xref: /linux/mm/vmalloc.c (revision 7203ca412fc8e8a0588e9adc0f777d3163f8dff3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1993  Linus Torvalds
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7  *  Numa awareness, Christoph Lameter, SGI, June 2005
8  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/memcontrol.h>
35 #include <linux/llist.h>
36 #include <linux/uio.h>
37 #include <linux/bitops.h>
38 #include <linux/rbtree_augmented.h>
39 #include <linux/overflow.h>
40 #include <linux/pgtable.h>
41 #include <linux/hugetlb.h>
42 #include <linux/sched/mm.h>
43 #include <asm/tlbflush.h>
44 #include <asm/shmparam.h>
45 #include <linux/page_owner.h>
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/vmalloc.h>
49 
50 #include "internal.h"
51 #include "pgalloc-track.h"
52 
53 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
54 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
55 
set_nohugeiomap(char * str)56 static int __init set_nohugeiomap(char *str)
57 {
58 	ioremap_max_page_shift = PAGE_SHIFT;
59 	return 0;
60 }
61 early_param("nohugeiomap", set_nohugeiomap);
62 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
63 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
64 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
65 
66 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
67 static bool __ro_after_init vmap_allow_huge = true;
68 
set_nohugevmalloc(char * str)69 static int __init set_nohugevmalloc(char *str)
70 {
71 	vmap_allow_huge = false;
72 	return 0;
73 }
74 early_param("nohugevmalloc", set_nohugevmalloc);
75 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
76 static const bool vmap_allow_huge = false;
77 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
78 
is_vmalloc_addr(const void * x)79 bool is_vmalloc_addr(const void *x)
80 {
81 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
82 
83 	return addr >= VMALLOC_START && addr < VMALLOC_END;
84 }
85 EXPORT_SYMBOL(is_vmalloc_addr);
86 
87 struct vfree_deferred {
88 	struct llist_head list;
89 	struct work_struct wq;
90 };
91 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
92 
93 /*** Page table manipulation functions ***/
vmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)94 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
95 			phys_addr_t phys_addr, pgprot_t prot,
96 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
97 {
98 	pte_t *pte;
99 	u64 pfn;
100 	struct page *page;
101 	unsigned long size = PAGE_SIZE;
102 
103 	if (WARN_ON_ONCE(!PAGE_ALIGNED(end - addr)))
104 		return -EINVAL;
105 
106 	pfn = phys_addr >> PAGE_SHIFT;
107 	pte = pte_alloc_kernel_track(pmd, addr, mask);
108 	if (!pte)
109 		return -ENOMEM;
110 
111 	arch_enter_lazy_mmu_mode();
112 
113 	do {
114 		if (unlikely(!pte_none(ptep_get(pte)))) {
115 			if (pfn_valid(pfn)) {
116 				page = pfn_to_page(pfn);
117 				dump_page(page, "remapping already mapped page");
118 			}
119 			BUG();
120 		}
121 
122 #ifdef CONFIG_HUGETLB_PAGE
123 		size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
124 		if (size != PAGE_SIZE) {
125 			pte_t entry = pfn_pte(pfn, prot);
126 
127 			entry = arch_make_huge_pte(entry, ilog2(size), 0);
128 			set_huge_pte_at(&init_mm, addr, pte, entry, size);
129 			pfn += PFN_DOWN(size);
130 			continue;
131 		}
132 #endif
133 		set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
134 		pfn++;
135 	} while (pte += PFN_DOWN(size), addr += size, addr != end);
136 
137 	arch_leave_lazy_mmu_mode();
138 	*mask |= PGTBL_PTE_MODIFIED;
139 	return 0;
140 }
141 
vmap_try_huge_pmd(pmd_t * pmd,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)142 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
143 			phys_addr_t phys_addr, pgprot_t prot,
144 			unsigned int max_page_shift)
145 {
146 	if (max_page_shift < PMD_SHIFT)
147 		return 0;
148 
149 	if (!arch_vmap_pmd_supported(prot))
150 		return 0;
151 
152 	if ((end - addr) != PMD_SIZE)
153 		return 0;
154 
155 	if (!IS_ALIGNED(addr, PMD_SIZE))
156 		return 0;
157 
158 	if (!IS_ALIGNED(phys_addr, PMD_SIZE))
159 		return 0;
160 
161 	if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
162 		return 0;
163 
164 	return pmd_set_huge(pmd, phys_addr, prot);
165 }
166 
vmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)167 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
168 			phys_addr_t phys_addr, pgprot_t prot,
169 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
170 {
171 	pmd_t *pmd;
172 	unsigned long next;
173 	int err = 0;
174 
175 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
176 	if (!pmd)
177 		return -ENOMEM;
178 	do {
179 		next = pmd_addr_end(addr, end);
180 
181 		if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
182 					max_page_shift)) {
183 			*mask |= PGTBL_PMD_MODIFIED;
184 			continue;
185 		}
186 
187 		err = vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask);
188 		if (err)
189 			break;
190 	} while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
191 	return err;
192 }
193 
vmap_try_huge_pud(pud_t * pud,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)194 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
195 			phys_addr_t phys_addr, pgprot_t prot,
196 			unsigned int max_page_shift)
197 {
198 	if (max_page_shift < PUD_SHIFT)
199 		return 0;
200 
201 	if (!arch_vmap_pud_supported(prot))
202 		return 0;
203 
204 	if ((end - addr) != PUD_SIZE)
205 		return 0;
206 
207 	if (!IS_ALIGNED(addr, PUD_SIZE))
208 		return 0;
209 
210 	if (!IS_ALIGNED(phys_addr, PUD_SIZE))
211 		return 0;
212 
213 	if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
214 		return 0;
215 
216 	return pud_set_huge(pud, phys_addr, prot);
217 }
218 
vmap_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)219 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
220 			phys_addr_t phys_addr, pgprot_t prot,
221 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
222 {
223 	pud_t *pud;
224 	unsigned long next;
225 	int err = 0;
226 
227 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
228 	if (!pud)
229 		return -ENOMEM;
230 	do {
231 		next = pud_addr_end(addr, end);
232 
233 		if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
234 					max_page_shift)) {
235 			*mask |= PGTBL_PUD_MODIFIED;
236 			continue;
237 		}
238 
239 		err = vmap_pmd_range(pud, addr, next, phys_addr, prot, max_page_shift, mask);
240 		if (err)
241 			break;
242 	} while (pud++, phys_addr += (next - addr), addr = next, addr != end);
243 	return err;
244 }
245 
vmap_try_huge_p4d(p4d_t * p4d,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)246 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
247 			phys_addr_t phys_addr, pgprot_t prot,
248 			unsigned int max_page_shift)
249 {
250 	if (max_page_shift < P4D_SHIFT)
251 		return 0;
252 
253 	if (!arch_vmap_p4d_supported(prot))
254 		return 0;
255 
256 	if ((end - addr) != P4D_SIZE)
257 		return 0;
258 
259 	if (!IS_ALIGNED(addr, P4D_SIZE))
260 		return 0;
261 
262 	if (!IS_ALIGNED(phys_addr, P4D_SIZE))
263 		return 0;
264 
265 	if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
266 		return 0;
267 
268 	return p4d_set_huge(p4d, phys_addr, prot);
269 }
270 
vmap_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)271 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
272 			phys_addr_t phys_addr, pgprot_t prot,
273 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
274 {
275 	p4d_t *p4d;
276 	unsigned long next;
277 	int err = 0;
278 
279 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
280 	if (!p4d)
281 		return -ENOMEM;
282 	do {
283 		next = p4d_addr_end(addr, end);
284 
285 		if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
286 					max_page_shift)) {
287 			*mask |= PGTBL_P4D_MODIFIED;
288 			continue;
289 		}
290 
291 		err = vmap_pud_range(p4d, addr, next, phys_addr, prot, max_page_shift, mask);
292 		if (err)
293 			break;
294 	} while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
295 	return err;
296 }
297 
vmap_range_noflush(unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)298 static int vmap_range_noflush(unsigned long addr, unsigned long end,
299 			phys_addr_t phys_addr, pgprot_t prot,
300 			unsigned int max_page_shift)
301 {
302 	pgd_t *pgd;
303 	unsigned long start;
304 	unsigned long next;
305 	int err;
306 	pgtbl_mod_mask mask = 0;
307 
308 	might_sleep();
309 	BUG_ON(addr >= end);
310 
311 	start = addr;
312 	pgd = pgd_offset_k(addr);
313 	do {
314 		next = pgd_addr_end(addr, end);
315 		err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
316 					max_page_shift, &mask);
317 		if (err)
318 			break;
319 	} while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
320 
321 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
322 		arch_sync_kernel_mappings(start, end);
323 
324 	return err;
325 }
326 
vmap_page_range(unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot)327 int vmap_page_range(unsigned long addr, unsigned long end,
328 		    phys_addr_t phys_addr, pgprot_t prot)
329 {
330 	int err;
331 
332 	err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
333 				 ioremap_max_page_shift);
334 	flush_cache_vmap(addr, end);
335 	if (!err)
336 		err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
337 					       ioremap_max_page_shift);
338 	return err;
339 }
340 
ioremap_page_range(unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot)341 int ioremap_page_range(unsigned long addr, unsigned long end,
342 		phys_addr_t phys_addr, pgprot_t prot)
343 {
344 	struct vm_struct *area;
345 
346 	area = find_vm_area((void *)addr);
347 	if (!area || !(area->flags & VM_IOREMAP)) {
348 		WARN_ONCE(1, "vm_area at addr %lx is not marked as VM_IOREMAP\n", addr);
349 		return -EINVAL;
350 	}
351 	if (addr != (unsigned long)area->addr ||
352 	    (void *)end != area->addr + get_vm_area_size(area)) {
353 		WARN_ONCE(1, "ioremap request [%lx,%lx) doesn't match vm_area [%lx, %lx)\n",
354 			  addr, end, (long)area->addr,
355 			  (long)area->addr + get_vm_area_size(area));
356 		return -ERANGE;
357 	}
358 	return vmap_page_range(addr, end, phys_addr, prot);
359 }
360 
vunmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)361 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
362 			     pgtbl_mod_mask *mask)
363 {
364 	pte_t *pte;
365 	pte_t ptent;
366 	unsigned long size = PAGE_SIZE;
367 
368 	pte = pte_offset_kernel(pmd, addr);
369 	arch_enter_lazy_mmu_mode();
370 
371 	do {
372 #ifdef CONFIG_HUGETLB_PAGE
373 		size = arch_vmap_pte_range_unmap_size(addr, pte);
374 		if (size != PAGE_SIZE) {
375 			if (WARN_ON(!IS_ALIGNED(addr, size))) {
376 				addr = ALIGN_DOWN(addr, size);
377 				pte = PTR_ALIGN_DOWN(pte, sizeof(*pte) * (size >> PAGE_SHIFT));
378 			}
379 			ptent = huge_ptep_get_and_clear(&init_mm, addr, pte, size);
380 			if (WARN_ON(end - addr < size))
381 				size = end - addr;
382 		} else
383 #endif
384 			ptent = ptep_get_and_clear(&init_mm, addr, pte);
385 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
386 	} while (pte += (size >> PAGE_SHIFT), addr += size, addr != end);
387 
388 	arch_leave_lazy_mmu_mode();
389 	*mask |= PGTBL_PTE_MODIFIED;
390 }
391 
vunmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)392 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
393 			     pgtbl_mod_mask *mask)
394 {
395 	pmd_t *pmd;
396 	unsigned long next;
397 	int cleared;
398 
399 	pmd = pmd_offset(pud, addr);
400 	do {
401 		next = pmd_addr_end(addr, end);
402 
403 		cleared = pmd_clear_huge(pmd);
404 		if (cleared || pmd_bad(*pmd))
405 			*mask |= PGTBL_PMD_MODIFIED;
406 
407 		if (cleared) {
408 			WARN_ON(next - addr < PMD_SIZE);
409 			continue;
410 		}
411 		if (pmd_none_or_clear_bad(pmd))
412 			continue;
413 		vunmap_pte_range(pmd, addr, next, mask);
414 
415 		cond_resched();
416 	} while (pmd++, addr = next, addr != end);
417 }
418 
vunmap_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)419 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
420 			     pgtbl_mod_mask *mask)
421 {
422 	pud_t *pud;
423 	unsigned long next;
424 	int cleared;
425 
426 	pud = pud_offset(p4d, addr);
427 	do {
428 		next = pud_addr_end(addr, end);
429 
430 		cleared = pud_clear_huge(pud);
431 		if (cleared || pud_bad(*pud))
432 			*mask |= PGTBL_PUD_MODIFIED;
433 
434 		if (cleared) {
435 			WARN_ON(next - addr < PUD_SIZE);
436 			continue;
437 		}
438 		if (pud_none_or_clear_bad(pud))
439 			continue;
440 		vunmap_pmd_range(pud, addr, next, mask);
441 	} while (pud++, addr = next, addr != end);
442 }
443 
vunmap_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)444 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
445 			     pgtbl_mod_mask *mask)
446 {
447 	p4d_t *p4d;
448 	unsigned long next;
449 
450 	p4d = p4d_offset(pgd, addr);
451 	do {
452 		next = p4d_addr_end(addr, end);
453 
454 		p4d_clear_huge(p4d);
455 		if (p4d_bad(*p4d))
456 			*mask |= PGTBL_P4D_MODIFIED;
457 
458 		if (p4d_none_or_clear_bad(p4d))
459 			continue;
460 		vunmap_pud_range(p4d, addr, next, mask);
461 	} while (p4d++, addr = next, addr != end);
462 }
463 
464 /*
465  * vunmap_range_noflush is similar to vunmap_range, but does not
466  * flush caches or TLBs.
467  *
468  * The caller is responsible for calling flush_cache_vmap() before calling
469  * this function, and flush_tlb_kernel_range after it has returned
470  * successfully (and before the addresses are expected to cause a page fault
471  * or be re-mapped for something else, if TLB flushes are being delayed or
472  * coalesced).
473  *
474  * This is an internal function only. Do not use outside mm/.
475  */
__vunmap_range_noflush(unsigned long start,unsigned long end)476 void __vunmap_range_noflush(unsigned long start, unsigned long end)
477 {
478 	unsigned long next;
479 	pgd_t *pgd;
480 	unsigned long addr = start;
481 	pgtbl_mod_mask mask = 0;
482 
483 	BUG_ON(addr >= end);
484 	pgd = pgd_offset_k(addr);
485 	do {
486 		next = pgd_addr_end(addr, end);
487 		if (pgd_bad(*pgd))
488 			mask |= PGTBL_PGD_MODIFIED;
489 		if (pgd_none_or_clear_bad(pgd))
490 			continue;
491 		vunmap_p4d_range(pgd, addr, next, &mask);
492 	} while (pgd++, addr = next, addr != end);
493 
494 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
495 		arch_sync_kernel_mappings(start, end);
496 }
497 
vunmap_range_noflush(unsigned long start,unsigned long end)498 void vunmap_range_noflush(unsigned long start, unsigned long end)
499 {
500 	kmsan_vunmap_range_noflush(start, end);
501 	__vunmap_range_noflush(start, end);
502 }
503 
504 /**
505  * vunmap_range - unmap kernel virtual addresses
506  * @addr: start of the VM area to unmap
507  * @end: end of the VM area to unmap (non-inclusive)
508  *
509  * Clears any present PTEs in the virtual address range, flushes TLBs and
510  * caches. Any subsequent access to the address before it has been re-mapped
511  * is a kernel bug.
512  */
vunmap_range(unsigned long addr,unsigned long end)513 void vunmap_range(unsigned long addr, unsigned long end)
514 {
515 	flush_cache_vunmap(addr, end);
516 	vunmap_range_noflush(addr, end);
517 	flush_tlb_kernel_range(addr, end);
518 }
519 
vmap_pages_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)520 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
521 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
522 		pgtbl_mod_mask *mask)
523 {
524 	int err = 0;
525 	pte_t *pte;
526 
527 	/*
528 	 * nr is a running index into the array which helps higher level
529 	 * callers keep track of where we're up to.
530 	 */
531 
532 	pte = pte_alloc_kernel_track(pmd, addr, mask);
533 	if (!pte)
534 		return -ENOMEM;
535 
536 	arch_enter_lazy_mmu_mode();
537 
538 	do {
539 		struct page *page = pages[*nr];
540 
541 		if (WARN_ON(!pte_none(ptep_get(pte)))) {
542 			err = -EBUSY;
543 			break;
544 		}
545 		if (WARN_ON(!page)) {
546 			err = -ENOMEM;
547 			break;
548 		}
549 		if (WARN_ON(!pfn_valid(page_to_pfn(page)))) {
550 			err = -EINVAL;
551 			break;
552 		}
553 
554 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
555 		(*nr)++;
556 	} while (pte++, addr += PAGE_SIZE, addr != end);
557 
558 	arch_leave_lazy_mmu_mode();
559 	*mask |= PGTBL_PTE_MODIFIED;
560 
561 	return err;
562 }
563 
vmap_pages_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)564 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
565 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
566 		pgtbl_mod_mask *mask)
567 {
568 	pmd_t *pmd;
569 	unsigned long next;
570 
571 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
572 	if (!pmd)
573 		return -ENOMEM;
574 	do {
575 		next = pmd_addr_end(addr, end);
576 		if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
577 			return -ENOMEM;
578 	} while (pmd++, addr = next, addr != end);
579 	return 0;
580 }
581 
vmap_pages_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)582 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
583 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
584 		pgtbl_mod_mask *mask)
585 {
586 	pud_t *pud;
587 	unsigned long next;
588 
589 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
590 	if (!pud)
591 		return -ENOMEM;
592 	do {
593 		next = pud_addr_end(addr, end);
594 		if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
595 			return -ENOMEM;
596 	} while (pud++, addr = next, addr != end);
597 	return 0;
598 }
599 
vmap_pages_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)600 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
601 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
602 		pgtbl_mod_mask *mask)
603 {
604 	p4d_t *p4d;
605 	unsigned long next;
606 
607 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
608 	if (!p4d)
609 		return -ENOMEM;
610 	do {
611 		next = p4d_addr_end(addr, end);
612 		if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
613 			return -ENOMEM;
614 	} while (p4d++, addr = next, addr != end);
615 	return 0;
616 }
617 
vmap_small_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages)618 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
619 		pgprot_t prot, struct page **pages)
620 {
621 	unsigned long start = addr;
622 	pgd_t *pgd;
623 	unsigned long next;
624 	int err = 0;
625 	int nr = 0;
626 	pgtbl_mod_mask mask = 0;
627 
628 	BUG_ON(addr >= end);
629 	pgd = pgd_offset_k(addr);
630 	do {
631 		next = pgd_addr_end(addr, end);
632 		if (pgd_bad(*pgd))
633 			mask |= PGTBL_PGD_MODIFIED;
634 		err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
635 		if (err)
636 			break;
637 	} while (pgd++, addr = next, addr != end);
638 
639 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
640 		arch_sync_kernel_mappings(start, end);
641 
642 	return err;
643 }
644 
645 /*
646  * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
647  * flush caches.
648  *
649  * The caller is responsible for calling flush_cache_vmap() after this
650  * function returns successfully and before the addresses are accessed.
651  *
652  * This is an internal function only. Do not use outside mm/.
653  */
__vmap_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)654 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
655 		pgprot_t prot, struct page **pages, unsigned int page_shift)
656 {
657 	unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
658 
659 	WARN_ON(page_shift < PAGE_SHIFT);
660 
661 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
662 			page_shift == PAGE_SHIFT)
663 		return vmap_small_pages_range_noflush(addr, end, prot, pages);
664 
665 	for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
666 		int err;
667 
668 		err = vmap_range_noflush(addr, addr + (1UL << page_shift),
669 					page_to_phys(pages[i]), prot,
670 					page_shift);
671 		if (err)
672 			return err;
673 
674 		addr += 1UL << page_shift;
675 	}
676 
677 	return 0;
678 }
679 
vmap_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift,gfp_t gfp_mask)680 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
681 		pgprot_t prot, struct page **pages, unsigned int page_shift,
682 		gfp_t gfp_mask)
683 {
684 	int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
685 						page_shift, gfp_mask);
686 
687 	if (ret)
688 		return ret;
689 	return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
690 }
691 
__vmap_pages_range(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift,gfp_t gfp_mask)692 static int __vmap_pages_range(unsigned long addr, unsigned long end,
693 		pgprot_t prot, struct page **pages, unsigned int page_shift,
694 		gfp_t gfp_mask)
695 {
696 	int err;
697 
698 	err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift, gfp_mask);
699 	flush_cache_vmap(addr, end);
700 	return err;
701 }
702 
703 /**
704  * vmap_pages_range - map pages to a kernel virtual address
705  * @addr: start of the VM area to map
706  * @end: end of the VM area to map (non-inclusive)
707  * @prot: page protection flags to use
708  * @pages: pages to map (always PAGE_SIZE pages)
709  * @page_shift: maximum shift that the pages may be mapped with, @pages must
710  * be aligned and contiguous up to at least this shift.
711  *
712  * RETURNS:
713  * 0 on success, -errno on failure.
714  */
vmap_pages_range(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)715 int vmap_pages_range(unsigned long addr, unsigned long end,
716 		pgprot_t prot, struct page **pages, unsigned int page_shift)
717 {
718 	return __vmap_pages_range(addr, end, prot, pages, page_shift, GFP_KERNEL);
719 }
720 
check_sparse_vm_area(struct vm_struct * area,unsigned long start,unsigned long end)721 static int check_sparse_vm_area(struct vm_struct *area, unsigned long start,
722 				unsigned long end)
723 {
724 	might_sleep();
725 	if (WARN_ON_ONCE(area->flags & VM_FLUSH_RESET_PERMS))
726 		return -EINVAL;
727 	if (WARN_ON_ONCE(area->flags & VM_NO_GUARD))
728 		return -EINVAL;
729 	if (WARN_ON_ONCE(!(area->flags & VM_SPARSE)))
730 		return -EINVAL;
731 	if ((end - start) >> PAGE_SHIFT > totalram_pages())
732 		return -E2BIG;
733 	if (start < (unsigned long)area->addr ||
734 	    (void *)end > area->addr + get_vm_area_size(area))
735 		return -ERANGE;
736 	return 0;
737 }
738 
739 /**
740  * vm_area_map_pages - map pages inside given sparse vm_area
741  * @area: vm_area
742  * @start: start address inside vm_area
743  * @end: end address inside vm_area
744  * @pages: pages to map (always PAGE_SIZE pages)
745  */
vm_area_map_pages(struct vm_struct * area,unsigned long start,unsigned long end,struct page ** pages)746 int vm_area_map_pages(struct vm_struct *area, unsigned long start,
747 		      unsigned long end, struct page **pages)
748 {
749 	int err;
750 
751 	err = check_sparse_vm_area(area, start, end);
752 	if (err)
753 		return err;
754 
755 	return vmap_pages_range(start, end, PAGE_KERNEL, pages, PAGE_SHIFT);
756 }
757 
758 /**
759  * vm_area_unmap_pages - unmap pages inside given sparse vm_area
760  * @area: vm_area
761  * @start: start address inside vm_area
762  * @end: end address inside vm_area
763  */
vm_area_unmap_pages(struct vm_struct * area,unsigned long start,unsigned long end)764 void vm_area_unmap_pages(struct vm_struct *area, unsigned long start,
765 			 unsigned long end)
766 {
767 	if (check_sparse_vm_area(area, start, end))
768 		return;
769 
770 	vunmap_range(start, end);
771 }
772 
is_vmalloc_or_module_addr(const void * x)773 int is_vmalloc_or_module_addr(const void *x)
774 {
775 	/*
776 	 * ARM, x86-64 and sparc64 put modules in a special place,
777 	 * and fall back on vmalloc() if that fails. Others
778 	 * just put it in the vmalloc space.
779 	 */
780 #if defined(CONFIG_EXECMEM) && defined(MODULES_VADDR)
781 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
782 	if (addr >= MODULES_VADDR && addr < MODULES_END)
783 		return 1;
784 #endif
785 	return is_vmalloc_addr(x);
786 }
787 EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
788 
789 /*
790  * Walk a vmap address to the struct page it maps. Huge vmap mappings will
791  * return the tail page that corresponds to the base page address, which
792  * matches small vmap mappings.
793  */
vmalloc_to_page(const void * vmalloc_addr)794 struct page *vmalloc_to_page(const void *vmalloc_addr)
795 {
796 	unsigned long addr = (unsigned long) vmalloc_addr;
797 	struct page *page = NULL;
798 	pgd_t *pgd = pgd_offset_k(addr);
799 	p4d_t *p4d;
800 	pud_t *pud;
801 	pmd_t *pmd;
802 	pte_t *ptep, pte;
803 
804 	/*
805 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
806 	 * architectures that do not vmalloc module space
807 	 */
808 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
809 
810 	if (pgd_none(*pgd))
811 		return NULL;
812 	if (WARN_ON_ONCE(pgd_leaf(*pgd)))
813 		return NULL; /* XXX: no allowance for huge pgd */
814 	if (WARN_ON_ONCE(pgd_bad(*pgd)))
815 		return NULL;
816 
817 	p4d = p4d_offset(pgd, addr);
818 	if (p4d_none(*p4d))
819 		return NULL;
820 	if (p4d_leaf(*p4d))
821 		return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
822 	if (WARN_ON_ONCE(p4d_bad(*p4d)))
823 		return NULL;
824 
825 	pud = pud_offset(p4d, addr);
826 	if (pud_none(*pud))
827 		return NULL;
828 	if (pud_leaf(*pud))
829 		return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
830 	if (WARN_ON_ONCE(pud_bad(*pud)))
831 		return NULL;
832 
833 	pmd = pmd_offset(pud, addr);
834 	if (pmd_none(*pmd))
835 		return NULL;
836 	if (pmd_leaf(*pmd))
837 		return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
838 	if (WARN_ON_ONCE(pmd_bad(*pmd)))
839 		return NULL;
840 
841 	ptep = pte_offset_kernel(pmd, addr);
842 	pte = ptep_get(ptep);
843 	if (pte_present(pte))
844 		page = pte_page(pte);
845 
846 	return page;
847 }
848 EXPORT_SYMBOL(vmalloc_to_page);
849 
850 /*
851  * Map a vmalloc()-space virtual address to the physical page frame number.
852  */
vmalloc_to_pfn(const void * vmalloc_addr)853 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
854 {
855 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
856 }
857 EXPORT_SYMBOL(vmalloc_to_pfn);
858 
859 
860 /*** Global kva allocator ***/
861 
862 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
863 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
864 
865 
866 static DEFINE_SPINLOCK(free_vmap_area_lock);
867 static bool vmap_initialized __read_mostly;
868 
869 /*
870  * This kmem_cache is used for vmap_area objects. Instead of
871  * allocating from slab we reuse an object from this cache to
872  * make things faster. Especially in "no edge" splitting of
873  * free block.
874  */
875 static struct kmem_cache *vmap_area_cachep;
876 
877 /*
878  * This linked list is used in pair with free_vmap_area_root.
879  * It gives O(1) access to prev/next to perform fast coalescing.
880  */
881 static LIST_HEAD(free_vmap_area_list);
882 
883 /*
884  * This augment red-black tree represents the free vmap space.
885  * All vmap_area objects in this tree are sorted by va->va_start
886  * address. It is used for allocation and merging when a vmap
887  * object is released.
888  *
889  * Each vmap_area node contains a maximum available free block
890  * of its sub-tree, right or left. Therefore it is possible to
891  * find a lowest match of free area.
892  */
893 static struct rb_root free_vmap_area_root = RB_ROOT;
894 
895 /*
896  * Preload a CPU with one object for "no edge" split case. The
897  * aim is to get rid of allocations from the atomic context, thus
898  * to use more permissive allocation masks.
899  */
900 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
901 
902 /*
903  * This structure defines a single, solid model where a list and
904  * rb-tree are part of one entity protected by the lock. Nodes are
905  * sorted in ascending order, thus for O(1) access to left/right
906  * neighbors a list is used as well as for sequential traversal.
907  */
908 struct rb_list {
909 	struct rb_root root;
910 	struct list_head head;
911 	spinlock_t lock;
912 };
913 
914 /*
915  * A fast size storage contains VAs up to 1M size. A pool consists
916  * of linked between each other ready to go VAs of certain sizes.
917  * An index in the pool-array corresponds to number of pages + 1.
918  */
919 #define MAX_VA_SIZE_PAGES 256
920 
921 struct vmap_pool {
922 	struct list_head head;
923 	unsigned long len;
924 };
925 
926 /*
927  * An effective vmap-node logic. Users make use of nodes instead
928  * of a global heap. It allows to balance an access and mitigate
929  * contention.
930  */
931 static struct vmap_node {
932 	/* Simple size segregated storage. */
933 	struct vmap_pool pool[MAX_VA_SIZE_PAGES];
934 	spinlock_t pool_lock;
935 	bool skip_populate;
936 
937 	/* Bookkeeping data of this node. */
938 	struct rb_list busy;
939 	struct rb_list lazy;
940 
941 	/*
942 	 * Ready-to-free areas.
943 	 */
944 	struct list_head purge_list;
945 	struct work_struct purge_work;
946 	unsigned long nr_purged;
947 } single;
948 
949 /*
950  * Initial setup consists of one single node, i.e. a balancing
951  * is fully disabled. Later on, after vmap is initialized these
952  * parameters are updated based on a system capacity.
953  */
954 static struct vmap_node *vmap_nodes = &single;
955 static __read_mostly unsigned int nr_vmap_nodes = 1;
956 static __read_mostly unsigned int vmap_zone_size = 1;
957 
958 /* A simple iterator over all vmap-nodes. */
959 #define for_each_vmap_node(vn)	\
960 	for ((vn) = &vmap_nodes[0];	\
961 		(vn) < &vmap_nodes[nr_vmap_nodes]; (vn)++)
962 
963 static inline unsigned int
addr_to_node_id(unsigned long addr)964 addr_to_node_id(unsigned long addr)
965 {
966 	return (addr / vmap_zone_size) % nr_vmap_nodes;
967 }
968 
969 static inline struct vmap_node *
addr_to_node(unsigned long addr)970 addr_to_node(unsigned long addr)
971 {
972 	return &vmap_nodes[addr_to_node_id(addr)];
973 }
974 
975 static inline struct vmap_node *
id_to_node(unsigned int id)976 id_to_node(unsigned int id)
977 {
978 	return &vmap_nodes[id % nr_vmap_nodes];
979 }
980 
981 static inline unsigned int
node_to_id(struct vmap_node * node)982 node_to_id(struct vmap_node *node)
983 {
984 	/* Pointer arithmetic. */
985 	unsigned int id = node - vmap_nodes;
986 
987 	if (likely(id < nr_vmap_nodes))
988 		return id;
989 
990 	WARN_ONCE(1, "An address 0x%p is out-of-bounds.\n", node);
991 	return 0;
992 }
993 
994 /*
995  * We use the value 0 to represent "no node", that is why
996  * an encoded value will be the node-id incremented by 1.
997  * It is always greater then 0. A valid node_id which can
998  * be encoded is [0:nr_vmap_nodes - 1]. If a passed node_id
999  * is not valid 0 is returned.
1000  */
1001 static unsigned int
encode_vn_id(unsigned int node_id)1002 encode_vn_id(unsigned int node_id)
1003 {
1004 	/* Can store U8_MAX [0:254] nodes. */
1005 	if (node_id < nr_vmap_nodes)
1006 		return (node_id + 1) << BITS_PER_BYTE;
1007 
1008 	/* Warn and no node encoded. */
1009 	WARN_ONCE(1, "Encode wrong node id (%u)\n", node_id);
1010 	return 0;
1011 }
1012 
1013 /*
1014  * Returns an encoded node-id, the valid range is within
1015  * [0:nr_vmap_nodes-1] values. Otherwise nr_vmap_nodes is
1016  * returned if extracted data is wrong.
1017  */
1018 static unsigned int
decode_vn_id(unsigned int val)1019 decode_vn_id(unsigned int val)
1020 {
1021 	unsigned int node_id = (val >> BITS_PER_BYTE) - 1;
1022 
1023 	/* Can store U8_MAX [0:254] nodes. */
1024 	if (node_id < nr_vmap_nodes)
1025 		return node_id;
1026 
1027 	/* If it was _not_ zero, warn. */
1028 	WARN_ONCE(node_id != UINT_MAX,
1029 		"Decode wrong node id (%d)\n", node_id);
1030 
1031 	return nr_vmap_nodes;
1032 }
1033 
1034 static bool
is_vn_id_valid(unsigned int node_id)1035 is_vn_id_valid(unsigned int node_id)
1036 {
1037 	if (node_id < nr_vmap_nodes)
1038 		return true;
1039 
1040 	return false;
1041 }
1042 
1043 static __always_inline unsigned long
va_size(struct vmap_area * va)1044 va_size(struct vmap_area *va)
1045 {
1046 	return (va->va_end - va->va_start);
1047 }
1048 
1049 static __always_inline unsigned long
get_subtree_max_size(struct rb_node * node)1050 get_subtree_max_size(struct rb_node *node)
1051 {
1052 	struct vmap_area *va;
1053 
1054 	va = rb_entry_safe(node, struct vmap_area, rb_node);
1055 	return va ? va->subtree_max_size : 0;
1056 }
1057 
1058 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
1059 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
1060 
1061 static void reclaim_and_purge_vmap_areas(void);
1062 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
1063 static void drain_vmap_area_work(struct work_struct *work);
1064 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
1065 
1066 static __cacheline_aligned_in_smp atomic_long_t nr_vmalloc_pages;
1067 static __cacheline_aligned_in_smp atomic_long_t vmap_lazy_nr;
1068 
vmalloc_nr_pages(void)1069 unsigned long vmalloc_nr_pages(void)
1070 {
1071 	return atomic_long_read(&nr_vmalloc_pages);
1072 }
1073 
__find_vmap_area(unsigned long addr,struct rb_root * root)1074 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
1075 {
1076 	struct rb_node *n = root->rb_node;
1077 
1078 	addr = (unsigned long)kasan_reset_tag((void *)addr);
1079 
1080 	while (n) {
1081 		struct vmap_area *va;
1082 
1083 		va = rb_entry(n, struct vmap_area, rb_node);
1084 		if (addr < va->va_start)
1085 			n = n->rb_left;
1086 		else if (addr >= va->va_end)
1087 			n = n->rb_right;
1088 		else
1089 			return va;
1090 	}
1091 
1092 	return NULL;
1093 }
1094 
1095 /* Look up the first VA which satisfies addr < va_end, NULL if none. */
1096 static struct vmap_area *
__find_vmap_area_exceed_addr(unsigned long addr,struct rb_root * root)1097 __find_vmap_area_exceed_addr(unsigned long addr, struct rb_root *root)
1098 {
1099 	struct vmap_area *va = NULL;
1100 	struct rb_node *n = root->rb_node;
1101 
1102 	addr = (unsigned long)kasan_reset_tag((void *)addr);
1103 
1104 	while (n) {
1105 		struct vmap_area *tmp;
1106 
1107 		tmp = rb_entry(n, struct vmap_area, rb_node);
1108 		if (tmp->va_end > addr) {
1109 			va = tmp;
1110 			if (tmp->va_start <= addr)
1111 				break;
1112 
1113 			n = n->rb_left;
1114 		} else
1115 			n = n->rb_right;
1116 	}
1117 
1118 	return va;
1119 }
1120 
1121 /*
1122  * Returns a node where a first VA, that satisfies addr < va_end, resides.
1123  * If success, a node is locked. A user is responsible to unlock it when a
1124  * VA is no longer needed to be accessed.
1125  *
1126  * Returns NULL if nothing found.
1127  */
1128 static struct vmap_node *
find_vmap_area_exceed_addr_lock(unsigned long addr,struct vmap_area ** va)1129 find_vmap_area_exceed_addr_lock(unsigned long addr, struct vmap_area **va)
1130 {
1131 	unsigned long va_start_lowest;
1132 	struct vmap_node *vn;
1133 
1134 repeat:
1135 	va_start_lowest = 0;
1136 
1137 	for_each_vmap_node(vn) {
1138 		spin_lock(&vn->busy.lock);
1139 		*va = __find_vmap_area_exceed_addr(addr, &vn->busy.root);
1140 
1141 		if (*va)
1142 			if (!va_start_lowest || (*va)->va_start < va_start_lowest)
1143 				va_start_lowest = (*va)->va_start;
1144 		spin_unlock(&vn->busy.lock);
1145 	}
1146 
1147 	/*
1148 	 * Check if found VA exists, it might have gone away.  In this case we
1149 	 * repeat the search because a VA has been removed concurrently and we
1150 	 * need to proceed to the next one, which is a rare case.
1151 	 */
1152 	if (va_start_lowest) {
1153 		vn = addr_to_node(va_start_lowest);
1154 
1155 		spin_lock(&vn->busy.lock);
1156 		*va = __find_vmap_area(va_start_lowest, &vn->busy.root);
1157 
1158 		if (*va)
1159 			return vn;
1160 
1161 		spin_unlock(&vn->busy.lock);
1162 		goto repeat;
1163 	}
1164 
1165 	return NULL;
1166 }
1167 
1168 /*
1169  * This function returns back addresses of parent node
1170  * and its left or right link for further processing.
1171  *
1172  * Otherwise NULL is returned. In that case all further
1173  * steps regarding inserting of conflicting overlap range
1174  * have to be declined and actually considered as a bug.
1175  */
1176 static __always_inline struct rb_node **
find_va_links(struct vmap_area * va,struct rb_root * root,struct rb_node * from,struct rb_node ** parent)1177 find_va_links(struct vmap_area *va,
1178 	struct rb_root *root, struct rb_node *from,
1179 	struct rb_node **parent)
1180 {
1181 	struct vmap_area *tmp_va;
1182 	struct rb_node **link;
1183 
1184 	if (root) {
1185 		link = &root->rb_node;
1186 		if (unlikely(!*link)) {
1187 			*parent = NULL;
1188 			return link;
1189 		}
1190 	} else {
1191 		link = &from;
1192 	}
1193 
1194 	/*
1195 	 * Go to the bottom of the tree. When we hit the last point
1196 	 * we end up with parent rb_node and correct direction, i name
1197 	 * it link, where the new va->rb_node will be attached to.
1198 	 */
1199 	do {
1200 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
1201 
1202 		/*
1203 		 * During the traversal we also do some sanity check.
1204 		 * Trigger the BUG() if there are sides(left/right)
1205 		 * or full overlaps.
1206 		 */
1207 		if (va->va_end <= tmp_va->va_start)
1208 			link = &(*link)->rb_left;
1209 		else if (va->va_start >= tmp_va->va_end)
1210 			link = &(*link)->rb_right;
1211 		else {
1212 			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
1213 				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
1214 
1215 			return NULL;
1216 		}
1217 	} while (*link);
1218 
1219 	*parent = &tmp_va->rb_node;
1220 	return link;
1221 }
1222 
1223 static __always_inline struct list_head *
get_va_next_sibling(struct rb_node * parent,struct rb_node ** link)1224 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
1225 {
1226 	struct list_head *list;
1227 
1228 	if (unlikely(!parent))
1229 		/*
1230 		 * The red-black tree where we try to find VA neighbors
1231 		 * before merging or inserting is empty, i.e. it means
1232 		 * there is no free vmap space. Normally it does not
1233 		 * happen but we handle this case anyway.
1234 		 */
1235 		return NULL;
1236 
1237 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
1238 	return (&parent->rb_right == link ? list->next : list);
1239 }
1240 
1241 static __always_inline void
__link_va(struct vmap_area * va,struct rb_root * root,struct rb_node * parent,struct rb_node ** link,struct list_head * head,bool augment)1242 __link_va(struct vmap_area *va, struct rb_root *root,
1243 	struct rb_node *parent, struct rb_node **link,
1244 	struct list_head *head, bool augment)
1245 {
1246 	/*
1247 	 * VA is still not in the list, but we can
1248 	 * identify its future previous list_head node.
1249 	 */
1250 	if (likely(parent)) {
1251 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
1252 		if (&parent->rb_right != link)
1253 			head = head->prev;
1254 	}
1255 
1256 	/* Insert to the rb-tree */
1257 	rb_link_node(&va->rb_node, parent, link);
1258 	if (augment) {
1259 		/*
1260 		 * Some explanation here. Just perform simple insertion
1261 		 * to the tree. We do not set va->subtree_max_size to
1262 		 * its current size before calling rb_insert_augmented().
1263 		 * It is because we populate the tree from the bottom
1264 		 * to parent levels when the node _is_ in the tree.
1265 		 *
1266 		 * Therefore we set subtree_max_size to zero after insertion,
1267 		 * to let __augment_tree_propagate_from() puts everything to
1268 		 * the correct order later on.
1269 		 */
1270 		rb_insert_augmented(&va->rb_node,
1271 			root, &free_vmap_area_rb_augment_cb);
1272 		va->subtree_max_size = 0;
1273 	} else {
1274 		rb_insert_color(&va->rb_node, root);
1275 	}
1276 
1277 	/* Address-sort this list */
1278 	list_add(&va->list, head);
1279 }
1280 
1281 static __always_inline void
link_va(struct vmap_area * va,struct rb_root * root,struct rb_node * parent,struct rb_node ** link,struct list_head * head)1282 link_va(struct vmap_area *va, struct rb_root *root,
1283 	struct rb_node *parent, struct rb_node **link,
1284 	struct list_head *head)
1285 {
1286 	__link_va(va, root, parent, link, head, false);
1287 }
1288 
1289 static __always_inline void
link_va_augment(struct vmap_area * va,struct rb_root * root,struct rb_node * parent,struct rb_node ** link,struct list_head * head)1290 link_va_augment(struct vmap_area *va, struct rb_root *root,
1291 	struct rb_node *parent, struct rb_node **link,
1292 	struct list_head *head)
1293 {
1294 	__link_va(va, root, parent, link, head, true);
1295 }
1296 
1297 static __always_inline void
__unlink_va(struct vmap_area * va,struct rb_root * root,bool augment)1298 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
1299 {
1300 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
1301 		return;
1302 
1303 	if (augment)
1304 		rb_erase_augmented(&va->rb_node,
1305 			root, &free_vmap_area_rb_augment_cb);
1306 	else
1307 		rb_erase(&va->rb_node, root);
1308 
1309 	list_del_init(&va->list);
1310 	RB_CLEAR_NODE(&va->rb_node);
1311 }
1312 
1313 static __always_inline void
unlink_va(struct vmap_area * va,struct rb_root * root)1314 unlink_va(struct vmap_area *va, struct rb_root *root)
1315 {
1316 	__unlink_va(va, root, false);
1317 }
1318 
1319 static __always_inline void
unlink_va_augment(struct vmap_area * va,struct rb_root * root)1320 unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1321 {
1322 	__unlink_va(va, root, true);
1323 }
1324 
1325 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1326 /*
1327  * Gets called when remove the node and rotate.
1328  */
1329 static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area * va)1330 compute_subtree_max_size(struct vmap_area *va)
1331 {
1332 	return max3(va_size(va),
1333 		get_subtree_max_size(va->rb_node.rb_left),
1334 		get_subtree_max_size(va->rb_node.rb_right));
1335 }
1336 
1337 static void
augment_tree_propagate_check(void)1338 augment_tree_propagate_check(void)
1339 {
1340 	struct vmap_area *va;
1341 	unsigned long computed_size;
1342 
1343 	list_for_each_entry(va, &free_vmap_area_list, list) {
1344 		computed_size = compute_subtree_max_size(va);
1345 		if (computed_size != va->subtree_max_size)
1346 			pr_emerg("tree is corrupted: %lu, %lu\n",
1347 				va_size(va), va->subtree_max_size);
1348 	}
1349 }
1350 #endif
1351 
1352 /*
1353  * This function populates subtree_max_size from bottom to upper
1354  * levels starting from VA point. The propagation must be done
1355  * when VA size is modified by changing its va_start/va_end. Or
1356  * in case of newly inserting of VA to the tree.
1357  *
1358  * It means that __augment_tree_propagate_from() must be called:
1359  * - After VA has been inserted to the tree(free path);
1360  * - After VA has been shrunk(allocation path);
1361  * - After VA has been increased(merging path).
1362  *
1363  * Please note that, it does not mean that upper parent nodes
1364  * and their subtree_max_size are recalculated all the time up
1365  * to the root node.
1366  *
1367  *       4--8
1368  *        /\
1369  *       /  \
1370  *      /    \
1371  *    2--2  8--8
1372  *
1373  * For example if we modify the node 4, shrinking it to 2, then
1374  * no any modification is required. If we shrink the node 2 to 1
1375  * its subtree_max_size is updated only, and set to 1. If we shrink
1376  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1377  * node becomes 4--6.
1378  */
1379 static __always_inline void
augment_tree_propagate_from(struct vmap_area * va)1380 augment_tree_propagate_from(struct vmap_area *va)
1381 {
1382 	/*
1383 	 * Populate the tree from bottom towards the root until
1384 	 * the calculated maximum available size of checked node
1385 	 * is equal to its current one.
1386 	 */
1387 	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1388 
1389 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1390 	augment_tree_propagate_check();
1391 #endif
1392 }
1393 
1394 static void
insert_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head)1395 insert_vmap_area(struct vmap_area *va,
1396 	struct rb_root *root, struct list_head *head)
1397 {
1398 	struct rb_node **link;
1399 	struct rb_node *parent;
1400 
1401 	link = find_va_links(va, root, NULL, &parent);
1402 	if (link)
1403 		link_va(va, root, parent, link, head);
1404 }
1405 
1406 static void
insert_vmap_area_augment(struct vmap_area * va,struct rb_node * from,struct rb_root * root,struct list_head * head)1407 insert_vmap_area_augment(struct vmap_area *va,
1408 	struct rb_node *from, struct rb_root *root,
1409 	struct list_head *head)
1410 {
1411 	struct rb_node **link;
1412 	struct rb_node *parent;
1413 
1414 	if (from)
1415 		link = find_va_links(va, NULL, from, &parent);
1416 	else
1417 		link = find_va_links(va, root, NULL, &parent);
1418 
1419 	if (link) {
1420 		link_va_augment(va, root, parent, link, head);
1421 		augment_tree_propagate_from(va);
1422 	}
1423 }
1424 
1425 /*
1426  * Merge de-allocated chunk of VA memory with previous
1427  * and next free blocks. If coalesce is not done a new
1428  * free area is inserted. If VA has been merged, it is
1429  * freed.
1430  *
1431  * Please note, it can return NULL in case of overlap
1432  * ranges, followed by WARN() report. Despite it is a
1433  * buggy behaviour, a system can be alive and keep
1434  * ongoing.
1435  */
1436 static __always_inline struct vmap_area *
__merge_or_add_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head,bool augment)1437 __merge_or_add_vmap_area(struct vmap_area *va,
1438 	struct rb_root *root, struct list_head *head, bool augment)
1439 {
1440 	struct vmap_area *sibling;
1441 	struct list_head *next;
1442 	struct rb_node **link;
1443 	struct rb_node *parent;
1444 	bool merged = false;
1445 
1446 	/*
1447 	 * Find a place in the tree where VA potentially will be
1448 	 * inserted, unless it is merged with its sibling/siblings.
1449 	 */
1450 	link = find_va_links(va, root, NULL, &parent);
1451 	if (!link)
1452 		return NULL;
1453 
1454 	/*
1455 	 * Get next node of VA to check if merging can be done.
1456 	 */
1457 	next = get_va_next_sibling(parent, link);
1458 	if (unlikely(next == NULL))
1459 		goto insert;
1460 
1461 	/*
1462 	 * start            end
1463 	 * |                |
1464 	 * |<------VA------>|<-----Next----->|
1465 	 *                  |                |
1466 	 *                  start            end
1467 	 */
1468 	if (next != head) {
1469 		sibling = list_entry(next, struct vmap_area, list);
1470 		if (sibling->va_start == va->va_end) {
1471 			sibling->va_start = va->va_start;
1472 
1473 			/* Free vmap_area object. */
1474 			kmem_cache_free(vmap_area_cachep, va);
1475 
1476 			/* Point to the new merged area. */
1477 			va = sibling;
1478 			merged = true;
1479 		}
1480 	}
1481 
1482 	/*
1483 	 * start            end
1484 	 * |                |
1485 	 * |<-----Prev----->|<------VA------>|
1486 	 *                  |                |
1487 	 *                  start            end
1488 	 */
1489 	if (next->prev != head) {
1490 		sibling = list_entry(next->prev, struct vmap_area, list);
1491 		if (sibling->va_end == va->va_start) {
1492 			/*
1493 			 * If both neighbors are coalesced, it is important
1494 			 * to unlink the "next" node first, followed by merging
1495 			 * with "previous" one. Otherwise the tree might not be
1496 			 * fully populated if a sibling's augmented value is
1497 			 * "normalized" because of rotation operations.
1498 			 */
1499 			if (merged)
1500 				__unlink_va(va, root, augment);
1501 
1502 			sibling->va_end = va->va_end;
1503 
1504 			/* Free vmap_area object. */
1505 			kmem_cache_free(vmap_area_cachep, va);
1506 
1507 			/* Point to the new merged area. */
1508 			va = sibling;
1509 			merged = true;
1510 		}
1511 	}
1512 
1513 insert:
1514 	if (!merged)
1515 		__link_va(va, root, parent, link, head, augment);
1516 
1517 	return va;
1518 }
1519 
1520 static __always_inline struct vmap_area *
merge_or_add_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head)1521 merge_or_add_vmap_area(struct vmap_area *va,
1522 	struct rb_root *root, struct list_head *head)
1523 {
1524 	return __merge_or_add_vmap_area(va, root, head, false);
1525 }
1526 
1527 static __always_inline struct vmap_area *
merge_or_add_vmap_area_augment(struct vmap_area * va,struct rb_root * root,struct list_head * head)1528 merge_or_add_vmap_area_augment(struct vmap_area *va,
1529 	struct rb_root *root, struct list_head *head)
1530 {
1531 	va = __merge_or_add_vmap_area(va, root, head, true);
1532 	if (va)
1533 		augment_tree_propagate_from(va);
1534 
1535 	return va;
1536 }
1537 
1538 static __always_inline bool
is_within_this_va(struct vmap_area * va,unsigned long size,unsigned long align,unsigned long vstart)1539 is_within_this_va(struct vmap_area *va, unsigned long size,
1540 	unsigned long align, unsigned long vstart)
1541 {
1542 	unsigned long nva_start_addr;
1543 
1544 	if (va->va_start > vstart)
1545 		nva_start_addr = ALIGN(va->va_start, align);
1546 	else
1547 		nva_start_addr = ALIGN(vstart, align);
1548 
1549 	/* Can be overflowed due to big size or alignment. */
1550 	if (nva_start_addr + size < nva_start_addr ||
1551 			nva_start_addr < vstart)
1552 		return false;
1553 
1554 	return (nva_start_addr + size <= va->va_end);
1555 }
1556 
1557 /*
1558  * Find the first free block(lowest start address) in the tree,
1559  * that will accomplish the request corresponding to passing
1560  * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1561  * a search length is adjusted to account for worst case alignment
1562  * overhead.
1563  */
1564 static __always_inline struct vmap_area *
find_vmap_lowest_match(struct rb_root * root,unsigned long size,unsigned long align,unsigned long vstart,bool adjust_search_size)1565 find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1566 	unsigned long align, unsigned long vstart, bool adjust_search_size)
1567 {
1568 	struct vmap_area *va;
1569 	struct rb_node *node;
1570 	unsigned long length;
1571 
1572 	/* Start from the root. */
1573 	node = root->rb_node;
1574 
1575 	/* Adjust the search size for alignment overhead. */
1576 	length = adjust_search_size ? size + align - 1 : size;
1577 
1578 	while (node) {
1579 		va = rb_entry(node, struct vmap_area, rb_node);
1580 
1581 		if (get_subtree_max_size(node->rb_left) >= length &&
1582 				vstart < va->va_start) {
1583 			node = node->rb_left;
1584 		} else {
1585 			if (is_within_this_va(va, size, align, vstart))
1586 				return va;
1587 
1588 			/*
1589 			 * Does not make sense to go deeper towards the right
1590 			 * sub-tree if it does not have a free block that is
1591 			 * equal or bigger to the requested search length.
1592 			 */
1593 			if (get_subtree_max_size(node->rb_right) >= length) {
1594 				node = node->rb_right;
1595 				continue;
1596 			}
1597 
1598 			/*
1599 			 * OK. We roll back and find the first right sub-tree,
1600 			 * that will satisfy the search criteria. It can happen
1601 			 * due to "vstart" restriction or an alignment overhead
1602 			 * that is bigger then PAGE_SIZE.
1603 			 */
1604 			while ((node = rb_parent(node))) {
1605 				va = rb_entry(node, struct vmap_area, rb_node);
1606 				if (is_within_this_va(va, size, align, vstart))
1607 					return va;
1608 
1609 				if (get_subtree_max_size(node->rb_right) >= length &&
1610 						vstart <= va->va_start) {
1611 					/*
1612 					 * Shift the vstart forward. Please note, we update it with
1613 					 * parent's start address adding "1" because we do not want
1614 					 * to enter same sub-tree after it has already been checked
1615 					 * and no suitable free block found there.
1616 					 */
1617 					vstart = va->va_start + 1;
1618 					node = node->rb_right;
1619 					break;
1620 				}
1621 			}
1622 		}
1623 	}
1624 
1625 	return NULL;
1626 }
1627 
1628 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1629 #include <linux/random.h>
1630 
1631 static struct vmap_area *
find_vmap_lowest_linear_match(struct list_head * head,unsigned long size,unsigned long align,unsigned long vstart)1632 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1633 	unsigned long align, unsigned long vstart)
1634 {
1635 	struct vmap_area *va;
1636 
1637 	list_for_each_entry(va, head, list) {
1638 		if (!is_within_this_va(va, size, align, vstart))
1639 			continue;
1640 
1641 		return va;
1642 	}
1643 
1644 	return NULL;
1645 }
1646 
1647 static void
find_vmap_lowest_match_check(struct rb_root * root,struct list_head * head,unsigned long size,unsigned long align)1648 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1649 			     unsigned long size, unsigned long align)
1650 {
1651 	struct vmap_area *va_1, *va_2;
1652 	unsigned long vstart;
1653 	unsigned int rnd;
1654 
1655 	get_random_bytes(&rnd, sizeof(rnd));
1656 	vstart = VMALLOC_START + rnd;
1657 
1658 	va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1659 	va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1660 
1661 	if (va_1 != va_2)
1662 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1663 			va_1, va_2, vstart);
1664 }
1665 #endif
1666 
1667 enum fit_type {
1668 	NOTHING_FIT = 0,
1669 	FL_FIT_TYPE = 1,	/* full fit */
1670 	LE_FIT_TYPE = 2,	/* left edge fit */
1671 	RE_FIT_TYPE = 3,	/* right edge fit */
1672 	NE_FIT_TYPE = 4		/* no edge fit */
1673 };
1674 
1675 static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area * va,unsigned long nva_start_addr,unsigned long size)1676 classify_va_fit_type(struct vmap_area *va,
1677 	unsigned long nva_start_addr, unsigned long size)
1678 {
1679 	enum fit_type type;
1680 
1681 	/* Check if it is within VA. */
1682 	if (nva_start_addr < va->va_start ||
1683 			nva_start_addr + size > va->va_end)
1684 		return NOTHING_FIT;
1685 
1686 	/* Now classify. */
1687 	if (va->va_start == nva_start_addr) {
1688 		if (va->va_end == nva_start_addr + size)
1689 			type = FL_FIT_TYPE;
1690 		else
1691 			type = LE_FIT_TYPE;
1692 	} else if (va->va_end == nva_start_addr + size) {
1693 		type = RE_FIT_TYPE;
1694 	} else {
1695 		type = NE_FIT_TYPE;
1696 	}
1697 
1698 	return type;
1699 }
1700 
1701 static __always_inline int
va_clip(struct rb_root * root,struct list_head * head,struct vmap_area * va,unsigned long nva_start_addr,unsigned long size)1702 va_clip(struct rb_root *root, struct list_head *head,
1703 		struct vmap_area *va, unsigned long nva_start_addr,
1704 		unsigned long size)
1705 {
1706 	struct vmap_area *lva = NULL;
1707 	enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1708 
1709 	if (type == FL_FIT_TYPE) {
1710 		/*
1711 		 * No need to split VA, it fully fits.
1712 		 *
1713 		 * |               |
1714 		 * V      NVA      V
1715 		 * |---------------|
1716 		 */
1717 		unlink_va_augment(va, root);
1718 		kmem_cache_free(vmap_area_cachep, va);
1719 	} else if (type == LE_FIT_TYPE) {
1720 		/*
1721 		 * Split left edge of fit VA.
1722 		 *
1723 		 * |       |
1724 		 * V  NVA  V   R
1725 		 * |-------|-------|
1726 		 */
1727 		va->va_start += size;
1728 	} else if (type == RE_FIT_TYPE) {
1729 		/*
1730 		 * Split right edge of fit VA.
1731 		 *
1732 		 *         |       |
1733 		 *     L   V  NVA  V
1734 		 * |-------|-------|
1735 		 */
1736 		va->va_end = nva_start_addr;
1737 	} else if (type == NE_FIT_TYPE) {
1738 		/*
1739 		 * Split no edge of fit VA.
1740 		 *
1741 		 *     |       |
1742 		 *   L V  NVA  V R
1743 		 * |---|-------|---|
1744 		 */
1745 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1746 		if (unlikely(!lva)) {
1747 			/*
1748 			 * For percpu allocator we do not do any pre-allocation
1749 			 * and leave it as it is. The reason is it most likely
1750 			 * never ends up with NE_FIT_TYPE splitting. In case of
1751 			 * percpu allocations offsets and sizes are aligned to
1752 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1753 			 * are its main fitting cases.
1754 			 *
1755 			 * There are a few exceptions though, as an example it is
1756 			 * a first allocation (early boot up) when we have "one"
1757 			 * big free space that has to be split.
1758 			 *
1759 			 * Also we can hit this path in case of regular "vmap"
1760 			 * allocations, if "this" current CPU was not preloaded.
1761 			 * See the comment in alloc_vmap_area() why. If so, then
1762 			 * GFP_NOWAIT is used instead to get an extra object for
1763 			 * split purpose. That is rare and most time does not
1764 			 * occur.
1765 			 *
1766 			 * What happens if an allocation gets failed. Basically,
1767 			 * an "overflow" path is triggered to purge lazily freed
1768 			 * areas to free some memory, then, the "retry" path is
1769 			 * triggered to repeat one more time. See more details
1770 			 * in alloc_vmap_area() function.
1771 			 */
1772 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1773 			if (!lva)
1774 				return -ENOMEM;
1775 		}
1776 
1777 		/*
1778 		 * Build the remainder.
1779 		 */
1780 		lva->va_start = va->va_start;
1781 		lva->va_end = nva_start_addr;
1782 
1783 		/*
1784 		 * Shrink this VA to remaining size.
1785 		 */
1786 		va->va_start = nva_start_addr + size;
1787 	} else {
1788 		return -EINVAL;
1789 	}
1790 
1791 	if (type != FL_FIT_TYPE) {
1792 		augment_tree_propagate_from(va);
1793 
1794 		if (lva)	/* type == NE_FIT_TYPE */
1795 			insert_vmap_area_augment(lva, &va->rb_node, root, head);
1796 	}
1797 
1798 	return 0;
1799 }
1800 
1801 static unsigned long
va_alloc(struct vmap_area * va,struct rb_root * root,struct list_head * head,unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend)1802 va_alloc(struct vmap_area *va,
1803 		struct rb_root *root, struct list_head *head,
1804 		unsigned long size, unsigned long align,
1805 		unsigned long vstart, unsigned long vend)
1806 {
1807 	unsigned long nva_start_addr;
1808 	int ret;
1809 
1810 	if (va->va_start > vstart)
1811 		nva_start_addr = ALIGN(va->va_start, align);
1812 	else
1813 		nva_start_addr = ALIGN(vstart, align);
1814 
1815 	/* Check the "vend" restriction. */
1816 	if (nva_start_addr + size > vend)
1817 		return -ERANGE;
1818 
1819 	/* Update the free vmap_area. */
1820 	ret = va_clip(root, head, va, nva_start_addr, size);
1821 	if (WARN_ON_ONCE(ret))
1822 		return ret;
1823 
1824 	return nva_start_addr;
1825 }
1826 
1827 /*
1828  * Returns a start address of the newly allocated area, if success.
1829  * Otherwise an error value is returned that indicates failure.
1830  */
1831 static __always_inline unsigned long
__alloc_vmap_area(struct rb_root * root,struct list_head * head,unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend)1832 __alloc_vmap_area(struct rb_root *root, struct list_head *head,
1833 	unsigned long size, unsigned long align,
1834 	unsigned long vstart, unsigned long vend)
1835 {
1836 	bool adjust_search_size = true;
1837 	unsigned long nva_start_addr;
1838 	struct vmap_area *va;
1839 
1840 	/*
1841 	 * Do not adjust when:
1842 	 *   a) align <= PAGE_SIZE, because it does not make any sense.
1843 	 *      All blocks(their start addresses) are at least PAGE_SIZE
1844 	 *      aligned anyway;
1845 	 *   b) a short range where a requested size corresponds to exactly
1846 	 *      specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1847 	 *      With adjusted search length an allocation would not succeed.
1848 	 */
1849 	if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1850 		adjust_search_size = false;
1851 
1852 	va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1853 	if (unlikely(!va))
1854 		return -ENOENT;
1855 
1856 	nva_start_addr = va_alloc(va, root, head, size, align, vstart, vend);
1857 
1858 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1859 	if (!IS_ERR_VALUE(nva_start_addr))
1860 		find_vmap_lowest_match_check(root, head, size, align);
1861 #endif
1862 
1863 	return nva_start_addr;
1864 }
1865 
1866 /*
1867  * Free a region of KVA allocated by alloc_vmap_area
1868  */
free_vmap_area(struct vmap_area * va)1869 static void free_vmap_area(struct vmap_area *va)
1870 {
1871 	struct vmap_node *vn = addr_to_node(va->va_start);
1872 
1873 	/*
1874 	 * Remove from the busy tree/list.
1875 	 */
1876 	spin_lock(&vn->busy.lock);
1877 	unlink_va(va, &vn->busy.root);
1878 	spin_unlock(&vn->busy.lock);
1879 
1880 	/*
1881 	 * Insert/Merge it back to the free tree/list.
1882 	 */
1883 	spin_lock(&free_vmap_area_lock);
1884 	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1885 	spin_unlock(&free_vmap_area_lock);
1886 }
1887 
1888 static inline void
preload_this_cpu_lock(spinlock_t * lock,gfp_t gfp_mask,int node)1889 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1890 {
1891 	struct vmap_area *va = NULL, *tmp;
1892 
1893 	/*
1894 	 * Preload this CPU with one extra vmap_area object. It is used
1895 	 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1896 	 * a CPU that does an allocation is preloaded.
1897 	 *
1898 	 * We do it in non-atomic context, thus it allows us to use more
1899 	 * permissive allocation masks to be more stable under low memory
1900 	 * condition and high memory pressure.
1901 	 */
1902 	if (!this_cpu_read(ne_fit_preload_node))
1903 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1904 
1905 	spin_lock(lock);
1906 
1907 	tmp = NULL;
1908 	if (va && !__this_cpu_try_cmpxchg(ne_fit_preload_node, &tmp, va))
1909 		kmem_cache_free(vmap_area_cachep, va);
1910 }
1911 
1912 static struct vmap_pool *
size_to_va_pool(struct vmap_node * vn,unsigned long size)1913 size_to_va_pool(struct vmap_node *vn, unsigned long size)
1914 {
1915 	unsigned int idx = (size - 1) / PAGE_SIZE;
1916 
1917 	if (idx < MAX_VA_SIZE_PAGES)
1918 		return &vn->pool[idx];
1919 
1920 	return NULL;
1921 }
1922 
1923 static bool
node_pool_add_va(struct vmap_node * n,struct vmap_area * va)1924 node_pool_add_va(struct vmap_node *n, struct vmap_area *va)
1925 {
1926 	struct vmap_pool *vp;
1927 
1928 	vp = size_to_va_pool(n, va_size(va));
1929 	if (!vp)
1930 		return false;
1931 
1932 	spin_lock(&n->pool_lock);
1933 	list_add(&va->list, &vp->head);
1934 	WRITE_ONCE(vp->len, vp->len + 1);
1935 	spin_unlock(&n->pool_lock);
1936 
1937 	return true;
1938 }
1939 
1940 static struct vmap_area *
node_pool_del_va(struct vmap_node * vn,unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend)1941 node_pool_del_va(struct vmap_node *vn, unsigned long size,
1942 		unsigned long align, unsigned long vstart,
1943 		unsigned long vend)
1944 {
1945 	struct vmap_area *va = NULL;
1946 	struct vmap_pool *vp;
1947 	int err = 0;
1948 
1949 	vp = size_to_va_pool(vn, size);
1950 	if (!vp || list_empty(&vp->head))
1951 		return NULL;
1952 
1953 	spin_lock(&vn->pool_lock);
1954 	if (!list_empty(&vp->head)) {
1955 		va = list_first_entry(&vp->head, struct vmap_area, list);
1956 
1957 		if (IS_ALIGNED(va->va_start, align)) {
1958 			/*
1959 			 * Do some sanity check and emit a warning
1960 			 * if one of below checks detects an error.
1961 			 */
1962 			err |= (va_size(va) != size);
1963 			err |= (va->va_start < vstart);
1964 			err |= (va->va_end > vend);
1965 
1966 			if (!WARN_ON_ONCE(err)) {
1967 				list_del_init(&va->list);
1968 				WRITE_ONCE(vp->len, vp->len - 1);
1969 			} else {
1970 				va = NULL;
1971 			}
1972 		} else {
1973 			list_move_tail(&va->list, &vp->head);
1974 			va = NULL;
1975 		}
1976 	}
1977 	spin_unlock(&vn->pool_lock);
1978 
1979 	return va;
1980 }
1981 
1982 static struct vmap_area *
node_alloc(unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend,unsigned long * addr,unsigned int * vn_id)1983 node_alloc(unsigned long size, unsigned long align,
1984 		unsigned long vstart, unsigned long vend,
1985 		unsigned long *addr, unsigned int *vn_id)
1986 {
1987 	struct vmap_area *va;
1988 
1989 	*vn_id = 0;
1990 	*addr = -EINVAL;
1991 
1992 	/*
1993 	 * Fallback to a global heap if not vmalloc or there
1994 	 * is only one node.
1995 	 */
1996 	if (vstart != VMALLOC_START || vend != VMALLOC_END ||
1997 			nr_vmap_nodes == 1)
1998 		return NULL;
1999 
2000 	*vn_id = raw_smp_processor_id() % nr_vmap_nodes;
2001 	va = node_pool_del_va(id_to_node(*vn_id), size, align, vstart, vend);
2002 	*vn_id = encode_vn_id(*vn_id);
2003 
2004 	if (va)
2005 		*addr = va->va_start;
2006 
2007 	return va;
2008 }
2009 
setup_vmalloc_vm(struct vm_struct * vm,struct vmap_area * va,unsigned long flags,const void * caller)2010 static inline void setup_vmalloc_vm(struct vm_struct *vm,
2011 	struct vmap_area *va, unsigned long flags, const void *caller)
2012 {
2013 	vm->flags = flags;
2014 	vm->addr = (void *)va->va_start;
2015 	vm->size = vm->requested_size = va_size(va);
2016 	vm->caller = caller;
2017 	va->vm = vm;
2018 }
2019 
2020 /*
2021  * Allocate a region of KVA of the specified size and alignment, within the
2022  * vstart and vend. If vm is passed in, the two will also be bound.
2023  */
alloc_vmap_area(unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend,int node,gfp_t gfp_mask,unsigned long va_flags,struct vm_struct * vm)2024 static struct vmap_area *alloc_vmap_area(unsigned long size,
2025 				unsigned long align,
2026 				unsigned long vstart, unsigned long vend,
2027 				int node, gfp_t gfp_mask,
2028 				unsigned long va_flags, struct vm_struct *vm)
2029 {
2030 	struct vmap_node *vn;
2031 	struct vmap_area *va;
2032 	unsigned long freed;
2033 	unsigned long addr;
2034 	unsigned int vn_id;
2035 	bool allow_block;
2036 	int purged = 0;
2037 	int ret;
2038 
2039 	if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
2040 		return ERR_PTR(-EINVAL);
2041 
2042 	if (unlikely(!vmap_initialized))
2043 		return ERR_PTR(-EBUSY);
2044 
2045 	/* Only reclaim behaviour flags are relevant. */
2046 	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
2047 	allow_block = gfpflags_allow_blocking(gfp_mask);
2048 	might_sleep_if(allow_block);
2049 
2050 	/*
2051 	 * If a VA is obtained from a global heap(if it fails here)
2052 	 * it is anyway marked with this "vn_id" so it is returned
2053 	 * to this pool's node later. Such way gives a possibility
2054 	 * to populate pools based on users demand.
2055 	 *
2056 	 * On success a ready to go VA is returned.
2057 	 */
2058 	va = node_alloc(size, align, vstart, vend, &addr, &vn_id);
2059 	if (!va) {
2060 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
2061 		if (unlikely(!va))
2062 			return ERR_PTR(-ENOMEM);
2063 
2064 		/*
2065 		 * Only scan the relevant parts containing pointers to other objects
2066 		 * to avoid false negatives.
2067 		 */
2068 		kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
2069 	}
2070 
2071 retry:
2072 	if (IS_ERR_VALUE(addr)) {
2073 		preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
2074 		addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
2075 			size, align, vstart, vend);
2076 		spin_unlock(&free_vmap_area_lock);
2077 
2078 		/*
2079 		 * This is not a fast path.  Check if yielding is needed. This
2080 		 * is the only reschedule point in the vmalloc() path.
2081 		 */
2082 		if (allow_block)
2083 			cond_resched();
2084 	}
2085 
2086 	trace_alloc_vmap_area(addr, size, align, vstart, vend, IS_ERR_VALUE(addr));
2087 
2088 	/*
2089 	 * If an allocation fails, the error value is
2090 	 * returned. Therefore trigger the overflow path.
2091 	 */
2092 	if (IS_ERR_VALUE(addr)) {
2093 		if (allow_block)
2094 			goto overflow;
2095 
2096 		/*
2097 		 * We can not trigger any reclaim logic because
2098 		 * sleeping is not allowed, thus fail an allocation.
2099 		 */
2100 		goto out_free_va;
2101 	}
2102 
2103 	va->va_start = addr;
2104 	va->va_end = addr + size;
2105 	va->vm = NULL;
2106 	va->flags = (va_flags | vn_id);
2107 
2108 	if (vm) {
2109 		vm->addr = (void *)va->va_start;
2110 		vm->size = va_size(va);
2111 		va->vm = vm;
2112 	}
2113 
2114 	vn = addr_to_node(va->va_start);
2115 
2116 	spin_lock(&vn->busy.lock);
2117 	insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
2118 	spin_unlock(&vn->busy.lock);
2119 
2120 	BUG_ON(!IS_ALIGNED(va->va_start, align));
2121 	BUG_ON(va->va_start < vstart);
2122 	BUG_ON(va->va_end > vend);
2123 
2124 	ret = kasan_populate_vmalloc(addr, size, gfp_mask);
2125 	if (ret) {
2126 		free_vmap_area(va);
2127 		return ERR_PTR(ret);
2128 	}
2129 
2130 	return va;
2131 
2132 overflow:
2133 	if (!purged) {
2134 		reclaim_and_purge_vmap_areas();
2135 		purged = 1;
2136 		goto retry;
2137 	}
2138 
2139 	freed = 0;
2140 	blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
2141 
2142 	if (freed > 0) {
2143 		purged = 0;
2144 		goto retry;
2145 	}
2146 
2147 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
2148 		pr_warn("vmalloc_node_range for size %lu failed: Address range restricted to %#lx - %#lx\n",
2149 				size, vstart, vend);
2150 
2151 out_free_va:
2152 	kmem_cache_free(vmap_area_cachep, va);
2153 	return ERR_PTR(-EBUSY);
2154 }
2155 
register_vmap_purge_notifier(struct notifier_block * nb)2156 int register_vmap_purge_notifier(struct notifier_block *nb)
2157 {
2158 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
2159 }
2160 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
2161 
unregister_vmap_purge_notifier(struct notifier_block * nb)2162 int unregister_vmap_purge_notifier(struct notifier_block *nb)
2163 {
2164 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
2165 }
2166 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
2167 
2168 /*
2169  * lazy_max_pages is the maximum amount of virtual address space we gather up
2170  * before attempting to purge with a TLB flush.
2171  *
2172  * There is a tradeoff here: a larger number will cover more kernel page tables
2173  * and take slightly longer to purge, but it will linearly reduce the number of
2174  * global TLB flushes that must be performed. It would seem natural to scale
2175  * this number up linearly with the number of CPUs (because vmapping activity
2176  * could also scale linearly with the number of CPUs), however it is likely
2177  * that in practice, workloads might be constrained in other ways that mean
2178  * vmap activity will not scale linearly with CPUs. Also, I want to be
2179  * conservative and not introduce a big latency on huge systems, so go with
2180  * a less aggressive log scale. It will still be an improvement over the old
2181  * code, and it will be simple to change the scale factor if we find that it
2182  * becomes a problem on bigger systems.
2183  */
lazy_max_pages(void)2184 static unsigned long lazy_max_pages(void)
2185 {
2186 	unsigned int log;
2187 
2188 	log = fls(num_online_cpus());
2189 
2190 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
2191 }
2192 
2193 /*
2194  * Serialize vmap purging.  There is no actual critical section protected
2195  * by this lock, but we want to avoid concurrent calls for performance
2196  * reasons and to make the pcpu_get_vm_areas more deterministic.
2197  */
2198 static DEFINE_MUTEX(vmap_purge_lock);
2199 
2200 /* for per-CPU blocks */
2201 static void purge_fragmented_blocks_allcpus(void);
2202 
2203 static void
reclaim_list_global(struct list_head * head)2204 reclaim_list_global(struct list_head *head)
2205 {
2206 	struct vmap_area *va, *n;
2207 
2208 	if (list_empty(head))
2209 		return;
2210 
2211 	spin_lock(&free_vmap_area_lock);
2212 	list_for_each_entry_safe(va, n, head, list)
2213 		merge_or_add_vmap_area_augment(va,
2214 			&free_vmap_area_root, &free_vmap_area_list);
2215 	spin_unlock(&free_vmap_area_lock);
2216 }
2217 
2218 static void
decay_va_pool_node(struct vmap_node * vn,bool full_decay)2219 decay_va_pool_node(struct vmap_node *vn, bool full_decay)
2220 {
2221 	LIST_HEAD(decay_list);
2222 	struct rb_root decay_root = RB_ROOT;
2223 	struct vmap_area *va, *nva;
2224 	unsigned long n_decay, pool_len;
2225 	int i;
2226 
2227 	for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
2228 		LIST_HEAD(tmp_list);
2229 
2230 		if (list_empty(&vn->pool[i].head))
2231 			continue;
2232 
2233 		/* Detach the pool, so no-one can access it. */
2234 		spin_lock(&vn->pool_lock);
2235 		list_replace_init(&vn->pool[i].head, &tmp_list);
2236 		spin_unlock(&vn->pool_lock);
2237 
2238 		pool_len = n_decay = vn->pool[i].len;
2239 		WRITE_ONCE(vn->pool[i].len, 0);
2240 
2241 		/* Decay a pool by ~25% out of left objects. */
2242 		if (!full_decay)
2243 			n_decay >>= 2;
2244 		pool_len -= n_decay;
2245 
2246 		list_for_each_entry_safe(va, nva, &tmp_list, list) {
2247 			if (!n_decay--)
2248 				break;
2249 
2250 			list_del_init(&va->list);
2251 			merge_or_add_vmap_area(va, &decay_root, &decay_list);
2252 		}
2253 
2254 		/*
2255 		 * Attach the pool back if it has been partly decayed.
2256 		 * Please note, it is supposed that nobody(other contexts)
2257 		 * can populate the pool therefore a simple list replace
2258 		 * operation takes place here.
2259 		 */
2260 		if (!list_empty(&tmp_list)) {
2261 			spin_lock(&vn->pool_lock);
2262 			list_replace_init(&tmp_list, &vn->pool[i].head);
2263 			WRITE_ONCE(vn->pool[i].len, pool_len);
2264 			spin_unlock(&vn->pool_lock);
2265 		}
2266 	}
2267 
2268 	reclaim_list_global(&decay_list);
2269 }
2270 
2271 static void
kasan_release_vmalloc_node(struct vmap_node * vn)2272 kasan_release_vmalloc_node(struct vmap_node *vn)
2273 {
2274 	struct vmap_area *va;
2275 	unsigned long start, end;
2276 
2277 	start = list_first_entry(&vn->purge_list, struct vmap_area, list)->va_start;
2278 	end = list_last_entry(&vn->purge_list, struct vmap_area, list)->va_end;
2279 
2280 	list_for_each_entry(va, &vn->purge_list, list) {
2281 		if (is_vmalloc_or_module_addr((void *) va->va_start))
2282 			kasan_release_vmalloc(va->va_start, va->va_end,
2283 				va->va_start, va->va_end,
2284 				KASAN_VMALLOC_PAGE_RANGE);
2285 	}
2286 
2287 	kasan_release_vmalloc(start, end, start, end, KASAN_VMALLOC_TLB_FLUSH);
2288 }
2289 
purge_vmap_node(struct work_struct * work)2290 static void purge_vmap_node(struct work_struct *work)
2291 {
2292 	struct vmap_node *vn = container_of(work,
2293 		struct vmap_node, purge_work);
2294 	unsigned long nr_purged_pages = 0;
2295 	struct vmap_area *va, *n_va;
2296 	LIST_HEAD(local_list);
2297 
2298 	if (IS_ENABLED(CONFIG_KASAN_VMALLOC))
2299 		kasan_release_vmalloc_node(vn);
2300 
2301 	vn->nr_purged = 0;
2302 
2303 	list_for_each_entry_safe(va, n_va, &vn->purge_list, list) {
2304 		unsigned long nr = va_size(va) >> PAGE_SHIFT;
2305 		unsigned int vn_id = decode_vn_id(va->flags);
2306 
2307 		list_del_init(&va->list);
2308 
2309 		nr_purged_pages += nr;
2310 		vn->nr_purged++;
2311 
2312 		if (is_vn_id_valid(vn_id) && !vn->skip_populate)
2313 			if (node_pool_add_va(vn, va))
2314 				continue;
2315 
2316 		/* Go back to global. */
2317 		list_add(&va->list, &local_list);
2318 	}
2319 
2320 	atomic_long_sub(nr_purged_pages, &vmap_lazy_nr);
2321 
2322 	reclaim_list_global(&local_list);
2323 }
2324 
2325 /*
2326  * Purges all lazily-freed vmap areas.
2327  */
__purge_vmap_area_lazy(unsigned long start,unsigned long end,bool full_pool_decay)2328 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end,
2329 		bool full_pool_decay)
2330 {
2331 	unsigned long nr_purged_areas = 0;
2332 	unsigned int nr_purge_helpers;
2333 	static cpumask_t purge_nodes;
2334 	unsigned int nr_purge_nodes;
2335 	struct vmap_node *vn;
2336 	int i;
2337 
2338 	lockdep_assert_held(&vmap_purge_lock);
2339 
2340 	/*
2341 	 * Use cpumask to mark which node has to be processed.
2342 	 */
2343 	purge_nodes = CPU_MASK_NONE;
2344 
2345 	for_each_vmap_node(vn) {
2346 		INIT_LIST_HEAD(&vn->purge_list);
2347 		vn->skip_populate = full_pool_decay;
2348 		decay_va_pool_node(vn, full_pool_decay);
2349 
2350 		if (RB_EMPTY_ROOT(&vn->lazy.root))
2351 			continue;
2352 
2353 		spin_lock(&vn->lazy.lock);
2354 		WRITE_ONCE(vn->lazy.root.rb_node, NULL);
2355 		list_replace_init(&vn->lazy.head, &vn->purge_list);
2356 		spin_unlock(&vn->lazy.lock);
2357 
2358 		start = min(start, list_first_entry(&vn->purge_list,
2359 			struct vmap_area, list)->va_start);
2360 
2361 		end = max(end, list_last_entry(&vn->purge_list,
2362 			struct vmap_area, list)->va_end);
2363 
2364 		cpumask_set_cpu(node_to_id(vn), &purge_nodes);
2365 	}
2366 
2367 	nr_purge_nodes = cpumask_weight(&purge_nodes);
2368 	if (nr_purge_nodes > 0) {
2369 		flush_tlb_kernel_range(start, end);
2370 
2371 		/* One extra worker is per a lazy_max_pages() full set minus one. */
2372 		nr_purge_helpers = atomic_long_read(&vmap_lazy_nr) / lazy_max_pages();
2373 		nr_purge_helpers = clamp(nr_purge_helpers, 1U, nr_purge_nodes) - 1;
2374 
2375 		for_each_cpu(i, &purge_nodes) {
2376 			vn = &vmap_nodes[i];
2377 
2378 			if (nr_purge_helpers > 0) {
2379 				INIT_WORK(&vn->purge_work, purge_vmap_node);
2380 
2381 				if (cpumask_test_cpu(i, cpu_online_mask))
2382 					schedule_work_on(i, &vn->purge_work);
2383 				else
2384 					schedule_work(&vn->purge_work);
2385 
2386 				nr_purge_helpers--;
2387 			} else {
2388 				vn->purge_work.func = NULL;
2389 				purge_vmap_node(&vn->purge_work);
2390 				nr_purged_areas += vn->nr_purged;
2391 			}
2392 		}
2393 
2394 		for_each_cpu(i, &purge_nodes) {
2395 			vn = &vmap_nodes[i];
2396 
2397 			if (vn->purge_work.func) {
2398 				flush_work(&vn->purge_work);
2399 				nr_purged_areas += vn->nr_purged;
2400 			}
2401 		}
2402 	}
2403 
2404 	trace_purge_vmap_area_lazy(start, end, nr_purged_areas);
2405 	return nr_purged_areas > 0;
2406 }
2407 
2408 /*
2409  * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list.
2410  */
reclaim_and_purge_vmap_areas(void)2411 static void reclaim_and_purge_vmap_areas(void)
2412 
2413 {
2414 	mutex_lock(&vmap_purge_lock);
2415 	purge_fragmented_blocks_allcpus();
2416 	__purge_vmap_area_lazy(ULONG_MAX, 0, true);
2417 	mutex_unlock(&vmap_purge_lock);
2418 }
2419 
drain_vmap_area_work(struct work_struct * work)2420 static void drain_vmap_area_work(struct work_struct *work)
2421 {
2422 	mutex_lock(&vmap_purge_lock);
2423 	__purge_vmap_area_lazy(ULONG_MAX, 0, false);
2424 	mutex_unlock(&vmap_purge_lock);
2425 }
2426 
2427 /*
2428  * Free a vmap area, caller ensuring that the area has been unmapped,
2429  * unlinked and flush_cache_vunmap had been called for the correct
2430  * range previously.
2431  */
free_vmap_area_noflush(struct vmap_area * va)2432 static void free_vmap_area_noflush(struct vmap_area *va)
2433 {
2434 	unsigned long nr_lazy_max = lazy_max_pages();
2435 	unsigned long va_start = va->va_start;
2436 	unsigned int vn_id = decode_vn_id(va->flags);
2437 	struct vmap_node *vn;
2438 	unsigned long nr_lazy;
2439 
2440 	if (WARN_ON_ONCE(!list_empty(&va->list)))
2441 		return;
2442 
2443 	nr_lazy = atomic_long_add_return_relaxed(va_size(va) >> PAGE_SHIFT,
2444 					 &vmap_lazy_nr);
2445 
2446 	/*
2447 	 * If it was request by a certain node we would like to
2448 	 * return it to that node, i.e. its pool for later reuse.
2449 	 */
2450 	vn = is_vn_id_valid(vn_id) ?
2451 		id_to_node(vn_id):addr_to_node(va->va_start);
2452 
2453 	spin_lock(&vn->lazy.lock);
2454 	insert_vmap_area(va, &vn->lazy.root, &vn->lazy.head);
2455 	spin_unlock(&vn->lazy.lock);
2456 
2457 	trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
2458 
2459 	/* After this point, we may free va at any time */
2460 	if (unlikely(nr_lazy > nr_lazy_max))
2461 		schedule_work(&drain_vmap_work);
2462 }
2463 
2464 /*
2465  * Free and unmap a vmap area
2466  */
free_unmap_vmap_area(struct vmap_area * va)2467 static void free_unmap_vmap_area(struct vmap_area *va)
2468 {
2469 	flush_cache_vunmap(va->va_start, va->va_end);
2470 	vunmap_range_noflush(va->va_start, va->va_end);
2471 	if (debug_pagealloc_enabled_static())
2472 		flush_tlb_kernel_range(va->va_start, va->va_end);
2473 
2474 	free_vmap_area_noflush(va);
2475 }
2476 
find_vmap_area(unsigned long addr)2477 struct vmap_area *find_vmap_area(unsigned long addr)
2478 {
2479 	struct vmap_node *vn;
2480 	struct vmap_area *va;
2481 	int i, j;
2482 
2483 	if (unlikely(!vmap_initialized))
2484 		return NULL;
2485 
2486 	/*
2487 	 * An addr_to_node_id(addr) converts an address to a node index
2488 	 * where a VA is located. If VA spans several zones and passed
2489 	 * addr is not the same as va->va_start, what is not common, we
2490 	 * may need to scan extra nodes. See an example:
2491 	 *
2492 	 *      <----va---->
2493 	 * -|-----|-----|-----|-----|-
2494 	 *     1     2     0     1
2495 	 *
2496 	 * VA resides in node 1 whereas it spans 1, 2 an 0. If passed
2497 	 * addr is within 2 or 0 nodes we should do extra work.
2498 	 */
2499 	i = j = addr_to_node_id(addr);
2500 	do {
2501 		vn = &vmap_nodes[i];
2502 
2503 		spin_lock(&vn->busy.lock);
2504 		va = __find_vmap_area(addr, &vn->busy.root);
2505 		spin_unlock(&vn->busy.lock);
2506 
2507 		if (va)
2508 			return va;
2509 	} while ((i = (i + nr_vmap_nodes - 1) % nr_vmap_nodes) != j);
2510 
2511 	return NULL;
2512 }
2513 
find_unlink_vmap_area(unsigned long addr)2514 static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
2515 {
2516 	struct vmap_node *vn;
2517 	struct vmap_area *va;
2518 	int i, j;
2519 
2520 	/*
2521 	 * Check the comment in the find_vmap_area() about the loop.
2522 	 */
2523 	i = j = addr_to_node_id(addr);
2524 	do {
2525 		vn = &vmap_nodes[i];
2526 
2527 		spin_lock(&vn->busy.lock);
2528 		va = __find_vmap_area(addr, &vn->busy.root);
2529 		if (va)
2530 			unlink_va(va, &vn->busy.root);
2531 		spin_unlock(&vn->busy.lock);
2532 
2533 		if (va)
2534 			return va;
2535 	} while ((i = (i + nr_vmap_nodes - 1) % nr_vmap_nodes) != j);
2536 
2537 	return NULL;
2538 }
2539 
2540 /*** Per cpu kva allocator ***/
2541 
2542 /*
2543  * vmap space is limited especially on 32 bit architectures. Ensure there is
2544  * room for at least 16 percpu vmap blocks per CPU.
2545  */
2546 /*
2547  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
2548  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
2549  * instead (we just need a rough idea)
2550  */
2551 #if BITS_PER_LONG == 32
2552 #define VMALLOC_SPACE		(128UL*1024*1024)
2553 #else
2554 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
2555 #endif
2556 
2557 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
2558 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
2559 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
2560 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
2561 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
2562 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
2563 #define VMAP_BBMAP_BITS		\
2564 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
2565 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
2566 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
2567 
2568 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
2569 
2570 /*
2571  * Purge threshold to prevent overeager purging of fragmented blocks for
2572  * regular operations: Purge if vb->free is less than 1/4 of the capacity.
2573  */
2574 #define VMAP_PURGE_THRESHOLD	(VMAP_BBMAP_BITS / 4)
2575 
2576 #define VMAP_RAM		0x1 /* indicates vm_map_ram area*/
2577 #define VMAP_BLOCK		0x2 /* mark out the vmap_block sub-type*/
2578 #define VMAP_FLAGS_MASK		0x3
2579 
2580 struct vmap_block_queue {
2581 	spinlock_t lock;
2582 	struct list_head free;
2583 
2584 	/*
2585 	 * An xarray requires an extra memory dynamically to
2586 	 * be allocated. If it is an issue, we can use rb-tree
2587 	 * instead.
2588 	 */
2589 	struct xarray vmap_blocks;
2590 };
2591 
2592 struct vmap_block {
2593 	spinlock_t lock;
2594 	struct vmap_area *va;
2595 	unsigned long free, dirty;
2596 	DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
2597 	unsigned long dirty_min, dirty_max; /*< dirty range */
2598 	struct list_head free_list;
2599 	struct rcu_head rcu_head;
2600 	struct list_head purge;
2601 	unsigned int cpu;
2602 };
2603 
2604 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
2605 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
2606 
2607 /*
2608  * In order to fast access to any "vmap_block" associated with a
2609  * specific address, we use a hash.
2610  *
2611  * A per-cpu vmap_block_queue is used in both ways, to serialize
2612  * an access to free block chains among CPUs(alloc path) and it
2613  * also acts as a vmap_block hash(alloc/free paths). It means we
2614  * overload it, since we already have the per-cpu array which is
2615  * used as a hash table. When used as a hash a 'cpu' passed to
2616  * per_cpu() is not actually a CPU but rather a hash index.
2617  *
2618  * A hash function is addr_to_vb_xa() which hashes any address
2619  * to a specific index(in a hash) it belongs to. This then uses a
2620  * per_cpu() macro to access an array with generated index.
2621  *
2622  * An example:
2623  *
2624  *  CPU_1  CPU_2  CPU_0
2625  *    |      |      |
2626  *    V      V      V
2627  * 0     10     20     30     40     50     60
2628  * |------|------|------|------|------|------|...<vmap address space>
2629  *   CPU0   CPU1   CPU2   CPU0   CPU1   CPU2
2630  *
2631  * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus
2632  *   it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock;
2633  *
2634  * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus
2635  *   it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock;
2636  *
2637  * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus
2638  *   it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock.
2639  *
2640  * This technique almost always avoids lock contention on insert/remove,
2641  * however xarray spinlocks protect against any contention that remains.
2642  */
2643 static struct xarray *
addr_to_vb_xa(unsigned long addr)2644 addr_to_vb_xa(unsigned long addr)
2645 {
2646 	int index = (addr / VMAP_BLOCK_SIZE) % nr_cpu_ids;
2647 
2648 	/*
2649 	 * Please note, nr_cpu_ids points on a highest set
2650 	 * possible bit, i.e. we never invoke cpumask_next()
2651 	 * if an index points on it which is nr_cpu_ids - 1.
2652 	 */
2653 	if (!cpu_possible(index))
2654 		index = cpumask_next(index, cpu_possible_mask);
2655 
2656 	return &per_cpu(vmap_block_queue, index).vmap_blocks;
2657 }
2658 
2659 /*
2660  * We should probably have a fallback mechanism to allocate virtual memory
2661  * out of partially filled vmap blocks. However vmap block sizing should be
2662  * fairly reasonable according to the vmalloc size, so it shouldn't be a
2663  * big problem.
2664  */
2665 
addr_to_vb_idx(unsigned long addr)2666 static unsigned long addr_to_vb_idx(unsigned long addr)
2667 {
2668 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
2669 	addr /= VMAP_BLOCK_SIZE;
2670 	return addr;
2671 }
2672 
vmap_block_vaddr(unsigned long va_start,unsigned long pages_off)2673 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
2674 {
2675 	unsigned long addr;
2676 
2677 	addr = va_start + (pages_off << PAGE_SHIFT);
2678 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
2679 	return (void *)addr;
2680 }
2681 
2682 /**
2683  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
2684  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
2685  * @order:    how many 2^order pages should be occupied in newly allocated block
2686  * @gfp_mask: flags for the page level allocator
2687  *
2688  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
2689  */
new_vmap_block(unsigned int order,gfp_t gfp_mask)2690 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
2691 {
2692 	struct vmap_block_queue *vbq;
2693 	struct vmap_block *vb;
2694 	struct vmap_area *va;
2695 	struct xarray *xa;
2696 	unsigned long vb_idx;
2697 	int node, err;
2698 	void *vaddr;
2699 
2700 	node = numa_node_id();
2701 
2702 	vb = kmalloc_node(sizeof(struct vmap_block), gfp_mask, node);
2703 	if (unlikely(!vb))
2704 		return ERR_PTR(-ENOMEM);
2705 
2706 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
2707 					VMALLOC_START, VMALLOC_END,
2708 					node, gfp_mask,
2709 					VMAP_RAM|VMAP_BLOCK, NULL);
2710 	if (IS_ERR(va)) {
2711 		kfree(vb);
2712 		return ERR_CAST(va);
2713 	}
2714 
2715 	vaddr = vmap_block_vaddr(va->va_start, 0);
2716 	spin_lock_init(&vb->lock);
2717 	vb->va = va;
2718 	/* At least something should be left free */
2719 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
2720 	bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
2721 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
2722 	vb->dirty = 0;
2723 	vb->dirty_min = VMAP_BBMAP_BITS;
2724 	vb->dirty_max = 0;
2725 	bitmap_set(vb->used_map, 0, (1UL << order));
2726 	INIT_LIST_HEAD(&vb->free_list);
2727 	vb->cpu = raw_smp_processor_id();
2728 
2729 	xa = addr_to_vb_xa(va->va_start);
2730 	vb_idx = addr_to_vb_idx(va->va_start);
2731 	err = xa_insert(xa, vb_idx, vb, gfp_mask);
2732 	if (err) {
2733 		kfree(vb);
2734 		free_vmap_area(va);
2735 		return ERR_PTR(err);
2736 	}
2737 	/*
2738 	 * list_add_tail_rcu could happened in another core
2739 	 * rather than vb->cpu due to task migration, which
2740 	 * is safe as list_add_tail_rcu will ensure the list's
2741 	 * integrity together with list_for_each_rcu from read
2742 	 * side.
2743 	 */
2744 	vbq = per_cpu_ptr(&vmap_block_queue, vb->cpu);
2745 	spin_lock(&vbq->lock);
2746 	list_add_tail_rcu(&vb->free_list, &vbq->free);
2747 	spin_unlock(&vbq->lock);
2748 
2749 	return vaddr;
2750 }
2751 
free_vmap_block(struct vmap_block * vb)2752 static void free_vmap_block(struct vmap_block *vb)
2753 {
2754 	struct vmap_node *vn;
2755 	struct vmap_block *tmp;
2756 	struct xarray *xa;
2757 
2758 	xa = addr_to_vb_xa(vb->va->va_start);
2759 	tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start));
2760 	BUG_ON(tmp != vb);
2761 
2762 	vn = addr_to_node(vb->va->va_start);
2763 	spin_lock(&vn->busy.lock);
2764 	unlink_va(vb->va, &vn->busy.root);
2765 	spin_unlock(&vn->busy.lock);
2766 
2767 	free_vmap_area_noflush(vb->va);
2768 	kfree_rcu(vb, rcu_head);
2769 }
2770 
purge_fragmented_block(struct vmap_block * vb,struct list_head * purge_list,bool force_purge)2771 static bool purge_fragmented_block(struct vmap_block *vb,
2772 		struct list_head *purge_list, bool force_purge)
2773 {
2774 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, vb->cpu);
2775 
2776 	if (vb->free + vb->dirty != VMAP_BBMAP_BITS ||
2777 	    vb->dirty == VMAP_BBMAP_BITS)
2778 		return false;
2779 
2780 	/* Don't overeagerly purge usable blocks unless requested */
2781 	if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD))
2782 		return false;
2783 
2784 	/* prevent further allocs after releasing lock */
2785 	WRITE_ONCE(vb->free, 0);
2786 	/* prevent purging it again */
2787 	WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS);
2788 	vb->dirty_min = 0;
2789 	vb->dirty_max = VMAP_BBMAP_BITS;
2790 	spin_lock(&vbq->lock);
2791 	list_del_rcu(&vb->free_list);
2792 	spin_unlock(&vbq->lock);
2793 	list_add_tail(&vb->purge, purge_list);
2794 	return true;
2795 }
2796 
free_purged_blocks(struct list_head * purge_list)2797 static void free_purged_blocks(struct list_head *purge_list)
2798 {
2799 	struct vmap_block *vb, *n_vb;
2800 
2801 	list_for_each_entry_safe(vb, n_vb, purge_list, purge) {
2802 		list_del(&vb->purge);
2803 		free_vmap_block(vb);
2804 	}
2805 }
2806 
purge_fragmented_blocks(int cpu)2807 static void purge_fragmented_blocks(int cpu)
2808 {
2809 	LIST_HEAD(purge);
2810 	struct vmap_block *vb;
2811 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2812 
2813 	rcu_read_lock();
2814 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2815 		unsigned long free = READ_ONCE(vb->free);
2816 		unsigned long dirty = READ_ONCE(vb->dirty);
2817 
2818 		if (free + dirty != VMAP_BBMAP_BITS ||
2819 		    dirty == VMAP_BBMAP_BITS)
2820 			continue;
2821 
2822 		spin_lock(&vb->lock);
2823 		purge_fragmented_block(vb, &purge, true);
2824 		spin_unlock(&vb->lock);
2825 	}
2826 	rcu_read_unlock();
2827 	free_purged_blocks(&purge);
2828 }
2829 
purge_fragmented_blocks_allcpus(void)2830 static void purge_fragmented_blocks_allcpus(void)
2831 {
2832 	int cpu;
2833 
2834 	for_each_possible_cpu(cpu)
2835 		purge_fragmented_blocks(cpu);
2836 }
2837 
vb_alloc(unsigned long size,gfp_t gfp_mask)2838 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2839 {
2840 	struct vmap_block_queue *vbq;
2841 	struct vmap_block *vb;
2842 	void *vaddr = NULL;
2843 	unsigned int order;
2844 
2845 	BUG_ON(offset_in_page(size));
2846 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2847 	if (WARN_ON(size == 0)) {
2848 		/*
2849 		 * Allocating 0 bytes isn't what caller wants since
2850 		 * get_order(0) returns funny result. Just warn and terminate
2851 		 * early.
2852 		 */
2853 		return ERR_PTR(-EINVAL);
2854 	}
2855 	order = get_order(size);
2856 
2857 	rcu_read_lock();
2858 	vbq = raw_cpu_ptr(&vmap_block_queue);
2859 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2860 		unsigned long pages_off;
2861 
2862 		if (READ_ONCE(vb->free) < (1UL << order))
2863 			continue;
2864 
2865 		spin_lock(&vb->lock);
2866 		if (vb->free < (1UL << order)) {
2867 			spin_unlock(&vb->lock);
2868 			continue;
2869 		}
2870 
2871 		pages_off = VMAP_BBMAP_BITS - vb->free;
2872 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2873 		WRITE_ONCE(vb->free, vb->free - (1UL << order));
2874 		bitmap_set(vb->used_map, pages_off, (1UL << order));
2875 		if (vb->free == 0) {
2876 			spin_lock(&vbq->lock);
2877 			list_del_rcu(&vb->free_list);
2878 			spin_unlock(&vbq->lock);
2879 		}
2880 
2881 		spin_unlock(&vb->lock);
2882 		break;
2883 	}
2884 
2885 	rcu_read_unlock();
2886 
2887 	/* Allocate new block if nothing was found */
2888 	if (!vaddr)
2889 		vaddr = new_vmap_block(order, gfp_mask);
2890 
2891 	return vaddr;
2892 }
2893 
vb_free(unsigned long addr,unsigned long size)2894 static void vb_free(unsigned long addr, unsigned long size)
2895 {
2896 	unsigned long offset;
2897 	unsigned int order;
2898 	struct vmap_block *vb;
2899 	struct xarray *xa;
2900 
2901 	BUG_ON(offset_in_page(size));
2902 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2903 
2904 	flush_cache_vunmap(addr, addr + size);
2905 
2906 	order = get_order(size);
2907 	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2908 
2909 	xa = addr_to_vb_xa(addr);
2910 	vb = xa_load(xa, addr_to_vb_idx(addr));
2911 
2912 	spin_lock(&vb->lock);
2913 	bitmap_clear(vb->used_map, offset, (1UL << order));
2914 	spin_unlock(&vb->lock);
2915 
2916 	vunmap_range_noflush(addr, addr + size);
2917 
2918 	if (debug_pagealloc_enabled_static())
2919 		flush_tlb_kernel_range(addr, addr + size);
2920 
2921 	spin_lock(&vb->lock);
2922 
2923 	/* Expand the not yet TLB flushed dirty range */
2924 	vb->dirty_min = min(vb->dirty_min, offset);
2925 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2926 
2927 	WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order));
2928 	if (vb->dirty == VMAP_BBMAP_BITS) {
2929 		BUG_ON(vb->free);
2930 		spin_unlock(&vb->lock);
2931 		free_vmap_block(vb);
2932 	} else
2933 		spin_unlock(&vb->lock);
2934 }
2935 
_vm_unmap_aliases(unsigned long start,unsigned long end,int flush)2936 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2937 {
2938 	LIST_HEAD(purge_list);
2939 	int cpu;
2940 
2941 	if (unlikely(!vmap_initialized))
2942 		return;
2943 
2944 	mutex_lock(&vmap_purge_lock);
2945 
2946 	for_each_possible_cpu(cpu) {
2947 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2948 		struct vmap_block *vb;
2949 		unsigned long idx;
2950 
2951 		rcu_read_lock();
2952 		xa_for_each(&vbq->vmap_blocks, idx, vb) {
2953 			spin_lock(&vb->lock);
2954 
2955 			/*
2956 			 * Try to purge a fragmented block first. If it's
2957 			 * not purgeable, check whether there is dirty
2958 			 * space to be flushed.
2959 			 */
2960 			if (!purge_fragmented_block(vb, &purge_list, false) &&
2961 			    vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) {
2962 				unsigned long va_start = vb->va->va_start;
2963 				unsigned long s, e;
2964 
2965 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
2966 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
2967 
2968 				start = min(s, start);
2969 				end   = max(e, end);
2970 
2971 				/* Prevent that this is flushed again */
2972 				vb->dirty_min = VMAP_BBMAP_BITS;
2973 				vb->dirty_max = 0;
2974 
2975 				flush = 1;
2976 			}
2977 			spin_unlock(&vb->lock);
2978 		}
2979 		rcu_read_unlock();
2980 	}
2981 	free_purged_blocks(&purge_list);
2982 
2983 	if (!__purge_vmap_area_lazy(start, end, false) && flush)
2984 		flush_tlb_kernel_range(start, end);
2985 	mutex_unlock(&vmap_purge_lock);
2986 }
2987 
2988 /**
2989  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2990  *
2991  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2992  * to amortize TLB flushing overheads. What this means is that any page you
2993  * have now, may, in a former life, have been mapped into kernel virtual
2994  * address by the vmap layer and so there might be some CPUs with TLB entries
2995  * still referencing that page (additional to the regular 1:1 kernel mapping).
2996  *
2997  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2998  * be sure that none of the pages we have control over will have any aliases
2999  * from the vmap layer.
3000  */
vm_unmap_aliases(void)3001 void vm_unmap_aliases(void)
3002 {
3003 	_vm_unmap_aliases(ULONG_MAX, 0, 0);
3004 }
3005 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
3006 
3007 /**
3008  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
3009  * @mem: the pointer returned by vm_map_ram
3010  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
3011  */
vm_unmap_ram(const void * mem,unsigned int count)3012 void vm_unmap_ram(const void *mem, unsigned int count)
3013 {
3014 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
3015 	unsigned long addr = (unsigned long)kasan_reset_tag(mem);
3016 	struct vmap_area *va;
3017 
3018 	might_sleep();
3019 	BUG_ON(!addr);
3020 	BUG_ON(addr < VMALLOC_START);
3021 	BUG_ON(addr > VMALLOC_END);
3022 	BUG_ON(!PAGE_ALIGNED(addr));
3023 
3024 	kasan_poison_vmalloc(mem, size);
3025 
3026 	if (likely(count <= VMAP_MAX_ALLOC)) {
3027 		debug_check_no_locks_freed(mem, size);
3028 		vb_free(addr, size);
3029 		return;
3030 	}
3031 
3032 	va = find_unlink_vmap_area(addr);
3033 	if (WARN_ON_ONCE(!va))
3034 		return;
3035 
3036 	debug_check_no_locks_freed((void *)va->va_start, va_size(va));
3037 	free_unmap_vmap_area(va);
3038 }
3039 EXPORT_SYMBOL(vm_unmap_ram);
3040 
3041 /**
3042  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
3043  * @pages: an array of pointers to the pages to be mapped
3044  * @count: number of pages
3045  * @node: prefer to allocate data structures on this node
3046  *
3047  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
3048  * faster than vmap so it's good.  But if you mix long-life and short-life
3049  * objects with vm_map_ram(), it could consume lots of address space through
3050  * fragmentation (especially on a 32bit machine).  You could see failures in
3051  * the end.  Please use this function for short-lived objects.
3052  *
3053  * Returns: a pointer to the address that has been mapped, or %NULL on failure
3054  */
vm_map_ram(struct page ** pages,unsigned int count,int node)3055 void *vm_map_ram(struct page **pages, unsigned int count, int node)
3056 {
3057 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
3058 	unsigned long addr;
3059 	void *mem;
3060 
3061 	if (likely(count <= VMAP_MAX_ALLOC)) {
3062 		mem = vb_alloc(size, GFP_KERNEL);
3063 		if (IS_ERR(mem))
3064 			return NULL;
3065 		addr = (unsigned long)mem;
3066 	} else {
3067 		struct vmap_area *va;
3068 		va = alloc_vmap_area(size, PAGE_SIZE,
3069 				VMALLOC_START, VMALLOC_END,
3070 				node, GFP_KERNEL, VMAP_RAM,
3071 				NULL);
3072 		if (IS_ERR(va))
3073 			return NULL;
3074 
3075 		addr = va->va_start;
3076 		mem = (void *)addr;
3077 	}
3078 
3079 	if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
3080 				pages, PAGE_SHIFT) < 0) {
3081 		vm_unmap_ram(mem, count);
3082 		return NULL;
3083 	}
3084 
3085 	/*
3086 	 * Mark the pages as accessible, now that they are mapped.
3087 	 * With hardware tag-based KASAN, marking is skipped for
3088 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3089 	 */
3090 	mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
3091 
3092 	return mem;
3093 }
3094 EXPORT_SYMBOL(vm_map_ram);
3095 
3096 static struct vm_struct *vmlist __initdata;
3097 
vm_area_page_order(struct vm_struct * vm)3098 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
3099 {
3100 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
3101 	return vm->page_order;
3102 #else
3103 	return 0;
3104 #endif
3105 }
3106 
get_vm_area_page_order(struct vm_struct * vm)3107 unsigned int get_vm_area_page_order(struct vm_struct *vm)
3108 {
3109 	return vm_area_page_order(vm);
3110 }
3111 
set_vm_area_page_order(struct vm_struct * vm,unsigned int order)3112 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
3113 {
3114 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
3115 	vm->page_order = order;
3116 #else
3117 	BUG_ON(order != 0);
3118 #endif
3119 }
3120 
3121 /**
3122  * vm_area_add_early - add vmap area early during boot
3123  * @vm: vm_struct to add
3124  *
3125  * This function is used to add fixed kernel vm area to vmlist before
3126  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
3127  * should contain proper values and the other fields should be zero.
3128  *
3129  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
3130  */
vm_area_add_early(struct vm_struct * vm)3131 void __init vm_area_add_early(struct vm_struct *vm)
3132 {
3133 	struct vm_struct *tmp, **p;
3134 
3135 	BUG_ON(vmap_initialized);
3136 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
3137 		if (tmp->addr >= vm->addr) {
3138 			BUG_ON(tmp->addr < vm->addr + vm->size);
3139 			break;
3140 		} else
3141 			BUG_ON(tmp->addr + tmp->size > vm->addr);
3142 	}
3143 	vm->next = *p;
3144 	*p = vm;
3145 }
3146 
3147 /**
3148  * vm_area_register_early - register vmap area early during boot
3149  * @vm: vm_struct to register
3150  * @align: requested alignment
3151  *
3152  * This function is used to register kernel vm area before
3153  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
3154  * proper values on entry and other fields should be zero.  On return,
3155  * vm->addr contains the allocated address.
3156  *
3157  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
3158  */
vm_area_register_early(struct vm_struct * vm,size_t align)3159 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
3160 {
3161 	unsigned long addr = ALIGN(VMALLOC_START, align);
3162 	struct vm_struct *cur, **p;
3163 
3164 	BUG_ON(vmap_initialized);
3165 
3166 	for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
3167 		if ((unsigned long)cur->addr - addr >= vm->size)
3168 			break;
3169 		addr = ALIGN((unsigned long)cur->addr + cur->size, align);
3170 	}
3171 
3172 	BUG_ON(addr > VMALLOC_END - vm->size);
3173 	vm->addr = (void *)addr;
3174 	vm->next = *p;
3175 	*p = vm;
3176 	kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
3177 }
3178 
clear_vm_uninitialized_flag(struct vm_struct * vm)3179 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
3180 {
3181 	/*
3182 	 * Before removing VM_UNINITIALIZED,
3183 	 * we should make sure that vm has proper values.
3184 	 * Pair with smp_rmb() in vread_iter() and vmalloc_info_show().
3185 	 */
3186 	smp_wmb();
3187 	vm->flags &= ~VM_UNINITIALIZED;
3188 }
3189 
__get_vm_area_node(unsigned long size,unsigned long align,unsigned long shift,unsigned long flags,unsigned long start,unsigned long end,int node,gfp_t gfp_mask,const void * caller)3190 struct vm_struct *__get_vm_area_node(unsigned long size,
3191 		unsigned long align, unsigned long shift, unsigned long flags,
3192 		unsigned long start, unsigned long end, int node,
3193 		gfp_t gfp_mask, const void *caller)
3194 {
3195 	struct vmap_area *va;
3196 	struct vm_struct *area;
3197 	unsigned long requested_size = size;
3198 
3199 	BUG_ON(in_interrupt());
3200 	size = ALIGN(size, 1ul << shift);
3201 	if (unlikely(!size))
3202 		return NULL;
3203 
3204 	if (flags & VM_IOREMAP)
3205 		align = 1ul << clamp_t(int, get_count_order_long(size),
3206 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
3207 
3208 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
3209 	if (unlikely(!area))
3210 		return NULL;
3211 
3212 	if (!(flags & VM_NO_GUARD))
3213 		size += PAGE_SIZE;
3214 
3215 	area->flags = flags;
3216 	area->caller = caller;
3217 	area->requested_size = requested_size;
3218 
3219 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0, area);
3220 	if (IS_ERR(va)) {
3221 		kfree(area);
3222 		return NULL;
3223 	}
3224 
3225 	/*
3226 	 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
3227 	 * best-effort approach, as they can be mapped outside of vmalloc code.
3228 	 * For VM_ALLOC mappings, the pages are marked as accessible after
3229 	 * getting mapped in __vmalloc_node_range().
3230 	 * With hardware tag-based KASAN, marking is skipped for
3231 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3232 	 */
3233 	if (!(flags & VM_ALLOC))
3234 		area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
3235 						    KASAN_VMALLOC_PROT_NORMAL);
3236 
3237 	return area;
3238 }
3239 
__get_vm_area_caller(unsigned long size,unsigned long flags,unsigned long start,unsigned long end,const void * caller)3240 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
3241 				       unsigned long start, unsigned long end,
3242 				       const void *caller)
3243 {
3244 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
3245 				  NUMA_NO_NODE, GFP_KERNEL, caller);
3246 }
3247 
3248 /**
3249  * get_vm_area - reserve a contiguous kernel virtual area
3250  * @size:	 size of the area
3251  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
3252  *
3253  * Search an area of @size in the kernel virtual mapping area,
3254  * and reserved it for out purposes.  Returns the area descriptor
3255  * on success or %NULL on failure.
3256  *
3257  * Return: the area descriptor on success or %NULL on failure.
3258  */
get_vm_area(unsigned long size,unsigned long flags)3259 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
3260 {
3261 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
3262 				  VMALLOC_START, VMALLOC_END,
3263 				  NUMA_NO_NODE, GFP_KERNEL,
3264 				  __builtin_return_address(0));
3265 }
3266 
get_vm_area_caller(unsigned long size,unsigned long flags,const void * caller)3267 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
3268 				const void *caller)
3269 {
3270 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
3271 				  VMALLOC_START, VMALLOC_END,
3272 				  NUMA_NO_NODE, GFP_KERNEL, caller);
3273 }
3274 
3275 /**
3276  * find_vm_area - find a continuous kernel virtual area
3277  * @addr:	  base address
3278  *
3279  * Search for the kernel VM area starting at @addr, and return it.
3280  * It is up to the caller to do all required locking to keep the returned
3281  * pointer valid.
3282  *
3283  * Return: the area descriptor on success or %NULL on failure.
3284  */
find_vm_area(const void * addr)3285 struct vm_struct *find_vm_area(const void *addr)
3286 {
3287 	struct vmap_area *va;
3288 
3289 	va = find_vmap_area((unsigned long)addr);
3290 	if (!va)
3291 		return NULL;
3292 
3293 	return va->vm;
3294 }
3295 
3296 /**
3297  * remove_vm_area - find and remove a continuous kernel virtual area
3298  * @addr:	    base address
3299  *
3300  * Search for the kernel VM area starting at @addr, and remove it.
3301  * This function returns the found VM area, but using it is NOT safe
3302  * on SMP machines, except for its size or flags.
3303  *
3304  * Return: the area descriptor on success or %NULL on failure.
3305  */
remove_vm_area(const void * addr)3306 struct vm_struct *remove_vm_area(const void *addr)
3307 {
3308 	struct vmap_area *va;
3309 	struct vm_struct *vm;
3310 
3311 	might_sleep();
3312 
3313 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
3314 			addr))
3315 		return NULL;
3316 
3317 	va = find_unlink_vmap_area((unsigned long)addr);
3318 	if (!va || !va->vm)
3319 		return NULL;
3320 	vm = va->vm;
3321 
3322 	debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
3323 	debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
3324 	kasan_free_module_shadow(vm);
3325 	kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
3326 
3327 	free_unmap_vmap_area(va);
3328 	return vm;
3329 }
3330 
set_area_direct_map(const struct vm_struct * area,int (* set_direct_map)(struct page * page))3331 static inline void set_area_direct_map(const struct vm_struct *area,
3332 				       int (*set_direct_map)(struct page *page))
3333 {
3334 	int i;
3335 
3336 	/* HUGE_VMALLOC passes small pages to set_direct_map */
3337 	for (i = 0; i < area->nr_pages; i++)
3338 		if (page_address(area->pages[i]))
3339 			set_direct_map(area->pages[i]);
3340 }
3341 
3342 /*
3343  * Flush the vm mapping and reset the direct map.
3344  */
vm_reset_perms(struct vm_struct * area)3345 static void vm_reset_perms(struct vm_struct *area)
3346 {
3347 	unsigned long start = ULONG_MAX, end = 0;
3348 	unsigned int page_order = vm_area_page_order(area);
3349 	int flush_dmap = 0;
3350 	int i;
3351 
3352 	/*
3353 	 * Find the start and end range of the direct mappings to make sure that
3354 	 * the vm_unmap_aliases() flush includes the direct map.
3355 	 */
3356 	for (i = 0; i < area->nr_pages; i += 1U << page_order) {
3357 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
3358 
3359 		if (addr) {
3360 			unsigned long page_size;
3361 
3362 			page_size = PAGE_SIZE << page_order;
3363 			start = min(addr, start);
3364 			end = max(addr + page_size, end);
3365 			flush_dmap = 1;
3366 		}
3367 	}
3368 
3369 	/*
3370 	 * Set direct map to something invalid so that it won't be cached if
3371 	 * there are any accesses after the TLB flush, then flush the TLB and
3372 	 * reset the direct map permissions to the default.
3373 	 */
3374 	set_area_direct_map(area, set_direct_map_invalid_noflush);
3375 	_vm_unmap_aliases(start, end, flush_dmap);
3376 	set_area_direct_map(area, set_direct_map_default_noflush);
3377 }
3378 
delayed_vfree_work(struct work_struct * w)3379 static void delayed_vfree_work(struct work_struct *w)
3380 {
3381 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
3382 	struct llist_node *t, *llnode;
3383 
3384 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
3385 		vfree(llnode);
3386 }
3387 
3388 /**
3389  * vfree_atomic - release memory allocated by vmalloc()
3390  * @addr:	  memory base address
3391  *
3392  * This one is just like vfree() but can be called in any atomic context
3393  * except NMIs.
3394  */
vfree_atomic(const void * addr)3395 void vfree_atomic(const void *addr)
3396 {
3397 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
3398 
3399 	BUG_ON(in_nmi());
3400 	kmemleak_free(addr);
3401 
3402 	/*
3403 	 * Use raw_cpu_ptr() because this can be called from preemptible
3404 	 * context. Preemption is absolutely fine here, because the llist_add()
3405 	 * implementation is lockless, so it works even if we are adding to
3406 	 * another cpu's list. schedule_work() should be fine with this too.
3407 	 */
3408 	if (addr && llist_add((struct llist_node *)addr, &p->list))
3409 		schedule_work(&p->wq);
3410 }
3411 
3412 /**
3413  * vfree - Release memory allocated by vmalloc()
3414  * @addr:  Memory base address
3415  *
3416  * Free the virtually continuous memory area starting at @addr, as obtained
3417  * from one of the vmalloc() family of APIs.  This will usually also free the
3418  * physical memory underlying the virtual allocation, but that memory is
3419  * reference counted, so it will not be freed until the last user goes away.
3420  *
3421  * If @addr is NULL, no operation is performed.
3422  *
3423  * Context:
3424  * May sleep if called *not* from interrupt context.
3425  * Must not be called in NMI context (strictly speaking, it could be
3426  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
3427  * conventions for vfree() arch-dependent would be a really bad idea).
3428  */
vfree(const void * addr)3429 void vfree(const void *addr)
3430 {
3431 	struct vm_struct *vm;
3432 	int i;
3433 
3434 	if (unlikely(in_interrupt())) {
3435 		vfree_atomic(addr);
3436 		return;
3437 	}
3438 
3439 	BUG_ON(in_nmi());
3440 	kmemleak_free(addr);
3441 	might_sleep();
3442 
3443 	if (!addr)
3444 		return;
3445 
3446 	vm = remove_vm_area(addr);
3447 	if (unlikely(!vm)) {
3448 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
3449 				addr);
3450 		return;
3451 	}
3452 
3453 	if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
3454 		vm_reset_perms(vm);
3455 	/* All pages of vm should be charged to same memcg, so use first one. */
3456 	if (vm->nr_pages && !(vm->flags & VM_MAP_PUT_PAGES))
3457 		mod_memcg_page_state(vm->pages[0], MEMCG_VMALLOC, -vm->nr_pages);
3458 	for (i = 0; i < vm->nr_pages; i++) {
3459 		struct page *page = vm->pages[i];
3460 
3461 		BUG_ON(!page);
3462 		/*
3463 		 * High-order allocs for huge vmallocs are split, so
3464 		 * can be freed as an array of order-0 allocations
3465 		 */
3466 		__free_page(page);
3467 		cond_resched();
3468 	}
3469 	if (!(vm->flags & VM_MAP_PUT_PAGES))
3470 		atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
3471 	kvfree(vm->pages);
3472 	kfree(vm);
3473 }
3474 EXPORT_SYMBOL(vfree);
3475 
3476 /**
3477  * vunmap - release virtual mapping obtained by vmap()
3478  * @addr:   memory base address
3479  *
3480  * Free the virtually contiguous memory area starting at @addr,
3481  * which was created from the page array passed to vmap().
3482  *
3483  * Must not be called in interrupt context.
3484  */
vunmap(const void * addr)3485 void vunmap(const void *addr)
3486 {
3487 	struct vm_struct *vm;
3488 
3489 	BUG_ON(in_interrupt());
3490 	might_sleep();
3491 
3492 	if (!addr)
3493 		return;
3494 	vm = remove_vm_area(addr);
3495 	if (unlikely(!vm)) {
3496 		WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
3497 				addr);
3498 		return;
3499 	}
3500 	kfree(vm);
3501 }
3502 EXPORT_SYMBOL(vunmap);
3503 
3504 /**
3505  * vmap - map an array of pages into virtually contiguous space
3506  * @pages: array of page pointers
3507  * @count: number of pages to map
3508  * @flags: vm_area->flags
3509  * @prot: page protection for the mapping
3510  *
3511  * Maps @count pages from @pages into contiguous kernel virtual space.
3512  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
3513  * (which must be kmalloc or vmalloc memory) and one reference per pages in it
3514  * are transferred from the caller to vmap(), and will be freed / dropped when
3515  * vfree() is called on the return value.
3516  *
3517  * Return: the address of the area or %NULL on failure
3518  */
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)3519 void *vmap(struct page **pages, unsigned int count,
3520 	   unsigned long flags, pgprot_t prot)
3521 {
3522 	struct vm_struct *area;
3523 	unsigned long addr;
3524 	unsigned long size;		/* In bytes */
3525 
3526 	might_sleep();
3527 
3528 	if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
3529 		return NULL;
3530 
3531 	/*
3532 	 * Your top guard is someone else's bottom guard. Not having a top
3533 	 * guard compromises someone else's mappings too.
3534 	 */
3535 	if (WARN_ON_ONCE(flags & VM_NO_GUARD))
3536 		flags &= ~VM_NO_GUARD;
3537 
3538 	if (count > totalram_pages())
3539 		return NULL;
3540 
3541 	size = (unsigned long)count << PAGE_SHIFT;
3542 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
3543 	if (!area)
3544 		return NULL;
3545 
3546 	addr = (unsigned long)area->addr;
3547 	if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
3548 				pages, PAGE_SHIFT) < 0) {
3549 		vunmap(area->addr);
3550 		return NULL;
3551 	}
3552 
3553 	if (flags & VM_MAP_PUT_PAGES) {
3554 		area->pages = pages;
3555 		area->nr_pages = count;
3556 	}
3557 	return area->addr;
3558 }
3559 EXPORT_SYMBOL(vmap);
3560 
3561 #ifdef CONFIG_VMAP_PFN
3562 struct vmap_pfn_data {
3563 	unsigned long	*pfns;
3564 	pgprot_t	prot;
3565 	unsigned int	idx;
3566 };
3567 
vmap_pfn_apply(pte_t * pte,unsigned long addr,void * private)3568 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
3569 {
3570 	struct vmap_pfn_data *data = private;
3571 	unsigned long pfn = data->pfns[data->idx];
3572 	pte_t ptent;
3573 
3574 	if (WARN_ON_ONCE(pfn_valid(pfn)))
3575 		return -EINVAL;
3576 
3577 	ptent = pte_mkspecial(pfn_pte(pfn, data->prot));
3578 	set_pte_at(&init_mm, addr, pte, ptent);
3579 
3580 	data->idx++;
3581 	return 0;
3582 }
3583 
3584 /**
3585  * vmap_pfn - map an array of PFNs into virtually contiguous space
3586  * @pfns: array of PFNs
3587  * @count: number of pages to map
3588  * @prot: page protection for the mapping
3589  *
3590  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
3591  * the start address of the mapping.
3592  */
vmap_pfn(unsigned long * pfns,unsigned int count,pgprot_t prot)3593 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
3594 {
3595 	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
3596 	struct vm_struct *area;
3597 
3598 	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
3599 			__builtin_return_address(0));
3600 	if (!area)
3601 		return NULL;
3602 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3603 			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
3604 		free_vm_area(area);
3605 		return NULL;
3606 	}
3607 
3608 	flush_cache_vmap((unsigned long)area->addr,
3609 			 (unsigned long)area->addr + count * PAGE_SIZE);
3610 
3611 	return area->addr;
3612 }
3613 EXPORT_SYMBOL_GPL(vmap_pfn);
3614 #endif /* CONFIG_VMAP_PFN */
3615 
3616 /*
3617  * Helper for vmalloc to adjust the gfp flags for certain allocations.
3618  */
vmalloc_gfp_adjust(gfp_t flags,const bool large)3619 static inline gfp_t vmalloc_gfp_adjust(gfp_t flags, const bool large)
3620 {
3621 	flags |= __GFP_NOWARN;
3622 	if (large)
3623 		flags &= ~__GFP_NOFAIL;
3624 	return flags;
3625 }
3626 
3627 static inline unsigned int
vm_area_alloc_pages(gfp_t gfp,int nid,unsigned int order,unsigned int nr_pages,struct page ** pages)3628 vm_area_alloc_pages(gfp_t gfp, int nid,
3629 		unsigned int order, unsigned int nr_pages, struct page **pages)
3630 {
3631 	unsigned int nr_allocated = 0;
3632 	unsigned int nr_remaining = nr_pages;
3633 	unsigned int max_attempt_order = MAX_PAGE_ORDER;
3634 	struct page *page;
3635 	int i;
3636 	unsigned int large_order = ilog2(nr_remaining);
3637 	gfp_t large_gfp = vmalloc_gfp_adjust(gfp, large_order) & ~__GFP_DIRECT_RECLAIM;
3638 
3639 	large_order = min(max_attempt_order, large_order);
3640 
3641 	/*
3642 	 * Initially, attempt to have the page allocator give us large order
3643 	 * pages. Do not attempt allocating smaller than order chunks since
3644 	 * __vmap_pages_range() expects physically contigous pages of exactly
3645 	 * order long chunks.
3646 	 */
3647 	while (large_order > order && nr_remaining) {
3648 		if (nid == NUMA_NO_NODE)
3649 			page = alloc_pages_noprof(large_gfp, large_order);
3650 		else
3651 			page = alloc_pages_node_noprof(nid, large_gfp, large_order);
3652 
3653 		if (unlikely(!page)) {
3654 			max_attempt_order = --large_order;
3655 			continue;
3656 		}
3657 
3658 		split_page(page, large_order);
3659 		for (i = 0; i < (1U << large_order); i++)
3660 			pages[nr_allocated + i] = page + i;
3661 
3662 		nr_allocated += 1U << large_order;
3663 		nr_remaining = nr_pages - nr_allocated;
3664 
3665 		large_order = ilog2(nr_remaining);
3666 		large_order = min(max_attempt_order, large_order);
3667 	}
3668 
3669 	/*
3670 	 * For order-0 pages we make use of bulk allocator, if
3671 	 * the page array is partly or not at all populated due
3672 	 * to fails, fallback to a single page allocator that is
3673 	 * more permissive.
3674 	 */
3675 	if (!order) {
3676 		while (nr_allocated < nr_pages) {
3677 			unsigned int nr, nr_pages_request;
3678 
3679 			/*
3680 			 * A maximum allowed request is hard-coded and is 100
3681 			 * pages per call. That is done in order to prevent a
3682 			 * long preemption off scenario in the bulk-allocator
3683 			 * so the range is [1:100].
3684 			 */
3685 			nr_pages_request = min(100U, nr_pages - nr_allocated);
3686 
3687 			/* memory allocation should consider mempolicy, we can't
3688 			 * wrongly use nearest node when nid == NUMA_NO_NODE,
3689 			 * otherwise memory may be allocated in only one node,
3690 			 * but mempolicy wants to alloc memory by interleaving.
3691 			 */
3692 			if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
3693 				nr = alloc_pages_bulk_mempolicy_noprof(gfp,
3694 							nr_pages_request,
3695 							pages + nr_allocated);
3696 			else
3697 				nr = alloc_pages_bulk_node_noprof(gfp, nid,
3698 							nr_pages_request,
3699 							pages + nr_allocated);
3700 
3701 			nr_allocated += nr;
3702 
3703 			/*
3704 			 * If zero or pages were obtained partly,
3705 			 * fallback to a single page allocator.
3706 			 */
3707 			if (nr != nr_pages_request)
3708 				break;
3709 		}
3710 	}
3711 
3712 	/* High-order pages or fallback path if "bulk" fails. */
3713 	while (nr_allocated < nr_pages) {
3714 		if (!(gfp & __GFP_NOFAIL) && fatal_signal_pending(current))
3715 			break;
3716 
3717 		if (nid == NUMA_NO_NODE)
3718 			page = alloc_pages_noprof(gfp, order);
3719 		else
3720 			page = alloc_pages_node_noprof(nid, gfp, order);
3721 
3722 		if (unlikely(!page))
3723 			break;
3724 
3725 		/*
3726 		 * High-order allocations must be able to be treated as
3727 		 * independent small pages by callers (as they can with
3728 		 * small-page vmallocs). Some drivers do their own refcounting
3729 		 * on vmalloc_to_page() pages, some use page->mapping,
3730 		 * page->lru, etc.
3731 		 */
3732 		if (order)
3733 			split_page(page, order);
3734 
3735 		/*
3736 		 * Careful, we allocate and map page-order pages, but
3737 		 * tracking is done per PAGE_SIZE page so as to keep the
3738 		 * vm_struct APIs independent of the physical/mapped size.
3739 		 */
3740 		for (i = 0; i < (1U << order); i++)
3741 			pages[nr_allocated + i] = page + i;
3742 
3743 		nr_allocated += 1U << order;
3744 	}
3745 
3746 	return nr_allocated;
3747 }
3748 
3749 static LLIST_HEAD(pending_vm_area_cleanup);
cleanup_vm_area_work(struct work_struct * work)3750 static void cleanup_vm_area_work(struct work_struct *work)
3751 {
3752 	struct vm_struct *area, *tmp;
3753 	struct llist_node *head;
3754 
3755 	head = llist_del_all(&pending_vm_area_cleanup);
3756 	if (!head)
3757 		return;
3758 
3759 	llist_for_each_entry_safe(area, tmp, head, llnode) {
3760 		if (!area->pages)
3761 			free_vm_area(area);
3762 		else
3763 			vfree(area->addr);
3764 	}
3765 }
3766 
3767 /*
3768  * Helper for __vmalloc_area_node() to defer cleanup
3769  * of partially initialized vm_struct in error paths.
3770  */
3771 static DECLARE_WORK(cleanup_vm_area, cleanup_vm_area_work);
defer_vm_area_cleanup(struct vm_struct * area)3772 static void defer_vm_area_cleanup(struct vm_struct *area)
3773 {
3774 	if (llist_add(&area->llnode, &pending_vm_area_cleanup))
3775 		schedule_work(&cleanup_vm_area);
3776 }
3777 
3778 /*
3779  * Page tables allocations ignore external GFP. Enforces it by
3780  * the memalloc scope API. It is used by vmalloc internals and
3781  * KASAN shadow population only.
3782  *
3783  * GFP to scope mapping:
3784  *
3785  * non-blocking (no __GFP_DIRECT_RECLAIM) - memalloc_noreclaim_save()
3786  * GFP_NOFS - memalloc_nofs_save()
3787  * GFP_NOIO - memalloc_noio_save()
3788  *
3789  * Returns a flag cookie to pair with restore.
3790  */
3791 unsigned int
memalloc_apply_gfp_scope(gfp_t gfp_mask)3792 memalloc_apply_gfp_scope(gfp_t gfp_mask)
3793 {
3794 	unsigned int flags = 0;
3795 
3796 	if (!gfpflags_allow_blocking(gfp_mask))
3797 		flags = memalloc_noreclaim_save();
3798 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3799 		flags = memalloc_nofs_save();
3800 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3801 		flags = memalloc_noio_save();
3802 
3803 	/* 0 - no scope applied. */
3804 	return flags;
3805 }
3806 
3807 void
memalloc_restore_scope(unsigned int flags)3808 memalloc_restore_scope(unsigned int flags)
3809 {
3810 	if (flags)
3811 		memalloc_flags_restore(flags);
3812 }
3813 
__vmalloc_area_node(struct vm_struct * area,gfp_t gfp_mask,pgprot_t prot,unsigned int page_shift,int node)3814 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3815 				 pgprot_t prot, unsigned int page_shift,
3816 				 int node)
3817 {
3818 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
3819 	bool nofail = gfp_mask & __GFP_NOFAIL;
3820 	unsigned long addr = (unsigned long)area->addr;
3821 	unsigned long size = get_vm_area_size(area);
3822 	unsigned long array_size;
3823 	unsigned int nr_small_pages = size >> PAGE_SHIFT;
3824 	unsigned int page_order;
3825 	unsigned int flags;
3826 	int ret;
3827 
3828 	array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3829 
3830 	/* __GFP_NOFAIL and "noblock" flags are mutually exclusive. */
3831 	if (!gfpflags_allow_blocking(gfp_mask))
3832 		nofail = false;
3833 
3834 	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3835 		gfp_mask |= __GFP_HIGHMEM;
3836 
3837 	/* Please note that the recursion is strictly bounded. */
3838 	if (array_size > PAGE_SIZE) {
3839 		area->pages = __vmalloc_node_noprof(array_size, 1, nested_gfp, node,
3840 					area->caller);
3841 	} else {
3842 		area->pages = kmalloc_node_noprof(array_size, nested_gfp, node);
3843 	}
3844 
3845 	if (!area->pages) {
3846 		warn_alloc(gfp_mask, NULL,
3847 			"vmalloc error: size %lu, failed to allocated page array size %lu",
3848 			nr_small_pages * PAGE_SIZE, array_size);
3849 		goto fail;
3850 	}
3851 
3852 	set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3853 	page_order = vm_area_page_order(area);
3854 
3855 	/*
3856 	 * High-order nofail allocations are really expensive and
3857 	 * potentially dangerous (pre-mature OOM, disruptive reclaim
3858 	 * and compaction etc.
3859 	 *
3860 	 * Please note, the __vmalloc_node_range_noprof() falls-back
3861 	 * to order-0 pages if high-order attempt is unsuccessful.
3862 	 */
3863 	area->nr_pages = vm_area_alloc_pages(
3864 			vmalloc_gfp_adjust(gfp_mask, page_order), node,
3865 			page_order, nr_small_pages, area->pages);
3866 
3867 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3868 	/* All pages of vm should be charged to same memcg, so use first one. */
3869 	if (gfp_mask & __GFP_ACCOUNT && area->nr_pages)
3870 		mod_memcg_page_state(area->pages[0], MEMCG_VMALLOC,
3871 				     area->nr_pages);
3872 
3873 	/*
3874 	 * If not enough pages were obtained to accomplish an
3875 	 * allocation request, free them via vfree() if any.
3876 	 */
3877 	if (area->nr_pages != nr_small_pages) {
3878 		/*
3879 		 * vm_area_alloc_pages() can fail due to insufficient memory but
3880 		 * also:-
3881 		 *
3882 		 * - a pending fatal signal
3883 		 * - insufficient huge page-order pages
3884 		 *
3885 		 * Since we always retry allocations at order-0 in the huge page
3886 		 * case a warning for either is spurious.
3887 		 */
3888 		if (!fatal_signal_pending(current) && page_order == 0)
3889 			warn_alloc(gfp_mask, NULL,
3890 				"vmalloc error: size %lu, failed to allocate pages",
3891 				area->nr_pages * PAGE_SIZE);
3892 		goto fail;
3893 	}
3894 
3895 	/*
3896 	 * page tables allocations ignore external gfp mask, enforce it
3897 	 * by the scope API
3898 	 */
3899 	flags = memalloc_apply_gfp_scope(gfp_mask);
3900 	do {
3901 		ret = __vmap_pages_range(addr, addr + size, prot, area->pages,
3902 				page_shift, nested_gfp);
3903 		if (nofail && (ret < 0))
3904 			schedule_timeout_uninterruptible(1);
3905 	} while (nofail && (ret < 0));
3906 	memalloc_restore_scope(flags);
3907 
3908 	if (ret < 0) {
3909 		warn_alloc(gfp_mask, NULL,
3910 			"vmalloc error: size %lu, failed to map pages",
3911 			area->nr_pages * PAGE_SIZE);
3912 		goto fail;
3913 	}
3914 
3915 	return area->addr;
3916 
3917 fail:
3918 	defer_vm_area_cleanup(area);
3919 	return NULL;
3920 }
3921 
3922 /*
3923  * See __vmalloc_node_range() for a clear list of supported vmalloc flags.
3924  * This gfp lists all flags currently passed through vmalloc. Currently,
3925  * __GFP_ZERO is used by BPF and __GFP_NORETRY is used by percpu. Both drm
3926  * and BPF also use GFP_USER. Additionally, various users pass
3927  * GFP_KERNEL_ACCOUNT. Xfs uses __GFP_NOLOCKDEP.
3928  */
3929 #define GFP_VMALLOC_SUPPORTED (GFP_KERNEL | GFP_ATOMIC | GFP_NOWAIT |\
3930 				__GFP_NOFAIL |  __GFP_ZERO | __GFP_NORETRY |\
3931 				GFP_NOFS | GFP_NOIO | GFP_KERNEL_ACCOUNT |\
3932 				GFP_USER | __GFP_NOLOCKDEP)
3933 
vmalloc_fix_flags(gfp_t flags)3934 static gfp_t vmalloc_fix_flags(gfp_t flags)
3935 {
3936 	gfp_t invalid_mask = flags & ~GFP_VMALLOC_SUPPORTED;
3937 
3938 	flags &= GFP_VMALLOC_SUPPORTED;
3939 	WARN_ONCE(1, "Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
3940 		  invalid_mask, &invalid_mask, flags, &flags);
3941 	return flags;
3942 }
3943 
3944 /**
3945  * __vmalloc_node_range - allocate virtually contiguous memory
3946  * @size:		  allocation size
3947  * @align:		  desired alignment
3948  * @start:		  vm area range start
3949  * @end:		  vm area range end
3950  * @gfp_mask:		  flags for the page level allocator
3951  * @prot:		  protection mask for the allocated pages
3952  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
3953  * @node:		  node to use for allocation or NUMA_NO_NODE
3954  * @caller:		  caller's return address
3955  *
3956  * Allocate enough pages to cover @size from the page level
3957  * allocator with @gfp_mask flags and map them into contiguous
3958  * virtual range with protection @prot.
3959  *
3960  * Supported GFP classes: %GFP_KERNEL, %GFP_ATOMIC, %GFP_NOWAIT,
3961  * %GFP_NOFS and %GFP_NOIO. Zone modifiers are not supported.
3962  * Please note %GFP_ATOMIC and %GFP_NOWAIT are supported only
3963  * by __vmalloc().
3964  *
3965  * Retry modifiers: only %__GFP_NOFAIL is supported; %__GFP_NORETRY
3966  * and %__GFP_RETRY_MAYFAIL are not supported.
3967  *
3968  * %__GFP_NOWARN can be used to suppress failure messages.
3969  *
3970  * Can not be called from interrupt nor NMI contexts.
3971  * Return: the address of the area or %NULL on failure
3972  */
__vmalloc_node_range_noprof(unsigned long size,unsigned long align,unsigned long start,unsigned long end,gfp_t gfp_mask,pgprot_t prot,unsigned long vm_flags,int node,const void * caller)3973 void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align,
3974 			unsigned long start, unsigned long end, gfp_t gfp_mask,
3975 			pgprot_t prot, unsigned long vm_flags, int node,
3976 			const void *caller)
3977 {
3978 	struct vm_struct *area;
3979 	void *ret;
3980 	kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3981 	unsigned long original_align = align;
3982 	unsigned int shift = PAGE_SHIFT;
3983 
3984 	if (WARN_ON_ONCE(!size))
3985 		return NULL;
3986 
3987 	if ((size >> PAGE_SHIFT) > totalram_pages()) {
3988 		warn_alloc(gfp_mask, NULL,
3989 			"vmalloc error: size %lu, exceeds total pages",
3990 			size);
3991 		return NULL;
3992 	}
3993 
3994 	if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3995 		/*
3996 		 * Try huge pages. Only try for PAGE_KERNEL allocations,
3997 		 * others like modules don't yet expect huge pages in
3998 		 * their allocations due to apply_to_page_range not
3999 		 * supporting them.
4000 		 */
4001 
4002 		if (arch_vmap_pmd_supported(prot) && size >= PMD_SIZE)
4003 			shift = PMD_SHIFT;
4004 		else
4005 			shift = arch_vmap_pte_supported_shift(size);
4006 
4007 		align = max(original_align, 1UL << shift);
4008 	}
4009 
4010 again:
4011 	area = __get_vm_area_node(size, align, shift, VM_ALLOC |
4012 				  VM_UNINITIALIZED | vm_flags, start, end, node,
4013 				  gfp_mask, caller);
4014 	if (!area) {
4015 		bool nofail = gfp_mask & __GFP_NOFAIL;
4016 		warn_alloc(gfp_mask, NULL,
4017 			"vmalloc error: size %lu, vm_struct allocation failed%s",
4018 			size, (nofail) ? ". Retrying." : "");
4019 		if (nofail) {
4020 			schedule_timeout_uninterruptible(1);
4021 			goto again;
4022 		}
4023 		goto fail;
4024 	}
4025 
4026 	/*
4027 	 * Prepare arguments for __vmalloc_area_node() and
4028 	 * kasan_unpoison_vmalloc().
4029 	 */
4030 	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
4031 		if (kasan_hw_tags_enabled()) {
4032 			/*
4033 			 * Modify protection bits to allow tagging.
4034 			 * This must be done before mapping.
4035 			 */
4036 			prot = arch_vmap_pgprot_tagged(prot);
4037 
4038 			/*
4039 			 * Skip page_alloc poisoning and zeroing for physical
4040 			 * pages backing VM_ALLOC mapping. Memory is instead
4041 			 * poisoned and zeroed by kasan_unpoison_vmalloc().
4042 			 */
4043 			gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO;
4044 		}
4045 
4046 		/* Take note that the mapping is PAGE_KERNEL. */
4047 		kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
4048 	}
4049 
4050 	/* Allocate physical pages and map them into vmalloc space. */
4051 	ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
4052 	if (!ret)
4053 		goto fail;
4054 
4055 	/*
4056 	 * Mark the pages as accessible, now that they are mapped.
4057 	 * The condition for setting KASAN_VMALLOC_INIT should complement the
4058 	 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
4059 	 * to make sure that memory is initialized under the same conditions.
4060 	 * Tag-based KASAN modes only assign tags to normal non-executable
4061 	 * allocations, see __kasan_unpoison_vmalloc().
4062 	 */
4063 	kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
4064 	if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
4065 	    (gfp_mask & __GFP_SKIP_ZERO))
4066 		kasan_flags |= KASAN_VMALLOC_INIT;
4067 	/* KASAN_VMALLOC_PROT_NORMAL already set if required. */
4068 	area->addr = kasan_unpoison_vmalloc(area->addr, size, kasan_flags);
4069 
4070 	/*
4071 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
4072 	 * flag. It means that vm_struct is not fully initialized.
4073 	 * Now, it is fully initialized, so remove this flag here.
4074 	 */
4075 	clear_vm_uninitialized_flag(area);
4076 
4077 	if (!(vm_flags & VM_DEFER_KMEMLEAK))
4078 		kmemleak_vmalloc(area, PAGE_ALIGN(size), gfp_mask);
4079 
4080 	return area->addr;
4081 
4082 fail:
4083 	if (shift > PAGE_SHIFT) {
4084 		shift = PAGE_SHIFT;
4085 		align = original_align;
4086 		goto again;
4087 	}
4088 
4089 	return NULL;
4090 }
4091 
4092 /**
4093  * __vmalloc_node - allocate virtually contiguous memory
4094  * @size:	    allocation size
4095  * @align:	    desired alignment
4096  * @gfp_mask:	    flags for the page level allocator
4097  * @node:	    node to use for allocation or NUMA_NO_NODE
4098  * @caller:	    caller's return address
4099  *
4100  * Allocate enough pages to cover @size from the page level allocator with
4101  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
4102  *
4103  * Semantics of @gfp_mask (including reclaim/retry modifiers such as
4104  * __GFP_NOFAIL) are the same as in __vmalloc_node_range_noprof().
4105  *
4106  * Return: pointer to the allocated memory or %NULL on error
4107  */
__vmalloc_node_noprof(unsigned long size,unsigned long align,gfp_t gfp_mask,int node,const void * caller)4108 void *__vmalloc_node_noprof(unsigned long size, unsigned long align,
4109 			    gfp_t gfp_mask, int node, const void *caller)
4110 {
4111 	return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END,
4112 				gfp_mask, PAGE_KERNEL, 0, node, caller);
4113 }
4114 /*
4115  * This is only for performance analysis of vmalloc and stress purpose.
4116  * It is required by vmalloc test module, therefore do not use it other
4117  * than that.
4118  */
4119 #ifdef CONFIG_TEST_VMALLOC_MODULE
4120 EXPORT_SYMBOL_GPL(__vmalloc_node_noprof);
4121 #endif
4122 
__vmalloc_noprof(unsigned long size,gfp_t gfp_mask)4123 void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask)
4124 {
4125 	if (unlikely(gfp_mask & ~GFP_VMALLOC_SUPPORTED))
4126 		gfp_mask = vmalloc_fix_flags(gfp_mask);
4127 	return __vmalloc_node_noprof(size, 1, gfp_mask, NUMA_NO_NODE,
4128 				__builtin_return_address(0));
4129 }
4130 EXPORT_SYMBOL(__vmalloc_noprof);
4131 
4132 /**
4133  * vmalloc - allocate virtually contiguous memory
4134  * @size:    allocation size
4135  *
4136  * Allocate enough pages to cover @size from the page level
4137  * allocator and map them into contiguous kernel virtual space.
4138  *
4139  * For tight control over page level allocator and protection flags
4140  * use __vmalloc() instead.
4141  *
4142  * Return: pointer to the allocated memory or %NULL on error
4143  */
vmalloc_noprof(unsigned long size)4144 void *vmalloc_noprof(unsigned long size)
4145 {
4146 	return __vmalloc_node_noprof(size, 1, GFP_KERNEL, NUMA_NO_NODE,
4147 				__builtin_return_address(0));
4148 }
4149 EXPORT_SYMBOL(vmalloc_noprof);
4150 
4151 /**
4152  * vmalloc_huge_node - allocate virtually contiguous memory, allow huge pages
4153  * @size:      allocation size
4154  * @gfp_mask:  flags for the page level allocator
4155  * @node:	    node to use for allocation or NUMA_NO_NODE
4156  *
4157  * Allocate enough pages to cover @size from the page level
4158  * allocator and map them into contiguous kernel virtual space.
4159  * If @size is greater than or equal to PMD_SIZE, allow using
4160  * huge pages for the memory
4161  *
4162  * Return: pointer to the allocated memory or %NULL on error
4163  */
vmalloc_huge_node_noprof(unsigned long size,gfp_t gfp_mask,int node)4164 void *vmalloc_huge_node_noprof(unsigned long size, gfp_t gfp_mask, int node)
4165 {
4166 	if (unlikely(gfp_mask & ~GFP_VMALLOC_SUPPORTED))
4167 		gfp_mask = vmalloc_fix_flags(gfp_mask);
4168 	return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END,
4169 					   gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
4170 					   node, __builtin_return_address(0));
4171 }
4172 EXPORT_SYMBOL_GPL(vmalloc_huge_node_noprof);
4173 
4174 /**
4175  * vzalloc - allocate virtually contiguous memory with zero fill
4176  * @size:    allocation size
4177  *
4178  * Allocate enough pages to cover @size from the page level
4179  * allocator and map them into contiguous kernel virtual space.
4180  * The memory allocated is set to zero.
4181  *
4182  * For tight control over page level allocator and protection flags
4183  * use __vmalloc() instead.
4184  *
4185  * Return: pointer to the allocated memory or %NULL on error
4186  */
vzalloc_noprof(unsigned long size)4187 void *vzalloc_noprof(unsigned long size)
4188 {
4189 	return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
4190 				__builtin_return_address(0));
4191 }
4192 EXPORT_SYMBOL(vzalloc_noprof);
4193 
4194 /**
4195  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
4196  * @size: allocation size
4197  *
4198  * The resulting memory area is zeroed so it can be mapped to userspace
4199  * without leaking data.
4200  *
4201  * Return: pointer to the allocated memory or %NULL on error
4202  */
vmalloc_user_noprof(unsigned long size)4203 void *vmalloc_user_noprof(unsigned long size)
4204 {
4205 	return __vmalloc_node_range_noprof(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
4206 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
4207 				    VM_USERMAP, NUMA_NO_NODE,
4208 				    __builtin_return_address(0));
4209 }
4210 EXPORT_SYMBOL(vmalloc_user_noprof);
4211 
4212 /**
4213  * vmalloc_node - allocate memory on a specific node
4214  * @size:	  allocation size
4215  * @node:	  numa node
4216  *
4217  * Allocate enough pages to cover @size from the page level
4218  * allocator and map them into contiguous kernel virtual space.
4219  *
4220  * For tight control over page level allocator and protection flags
4221  * use __vmalloc() instead.
4222  *
4223  * Return: pointer to the allocated memory or %NULL on error
4224  */
vmalloc_node_noprof(unsigned long size,int node)4225 void *vmalloc_node_noprof(unsigned long size, int node)
4226 {
4227 	return __vmalloc_node_noprof(size, 1, GFP_KERNEL, node,
4228 			__builtin_return_address(0));
4229 }
4230 EXPORT_SYMBOL(vmalloc_node_noprof);
4231 
4232 /**
4233  * vzalloc_node - allocate memory on a specific node with zero fill
4234  * @size:	allocation size
4235  * @node:	numa node
4236  *
4237  * Allocate enough pages to cover @size from the page level
4238  * allocator and map them into contiguous kernel virtual space.
4239  * The memory allocated is set to zero.
4240  *
4241  * Return: pointer to the allocated memory or %NULL on error
4242  */
vzalloc_node_noprof(unsigned long size,int node)4243 void *vzalloc_node_noprof(unsigned long size, int node)
4244 {
4245 	return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, node,
4246 				__builtin_return_address(0));
4247 }
4248 EXPORT_SYMBOL(vzalloc_node_noprof);
4249 
4250 /**
4251  * vrealloc_node_align_noprof - reallocate virtually contiguous memory; contents
4252  * remain unchanged
4253  * @p: object to reallocate memory for
4254  * @size: the size to reallocate
4255  * @align: requested alignment
4256  * @flags: the flags for the page level allocator
4257  * @nid: node number of the target node
4258  *
4259  * If @p is %NULL, vrealloc_XXX() behaves exactly like vmalloc_XXX(). If @size
4260  * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
4261  *
4262  * If the caller wants the new memory to be on specific node *only*,
4263  * __GFP_THISNODE flag should be set, otherwise the function will try to avoid
4264  * reallocation and possibly disregard the specified @nid.
4265  *
4266  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
4267  * initial memory allocation, every subsequent call to this API for the same
4268  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
4269  * __GFP_ZERO is not fully honored by this API.
4270  *
4271  * Requesting an alignment that is bigger than the alignment of the existing
4272  * allocation will fail.
4273  *
4274  * In any case, the contents of the object pointed to are preserved up to the
4275  * lesser of the new and old sizes.
4276  *
4277  * This function must not be called concurrently with itself or vfree() for the
4278  * same memory allocation.
4279  *
4280  * Return: pointer to the allocated memory; %NULL if @size is zero or in case of
4281  *         failure
4282  */
vrealloc_node_align_noprof(const void * p,size_t size,unsigned long align,gfp_t flags,int nid)4283 void *vrealloc_node_align_noprof(const void *p, size_t size, unsigned long align,
4284 				 gfp_t flags, int nid)
4285 {
4286 	struct vm_struct *vm = NULL;
4287 	size_t alloced_size = 0;
4288 	size_t old_size = 0;
4289 	void *n;
4290 
4291 	if (!size) {
4292 		vfree(p);
4293 		return NULL;
4294 	}
4295 
4296 	if (p) {
4297 		vm = find_vm_area(p);
4298 		if (unlikely(!vm)) {
4299 			WARN(1, "Trying to vrealloc() nonexistent vm area (%p)\n", p);
4300 			return NULL;
4301 		}
4302 
4303 		alloced_size = get_vm_area_size(vm);
4304 		old_size = vm->requested_size;
4305 		if (WARN(alloced_size < old_size,
4306 			 "vrealloc() has mismatched area vs requested sizes (%p)\n", p))
4307 			return NULL;
4308 		if (WARN(!IS_ALIGNED((unsigned long)p, align),
4309 			 "will not reallocate with a bigger alignment (0x%lx)\n", align))
4310 			return NULL;
4311 		if (unlikely(flags & __GFP_THISNODE) && nid != NUMA_NO_NODE &&
4312 			     nid != page_to_nid(vmalloc_to_page(p)))
4313 			goto need_realloc;
4314 	}
4315 
4316 	/*
4317 	 * TODO: Shrink the vm_area, i.e. unmap and free unused pages. What
4318 	 * would be a good heuristic for when to shrink the vm_area?
4319 	 */
4320 	if (size <= old_size) {
4321 		/* Zero out "freed" memory, potentially for future realloc. */
4322 		if (want_init_on_free() || want_init_on_alloc(flags))
4323 			memset((void *)p + size, 0, old_size - size);
4324 		vm->requested_size = size;
4325 		kasan_poison_vmalloc(p + size, old_size - size);
4326 		return (void *)p;
4327 	}
4328 
4329 	/*
4330 	 * We already have the bytes available in the allocation; use them.
4331 	 */
4332 	if (size <= alloced_size) {
4333 		kasan_unpoison_vmalloc(p + old_size, size - old_size,
4334 				       KASAN_VMALLOC_PROT_NORMAL);
4335 		/*
4336 		 * No need to zero memory here, as unused memory will have
4337 		 * already been zeroed at initial allocation time or during
4338 		 * realloc shrink time.
4339 		 */
4340 		vm->requested_size = size;
4341 		return (void *)p;
4342 	}
4343 
4344 need_realloc:
4345 	/* TODO: Grow the vm_area, i.e. allocate and map additional pages. */
4346 	n = __vmalloc_node_noprof(size, align, flags, nid, __builtin_return_address(0));
4347 
4348 	if (!n)
4349 		return NULL;
4350 
4351 	if (p) {
4352 		memcpy(n, p, old_size);
4353 		vfree(p);
4354 	}
4355 
4356 	return n;
4357 }
4358 
4359 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
4360 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
4361 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
4362 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
4363 #else
4364 /*
4365  * 64b systems should always have either DMA or DMA32 zones. For others
4366  * GFP_DMA32 should do the right thing and use the normal zone.
4367  */
4368 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
4369 #endif
4370 
4371 /**
4372  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
4373  * @size:	allocation size
4374  *
4375  * Allocate enough 32bit PA addressable pages to cover @size from the
4376  * page level allocator and map them into contiguous kernel virtual space.
4377  *
4378  * Return: pointer to the allocated memory or %NULL on error
4379  */
vmalloc_32_noprof(unsigned long size)4380 void *vmalloc_32_noprof(unsigned long size)
4381 {
4382 	return __vmalloc_node_noprof(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
4383 			__builtin_return_address(0));
4384 }
4385 EXPORT_SYMBOL(vmalloc_32_noprof);
4386 
4387 /**
4388  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
4389  * @size:	     allocation size
4390  *
4391  * The resulting memory area is 32bit addressable and zeroed so it can be
4392  * mapped to userspace without leaking data.
4393  *
4394  * Return: pointer to the allocated memory or %NULL on error
4395  */
vmalloc_32_user_noprof(unsigned long size)4396 void *vmalloc_32_user_noprof(unsigned long size)
4397 {
4398 	return __vmalloc_node_range_noprof(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
4399 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
4400 				    VM_USERMAP, NUMA_NO_NODE,
4401 				    __builtin_return_address(0));
4402 }
4403 EXPORT_SYMBOL(vmalloc_32_user_noprof);
4404 
4405 /*
4406  * Atomically zero bytes in the iterator.
4407  *
4408  * Returns the number of zeroed bytes.
4409  */
zero_iter(struct iov_iter * iter,size_t count)4410 static size_t zero_iter(struct iov_iter *iter, size_t count)
4411 {
4412 	size_t remains = count;
4413 
4414 	while (remains > 0) {
4415 		size_t num, copied;
4416 
4417 		num = min_t(size_t, remains, PAGE_SIZE);
4418 		copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter);
4419 		remains -= copied;
4420 
4421 		if (copied < num)
4422 			break;
4423 	}
4424 
4425 	return count - remains;
4426 }
4427 
4428 /*
4429  * small helper routine, copy contents to iter from addr.
4430  * If the page is not present, fill zero.
4431  *
4432  * Returns the number of copied bytes.
4433  */
aligned_vread_iter(struct iov_iter * iter,const char * addr,size_t count)4434 static size_t aligned_vread_iter(struct iov_iter *iter,
4435 				 const char *addr, size_t count)
4436 {
4437 	size_t remains = count;
4438 	struct page *page;
4439 
4440 	while (remains > 0) {
4441 		unsigned long offset, length;
4442 		size_t copied = 0;
4443 
4444 		offset = offset_in_page(addr);
4445 		length = PAGE_SIZE - offset;
4446 		if (length > remains)
4447 			length = remains;
4448 		page = vmalloc_to_page(addr);
4449 		/*
4450 		 * To do safe access to this _mapped_ area, we need lock. But
4451 		 * adding lock here means that we need to add overhead of
4452 		 * vmalloc()/vfree() calls for this _debug_ interface, rarely
4453 		 * used. Instead of that, we'll use an local mapping via
4454 		 * copy_page_to_iter_nofault() and accept a small overhead in
4455 		 * this access function.
4456 		 */
4457 		if (page)
4458 			copied = copy_page_to_iter_nofault(page, offset,
4459 							   length, iter);
4460 		else
4461 			copied = zero_iter(iter, length);
4462 
4463 		addr += copied;
4464 		remains -= copied;
4465 
4466 		if (copied != length)
4467 			break;
4468 	}
4469 
4470 	return count - remains;
4471 }
4472 
4473 /*
4474  * Read from a vm_map_ram region of memory.
4475  *
4476  * Returns the number of copied bytes.
4477  */
vmap_ram_vread_iter(struct iov_iter * iter,const char * addr,size_t count,unsigned long flags)4478 static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr,
4479 				  size_t count, unsigned long flags)
4480 {
4481 	char *start;
4482 	struct vmap_block *vb;
4483 	struct xarray *xa;
4484 	unsigned long offset;
4485 	unsigned int rs, re;
4486 	size_t remains, n;
4487 
4488 	/*
4489 	 * If it's area created by vm_map_ram() interface directly, but
4490 	 * not further subdividing and delegating management to vmap_block,
4491 	 * handle it here.
4492 	 */
4493 	if (!(flags & VMAP_BLOCK))
4494 		return aligned_vread_iter(iter, addr, count);
4495 
4496 	remains = count;
4497 
4498 	/*
4499 	 * Area is split into regions and tracked with vmap_block, read out
4500 	 * each region and zero fill the hole between regions.
4501 	 */
4502 	xa = addr_to_vb_xa((unsigned long) addr);
4503 	vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr));
4504 	if (!vb)
4505 		goto finished_zero;
4506 
4507 	spin_lock(&vb->lock);
4508 	if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
4509 		spin_unlock(&vb->lock);
4510 		goto finished_zero;
4511 	}
4512 
4513 	for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
4514 		size_t copied;
4515 
4516 		if (remains == 0)
4517 			goto finished;
4518 
4519 		start = vmap_block_vaddr(vb->va->va_start, rs);
4520 
4521 		if (addr < start) {
4522 			size_t to_zero = min_t(size_t, start - addr, remains);
4523 			size_t zeroed = zero_iter(iter, to_zero);
4524 
4525 			addr += zeroed;
4526 			remains -= zeroed;
4527 
4528 			if (remains == 0 || zeroed != to_zero)
4529 				goto finished;
4530 		}
4531 
4532 		/*it could start reading from the middle of used region*/
4533 		offset = offset_in_page(addr);
4534 		n = ((re - rs + 1) << PAGE_SHIFT) - offset;
4535 		if (n > remains)
4536 			n = remains;
4537 
4538 		copied = aligned_vread_iter(iter, start + offset, n);
4539 
4540 		addr += copied;
4541 		remains -= copied;
4542 
4543 		if (copied != n)
4544 			goto finished;
4545 	}
4546 
4547 	spin_unlock(&vb->lock);
4548 
4549 finished_zero:
4550 	/* zero-fill the left dirty or free regions */
4551 	return count - remains + zero_iter(iter, remains);
4552 finished:
4553 	/* We couldn't copy/zero everything */
4554 	spin_unlock(&vb->lock);
4555 	return count - remains;
4556 }
4557 
4558 /**
4559  * vread_iter() - read vmalloc area in a safe way to an iterator.
4560  * @iter:         the iterator to which data should be written.
4561  * @addr:         vm address.
4562  * @count:        number of bytes to be read.
4563  *
4564  * This function checks that addr is a valid vmalloc'ed area, and
4565  * copy data from that area to a given buffer. If the given memory range
4566  * of [addr...addr+count) includes some valid address, data is copied to
4567  * proper area of @buf. If there are memory holes, they'll be zero-filled.
4568  * IOREMAP area is treated as memory hole and no copy is done.
4569  *
4570  * If [addr...addr+count) doesn't includes any intersects with alive
4571  * vm_struct area, returns 0. @buf should be kernel's buffer.
4572  *
4573  * Note: In usual ops, vread() is never necessary because the caller
4574  * should know vmalloc() area is valid and can use memcpy().
4575  * This is for routines which have to access vmalloc area without
4576  * any information, as /proc/kcore.
4577  *
4578  * Return: number of bytes for which addr and buf should be increased
4579  * (same number as @count) or %0 if [addr...addr+count) doesn't
4580  * include any intersection with valid vmalloc area
4581  */
vread_iter(struct iov_iter * iter,const char * addr,size_t count)4582 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
4583 {
4584 	struct vmap_node *vn;
4585 	struct vmap_area *va;
4586 	struct vm_struct *vm;
4587 	char *vaddr;
4588 	size_t n, size, flags, remains;
4589 	unsigned long next;
4590 
4591 	addr = kasan_reset_tag(addr);
4592 
4593 	/* Don't allow overflow */
4594 	if ((unsigned long) addr + count < count)
4595 		count = -(unsigned long) addr;
4596 
4597 	remains = count;
4598 
4599 	vn = find_vmap_area_exceed_addr_lock((unsigned long) addr, &va);
4600 	if (!vn)
4601 		goto finished_zero;
4602 
4603 	/* no intersects with alive vmap_area */
4604 	if ((unsigned long)addr + remains <= va->va_start)
4605 		goto finished_zero;
4606 
4607 	do {
4608 		size_t copied;
4609 
4610 		if (remains == 0)
4611 			goto finished;
4612 
4613 		vm = va->vm;
4614 		flags = va->flags & VMAP_FLAGS_MASK;
4615 		/*
4616 		 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
4617 		 * be set together with VMAP_RAM.
4618 		 */
4619 		WARN_ON(flags == VMAP_BLOCK);
4620 
4621 		if (!vm && !flags)
4622 			goto next_va;
4623 
4624 		if (vm && (vm->flags & VM_UNINITIALIZED))
4625 			goto next_va;
4626 
4627 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4628 		smp_rmb();
4629 
4630 		vaddr = (char *) va->va_start;
4631 		size = vm ? get_vm_area_size(vm) : va_size(va);
4632 
4633 		if (addr >= vaddr + size)
4634 			goto next_va;
4635 
4636 		if (addr < vaddr) {
4637 			size_t to_zero = min_t(size_t, vaddr - addr, remains);
4638 			size_t zeroed = zero_iter(iter, to_zero);
4639 
4640 			addr += zeroed;
4641 			remains -= zeroed;
4642 
4643 			if (remains == 0 || zeroed != to_zero)
4644 				goto finished;
4645 		}
4646 
4647 		n = vaddr + size - addr;
4648 		if (n > remains)
4649 			n = remains;
4650 
4651 		if (flags & VMAP_RAM)
4652 			copied = vmap_ram_vread_iter(iter, addr, n, flags);
4653 		else if (!(vm && (vm->flags & (VM_IOREMAP | VM_SPARSE))))
4654 			copied = aligned_vread_iter(iter, addr, n);
4655 		else /* IOREMAP | SPARSE area is treated as memory hole */
4656 			copied = zero_iter(iter, n);
4657 
4658 		addr += copied;
4659 		remains -= copied;
4660 
4661 		if (copied != n)
4662 			goto finished;
4663 
4664 	next_va:
4665 		next = va->va_end;
4666 		spin_unlock(&vn->busy.lock);
4667 	} while ((vn = find_vmap_area_exceed_addr_lock(next, &va)));
4668 
4669 finished_zero:
4670 	if (vn)
4671 		spin_unlock(&vn->busy.lock);
4672 
4673 	/* zero-fill memory holes */
4674 	return count - remains + zero_iter(iter, remains);
4675 finished:
4676 	/* Nothing remains, or We couldn't copy/zero everything. */
4677 	if (vn)
4678 		spin_unlock(&vn->busy.lock);
4679 
4680 	return count - remains;
4681 }
4682 
4683 /**
4684  * remap_vmalloc_range_partial - map vmalloc pages to userspace
4685  * @vma:		vma to cover
4686  * @uaddr:		target user address to start at
4687  * @kaddr:		virtual address of vmalloc kernel memory
4688  * @pgoff:		offset from @kaddr to start at
4689  * @size:		size of map area
4690  *
4691  * Returns:	0 for success, -Exxx on failure
4692  *
4693  * This function checks that @kaddr is a valid vmalloc'ed area,
4694  * and that it is big enough to cover the range starting at
4695  * @uaddr in @vma. Will return failure if that criteria isn't
4696  * met.
4697  *
4698  * Similar to remap_pfn_range() (see mm/memory.c)
4699  */
remap_vmalloc_range_partial(struct vm_area_struct * vma,unsigned long uaddr,void * kaddr,unsigned long pgoff,unsigned long size)4700 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
4701 				void *kaddr, unsigned long pgoff,
4702 				unsigned long size)
4703 {
4704 	struct vm_struct *area;
4705 	unsigned long off;
4706 	unsigned long end_index;
4707 
4708 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
4709 		return -EINVAL;
4710 
4711 	size = PAGE_ALIGN(size);
4712 
4713 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
4714 		return -EINVAL;
4715 
4716 	area = find_vm_area(kaddr);
4717 	if (!area)
4718 		return -EINVAL;
4719 
4720 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
4721 		return -EINVAL;
4722 
4723 	if (check_add_overflow(size, off, &end_index) ||
4724 	    end_index > get_vm_area_size(area))
4725 		return -EINVAL;
4726 	kaddr += off;
4727 
4728 	do {
4729 		struct page *page = vmalloc_to_page(kaddr);
4730 		int ret;
4731 
4732 		ret = vm_insert_page(vma, uaddr, page);
4733 		if (ret)
4734 			return ret;
4735 
4736 		uaddr += PAGE_SIZE;
4737 		kaddr += PAGE_SIZE;
4738 		size -= PAGE_SIZE;
4739 	} while (size > 0);
4740 
4741 	vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
4742 
4743 	return 0;
4744 }
4745 
4746 /**
4747  * remap_vmalloc_range - map vmalloc pages to userspace
4748  * @vma:		vma to cover (map full range of vma)
4749  * @addr:		vmalloc memory
4750  * @pgoff:		number of pages into addr before first page to map
4751  *
4752  * Returns:	0 for success, -Exxx on failure
4753  *
4754  * This function checks that addr is a valid vmalloc'ed area, and
4755  * that it is big enough to cover the vma. Will return failure if
4756  * that criteria isn't met.
4757  *
4758  * Similar to remap_pfn_range() (see mm/memory.c)
4759  */
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)4760 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
4761 						unsigned long pgoff)
4762 {
4763 	return remap_vmalloc_range_partial(vma, vma->vm_start,
4764 					   addr, pgoff,
4765 					   vma->vm_end - vma->vm_start);
4766 }
4767 EXPORT_SYMBOL(remap_vmalloc_range);
4768 
free_vm_area(struct vm_struct * area)4769 void free_vm_area(struct vm_struct *area)
4770 {
4771 	struct vm_struct *ret;
4772 	ret = remove_vm_area(area->addr);
4773 	BUG_ON(ret != area);
4774 	kfree(area);
4775 }
4776 EXPORT_SYMBOL_GPL(free_vm_area);
4777 
4778 #ifdef CONFIG_SMP
node_to_va(struct rb_node * n)4779 static struct vmap_area *node_to_va(struct rb_node *n)
4780 {
4781 	return rb_entry_safe(n, struct vmap_area, rb_node);
4782 }
4783 
4784 /**
4785  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
4786  * @addr: target address
4787  *
4788  * Returns: vmap_area if it is found. If there is no such area
4789  *   the first highest(reverse order) vmap_area is returned
4790  *   i.e. va->va_start < addr && va->va_end < addr or NULL
4791  *   if there are no any areas before @addr.
4792  */
4793 static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)4794 pvm_find_va_enclose_addr(unsigned long addr)
4795 {
4796 	struct vmap_area *va, *tmp;
4797 	struct rb_node *n;
4798 
4799 	n = free_vmap_area_root.rb_node;
4800 	va = NULL;
4801 
4802 	while (n) {
4803 		tmp = rb_entry(n, struct vmap_area, rb_node);
4804 		if (tmp->va_start <= addr) {
4805 			va = tmp;
4806 			if (tmp->va_end >= addr)
4807 				break;
4808 
4809 			n = n->rb_right;
4810 		} else {
4811 			n = n->rb_left;
4812 		}
4813 	}
4814 
4815 	return va;
4816 }
4817 
4818 /**
4819  * pvm_determine_end_from_reverse - find the highest aligned address
4820  * of free block below VMALLOC_END
4821  * @va:
4822  *   in - the VA we start the search(reverse order);
4823  *   out - the VA with the highest aligned end address.
4824  * @align: alignment for required highest address
4825  *
4826  * Returns: determined end address within vmap_area
4827  */
4828 static unsigned long
pvm_determine_end_from_reverse(struct vmap_area ** va,unsigned long align)4829 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
4830 {
4831 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4832 	unsigned long addr;
4833 
4834 	if (likely(*va)) {
4835 		list_for_each_entry_from_reverse((*va),
4836 				&free_vmap_area_list, list) {
4837 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
4838 			if ((*va)->va_start < addr)
4839 				return addr;
4840 		}
4841 	}
4842 
4843 	return 0;
4844 }
4845 
4846 /**
4847  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
4848  * @offsets: array containing offset of each area
4849  * @sizes: array containing size of each area
4850  * @nr_vms: the number of areas to allocate
4851  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
4852  *
4853  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
4854  *	    vm_structs on success, %NULL on failure
4855  *
4856  * Percpu allocator wants to use congruent vm areas so that it can
4857  * maintain the offsets among percpu areas.  This function allocates
4858  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
4859  * be scattered pretty far, distance between two areas easily going up
4860  * to gigabytes.  To avoid interacting with regular vmallocs, these
4861  * areas are allocated from top.
4862  *
4863  * Despite its complicated look, this allocator is rather simple. It
4864  * does everything top-down and scans free blocks from the end looking
4865  * for matching base. While scanning, if any of the areas do not fit the
4866  * base address is pulled down to fit the area. Scanning is repeated till
4867  * all the areas fit and then all necessary data structures are inserted
4868  * and the result is returned.
4869  */
pcpu_get_vm_areas(const unsigned long * offsets,const size_t * sizes,int nr_vms,size_t align)4870 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
4871 				     const size_t *sizes, int nr_vms,
4872 				     size_t align)
4873 {
4874 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
4875 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4876 	struct vmap_area **vas, *va;
4877 	struct vm_struct **vms;
4878 	int area, area2, last_area, term_area;
4879 	unsigned long base, start, size, end, last_end, orig_start, orig_end;
4880 	bool purged = false;
4881 
4882 	/* verify parameters and allocate data structures */
4883 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
4884 	for (last_area = 0, area = 0; area < nr_vms; area++) {
4885 		start = offsets[area];
4886 		end = start + sizes[area];
4887 
4888 		/* is everything aligned properly? */
4889 		BUG_ON(!IS_ALIGNED(offsets[area], align));
4890 		BUG_ON(!IS_ALIGNED(sizes[area], align));
4891 
4892 		/* detect the area with the highest address */
4893 		if (start > offsets[last_area])
4894 			last_area = area;
4895 
4896 		for (area2 = area + 1; area2 < nr_vms; area2++) {
4897 			unsigned long start2 = offsets[area2];
4898 			unsigned long end2 = start2 + sizes[area2];
4899 
4900 			BUG_ON(start2 < end && start < end2);
4901 		}
4902 	}
4903 	last_end = offsets[last_area] + sizes[last_area];
4904 
4905 	if (vmalloc_end - vmalloc_start < last_end) {
4906 		WARN_ON(true);
4907 		return NULL;
4908 	}
4909 
4910 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
4911 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
4912 	if (!vas || !vms)
4913 		goto err_free2;
4914 
4915 	for (area = 0; area < nr_vms; area++) {
4916 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
4917 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
4918 		if (!vas[area] || !vms[area])
4919 			goto err_free;
4920 	}
4921 retry:
4922 	spin_lock(&free_vmap_area_lock);
4923 
4924 	/* start scanning - we scan from the top, begin with the last area */
4925 	area = term_area = last_area;
4926 	start = offsets[area];
4927 	end = start + sizes[area];
4928 
4929 	va = pvm_find_va_enclose_addr(vmalloc_end);
4930 	base = pvm_determine_end_from_reverse(&va, align) - end;
4931 
4932 	while (true) {
4933 		/*
4934 		 * base might have underflowed, add last_end before
4935 		 * comparing.
4936 		 */
4937 		if (base + last_end < vmalloc_start + last_end)
4938 			goto overflow;
4939 
4940 		/*
4941 		 * Fitting base has not been found.
4942 		 */
4943 		if (va == NULL)
4944 			goto overflow;
4945 
4946 		/*
4947 		 * If required width exceeds current VA block, move
4948 		 * base downwards and then recheck.
4949 		 */
4950 		if (base + end > va->va_end) {
4951 			base = pvm_determine_end_from_reverse(&va, align) - end;
4952 			term_area = area;
4953 			continue;
4954 		}
4955 
4956 		/*
4957 		 * If this VA does not fit, move base downwards and recheck.
4958 		 */
4959 		if (base + start < va->va_start) {
4960 			va = node_to_va(rb_prev(&va->rb_node));
4961 			base = pvm_determine_end_from_reverse(&va, align) - end;
4962 			term_area = area;
4963 			continue;
4964 		}
4965 
4966 		/*
4967 		 * This area fits, move on to the previous one.  If
4968 		 * the previous one is the terminal one, we're done.
4969 		 */
4970 		area = (area + nr_vms - 1) % nr_vms;
4971 		if (area == term_area)
4972 			break;
4973 
4974 		start = offsets[area];
4975 		end = start + sizes[area];
4976 		va = pvm_find_va_enclose_addr(base + end);
4977 	}
4978 
4979 	/* we've found a fitting base, insert all va's */
4980 	for (area = 0; area < nr_vms; area++) {
4981 		int ret;
4982 
4983 		start = base + offsets[area];
4984 		size = sizes[area];
4985 
4986 		va = pvm_find_va_enclose_addr(start);
4987 		if (WARN_ON_ONCE(va == NULL))
4988 			/* It is a BUG(), but trigger recovery instead. */
4989 			goto recovery;
4990 
4991 		ret = va_clip(&free_vmap_area_root,
4992 			&free_vmap_area_list, va, start, size);
4993 		if (WARN_ON_ONCE(unlikely(ret)))
4994 			/* It is a BUG(), but trigger recovery instead. */
4995 			goto recovery;
4996 
4997 		/* Allocated area. */
4998 		va = vas[area];
4999 		va->va_start = start;
5000 		va->va_end = start + size;
5001 	}
5002 
5003 	spin_unlock(&free_vmap_area_lock);
5004 
5005 	/* populate the kasan shadow space */
5006 	for (area = 0; area < nr_vms; area++) {
5007 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area], GFP_KERNEL))
5008 			goto err_free_shadow;
5009 	}
5010 
5011 	/* insert all vm's */
5012 	for (area = 0; area < nr_vms; area++) {
5013 		struct vmap_node *vn = addr_to_node(vas[area]->va_start);
5014 
5015 		spin_lock(&vn->busy.lock);
5016 		insert_vmap_area(vas[area], &vn->busy.root, &vn->busy.head);
5017 		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
5018 				 pcpu_get_vm_areas);
5019 		spin_unlock(&vn->busy.lock);
5020 	}
5021 
5022 	/*
5023 	 * Mark allocated areas as accessible. Do it now as a best-effort
5024 	 * approach, as they can be mapped outside of vmalloc code.
5025 	 * With hardware tag-based KASAN, marking is skipped for
5026 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
5027 	 */
5028 	for (area = 0; area < nr_vms; area++)
5029 		vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
5030 				vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
5031 
5032 	kfree(vas);
5033 	return vms;
5034 
5035 recovery:
5036 	/*
5037 	 * Remove previously allocated areas. There is no
5038 	 * need in removing these areas from the busy tree,
5039 	 * because they are inserted only on the final step
5040 	 * and when pcpu_get_vm_areas() is success.
5041 	 */
5042 	while (area--) {
5043 		orig_start = vas[area]->va_start;
5044 		orig_end = vas[area]->va_end;
5045 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
5046 				&free_vmap_area_list);
5047 		if (va)
5048 			kasan_release_vmalloc(orig_start, orig_end,
5049 				va->va_start, va->va_end,
5050 				KASAN_VMALLOC_PAGE_RANGE | KASAN_VMALLOC_TLB_FLUSH);
5051 		vas[area] = NULL;
5052 	}
5053 
5054 overflow:
5055 	spin_unlock(&free_vmap_area_lock);
5056 	if (!purged) {
5057 		reclaim_and_purge_vmap_areas();
5058 		purged = true;
5059 
5060 		/* Before "retry", check if we recover. */
5061 		for (area = 0; area < nr_vms; area++) {
5062 			if (vas[area])
5063 				continue;
5064 
5065 			vas[area] = kmem_cache_zalloc(
5066 				vmap_area_cachep, GFP_KERNEL);
5067 			if (!vas[area])
5068 				goto err_free;
5069 		}
5070 
5071 		goto retry;
5072 	}
5073 
5074 err_free:
5075 	for (area = 0; area < nr_vms; area++) {
5076 		if (vas[area])
5077 			kmem_cache_free(vmap_area_cachep, vas[area]);
5078 
5079 		kfree(vms[area]);
5080 	}
5081 err_free2:
5082 	kfree(vas);
5083 	kfree(vms);
5084 	return NULL;
5085 
5086 err_free_shadow:
5087 	spin_lock(&free_vmap_area_lock);
5088 	/*
5089 	 * We release all the vmalloc shadows, even the ones for regions that
5090 	 * hadn't been successfully added. This relies on kasan_release_vmalloc
5091 	 * being able to tolerate this case.
5092 	 */
5093 	for (area = 0; area < nr_vms; area++) {
5094 		orig_start = vas[area]->va_start;
5095 		orig_end = vas[area]->va_end;
5096 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
5097 				&free_vmap_area_list);
5098 		if (va)
5099 			kasan_release_vmalloc(orig_start, orig_end,
5100 				va->va_start, va->va_end,
5101 				KASAN_VMALLOC_PAGE_RANGE | KASAN_VMALLOC_TLB_FLUSH);
5102 		vas[area] = NULL;
5103 		kfree(vms[area]);
5104 	}
5105 	spin_unlock(&free_vmap_area_lock);
5106 	kfree(vas);
5107 	kfree(vms);
5108 	return NULL;
5109 }
5110 
5111 /**
5112  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
5113  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
5114  * @nr_vms: the number of allocated areas
5115  *
5116  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
5117  */
pcpu_free_vm_areas(struct vm_struct ** vms,int nr_vms)5118 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
5119 {
5120 	int i;
5121 
5122 	for (i = 0; i < nr_vms; i++)
5123 		free_vm_area(vms[i]);
5124 	kfree(vms);
5125 }
5126 #endif	/* CONFIG_SMP */
5127 
5128 #ifdef CONFIG_PRINTK
vmalloc_dump_obj(void * object)5129 bool vmalloc_dump_obj(void *object)
5130 {
5131 	const void *caller;
5132 	struct vm_struct *vm;
5133 	struct vmap_area *va;
5134 	struct vmap_node *vn;
5135 	unsigned long addr;
5136 	unsigned int nr_pages;
5137 
5138 	addr = PAGE_ALIGN((unsigned long) object);
5139 	vn = addr_to_node(addr);
5140 
5141 	if (!spin_trylock(&vn->busy.lock))
5142 		return false;
5143 
5144 	va = __find_vmap_area(addr, &vn->busy.root);
5145 	if (!va || !va->vm) {
5146 		spin_unlock(&vn->busy.lock);
5147 		return false;
5148 	}
5149 
5150 	vm = va->vm;
5151 	addr = (unsigned long) vm->addr;
5152 	caller = vm->caller;
5153 	nr_pages = vm->nr_pages;
5154 	spin_unlock(&vn->busy.lock);
5155 
5156 	pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
5157 		nr_pages, addr, caller);
5158 
5159 	return true;
5160 }
5161 #endif
5162 
5163 #ifdef CONFIG_PROC_FS
5164 
5165 /*
5166  * Print number of pages allocated on each memory node.
5167  *
5168  * This function can only be called if CONFIG_NUMA is enabled
5169  * and VM_UNINITIALIZED bit in v->flags is disabled.
5170  */
show_numa_info(struct seq_file * m,struct vm_struct * v,unsigned int * counters)5171 static void show_numa_info(struct seq_file *m, struct vm_struct *v,
5172 				 unsigned int *counters)
5173 {
5174 	unsigned int nr;
5175 	unsigned int step = 1U << vm_area_page_order(v);
5176 
5177 	if (!counters)
5178 		return;
5179 
5180 	memset(counters, 0, nr_node_ids * sizeof(unsigned int));
5181 
5182 	for (nr = 0; nr < v->nr_pages; nr += step)
5183 		counters[page_to_nid(v->pages[nr])] += step;
5184 	for_each_node_state(nr, N_HIGH_MEMORY)
5185 		if (counters[nr])
5186 			seq_printf(m, " N%u=%u", nr, counters[nr]);
5187 }
5188 
show_purge_info(struct seq_file * m)5189 static void show_purge_info(struct seq_file *m)
5190 {
5191 	struct vmap_node *vn;
5192 	struct vmap_area *va;
5193 
5194 	for_each_vmap_node(vn) {
5195 		spin_lock(&vn->lazy.lock);
5196 		list_for_each_entry(va, &vn->lazy.head, list) {
5197 			seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
5198 				(void *)va->va_start, (void *)va->va_end,
5199 				va_size(va));
5200 		}
5201 		spin_unlock(&vn->lazy.lock);
5202 	}
5203 }
5204 
vmalloc_info_show(struct seq_file * m,void * p)5205 static int vmalloc_info_show(struct seq_file *m, void *p)
5206 {
5207 	struct vmap_node *vn;
5208 	struct vmap_area *va;
5209 	struct vm_struct *v;
5210 	unsigned int *counters;
5211 
5212 	if (IS_ENABLED(CONFIG_NUMA))
5213 		counters = kmalloc_array(nr_node_ids, sizeof(unsigned int), GFP_KERNEL);
5214 
5215 	for_each_vmap_node(vn) {
5216 		spin_lock(&vn->busy.lock);
5217 		list_for_each_entry(va, &vn->busy.head, list) {
5218 			if (!va->vm) {
5219 				if (va->flags & VMAP_RAM)
5220 					seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
5221 						(void *)va->va_start, (void *)va->va_end,
5222 						va_size(va));
5223 
5224 				continue;
5225 			}
5226 
5227 			v = va->vm;
5228 			if (v->flags & VM_UNINITIALIZED)
5229 				continue;
5230 
5231 			/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
5232 			smp_rmb();
5233 
5234 			seq_printf(m, "0x%pK-0x%pK %7ld",
5235 				v->addr, v->addr + v->size, v->size);
5236 
5237 			if (v->caller)
5238 				seq_printf(m, " %pS", v->caller);
5239 
5240 			if (v->nr_pages)
5241 				seq_printf(m, " pages=%d", v->nr_pages);
5242 
5243 			if (v->phys_addr)
5244 				seq_printf(m, " phys=%pa", &v->phys_addr);
5245 
5246 			if (v->flags & VM_IOREMAP)
5247 				seq_puts(m, " ioremap");
5248 
5249 			if (v->flags & VM_SPARSE)
5250 				seq_puts(m, " sparse");
5251 
5252 			if (v->flags & VM_ALLOC)
5253 				seq_puts(m, " vmalloc");
5254 
5255 			if (v->flags & VM_MAP)
5256 				seq_puts(m, " vmap");
5257 
5258 			if (v->flags & VM_USERMAP)
5259 				seq_puts(m, " user");
5260 
5261 			if (v->flags & VM_DMA_COHERENT)
5262 				seq_puts(m, " dma-coherent");
5263 
5264 			if (is_vmalloc_addr(v->pages))
5265 				seq_puts(m, " vpages");
5266 
5267 			if (IS_ENABLED(CONFIG_NUMA))
5268 				show_numa_info(m, v, counters);
5269 
5270 			seq_putc(m, '\n');
5271 		}
5272 		spin_unlock(&vn->busy.lock);
5273 	}
5274 
5275 	/*
5276 	 * As a final step, dump "unpurged" areas.
5277 	 */
5278 	show_purge_info(m);
5279 	if (IS_ENABLED(CONFIG_NUMA))
5280 		kfree(counters);
5281 	return 0;
5282 }
5283 
proc_vmalloc_init(void)5284 static int __init proc_vmalloc_init(void)
5285 {
5286 	proc_create_single("vmallocinfo", 0400, NULL, vmalloc_info_show);
5287 	return 0;
5288 }
5289 module_init(proc_vmalloc_init);
5290 
5291 #endif
5292 
vmap_init_free_space(void)5293 static void __init vmap_init_free_space(void)
5294 {
5295 	unsigned long vmap_start = 1;
5296 	const unsigned long vmap_end = ULONG_MAX;
5297 	struct vmap_area *free;
5298 	struct vm_struct *busy;
5299 
5300 	/*
5301 	 *     B     F     B     B     B     F
5302 	 * -|-----|.....|-----|-----|-----|.....|-
5303 	 *  |           The KVA space           |
5304 	 *  |<--------------------------------->|
5305 	 */
5306 	for (busy = vmlist; busy; busy = busy->next) {
5307 		if ((unsigned long) busy->addr - vmap_start > 0) {
5308 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5309 			if (!WARN_ON_ONCE(!free)) {
5310 				free->va_start = vmap_start;
5311 				free->va_end = (unsigned long) busy->addr;
5312 
5313 				insert_vmap_area_augment(free, NULL,
5314 					&free_vmap_area_root,
5315 						&free_vmap_area_list);
5316 			}
5317 		}
5318 
5319 		vmap_start = (unsigned long) busy->addr + busy->size;
5320 	}
5321 
5322 	if (vmap_end - vmap_start > 0) {
5323 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5324 		if (!WARN_ON_ONCE(!free)) {
5325 			free->va_start = vmap_start;
5326 			free->va_end = vmap_end;
5327 
5328 			insert_vmap_area_augment(free, NULL,
5329 				&free_vmap_area_root,
5330 					&free_vmap_area_list);
5331 		}
5332 	}
5333 }
5334 
vmap_init_nodes(void)5335 static void vmap_init_nodes(void)
5336 {
5337 	struct vmap_node *vn;
5338 	int i;
5339 
5340 #if BITS_PER_LONG == 64
5341 	/*
5342 	 * A high threshold of max nodes is fixed and bound to 128,
5343 	 * thus a scale factor is 1 for systems where number of cores
5344 	 * are less or equal to specified threshold.
5345 	 *
5346 	 * As for NUMA-aware notes. For bigger systems, for example
5347 	 * NUMA with multi-sockets, where we can end-up with thousands
5348 	 * of cores in total, a "sub-numa-clustering" should be added.
5349 	 *
5350 	 * In this case a NUMA domain is considered as a single entity
5351 	 * with dedicated sub-nodes in it which describe one group or
5352 	 * set of cores. Therefore a per-domain purging is supposed to
5353 	 * be added as well as a per-domain balancing.
5354 	 */
5355 	int n = clamp_t(unsigned int, num_possible_cpus(), 1, 128);
5356 
5357 	if (n > 1) {
5358 		vn = kmalloc_array(n, sizeof(*vn), GFP_NOWAIT);
5359 		if (vn) {
5360 			/* Node partition is 16 pages. */
5361 			vmap_zone_size = (1 << 4) * PAGE_SIZE;
5362 			nr_vmap_nodes = n;
5363 			vmap_nodes = vn;
5364 		} else {
5365 			pr_err("Failed to allocate an array. Disable a node layer\n");
5366 		}
5367 	}
5368 #endif
5369 
5370 	for_each_vmap_node(vn) {
5371 		vn->busy.root = RB_ROOT;
5372 		INIT_LIST_HEAD(&vn->busy.head);
5373 		spin_lock_init(&vn->busy.lock);
5374 
5375 		vn->lazy.root = RB_ROOT;
5376 		INIT_LIST_HEAD(&vn->lazy.head);
5377 		spin_lock_init(&vn->lazy.lock);
5378 
5379 		for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
5380 			INIT_LIST_HEAD(&vn->pool[i].head);
5381 			WRITE_ONCE(vn->pool[i].len, 0);
5382 		}
5383 
5384 		spin_lock_init(&vn->pool_lock);
5385 	}
5386 }
5387 
5388 static unsigned long
vmap_node_shrink_count(struct shrinker * shrink,struct shrink_control * sc)5389 vmap_node_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5390 {
5391 	unsigned long count = 0;
5392 	struct vmap_node *vn;
5393 	int i;
5394 
5395 	for_each_vmap_node(vn) {
5396 		for (i = 0; i < MAX_VA_SIZE_PAGES; i++)
5397 			count += READ_ONCE(vn->pool[i].len);
5398 	}
5399 
5400 	return count ? count : SHRINK_EMPTY;
5401 }
5402 
5403 static unsigned long
vmap_node_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)5404 vmap_node_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5405 {
5406 	struct vmap_node *vn;
5407 
5408 	for_each_vmap_node(vn)
5409 		decay_va_pool_node(vn, true);
5410 
5411 	return SHRINK_STOP;
5412 }
5413 
vmalloc_init(void)5414 void __init vmalloc_init(void)
5415 {
5416 	struct shrinker *vmap_node_shrinker;
5417 	struct vmap_area *va;
5418 	struct vmap_node *vn;
5419 	struct vm_struct *tmp;
5420 	int i;
5421 
5422 	/*
5423 	 * Create the cache for vmap_area objects.
5424 	 */
5425 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
5426 
5427 	for_each_possible_cpu(i) {
5428 		struct vmap_block_queue *vbq;
5429 		struct vfree_deferred *p;
5430 
5431 		vbq = &per_cpu(vmap_block_queue, i);
5432 		spin_lock_init(&vbq->lock);
5433 		INIT_LIST_HEAD(&vbq->free);
5434 		p = &per_cpu(vfree_deferred, i);
5435 		init_llist_head(&p->list);
5436 		INIT_WORK(&p->wq, delayed_vfree_work);
5437 		xa_init(&vbq->vmap_blocks);
5438 	}
5439 
5440 	/*
5441 	 * Setup nodes before importing vmlist.
5442 	 */
5443 	vmap_init_nodes();
5444 
5445 	/* Import existing vmlist entries. */
5446 	for (tmp = vmlist; tmp; tmp = tmp->next) {
5447 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5448 		if (WARN_ON_ONCE(!va))
5449 			continue;
5450 
5451 		va->va_start = (unsigned long)tmp->addr;
5452 		va->va_end = va->va_start + tmp->size;
5453 		va->vm = tmp;
5454 
5455 		vn = addr_to_node(va->va_start);
5456 		insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
5457 	}
5458 
5459 	/*
5460 	 * Now we can initialize a free vmap space.
5461 	 */
5462 	vmap_init_free_space();
5463 	vmap_initialized = true;
5464 
5465 	vmap_node_shrinker = shrinker_alloc(0, "vmap-node");
5466 	if (!vmap_node_shrinker) {
5467 		pr_err("Failed to allocate vmap-node shrinker!\n");
5468 		return;
5469 	}
5470 
5471 	vmap_node_shrinker->count_objects = vmap_node_shrink_count;
5472 	vmap_node_shrinker->scan_objects = vmap_node_shrink_scan;
5473 	shrinker_register(vmap_node_shrinker);
5474 }
5475