klp_root_kobj)
1356  		return -ENOMEM;
1357  
1358  	return 0;
1359  }
1360  
1361  module_init(klp_init);
1362