1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7 * Numa awareness, Christoph Lameter, SGI, June 2005
8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9 */
10
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/memcontrol.h>
35 #include <linux/llist.h>
36 #include <linux/uio.h>
37 #include <linux/bitops.h>
38 #include <linux/rbtree_augmented.h>
39 #include <linux/overflow.h>
40 #include <linux/pgtable.h>
41 #include <linux/hugetlb.h>
42 #include <linux/sched/mm.h>
43 #include <asm/tlbflush.h>
44 #include <asm/shmparam.h>
45 #include <linux/page_owner.h>
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/vmalloc.h>
49
50 #include "internal.h"
51 #include "pgalloc-track.h"
52
53 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
54 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
55
set_nohugeiomap(char * str)56 static int __init set_nohugeiomap(char *str)
57 {
58 ioremap_max_page_shift = PAGE_SHIFT;
59 return 0;
60 }
61 early_param("nohugeiomap", set_nohugeiomap);
62 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
63 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
64 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
65
66 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
67 static bool __ro_after_init vmap_allow_huge = true;
68
set_nohugevmalloc(char * str)69 static int __init set_nohugevmalloc(char *str)
70 {
71 vmap_allow_huge = false;
72 return 0;
73 }
74 early_param("nohugevmalloc", set_nohugevmalloc);
75 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
76 static const bool vmap_allow_huge = false;
77 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
78
is_vmalloc_addr(const void * x)79 bool is_vmalloc_addr(const void *x)
80 {
81 unsigned long addr = (unsigned long)kasan_reset_tag(x);
82
83 return addr >= VMALLOC_START && addr < VMALLOC_END;
84 }
85 EXPORT_SYMBOL(is_vmalloc_addr);
86
87 struct vfree_deferred {
88 struct llist_head list;
89 struct work_struct wq;
90 };
91 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
92
93 /*** Page table manipulation functions ***/
vmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)94 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
95 phys_addr_t phys_addr, pgprot_t prot,
96 unsigned int max_page_shift, pgtbl_mod_mask *mask)
97 {
98 pte_t *pte;
99 u64 pfn;
100 struct page *page;
101 unsigned long size = PAGE_SIZE;
102
103 if (WARN_ON_ONCE(!PAGE_ALIGNED(end - addr)))
104 return -EINVAL;
105
106 pfn = phys_addr >> PAGE_SHIFT;
107 pte = pte_alloc_kernel_track(pmd, addr, mask);
108 if (!pte)
109 return -ENOMEM;
110
111 arch_enter_lazy_mmu_mode();
112
113 do {
114 if (unlikely(!pte_none(ptep_get(pte)))) {
115 if (pfn_valid(pfn)) {
116 page = pfn_to_page(pfn);
117 dump_page(page, "remapping already mapped page");
118 }
119 BUG();
120 }
121
122 #ifdef CONFIG_HUGETLB_PAGE
123 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
124 if (size != PAGE_SIZE) {
125 pte_t entry = pfn_pte(pfn, prot);
126
127 entry = arch_make_huge_pte(entry, ilog2(size), 0);
128 set_huge_pte_at(&init_mm, addr, pte, entry, size);
129 pfn += PFN_DOWN(size);
130 continue;
131 }
132 #endif
133 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
134 pfn++;
135 } while (pte += PFN_DOWN(size), addr += size, addr != end);
136
137 arch_leave_lazy_mmu_mode();
138 *mask |= PGTBL_PTE_MODIFIED;
139 return 0;
140 }
141
vmap_try_huge_pmd(pmd_t * pmd,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)142 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
143 phys_addr_t phys_addr, pgprot_t prot,
144 unsigned int max_page_shift)
145 {
146 if (max_page_shift < PMD_SHIFT)
147 return 0;
148
149 if (!arch_vmap_pmd_supported(prot))
150 return 0;
151
152 if ((end - addr) != PMD_SIZE)
153 return 0;
154
155 if (!IS_ALIGNED(addr, PMD_SIZE))
156 return 0;
157
158 if (!IS_ALIGNED(phys_addr, PMD_SIZE))
159 return 0;
160
161 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
162 return 0;
163
164 return pmd_set_huge(pmd, phys_addr, prot);
165 }
166
vmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)167 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
168 phys_addr_t phys_addr, pgprot_t prot,
169 unsigned int max_page_shift, pgtbl_mod_mask *mask)
170 {
171 pmd_t *pmd;
172 unsigned long next;
173 int err = 0;
174
175 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
176 if (!pmd)
177 return -ENOMEM;
178 do {
179 next = pmd_addr_end(addr, end);
180
181 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
182 max_page_shift)) {
183 *mask |= PGTBL_PMD_MODIFIED;
184 continue;
185 }
186
187 err = vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask);
188 if (err)
189 break;
190 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
191 return err;
192 }
193
vmap_try_huge_pud(pud_t * pud,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)194 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
195 phys_addr_t phys_addr, pgprot_t prot,
196 unsigned int max_page_shift)
197 {
198 if (max_page_shift < PUD_SHIFT)
199 return 0;
200
201 if (!arch_vmap_pud_supported(prot))
202 return 0;
203
204 if ((end - addr) != PUD_SIZE)
205 return 0;
206
207 if (!IS_ALIGNED(addr, PUD_SIZE))
208 return 0;
209
210 if (!IS_ALIGNED(phys_addr, PUD_SIZE))
211 return 0;
212
213 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
214 return 0;
215
216 return pud_set_huge(pud, phys_addr, prot);
217 }
218
vmap_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)219 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
220 phys_addr_t phys_addr, pgprot_t prot,
221 unsigned int max_page_shift, pgtbl_mod_mask *mask)
222 {
223 pud_t *pud;
224 unsigned long next;
225 int err = 0;
226
227 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
228 if (!pud)
229 return -ENOMEM;
230 do {
231 next = pud_addr_end(addr, end);
232
233 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
234 max_page_shift)) {
235 *mask |= PGTBL_PUD_MODIFIED;
236 continue;
237 }
238
239 err = vmap_pmd_range(pud, addr, next, phys_addr, prot, max_page_shift, mask);
240 if (err)
241 break;
242 } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
243 return err;
244 }
245
vmap_try_huge_p4d(p4d_t * p4d,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)246 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
247 phys_addr_t phys_addr, pgprot_t prot,
248 unsigned int max_page_shift)
249 {
250 if (max_page_shift < P4D_SHIFT)
251 return 0;
252
253 if (!arch_vmap_p4d_supported(prot))
254 return 0;
255
256 if ((end - addr) != P4D_SIZE)
257 return 0;
258
259 if (!IS_ALIGNED(addr, P4D_SIZE))
260 return 0;
261
262 if (!IS_ALIGNED(phys_addr, P4D_SIZE))
263 return 0;
264
265 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
266 return 0;
267
268 return p4d_set_huge(p4d, phys_addr, prot);
269 }
270
vmap_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)271 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
272 phys_addr_t phys_addr, pgprot_t prot,
273 unsigned int max_page_shift, pgtbl_mod_mask *mask)
274 {
275 p4d_t *p4d;
276 unsigned long next;
277 int err = 0;
278
279 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
280 if (!p4d)
281 return -ENOMEM;
282 do {
283 next = p4d_addr_end(addr, end);
284
285 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
286 max_page_shift)) {
287 *mask |= PGTBL_P4D_MODIFIED;
288 continue;
289 }
290
291 err = vmap_pud_range(p4d, addr, next, phys_addr, prot, max_page_shift, mask);
292 if (err)
293 break;
294 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
295 return err;
296 }
297
vmap_range_noflush(unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)298 static int vmap_range_noflush(unsigned long addr, unsigned long end,
299 phys_addr_t phys_addr, pgprot_t prot,
300 unsigned int max_page_shift)
301 {
302 pgd_t *pgd;
303 unsigned long start;
304 unsigned long next;
305 int err;
306 pgtbl_mod_mask mask = 0;
307
308 might_sleep();
309 BUG_ON(addr >= end);
310
311 start = addr;
312 pgd = pgd_offset_k(addr);
313 do {
314 next = pgd_addr_end(addr, end);
315 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
316 max_page_shift, &mask);
317 if (err)
318 break;
319 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
320
321 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
322 arch_sync_kernel_mappings(start, end);
323
324 return err;
325 }
326
vmap_page_range(unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot)327 int vmap_page_range(unsigned long addr, unsigned long end,
328 phys_addr_t phys_addr, pgprot_t prot)
329 {
330 int err;
331
332 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
333 ioremap_max_page_shift);
334 flush_cache_vmap(addr, end);
335 if (!err)
336 err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
337 ioremap_max_page_shift);
338 return err;
339 }
340
ioremap_page_range(unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot)341 int ioremap_page_range(unsigned long addr, unsigned long end,
342 phys_addr_t phys_addr, pgprot_t prot)
343 {
344 struct vm_struct *area;
345
346 area = find_vm_area((void *)addr);
347 if (!area || !(area->flags & VM_IOREMAP)) {
348 WARN_ONCE(1, "vm_area at addr %lx is not marked as VM_IOREMAP\n", addr);
349 return -EINVAL;
350 }
351 if (addr != (unsigned long)area->addr ||
352 (void *)end != area->addr + get_vm_area_size(area)) {
353 WARN_ONCE(1, "ioremap request [%lx,%lx) doesn't match vm_area [%lx, %lx)\n",
354 addr, end, (long)area->addr,
355 (long)area->addr + get_vm_area_size(area));
356 return -ERANGE;
357 }
358 return vmap_page_range(addr, end, phys_addr, prot);
359 }
360
vunmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)361 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
362 pgtbl_mod_mask *mask)
363 {
364 pte_t *pte;
365 pte_t ptent;
366 unsigned long size = PAGE_SIZE;
367
368 pte = pte_offset_kernel(pmd, addr);
369 arch_enter_lazy_mmu_mode();
370
371 do {
372 #ifdef CONFIG_HUGETLB_PAGE
373 size = arch_vmap_pte_range_unmap_size(addr, pte);
374 if (size != PAGE_SIZE) {
375 if (WARN_ON(!IS_ALIGNED(addr, size))) {
376 addr = ALIGN_DOWN(addr, size);
377 pte = PTR_ALIGN_DOWN(pte, sizeof(*pte) * (size >> PAGE_SHIFT));
378 }
379 ptent = huge_ptep_get_and_clear(&init_mm, addr, pte, size);
380 if (WARN_ON(end - addr < size))
381 size = end - addr;
382 } else
383 #endif
384 ptent = ptep_get_and_clear(&init_mm, addr, pte);
385 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
386 } while (pte += (size >> PAGE_SHIFT), addr += size, addr != end);
387
388 arch_leave_lazy_mmu_mode();
389 *mask |= PGTBL_PTE_MODIFIED;
390 }
391
vunmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)392 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
393 pgtbl_mod_mask *mask)
394 {
395 pmd_t *pmd;
396 unsigned long next;
397 int cleared;
398
399 pmd = pmd_offset(pud, addr);
400 do {
401 next = pmd_addr_end(addr, end);
402
403 cleared = pmd_clear_huge(pmd);
404 if (cleared || pmd_bad(*pmd))
405 *mask |= PGTBL_PMD_MODIFIED;
406
407 if (cleared) {
408 WARN_ON(next - addr < PMD_SIZE);
409 continue;
410 }
411 if (pmd_none_or_clear_bad(pmd))
412 continue;
413 vunmap_pte_range(pmd, addr, next, mask);
414
415 cond_resched();
416 } while (pmd++, addr = next, addr != end);
417 }
418
vunmap_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)419 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
420 pgtbl_mod_mask *mask)
421 {
422 pud_t *pud;
423 unsigned long next;
424 int cleared;
425
426 pud = pud_offset(p4d, addr);
427 do {
428 next = pud_addr_end(addr, end);
429
430 cleared = pud_clear_huge(pud);
431 if (cleared || pud_bad(*pud))
432 *mask |= PGTBL_PUD_MODIFIED;
433
434 if (cleared) {
435 WARN_ON(next - addr < PUD_SIZE);
436 continue;
437 }
438 if (pud_none_or_clear_bad(pud))
439 continue;
440 vunmap_pmd_range(pud, addr, next, mask);
441 } while (pud++, addr = next, addr != end);
442 }
443
vunmap_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)444 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
445 pgtbl_mod_mask *mask)
446 {
447 p4d_t *p4d;
448 unsigned long next;
449
450 p4d = p4d_offset(pgd, addr);
451 do {
452 next = p4d_addr_end(addr, end);
453
454 p4d_clear_huge(p4d);
455 if (p4d_bad(*p4d))
456 *mask |= PGTBL_P4D_MODIFIED;
457
458 if (p4d_none_or_clear_bad(p4d))
459 continue;
460 vunmap_pud_range(p4d, addr, next, mask);
461 } while (p4d++, addr = next, addr != end);
462 }
463
464 /*
465 * vunmap_range_noflush is similar to vunmap_range, but does not
466 * flush caches or TLBs.
467 *
468 * The caller is responsible for calling flush_cache_vmap() before calling
469 * this function, and flush_tlb_kernel_range after it has returned
470 * successfully (and before the addresses are expected to cause a page fault
471 * or be re-mapped for something else, if TLB flushes are being delayed or
472 * coalesced).
473 *
474 * This is an internal function only. Do not use outside mm/.
475 */
__vunmap_range_noflush(unsigned long start,unsigned long end)476 void __vunmap_range_noflush(unsigned long start, unsigned long end)
477 {
478 unsigned long next;
479 pgd_t *pgd;
480 unsigned long addr = start;
481 pgtbl_mod_mask mask = 0;
482
483 BUG_ON(addr >= end);
484 pgd = pgd_offset_k(addr);
485 do {
486 next = pgd_addr_end(addr, end);
487 if (pgd_bad(*pgd))
488 mask |= PGTBL_PGD_MODIFIED;
489 if (pgd_none_or_clear_bad(pgd))
490 continue;
491 vunmap_p4d_range(pgd, addr, next, &mask);
492 } while (pgd++, addr = next, addr != end);
493
494 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
495 arch_sync_kernel_mappings(start, end);
496 }
497
vunmap_range_noflush(unsigned long start,unsigned long end)498 void vunmap_range_noflush(unsigned long start, unsigned long end)
499 {
500 kmsan_vunmap_range_noflush(start, end);
501 __vunmap_range_noflush(start, end);
502 }
503
504 /**
505 * vunmap_range - unmap kernel virtual addresses
506 * @addr: start of the VM area to unmap
507 * @end: end of the VM area to unmap (non-inclusive)
508 *
509 * Clears any present PTEs in the virtual address range, flushes TLBs and
510 * caches. Any subsequent access to the address before it has been re-mapped
511 * is a kernel bug.
512 */
vunmap_range(unsigned long addr,unsigned long end)513 void vunmap_range(unsigned long addr, unsigned long end)
514 {
515 flush_cache_vunmap(addr, end);
516 vunmap_range_noflush(addr, end);
517 flush_tlb_kernel_range(addr, end);
518 }
519
vmap_pages_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)520 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
521 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
522 pgtbl_mod_mask *mask)
523 {
524 int err = 0;
525 pte_t *pte;
526
527 /*
528 * nr is a running index into the array which helps higher level
529 * callers keep track of where we're up to.
530 */
531
532 pte = pte_alloc_kernel_track(pmd, addr, mask);
533 if (!pte)
534 return -ENOMEM;
535
536 arch_enter_lazy_mmu_mode();
537
538 do {
539 struct page *page = pages[*nr];
540
541 if (WARN_ON(!pte_none(ptep_get(pte)))) {
542 err = -EBUSY;
543 break;
544 }
545 if (WARN_ON(!page)) {
546 err = -ENOMEM;
547 break;
548 }
549 if (WARN_ON(!pfn_valid(page_to_pfn(page)))) {
550 err = -EINVAL;
551 break;
552 }
553
554 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
555 (*nr)++;
556 } while (pte++, addr += PAGE_SIZE, addr != end);
557
558 arch_leave_lazy_mmu_mode();
559 *mask |= PGTBL_PTE_MODIFIED;
560
561 return err;
562 }
563
vmap_pages_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)564 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
565 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
566 pgtbl_mod_mask *mask)
567 {
568 pmd_t *pmd;
569 unsigned long next;
570
571 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
572 if (!pmd)
573 return -ENOMEM;
574 do {
575 next = pmd_addr_end(addr, end);
576 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
577 return -ENOMEM;
578 } while (pmd++, addr = next, addr != end);
579 return 0;
580 }
581
vmap_pages_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)582 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
583 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
584 pgtbl_mod_mask *mask)
585 {
586 pud_t *pud;
587 unsigned long next;
588
589 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
590 if (!pud)
591 return -ENOMEM;
592 do {
593 next = pud_addr_end(addr, end);
594 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
595 return -ENOMEM;
596 } while (pud++, addr = next, addr != end);
597 return 0;
598 }
599
vmap_pages_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)600 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
601 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
602 pgtbl_mod_mask *mask)
603 {
604 p4d_t *p4d;
605 unsigned long next;
606
607 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
608 if (!p4d)
609 return -ENOMEM;
610 do {
611 next = p4d_addr_end(addr, end);
612 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
613 return -ENOMEM;
614 } while (p4d++, addr = next, addr != end);
615 return 0;
616 }
617
vmap_small_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages)618 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
619 pgprot_t prot, struct page **pages)
620 {
621 unsigned long start = addr;
622 pgd_t *pgd;
623 unsigned long next;
624 int err = 0;
625 int nr = 0;
626 pgtbl_mod_mask mask = 0;
627
628 BUG_ON(addr >= end);
629 pgd = pgd_offset_k(addr);
630 do {
631 next = pgd_addr_end(addr, end);
632 if (pgd_bad(*pgd))
633 mask |= PGTBL_PGD_MODIFIED;
634 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
635 if (err)
636 break;
637 } while (pgd++, addr = next, addr != end);
638
639 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
640 arch_sync_kernel_mappings(start, end);
641
642 return err;
643 }
644
645 /*
646 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
647 * flush caches.
648 *
649 * The caller is responsible for calling flush_cache_vmap() after this
650 * function returns successfully and before the addresses are accessed.
651 *
652 * This is an internal function only. Do not use outside mm/.
653 */
__vmap_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)654 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
655 pgprot_t prot, struct page **pages, unsigned int page_shift)
656 {
657 unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
658
659 WARN_ON(page_shift < PAGE_SHIFT);
660
661 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
662 page_shift == PAGE_SHIFT)
663 return vmap_small_pages_range_noflush(addr, end, prot, pages);
664
665 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
666 int err;
667
668 err = vmap_range_noflush(addr, addr + (1UL << page_shift),
669 page_to_phys(pages[i]), prot,
670 page_shift);
671 if (err)
672 return err;
673
674 addr += 1UL << page_shift;
675 }
676
677 return 0;
678 }
679
vmap_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift,gfp_t gfp_mask)680 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
681 pgprot_t prot, struct page **pages, unsigned int page_shift,
682 gfp_t gfp_mask)
683 {
684 int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
685 page_shift, gfp_mask);
686
687 if (ret)
688 return ret;
689 return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
690 }
691
__vmap_pages_range(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift,gfp_t gfp_mask)692 static int __vmap_pages_range(unsigned long addr, unsigned long end,
693 pgprot_t prot, struct page **pages, unsigned int page_shift,
694 gfp_t gfp_mask)
695 {
696 int err;
697
698 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift, gfp_mask);
699 flush_cache_vmap(addr, end);
700 return err;
701 }
702
703 /**
704 * vmap_pages_range - map pages to a kernel virtual address
705 * @addr: start of the VM area to map
706 * @end: end of the VM area to map (non-inclusive)
707 * @prot: page protection flags to use
708 * @pages: pages to map (always PAGE_SIZE pages)
709 * @page_shift: maximum shift that the pages may be mapped with, @pages must
710 * be aligned and contiguous up to at least this shift.
711 *
712 * RETURNS:
713 * 0 on success, -errno on failure.
714 */
vmap_pages_range(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)715 int vmap_pages_range(unsigned long addr, unsigned long end,
716 pgprot_t prot, struct page **pages, unsigned int page_shift)
717 {
718 return __vmap_pages_range(addr, end, prot, pages, page_shift, GFP_KERNEL);
719 }
720
check_sparse_vm_area(struct vm_struct * area,unsigned long start,unsigned long end)721 static int check_sparse_vm_area(struct vm_struct *area, unsigned long start,
722 unsigned long end)
723 {
724 might_sleep();
725 if (WARN_ON_ONCE(area->flags & VM_FLUSH_RESET_PERMS))
726 return -EINVAL;
727 if (WARN_ON_ONCE(area->flags & VM_NO_GUARD))
728 return -EINVAL;
729 if (WARN_ON_ONCE(!(area->flags & VM_SPARSE)))
730 return -EINVAL;
731 if ((end - start) >> PAGE_SHIFT > totalram_pages())
732 return -E2BIG;
733 if (start < (unsigned long)area->addr ||
734 (void *)end > area->addr + get_vm_area_size(area))
735 return -ERANGE;
736 return 0;
737 }
738
739 /**
740 * vm_area_map_pages - map pages inside given sparse vm_area
741 * @area: vm_area
742 * @start: start address inside vm_area
743 * @end: end address inside vm_area
744 * @pages: pages to map (always PAGE_SIZE pages)
745 */
vm_area_map_pages(struct vm_struct * area,unsigned long start,unsigned long end,struct page ** pages)746 int vm_area_map_pages(struct vm_struct *area, unsigned long start,
747 unsigned long end, struct page **pages)
748 {
749 int err;
750
751 err = check_sparse_vm_area(area, start, end);
752 if (err)
753 return err;
754
755 return vmap_pages_range(start, end, PAGE_KERNEL, pages, PAGE_SHIFT);
756 }
757
758 /**
759 * vm_area_unmap_pages - unmap pages inside given sparse vm_area
760 * @area: vm_area
761 * @start: start address inside vm_area
762 * @end: end address inside vm_area
763 */
vm_area_unmap_pages(struct vm_struct * area,unsigned long start,unsigned long end)764 void vm_area_unmap_pages(struct vm_struct *area, unsigned long start,
765 unsigned long end)
766 {
767 if (check_sparse_vm_area(area, start, end))
768 return;
769
770 vunmap_range(start, end);
771 }
772
is_vmalloc_or_module_addr(const void * x)773 int is_vmalloc_or_module_addr(const void *x)
774 {
775 /*
776 * ARM, x86-64 and sparc64 put modules in a special place,
777 * and fall back on vmalloc() if that fails. Others
778 * just put it in the vmalloc space.
779 */
780 #if defined(CONFIG_EXECMEM) && defined(MODULES_VADDR)
781 unsigned long addr = (unsigned long)kasan_reset_tag(x);
782 if (addr >= MODULES_VADDR && addr < MODULES_END)
783 return 1;
784 #endif
785 return is_vmalloc_addr(x);
786 }
787 EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
788
789 /*
790 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
791 * return the tail page that corresponds to the base page address, which
792 * matches small vmap mappings.
793 */
vmalloc_to_page(const void * vmalloc_addr)794 struct page *vmalloc_to_page(const void *vmalloc_addr)
795 {
796 unsigned long addr = (unsigned long) vmalloc_addr;
797 struct page *page = NULL;
798 pgd_t *pgd = pgd_offset_k(addr);
799 p4d_t *p4d;
800 pud_t *pud;
801 pmd_t *pmd;
802 pte_t *ptep, pte;
803
804 /*
805 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
806 * architectures that do not vmalloc module space
807 */
808 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
809
810 if (pgd_none(*pgd))
811 return NULL;
812 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
813 return NULL; /* XXX: no allowance for huge pgd */
814 if (WARN_ON_ONCE(pgd_bad(*pgd)))
815 return NULL;
816
817 p4d = p4d_offset(pgd, addr);
818 if (p4d_none(*p4d))
819 return NULL;
820 if (p4d_leaf(*p4d))
821 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
822 if (WARN_ON_ONCE(p4d_bad(*p4d)))
823 return NULL;
824
825 pud = pud_offset(p4d, addr);
826 if (pud_none(*pud))
827 return NULL;
828 if (pud_leaf(*pud))
829 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
830 if (WARN_ON_ONCE(pud_bad(*pud)))
831 return NULL;
832
833 pmd = pmd_offset(pud, addr);
834 if (pmd_none(*pmd))
835 return NULL;
836 if (pmd_leaf(*pmd))
837 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
838 if (WARN_ON_ONCE(pmd_bad(*pmd)))
839 return NULL;
840
841 ptep = pte_offset_kernel(pmd, addr);
842 pte = ptep_get(ptep);
843 if (pte_present(pte))
844 page = pte_page(pte);
845
846 return page;
847 }
848 EXPORT_SYMBOL(vmalloc_to_page);
849
850 /*
851 * Map a vmalloc()-space virtual address to the physical page frame number.
852 */
vmalloc_to_pfn(const void * vmalloc_addr)853 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
854 {
855 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
856 }
857 EXPORT_SYMBOL(vmalloc_to_pfn);
858
859
860 /*** Global kva allocator ***/
861
862 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
863 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
864
865
866 static DEFINE_SPINLOCK(free_vmap_area_lock);
867 static bool vmap_initialized __read_mostly;
868
869 /*
870 * This kmem_cache is used for vmap_area objects. Instead of
871 * allocating from slab we reuse an object from this cache to
872 * make things faster. Especially in "no edge" splitting of
873 * free block.
874 */
875 static struct kmem_cache *vmap_area_cachep;
876
877 /*
878 * This linked list is used in pair with free_vmap_area_root.
879 * It gives O(1) access to prev/next to perform fast coalescing.
880 */
881 static LIST_HEAD(free_vmap_area_list);
882
883 /*
884 * This augment red-black tree represents the free vmap space.
885 * All vmap_area objects in this tree are sorted by va->va_start
886 * address. It is used for allocation and merging when a vmap
887 * object is released.
888 *
889 * Each vmap_area node contains a maximum available free block
890 * of its sub-tree, right or left. Therefore it is possible to
891 * find a lowest match of free area.
892 */
893 static struct rb_root free_vmap_area_root = RB_ROOT;
894
895 /*
896 * Preload a CPU with one object for "no edge" split case. The
897 * aim is to get rid of allocations from the atomic context, thus
898 * to use more permissive allocation masks.
899 */
900 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
901
902 /*
903 * This structure defines a single, solid model where a list and
904 * rb-tree are part of one entity protected by the lock. Nodes are
905 * sorted in ascending order, thus for O(1) access to left/right
906 * neighbors a list is used as well as for sequential traversal.
907 */
908 struct rb_list {
909 struct rb_root root;
910 struct list_head head;
911 spinlock_t lock;
912 };
913
914 /*
915 * A fast size storage contains VAs up to 1M size. A pool consists
916 * of linked between each other ready to go VAs of certain sizes.
917 * An index in the pool-array corresponds to number of pages + 1.
918 */
919 #define MAX_VA_SIZE_PAGES 256
920
921 struct vmap_pool {
922 struct list_head head;
923 unsigned long len;
924 };
925
926 /*
927 * An effective vmap-node logic. Users make use of nodes instead
928 * of a global heap. It allows to balance an access and mitigate
929 * contention.
930 */
931 static struct vmap_node {
932 /* Simple size segregated storage. */
933 struct vmap_pool pool[MAX_VA_SIZE_PAGES];
934 spinlock_t pool_lock;
935 bool skip_populate;
936
937 /* Bookkeeping data of this node. */
938 struct rb_list busy;
939 struct rb_list lazy;
940
941 /*
942 * Ready-to-free areas.
943 */
944 struct list_head purge_list;
945 struct work_struct purge_work;
946 unsigned long nr_purged;
947 } single;
948
949 /*
950 * Initial setup consists of one single node, i.e. a balancing
951 * is fully disabled. Later on, after vmap is initialized these
952 * parameters are updated based on a system capacity.
953 */
954 static struct vmap_node *vmap_nodes = &single;
955 static __read_mostly unsigned int nr_vmap_nodes = 1;
956 static __read_mostly unsigned int vmap_zone_size = 1;
957
958 /* A simple iterator over all vmap-nodes. */
959 #define for_each_vmap_node(vn) \
960 for ((vn) = &vmap_nodes[0]; \
961 (vn) < &vmap_nodes[nr_vmap_nodes]; (vn)++)
962
963 static inline unsigned int
addr_to_node_id(unsigned long addr)964 addr_to_node_id(unsigned long addr)
965 {
966 return (addr / vmap_zone_size) % nr_vmap_nodes;
967 }
968
969 static inline struct vmap_node *
addr_to_node(unsigned long addr)970 addr_to_node(unsigned long addr)
971 {
972 return &vmap_nodes[addr_to_node_id(addr)];
973 }
974
975 static inline struct vmap_node *
id_to_node(unsigned int id)976 id_to_node(unsigned int id)
977 {
978 return &vmap_nodes[id % nr_vmap_nodes];
979 }
980
981 static inline unsigned int
node_to_id(struct vmap_node * node)982 node_to_id(struct vmap_node *node)
983 {
984 /* Pointer arithmetic. */
985 unsigned int id = node - vmap_nodes;
986
987 if (likely(id < nr_vmap_nodes))
988 return id;
989
990 WARN_ONCE(1, "An address 0x%p is out-of-bounds.\n", node);
991 return 0;
992 }
993
994 /*
995 * We use the value 0 to represent "no node", that is why
996 * an encoded value will be the node-id incremented by 1.
997 * It is always greater then 0. A valid node_id which can
998 * be encoded is [0:nr_vmap_nodes - 1]. If a passed node_id
999 * is not valid 0 is returned.
1000 */
1001 static unsigned int
encode_vn_id(unsigned int node_id)1002 encode_vn_id(unsigned int node_id)
1003 {
1004 /* Can store U8_MAX [0:254] nodes. */
1005 if (node_id < nr_vmap_nodes)
1006 return (node_id + 1) << BITS_PER_BYTE;
1007
1008 /* Warn and no node encoded. */
1009 WARN_ONCE(1, "Encode wrong node id (%u)\n", node_id);
1010 return 0;
1011 }
1012
1013 /*
1014 * Returns an encoded node-id, the valid range is within
1015 * [0:nr_vmap_nodes-1] values. Otherwise nr_vmap_nodes is
1016 * returned if extracted data is wrong.
1017 */
1018 static unsigned int
decode_vn_id(unsigned int val)1019 decode_vn_id(unsigned int val)
1020 {
1021 unsigned int node_id = (val >> BITS_PER_BYTE) - 1;
1022
1023 /* Can store U8_MAX [0:254] nodes. */
1024 if (node_id < nr_vmap_nodes)
1025 return node_id;
1026
1027 /* If it was _not_ zero, warn. */
1028 WARN_ONCE(node_id != UINT_MAX,
1029 "Decode wrong node id (%d)\n", node_id);
1030
1031 return nr_vmap_nodes;
1032 }
1033
1034 static bool
is_vn_id_valid(unsigned int node_id)1035 is_vn_id_valid(unsigned int node_id)
1036 {
1037 if (node_id < nr_vmap_nodes)
1038 return true;
1039
1040 return false;
1041 }
1042
1043 static __always_inline unsigned long
va_size(struct vmap_area * va)1044 va_size(struct vmap_area *va)
1045 {
1046 return (va->va_end - va->va_start);
1047 }
1048
1049 static __always_inline unsigned long
get_subtree_max_size(struct rb_node * node)1050 get_subtree_max_size(struct rb_node *node)
1051 {
1052 struct vmap_area *va;
1053
1054 va = rb_entry_safe(node, struct vmap_area, rb_node);
1055 return va ? va->subtree_max_size : 0;
1056 }
1057
1058 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
1059 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
1060
1061 static void reclaim_and_purge_vmap_areas(void);
1062 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
1063 static void drain_vmap_area_work(struct work_struct *work);
1064 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
1065
1066 static __cacheline_aligned_in_smp atomic_long_t nr_vmalloc_pages;
1067 static __cacheline_aligned_in_smp atomic_long_t vmap_lazy_nr;
1068
vmalloc_nr_pages(void)1069 unsigned long vmalloc_nr_pages(void)
1070 {
1071 return atomic_long_read(&nr_vmalloc_pages);
1072 }
1073
__find_vmap_area(unsigned long addr,struct rb_root * root)1074 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
1075 {
1076 struct rb_node *n = root->rb_node;
1077
1078 addr = (unsigned long)kasan_reset_tag((void *)addr);
1079
1080 while (n) {
1081 struct vmap_area *va;
1082
1083 va = rb_entry(n, struct vmap_area, rb_node);
1084 if (addr < va->va_start)
1085 n = n->rb_left;
1086 else if (addr >= va->va_end)
1087 n = n->rb_right;
1088 else
1089 return va;
1090 }
1091
1092 return NULL;
1093 }
1094
1095 /* Look up the first VA which satisfies addr < va_end, NULL if none. */
1096 static struct vmap_area *
__find_vmap_area_exceed_addr(unsigned long addr,struct rb_root * root)1097 __find_vmap_area_exceed_addr(unsigned long addr, struct rb_root *root)
1098 {
1099 struct vmap_area *va = NULL;
1100 struct rb_node *n = root->rb_node;
1101
1102 addr = (unsigned long)kasan_reset_tag((void *)addr);
1103
1104 while (n) {
1105 struct vmap_area *tmp;
1106
1107 tmp = rb_entry(n, struct vmap_area, rb_node);
1108 if (tmp->va_end > addr) {
1109 va = tmp;
1110 if (tmp->va_start <= addr)
1111 break;
1112
1113 n = n->rb_left;
1114 } else
1115 n = n->rb_right;
1116 }
1117
1118 return va;
1119 }
1120
1121 /*
1122 * Returns a node where a first VA, that satisfies addr < va_end, resides.
1123 * If success, a node is locked. A user is responsible to unlock it when a
1124 * VA is no longer needed to be accessed.
1125 *
1126 * Returns NULL if nothing found.
1127 */
1128 static struct vmap_node *
find_vmap_area_exceed_addr_lock(unsigned long addr,struct vmap_area ** va)1129 find_vmap_area_exceed_addr_lock(unsigned long addr, struct vmap_area **va)
1130 {
1131 unsigned long va_start_lowest;
1132 struct vmap_node *vn;
1133
1134 repeat:
1135 va_start_lowest = 0;
1136
1137 for_each_vmap_node(vn) {
1138 spin_lock(&vn->busy.lock);
1139 *va = __find_vmap_area_exceed_addr(addr, &vn->busy.root);
1140
1141 if (*va)
1142 if (!va_start_lowest || (*va)->va_start < va_start_lowest)
1143 va_start_lowest = (*va)->va_start;
1144 spin_unlock(&vn->busy.lock);
1145 }
1146
1147 /*
1148 * Check if found VA exists, it might have gone away. In this case we
1149 * repeat the search because a VA has been removed concurrently and we
1150 * need to proceed to the next one, which is a rare case.
1151 */
1152 if (va_start_lowest) {
1153 vn = addr_to_node(va_start_lowest);
1154
1155 spin_lock(&vn->busy.lock);
1156 *va = __find_vmap_area(va_start_lowest, &vn->busy.root);
1157
1158 if (*va)
1159 return vn;
1160
1161 spin_unlock(&vn->busy.lock);
1162 goto repeat;
1163 }
1164
1165 return NULL;
1166 }
1167
1168 /*
1169 * This function returns back addresses of parent node
1170 * and its left or right link for further processing.
1171 *
1172 * Otherwise NULL is returned. In that case all further
1173 * steps regarding inserting of conflicting overlap range
1174 * have to be declined and actually considered as a bug.
1175 */
1176 static __always_inline struct rb_node **
find_va_links(struct vmap_area * va,struct rb_root * root,struct rb_node * from,struct rb_node ** parent)1177 find_va_links(struct vmap_area *va,
1178 struct rb_root *root, struct rb_node *from,
1179 struct rb_node **parent)
1180 {
1181 struct vmap_area *tmp_va;
1182 struct rb_node **link;
1183
1184 if (root) {
1185 link = &root->rb_node;
1186 if (unlikely(!*link)) {
1187 *parent = NULL;
1188 return link;
1189 }
1190 } else {
1191 link = &from;
1192 }
1193
1194 /*
1195 * Go to the bottom of the tree. When we hit the last point
1196 * we end up with parent rb_node and correct direction, i name
1197 * it link, where the new va->rb_node will be attached to.
1198 */
1199 do {
1200 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
1201
1202 /*
1203 * During the traversal we also do some sanity check.
1204 * Trigger the BUG() if there are sides(left/right)
1205 * or full overlaps.
1206 */
1207 if (va->va_end <= tmp_va->va_start)
1208 link = &(*link)->rb_left;
1209 else if (va->va_start >= tmp_va->va_end)
1210 link = &(*link)->rb_right;
1211 else {
1212 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
1213 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
1214
1215 return NULL;
1216 }
1217 } while (*link);
1218
1219 *parent = &tmp_va->rb_node;
1220 return link;
1221 }
1222
1223 static __always_inline struct list_head *
get_va_next_sibling(struct rb_node * parent,struct rb_node ** link)1224 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
1225 {
1226 struct list_head *list;
1227
1228 if (unlikely(!parent))
1229 /*
1230 * The red-black tree where we try to find VA neighbors
1231 * before merging or inserting is empty, i.e. it means
1232 * there is no free vmap space. Normally it does not
1233 * happen but we handle this case anyway.
1234 */
1235 return NULL;
1236
1237 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
1238 return (&parent->rb_right == link ? list->next : list);
1239 }
1240
1241 static __always_inline void
__link_va(struct vmap_area * va,struct rb_root * root,struct rb_node * parent,struct rb_node ** link,struct list_head * head,bool augment)1242 __link_va(struct vmap_area *va, struct rb_root *root,
1243 struct rb_node *parent, struct rb_node **link,
1244 struct list_head *head, bool augment)
1245 {
1246 /*
1247 * VA is still not in the list, but we can
1248 * identify its future previous list_head node.
1249 */
1250 if (likely(parent)) {
1251 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
1252 if (&parent->rb_right != link)
1253 head = head->prev;
1254 }
1255
1256 /* Insert to the rb-tree */
1257 rb_link_node(&va->rb_node, parent, link);
1258 if (augment) {
1259 /*
1260 * Some explanation here. Just perform simple insertion
1261 * to the tree. We do not set va->subtree_max_size to
1262 * its current size before calling rb_insert_augmented().
1263 * It is because we populate the tree from the bottom
1264 * to parent levels when the node _is_ in the tree.
1265 *
1266 * Therefore we set subtree_max_size to zero after insertion,
1267 * to let __augment_tree_propagate_from() puts everything to
1268 * the correct order later on.
1269 */
1270 rb_insert_augmented(&va->rb_node,
1271 root, &free_vmap_area_rb_augment_cb);
1272 va->subtree_max_size = 0;
1273 } else {
1274 rb_insert_color(&va->rb_node, root);
1275 }
1276
1277 /* Address-sort this list */
1278 list_add(&va->list, head);
1279 }
1280
1281 static __always_inline void
link_va(struct vmap_area * va,struct rb_root * root,struct rb_node * parent,struct rb_node ** link,struct list_head * head)1282 link_va(struct vmap_area *va, struct rb_root *root,
1283 struct rb_node *parent, struct rb_node **link,
1284 struct list_head *head)
1285 {
1286 __link_va(va, root, parent, link, head, false);
1287 }
1288
1289 static __always_inline void
link_va_augment(struct vmap_area * va,struct rb_root * root,struct rb_node * parent,struct rb_node ** link,struct list_head * head)1290 link_va_augment(struct vmap_area *va, struct rb_root *root,
1291 struct rb_node *parent, struct rb_node **link,
1292 struct list_head *head)
1293 {
1294 __link_va(va, root, parent, link, head, true);
1295 }
1296
1297 static __always_inline void
__unlink_va(struct vmap_area * va,struct rb_root * root,bool augment)1298 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
1299 {
1300 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
1301 return;
1302
1303 if (augment)
1304 rb_erase_augmented(&va->rb_node,
1305 root, &free_vmap_area_rb_augment_cb);
1306 else
1307 rb_erase(&va->rb_node, root);
1308
1309 list_del_init(&va->list);
1310 RB_CLEAR_NODE(&va->rb_node);
1311 }
1312
1313 static __always_inline void
unlink_va(struct vmap_area * va,struct rb_root * root)1314 unlink_va(struct vmap_area *va, struct rb_root *root)
1315 {
1316 __unlink_va(va, root, false);
1317 }
1318
1319 static __always_inline void
unlink_va_augment(struct vmap_area * va,struct rb_root * root)1320 unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1321 {
1322 __unlink_va(va, root, true);
1323 }
1324
1325 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1326 /*
1327 * Gets called when remove the node and rotate.
1328 */
1329 static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area * va)1330 compute_subtree_max_size(struct vmap_area *va)
1331 {
1332 return max3(va_size(va),
1333 get_subtree_max_size(va->rb_node.rb_left),
1334 get_subtree_max_size(va->rb_node.rb_right));
1335 }
1336
1337 static void
augment_tree_propagate_check(void)1338 augment_tree_propagate_check(void)
1339 {
1340 struct vmap_area *va;
1341 unsigned long computed_size;
1342
1343 list_for_each_entry(va, &free_vmap_area_list, list) {
1344 computed_size = compute_subtree_max_size(va);
1345 if (computed_size != va->subtree_max_size)
1346 pr_emerg("tree is corrupted: %lu, %lu\n",
1347 va_size(va), va->subtree_max_size);
1348 }
1349 }
1350 #endif
1351
1352 /*
1353 * This function populates subtree_max_size from bottom to upper
1354 * levels starting from VA point. The propagation must be done
1355 * when VA size is modified by changing its va_start/va_end. Or
1356 * in case of newly inserting of VA to the tree.
1357 *
1358 * It means that __augment_tree_propagate_from() must be called:
1359 * - After VA has been inserted to the tree(free path);
1360 * - After VA has been shrunk(allocation path);
1361 * - After VA has been increased(merging path).
1362 *
1363 * Please note that, it does not mean that upper parent nodes
1364 * and their subtree_max_size are recalculated all the time up
1365 * to the root node.
1366 *
1367 * 4--8
1368 * /\
1369 * / \
1370 * / \
1371 * 2--2 8--8
1372 *
1373 * For example if we modify the node 4, shrinking it to 2, then
1374 * no any modification is required. If we shrink the node 2 to 1
1375 * its subtree_max_size is updated only, and set to 1. If we shrink
1376 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1377 * node becomes 4--6.
1378 */
1379 static __always_inline void
augment_tree_propagate_from(struct vmap_area * va)1380 augment_tree_propagate_from(struct vmap_area *va)
1381 {
1382 /*
1383 * Populate the tree from bottom towards the root until
1384 * the calculated maximum available size of checked node
1385 * is equal to its current one.
1386 */
1387 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1388
1389 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1390 augment_tree_propagate_check();
1391 #endif
1392 }
1393
1394 static void
insert_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head)1395 insert_vmap_area(struct vmap_area *va,
1396 struct rb_root *root, struct list_head *head)
1397 {
1398 struct rb_node **link;
1399 struct rb_node *parent;
1400
1401 link = find_va_links(va, root, NULL, &parent);
1402 if (link)
1403 link_va(va, root, parent, link, head);
1404 }
1405
1406 static void
insert_vmap_area_augment(struct vmap_area * va,struct rb_node * from,struct rb_root * root,struct list_head * head)1407 insert_vmap_area_augment(struct vmap_area *va,
1408 struct rb_node *from, struct rb_root *root,
1409 struct list_head *head)
1410 {
1411 struct rb_node **link;
1412 struct rb_node *parent;
1413
1414 if (from)
1415 link = find_va_links(va, NULL, from, &parent);
1416 else
1417 link = find_va_links(va, root, NULL, &parent);
1418
1419 if (link) {
1420 link_va_augment(va, root, parent, link, head);
1421 augment_tree_propagate_from(va);
1422 }
1423 }
1424
1425 /*
1426 * Merge de-allocated chunk of VA memory with previous
1427 * and next free blocks. If coalesce is not done a new
1428 * free area is inserted. If VA has been merged, it is
1429 * freed.
1430 *
1431 * Please note, it can return NULL in case of overlap
1432 * ranges, followed by WARN() report. Despite it is a
1433 * buggy behaviour, a system can be alive and keep
1434 * ongoing.
1435 */
1436 static __always_inline struct vmap_area *
__merge_or_add_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head,bool augment)1437 __merge_or_add_vmap_area(struct vmap_area *va,
1438 struct rb_root *root, struct list_head *head, bool augment)
1439 {
1440 struct vmap_area *sibling;
1441 struct list_head *next;
1442 struct rb_node **link;
1443 struct rb_node *parent;
1444 bool merged = false;
1445
1446 /*
1447 * Find a place in the tree where VA potentially will be
1448 * inserted, unless it is merged with its sibling/siblings.
1449 */
1450 link = find_va_links(va, root, NULL, &parent);
1451 if (!link)
1452 return NULL;
1453
1454 /*
1455 * Get next node of VA to check if merging can be done.
1456 */
1457 next = get_va_next_sibling(parent, link);
1458 if (unlikely(next == NULL))
1459 goto insert;
1460
1461 /*
1462 * start end
1463 * | |
1464 * |<------VA------>|<-----Next----->|
1465 * | |
1466 * start end
1467 */
1468 if (next != head) {
1469 sibling = list_entry(next, struct vmap_area, list);
1470 if (sibling->va_start == va->va_end) {
1471 sibling->va_start = va->va_start;
1472
1473 /* Free vmap_area object. */
1474 kmem_cache_free(vmap_area_cachep, va);
1475
1476 /* Point to the new merged area. */
1477 va = sibling;
1478 merged = true;
1479 }
1480 }
1481
1482 /*
1483 * start end
1484 * | |
1485 * |<-----Prev----->|<------VA------>|
1486 * | |
1487 * start end
1488 */
1489 if (next->prev != head) {
1490 sibling = list_entry(next->prev, struct vmap_area, list);
1491 if (sibling->va_end == va->va_start) {
1492 /*
1493 * If both neighbors are coalesced, it is important
1494 * to unlink the "next" node first, followed by merging
1495 * with "previous" one. Otherwise the tree might not be
1496 * fully populated if a sibling's augmented value is
1497 * "normalized" because of rotation operations.
1498 */
1499 if (merged)
1500 __unlink_va(va, root, augment);
1501
1502 sibling->va_end = va->va_end;
1503
1504 /* Free vmap_area object. */
1505 kmem_cache_free(vmap_area_cachep, va);
1506
1507 /* Point to the new merged area. */
1508 va = sibling;
1509 merged = true;
1510 }
1511 }
1512
1513 insert:
1514 if (!merged)
1515 __link_va(va, root, parent, link, head, augment);
1516
1517 return va;
1518 }
1519
1520 static __always_inline struct vmap_area *
merge_or_add_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head)1521 merge_or_add_vmap_area(struct vmap_area *va,
1522 struct rb_root *root, struct list_head *head)
1523 {
1524 return __merge_or_add_vmap_area(va, root, head, false);
1525 }
1526
1527 static __always_inline struct vmap_area *
merge_or_add_vmap_area_augment(struct vmap_area * va,struct rb_root * root,struct list_head * head)1528 merge_or_add_vmap_area_augment(struct vmap_area *va,
1529 struct rb_root *root, struct list_head *head)
1530 {
1531 va = __merge_or_add_vmap_area(va, root, head, true);
1532 if (va)
1533 augment_tree_propagate_from(va);
1534
1535 return va;
1536 }
1537
1538 static __always_inline bool
is_within_this_va(struct vmap_area * va,unsigned long size,unsigned long align,unsigned long vstart)1539 is_within_this_va(struct vmap_area *va, unsigned long size,
1540 unsigned long align, unsigned long vstart)
1541 {
1542 unsigned long nva_start_addr;
1543
1544 if (va->va_start > vstart)
1545 nva_start_addr = ALIGN(va->va_start, align);
1546 else
1547 nva_start_addr = ALIGN(vstart, align);
1548
1549 /* Can be overflowed due to big size or alignment. */
1550 if (nva_start_addr + size < nva_start_addr ||
1551 nva_start_addr < vstart)
1552 return false;
1553
1554 return (nva_start_addr + size <= va->va_end);
1555 }
1556
1557 /*
1558 * Find the first free block(lowest start address) in the tree,
1559 * that will accomplish the request corresponding to passing
1560 * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1561 * a search length is adjusted to account for worst case alignment
1562 * overhead.
1563 */
1564 static __always_inline struct vmap_area *
find_vmap_lowest_match(struct rb_root * root,unsigned long size,unsigned long align,unsigned long vstart,bool adjust_search_size)1565 find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1566 unsigned long align, unsigned long vstart, bool adjust_search_size)
1567 {
1568 struct vmap_area *va;
1569 struct rb_node *node;
1570 unsigned long length;
1571
1572 /* Start from the root. */
1573 node = root->rb_node;
1574
1575 /* Adjust the search size for alignment overhead. */
1576 length = adjust_search_size ? size + align - 1 : size;
1577
1578 while (node) {
1579 va = rb_entry(node, struct vmap_area, rb_node);
1580
1581 if (get_subtree_max_size(node->rb_left) >= length &&
1582 vstart < va->va_start) {
1583 node = node->rb_left;
1584 } else {
1585 if (is_within_this_va(va, size, align, vstart))
1586 return va;
1587
1588 /*
1589 * Does not make sense to go deeper towards the right
1590 * sub-tree if it does not have a free block that is
1591 * equal or bigger to the requested search length.
1592 */
1593 if (get_subtree_max_size(node->rb_right) >= length) {
1594 node = node->rb_right;
1595 continue;
1596 }
1597
1598 /*
1599 * OK. We roll back and find the first right sub-tree,
1600 * that will satisfy the search criteria. It can happen
1601 * due to "vstart" restriction or an alignment overhead
1602 * that is bigger then PAGE_SIZE.
1603 */
1604 while ((node = rb_parent(node))) {
1605 va = rb_entry(node, struct vmap_area, rb_node);
1606 if (is_within_this_va(va, size, align, vstart))
1607 return va;
1608
1609 if (get_subtree_max_size(node->rb_right) >= length &&
1610 vstart <= va->va_start) {
1611 /*
1612 * Shift the vstart forward. Please note, we update it with
1613 * parent's start address adding "1" because we do not want
1614 * to enter same sub-tree after it has already been checked
1615 * and no suitable free block found there.
1616 */
1617 vstart = va->va_start + 1;
1618 node = node->rb_right;
1619 break;
1620 }
1621 }
1622 }
1623 }
1624
1625 return NULL;
1626 }
1627
1628 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1629 #include <linux/random.h>
1630
1631 static struct vmap_area *
find_vmap_lowest_linear_match(struct list_head * head,unsigned long size,unsigned long align,unsigned long vstart)1632 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1633 unsigned long align, unsigned long vstart)
1634 {
1635 struct vmap_area *va;
1636
1637 list_for_each_entry(va, head, list) {
1638 if (!is_within_this_va(va, size, align, vstart))
1639 continue;
1640
1641 return va;
1642 }
1643
1644 return NULL;
1645 }
1646
1647 static void
find_vmap_lowest_match_check(struct rb_root * root,struct list_head * head,unsigned long size,unsigned long align)1648 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1649 unsigned long size, unsigned long align)
1650 {
1651 struct vmap_area *va_1, *va_2;
1652 unsigned long vstart;
1653 unsigned int rnd;
1654
1655 get_random_bytes(&rnd, sizeof(rnd));
1656 vstart = VMALLOC_START + rnd;
1657
1658 va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1659 va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1660
1661 if (va_1 != va_2)
1662 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1663 va_1, va_2, vstart);
1664 }
1665 #endif
1666
1667 enum fit_type {
1668 NOTHING_FIT = 0,
1669 FL_FIT_TYPE = 1, /* full fit */
1670 LE_FIT_TYPE = 2, /* left edge fit */
1671 RE_FIT_TYPE = 3, /* right edge fit */
1672 NE_FIT_TYPE = 4 /* no edge fit */
1673 };
1674
1675 static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area * va,unsigned long nva_start_addr,unsigned long size)1676 classify_va_fit_type(struct vmap_area *va,
1677 unsigned long nva_start_addr, unsigned long size)
1678 {
1679 enum fit_type type;
1680
1681 /* Check if it is within VA. */
1682 if (nva_start_addr < va->va_start ||
1683 nva_start_addr + size > va->va_end)
1684 return NOTHING_FIT;
1685
1686 /* Now classify. */
1687 if (va->va_start == nva_start_addr) {
1688 if (va->va_end == nva_start_addr + size)
1689 type = FL_FIT_TYPE;
1690 else
1691 type = LE_FIT_TYPE;
1692 } else if (va->va_end == nva_start_addr + size) {
1693 type = RE_FIT_TYPE;
1694 } else {
1695 type = NE_FIT_TYPE;
1696 }
1697
1698 return type;
1699 }
1700
1701 static __always_inline int
va_clip(struct rb_root * root,struct list_head * head,struct vmap_area * va,unsigned long nva_start_addr,unsigned long size)1702 va_clip(struct rb_root *root, struct list_head *head,
1703 struct vmap_area *va, unsigned long nva_start_addr,
1704 unsigned long size)
1705 {
1706 struct vmap_area *lva = NULL;
1707 enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1708
1709 if (type == FL_FIT_TYPE) {
1710 /*
1711 * No need to split VA, it fully fits.
1712 *
1713 * | |
1714 * V NVA V
1715 * |---------------|
1716 */
1717 unlink_va_augment(va, root);
1718 kmem_cache_free(vmap_area_cachep, va);
1719 } else if (type == LE_FIT_TYPE) {
1720 /*
1721 * Split left edge of fit VA.
1722 *
1723 * | |
1724 * V NVA V R
1725 * |-------|-------|
1726 */
1727 va->va_start += size;
1728 } else if (type == RE_FIT_TYPE) {
1729 /*
1730 * Split right edge of fit VA.
1731 *
1732 * | |
1733 * L V NVA V
1734 * |-------|-------|
1735 */
1736 va->va_end = nva_start_addr;
1737 } else if (type == NE_FIT_TYPE) {
1738 /*
1739 * Split no edge of fit VA.
1740 *
1741 * | |
1742 * L V NVA V R
1743 * |---|-------|---|
1744 */
1745 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1746 if (unlikely(!lva)) {
1747 /*
1748 * For percpu allocator we do not do any pre-allocation
1749 * and leave it as it is. The reason is it most likely
1750 * never ends up with NE_FIT_TYPE splitting. In case of
1751 * percpu allocations offsets and sizes are aligned to
1752 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1753 * are its main fitting cases.
1754 *
1755 * There are a few exceptions though, as an example it is
1756 * a first allocation (early boot up) when we have "one"
1757 * big free space that has to be split.
1758 *
1759 * Also we can hit this path in case of regular "vmap"
1760 * allocations, if "this" current CPU was not preloaded.
1761 * See the comment in alloc_vmap_area() why. If so, then
1762 * GFP_NOWAIT is used instead to get an extra object for
1763 * split purpose. That is rare and most time does not
1764 * occur.
1765 *
1766 * What happens if an allocation gets failed. Basically,
1767 * an "overflow" path is triggered to purge lazily freed
1768 * areas to free some memory, then, the "retry" path is
1769 * triggered to repeat one more time. See more details
1770 * in alloc_vmap_area() function.
1771 */
1772 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1773 if (!lva)
1774 return -ENOMEM;
1775 }
1776
1777 /*
1778 * Build the remainder.
1779 */
1780 lva->va_start = va->va_start;
1781 lva->va_end = nva_start_addr;
1782
1783 /*
1784 * Shrink this VA to remaining size.
1785 */
1786 va->va_start = nva_start_addr + size;
1787 } else {
1788 return -EINVAL;
1789 }
1790
1791 if (type != FL_FIT_TYPE) {
1792 augment_tree_propagate_from(va);
1793
1794 if (lva) /* type == NE_FIT_TYPE */
1795 insert_vmap_area_augment(lva, &va->rb_node, root, head);
1796 }
1797
1798 return 0;
1799 }
1800
1801 static unsigned long
va_alloc(struct vmap_area * va,struct rb_root * root,struct list_head * head,unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend)1802 va_alloc(struct vmap_area *va,
1803 struct rb_root *root, struct list_head *head,
1804 unsigned long size, unsigned long align,
1805 unsigned long vstart, unsigned long vend)
1806 {
1807 unsigned long nva_start_addr;
1808 int ret;
1809
1810 if (va->va_start > vstart)
1811 nva_start_addr = ALIGN(va->va_start, align);
1812 else
1813 nva_start_addr = ALIGN(vstart, align);
1814
1815 /* Check the "vend" restriction. */
1816 if (nva_start_addr + size > vend)
1817 return -ERANGE;
1818
1819 /* Update the free vmap_area. */
1820 ret = va_clip(root, head, va, nva_start_addr, size);
1821 if (WARN_ON_ONCE(ret))
1822 return ret;
1823
1824 return nva_start_addr;
1825 }
1826
1827 /*
1828 * Returns a start address of the newly allocated area, if success.
1829 * Otherwise an error value is returned that indicates failure.
1830 */
1831 static __always_inline unsigned long
__alloc_vmap_area(struct rb_root * root,struct list_head * head,unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend)1832 __alloc_vmap_area(struct rb_root *root, struct list_head *head,
1833 unsigned long size, unsigned long align,
1834 unsigned long vstart, unsigned long vend)
1835 {
1836 bool adjust_search_size = true;
1837 unsigned long nva_start_addr;
1838 struct vmap_area *va;
1839
1840 /*
1841 * Do not adjust when:
1842 * a) align <= PAGE_SIZE, because it does not make any sense.
1843 * All blocks(their start addresses) are at least PAGE_SIZE
1844 * aligned anyway;
1845 * b) a short range where a requested size corresponds to exactly
1846 * specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1847 * With adjusted search length an allocation would not succeed.
1848 */
1849 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1850 adjust_search_size = false;
1851
1852 va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1853 if (unlikely(!va))
1854 return -ENOENT;
1855
1856 nva_start_addr = va_alloc(va, root, head, size, align, vstart, vend);
1857
1858 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1859 if (!IS_ERR_VALUE(nva_start_addr))
1860 find_vmap_lowest_match_check(root, head, size, align);
1861 #endif
1862
1863 return nva_start_addr;
1864 }
1865
1866 /*
1867 * Free a region of KVA allocated by alloc_vmap_area
1868 */
free_vmap_area(struct vmap_area * va)1869 static void free_vmap_area(struct vmap_area *va)
1870 {
1871 struct vmap_node *vn = addr_to_node(va->va_start);
1872
1873 /*
1874 * Remove from the busy tree/list.
1875 */
1876 spin_lock(&vn->busy.lock);
1877 unlink_va(va, &vn->busy.root);
1878 spin_unlock(&vn->busy.lock);
1879
1880 /*
1881 * Insert/Merge it back to the free tree/list.
1882 */
1883 spin_lock(&free_vmap_area_lock);
1884 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1885 spin_unlock(&free_vmap_area_lock);
1886 }
1887
1888 static inline void
preload_this_cpu_lock(spinlock_t * lock,gfp_t gfp_mask,int node)1889 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1890 {
1891 struct vmap_area *va = NULL, *tmp;
1892
1893 /*
1894 * Preload this CPU with one extra vmap_area object. It is used
1895 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1896 * a CPU that does an allocation is preloaded.
1897 *
1898 * We do it in non-atomic context, thus it allows us to use more
1899 * permissive allocation masks to be more stable under low memory
1900 * condition and high memory pressure.
1901 */
1902 if (!this_cpu_read(ne_fit_preload_node))
1903 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1904
1905 spin_lock(lock);
1906
1907 tmp = NULL;
1908 if (va && !__this_cpu_try_cmpxchg(ne_fit_preload_node, &tmp, va))
1909 kmem_cache_free(vmap_area_cachep, va);
1910 }
1911
1912 static struct vmap_pool *
size_to_va_pool(struct vmap_node * vn,unsigned long size)1913 size_to_va_pool(struct vmap_node *vn, unsigned long size)
1914 {
1915 unsigned int idx = (size - 1) / PAGE_SIZE;
1916
1917 if (idx < MAX_VA_SIZE_PAGES)
1918 return &vn->pool[idx];
1919
1920 return NULL;
1921 }
1922
1923 static bool
node_pool_add_va(struct vmap_node * n,struct vmap_area * va)1924 node_pool_add_va(struct vmap_node *n, struct vmap_area *va)
1925 {
1926 struct vmap_pool *vp;
1927
1928 vp = size_to_va_pool(n, va_size(va));
1929 if (!vp)
1930 return false;
1931
1932 spin_lock(&n->pool_lock);
1933 list_add(&va->list, &vp->head);
1934 WRITE_ONCE(vp->len, vp->len + 1);
1935 spin_unlock(&n->pool_lock);
1936
1937 return true;
1938 }
1939
1940 static struct vmap_area *
node_pool_del_va(struct vmap_node * vn,unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend)1941 node_pool_del_va(struct vmap_node *vn, unsigned long size,
1942 unsigned long align, unsigned long vstart,
1943 unsigned long vend)
1944 {
1945 struct vmap_area *va = NULL;
1946 struct vmap_pool *vp;
1947 int err = 0;
1948
1949 vp = size_to_va_pool(vn, size);
1950 if (!vp || list_empty(&vp->head))
1951 return NULL;
1952
1953 spin_lock(&vn->pool_lock);
1954 if (!list_empty(&vp->head)) {
1955 va = list_first_entry(&vp->head, struct vmap_area, list);
1956
1957 if (IS_ALIGNED(va->va_start, align)) {
1958 /*
1959 * Do some sanity check and emit a warning
1960 * if one of below checks detects an error.
1961 */
1962 err |= (va_size(va) != size);
1963 err |= (va->va_start < vstart);
1964 err |= (va->va_end > vend);
1965
1966 if (!WARN_ON_ONCE(err)) {
1967 list_del_init(&va->list);
1968 WRITE_ONCE(vp->len, vp->len - 1);
1969 } else {
1970 va = NULL;
1971 }
1972 } else {
1973 list_move_tail(&va->list, &vp->head);
1974 va = NULL;
1975 }
1976 }
1977 spin_unlock(&vn->pool_lock);
1978
1979 return va;
1980 }
1981
1982 static struct vmap_area *
node_alloc(unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend,unsigned long * addr,unsigned int * vn_id)1983 node_alloc(unsigned long size, unsigned long align,
1984 unsigned long vstart, unsigned long vend,
1985 unsigned long *addr, unsigned int *vn_id)
1986 {
1987 struct vmap_area *va;
1988
1989 *vn_id = 0;
1990 *addr = -EINVAL;
1991
1992 /*
1993 * Fallback to a global heap if not vmalloc or there
1994 * is only one node.
1995 */
1996 if (vstart != VMALLOC_START || vend != VMALLOC_END ||
1997 nr_vmap_nodes == 1)
1998 return NULL;
1999
2000 *vn_id = raw_smp_processor_id() % nr_vmap_nodes;
2001 va = node_pool_del_va(id_to_node(*vn_id), size, align, vstart, vend);
2002 *vn_id = encode_vn_id(*vn_id);
2003
2004 if (va)
2005 *addr = va->va_start;
2006
2007 return va;
2008 }
2009
setup_vmalloc_vm(struct vm_struct * vm,struct vmap_area * va,unsigned long flags,const void * caller)2010 static inline void setup_vmalloc_vm(struct vm_struct *vm,
2011 struct vmap_area *va, unsigned long flags, const void *caller)
2012 {
2013 vm->flags = flags;
2014 vm->addr = (void *)va->va_start;
2015 vm->size = vm->requested_size = va_size(va);
2016 vm->caller = caller;
2017 va->vm = vm;
2018 }
2019
2020 /*
2021 * Allocate a region of KVA of the specified size and alignment, within the
2022 * vstart and vend. If vm is passed in, the two will also be bound.
2023 */
alloc_vmap_area(unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend,int node,gfp_t gfp_mask,unsigned long va_flags,struct vm_struct * vm)2024 static struct vmap_area *alloc_vmap_area(unsigned long size,
2025 unsigned long align,
2026 unsigned long vstart, unsigned long vend,
2027 int node, gfp_t gfp_mask,
2028 unsigned long va_flags, struct vm_struct *vm)
2029 {
2030 struct vmap_node *vn;
2031 struct vmap_area *va;
2032 unsigned long freed;
2033 unsigned long addr;
2034 unsigned int vn_id;
2035 bool allow_block;
2036 int purged = 0;
2037 int ret;
2038
2039 if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
2040 return ERR_PTR(-EINVAL);
2041
2042 if (unlikely(!vmap_initialized))
2043 return ERR_PTR(-EBUSY);
2044
2045 /* Only reclaim behaviour flags are relevant. */
2046 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
2047 allow_block = gfpflags_allow_blocking(gfp_mask);
2048 might_sleep_if(allow_block);
2049
2050 /*
2051 * If a VA is obtained from a global heap(if it fails here)
2052 * it is anyway marked with this "vn_id" so it is returned
2053 * to this pool's node later. Such way gives a possibility
2054 * to populate pools based on users demand.
2055 *
2056 * On success a ready to go VA is returned.
2057 */
2058 va = node_alloc(size, align, vstart, vend, &addr, &vn_id);
2059 if (!va) {
2060 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
2061 if (unlikely(!va))
2062 return ERR_PTR(-ENOMEM);
2063
2064 /*
2065 * Only scan the relevant parts containing pointers to other objects
2066 * to avoid false negatives.
2067 */
2068 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
2069 }
2070
2071 retry:
2072 if (IS_ERR_VALUE(addr)) {
2073 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
2074 addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
2075 size, align, vstart, vend);
2076 spin_unlock(&free_vmap_area_lock);
2077
2078 /*
2079 * This is not a fast path. Check if yielding is needed. This
2080 * is the only reschedule point in the vmalloc() path.
2081 */
2082 if (allow_block)
2083 cond_resched();
2084 }
2085
2086 trace_alloc_vmap_area(addr, size, align, vstart, vend, IS_ERR_VALUE(addr));
2087
2088 /*
2089 * If an allocation fails, the error value is
2090 * returned. Therefore trigger the overflow path.
2091 */
2092 if (IS_ERR_VALUE(addr)) {
2093 if (allow_block)
2094 goto overflow;
2095
2096 /*
2097 * We can not trigger any reclaim logic because
2098 * sleeping is not allowed, thus fail an allocation.
2099 */
2100 goto out_free_va;
2101 }
2102
2103 va->va_start = addr;
2104 va->va_end = addr + size;
2105 va->vm = NULL;
2106 va->flags = (va_flags | vn_id);
2107
2108 if (vm) {
2109 vm->addr = (void *)va->va_start;
2110 vm->size = va_size(va);
2111 va->vm = vm;
2112 }
2113
2114 vn = addr_to_node(va->va_start);
2115
2116 spin_lock(&vn->busy.lock);
2117 insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
2118 spin_unlock(&vn->busy.lock);
2119
2120 BUG_ON(!IS_ALIGNED(va->va_start, align));
2121 BUG_ON(va->va_start < vstart);
2122 BUG_ON(va->va_end > vend);
2123
2124 ret = kasan_populate_vmalloc(addr, size, gfp_mask);
2125 if (ret) {
2126 free_vmap_area(va);
2127 return ERR_PTR(ret);
2128 }
2129
2130 return va;
2131
2132 overflow:
2133 if (!purged) {
2134 reclaim_and_purge_vmap_areas();
2135 purged = 1;
2136 goto retry;
2137 }
2138
2139 freed = 0;
2140 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
2141
2142 if (freed > 0) {
2143 purged = 0;
2144 goto retry;
2145 }
2146
2147 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
2148 pr_warn("vmalloc_node_range for size %lu failed: Address range restricted to %#lx - %#lx\n",
2149 size, vstart, vend);
2150
2151 out_free_va:
2152 kmem_cache_free(vmap_area_cachep, va);
2153 return ERR_PTR(-EBUSY);
2154 }
2155
register_vmap_purge_notifier(struct notifier_block * nb)2156 int register_vmap_purge_notifier(struct notifier_block *nb)
2157 {
2158 return blocking_notifier_chain_register(&vmap_notify_list, nb);
2159 }
2160 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
2161
unregister_vmap_purge_notifier(struct notifier_block * nb)2162 int unregister_vmap_purge_notifier(struct notifier_block *nb)
2163 {
2164 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
2165 }
2166 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
2167
2168 /*
2169 * lazy_max_pages is the maximum amount of virtual address space we gather up
2170 * before attempting to purge with a TLB flush.
2171 *
2172 * There is a tradeoff here: a larger number will cover more kernel page tables
2173 * and take slightly longer to purge, but it will linearly reduce the number of
2174 * global TLB flushes that must be performed. It would seem natural to scale
2175 * this number up linearly with the number of CPUs (because vmapping activity
2176 * could also scale linearly with the number of CPUs), however it is likely
2177 * that in practice, workloads might be constrained in other ways that mean
2178 * vmap activity will not scale linearly with CPUs. Also, I want to be
2179 * conservative and not introduce a big latency on huge systems, so go with
2180 * a less aggressive log scale. It will still be an improvement over the old
2181 * code, and it will be simple to change the scale factor if we find that it
2182 * becomes a problem on bigger systems.
2183 */
lazy_max_pages(void)2184 static unsigned long lazy_max_pages(void)
2185 {
2186 unsigned int log;
2187
2188 log = fls(num_online_cpus());
2189
2190 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
2191 }
2192
2193 /*
2194 * Serialize vmap purging. There is no actual critical section protected
2195 * by this lock, but we want to avoid concurrent calls for performance
2196 * reasons and to make the pcpu_get_vm_areas more deterministic.
2197 */
2198 static DEFINE_MUTEX(vmap_purge_lock);
2199
2200 /* for per-CPU blocks */
2201 static void purge_fragmented_blocks_allcpus(void);
2202
2203 static void
reclaim_list_global(struct list_head * head)2204 reclaim_list_global(struct list_head *head)
2205 {
2206 struct vmap_area *va, *n;
2207
2208 if (list_empty(head))
2209 return;
2210
2211 spin_lock(&free_vmap_area_lock);
2212 list_for_each_entry_safe(va, n, head, list)
2213 merge_or_add_vmap_area_augment(va,
2214 &free_vmap_area_root, &free_vmap_area_list);
2215 spin_unlock(&free_vmap_area_lock);
2216 }
2217
2218 static void
decay_va_pool_node(struct vmap_node * vn,bool full_decay)2219 decay_va_pool_node(struct vmap_node *vn, bool full_decay)
2220 {
2221 LIST_HEAD(decay_list);
2222 struct rb_root decay_root = RB_ROOT;
2223 struct vmap_area *va, *nva;
2224 unsigned long n_decay, pool_len;
2225 int i;
2226
2227 for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
2228 LIST_HEAD(tmp_list);
2229
2230 if (list_empty(&vn->pool[i].head))
2231 continue;
2232
2233 /* Detach the pool, so no-one can access it. */
2234 spin_lock(&vn->pool_lock);
2235 list_replace_init(&vn->pool[i].head, &tmp_list);
2236 spin_unlock(&vn->pool_lock);
2237
2238 pool_len = n_decay = vn->pool[i].len;
2239 WRITE_ONCE(vn->pool[i].len, 0);
2240
2241 /* Decay a pool by ~25% out of left objects. */
2242 if (!full_decay)
2243 n_decay >>= 2;
2244 pool_len -= n_decay;
2245
2246 list_for_each_entry_safe(va, nva, &tmp_list, list) {
2247 if (!n_decay--)
2248 break;
2249
2250 list_del_init(&va->list);
2251 merge_or_add_vmap_area(va, &decay_root, &decay_list);
2252 }
2253
2254 /*
2255 * Attach the pool back if it has been partly decayed.
2256 * Please note, it is supposed that nobody(other contexts)
2257 * can populate the pool therefore a simple list replace
2258 * operation takes place here.
2259 */
2260 if (!list_empty(&tmp_list)) {
2261 spin_lock(&vn->pool_lock);
2262 list_replace_init(&tmp_list, &vn->pool[i].head);
2263 WRITE_ONCE(vn->pool[i].len, pool_len);
2264 spin_unlock(&vn->pool_lock);
2265 }
2266 }
2267
2268 reclaim_list_global(&decay_list);
2269 }
2270
2271 static void
kasan_release_vmalloc_node(struct vmap_node * vn)2272 kasan_release_vmalloc_node(struct vmap_node *vn)
2273 {
2274 struct vmap_area *va;
2275 unsigned long start, end;
2276
2277 start = list_first_entry(&vn->purge_list, struct vmap_area, list)->va_start;
2278 end = list_last_entry(&vn->purge_list, struct vmap_area, list)->va_end;
2279
2280 list_for_each_entry(va, &vn->purge_list, list) {
2281 if (is_vmalloc_or_module_addr((void *) va->va_start))
2282 kasan_release_vmalloc(va->va_start, va->va_end,
2283 va->va_start, va->va_end,
2284 KASAN_VMALLOC_PAGE_RANGE);
2285 }
2286
2287 kasan_release_vmalloc(start, end, start, end, KASAN_VMALLOC_TLB_FLUSH);
2288 }
2289
purge_vmap_node(struct work_struct * work)2290 static void purge_vmap_node(struct work_struct *work)
2291 {
2292 struct vmap_node *vn = container_of(work,
2293 struct vmap_node, purge_work);
2294 unsigned long nr_purged_pages = 0;
2295 struct vmap_area *va, *n_va;
2296 LIST_HEAD(local_list);
2297
2298 if (IS_ENABLED(CONFIG_KASAN_VMALLOC))
2299 kasan_release_vmalloc_node(vn);
2300
2301 vn->nr_purged = 0;
2302
2303 list_for_each_entry_safe(va, n_va, &vn->purge_list, list) {
2304 unsigned long nr = va_size(va) >> PAGE_SHIFT;
2305 unsigned int vn_id = decode_vn_id(va->flags);
2306
2307 list_del_init(&va->list);
2308
2309 nr_purged_pages += nr;
2310 vn->nr_purged++;
2311
2312 if (is_vn_id_valid(vn_id) && !vn->skip_populate)
2313 if (node_pool_add_va(vn, va))
2314 continue;
2315
2316 /* Go back to global. */
2317 list_add(&va->list, &local_list);
2318 }
2319
2320 atomic_long_sub(nr_purged_pages, &vmap_lazy_nr);
2321
2322 reclaim_list_global(&local_list);
2323 }
2324
2325 /*
2326 * Purges all lazily-freed vmap areas.
2327 */
__purge_vmap_area_lazy(unsigned long start,unsigned long end,bool full_pool_decay)2328 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end,
2329 bool full_pool_decay)
2330 {
2331 unsigned long nr_purged_areas = 0;
2332 unsigned int nr_purge_helpers;
2333 static cpumask_t purge_nodes;
2334 unsigned int nr_purge_nodes;
2335 struct vmap_node *vn;
2336 int i;
2337
2338 lockdep_assert_held(&vmap_purge_lock);
2339
2340 /*
2341 * Use cpumask to mark which node has to be processed.
2342 */
2343 purge_nodes = CPU_MASK_NONE;
2344
2345 for_each_vmap_node(vn) {
2346 INIT_LIST_HEAD(&vn->purge_list);
2347 vn->skip_populate = full_pool_decay;
2348 decay_va_pool_node(vn, full_pool_decay);
2349
2350 if (RB_EMPTY_ROOT(&vn->lazy.root))
2351 continue;
2352
2353 spin_lock(&vn->lazy.lock);
2354 WRITE_ONCE(vn->lazy.root.rb_node, NULL);
2355 list_replace_init(&vn->lazy.head, &vn->purge_list);
2356 spin_unlock(&vn->lazy.lock);
2357
2358 start = min(start, list_first_entry(&vn->purge_list,
2359 struct vmap_area, list)->va_start);
2360
2361 end = max(end, list_last_entry(&vn->purge_list,
2362 struct vmap_area, list)->va_end);
2363
2364 cpumask_set_cpu(node_to_id(vn), &purge_nodes);
2365 }
2366
2367 nr_purge_nodes = cpumask_weight(&purge_nodes);
2368 if (nr_purge_nodes > 0) {
2369 flush_tlb_kernel_range(start, end);
2370
2371 /* One extra worker is per a lazy_max_pages() full set minus one. */
2372 nr_purge_helpers = atomic_long_read(&vmap_lazy_nr) / lazy_max_pages();
2373 nr_purge_helpers = clamp(nr_purge_helpers, 1U, nr_purge_nodes) - 1;
2374
2375 for_each_cpu(i, &purge_nodes) {
2376 vn = &vmap_nodes[i];
2377
2378 if (nr_purge_helpers > 0) {
2379 INIT_WORK(&vn->purge_work, purge_vmap_node);
2380
2381 if (cpumask_test_cpu(i, cpu_online_mask))
2382 schedule_work_on(i, &vn->purge_work);
2383 else
2384 schedule_work(&vn->purge_work);
2385
2386 nr_purge_helpers--;
2387 } else {
2388 vn->purge_work.func = NULL;
2389 purge_vmap_node(&vn->purge_work);
2390 nr_purged_areas += vn->nr_purged;
2391 }
2392 }
2393
2394 for_each_cpu(i, &purge_nodes) {
2395 vn = &vmap_nodes[i];
2396
2397 if (vn->purge_work.func) {
2398 flush_work(&vn->purge_work);
2399 nr_purged_areas += vn->nr_purged;
2400 }
2401 }
2402 }
2403
2404 trace_purge_vmap_area_lazy(start, end, nr_purged_areas);
2405 return nr_purged_areas > 0;
2406 }
2407
2408 /*
2409 * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list.
2410 */
reclaim_and_purge_vmap_areas(void)2411 static void reclaim_and_purge_vmap_areas(void)
2412
2413 {
2414 mutex_lock(&vmap_purge_lock);
2415 purge_fragmented_blocks_allcpus();
2416 __purge_vmap_area_lazy(ULONG_MAX, 0, true);
2417 mutex_unlock(&vmap_purge_lock);
2418 }
2419
drain_vmap_area_work(struct work_struct * work)2420 static void drain_vmap_area_work(struct work_struct *work)
2421 {
2422 mutex_lock(&vmap_purge_lock);
2423 __purge_vmap_area_lazy(ULONG_MAX, 0, false);
2424 mutex_unlock(&vmap_purge_lock);
2425 }
2426
2427 /*
2428 * Free a vmap area, caller ensuring that the area has been unmapped,
2429 * unlinked and flush_cache_vunmap had been called for the correct
2430 * range previously.
2431 */
free_vmap_area_noflush(struct vmap_area * va)2432 static void free_vmap_area_noflush(struct vmap_area *va)
2433 {
2434 unsigned long nr_lazy_max = lazy_max_pages();
2435 unsigned long va_start = va->va_start;
2436 unsigned int vn_id = decode_vn_id(va->flags);
2437 struct vmap_node *vn;
2438 unsigned long nr_lazy;
2439
2440 if (WARN_ON_ONCE(!list_empty(&va->list)))
2441 return;
2442
2443 nr_lazy = atomic_long_add_return_relaxed(va_size(va) >> PAGE_SHIFT,
2444 &vmap_lazy_nr);
2445
2446 /*
2447 * If it was request by a certain node we would like to
2448 * return it to that node, i.e. its pool for later reuse.
2449 */
2450 vn = is_vn_id_valid(vn_id) ?
2451 id_to_node(vn_id):addr_to_node(va->va_start);
2452
2453 spin_lock(&vn->lazy.lock);
2454 insert_vmap_area(va, &vn->lazy.root, &vn->lazy.head);
2455 spin_unlock(&vn->lazy.lock);
2456
2457 trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
2458
2459 /* After this point, we may free va at any time */
2460 if (unlikely(nr_lazy > nr_lazy_max))
2461 schedule_work(&drain_vmap_work);
2462 }
2463
2464 /*
2465 * Free and unmap a vmap area
2466 */
free_unmap_vmap_area(struct vmap_area * va)2467 static void free_unmap_vmap_area(struct vmap_area *va)
2468 {
2469 flush_cache_vunmap(va->va_start, va->va_end);
2470 vunmap_range_noflush(va->va_start, va->va_end);
2471 if (debug_pagealloc_enabled_static())
2472 flush_tlb_kernel_range(va->va_start, va->va_end);
2473
2474 free_vmap_area_noflush(va);
2475 }
2476
find_vmap_area(unsigned long addr)2477 struct vmap_area *find_vmap_area(unsigned long addr)
2478 {
2479 struct vmap_node *vn;
2480 struct vmap_area *va;
2481 int i, j;
2482
2483 if (unlikely(!vmap_initialized))
2484 return NULL;
2485
2486 /*
2487 * An addr_to_node_id(addr) converts an address to a node index
2488 * where a VA is located. If VA spans several zones and passed
2489 * addr is not the same as va->va_start, what is not common, we
2490 * may need to scan extra nodes. See an example:
2491 *
2492 * <----va---->
2493 * -|-----|-----|-----|-----|-
2494 * 1 2 0 1
2495 *
2496 * VA resides in node 1 whereas it spans 1, 2 an 0. If passed
2497 * addr is within 2 or 0 nodes we should do extra work.
2498 */
2499 i = j = addr_to_node_id(addr);
2500 do {
2501 vn = &vmap_nodes[i];
2502
2503 spin_lock(&vn->busy.lock);
2504 va = __find_vmap_area(addr, &vn->busy.root);
2505 spin_unlock(&vn->busy.lock);
2506
2507 if (va)
2508 return va;
2509 } while ((i = (i + nr_vmap_nodes - 1) % nr_vmap_nodes) != j);
2510
2511 return NULL;
2512 }
2513
find_unlink_vmap_area(unsigned long addr)2514 static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
2515 {
2516 struct vmap_node *vn;
2517 struct vmap_area *va;
2518 int i, j;
2519
2520 /*
2521 * Check the comment in the find_vmap_area() about the loop.
2522 */
2523 i = j = addr_to_node_id(addr);
2524 do {
2525 vn = &vmap_nodes[i];
2526
2527 spin_lock(&vn->busy.lock);
2528 va = __find_vmap_area(addr, &vn->busy.root);
2529 if (va)
2530 unlink_va(va, &vn->busy.root);
2531 spin_unlock(&vn->busy.lock);
2532
2533 if (va)
2534 return va;
2535 } while ((i = (i + nr_vmap_nodes - 1) % nr_vmap_nodes) != j);
2536
2537 return NULL;
2538 }
2539
2540 /*** Per cpu kva allocator ***/
2541
2542 /*
2543 * vmap space is limited especially on 32 bit architectures. Ensure there is
2544 * room for at least 16 percpu vmap blocks per CPU.
2545 */
2546 /*
2547 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
2548 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
2549 * instead (we just need a rough idea)
2550 */
2551 #if BITS_PER_LONG == 32
2552 #define VMALLOC_SPACE (128UL*1024*1024)
2553 #else
2554 #define VMALLOC_SPACE (128UL*1024*1024*1024)
2555 #endif
2556
2557 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
2558 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
2559 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
2560 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
2561 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
2562 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
2563 #define VMAP_BBMAP_BITS \
2564 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
2565 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
2566 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
2567
2568 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
2569
2570 /*
2571 * Purge threshold to prevent overeager purging of fragmented blocks for
2572 * regular operations: Purge if vb->free is less than 1/4 of the capacity.
2573 */
2574 #define VMAP_PURGE_THRESHOLD (VMAP_BBMAP_BITS / 4)
2575
2576 #define VMAP_RAM 0x1 /* indicates vm_map_ram area*/
2577 #define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/
2578 #define VMAP_FLAGS_MASK 0x3
2579
2580 struct vmap_block_queue {
2581 spinlock_t lock;
2582 struct list_head free;
2583
2584 /*
2585 * An xarray requires an extra memory dynamically to
2586 * be allocated. If it is an issue, we can use rb-tree
2587 * instead.
2588 */
2589 struct xarray vmap_blocks;
2590 };
2591
2592 struct vmap_block {
2593 spinlock_t lock;
2594 struct vmap_area *va;
2595 unsigned long free, dirty;
2596 DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
2597 unsigned long dirty_min, dirty_max; /*< dirty range */
2598 struct list_head free_list;
2599 struct rcu_head rcu_head;
2600 struct list_head purge;
2601 unsigned int cpu;
2602 };
2603
2604 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
2605 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
2606
2607 /*
2608 * In order to fast access to any "vmap_block" associated with a
2609 * specific address, we use a hash.
2610 *
2611 * A per-cpu vmap_block_queue is used in both ways, to serialize
2612 * an access to free block chains among CPUs(alloc path) and it
2613 * also acts as a vmap_block hash(alloc/free paths). It means we
2614 * overload it, since we already have the per-cpu array which is
2615 * used as a hash table. When used as a hash a 'cpu' passed to
2616 * per_cpu() is not actually a CPU but rather a hash index.
2617 *
2618 * A hash function is addr_to_vb_xa() which hashes any address
2619 * to a specific index(in a hash) it belongs to. This then uses a
2620 * per_cpu() macro to access an array with generated index.
2621 *
2622 * An example:
2623 *
2624 * CPU_1 CPU_2 CPU_0
2625 * | | |
2626 * V V V
2627 * 0 10 20 30 40 50 60
2628 * |------|------|------|------|------|------|...<vmap address space>
2629 * CPU0 CPU1 CPU2 CPU0 CPU1 CPU2
2630 *
2631 * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus
2632 * it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock;
2633 *
2634 * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus
2635 * it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock;
2636 *
2637 * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus
2638 * it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock.
2639 *
2640 * This technique almost always avoids lock contention on insert/remove,
2641 * however xarray spinlocks protect against any contention that remains.
2642 */
2643 static struct xarray *
addr_to_vb_xa(unsigned long addr)2644 addr_to_vb_xa(unsigned long addr)
2645 {
2646 int index = (addr / VMAP_BLOCK_SIZE) % nr_cpu_ids;
2647
2648 /*
2649 * Please note, nr_cpu_ids points on a highest set
2650 * possible bit, i.e. we never invoke cpumask_next()
2651 * if an index points on it which is nr_cpu_ids - 1.
2652 */
2653 if (!cpu_possible(index))
2654 index = cpumask_next(index, cpu_possible_mask);
2655
2656 return &per_cpu(vmap_block_queue, index).vmap_blocks;
2657 }
2658
2659 /*
2660 * We should probably have a fallback mechanism to allocate virtual memory
2661 * out of partially filled vmap blocks. However vmap block sizing should be
2662 * fairly reasonable according to the vmalloc size, so it shouldn't be a
2663 * big problem.
2664 */
2665
addr_to_vb_idx(unsigned long addr)2666 static unsigned long addr_to_vb_idx(unsigned long addr)
2667 {
2668 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
2669 addr /= VMAP_BLOCK_SIZE;
2670 return addr;
2671 }
2672
vmap_block_vaddr(unsigned long va_start,unsigned long pages_off)2673 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
2674 {
2675 unsigned long addr;
2676
2677 addr = va_start + (pages_off << PAGE_SHIFT);
2678 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
2679 return (void *)addr;
2680 }
2681
2682 /**
2683 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
2684 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
2685 * @order: how many 2^order pages should be occupied in newly allocated block
2686 * @gfp_mask: flags for the page level allocator
2687 *
2688 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
2689 */
new_vmap_block(unsigned int order,gfp_t gfp_mask)2690 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
2691 {
2692 struct vmap_block_queue *vbq;
2693 struct vmap_block *vb;
2694 struct vmap_area *va;
2695 struct xarray *xa;
2696 unsigned long vb_idx;
2697 int node, err;
2698 void *vaddr;
2699
2700 node = numa_node_id();
2701
2702 vb = kmalloc_node(sizeof(struct vmap_block), gfp_mask, node);
2703 if (unlikely(!vb))
2704 return ERR_PTR(-ENOMEM);
2705
2706 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
2707 VMALLOC_START, VMALLOC_END,
2708 node, gfp_mask,
2709 VMAP_RAM|VMAP_BLOCK, NULL);
2710 if (IS_ERR(va)) {
2711 kfree(vb);
2712 return ERR_CAST(va);
2713 }
2714
2715 vaddr = vmap_block_vaddr(va->va_start, 0);
2716 spin_lock_init(&vb->lock);
2717 vb->va = va;
2718 /* At least something should be left free */
2719 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
2720 bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
2721 vb->free = VMAP_BBMAP_BITS - (1UL << order);
2722 vb->dirty = 0;
2723 vb->dirty_min = VMAP_BBMAP_BITS;
2724 vb->dirty_max = 0;
2725 bitmap_set(vb->used_map, 0, (1UL << order));
2726 INIT_LIST_HEAD(&vb->free_list);
2727 vb->cpu = raw_smp_processor_id();
2728
2729 xa = addr_to_vb_xa(va->va_start);
2730 vb_idx = addr_to_vb_idx(va->va_start);
2731 err = xa_insert(xa, vb_idx, vb, gfp_mask);
2732 if (err) {
2733 kfree(vb);
2734 free_vmap_area(va);
2735 return ERR_PTR(err);
2736 }
2737 /*
2738 * list_add_tail_rcu could happened in another core
2739 * rather than vb->cpu due to task migration, which
2740 * is safe as list_add_tail_rcu will ensure the list's
2741 * integrity together with list_for_each_rcu from read
2742 * side.
2743 */
2744 vbq = per_cpu_ptr(&vmap_block_queue, vb->cpu);
2745 spin_lock(&vbq->lock);
2746 list_add_tail_rcu(&vb->free_list, &vbq->free);
2747 spin_unlock(&vbq->lock);
2748
2749 return vaddr;
2750 }
2751
free_vmap_block(struct vmap_block * vb)2752 static void free_vmap_block(struct vmap_block *vb)
2753 {
2754 struct vmap_node *vn;
2755 struct vmap_block *tmp;
2756 struct xarray *xa;
2757
2758 xa = addr_to_vb_xa(vb->va->va_start);
2759 tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start));
2760 BUG_ON(tmp != vb);
2761
2762 vn = addr_to_node(vb->va->va_start);
2763 spin_lock(&vn->busy.lock);
2764 unlink_va(vb->va, &vn->busy.root);
2765 spin_unlock(&vn->busy.lock);
2766
2767 free_vmap_area_noflush(vb->va);
2768 kfree_rcu(vb, rcu_head);
2769 }
2770
purge_fragmented_block(struct vmap_block * vb,struct list_head * purge_list,bool force_purge)2771 static bool purge_fragmented_block(struct vmap_block *vb,
2772 struct list_head *purge_list, bool force_purge)
2773 {
2774 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, vb->cpu);
2775
2776 if (vb->free + vb->dirty != VMAP_BBMAP_BITS ||
2777 vb->dirty == VMAP_BBMAP_BITS)
2778 return false;
2779
2780 /* Don't overeagerly purge usable blocks unless requested */
2781 if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD))
2782 return false;
2783
2784 /* prevent further allocs after releasing lock */
2785 WRITE_ONCE(vb->free, 0);
2786 /* prevent purging it again */
2787 WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS);
2788 vb->dirty_min = 0;
2789 vb->dirty_max = VMAP_BBMAP_BITS;
2790 spin_lock(&vbq->lock);
2791 list_del_rcu(&vb->free_list);
2792 spin_unlock(&vbq->lock);
2793 list_add_tail(&vb->purge, purge_list);
2794 return true;
2795 }
2796
free_purged_blocks(struct list_head * purge_list)2797 static void free_purged_blocks(struct list_head *purge_list)
2798 {
2799 struct vmap_block *vb, *n_vb;
2800
2801 list_for_each_entry_safe(vb, n_vb, purge_list, purge) {
2802 list_del(&vb->purge);
2803 free_vmap_block(vb);
2804 }
2805 }
2806
purge_fragmented_blocks(int cpu)2807 static void purge_fragmented_blocks(int cpu)
2808 {
2809 LIST_HEAD(purge);
2810 struct vmap_block *vb;
2811 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2812
2813 rcu_read_lock();
2814 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2815 unsigned long free = READ_ONCE(vb->free);
2816 unsigned long dirty = READ_ONCE(vb->dirty);
2817
2818 if (free + dirty != VMAP_BBMAP_BITS ||
2819 dirty == VMAP_BBMAP_BITS)
2820 continue;
2821
2822 spin_lock(&vb->lock);
2823 purge_fragmented_block(vb, &purge, true);
2824 spin_unlock(&vb->lock);
2825 }
2826 rcu_read_unlock();
2827 free_purged_blocks(&purge);
2828 }
2829
purge_fragmented_blocks_allcpus(void)2830 static void purge_fragmented_blocks_allcpus(void)
2831 {
2832 int cpu;
2833
2834 for_each_possible_cpu(cpu)
2835 purge_fragmented_blocks(cpu);
2836 }
2837
vb_alloc(unsigned long size,gfp_t gfp_mask)2838 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2839 {
2840 struct vmap_block_queue *vbq;
2841 struct vmap_block *vb;
2842 void *vaddr = NULL;
2843 unsigned int order;
2844
2845 BUG_ON(offset_in_page(size));
2846 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2847 if (WARN_ON(size == 0)) {
2848 /*
2849 * Allocating 0 bytes isn't what caller wants since
2850 * get_order(0) returns funny result. Just warn and terminate
2851 * early.
2852 */
2853 return ERR_PTR(-EINVAL);
2854 }
2855 order = get_order(size);
2856
2857 rcu_read_lock();
2858 vbq = raw_cpu_ptr(&vmap_block_queue);
2859 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2860 unsigned long pages_off;
2861
2862 if (READ_ONCE(vb->free) < (1UL << order))
2863 continue;
2864
2865 spin_lock(&vb->lock);
2866 if (vb->free < (1UL << order)) {
2867 spin_unlock(&vb->lock);
2868 continue;
2869 }
2870
2871 pages_off = VMAP_BBMAP_BITS - vb->free;
2872 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2873 WRITE_ONCE(vb->free, vb->free - (1UL << order));
2874 bitmap_set(vb->used_map, pages_off, (1UL << order));
2875 if (vb->free == 0) {
2876 spin_lock(&vbq->lock);
2877 list_del_rcu(&vb->free_list);
2878 spin_unlock(&vbq->lock);
2879 }
2880
2881 spin_unlock(&vb->lock);
2882 break;
2883 }
2884
2885 rcu_read_unlock();
2886
2887 /* Allocate new block if nothing was found */
2888 if (!vaddr)
2889 vaddr = new_vmap_block(order, gfp_mask);
2890
2891 return vaddr;
2892 }
2893
vb_free(unsigned long addr,unsigned long size)2894 static void vb_free(unsigned long addr, unsigned long size)
2895 {
2896 unsigned long offset;
2897 unsigned int order;
2898 struct vmap_block *vb;
2899 struct xarray *xa;
2900
2901 BUG_ON(offset_in_page(size));
2902 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2903
2904 flush_cache_vunmap(addr, addr + size);
2905
2906 order = get_order(size);
2907 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2908
2909 xa = addr_to_vb_xa(addr);
2910 vb = xa_load(xa, addr_to_vb_idx(addr));
2911
2912 spin_lock(&vb->lock);
2913 bitmap_clear(vb->used_map, offset, (1UL << order));
2914 spin_unlock(&vb->lock);
2915
2916 vunmap_range_noflush(addr, addr + size);
2917
2918 if (debug_pagealloc_enabled_static())
2919 flush_tlb_kernel_range(addr, addr + size);
2920
2921 spin_lock(&vb->lock);
2922
2923 /* Expand the not yet TLB flushed dirty range */
2924 vb->dirty_min = min(vb->dirty_min, offset);
2925 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2926
2927 WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order));
2928 if (vb->dirty == VMAP_BBMAP_BITS) {
2929 BUG_ON(vb->free);
2930 spin_unlock(&vb->lock);
2931 free_vmap_block(vb);
2932 } else
2933 spin_unlock(&vb->lock);
2934 }
2935
_vm_unmap_aliases(unsigned long start,unsigned long end,int flush)2936 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2937 {
2938 LIST_HEAD(purge_list);
2939 int cpu;
2940
2941 if (unlikely(!vmap_initialized))
2942 return;
2943
2944 mutex_lock(&vmap_purge_lock);
2945
2946 for_each_possible_cpu(cpu) {
2947 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2948 struct vmap_block *vb;
2949 unsigned long idx;
2950
2951 rcu_read_lock();
2952 xa_for_each(&vbq->vmap_blocks, idx, vb) {
2953 spin_lock(&vb->lock);
2954
2955 /*
2956 * Try to purge a fragmented block first. If it's
2957 * not purgeable, check whether there is dirty
2958 * space to be flushed.
2959 */
2960 if (!purge_fragmented_block(vb, &purge_list, false) &&
2961 vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) {
2962 unsigned long va_start = vb->va->va_start;
2963 unsigned long s, e;
2964
2965 s = va_start + (vb->dirty_min << PAGE_SHIFT);
2966 e = va_start + (vb->dirty_max << PAGE_SHIFT);
2967
2968 start = min(s, start);
2969 end = max(e, end);
2970
2971 /* Prevent that this is flushed again */
2972 vb->dirty_min = VMAP_BBMAP_BITS;
2973 vb->dirty_max = 0;
2974
2975 flush = 1;
2976 }
2977 spin_unlock(&vb->lock);
2978 }
2979 rcu_read_unlock();
2980 }
2981 free_purged_blocks(&purge_list);
2982
2983 if (!__purge_vmap_area_lazy(start, end, false) && flush)
2984 flush_tlb_kernel_range(start, end);
2985 mutex_unlock(&vmap_purge_lock);
2986 }
2987
2988 /**
2989 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2990 *
2991 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2992 * to amortize TLB flushing overheads. What this means is that any page you
2993 * have now, may, in a former life, have been mapped into kernel virtual
2994 * address by the vmap layer and so there might be some CPUs with TLB entries
2995 * still referencing that page (additional to the regular 1:1 kernel mapping).
2996 *
2997 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2998 * be sure that none of the pages we have control over will have any aliases
2999 * from the vmap layer.
3000 */
vm_unmap_aliases(void)3001 void vm_unmap_aliases(void)
3002 {
3003 _vm_unmap_aliases(ULONG_MAX, 0, 0);
3004 }
3005 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
3006
3007 /**
3008 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
3009 * @mem: the pointer returned by vm_map_ram
3010 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
3011 */
vm_unmap_ram(const void * mem,unsigned int count)3012 void vm_unmap_ram(const void *mem, unsigned int count)
3013 {
3014 unsigned long size = (unsigned long)count << PAGE_SHIFT;
3015 unsigned long addr = (unsigned long)kasan_reset_tag(mem);
3016 struct vmap_area *va;
3017
3018 might_sleep();
3019 BUG_ON(!addr);
3020 BUG_ON(addr < VMALLOC_START);
3021 BUG_ON(addr > VMALLOC_END);
3022 BUG_ON(!PAGE_ALIGNED(addr));
3023
3024 kasan_poison_vmalloc(mem, size);
3025
3026 if (likely(count <= VMAP_MAX_ALLOC)) {
3027 debug_check_no_locks_freed(mem, size);
3028 vb_free(addr, size);
3029 return;
3030 }
3031
3032 va = find_unlink_vmap_area(addr);
3033 if (WARN_ON_ONCE(!va))
3034 return;
3035
3036 debug_check_no_locks_freed((void *)va->va_start, va_size(va));
3037 free_unmap_vmap_area(va);
3038 }
3039 EXPORT_SYMBOL(vm_unmap_ram);
3040
3041 /**
3042 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
3043 * @pages: an array of pointers to the pages to be mapped
3044 * @count: number of pages
3045 * @node: prefer to allocate data structures on this node
3046 *
3047 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
3048 * faster than vmap so it's good. But if you mix long-life and short-life
3049 * objects with vm_map_ram(), it could consume lots of address space through
3050 * fragmentation (especially on a 32bit machine). You could see failures in
3051 * the end. Please use this function for short-lived objects.
3052 *
3053 * Returns: a pointer to the address that has been mapped, or %NULL on failure
3054 */
vm_map_ram(struct page ** pages,unsigned int count,int node)3055 void *vm_map_ram(struct page **pages, unsigned int count, int node)
3056 {
3057 unsigned long size = (unsigned long)count << PAGE_SHIFT;
3058 unsigned long addr;
3059 void *mem;
3060
3061 if (likely(count <= VMAP_MAX_ALLOC)) {
3062 mem = vb_alloc(size, GFP_KERNEL);
3063 if (IS_ERR(mem))
3064 return NULL;
3065 addr = (unsigned long)mem;
3066 } else {
3067 struct vmap_area *va;
3068 va = alloc_vmap_area(size, PAGE_SIZE,
3069 VMALLOC_START, VMALLOC_END,
3070 node, GFP_KERNEL, VMAP_RAM,
3071 NULL);
3072 if (IS_ERR(va))
3073 return NULL;
3074
3075 addr = va->va_start;
3076 mem = (void *)addr;
3077 }
3078
3079 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
3080 pages, PAGE_SHIFT) < 0) {
3081 vm_unmap_ram(mem, count);
3082 return NULL;
3083 }
3084
3085 /*
3086 * Mark the pages as accessible, now that they are mapped.
3087 * With hardware tag-based KASAN, marking is skipped for
3088 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3089 */
3090 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
3091
3092 return mem;
3093 }
3094 EXPORT_SYMBOL(vm_map_ram);
3095
3096 static struct vm_struct *vmlist __initdata;
3097
vm_area_page_order(struct vm_struct * vm)3098 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
3099 {
3100 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
3101 return vm->page_order;
3102 #else
3103 return 0;
3104 #endif
3105 }
3106
get_vm_area_page_order(struct vm_struct * vm)3107 unsigned int get_vm_area_page_order(struct vm_struct *vm)
3108 {
3109 return vm_area_page_order(vm);
3110 }
3111
set_vm_area_page_order(struct vm_struct * vm,unsigned int order)3112 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
3113 {
3114 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
3115 vm->page_order = order;
3116 #else
3117 BUG_ON(order != 0);
3118 #endif
3119 }
3120
3121 /**
3122 * vm_area_add_early - add vmap area early during boot
3123 * @vm: vm_struct to add
3124 *
3125 * This function is used to add fixed kernel vm area to vmlist before
3126 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
3127 * should contain proper values and the other fields should be zero.
3128 *
3129 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
3130 */
vm_area_add_early(struct vm_struct * vm)3131 void __init vm_area_add_early(struct vm_struct *vm)
3132 {
3133 struct vm_struct *tmp, **p;
3134
3135 BUG_ON(vmap_initialized);
3136 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
3137 if (tmp->addr >= vm->addr) {
3138 BUG_ON(tmp->addr < vm->addr + vm->size);
3139 break;
3140 } else
3141 BUG_ON(tmp->addr + tmp->size > vm->addr);
3142 }
3143 vm->next = *p;
3144 *p = vm;
3145 }
3146
3147 /**
3148 * vm_area_register_early - register vmap area early during boot
3149 * @vm: vm_struct to register
3150 * @align: requested alignment
3151 *
3152 * This function is used to register kernel vm area before
3153 * vmalloc_init() is called. @vm->size and @vm->flags should contain
3154 * proper values on entry and other fields should be zero. On return,
3155 * vm->addr contains the allocated address.
3156 *
3157 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
3158 */
vm_area_register_early(struct vm_struct * vm,size_t align)3159 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
3160 {
3161 unsigned long addr = ALIGN(VMALLOC_START, align);
3162 struct vm_struct *cur, **p;
3163
3164 BUG_ON(vmap_initialized);
3165
3166 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
3167 if ((unsigned long)cur->addr - addr >= vm->size)
3168 break;
3169 addr = ALIGN((unsigned long)cur->addr + cur->size, align);
3170 }
3171
3172 BUG_ON(addr > VMALLOC_END - vm->size);
3173 vm->addr = (void *)addr;
3174 vm->next = *p;
3175 *p = vm;
3176 kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
3177 }
3178
clear_vm_uninitialized_flag(struct vm_struct * vm)3179 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
3180 {
3181 /*
3182 * Before removing VM_UNINITIALIZED,
3183 * we should make sure that vm has proper values.
3184 * Pair with smp_rmb() in vread_iter() and vmalloc_info_show().
3185 */
3186 smp_wmb();
3187 vm->flags &= ~VM_UNINITIALIZED;
3188 }
3189
__get_vm_area_node(unsigned long size,unsigned long align,unsigned long shift,unsigned long flags,unsigned long start,unsigned long end,int node,gfp_t gfp_mask,const void * caller)3190 struct vm_struct *__get_vm_area_node(unsigned long size,
3191 unsigned long align, unsigned long shift, unsigned long flags,
3192 unsigned long start, unsigned long end, int node,
3193 gfp_t gfp_mask, const void *caller)
3194 {
3195 struct vmap_area *va;
3196 struct vm_struct *area;
3197 unsigned long requested_size = size;
3198
3199 BUG_ON(in_interrupt());
3200 size = ALIGN(size, 1ul << shift);
3201 if (unlikely(!size))
3202 return NULL;
3203
3204 if (flags & VM_IOREMAP)
3205 align = 1ul << clamp_t(int, get_count_order_long(size),
3206 PAGE_SHIFT, IOREMAP_MAX_ORDER);
3207
3208 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
3209 if (unlikely(!area))
3210 return NULL;
3211
3212 if (!(flags & VM_NO_GUARD))
3213 size += PAGE_SIZE;
3214
3215 area->flags = flags;
3216 area->caller = caller;
3217 area->requested_size = requested_size;
3218
3219 va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0, area);
3220 if (IS_ERR(va)) {
3221 kfree(area);
3222 return NULL;
3223 }
3224
3225 /*
3226 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
3227 * best-effort approach, as they can be mapped outside of vmalloc code.
3228 * For VM_ALLOC mappings, the pages are marked as accessible after
3229 * getting mapped in __vmalloc_node_range().
3230 * With hardware tag-based KASAN, marking is skipped for
3231 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3232 */
3233 if (!(flags & VM_ALLOC))
3234 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
3235 KASAN_VMALLOC_PROT_NORMAL);
3236
3237 return area;
3238 }
3239
__get_vm_area_caller(unsigned long size,unsigned long flags,unsigned long start,unsigned long end,const void * caller)3240 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
3241 unsigned long start, unsigned long end,
3242 const void *caller)
3243 {
3244 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
3245 NUMA_NO_NODE, GFP_KERNEL, caller);
3246 }
3247
3248 /**
3249 * get_vm_area - reserve a contiguous kernel virtual area
3250 * @size: size of the area
3251 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
3252 *
3253 * Search an area of @size in the kernel virtual mapping area,
3254 * and reserved it for out purposes. Returns the area descriptor
3255 * on success or %NULL on failure.
3256 *
3257 * Return: the area descriptor on success or %NULL on failure.
3258 */
get_vm_area(unsigned long size,unsigned long flags)3259 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
3260 {
3261 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
3262 VMALLOC_START, VMALLOC_END,
3263 NUMA_NO_NODE, GFP_KERNEL,
3264 __builtin_return_address(0));
3265 }
3266
get_vm_area_caller(unsigned long size,unsigned long flags,const void * caller)3267 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
3268 const void *caller)
3269 {
3270 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
3271 VMALLOC_START, VMALLOC_END,
3272 NUMA_NO_NODE, GFP_KERNEL, caller);
3273 }
3274
3275 /**
3276 * find_vm_area - find a continuous kernel virtual area
3277 * @addr: base address
3278 *
3279 * Search for the kernel VM area starting at @addr, and return it.
3280 * It is up to the caller to do all required locking to keep the returned
3281 * pointer valid.
3282 *
3283 * Return: the area descriptor on success or %NULL on failure.
3284 */
find_vm_area(const void * addr)3285 struct vm_struct *find_vm_area(const void *addr)
3286 {
3287 struct vmap_area *va;
3288
3289 va = find_vmap_area((unsigned long)addr);
3290 if (!va)
3291 return NULL;
3292
3293 return va->vm;
3294 }
3295
3296 /**
3297 * remove_vm_area - find and remove a continuous kernel virtual area
3298 * @addr: base address
3299 *
3300 * Search for the kernel VM area starting at @addr, and remove it.
3301 * This function returns the found VM area, but using it is NOT safe
3302 * on SMP machines, except for its size or flags.
3303 *
3304 * Return: the area descriptor on success or %NULL on failure.
3305 */
remove_vm_area(const void * addr)3306 struct vm_struct *remove_vm_area(const void *addr)
3307 {
3308 struct vmap_area *va;
3309 struct vm_struct *vm;
3310
3311 might_sleep();
3312
3313 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
3314 addr))
3315 return NULL;
3316
3317 va = find_unlink_vmap_area((unsigned long)addr);
3318 if (!va || !va->vm)
3319 return NULL;
3320 vm = va->vm;
3321
3322 debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
3323 debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
3324 kasan_free_module_shadow(vm);
3325 kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
3326
3327 free_unmap_vmap_area(va);
3328 return vm;
3329 }
3330
set_area_direct_map(const struct vm_struct * area,int (* set_direct_map)(struct page * page))3331 static inline void set_area_direct_map(const struct vm_struct *area,
3332 int (*set_direct_map)(struct page *page))
3333 {
3334 int i;
3335
3336 /* HUGE_VMALLOC passes small pages to set_direct_map */
3337 for (i = 0; i < area->nr_pages; i++)
3338 if (page_address(area->pages[i]))
3339 set_direct_map(area->pages[i]);
3340 }
3341
3342 /*
3343 * Flush the vm mapping and reset the direct map.
3344 */
vm_reset_perms(struct vm_struct * area)3345 static void vm_reset_perms(struct vm_struct *area)
3346 {
3347 unsigned long start = ULONG_MAX, end = 0;
3348 unsigned int page_order = vm_area_page_order(area);
3349 int flush_dmap = 0;
3350 int i;
3351
3352 /*
3353 * Find the start and end range of the direct mappings to make sure that
3354 * the vm_unmap_aliases() flush includes the direct map.
3355 */
3356 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
3357 unsigned long addr = (unsigned long)page_address(area->pages[i]);
3358
3359 if (addr) {
3360 unsigned long page_size;
3361
3362 page_size = PAGE_SIZE << page_order;
3363 start = min(addr, start);
3364 end = max(addr + page_size, end);
3365 flush_dmap = 1;
3366 }
3367 }
3368
3369 /*
3370 * Set direct map to something invalid so that it won't be cached if
3371 * there are any accesses after the TLB flush, then flush the TLB and
3372 * reset the direct map permissions to the default.
3373 */
3374 set_area_direct_map(area, set_direct_map_invalid_noflush);
3375 _vm_unmap_aliases(start, end, flush_dmap);
3376 set_area_direct_map(area, set_direct_map_default_noflush);
3377 }
3378
delayed_vfree_work(struct work_struct * w)3379 static void delayed_vfree_work(struct work_struct *w)
3380 {
3381 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
3382 struct llist_node *t, *llnode;
3383
3384 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
3385 vfree(llnode);
3386 }
3387
3388 /**
3389 * vfree_atomic - release memory allocated by vmalloc()
3390 * @addr: memory base address
3391 *
3392 * This one is just like vfree() but can be called in any atomic context
3393 * except NMIs.
3394 */
vfree_atomic(const void * addr)3395 void vfree_atomic(const void *addr)
3396 {
3397 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
3398
3399 BUG_ON(in_nmi());
3400 kmemleak_free(addr);
3401
3402 /*
3403 * Use raw_cpu_ptr() because this can be called from preemptible
3404 * context. Preemption is absolutely fine here, because the llist_add()
3405 * implementation is lockless, so it works even if we are adding to
3406 * another cpu's list. schedule_work() should be fine with this too.
3407 */
3408 if (addr && llist_add((struct llist_node *)addr, &p->list))
3409 schedule_work(&p->wq);
3410 }
3411
3412 /**
3413 * vfree - Release memory allocated by vmalloc()
3414 * @addr: Memory base address
3415 *
3416 * Free the virtually continuous memory area starting at @addr, as obtained
3417 * from one of the vmalloc() family of APIs. This will usually also free the
3418 * physical memory underlying the virtual allocation, but that memory is
3419 * reference counted, so it will not be freed until the last user goes away.
3420 *
3421 * If @addr is NULL, no operation is performed.
3422 *
3423 * Context:
3424 * May sleep if called *not* from interrupt context.
3425 * Must not be called in NMI context (strictly speaking, it could be
3426 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
3427 * conventions for vfree() arch-dependent would be a really bad idea).
3428 */
vfree(const void * addr)3429 void vfree(const void *addr)
3430 {
3431 struct vm_struct *vm;
3432 int i;
3433
3434 if (unlikely(in_interrupt())) {
3435 vfree_atomic(addr);
3436 return;
3437 }
3438
3439 BUG_ON(in_nmi());
3440 kmemleak_free(addr);
3441 might_sleep();
3442
3443 if (!addr)
3444 return;
3445
3446 vm = remove_vm_area(addr);
3447 if (unlikely(!vm)) {
3448 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
3449 addr);
3450 return;
3451 }
3452
3453 if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
3454 vm_reset_perms(vm);
3455 /* All pages of vm should be charged to same memcg, so use first one. */
3456 if (vm->nr_pages && !(vm->flags & VM_MAP_PUT_PAGES))
3457 mod_memcg_page_state(vm->pages[0], MEMCG_VMALLOC, -vm->nr_pages);
3458 for (i = 0; i < vm->nr_pages; i++) {
3459 struct page *page = vm->pages[i];
3460
3461 BUG_ON(!page);
3462 /*
3463 * High-order allocs for huge vmallocs are split, so
3464 * can be freed as an array of order-0 allocations
3465 */
3466 __free_page(page);
3467 cond_resched();
3468 }
3469 if (!(vm->flags & VM_MAP_PUT_PAGES))
3470 atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
3471 kvfree(vm->pages);
3472 kfree(vm);
3473 }
3474 EXPORT_SYMBOL(vfree);
3475
3476 /**
3477 * vunmap - release virtual mapping obtained by vmap()
3478 * @addr: memory base address
3479 *
3480 * Free the virtually contiguous memory area starting at @addr,
3481 * which was created from the page array passed to vmap().
3482 *
3483 * Must not be called in interrupt context.
3484 */
vunmap(const void * addr)3485 void vunmap(const void *addr)
3486 {
3487 struct vm_struct *vm;
3488
3489 BUG_ON(in_interrupt());
3490 might_sleep();
3491
3492 if (!addr)
3493 return;
3494 vm = remove_vm_area(addr);
3495 if (unlikely(!vm)) {
3496 WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
3497 addr);
3498 return;
3499 }
3500 kfree(vm);
3501 }
3502 EXPORT_SYMBOL(vunmap);
3503
3504 /**
3505 * vmap - map an array of pages into virtually contiguous space
3506 * @pages: array of page pointers
3507 * @count: number of pages to map
3508 * @flags: vm_area->flags
3509 * @prot: page protection for the mapping
3510 *
3511 * Maps @count pages from @pages into contiguous kernel virtual space.
3512 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
3513 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
3514 * are transferred from the caller to vmap(), and will be freed / dropped when
3515 * vfree() is called on the return value.
3516 *
3517 * Return: the address of the area or %NULL on failure
3518 */
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)3519 void *vmap(struct page **pages, unsigned int count,
3520 unsigned long flags, pgprot_t prot)
3521 {
3522 struct vm_struct *area;
3523 unsigned long addr;
3524 unsigned long size; /* In bytes */
3525
3526 might_sleep();
3527
3528 if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
3529 return NULL;
3530
3531 /*
3532 * Your top guard is someone else's bottom guard. Not having a top
3533 * guard compromises someone else's mappings too.
3534 */
3535 if (WARN_ON_ONCE(flags & VM_NO_GUARD))
3536 flags &= ~VM_NO_GUARD;
3537
3538 if (count > totalram_pages())
3539 return NULL;
3540
3541 size = (unsigned long)count << PAGE_SHIFT;
3542 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
3543 if (!area)
3544 return NULL;
3545
3546 addr = (unsigned long)area->addr;
3547 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
3548 pages, PAGE_SHIFT) < 0) {
3549 vunmap(area->addr);
3550 return NULL;
3551 }
3552
3553 if (flags & VM_MAP_PUT_PAGES) {
3554 area->pages = pages;
3555 area->nr_pages = count;
3556 }
3557 return area->addr;
3558 }
3559 EXPORT_SYMBOL(vmap);
3560
3561 #ifdef CONFIG_VMAP_PFN
3562 struct vmap_pfn_data {
3563 unsigned long *pfns;
3564 pgprot_t prot;
3565 unsigned int idx;
3566 };
3567
vmap_pfn_apply(pte_t * pte,unsigned long addr,void * private)3568 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
3569 {
3570 struct vmap_pfn_data *data = private;
3571 unsigned long pfn = data->pfns[data->idx];
3572 pte_t ptent;
3573
3574 if (WARN_ON_ONCE(pfn_valid(pfn)))
3575 return -EINVAL;
3576
3577 ptent = pte_mkspecial(pfn_pte(pfn, data->prot));
3578 set_pte_at(&init_mm, addr, pte, ptent);
3579
3580 data->idx++;
3581 return 0;
3582 }
3583
3584 /**
3585 * vmap_pfn - map an array of PFNs into virtually contiguous space
3586 * @pfns: array of PFNs
3587 * @count: number of pages to map
3588 * @prot: page protection for the mapping
3589 *
3590 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
3591 * the start address of the mapping.
3592 */
vmap_pfn(unsigned long * pfns,unsigned int count,pgprot_t prot)3593 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
3594 {
3595 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
3596 struct vm_struct *area;
3597
3598 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
3599 __builtin_return_address(0));
3600 if (!area)
3601 return NULL;
3602 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3603 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
3604 free_vm_area(area);
3605 return NULL;
3606 }
3607
3608 flush_cache_vmap((unsigned long)area->addr,
3609 (unsigned long)area->addr + count * PAGE_SIZE);
3610
3611 return area->addr;
3612 }
3613 EXPORT_SYMBOL_GPL(vmap_pfn);
3614 #endif /* CONFIG_VMAP_PFN */
3615
3616 /*
3617 * Helper for vmalloc to adjust the gfp flags for certain allocations.
3618 */
vmalloc_gfp_adjust(gfp_t flags,const bool large)3619 static inline gfp_t vmalloc_gfp_adjust(gfp_t flags, const bool large)
3620 {
3621 flags |= __GFP_NOWARN;
3622 if (large)
3623 flags &= ~__GFP_NOFAIL;
3624 return flags;
3625 }
3626
3627 static inline unsigned int
vm_area_alloc_pages(gfp_t gfp,int nid,unsigned int order,unsigned int nr_pages,struct page ** pages)3628 vm_area_alloc_pages(gfp_t gfp, int nid,
3629 unsigned int order, unsigned int nr_pages, struct page **pages)
3630 {
3631 unsigned int nr_allocated = 0;
3632 unsigned int nr_remaining = nr_pages;
3633 unsigned int max_attempt_order = MAX_PAGE_ORDER;
3634 struct page *page;
3635 int i;
3636 unsigned int large_order = ilog2(nr_remaining);
3637 gfp_t large_gfp = vmalloc_gfp_adjust(gfp, large_order) & ~__GFP_DIRECT_RECLAIM;
3638
3639 large_order = min(max_attempt_order, large_order);
3640
3641 /*
3642 * Initially, attempt to have the page allocator give us large order
3643 * pages. Do not attempt allocating smaller than order chunks since
3644 * __vmap_pages_range() expects physically contigous pages of exactly
3645 * order long chunks.
3646 */
3647 while (large_order > order && nr_remaining) {
3648 if (nid == NUMA_NO_NODE)
3649 page = alloc_pages_noprof(large_gfp, large_order);
3650 else
3651 page = alloc_pages_node_noprof(nid, large_gfp, large_order);
3652
3653 if (unlikely(!page)) {
3654 max_attempt_order = --large_order;
3655 continue;
3656 }
3657
3658 split_page(page, large_order);
3659 for (i = 0; i < (1U << large_order); i++)
3660 pages[nr_allocated + i] = page + i;
3661
3662 nr_allocated += 1U << large_order;
3663 nr_remaining = nr_pages - nr_allocated;
3664
3665 large_order = ilog2(nr_remaining);
3666 large_order = min(max_attempt_order, large_order);
3667 }
3668
3669 /*
3670 * For order-0 pages we make use of bulk allocator, if
3671 * the page array is partly or not at all populated due
3672 * to fails, fallback to a single page allocator that is
3673 * more permissive.
3674 */
3675 if (!order) {
3676 while (nr_allocated < nr_pages) {
3677 unsigned int nr, nr_pages_request;
3678
3679 /*
3680 * A maximum allowed request is hard-coded and is 100
3681 * pages per call. That is done in order to prevent a
3682 * long preemption off scenario in the bulk-allocator
3683 * so the range is [1:100].
3684 */
3685 nr_pages_request = min(100U, nr_pages - nr_allocated);
3686
3687 /* memory allocation should consider mempolicy, we can't
3688 * wrongly use nearest node when nid == NUMA_NO_NODE,
3689 * otherwise memory may be allocated in only one node,
3690 * but mempolicy wants to alloc memory by interleaving.
3691 */
3692 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
3693 nr = alloc_pages_bulk_mempolicy_noprof(gfp,
3694 nr_pages_request,
3695 pages + nr_allocated);
3696 else
3697 nr = alloc_pages_bulk_node_noprof(gfp, nid,
3698 nr_pages_request,
3699 pages + nr_allocated);
3700
3701 nr_allocated += nr;
3702
3703 /*
3704 * If zero or pages were obtained partly,
3705 * fallback to a single page allocator.
3706 */
3707 if (nr != nr_pages_request)
3708 break;
3709 }
3710 }
3711
3712 /* High-order pages or fallback path if "bulk" fails. */
3713 while (nr_allocated < nr_pages) {
3714 if (!(gfp & __GFP_NOFAIL) && fatal_signal_pending(current))
3715 break;
3716
3717 if (nid == NUMA_NO_NODE)
3718 page = alloc_pages_noprof(gfp, order);
3719 else
3720 page = alloc_pages_node_noprof(nid, gfp, order);
3721
3722 if (unlikely(!page))
3723 break;
3724
3725 /*
3726 * High-order allocations must be able to be treated as
3727 * independent small pages by callers (as they can with
3728 * small-page vmallocs). Some drivers do their own refcounting
3729 * on vmalloc_to_page() pages, some use page->mapping,
3730 * page->lru, etc.
3731 */
3732 if (order)
3733 split_page(page, order);
3734
3735 /*
3736 * Careful, we allocate and map page-order pages, but
3737 * tracking is done per PAGE_SIZE page so as to keep the
3738 * vm_struct APIs independent of the physical/mapped size.
3739 */
3740 for (i = 0; i < (1U << order); i++)
3741 pages[nr_allocated + i] = page + i;
3742
3743 nr_allocated += 1U << order;
3744 }
3745
3746 return nr_allocated;
3747 }
3748
3749 static LLIST_HEAD(pending_vm_area_cleanup);
cleanup_vm_area_work(struct work_struct * work)3750 static void cleanup_vm_area_work(struct work_struct *work)
3751 {
3752 struct vm_struct *area, *tmp;
3753 struct llist_node *head;
3754
3755 head = llist_del_all(&pending_vm_area_cleanup);
3756 if (!head)
3757 return;
3758
3759 llist_for_each_entry_safe(area, tmp, head, llnode) {
3760 if (!area->pages)
3761 free_vm_area(area);
3762 else
3763 vfree(area->addr);
3764 }
3765 }
3766
3767 /*
3768 * Helper for __vmalloc_area_node() to defer cleanup
3769 * of partially initialized vm_struct in error paths.
3770 */
3771 static DECLARE_WORK(cleanup_vm_area, cleanup_vm_area_work);
defer_vm_area_cleanup(struct vm_struct * area)3772 static void defer_vm_area_cleanup(struct vm_struct *area)
3773 {
3774 if (llist_add(&area->llnode, &pending_vm_area_cleanup))
3775 schedule_work(&cleanup_vm_area);
3776 }
3777
3778 /*
3779 * Page tables allocations ignore external GFP. Enforces it by
3780 * the memalloc scope API. It is used by vmalloc internals and
3781 * KASAN shadow population only.
3782 *
3783 * GFP to scope mapping:
3784 *
3785 * non-blocking (no __GFP_DIRECT_RECLAIM) - memalloc_noreclaim_save()
3786 * GFP_NOFS - memalloc_nofs_save()
3787 * GFP_NOIO - memalloc_noio_save()
3788 *
3789 * Returns a flag cookie to pair with restore.
3790 */
3791 unsigned int
memalloc_apply_gfp_scope(gfp_t gfp_mask)3792 memalloc_apply_gfp_scope(gfp_t gfp_mask)
3793 {
3794 unsigned int flags = 0;
3795
3796 if (!gfpflags_allow_blocking(gfp_mask))
3797 flags = memalloc_noreclaim_save();
3798 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3799 flags = memalloc_nofs_save();
3800 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3801 flags = memalloc_noio_save();
3802
3803 /* 0 - no scope applied. */
3804 return flags;
3805 }
3806
3807 void
memalloc_restore_scope(unsigned int flags)3808 memalloc_restore_scope(unsigned int flags)
3809 {
3810 if (flags)
3811 memalloc_flags_restore(flags);
3812 }
3813
__vmalloc_area_node(struct vm_struct * area,gfp_t gfp_mask,pgprot_t prot,unsigned int page_shift,int node)3814 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3815 pgprot_t prot, unsigned int page_shift,
3816 int node)
3817 {
3818 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
3819 bool nofail = gfp_mask & __GFP_NOFAIL;
3820 unsigned long addr = (unsigned long)area->addr;
3821 unsigned long size = get_vm_area_size(area);
3822 unsigned long array_size;
3823 unsigned int nr_small_pages = size >> PAGE_SHIFT;
3824 unsigned int page_order;
3825 unsigned int flags;
3826 int ret;
3827
3828 array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3829
3830 /* __GFP_NOFAIL and "noblock" flags are mutually exclusive. */
3831 if (!gfpflags_allow_blocking(gfp_mask))
3832 nofail = false;
3833
3834 if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3835 gfp_mask |= __GFP_HIGHMEM;
3836
3837 /* Please note that the recursion is strictly bounded. */
3838 if (array_size > PAGE_SIZE) {
3839 area->pages = __vmalloc_node_noprof(array_size, 1, nested_gfp, node,
3840 area->caller);
3841 } else {
3842 area->pages = kmalloc_node_noprof(array_size, nested_gfp, node);
3843 }
3844
3845 if (!area->pages) {
3846 warn_alloc(gfp_mask, NULL,
3847 "vmalloc error: size %lu, failed to allocated page array size %lu",
3848 nr_small_pages * PAGE_SIZE, array_size);
3849 goto fail;
3850 }
3851
3852 set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3853 page_order = vm_area_page_order(area);
3854
3855 /*
3856 * High-order nofail allocations are really expensive and
3857 * potentially dangerous (pre-mature OOM, disruptive reclaim
3858 * and compaction etc.
3859 *
3860 * Please note, the __vmalloc_node_range_noprof() falls-back
3861 * to order-0 pages if high-order attempt is unsuccessful.
3862 */
3863 area->nr_pages = vm_area_alloc_pages(
3864 vmalloc_gfp_adjust(gfp_mask, page_order), node,
3865 page_order, nr_small_pages, area->pages);
3866
3867 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3868 /* All pages of vm should be charged to same memcg, so use first one. */
3869 if (gfp_mask & __GFP_ACCOUNT && area->nr_pages)
3870 mod_memcg_page_state(area->pages[0], MEMCG_VMALLOC,
3871 area->nr_pages);
3872
3873 /*
3874 * If not enough pages were obtained to accomplish an
3875 * allocation request, free them via vfree() if any.
3876 */
3877 if (area->nr_pages != nr_small_pages) {
3878 /*
3879 * vm_area_alloc_pages() can fail due to insufficient memory but
3880 * also:-
3881 *
3882 * - a pending fatal signal
3883 * - insufficient huge page-order pages
3884 *
3885 * Since we always retry allocations at order-0 in the huge page
3886 * case a warning for either is spurious.
3887 */
3888 if (!fatal_signal_pending(current) && page_order == 0)
3889 warn_alloc(gfp_mask, NULL,
3890 "vmalloc error: size %lu, failed to allocate pages",
3891 area->nr_pages * PAGE_SIZE);
3892 goto fail;
3893 }
3894
3895 /*
3896 * page tables allocations ignore external gfp mask, enforce it
3897 * by the scope API
3898 */
3899 flags = memalloc_apply_gfp_scope(gfp_mask);
3900 do {
3901 ret = __vmap_pages_range(addr, addr + size, prot, area->pages,
3902 page_shift, nested_gfp);
3903 if (nofail && (ret < 0))
3904 schedule_timeout_uninterruptible(1);
3905 } while (nofail && (ret < 0));
3906 memalloc_restore_scope(flags);
3907
3908 if (ret < 0) {
3909 warn_alloc(gfp_mask, NULL,
3910 "vmalloc error: size %lu, failed to map pages",
3911 area->nr_pages * PAGE_SIZE);
3912 goto fail;
3913 }
3914
3915 return area->addr;
3916
3917 fail:
3918 defer_vm_area_cleanup(area);
3919 return NULL;
3920 }
3921
3922 /*
3923 * See __vmalloc_node_range() for a clear list of supported vmalloc flags.
3924 * This gfp lists all flags currently passed through vmalloc. Currently,
3925 * __GFP_ZERO is used by BPF and __GFP_NORETRY is used by percpu. Both drm
3926 * and BPF also use GFP_USER. Additionally, various users pass
3927 * GFP_KERNEL_ACCOUNT. Xfs uses __GFP_NOLOCKDEP.
3928 */
3929 #define GFP_VMALLOC_SUPPORTED (GFP_KERNEL | GFP_ATOMIC | GFP_NOWAIT |\
3930 __GFP_NOFAIL | __GFP_ZERO | __GFP_NORETRY |\
3931 GFP_NOFS | GFP_NOIO | GFP_KERNEL_ACCOUNT |\
3932 GFP_USER | __GFP_NOLOCKDEP)
3933
vmalloc_fix_flags(gfp_t flags)3934 static gfp_t vmalloc_fix_flags(gfp_t flags)
3935 {
3936 gfp_t invalid_mask = flags & ~GFP_VMALLOC_SUPPORTED;
3937
3938 flags &= GFP_VMALLOC_SUPPORTED;
3939 WARN_ONCE(1, "Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
3940 invalid_mask, &invalid_mask, flags, &flags);
3941 return flags;
3942 }
3943
3944 /**
3945 * __vmalloc_node_range - allocate virtually contiguous memory
3946 * @size: allocation size
3947 * @align: desired alignment
3948 * @start: vm area range start
3949 * @end: vm area range end
3950 * @gfp_mask: flags for the page level allocator
3951 * @prot: protection mask for the allocated pages
3952 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
3953 * @node: node to use for allocation or NUMA_NO_NODE
3954 * @caller: caller's return address
3955 *
3956 * Allocate enough pages to cover @size from the page level
3957 * allocator with @gfp_mask flags and map them into contiguous
3958 * virtual range with protection @prot.
3959 *
3960 * Supported GFP classes: %GFP_KERNEL, %GFP_ATOMIC, %GFP_NOWAIT,
3961 * %GFP_NOFS and %GFP_NOIO. Zone modifiers are not supported.
3962 * Please note %GFP_ATOMIC and %GFP_NOWAIT are supported only
3963 * by __vmalloc().
3964 *
3965 * Retry modifiers: only %__GFP_NOFAIL is supported; %__GFP_NORETRY
3966 * and %__GFP_RETRY_MAYFAIL are not supported.
3967 *
3968 * %__GFP_NOWARN can be used to suppress failure messages.
3969 *
3970 * Can not be called from interrupt nor NMI contexts.
3971 * Return: the address of the area or %NULL on failure
3972 */
__vmalloc_node_range_noprof(unsigned long size,unsigned long align,unsigned long start,unsigned long end,gfp_t gfp_mask,pgprot_t prot,unsigned long vm_flags,int node,const void * caller)3973 void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align,
3974 unsigned long start, unsigned long end, gfp_t gfp_mask,
3975 pgprot_t prot, unsigned long vm_flags, int node,
3976 const void *caller)
3977 {
3978 struct vm_struct *area;
3979 void *ret;
3980 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3981 unsigned long original_align = align;
3982 unsigned int shift = PAGE_SHIFT;
3983
3984 if (WARN_ON_ONCE(!size))
3985 return NULL;
3986
3987 if ((size >> PAGE_SHIFT) > totalram_pages()) {
3988 warn_alloc(gfp_mask, NULL,
3989 "vmalloc error: size %lu, exceeds total pages",
3990 size);
3991 return NULL;
3992 }
3993
3994 if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3995 /*
3996 * Try huge pages. Only try for PAGE_KERNEL allocations,
3997 * others like modules don't yet expect huge pages in
3998 * their allocations due to apply_to_page_range not
3999 * supporting them.
4000 */
4001
4002 if (arch_vmap_pmd_supported(prot) && size >= PMD_SIZE)
4003 shift = PMD_SHIFT;
4004 else
4005 shift = arch_vmap_pte_supported_shift(size);
4006
4007 align = max(original_align, 1UL << shift);
4008 }
4009
4010 again:
4011 area = __get_vm_area_node(size, align, shift, VM_ALLOC |
4012 VM_UNINITIALIZED | vm_flags, start, end, node,
4013 gfp_mask, caller);
4014 if (!area) {
4015 bool nofail = gfp_mask & __GFP_NOFAIL;
4016 warn_alloc(gfp_mask, NULL,
4017 "vmalloc error: size %lu, vm_struct allocation failed%s",
4018 size, (nofail) ? ". Retrying." : "");
4019 if (nofail) {
4020 schedule_timeout_uninterruptible(1);
4021 goto again;
4022 }
4023 goto fail;
4024 }
4025
4026 /*
4027 * Prepare arguments for __vmalloc_area_node() and
4028 * kasan_unpoison_vmalloc().
4029 */
4030 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
4031 if (kasan_hw_tags_enabled()) {
4032 /*
4033 * Modify protection bits to allow tagging.
4034 * This must be done before mapping.
4035 */
4036 prot = arch_vmap_pgprot_tagged(prot);
4037
4038 /*
4039 * Skip page_alloc poisoning and zeroing for physical
4040 * pages backing VM_ALLOC mapping. Memory is instead
4041 * poisoned and zeroed by kasan_unpoison_vmalloc().
4042 */
4043 gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO;
4044 }
4045
4046 /* Take note that the mapping is PAGE_KERNEL. */
4047 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
4048 }
4049
4050 /* Allocate physical pages and map them into vmalloc space. */
4051 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
4052 if (!ret)
4053 goto fail;
4054
4055 /*
4056 * Mark the pages as accessible, now that they are mapped.
4057 * The condition for setting KASAN_VMALLOC_INIT should complement the
4058 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
4059 * to make sure that memory is initialized under the same conditions.
4060 * Tag-based KASAN modes only assign tags to normal non-executable
4061 * allocations, see __kasan_unpoison_vmalloc().
4062 */
4063 kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
4064 if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
4065 (gfp_mask & __GFP_SKIP_ZERO))
4066 kasan_flags |= KASAN_VMALLOC_INIT;
4067 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */
4068 area->addr = kasan_unpoison_vmalloc(area->addr, size, kasan_flags);
4069
4070 /*
4071 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
4072 * flag. It means that vm_struct is not fully initialized.
4073 * Now, it is fully initialized, so remove this flag here.
4074 */
4075 clear_vm_uninitialized_flag(area);
4076
4077 if (!(vm_flags & VM_DEFER_KMEMLEAK))
4078 kmemleak_vmalloc(area, PAGE_ALIGN(size), gfp_mask);
4079
4080 return area->addr;
4081
4082 fail:
4083 if (shift > PAGE_SHIFT) {
4084 shift = PAGE_SHIFT;
4085 align = original_align;
4086 goto again;
4087 }
4088
4089 return NULL;
4090 }
4091
4092 /**
4093 * __vmalloc_node - allocate virtually contiguous memory
4094 * @size: allocation size
4095 * @align: desired alignment
4096 * @gfp_mask: flags for the page level allocator
4097 * @node: node to use for allocation or NUMA_NO_NODE
4098 * @caller: caller's return address
4099 *
4100 * Allocate enough pages to cover @size from the page level allocator with
4101 * @gfp_mask flags. Map them into contiguous kernel virtual space.
4102 *
4103 * Semantics of @gfp_mask (including reclaim/retry modifiers such as
4104 * __GFP_NOFAIL) are the same as in __vmalloc_node_range_noprof().
4105 *
4106 * Return: pointer to the allocated memory or %NULL on error
4107 */
__vmalloc_node_noprof(unsigned long size,unsigned long align,gfp_t gfp_mask,int node,const void * caller)4108 void *__vmalloc_node_noprof(unsigned long size, unsigned long align,
4109 gfp_t gfp_mask, int node, const void *caller)
4110 {
4111 return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END,
4112 gfp_mask, PAGE_KERNEL, 0, node, caller);
4113 }
4114 /*
4115 * This is only for performance analysis of vmalloc and stress purpose.
4116 * It is required by vmalloc test module, therefore do not use it other
4117 * than that.
4118 */
4119 #ifdef CONFIG_TEST_VMALLOC_MODULE
4120 EXPORT_SYMBOL_GPL(__vmalloc_node_noprof);
4121 #endif
4122
__vmalloc_noprof(unsigned long size,gfp_t gfp_mask)4123 void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask)
4124 {
4125 if (unlikely(gfp_mask & ~GFP_VMALLOC_SUPPORTED))
4126 gfp_mask = vmalloc_fix_flags(gfp_mask);
4127 return __vmalloc_node_noprof(size, 1, gfp_mask, NUMA_NO_NODE,
4128 __builtin_return_address(0));
4129 }
4130 EXPORT_SYMBOL(__vmalloc_noprof);
4131
4132 /**
4133 * vmalloc - allocate virtually contiguous memory
4134 * @size: allocation size
4135 *
4136 * Allocate enough pages to cover @size from the page level
4137 * allocator and map them into contiguous kernel virtual space.
4138 *
4139 * For tight control over page level allocator and protection flags
4140 * use __vmalloc() instead.
4141 *
4142 * Return: pointer to the allocated memory or %NULL on error
4143 */
vmalloc_noprof(unsigned long size)4144 void *vmalloc_noprof(unsigned long size)
4145 {
4146 return __vmalloc_node_noprof(size, 1, GFP_KERNEL, NUMA_NO_NODE,
4147 __builtin_return_address(0));
4148 }
4149 EXPORT_SYMBOL(vmalloc_noprof);
4150
4151 /**
4152 * vmalloc_huge_node - allocate virtually contiguous memory, allow huge pages
4153 * @size: allocation size
4154 * @gfp_mask: flags for the page level allocator
4155 * @node: node to use for allocation or NUMA_NO_NODE
4156 *
4157 * Allocate enough pages to cover @size from the page level
4158 * allocator and map them into contiguous kernel virtual space.
4159 * If @size is greater than or equal to PMD_SIZE, allow using
4160 * huge pages for the memory
4161 *
4162 * Return: pointer to the allocated memory or %NULL on error
4163 */
vmalloc_huge_node_noprof(unsigned long size,gfp_t gfp_mask,int node)4164 void *vmalloc_huge_node_noprof(unsigned long size, gfp_t gfp_mask, int node)
4165 {
4166 if (unlikely(gfp_mask & ~GFP_VMALLOC_SUPPORTED))
4167 gfp_mask = vmalloc_fix_flags(gfp_mask);
4168 return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END,
4169 gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
4170 node, __builtin_return_address(0));
4171 }
4172 EXPORT_SYMBOL_GPL(vmalloc_huge_node_noprof);
4173
4174 /**
4175 * vzalloc - allocate virtually contiguous memory with zero fill
4176 * @size: allocation size
4177 *
4178 * Allocate enough pages to cover @size from the page level
4179 * allocator and map them into contiguous kernel virtual space.
4180 * The memory allocated is set to zero.
4181 *
4182 * For tight control over page level allocator and protection flags
4183 * use __vmalloc() instead.
4184 *
4185 * Return: pointer to the allocated memory or %NULL on error
4186 */
vzalloc_noprof(unsigned long size)4187 void *vzalloc_noprof(unsigned long size)
4188 {
4189 return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
4190 __builtin_return_address(0));
4191 }
4192 EXPORT_SYMBOL(vzalloc_noprof);
4193
4194 /**
4195 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
4196 * @size: allocation size
4197 *
4198 * The resulting memory area is zeroed so it can be mapped to userspace
4199 * without leaking data.
4200 *
4201 * Return: pointer to the allocated memory or %NULL on error
4202 */
vmalloc_user_noprof(unsigned long size)4203 void *vmalloc_user_noprof(unsigned long size)
4204 {
4205 return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END,
4206 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
4207 VM_USERMAP, NUMA_NO_NODE,
4208 __builtin_return_address(0));
4209 }
4210 EXPORT_SYMBOL(vmalloc_user_noprof);
4211
4212 /**
4213 * vmalloc_node - allocate memory on a specific node
4214 * @size: allocation size
4215 * @node: numa node
4216 *
4217 * Allocate enough pages to cover @size from the page level
4218 * allocator and map them into contiguous kernel virtual space.
4219 *
4220 * For tight control over page level allocator and protection flags
4221 * use __vmalloc() instead.
4222 *
4223 * Return: pointer to the allocated memory or %NULL on error
4224 */
vmalloc_node_noprof(unsigned long size,int node)4225 void *vmalloc_node_noprof(unsigned long size, int node)
4226 {
4227 return __vmalloc_node_noprof(size, 1, GFP_KERNEL, node,
4228 __builtin_return_address(0));
4229 }
4230 EXPORT_SYMBOL(vmalloc_node_noprof);
4231
4232 /**
4233 * vzalloc_node - allocate memory on a specific node with zero fill
4234 * @size: allocation size
4235 * @node: numa node
4236 *
4237 * Allocate enough pages to cover @size from the page level
4238 * allocator and map them into contiguous kernel virtual space.
4239 * The memory allocated is set to zero.
4240 *
4241 * Return: pointer to the allocated memory or %NULL on error
4242 */
vzalloc_node_noprof(unsigned long size,int node)4243 void *vzalloc_node_noprof(unsigned long size, int node)
4244 {
4245 return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, node,
4246 __builtin_return_address(0));
4247 }
4248 EXPORT_SYMBOL(vzalloc_node_noprof);
4249
4250 /**
4251 * vrealloc_node_align_noprof - reallocate virtually contiguous memory; contents
4252 * remain unchanged
4253 * @p: object to reallocate memory for
4254 * @size: the size to reallocate
4255 * @align: requested alignment
4256 * @flags: the flags for the page level allocator
4257 * @nid: node number of the target node
4258 *
4259 * If @p is %NULL, vrealloc_XXX() behaves exactly like vmalloc_XXX(). If @size
4260 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
4261 *
4262 * If the caller wants the new memory to be on specific node *only*,
4263 * __GFP_THISNODE flag should be set, otherwise the function will try to avoid
4264 * reallocation and possibly disregard the specified @nid.
4265 *
4266 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
4267 * initial memory allocation, every subsequent call to this API for the same
4268 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
4269 * __GFP_ZERO is not fully honored by this API.
4270 *
4271 * Requesting an alignment that is bigger than the alignment of the existing
4272 * allocation will fail.
4273 *
4274 * In any case, the contents of the object pointed to are preserved up to the
4275 * lesser of the new and old sizes.
4276 *
4277 * This function must not be called concurrently with itself or vfree() for the
4278 * same memory allocation.
4279 *
4280 * Return: pointer to the allocated memory; %NULL if @size is zero or in case of
4281 * failure
4282 */
vrealloc_node_align_noprof(const void * p,size_t size,unsigned long align,gfp_t flags,int nid)4283 void *vrealloc_node_align_noprof(const void *p, size_t size, unsigned long align,
4284 gfp_t flags, int nid)
4285 {
4286 struct vm_struct *vm = NULL;
4287 size_t alloced_size = 0;
4288 size_t old_size = 0;
4289 void *n;
4290
4291 if (!size) {
4292 vfree(p);
4293 return NULL;
4294 }
4295
4296 if (p) {
4297 vm = find_vm_area(p);
4298 if (unlikely(!vm)) {
4299 WARN(1, "Trying to vrealloc() nonexistent vm area (%p)\n", p);
4300 return NULL;
4301 }
4302
4303 alloced_size = get_vm_area_size(vm);
4304 old_size = vm->requested_size;
4305 if (WARN(alloced_size < old_size,
4306 "vrealloc() has mismatched area vs requested sizes (%p)\n", p))
4307 return NULL;
4308 if (WARN(!IS_ALIGNED((unsigned long)p, align),
4309 "will not reallocate with a bigger alignment (0x%lx)\n", align))
4310 return NULL;
4311 if (unlikely(flags & __GFP_THISNODE) && nid != NUMA_NO_NODE &&
4312 nid != page_to_nid(vmalloc_to_page(p)))
4313 goto need_realloc;
4314 }
4315
4316 /*
4317 * TODO: Shrink the vm_area, i.e. unmap and free unused pages. What
4318 * would be a good heuristic for when to shrink the vm_area?
4319 */
4320 if (size <= old_size) {
4321 /* Zero out "freed" memory, potentially for future realloc. */
4322 if (want_init_on_free() || want_init_on_alloc(flags))
4323 memset((void *)p + size, 0, old_size - size);
4324 vm->requested_size = size;
4325 kasan_poison_vmalloc(p + size, old_size - size);
4326 return (void *)p;
4327 }
4328
4329 /*
4330 * We already have the bytes available in the allocation; use them.
4331 */
4332 if (size <= alloced_size) {
4333 kasan_unpoison_vmalloc(p + old_size, size - old_size,
4334 KASAN_VMALLOC_PROT_NORMAL);
4335 /*
4336 * No need to zero memory here, as unused memory will have
4337 * already been zeroed at initial allocation time or during
4338 * realloc shrink time.
4339 */
4340 vm->requested_size = size;
4341 return (void *)p;
4342 }
4343
4344 need_realloc:
4345 /* TODO: Grow the vm_area, i.e. allocate and map additional pages. */
4346 n = __vmalloc_node_noprof(size, align, flags, nid, __builtin_return_address(0));
4347
4348 if (!n)
4349 return NULL;
4350
4351 if (p) {
4352 memcpy(n, p, old_size);
4353 vfree(p);
4354 }
4355
4356 return n;
4357 }
4358
4359 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
4360 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
4361 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
4362 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
4363 #else
4364 /*
4365 * 64b systems should always have either DMA or DMA32 zones. For others
4366 * GFP_DMA32 should do the right thing and use the normal zone.
4367 */
4368 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
4369 #endif
4370
4371 /**
4372 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
4373 * @size: allocation size
4374 *
4375 * Allocate enough 32bit PA addressable pages to cover @size from the
4376 * page level allocator and map them into contiguous kernel virtual space.
4377 *
4378 * Return: pointer to the allocated memory or %NULL on error
4379 */
vmalloc_32_noprof(unsigned long size)4380 void *vmalloc_32_noprof(unsigned long size)
4381 {
4382 return __vmalloc_node_noprof(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
4383 __builtin_return_address(0));
4384 }
4385 EXPORT_SYMBOL(vmalloc_32_noprof);
4386
4387 /**
4388 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
4389 * @size: allocation size
4390 *
4391 * The resulting memory area is 32bit addressable and zeroed so it can be
4392 * mapped to userspace without leaking data.
4393 *
4394 * Return: pointer to the allocated memory or %NULL on error
4395 */
vmalloc_32_user_noprof(unsigned long size)4396 void *vmalloc_32_user_noprof(unsigned long size)
4397 {
4398 return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END,
4399 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
4400 VM_USERMAP, NUMA_NO_NODE,
4401 __builtin_return_address(0));
4402 }
4403 EXPORT_SYMBOL(vmalloc_32_user_noprof);
4404
4405 /*
4406 * Atomically zero bytes in the iterator.
4407 *
4408 * Returns the number of zeroed bytes.
4409 */
zero_iter(struct iov_iter * iter,size_t count)4410 static size_t zero_iter(struct iov_iter *iter, size_t count)
4411 {
4412 size_t remains = count;
4413
4414 while (remains > 0) {
4415 size_t num, copied;
4416
4417 num = min_t(size_t, remains, PAGE_SIZE);
4418 copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter);
4419 remains -= copied;
4420
4421 if (copied < num)
4422 break;
4423 }
4424
4425 return count - remains;
4426 }
4427
4428 /*
4429 * small helper routine, copy contents to iter from addr.
4430 * If the page is not present, fill zero.
4431 *
4432 * Returns the number of copied bytes.
4433 */
aligned_vread_iter(struct iov_iter * iter,const char * addr,size_t count)4434 static size_t aligned_vread_iter(struct iov_iter *iter,
4435 const char *addr, size_t count)
4436 {
4437 size_t remains = count;
4438 struct page *page;
4439
4440 while (remains > 0) {
4441 unsigned long offset, length;
4442 size_t copied = 0;
4443
4444 offset = offset_in_page(addr);
4445 length = PAGE_SIZE - offset;
4446 if (length > remains)
4447 length = remains;
4448 page = vmalloc_to_page(addr);
4449 /*
4450 * To do safe access to this _mapped_ area, we need lock. But
4451 * adding lock here means that we need to add overhead of
4452 * vmalloc()/vfree() calls for this _debug_ interface, rarely
4453 * used. Instead of that, we'll use an local mapping via
4454 * copy_page_to_iter_nofault() and accept a small overhead in
4455 * this access function.
4456 */
4457 if (page)
4458 copied = copy_page_to_iter_nofault(page, offset,
4459 length, iter);
4460 else
4461 copied = zero_iter(iter, length);
4462
4463 addr += copied;
4464 remains -= copied;
4465
4466 if (copied != length)
4467 break;
4468 }
4469
4470 return count - remains;
4471 }
4472
4473 /*
4474 * Read from a vm_map_ram region of memory.
4475 *
4476 * Returns the number of copied bytes.
4477 */
vmap_ram_vread_iter(struct iov_iter * iter,const char * addr,size_t count,unsigned long flags)4478 static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr,
4479 size_t count, unsigned long flags)
4480 {
4481 char *start;
4482 struct vmap_block *vb;
4483 struct xarray *xa;
4484 unsigned long offset;
4485 unsigned int rs, re;
4486 size_t remains, n;
4487
4488 /*
4489 * If it's area created by vm_map_ram() interface directly, but
4490 * not further subdividing and delegating management to vmap_block,
4491 * handle it here.
4492 */
4493 if (!(flags & VMAP_BLOCK))
4494 return aligned_vread_iter(iter, addr, count);
4495
4496 remains = count;
4497
4498 /*
4499 * Area is split into regions and tracked with vmap_block, read out
4500 * each region and zero fill the hole between regions.
4501 */
4502 xa = addr_to_vb_xa((unsigned long) addr);
4503 vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr));
4504 if (!vb)
4505 goto finished_zero;
4506
4507 spin_lock(&vb->lock);
4508 if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
4509 spin_unlock(&vb->lock);
4510 goto finished_zero;
4511 }
4512
4513 for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
4514 size_t copied;
4515
4516 if (remains == 0)
4517 goto finished;
4518
4519 start = vmap_block_vaddr(vb->va->va_start, rs);
4520
4521 if (addr < start) {
4522 size_t to_zero = min_t(size_t, start - addr, remains);
4523 size_t zeroed = zero_iter(iter, to_zero);
4524
4525 addr += zeroed;
4526 remains -= zeroed;
4527
4528 if (remains == 0 || zeroed != to_zero)
4529 goto finished;
4530 }
4531
4532 /*it could start reading from the middle of used region*/
4533 offset = offset_in_page(addr);
4534 n = ((re - rs + 1) << PAGE_SHIFT) - offset;
4535 if (n > remains)
4536 n = remains;
4537
4538 copied = aligned_vread_iter(iter, start + offset, n);
4539
4540 addr += copied;
4541 remains -= copied;
4542
4543 if (copied != n)
4544 goto finished;
4545 }
4546
4547 spin_unlock(&vb->lock);
4548
4549 finished_zero:
4550 /* zero-fill the left dirty or free regions */
4551 return count - remains + zero_iter(iter, remains);
4552 finished:
4553 /* We couldn't copy/zero everything */
4554 spin_unlock(&vb->lock);
4555 return count - remains;
4556 }
4557
4558 /**
4559 * vread_iter() - read vmalloc area in a safe way to an iterator.
4560 * @iter: the iterator to which data should be written.
4561 * @addr: vm address.
4562 * @count: number of bytes to be read.
4563 *
4564 * This function checks that addr is a valid vmalloc'ed area, and
4565 * copy data from that area to a given buffer. If the given memory range
4566 * of [addr...addr+count) includes some valid address, data is copied to
4567 * proper area of @buf. If there are memory holes, they'll be zero-filled.
4568 * IOREMAP area is treated as memory hole and no copy is done.
4569 *
4570 * If [addr...addr+count) doesn't includes any intersects with alive
4571 * vm_struct area, returns 0. @buf should be kernel's buffer.
4572 *
4573 * Note: In usual ops, vread() is never necessary because the caller
4574 * should know vmalloc() area is valid and can use memcpy().
4575 * This is for routines which have to access vmalloc area without
4576 * any information, as /proc/kcore.
4577 *
4578 * Return: number of bytes for which addr and buf should be increased
4579 * (same number as @count) or %0 if [addr...addr+count) doesn't
4580 * include any intersection with valid vmalloc area
4581 */
vread_iter(struct iov_iter * iter,const char * addr,size_t count)4582 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
4583 {
4584 struct vmap_node *vn;
4585 struct vmap_area *va;
4586 struct vm_struct *vm;
4587 char *vaddr;
4588 size_t n, size, flags, remains;
4589 unsigned long next;
4590
4591 addr = kasan_reset_tag(addr);
4592
4593 /* Don't allow overflow */
4594 if ((unsigned long) addr + count < count)
4595 count = -(unsigned long) addr;
4596
4597 remains = count;
4598
4599 vn = find_vmap_area_exceed_addr_lock((unsigned long) addr, &va);
4600 if (!vn)
4601 goto finished_zero;
4602
4603 /* no intersects with alive vmap_area */
4604 if ((unsigned long)addr + remains <= va->va_start)
4605 goto finished_zero;
4606
4607 do {
4608 size_t copied;
4609
4610 if (remains == 0)
4611 goto finished;
4612
4613 vm = va->vm;
4614 flags = va->flags & VMAP_FLAGS_MASK;
4615 /*
4616 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
4617 * be set together with VMAP_RAM.
4618 */
4619 WARN_ON(flags == VMAP_BLOCK);
4620
4621 if (!vm && !flags)
4622 goto next_va;
4623
4624 if (vm && (vm->flags & VM_UNINITIALIZED))
4625 goto next_va;
4626
4627 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4628 smp_rmb();
4629
4630 vaddr = (char *) va->va_start;
4631 size = vm ? get_vm_area_size(vm) : va_size(va);
4632
4633 if (addr >= vaddr + size)
4634 goto next_va;
4635
4636 if (addr < vaddr) {
4637 size_t to_zero = min_t(size_t, vaddr - addr, remains);
4638 size_t zeroed = zero_iter(iter, to_zero);
4639
4640 addr += zeroed;
4641 remains -= zeroed;
4642
4643 if (remains == 0 || zeroed != to_zero)
4644 goto finished;
4645 }
4646
4647 n = vaddr + size - addr;
4648 if (n > remains)
4649 n = remains;
4650
4651 if (flags & VMAP_RAM)
4652 copied = vmap_ram_vread_iter(iter, addr, n, flags);
4653 else if (!(vm && (vm->flags & (VM_IOREMAP | VM_SPARSE))))
4654 copied = aligned_vread_iter(iter, addr, n);
4655 else /* IOREMAP | SPARSE area is treated as memory hole */
4656 copied = zero_iter(iter, n);
4657
4658 addr += copied;
4659 remains -= copied;
4660
4661 if (copied != n)
4662 goto finished;
4663
4664 next_va:
4665 next = va->va_end;
4666 spin_unlock(&vn->busy.lock);
4667 } while ((vn = find_vmap_area_exceed_addr_lock(next, &va)));
4668
4669 finished_zero:
4670 if (vn)
4671 spin_unlock(&vn->busy.lock);
4672
4673 /* zero-fill memory holes */
4674 return count - remains + zero_iter(iter, remains);
4675 finished:
4676 /* Nothing remains, or We couldn't copy/zero everything. */
4677 if (vn)
4678 spin_unlock(&vn->busy.lock);
4679
4680 return count - remains;
4681 }
4682
4683 /**
4684 * remap_vmalloc_range_partial - map vmalloc pages to userspace
4685 * @vma: vma to cover
4686 * @uaddr: target user address to start at
4687 * @kaddr: virtual address of vmalloc kernel memory
4688 * @pgoff: offset from @kaddr to start at
4689 * @size: size of map area
4690 *
4691 * Returns: 0 for success, -Exxx on failure
4692 *
4693 * This function checks that @kaddr is a valid vmalloc'ed area,
4694 * and that it is big enough to cover the range starting at
4695 * @uaddr in @vma. Will return failure if that criteria isn't
4696 * met.
4697 *
4698 * Similar to remap_pfn_range() (see mm/memory.c)
4699 */
remap_vmalloc_range_partial(struct vm_area_struct * vma,unsigned long uaddr,void * kaddr,unsigned long pgoff,unsigned long size)4700 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
4701 void *kaddr, unsigned long pgoff,
4702 unsigned long size)
4703 {
4704 struct vm_struct *area;
4705 unsigned long off;
4706 unsigned long end_index;
4707
4708 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
4709 return -EINVAL;
4710
4711 size = PAGE_ALIGN(size);
4712
4713 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
4714 return -EINVAL;
4715
4716 area = find_vm_area(kaddr);
4717 if (!area)
4718 return -EINVAL;
4719
4720 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
4721 return -EINVAL;
4722
4723 if (check_add_overflow(size, off, &end_index) ||
4724 end_index > get_vm_area_size(area))
4725 return -EINVAL;
4726 kaddr += off;
4727
4728 do {
4729 struct page *page = vmalloc_to_page(kaddr);
4730 int ret;
4731
4732 ret = vm_insert_page(vma, uaddr, page);
4733 if (ret)
4734 return ret;
4735
4736 uaddr += PAGE_SIZE;
4737 kaddr += PAGE_SIZE;
4738 size -= PAGE_SIZE;
4739 } while (size > 0);
4740
4741 vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
4742
4743 return 0;
4744 }
4745
4746 /**
4747 * remap_vmalloc_range - map vmalloc pages to userspace
4748 * @vma: vma to cover (map full range of vma)
4749 * @addr: vmalloc memory
4750 * @pgoff: number of pages into addr before first page to map
4751 *
4752 * Returns: 0 for success, -Exxx on failure
4753 *
4754 * This function checks that addr is a valid vmalloc'ed area, and
4755 * that it is big enough to cover the vma. Will return failure if
4756 * that criteria isn't met.
4757 *
4758 * Similar to remap_pfn_range() (see mm/memory.c)
4759 */
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)4760 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
4761 unsigned long pgoff)
4762 {
4763 return remap_vmalloc_range_partial(vma, vma->vm_start,
4764 addr, pgoff,
4765 vma->vm_end - vma->vm_start);
4766 }
4767 EXPORT_SYMBOL(remap_vmalloc_range);
4768
free_vm_area(struct vm_struct * area)4769 void free_vm_area(struct vm_struct *area)
4770 {
4771 struct vm_struct *ret;
4772 ret = remove_vm_area(area->addr);
4773 BUG_ON(ret != area);
4774 kfree(area);
4775 }
4776 EXPORT_SYMBOL_GPL(free_vm_area);
4777
4778 #ifdef CONFIG_SMP
node_to_va(struct rb_node * n)4779 static struct vmap_area *node_to_va(struct rb_node *n)
4780 {
4781 return rb_entry_safe(n, struct vmap_area, rb_node);
4782 }
4783
4784 /**
4785 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
4786 * @addr: target address
4787 *
4788 * Returns: vmap_area if it is found. If there is no such area
4789 * the first highest(reverse order) vmap_area is returned
4790 * i.e. va->va_start < addr && va->va_end < addr or NULL
4791 * if there are no any areas before @addr.
4792 */
4793 static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)4794 pvm_find_va_enclose_addr(unsigned long addr)
4795 {
4796 struct vmap_area *va, *tmp;
4797 struct rb_node *n;
4798
4799 n = free_vmap_area_root.rb_node;
4800 va = NULL;
4801
4802 while (n) {
4803 tmp = rb_entry(n, struct vmap_area, rb_node);
4804 if (tmp->va_start <= addr) {
4805 va = tmp;
4806 if (tmp->va_end >= addr)
4807 break;
4808
4809 n = n->rb_right;
4810 } else {
4811 n = n->rb_left;
4812 }
4813 }
4814
4815 return va;
4816 }
4817
4818 /**
4819 * pvm_determine_end_from_reverse - find the highest aligned address
4820 * of free block below VMALLOC_END
4821 * @va:
4822 * in - the VA we start the search(reverse order);
4823 * out - the VA with the highest aligned end address.
4824 * @align: alignment for required highest address
4825 *
4826 * Returns: determined end address within vmap_area
4827 */
4828 static unsigned long
pvm_determine_end_from_reverse(struct vmap_area ** va,unsigned long align)4829 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
4830 {
4831 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4832 unsigned long addr;
4833
4834 if (likely(*va)) {
4835 list_for_each_entry_from_reverse((*va),
4836 &free_vmap_area_list, list) {
4837 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
4838 if ((*va)->va_start < addr)
4839 return addr;
4840 }
4841 }
4842
4843 return 0;
4844 }
4845
4846 /**
4847 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
4848 * @offsets: array containing offset of each area
4849 * @sizes: array containing size of each area
4850 * @nr_vms: the number of areas to allocate
4851 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
4852 *
4853 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
4854 * vm_structs on success, %NULL on failure
4855 *
4856 * Percpu allocator wants to use congruent vm areas so that it can
4857 * maintain the offsets among percpu areas. This function allocates
4858 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
4859 * be scattered pretty far, distance between two areas easily going up
4860 * to gigabytes. To avoid interacting with regular vmallocs, these
4861 * areas are allocated from top.
4862 *
4863 * Despite its complicated look, this allocator is rather simple. It
4864 * does everything top-down and scans free blocks from the end looking
4865 * for matching base. While scanning, if any of the areas do not fit the
4866 * base address is pulled down to fit the area. Scanning is repeated till
4867 * all the areas fit and then all necessary data structures are inserted
4868 * and the result is returned.
4869 */
pcpu_get_vm_areas(const unsigned long * offsets,const size_t * sizes,int nr_vms,size_t align)4870 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
4871 const size_t *sizes, int nr_vms,
4872 size_t align)
4873 {
4874 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
4875 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4876 struct vmap_area **vas, *va;
4877 struct vm_struct **vms;
4878 int area, area2, last_area, term_area;
4879 unsigned long base, start, size, end, last_end, orig_start, orig_end;
4880 bool purged = false;
4881
4882 /* verify parameters and allocate data structures */
4883 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
4884 for (last_area = 0, area = 0; area < nr_vms; area++) {
4885 start = offsets[area];
4886 end = start + sizes[area];
4887
4888 /* is everything aligned properly? */
4889 BUG_ON(!IS_ALIGNED(offsets[area], align));
4890 BUG_ON(!IS_ALIGNED(sizes[area], align));
4891
4892 /* detect the area with the highest address */
4893 if (start > offsets[last_area])
4894 last_area = area;
4895
4896 for (area2 = area + 1; area2 < nr_vms; area2++) {
4897 unsigned long start2 = offsets[area2];
4898 unsigned long end2 = start2 + sizes[area2];
4899
4900 BUG_ON(start2 < end && start < end2);
4901 }
4902 }
4903 last_end = offsets[last_area] + sizes[last_area];
4904
4905 if (vmalloc_end - vmalloc_start < last_end) {
4906 WARN_ON(true);
4907 return NULL;
4908 }
4909
4910 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
4911 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
4912 if (!vas || !vms)
4913 goto err_free2;
4914
4915 for (area = 0; area < nr_vms; area++) {
4916 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
4917 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
4918 if (!vas[area] || !vms[area])
4919 goto err_free;
4920 }
4921 retry:
4922 spin_lock(&free_vmap_area_lock);
4923
4924 /* start scanning - we scan from the top, begin with the last area */
4925 area = term_area = last_area;
4926 start = offsets[area];
4927 end = start + sizes[area];
4928
4929 va = pvm_find_va_enclose_addr(vmalloc_end);
4930 base = pvm_determine_end_from_reverse(&va, align) - end;
4931
4932 while (true) {
4933 /*
4934 * base might have underflowed, add last_end before
4935 * comparing.
4936 */
4937 if (base + last_end < vmalloc_start + last_end)
4938 goto overflow;
4939
4940 /*
4941 * Fitting base has not been found.
4942 */
4943 if (va == NULL)
4944 goto overflow;
4945
4946 /*
4947 * If required width exceeds current VA block, move
4948 * base downwards and then recheck.
4949 */
4950 if (base + end > va->va_end) {
4951 base = pvm_determine_end_from_reverse(&va, align) - end;
4952 term_area = area;
4953 continue;
4954 }
4955
4956 /*
4957 * If this VA does not fit, move base downwards and recheck.
4958 */
4959 if (base + start < va->va_start) {
4960 va = node_to_va(rb_prev(&va->rb_node));
4961 base = pvm_determine_end_from_reverse(&va, align) - end;
4962 term_area = area;
4963 continue;
4964 }
4965
4966 /*
4967 * This area fits, move on to the previous one. If
4968 * the previous one is the terminal one, we're done.
4969 */
4970 area = (area + nr_vms - 1) % nr_vms;
4971 if (area == term_area)
4972 break;
4973
4974 start = offsets[area];
4975 end = start + sizes[area];
4976 va = pvm_find_va_enclose_addr(base + end);
4977 }
4978
4979 /* we've found a fitting base, insert all va's */
4980 for (area = 0; area < nr_vms; area++) {
4981 int ret;
4982
4983 start = base + offsets[area];
4984 size = sizes[area];
4985
4986 va = pvm_find_va_enclose_addr(start);
4987 if (WARN_ON_ONCE(va == NULL))
4988 /* It is a BUG(), but trigger recovery instead. */
4989 goto recovery;
4990
4991 ret = va_clip(&free_vmap_area_root,
4992 &free_vmap_area_list, va, start, size);
4993 if (WARN_ON_ONCE(unlikely(ret)))
4994 /* It is a BUG(), but trigger recovery instead. */
4995 goto recovery;
4996
4997 /* Allocated area. */
4998 va = vas[area];
4999 va->va_start = start;
5000 va->va_end = start + size;
5001 }
5002
5003 spin_unlock(&free_vmap_area_lock);
5004
5005 /* populate the kasan shadow space */
5006 for (area = 0; area < nr_vms; area++) {
5007 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area], GFP_KERNEL))
5008 goto err_free_shadow;
5009 }
5010
5011 /* insert all vm's */
5012 for (area = 0; area < nr_vms; area++) {
5013 struct vmap_node *vn = addr_to_node(vas[area]->va_start);
5014
5015 spin_lock(&vn->busy.lock);
5016 insert_vmap_area(vas[area], &vn->busy.root, &vn->busy.head);
5017 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
5018 pcpu_get_vm_areas);
5019 spin_unlock(&vn->busy.lock);
5020 }
5021
5022 /*
5023 * Mark allocated areas as accessible. Do it now as a best-effort
5024 * approach, as they can be mapped outside of vmalloc code.
5025 * With hardware tag-based KASAN, marking is skipped for
5026 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
5027 */
5028 for (area = 0; area < nr_vms; area++)
5029 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
5030 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
5031
5032 kfree(vas);
5033 return vms;
5034
5035 recovery:
5036 /*
5037 * Remove previously allocated areas. There is no
5038 * need in removing these areas from the busy tree,
5039 * because they are inserted only on the final step
5040 * and when pcpu_get_vm_areas() is success.
5041 */
5042 while (area--) {
5043 orig_start = vas[area]->va_start;
5044 orig_end = vas[area]->va_end;
5045 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
5046 &free_vmap_area_list);
5047 if (va)
5048 kasan_release_vmalloc(orig_start, orig_end,
5049 va->va_start, va->va_end,
5050 KASAN_VMALLOC_PAGE_RANGE | KASAN_VMALLOC_TLB_FLUSH);
5051 vas[area] = NULL;
5052 }
5053
5054 overflow:
5055 spin_unlock(&free_vmap_area_lock);
5056 if (!purged) {
5057 reclaim_and_purge_vmap_areas();
5058 purged = true;
5059
5060 /* Before "retry", check if we recover. */
5061 for (area = 0; area < nr_vms; area++) {
5062 if (vas[area])
5063 continue;
5064
5065 vas[area] = kmem_cache_zalloc(
5066 vmap_area_cachep, GFP_KERNEL);
5067 if (!vas[area])
5068 goto err_free;
5069 }
5070
5071 goto retry;
5072 }
5073
5074 err_free:
5075 for (area = 0; area < nr_vms; area++) {
5076 if (vas[area])
5077 kmem_cache_free(vmap_area_cachep, vas[area]);
5078
5079 kfree(vms[area]);
5080 }
5081 err_free2:
5082 kfree(vas);
5083 kfree(vms);
5084 return NULL;
5085
5086 err_free_shadow:
5087 spin_lock(&free_vmap_area_lock);
5088 /*
5089 * We release all the vmalloc shadows, even the ones for regions that
5090 * hadn't been successfully added. This relies on kasan_release_vmalloc
5091 * being able to tolerate this case.
5092 */
5093 for (area = 0; area < nr_vms; area++) {
5094 orig_start = vas[area]->va_start;
5095 orig_end = vas[area]->va_end;
5096 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
5097 &free_vmap_area_list);
5098 if (va)
5099 kasan_release_vmalloc(orig_start, orig_end,
5100 va->va_start, va->va_end,
5101 KASAN_VMALLOC_PAGE_RANGE | KASAN_VMALLOC_TLB_FLUSH);
5102 vas[area] = NULL;
5103 kfree(vms[area]);
5104 }
5105 spin_unlock(&free_vmap_area_lock);
5106 kfree(vas);
5107 kfree(vms);
5108 return NULL;
5109 }
5110
5111 /**
5112 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
5113 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
5114 * @nr_vms: the number of allocated areas
5115 *
5116 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
5117 */
pcpu_free_vm_areas(struct vm_struct ** vms,int nr_vms)5118 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
5119 {
5120 int i;
5121
5122 for (i = 0; i < nr_vms; i++)
5123 free_vm_area(vms[i]);
5124 kfree(vms);
5125 }
5126 #endif /* CONFIG_SMP */
5127
5128 #ifdef CONFIG_PRINTK
vmalloc_dump_obj(void * object)5129 bool vmalloc_dump_obj(void *object)
5130 {
5131 const void *caller;
5132 struct vm_struct *vm;
5133 struct vmap_area *va;
5134 struct vmap_node *vn;
5135 unsigned long addr;
5136 unsigned int nr_pages;
5137
5138 addr = PAGE_ALIGN((unsigned long) object);
5139 vn = addr_to_node(addr);
5140
5141 if (!spin_trylock(&vn->busy.lock))
5142 return false;
5143
5144 va = __find_vmap_area(addr, &vn->busy.root);
5145 if (!va || !va->vm) {
5146 spin_unlock(&vn->busy.lock);
5147 return false;
5148 }
5149
5150 vm = va->vm;
5151 addr = (unsigned long) vm->addr;
5152 caller = vm->caller;
5153 nr_pages = vm->nr_pages;
5154 spin_unlock(&vn->busy.lock);
5155
5156 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
5157 nr_pages, addr, caller);
5158
5159 return true;
5160 }
5161 #endif
5162
5163 #ifdef CONFIG_PROC_FS
5164
5165 /*
5166 * Print number of pages allocated on each memory node.
5167 *
5168 * This function can only be called if CONFIG_NUMA is enabled
5169 * and VM_UNINITIALIZED bit in v->flags is disabled.
5170 */
show_numa_info(struct seq_file * m,struct vm_struct * v,unsigned int * counters)5171 static void show_numa_info(struct seq_file *m, struct vm_struct *v,
5172 unsigned int *counters)
5173 {
5174 unsigned int nr;
5175 unsigned int step = 1U << vm_area_page_order(v);
5176
5177 if (!counters)
5178 return;
5179
5180 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
5181
5182 for (nr = 0; nr < v->nr_pages; nr += step)
5183 counters[page_to_nid(v->pages[nr])] += step;
5184 for_each_node_state(nr, N_HIGH_MEMORY)
5185 if (counters[nr])
5186 seq_printf(m, " N%u=%u", nr, counters[nr]);
5187 }
5188
show_purge_info(struct seq_file * m)5189 static void show_purge_info(struct seq_file *m)
5190 {
5191 struct vmap_node *vn;
5192 struct vmap_area *va;
5193
5194 for_each_vmap_node(vn) {
5195 spin_lock(&vn->lazy.lock);
5196 list_for_each_entry(va, &vn->lazy.head, list) {
5197 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
5198 (void *)va->va_start, (void *)va->va_end,
5199 va_size(va));
5200 }
5201 spin_unlock(&vn->lazy.lock);
5202 }
5203 }
5204
vmalloc_info_show(struct seq_file * m,void * p)5205 static int vmalloc_info_show(struct seq_file *m, void *p)
5206 {
5207 struct vmap_node *vn;
5208 struct vmap_area *va;
5209 struct vm_struct *v;
5210 unsigned int *counters;
5211
5212 if (IS_ENABLED(CONFIG_NUMA))
5213 counters = kmalloc_array(nr_node_ids, sizeof(unsigned int), GFP_KERNEL);
5214
5215 for_each_vmap_node(vn) {
5216 spin_lock(&vn->busy.lock);
5217 list_for_each_entry(va, &vn->busy.head, list) {
5218 if (!va->vm) {
5219 if (va->flags & VMAP_RAM)
5220 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
5221 (void *)va->va_start, (void *)va->va_end,
5222 va_size(va));
5223
5224 continue;
5225 }
5226
5227 v = va->vm;
5228 if (v->flags & VM_UNINITIALIZED)
5229 continue;
5230
5231 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
5232 smp_rmb();
5233
5234 seq_printf(m, "0x%pK-0x%pK %7ld",
5235 v->addr, v->addr + v->size, v->size);
5236
5237 if (v->caller)
5238 seq_printf(m, " %pS", v->caller);
5239
5240 if (v->nr_pages)
5241 seq_printf(m, " pages=%d", v->nr_pages);
5242
5243 if (v->phys_addr)
5244 seq_printf(m, " phys=%pa", &v->phys_addr);
5245
5246 if (v->flags & VM_IOREMAP)
5247 seq_puts(m, " ioremap");
5248
5249 if (v->flags & VM_SPARSE)
5250 seq_puts(m, " sparse");
5251
5252 if (v->flags & VM_ALLOC)
5253 seq_puts(m, " vmalloc");
5254
5255 if (v->flags & VM_MAP)
5256 seq_puts(m, " vmap");
5257
5258 if (v->flags & VM_USERMAP)
5259 seq_puts(m, " user");
5260
5261 if (v->flags & VM_DMA_COHERENT)
5262 seq_puts(m, " dma-coherent");
5263
5264 if (is_vmalloc_addr(v->pages))
5265 seq_puts(m, " vpages");
5266
5267 if (IS_ENABLED(CONFIG_NUMA))
5268 show_numa_info(m, v, counters);
5269
5270 seq_putc(m, '\n');
5271 }
5272 spin_unlock(&vn->busy.lock);
5273 }
5274
5275 /*
5276 * As a final step, dump "unpurged" areas.
5277 */
5278 show_purge_info(m);
5279 if (IS_ENABLED(CONFIG_NUMA))
5280 kfree(counters);
5281 return 0;
5282 }
5283
proc_vmalloc_init(void)5284 static int __init proc_vmalloc_init(void)
5285 {
5286 proc_create_single("vmallocinfo", 0400, NULL, vmalloc_info_show);
5287 return 0;
5288 }
5289 module_init(proc_vmalloc_init);
5290
5291 #endif
5292
vmap_init_free_space(void)5293 static void __init vmap_init_free_space(void)
5294 {
5295 unsigned long vmap_start = 1;
5296 const unsigned long vmap_end = ULONG_MAX;
5297 struct vmap_area *free;
5298 struct vm_struct *busy;
5299
5300 /*
5301 * B F B B B F
5302 * -|-----|.....|-----|-----|-----|.....|-
5303 * | The KVA space |
5304 * |<--------------------------------->|
5305 */
5306 for (busy = vmlist; busy; busy = busy->next) {
5307 if ((unsigned long) busy->addr - vmap_start > 0) {
5308 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5309 if (!WARN_ON_ONCE(!free)) {
5310 free->va_start = vmap_start;
5311 free->va_end = (unsigned long) busy->addr;
5312
5313 insert_vmap_area_augment(free, NULL,
5314 &free_vmap_area_root,
5315 &free_vmap_area_list);
5316 }
5317 }
5318
5319 vmap_start = (unsigned long) busy->addr + busy->size;
5320 }
5321
5322 if (vmap_end - vmap_start > 0) {
5323 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5324 if (!WARN_ON_ONCE(!free)) {
5325 free->va_start = vmap_start;
5326 free->va_end = vmap_end;
5327
5328 insert_vmap_area_augment(free, NULL,
5329 &free_vmap_area_root,
5330 &free_vmap_area_list);
5331 }
5332 }
5333 }
5334
vmap_init_nodes(void)5335 static void vmap_init_nodes(void)
5336 {
5337 struct vmap_node *vn;
5338 int i;
5339
5340 #if BITS_PER_LONG == 64
5341 /*
5342 * A high threshold of max nodes is fixed and bound to 128,
5343 * thus a scale factor is 1 for systems where number of cores
5344 * are less or equal to specified threshold.
5345 *
5346 * As for NUMA-aware notes. For bigger systems, for example
5347 * NUMA with multi-sockets, where we can end-up with thousands
5348 * of cores in total, a "sub-numa-clustering" should be added.
5349 *
5350 * In this case a NUMA domain is considered as a single entity
5351 * with dedicated sub-nodes in it which describe one group or
5352 * set of cores. Therefore a per-domain purging is supposed to
5353 * be added as well as a per-domain balancing.
5354 */
5355 int n = clamp_t(unsigned int, num_possible_cpus(), 1, 128);
5356
5357 if (n > 1) {
5358 vn = kmalloc_array(n, sizeof(*vn), GFP_NOWAIT);
5359 if (vn) {
5360 /* Node partition is 16 pages. */
5361 vmap_zone_size = (1 << 4) * PAGE_SIZE;
5362 nr_vmap_nodes = n;
5363 vmap_nodes = vn;
5364 } else {
5365 pr_err("Failed to allocate an array. Disable a node layer\n");
5366 }
5367 }
5368 #endif
5369
5370 for_each_vmap_node(vn) {
5371 vn->busy.root = RB_ROOT;
5372 INIT_LIST_HEAD(&vn->busy.head);
5373 spin_lock_init(&vn->busy.lock);
5374
5375 vn->lazy.root = RB_ROOT;
5376 INIT_LIST_HEAD(&vn->lazy.head);
5377 spin_lock_init(&vn->lazy.lock);
5378
5379 for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
5380 INIT_LIST_HEAD(&vn->pool[i].head);
5381 WRITE_ONCE(vn->pool[i].len, 0);
5382 }
5383
5384 spin_lock_init(&vn->pool_lock);
5385 }
5386 }
5387
5388 static unsigned long
vmap_node_shrink_count(struct shrinker * shrink,struct shrink_control * sc)5389 vmap_node_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5390 {
5391 unsigned long count = 0;
5392 struct vmap_node *vn;
5393 int i;
5394
5395 for_each_vmap_node(vn) {
5396 for (i = 0; i < MAX_VA_SIZE_PAGES; i++)
5397 count += READ_ONCE(vn->pool[i].len);
5398 }
5399
5400 return count ? count : SHRINK_EMPTY;
5401 }
5402
5403 static unsigned long
vmap_node_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)5404 vmap_node_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5405 {
5406 struct vmap_node *vn;
5407
5408 for_each_vmap_node(vn)
5409 decay_va_pool_node(vn, true);
5410
5411 return SHRINK_STOP;
5412 }
5413
vmalloc_init(void)5414 void __init vmalloc_init(void)
5415 {
5416 struct shrinker *vmap_node_shrinker;
5417 struct vmap_area *va;
5418 struct vmap_node *vn;
5419 struct vm_struct *tmp;
5420 int i;
5421
5422 /*
5423 * Create the cache for vmap_area objects.
5424 */
5425 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
5426
5427 for_each_possible_cpu(i) {
5428 struct vmap_block_queue *vbq;
5429 struct vfree_deferred *p;
5430
5431 vbq = &per_cpu(vmap_block_queue, i);
5432 spin_lock_init(&vbq->lock);
5433 INIT_LIST_HEAD(&vbq->free);
5434 p = &per_cpu(vfree_deferred, i);
5435 init_llist_head(&p->list);
5436 INIT_WORK(&p->wq, delayed_vfree_work);
5437 xa_init(&vbq->vmap_blocks);
5438 }
5439
5440 /*
5441 * Setup nodes before importing vmlist.
5442 */
5443 vmap_init_nodes();
5444
5445 /* Import existing vmlist entries. */
5446 for (tmp = vmlist; tmp; tmp = tmp->next) {
5447 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5448 if (WARN_ON_ONCE(!va))
5449 continue;
5450
5451 va->va_start = (unsigned long)tmp->addr;
5452 va->va_end = va->va_start + tmp->size;
5453 va->vm = tmp;
5454
5455 vn = addr_to_node(va->va_start);
5456 insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
5457 }
5458
5459 /*
5460 * Now we can initialize a free vmap space.
5461 */
5462 vmap_init_free_space();
5463 vmap_initialized = true;
5464
5465 vmap_node_shrinker = shrinker_alloc(0, "vmap-node");
5466 if (!vmap_node_shrinker) {
5467 pr_err("Failed to allocate vmap-node shrinker!\n");
5468 return;
5469 }
5470
5471 vmap_node_shrinker->count_objects = vmap_node_shrink_count;
5472 vmap_node_shrinker->scan_objects = vmap_node_shrink_scan;
5473 shrinker_register(vmap_node_shrinker);
5474 }
5475