1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/mmap.c
4 *
5 * Written by obz.
6 *
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50 #include <linux/memfd.h>
51
52 #include <linux/uaccess.h>
53 #include <asm/cacheflush.h>
54 #include <asm/tlb.h>
55 #include <asm/mmu_context.h>
56
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/mmap.h>
59
60 #include "internal.h"
61
62 #ifndef arch_mmap_check
63 #define arch_mmap_check(addr, len, flags) (0)
64 #endif
65
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
67 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
68 int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX;
69 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
70 #endif
71 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
72 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
73 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
74 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
75 #endif
76
77 static bool ignore_rlimit_data;
78 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
79
80 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
vma_set_page_prot(struct vm_area_struct * vma)81 void vma_set_page_prot(struct vm_area_struct *vma)
82 {
83 vm_flags_t vm_flags = vma->vm_flags;
84 pgprot_t vm_page_prot;
85
86 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
87 if (vma_wants_writenotify(vma, vm_page_prot)) {
88 vm_flags &= ~VM_SHARED;
89 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
90 }
91 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
92 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
93 }
94
95 /*
96 * check_brk_limits() - Use platform specific check of range & verify mlock
97 * limits.
98 * @addr: The address to check
99 * @len: The size of increase.
100 *
101 * Return: 0 on success.
102 */
check_brk_limits(unsigned long addr,unsigned long len)103 static int check_brk_limits(unsigned long addr, unsigned long len)
104 {
105 unsigned long mapped_addr;
106
107 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
108 if (IS_ERR_VALUE(mapped_addr))
109 return mapped_addr;
110
111 return mlock_future_ok(current->mm, current->mm->def_flags, len)
112 ? 0 : -EAGAIN;
113 }
114
SYSCALL_DEFINE1(brk,unsigned long,brk)115 SYSCALL_DEFINE1(brk, unsigned long, brk)
116 {
117 unsigned long newbrk, oldbrk, origbrk;
118 struct mm_struct *mm = current->mm;
119 struct vm_area_struct *brkvma, *next = NULL;
120 unsigned long min_brk;
121 bool populate = false;
122 LIST_HEAD(uf);
123 struct vma_iterator vmi;
124
125 if (mmap_write_lock_killable(mm))
126 return -EINTR;
127
128 origbrk = mm->brk;
129
130 min_brk = mm->start_brk;
131 #ifdef CONFIG_COMPAT_BRK
132 /*
133 * CONFIG_COMPAT_BRK can still be overridden by setting
134 * randomize_va_space to 2, which will still cause mm->start_brk
135 * to be arbitrarily shifted
136 */
137 if (!current->brk_randomized)
138 min_brk = mm->end_data;
139 #endif
140 if (brk < min_brk)
141 goto out;
142
143 /*
144 * Check against rlimit here. If this check is done later after the test
145 * of oldbrk with newbrk then it can escape the test and let the data
146 * segment grow beyond its set limit the in case where the limit is
147 * not page aligned -Ram Gupta
148 */
149 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
150 mm->end_data, mm->start_data))
151 goto out;
152
153 newbrk = PAGE_ALIGN(brk);
154 oldbrk = PAGE_ALIGN(mm->brk);
155 if (oldbrk == newbrk) {
156 mm->brk = brk;
157 goto success;
158 }
159
160 /* Always allow shrinking brk. */
161 if (brk <= mm->brk) {
162 /* Search one past newbrk */
163 vma_iter_init(&vmi, mm, newbrk);
164 brkvma = vma_find(&vmi, oldbrk);
165 if (!brkvma || brkvma->vm_start >= oldbrk)
166 goto out; /* mapping intersects with an existing non-brk vma. */
167 /*
168 * mm->brk must be protected by write mmap_lock.
169 * do_vmi_align_munmap() will drop the lock on success, so
170 * update it before calling do_vma_munmap().
171 */
172 mm->brk = brk;
173 if (do_vmi_align_munmap(&vmi, brkvma, mm, newbrk, oldbrk, &uf,
174 /* unlock = */ true))
175 goto out;
176
177 goto success_unlocked;
178 }
179
180 if (check_brk_limits(oldbrk, newbrk - oldbrk))
181 goto out;
182
183 /*
184 * Only check if the next VMA is within the stack_guard_gap of the
185 * expansion area
186 */
187 vma_iter_init(&vmi, mm, oldbrk);
188 next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
189 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
190 goto out;
191
192 brkvma = vma_prev_limit(&vmi, mm->start_brk);
193 /* Ok, looks good - let it rip. */
194 if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
195 goto out;
196
197 mm->brk = brk;
198 if (mm->def_flags & VM_LOCKED)
199 populate = true;
200
201 success:
202 mmap_write_unlock(mm);
203 success_unlocked:
204 userfaultfd_unmap_complete(mm, &uf);
205 if (populate)
206 mm_populate(oldbrk, newbrk - oldbrk);
207 return brk;
208
209 out:
210 mm->brk = origbrk;
211 mmap_write_unlock(mm);
212 return origbrk;
213 }
214
215 /*
216 * If a hint addr is less than mmap_min_addr change hint to be as
217 * low as possible but still greater than mmap_min_addr
218 */
round_hint_to_min(unsigned long hint)219 static inline unsigned long round_hint_to_min(unsigned long hint)
220 {
221 hint &= PAGE_MASK;
222 if (((void *)hint != NULL) &&
223 (hint < mmap_min_addr))
224 return PAGE_ALIGN(mmap_min_addr);
225 return hint;
226 }
227
mlock_future_ok(const struct mm_struct * mm,vm_flags_t vm_flags,unsigned long bytes)228 bool mlock_future_ok(const struct mm_struct *mm, vm_flags_t vm_flags,
229 unsigned long bytes)
230 {
231 unsigned long locked_pages, limit_pages;
232
233 if (!(vm_flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
234 return true;
235
236 locked_pages = bytes >> PAGE_SHIFT;
237 locked_pages += mm->locked_vm;
238
239 limit_pages = rlimit(RLIMIT_MEMLOCK);
240 limit_pages >>= PAGE_SHIFT;
241
242 return locked_pages <= limit_pages;
243 }
244
file_mmap_size_max(struct file * file,struct inode * inode)245 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
246 {
247 if (S_ISREG(inode->i_mode))
248 return MAX_LFS_FILESIZE;
249
250 if (S_ISBLK(inode->i_mode))
251 return MAX_LFS_FILESIZE;
252
253 if (S_ISSOCK(inode->i_mode))
254 return MAX_LFS_FILESIZE;
255
256 /* Special "we do even unsigned file positions" case */
257 if (file->f_op->fop_flags & FOP_UNSIGNED_OFFSET)
258 return 0;
259
260 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
261 return ULONG_MAX;
262 }
263
file_mmap_ok(struct file * file,struct inode * inode,unsigned long pgoff,unsigned long len)264 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
265 unsigned long pgoff, unsigned long len)
266 {
267 u64 maxsize = file_mmap_size_max(file, inode);
268
269 if (maxsize && len > maxsize)
270 return false;
271 maxsize -= len;
272 if (pgoff > maxsize >> PAGE_SHIFT)
273 return false;
274 return true;
275 }
276
277 /**
278 * do_mmap() - Perform a userland memory mapping into the current process
279 * address space of length @len with protection bits @prot, mmap flags @flags
280 * (from which VMA flags will be inferred), and any additional VMA flags to
281 * apply @vm_flags. If this is a file-backed mapping then the file is specified
282 * in @file and page offset into the file via @pgoff.
283 *
284 * This function does not perform security checks on the file and assumes, if
285 * @uf is non-NULL, the caller has provided a list head to track unmap events
286 * for userfaultfd @uf.
287 *
288 * It also simply indicates whether memory population is required by setting
289 * @populate, which must be non-NULL, expecting the caller to actually perform
290 * this task itself if appropriate.
291 *
292 * This function will invoke architecture-specific (and if provided and
293 * relevant, file system-specific) logic to determine the most appropriate
294 * unmapped area in which to place the mapping if not MAP_FIXED.
295 *
296 * Callers which require userland mmap() behaviour should invoke vm_mmap(),
297 * which is also exported for module use.
298 *
299 * Those which require this behaviour less security checks, userfaultfd and
300 * populate behaviour, and who handle the mmap write lock themselves, should
301 * call this function.
302 *
303 * Note that the returned address may reside within a merged VMA if an
304 * appropriate merge were to take place, so it doesn't necessarily specify the
305 * start of a VMA, rather only the start of a valid mapped range of length
306 * @len bytes, rounded down to the nearest page size.
307 *
308 * The caller must write-lock current->mm->mmap_lock.
309 *
310 * @file: An optional struct file pointer describing the file which is to be
311 * mapped, if a file-backed mapping.
312 * @addr: If non-zero, hints at (or if @flags has MAP_FIXED set, specifies) the
313 * address at which to perform this mapping. See mmap (2) for details. Must be
314 * page-aligned.
315 * @len: The length of the mapping. Will be page-aligned and must be at least 1
316 * page in size.
317 * @prot: Protection bits describing access required to the mapping. See mmap
318 * (2) for details.
319 * @flags: Flags specifying how the mapping should be performed, see mmap (2)
320 * for details.
321 * @vm_flags: VMA flags which should be set by default, or 0 otherwise.
322 * @pgoff: Page offset into the @file if file-backed, should be 0 otherwise.
323 * @populate: A pointer to a value which will be set to 0 if no population of
324 * the range is required, or the number of bytes to populate if it is. Must be
325 * non-NULL. See mmap (2) for details as to under what circumstances population
326 * of the range occurs.
327 * @uf: An optional pointer to a list head to track userfaultfd unmap events
328 * should unmapping events arise. If provided, it is up to the caller to manage
329 * this.
330 *
331 * Returns: Either an error, or the address at which the requested mapping has
332 * been performed.
333 */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,vm_flags_t vm_flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)334 unsigned long do_mmap(struct file *file, unsigned long addr,
335 unsigned long len, unsigned long prot,
336 unsigned long flags, vm_flags_t vm_flags,
337 unsigned long pgoff, unsigned long *populate,
338 struct list_head *uf)
339 {
340 struct mm_struct *mm = current->mm;
341 int pkey = 0;
342
343 *populate = 0;
344
345 mmap_assert_write_locked(mm);
346
347 if (!len)
348 return -EINVAL;
349
350 /*
351 * Does the application expect PROT_READ to imply PROT_EXEC?
352 *
353 * (the exception is when the underlying filesystem is noexec
354 * mounted, in which case we don't add PROT_EXEC.)
355 */
356 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
357 if (!(file && path_noexec(&file->f_path)))
358 prot |= PROT_EXEC;
359
360 /* force arch specific MAP_FIXED handling in get_unmapped_area */
361 if (flags & MAP_FIXED_NOREPLACE)
362 flags |= MAP_FIXED;
363
364 if (!(flags & MAP_FIXED))
365 addr = round_hint_to_min(addr);
366
367 /* Careful about overflows.. */
368 len = PAGE_ALIGN(len);
369 if (!len)
370 return -ENOMEM;
371
372 /* offset overflow? */
373 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
374 return -EOVERFLOW;
375
376 /* Too many mappings? */
377 if (mm->map_count > sysctl_max_map_count)
378 return -ENOMEM;
379
380 /*
381 * addr is returned from get_unmapped_area,
382 * There are two cases:
383 * 1> MAP_FIXED == false
384 * unallocated memory, no need to check sealing.
385 * 1> MAP_FIXED == true
386 * sealing is checked inside mmap_region when
387 * do_vmi_munmap is called.
388 */
389
390 if (prot == PROT_EXEC) {
391 pkey = execute_only_pkey(mm);
392 if (pkey < 0)
393 pkey = 0;
394 }
395
396 /* Do simple checking here so the lower-level routines won't have
397 * to. we assume access permissions have been handled by the open
398 * of the memory object, so we don't do any here.
399 */
400 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(file, flags) |
401 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
402
403 /* Obtain the address to map to. we verify (or select) it and ensure
404 * that it represents a valid section of the address space.
405 */
406 addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags);
407 if (IS_ERR_VALUE(addr))
408 return addr;
409
410 if (flags & MAP_FIXED_NOREPLACE) {
411 if (find_vma_intersection(mm, addr, addr + len))
412 return -EEXIST;
413 }
414
415 if (flags & MAP_LOCKED)
416 if (!can_do_mlock())
417 return -EPERM;
418
419 if (!mlock_future_ok(mm, vm_flags, len))
420 return -EAGAIN;
421
422 if (file) {
423 struct inode *inode = file_inode(file);
424 unsigned long flags_mask;
425 int err;
426
427 if (!file_mmap_ok(file, inode, pgoff, len))
428 return -EOVERFLOW;
429
430 flags_mask = LEGACY_MAP_MASK;
431 if (file->f_op->fop_flags & FOP_MMAP_SYNC)
432 flags_mask |= MAP_SYNC;
433
434 switch (flags & MAP_TYPE) {
435 case MAP_SHARED:
436 /*
437 * Force use of MAP_SHARED_VALIDATE with non-legacy
438 * flags. E.g. MAP_SYNC is dangerous to use with
439 * MAP_SHARED as you don't know which consistency model
440 * you will get. We silently ignore unsupported flags
441 * with MAP_SHARED to preserve backward compatibility.
442 */
443 flags &= LEGACY_MAP_MASK;
444 fallthrough;
445 case MAP_SHARED_VALIDATE:
446 if (flags & ~flags_mask)
447 return -EOPNOTSUPP;
448 if (prot & PROT_WRITE) {
449 if (!(file->f_mode & FMODE_WRITE))
450 return -EACCES;
451 if (IS_SWAPFILE(file->f_mapping->host))
452 return -ETXTBSY;
453 }
454
455 /*
456 * Make sure we don't allow writing to an append-only
457 * file..
458 */
459 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
460 return -EACCES;
461
462 vm_flags |= VM_SHARED | VM_MAYSHARE;
463 if (!(file->f_mode & FMODE_WRITE))
464 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
465 fallthrough;
466 case MAP_PRIVATE:
467 if (!(file->f_mode & FMODE_READ))
468 return -EACCES;
469 if (path_noexec(&file->f_path)) {
470 if (vm_flags & VM_EXEC)
471 return -EPERM;
472 vm_flags &= ~VM_MAYEXEC;
473 }
474
475 if (!can_mmap_file(file))
476 return -ENODEV;
477 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
478 return -EINVAL;
479 break;
480
481 default:
482 return -EINVAL;
483 }
484
485 /*
486 * Check to see if we are violating any seals and update VMA
487 * flags if necessary to avoid future seal violations.
488 */
489 err = memfd_check_seals_mmap(file, &vm_flags);
490 if (err)
491 return (unsigned long)err;
492 } else {
493 switch (flags & MAP_TYPE) {
494 case MAP_SHARED:
495 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
496 return -EINVAL;
497 /*
498 * Ignore pgoff.
499 */
500 pgoff = 0;
501 vm_flags |= VM_SHARED | VM_MAYSHARE;
502 break;
503 case MAP_DROPPABLE:
504 if (VM_DROPPABLE == VM_NONE)
505 return -ENOTSUPP;
506 /*
507 * A locked or stack area makes no sense to be droppable.
508 *
509 * Also, since droppable pages can just go away at any time
510 * it makes no sense to copy them on fork or dump them.
511 *
512 * And don't attempt to combine with hugetlb for now.
513 */
514 if (flags & (MAP_LOCKED | MAP_HUGETLB))
515 return -EINVAL;
516 if (vm_flags & (VM_GROWSDOWN | VM_GROWSUP))
517 return -EINVAL;
518
519 vm_flags |= VM_DROPPABLE;
520
521 /*
522 * If the pages can be dropped, then it doesn't make
523 * sense to reserve them.
524 */
525 vm_flags |= VM_NORESERVE;
526
527 /*
528 * Likewise, they're volatile enough that they
529 * shouldn't survive forks or coredumps.
530 */
531 vm_flags |= VM_WIPEONFORK | VM_DONTDUMP;
532 fallthrough;
533 case MAP_PRIVATE:
534 /*
535 * Set pgoff according to addr for anon_vma.
536 */
537 pgoff = addr >> PAGE_SHIFT;
538 break;
539 default:
540 return -EINVAL;
541 }
542 }
543
544 /*
545 * Set 'VM_NORESERVE' if we should not account for the
546 * memory use of this mapping.
547 */
548 if (flags & MAP_NORESERVE) {
549 /* We honor MAP_NORESERVE if allowed to overcommit */
550 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
551 vm_flags |= VM_NORESERVE;
552
553 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
554 if (file && is_file_hugepages(file))
555 vm_flags |= VM_NORESERVE;
556 }
557
558 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
559 if (!IS_ERR_VALUE(addr) &&
560 ((vm_flags & VM_LOCKED) ||
561 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
562 *populate = len;
563 return addr;
564 }
565
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)566 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
567 unsigned long prot, unsigned long flags,
568 unsigned long fd, unsigned long pgoff)
569 {
570 struct file *file = NULL;
571 unsigned long retval;
572
573 if (!(flags & MAP_ANONYMOUS)) {
574 audit_mmap_fd(fd, flags);
575 file = fget(fd);
576 if (!file)
577 return -EBADF;
578 if (is_file_hugepages(file)) {
579 len = ALIGN(len, huge_page_size(hstate_file(file)));
580 } else if (unlikely(flags & MAP_HUGETLB)) {
581 retval = -EINVAL;
582 goto out_fput;
583 }
584 } else if (flags & MAP_HUGETLB) {
585 struct hstate *hs;
586
587 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
588 if (!hs)
589 return -EINVAL;
590
591 len = ALIGN(len, huge_page_size(hs));
592 /*
593 * VM_NORESERVE is used because the reservations will be
594 * taken when vm_ops->mmap() is called
595 */
596 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
597 VM_NORESERVE,
598 HUGETLB_ANONHUGE_INODE,
599 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
600 if (IS_ERR(file))
601 return PTR_ERR(file);
602 }
603
604 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
605 out_fput:
606 if (file)
607 fput(file);
608 return retval;
609 }
610
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)611 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
612 unsigned long, prot, unsigned long, flags,
613 unsigned long, fd, unsigned long, pgoff)
614 {
615 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
616 }
617
618 #ifdef __ARCH_WANT_SYS_OLD_MMAP
619 struct mmap_arg_struct {
620 unsigned long addr;
621 unsigned long len;
622 unsigned long prot;
623 unsigned long flags;
624 unsigned long fd;
625 unsigned long offset;
626 };
627
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)628 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
629 {
630 struct mmap_arg_struct a;
631
632 if (copy_from_user(&a, arg, sizeof(a)))
633 return -EFAULT;
634 if (offset_in_page(a.offset))
635 return -EINVAL;
636
637 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
638 a.offset >> PAGE_SHIFT);
639 }
640 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
641
642 /*
643 * Determine if the allocation needs to ensure that there is no
644 * existing mapping within it's guard gaps, for use as start_gap.
645 */
stack_guard_placement(vm_flags_t vm_flags)646 static inline unsigned long stack_guard_placement(vm_flags_t vm_flags)
647 {
648 if (vm_flags & VM_SHADOW_STACK)
649 return PAGE_SIZE;
650
651 return 0;
652 }
653
654 /*
655 * Search for an unmapped address range.
656 *
657 * We are looking for a range that:
658 * - does not intersect with any VMA;
659 * - is contained within the [low_limit, high_limit) interval;
660 * - is at least the desired size.
661 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
662 */
vm_unmapped_area(struct vm_unmapped_area_info * info)663 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
664 {
665 unsigned long addr;
666
667 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
668 addr = unmapped_area_topdown(info);
669 else
670 addr = unmapped_area(info);
671
672 trace_vm_unmapped_area(addr, info);
673 return addr;
674 }
675
676 /* Get an address range which is currently unmapped.
677 * For shmat() with addr=0.
678 *
679 * Ugly calling convention alert:
680 * Return value with the low bits set means error value,
681 * ie
682 * if (ret & ~PAGE_MASK)
683 * error = ret;
684 *
685 * This function "knows" that -ENOMEM has the bits set.
686 */
687 unsigned long
generic_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags,vm_flags_t vm_flags)688 generic_get_unmapped_area(struct file *filp, unsigned long addr,
689 unsigned long len, unsigned long pgoff,
690 unsigned long flags, vm_flags_t vm_flags)
691 {
692 struct mm_struct *mm = current->mm;
693 struct vm_area_struct *vma, *prev;
694 struct vm_unmapped_area_info info = {};
695 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
696
697 if (len > mmap_end - mmap_min_addr)
698 return -ENOMEM;
699
700 if (flags & MAP_FIXED)
701 return addr;
702
703 if (addr) {
704 addr = PAGE_ALIGN(addr);
705 vma = find_vma_prev(mm, addr, &prev);
706 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
707 (!vma || addr + len <= vm_start_gap(vma)) &&
708 (!prev || addr >= vm_end_gap(prev)))
709 return addr;
710 }
711
712 info.length = len;
713 info.low_limit = mm->mmap_base;
714 info.high_limit = mmap_end;
715 info.start_gap = stack_guard_placement(vm_flags);
716 if (filp && is_file_hugepages(filp))
717 info.align_mask = huge_page_mask_align(filp);
718 return vm_unmapped_area(&info);
719 }
720
721 #ifndef HAVE_ARCH_UNMAPPED_AREA
722 unsigned long
arch_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags,vm_flags_t vm_flags)723 arch_get_unmapped_area(struct file *filp, unsigned long addr,
724 unsigned long len, unsigned long pgoff,
725 unsigned long flags, vm_flags_t vm_flags)
726 {
727 return generic_get_unmapped_area(filp, addr, len, pgoff, flags,
728 vm_flags);
729 }
730 #endif
731
732 /*
733 * This mmap-allocator allocates new areas top-down from below the
734 * stack's low limit (the base):
735 */
736 unsigned long
generic_get_unmapped_area_topdown(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags,vm_flags_t vm_flags)737 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
738 unsigned long len, unsigned long pgoff,
739 unsigned long flags, vm_flags_t vm_flags)
740 {
741 struct vm_area_struct *vma, *prev;
742 struct mm_struct *mm = current->mm;
743 struct vm_unmapped_area_info info = {};
744 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
745
746 /* requested length too big for entire address space */
747 if (len > mmap_end - mmap_min_addr)
748 return -ENOMEM;
749
750 if (flags & MAP_FIXED)
751 return addr;
752
753 /* requesting a specific address */
754 if (addr) {
755 addr = PAGE_ALIGN(addr);
756 vma = find_vma_prev(mm, addr, &prev);
757 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
758 (!vma || addr + len <= vm_start_gap(vma)) &&
759 (!prev || addr >= vm_end_gap(prev)))
760 return addr;
761 }
762
763 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
764 info.length = len;
765 info.low_limit = PAGE_SIZE;
766 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
767 info.start_gap = stack_guard_placement(vm_flags);
768 if (filp && is_file_hugepages(filp))
769 info.align_mask = huge_page_mask_align(filp);
770 addr = vm_unmapped_area(&info);
771
772 /*
773 * A failed mmap() very likely causes application failure,
774 * so fall back to the bottom-up function here. This scenario
775 * can happen with large stack limits and large mmap()
776 * allocations.
777 */
778 if (offset_in_page(addr)) {
779 VM_BUG_ON(addr != -ENOMEM);
780 info.flags = 0;
781 info.low_limit = TASK_UNMAPPED_BASE;
782 info.high_limit = mmap_end;
783 addr = vm_unmapped_area(&info);
784 }
785
786 return addr;
787 }
788
789 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
790 unsigned long
arch_get_unmapped_area_topdown(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags,vm_flags_t vm_flags)791 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
792 unsigned long len, unsigned long pgoff,
793 unsigned long flags, vm_flags_t vm_flags)
794 {
795 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags,
796 vm_flags);
797 }
798 #endif
799
mm_get_unmapped_area_vmflags(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags,vm_flags_t vm_flags)800 unsigned long mm_get_unmapped_area_vmflags(struct file *filp, unsigned long addr,
801 unsigned long len, unsigned long pgoff,
802 unsigned long flags, vm_flags_t vm_flags)
803 {
804 if (mm_flags_test(MMF_TOPDOWN, current->mm))
805 return arch_get_unmapped_area_topdown(filp, addr, len, pgoff,
806 flags, vm_flags);
807 return arch_get_unmapped_area(filp, addr, len, pgoff, flags, vm_flags);
808 }
809
810 unsigned long
__get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags,vm_flags_t vm_flags)811 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
812 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
813 {
814 unsigned long (*get_area)(struct file *, unsigned long,
815 unsigned long, unsigned long, unsigned long)
816 = NULL;
817
818 unsigned long error = arch_mmap_check(addr, len, flags);
819 if (error)
820 return error;
821
822 /* Careful about overflows.. */
823 if (len > TASK_SIZE)
824 return -ENOMEM;
825
826 if (file) {
827 if (file->f_op->get_unmapped_area)
828 get_area = file->f_op->get_unmapped_area;
829 } else if (flags & MAP_SHARED) {
830 /*
831 * mmap_region() will call shmem_zero_setup() to create a file,
832 * so use shmem's get_unmapped_area in case it can be huge.
833 */
834 get_area = shmem_get_unmapped_area;
835 }
836
837 /* Always treat pgoff as zero for anonymous memory. */
838 if (!file)
839 pgoff = 0;
840
841 if (get_area) {
842 addr = get_area(file, addr, len, pgoff, flags);
843 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && !file
844 && !addr /* no hint */
845 && IS_ALIGNED(len, PMD_SIZE)) {
846 /* Ensures that larger anonymous mappings are THP aligned. */
847 addr = thp_get_unmapped_area_vmflags(file, addr, len,
848 pgoff, flags, vm_flags);
849 } else {
850 addr = mm_get_unmapped_area_vmflags(file, addr, len,
851 pgoff, flags, vm_flags);
852 }
853 if (IS_ERR_VALUE(addr))
854 return addr;
855
856 if (addr > TASK_SIZE - len)
857 return -ENOMEM;
858 if (offset_in_page(addr))
859 return -EINVAL;
860
861 error = security_mmap_addr(addr);
862 return error ? error : addr;
863 }
864
865 unsigned long
mm_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)866 mm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
867 unsigned long pgoff, unsigned long flags)
868 {
869 return mm_get_unmapped_area_vmflags(file, addr, len, pgoff, flags, 0);
870 }
871 EXPORT_SYMBOL(mm_get_unmapped_area);
872
873 /**
874 * find_vma_intersection() - Look up the first VMA which intersects the interval
875 * @mm: The process address space.
876 * @start_addr: The inclusive start user address.
877 * @end_addr: The exclusive end user address.
878 *
879 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
880 * start_addr < end_addr.
881 */
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)882 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
883 unsigned long start_addr,
884 unsigned long end_addr)
885 {
886 unsigned long index = start_addr;
887
888 mmap_assert_locked(mm);
889 return mt_find(&mm->mm_mt, &index, end_addr - 1);
890 }
891 EXPORT_SYMBOL(find_vma_intersection);
892
893 /**
894 * find_vma() - Find the VMA for a given address, or the next VMA.
895 * @mm: The mm_struct to check
896 * @addr: The address
897 *
898 * Returns: The VMA associated with addr, or the next VMA.
899 * May return %NULL in the case of no VMA at addr or above.
900 */
find_vma(struct mm_struct * mm,unsigned long addr)901 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
902 {
903 unsigned long index = addr;
904
905 mmap_assert_locked(mm);
906 return mt_find(&mm->mm_mt, &index, ULONG_MAX);
907 }
908 EXPORT_SYMBOL(find_vma);
909
910 /**
911 * find_vma_prev() - Find the VMA for a given address, or the next vma and
912 * set %pprev to the previous VMA, if any.
913 * @mm: The mm_struct to check
914 * @addr: The address
915 * @pprev: The pointer to set to the previous VMA
916 *
917 * Note that RCU lock is missing here since the external mmap_lock() is used
918 * instead.
919 *
920 * Returns: The VMA associated with @addr, or the next vma.
921 * May return %NULL in the case of no vma at addr or above.
922 */
923 struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)924 find_vma_prev(struct mm_struct *mm, unsigned long addr,
925 struct vm_area_struct **pprev)
926 {
927 struct vm_area_struct *vma;
928 VMA_ITERATOR(vmi, mm, addr);
929
930 vma = vma_iter_load(&vmi);
931 *pprev = vma_prev(&vmi);
932 if (!vma)
933 vma = vma_next(&vmi);
934 return vma;
935 }
936
937 /* enforced gap between the expanding stack and other mappings. */
938 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
939
cmdline_parse_stack_guard_gap(char * p)940 static int __init cmdline_parse_stack_guard_gap(char *p)
941 {
942 unsigned long val;
943 char *endptr;
944
945 val = simple_strtoul(p, &endptr, 10);
946 if (!*endptr)
947 stack_guard_gap = val << PAGE_SHIFT;
948
949 return 1;
950 }
951 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
952
953 #ifdef CONFIG_STACK_GROWSUP
expand_stack_locked(struct vm_area_struct * vma,unsigned long address)954 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
955 {
956 return expand_upwards(vma, address);
957 }
958
find_extend_vma_locked(struct mm_struct * mm,unsigned long addr)959 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
960 {
961 struct vm_area_struct *vma, *prev;
962
963 addr &= PAGE_MASK;
964 vma = find_vma_prev(mm, addr, &prev);
965 if (vma && (vma->vm_start <= addr))
966 return vma;
967 if (!prev)
968 return NULL;
969 if (expand_stack_locked(prev, addr))
970 return NULL;
971 if (prev->vm_flags & VM_LOCKED)
972 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
973 return prev;
974 }
975 #else
expand_stack_locked(struct vm_area_struct * vma,unsigned long address)976 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
977 {
978 return expand_downwards(vma, address);
979 }
980
find_extend_vma_locked(struct mm_struct * mm,unsigned long addr)981 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
982 {
983 struct vm_area_struct *vma;
984 unsigned long start;
985
986 addr &= PAGE_MASK;
987 vma = find_vma(mm, addr);
988 if (!vma)
989 return NULL;
990 if (vma->vm_start <= addr)
991 return vma;
992 start = vma->vm_start;
993 if (expand_stack_locked(vma, addr))
994 return NULL;
995 if (vma->vm_flags & VM_LOCKED)
996 populate_vma_page_range(vma, addr, start, NULL);
997 return vma;
998 }
999 #endif
1000
1001 #if defined(CONFIG_STACK_GROWSUP)
1002
1003 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
1004 #define vma_expand_down(vma, addr) (-EFAULT)
1005
1006 #else
1007
1008 #define vma_expand_up(vma,addr) (-EFAULT)
1009 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
1010
1011 #endif
1012
1013 /*
1014 * expand_stack(): legacy interface for page faulting. Don't use unless
1015 * you have to.
1016 *
1017 * This is called with the mm locked for reading, drops the lock, takes
1018 * the lock for writing, tries to look up a vma again, expands it if
1019 * necessary, and downgrades the lock to reading again.
1020 *
1021 * If no vma is found or it can't be expanded, it returns NULL and has
1022 * dropped the lock.
1023 */
expand_stack(struct mm_struct * mm,unsigned long addr)1024 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
1025 {
1026 struct vm_area_struct *vma, *prev;
1027
1028 mmap_read_unlock(mm);
1029 if (mmap_write_lock_killable(mm))
1030 return NULL;
1031
1032 vma = find_vma_prev(mm, addr, &prev);
1033 if (vma && vma->vm_start <= addr)
1034 goto success;
1035
1036 if (prev && !vma_expand_up(prev, addr)) {
1037 vma = prev;
1038 goto success;
1039 }
1040
1041 if (vma && !vma_expand_down(vma, addr))
1042 goto success;
1043
1044 mmap_write_unlock(mm);
1045 return NULL;
1046
1047 success:
1048 mmap_write_downgrade(mm);
1049 return vma;
1050 }
1051
1052 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
1053 * @mm: The mm_struct
1054 * @start: The start address to munmap
1055 * @len: The length to be munmapped.
1056 * @uf: The userfaultfd list_head
1057 *
1058 * Return: 0 on success, error otherwise.
1059 */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)1060 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
1061 struct list_head *uf)
1062 {
1063 VMA_ITERATOR(vmi, mm, start);
1064
1065 return do_vmi_munmap(&vmi, mm, start, len, uf, false);
1066 }
1067
vm_munmap(unsigned long start,size_t len)1068 int vm_munmap(unsigned long start, size_t len)
1069 {
1070 return __vm_munmap(start, len, false);
1071 }
1072 EXPORT_SYMBOL(vm_munmap);
1073
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)1074 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1075 {
1076 addr = untagged_addr(addr);
1077 return __vm_munmap(addr, len, true);
1078 }
1079
1080
1081 /*
1082 * Emulation of deprecated remap_file_pages() syscall.
1083 */
SYSCALL_DEFINE5(remap_file_pages,unsigned long,start,unsigned long,size,unsigned long,prot,unsigned long,pgoff,unsigned long,flags)1084 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
1085 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
1086 {
1087
1088 struct mm_struct *mm = current->mm;
1089 struct vm_area_struct *vma;
1090 unsigned long populate = 0;
1091 unsigned long ret = -EINVAL;
1092 struct file *file;
1093 vm_flags_t vm_flags;
1094
1095 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
1096 current->comm, current->pid);
1097
1098 if (prot)
1099 return ret;
1100 start = start & PAGE_MASK;
1101 size = size & PAGE_MASK;
1102
1103 if (start + size <= start)
1104 return ret;
1105
1106 /* Does pgoff wrap? */
1107 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
1108 return ret;
1109
1110 if (mmap_read_lock_killable(mm))
1111 return -EINTR;
1112
1113 /*
1114 * Look up VMA under read lock first so we can perform the security
1115 * without holding locks (which can be problematic). We reacquire a
1116 * write lock later and check nothing changed underneath us.
1117 */
1118 vma = vma_lookup(mm, start);
1119
1120 if (!vma || !(vma->vm_flags & VM_SHARED)) {
1121 mmap_read_unlock(mm);
1122 return -EINVAL;
1123 }
1124
1125 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
1126 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
1127 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
1128
1129 flags &= MAP_NONBLOCK;
1130 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
1131 if (vma->vm_flags & VM_LOCKED)
1132 flags |= MAP_LOCKED;
1133
1134 /* Save vm_flags used to calculate prot and flags, and recheck later. */
1135 vm_flags = vma->vm_flags;
1136 file = get_file(vma->vm_file);
1137
1138 mmap_read_unlock(mm);
1139
1140 /* Call outside mmap_lock to be consistent with other callers. */
1141 ret = security_mmap_file(file, prot, flags);
1142 if (ret) {
1143 fput(file);
1144 return ret;
1145 }
1146
1147 ret = -EINVAL;
1148
1149 /* OK security check passed, take write lock + let it rip. */
1150 if (mmap_write_lock_killable(mm)) {
1151 fput(file);
1152 return -EINTR;
1153 }
1154
1155 vma = vma_lookup(mm, start);
1156
1157 if (!vma)
1158 goto out;
1159
1160 /* Make sure things didn't change under us. */
1161 if (vma->vm_flags != vm_flags)
1162 goto out;
1163 if (vma->vm_file != file)
1164 goto out;
1165
1166 if (start + size > vma->vm_end) {
1167 VMA_ITERATOR(vmi, mm, vma->vm_end);
1168 struct vm_area_struct *next, *prev = vma;
1169
1170 for_each_vma_range(vmi, next, start + size) {
1171 /* hole between vmas ? */
1172 if (next->vm_start != prev->vm_end)
1173 goto out;
1174
1175 if (next->vm_file != vma->vm_file)
1176 goto out;
1177
1178 if (next->vm_flags != vma->vm_flags)
1179 goto out;
1180
1181 if (start + size <= next->vm_end)
1182 break;
1183
1184 prev = next;
1185 }
1186
1187 if (!next)
1188 goto out;
1189 }
1190
1191 ret = do_mmap(vma->vm_file, start, size,
1192 prot, flags, 0, pgoff, &populate, NULL);
1193 out:
1194 mmap_write_unlock(mm);
1195 fput(file);
1196 if (populate)
1197 mm_populate(ret, populate);
1198 if (!IS_ERR_VALUE(ret))
1199 ret = 0;
1200 return ret;
1201 }
1202
vm_brk_flags(unsigned long addr,unsigned long request,vm_flags_t vm_flags)1203 int vm_brk_flags(unsigned long addr, unsigned long request, vm_flags_t vm_flags)
1204 {
1205 struct mm_struct *mm = current->mm;
1206 struct vm_area_struct *vma = NULL;
1207 unsigned long len;
1208 int ret;
1209 bool populate;
1210 LIST_HEAD(uf);
1211 VMA_ITERATOR(vmi, mm, addr);
1212
1213 len = PAGE_ALIGN(request);
1214 if (len < request)
1215 return -ENOMEM;
1216 if (!len)
1217 return 0;
1218
1219 /* Until we need other flags, refuse anything except VM_EXEC. */
1220 if ((vm_flags & (~VM_EXEC)) != 0)
1221 return -EINVAL;
1222
1223 if (mmap_write_lock_killable(mm))
1224 return -EINTR;
1225
1226 ret = check_brk_limits(addr, len);
1227 if (ret)
1228 goto limits_failed;
1229
1230 ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
1231 if (ret)
1232 goto munmap_failed;
1233
1234 vma = vma_prev(&vmi);
1235 ret = do_brk_flags(&vmi, vma, addr, len, vm_flags);
1236 populate = ((mm->def_flags & VM_LOCKED) != 0);
1237 mmap_write_unlock(mm);
1238 userfaultfd_unmap_complete(mm, &uf);
1239 if (populate && !ret)
1240 mm_populate(addr, len);
1241 return ret;
1242
1243 munmap_failed:
1244 limits_failed:
1245 mmap_write_unlock(mm);
1246 return ret;
1247 }
1248 EXPORT_SYMBOL(vm_brk_flags);
1249
1250 /* Release all mmaps. */
exit_mmap(struct mm_struct * mm)1251 void exit_mmap(struct mm_struct *mm)
1252 {
1253 struct mmu_gather tlb;
1254 struct vm_area_struct *vma;
1255 unsigned long nr_accounted = 0;
1256 VMA_ITERATOR(vmi, mm, 0);
1257 int count = 0;
1258
1259 /* mm's last user has gone, and its about to be pulled down */
1260 mmu_notifier_release(mm);
1261
1262 mmap_read_lock(mm);
1263 arch_exit_mmap(mm);
1264
1265 vma = vma_next(&vmi);
1266 if (!vma || unlikely(xa_is_zero(vma))) {
1267 /* Can happen if dup_mmap() received an OOM */
1268 mmap_read_unlock(mm);
1269 mmap_write_lock(mm);
1270 goto destroy;
1271 }
1272
1273 flush_cache_mm(mm);
1274 tlb_gather_mmu_fullmm(&tlb, mm);
1275 /* update_hiwater_rss(mm) here? but nobody should be looking */
1276 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
1277 unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX);
1278 mmap_read_unlock(mm);
1279
1280 /*
1281 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
1282 * because the memory has been already freed.
1283 */
1284 mm_flags_set(MMF_OOM_SKIP, mm);
1285 mmap_write_lock(mm);
1286 mt_clear_in_rcu(&mm->mm_mt);
1287 vma_iter_set(&vmi, vma->vm_end);
1288 free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS,
1289 USER_PGTABLES_CEILING, true);
1290 tlb_finish_mmu(&tlb);
1291
1292 /*
1293 * Walk the list again, actually closing and freeing it, with preemption
1294 * enabled, without holding any MM locks besides the unreachable
1295 * mmap_write_lock.
1296 */
1297 vma_iter_set(&vmi, vma->vm_end);
1298 do {
1299 if (vma->vm_flags & VM_ACCOUNT)
1300 nr_accounted += vma_pages(vma);
1301 vma_mark_detached(vma);
1302 remove_vma(vma);
1303 count++;
1304 cond_resched();
1305 vma = vma_next(&vmi);
1306 } while (vma && likely(!xa_is_zero(vma)));
1307
1308 BUG_ON(count != mm->map_count);
1309
1310 trace_exit_mmap(mm);
1311 destroy:
1312 __mt_destroy(&mm->mm_mt);
1313 mmap_write_unlock(mm);
1314 vm_unacct_memory(nr_accounted);
1315 }
1316
1317 /*
1318 * Return true if the calling process may expand its vm space by the passed
1319 * number of pages
1320 */
may_expand_vm(struct mm_struct * mm,vm_flags_t flags,unsigned long npages)1321 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
1322 {
1323 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
1324 return false;
1325
1326 if (is_data_mapping(flags) &&
1327 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
1328 /* Workaround for Valgrind */
1329 if (rlimit(RLIMIT_DATA) == 0 &&
1330 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
1331 return true;
1332
1333 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
1334 current->comm, current->pid,
1335 (mm->data_vm + npages) << PAGE_SHIFT,
1336 rlimit(RLIMIT_DATA),
1337 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
1338
1339 if (!ignore_rlimit_data)
1340 return false;
1341 }
1342
1343 return true;
1344 }
1345
vm_stat_account(struct mm_struct * mm,vm_flags_t flags,long npages)1346 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
1347 {
1348 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
1349
1350 if (is_exec_mapping(flags))
1351 mm->exec_vm += npages;
1352 else if (is_stack_mapping(flags))
1353 mm->stack_vm += npages;
1354 else if (is_data_mapping(flags))
1355 mm->data_vm += npages;
1356 }
1357
1358 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
1359
1360 /*
1361 * Close hook, called for unmap() and on the old vma for mremap().
1362 *
1363 * Having a close hook prevents vma merging regardless of flags.
1364 */
special_mapping_close(struct vm_area_struct * vma)1365 static void special_mapping_close(struct vm_area_struct *vma)
1366 {
1367 const struct vm_special_mapping *sm = vma->vm_private_data;
1368
1369 if (sm->close)
1370 sm->close(sm, vma);
1371 }
1372
special_mapping_name(struct vm_area_struct * vma)1373 static const char *special_mapping_name(struct vm_area_struct *vma)
1374 {
1375 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
1376 }
1377
special_mapping_mremap(struct vm_area_struct * new_vma)1378 static int special_mapping_mremap(struct vm_area_struct *new_vma)
1379 {
1380 struct vm_special_mapping *sm = new_vma->vm_private_data;
1381
1382 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
1383 return -EFAULT;
1384
1385 if (sm->mremap)
1386 return sm->mremap(sm, new_vma);
1387
1388 return 0;
1389 }
1390
special_mapping_split(struct vm_area_struct * vma,unsigned long addr)1391 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
1392 {
1393 /*
1394 * Forbid splitting special mappings - kernel has expectations over
1395 * the number of pages in mapping. Together with VM_DONTEXPAND
1396 * the size of vma should stay the same over the special mapping's
1397 * lifetime.
1398 */
1399 return -EINVAL;
1400 }
1401
1402 static const struct vm_operations_struct special_mapping_vmops = {
1403 .close = special_mapping_close,
1404 .fault = special_mapping_fault,
1405 .mremap = special_mapping_mremap,
1406 .name = special_mapping_name,
1407 /* vDSO code relies that VVAR can't be accessed remotely */
1408 .access = NULL,
1409 .may_split = special_mapping_split,
1410 };
1411
special_mapping_fault(struct vm_fault * vmf)1412 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
1413 {
1414 struct vm_area_struct *vma = vmf->vma;
1415 pgoff_t pgoff;
1416 struct page **pages;
1417 struct vm_special_mapping *sm = vma->vm_private_data;
1418
1419 if (sm->fault)
1420 return sm->fault(sm, vmf->vma, vmf);
1421
1422 pages = sm->pages;
1423
1424 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
1425 pgoff--;
1426
1427 if (*pages) {
1428 struct page *page = *pages;
1429 get_page(page);
1430 vmf->page = page;
1431 return 0;
1432 }
1433
1434 return VM_FAULT_SIGBUS;
1435 }
1436
__install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,vm_flags_t vm_flags,void * priv,const struct vm_operations_struct * ops)1437 static struct vm_area_struct *__install_special_mapping(
1438 struct mm_struct *mm,
1439 unsigned long addr, unsigned long len,
1440 vm_flags_t vm_flags, void *priv,
1441 const struct vm_operations_struct *ops)
1442 {
1443 int ret;
1444 struct vm_area_struct *vma;
1445
1446 vma = vm_area_alloc(mm);
1447 if (unlikely(vma == NULL))
1448 return ERR_PTR(-ENOMEM);
1449
1450 vma_set_range(vma, addr, addr + len, 0);
1451 vm_flags |= mm->def_flags | VM_DONTEXPAND;
1452 if (pgtable_supports_soft_dirty())
1453 vm_flags |= VM_SOFTDIRTY;
1454 vm_flags_init(vma, vm_flags & ~VM_LOCKED_MASK);
1455 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
1456
1457 vma->vm_ops = ops;
1458 vma->vm_private_data = priv;
1459
1460 ret = insert_vm_struct(mm, vma);
1461 if (ret)
1462 goto out;
1463
1464 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
1465
1466 perf_event_mmap(vma);
1467
1468 return vma;
1469
1470 out:
1471 vm_area_free(vma);
1472 return ERR_PTR(ret);
1473 }
1474
vma_is_special_mapping(const struct vm_area_struct * vma,const struct vm_special_mapping * sm)1475 bool vma_is_special_mapping(const struct vm_area_struct *vma,
1476 const struct vm_special_mapping *sm)
1477 {
1478 return vma->vm_private_data == sm &&
1479 vma->vm_ops == &special_mapping_vmops;
1480 }
1481
1482 /*
1483 * Called with mm->mmap_lock held for writing.
1484 * Insert a new vma covering the given region, with the given flags.
1485 * Its pages are supplied by the given array of struct page *.
1486 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
1487 * The region past the last page supplied will always produce SIGBUS.
1488 * The array pointer and the pages it points to are assumed to stay alive
1489 * for as long as this mapping might exist.
1490 */
_install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,vm_flags_t vm_flags,const struct vm_special_mapping * spec)1491 struct vm_area_struct *_install_special_mapping(
1492 struct mm_struct *mm,
1493 unsigned long addr, unsigned long len,
1494 vm_flags_t vm_flags, const struct vm_special_mapping *spec)
1495 {
1496 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
1497 &special_mapping_vmops);
1498 }
1499
1500 #ifdef CONFIG_SYSCTL
1501 #if defined(HAVE_ARCH_PICK_MMAP_LAYOUT) || \
1502 defined(CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT)
1503 int sysctl_legacy_va_layout;
1504 #endif
1505
1506 static const struct ctl_table mmap_table[] = {
1507 {
1508 .procname = "max_map_count",
1509 .data = &sysctl_max_map_count,
1510 .maxlen = sizeof(sysctl_max_map_count),
1511 .mode = 0644,
1512 .proc_handler = proc_dointvec_minmax,
1513 .extra1 = SYSCTL_ZERO,
1514 },
1515 #if defined(HAVE_ARCH_PICK_MMAP_LAYOUT) || \
1516 defined(CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT)
1517 {
1518 .procname = "legacy_va_layout",
1519 .data = &sysctl_legacy_va_layout,
1520 .maxlen = sizeof(sysctl_legacy_va_layout),
1521 .mode = 0644,
1522 .proc_handler = proc_dointvec_minmax,
1523 .extra1 = SYSCTL_ZERO,
1524 },
1525 #endif
1526 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
1527 {
1528 .procname = "mmap_rnd_bits",
1529 .data = &mmap_rnd_bits,
1530 .maxlen = sizeof(mmap_rnd_bits),
1531 .mode = 0600,
1532 .proc_handler = proc_dointvec_minmax,
1533 .extra1 = (void *)&mmap_rnd_bits_min,
1534 .extra2 = (void *)&mmap_rnd_bits_max,
1535 },
1536 #endif
1537 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
1538 {
1539 .procname = "mmap_rnd_compat_bits",
1540 .data = &mmap_rnd_compat_bits,
1541 .maxlen = sizeof(mmap_rnd_compat_bits),
1542 .mode = 0600,
1543 .proc_handler = proc_dointvec_minmax,
1544 .extra1 = (void *)&mmap_rnd_compat_bits_min,
1545 .extra2 = (void *)&mmap_rnd_compat_bits_max,
1546 },
1547 #endif
1548 };
1549 #endif /* CONFIG_SYSCTL */
1550
1551 /*
1552 * initialise the percpu counter for VM, initialise VMA state.
1553 */
mmap_init(void)1554 void __init mmap_init(void)
1555 {
1556 int ret;
1557
1558 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
1559 VM_BUG_ON(ret);
1560 #ifdef CONFIG_SYSCTL
1561 register_sysctl_init("vm", mmap_table);
1562 #endif
1563 vma_state_init();
1564 }
1565
1566 /*
1567 * Initialise sysctl_user_reserve_kbytes.
1568 *
1569 * This is intended to prevent a user from starting a single memory hogging
1570 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1571 * mode.
1572 *
1573 * The default value is min(3% of free memory, 128MB)
1574 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1575 */
init_user_reserve(void)1576 static int init_user_reserve(void)
1577 {
1578 unsigned long free_kbytes;
1579
1580 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1581
1582 sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K);
1583 return 0;
1584 }
1585 subsys_initcall(init_user_reserve);
1586
1587 /*
1588 * Initialise sysctl_admin_reserve_kbytes.
1589 *
1590 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1591 * to log in and kill a memory hogging process.
1592 *
1593 * Systems with more than 256MB will reserve 8MB, enough to recover
1594 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1595 * only reserve 3% of free pages by default.
1596 */
init_admin_reserve(void)1597 static int init_admin_reserve(void)
1598 {
1599 unsigned long free_kbytes;
1600
1601 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1602
1603 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K);
1604 return 0;
1605 }
1606 subsys_initcall(init_admin_reserve);
1607
1608 /*
1609 * Reinititalise user and admin reserves if memory is added or removed.
1610 *
1611 * The default user reserve max is 128MB, and the default max for the
1612 * admin reserve is 8MB. These are usually, but not always, enough to
1613 * enable recovery from a memory hogging process using login/sshd, a shell,
1614 * and tools like top. It may make sense to increase or even disable the
1615 * reserve depending on the existence of swap or variations in the recovery
1616 * tools. So, the admin may have changed them.
1617 *
1618 * If memory is added and the reserves have been eliminated or increased above
1619 * the default max, then we'll trust the admin.
1620 *
1621 * If memory is removed and there isn't enough free memory, then we
1622 * need to reset the reserves.
1623 *
1624 * Otherwise keep the reserve set by the admin.
1625 */
reserve_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)1626 static int reserve_mem_notifier(struct notifier_block *nb,
1627 unsigned long action, void *data)
1628 {
1629 unsigned long tmp, free_kbytes;
1630
1631 switch (action) {
1632 case MEM_ONLINE:
1633 /* Default max is 128MB. Leave alone if modified by operator. */
1634 tmp = sysctl_user_reserve_kbytes;
1635 if (tmp > 0 && tmp < SZ_128K)
1636 init_user_reserve();
1637
1638 /* Default max is 8MB. Leave alone if modified by operator. */
1639 tmp = sysctl_admin_reserve_kbytes;
1640 if (tmp > 0 && tmp < SZ_8K)
1641 init_admin_reserve();
1642
1643 break;
1644 case MEM_OFFLINE:
1645 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1646
1647 if (sysctl_user_reserve_kbytes > free_kbytes) {
1648 init_user_reserve();
1649 pr_info("vm.user_reserve_kbytes reset to %lu\n",
1650 sysctl_user_reserve_kbytes);
1651 }
1652
1653 if (sysctl_admin_reserve_kbytes > free_kbytes) {
1654 init_admin_reserve();
1655 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
1656 sysctl_admin_reserve_kbytes);
1657 }
1658 break;
1659 default:
1660 break;
1661 }
1662 return NOTIFY_OK;
1663 }
1664
init_reserve_notifier(void)1665 static int __meminit init_reserve_notifier(void)
1666 {
1667 if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
1668 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
1669
1670 return 0;
1671 }
1672 subsys_initcall(init_reserve_notifier);
1673
1674 /*
1675 * Obtain a read lock on mm->mmap_lock, if the specified address is below the
1676 * start of the VMA, the intent is to perform a write, and it is a
1677 * downward-growing stack, then attempt to expand the stack to contain it.
1678 *
1679 * This function is intended only for obtaining an argument page from an ELF
1680 * image, and is almost certainly NOT what you want to use for any other
1681 * purpose.
1682 *
1683 * IMPORTANT - VMA fields are accessed without an mmap lock being held, so the
1684 * VMA referenced must not be linked in any user-visible tree, i.e. it must be a
1685 * new VMA being mapped.
1686 *
1687 * The function assumes that addr is either contained within the VMA or below
1688 * it, and makes no attempt to validate this value beyond that.
1689 *
1690 * Returns true if the read lock was obtained and a stack was perhaps expanded,
1691 * false if the stack expansion failed.
1692 *
1693 * On stack expansion the function temporarily acquires an mmap write lock
1694 * before downgrading it.
1695 */
mmap_read_lock_maybe_expand(struct mm_struct * mm,struct vm_area_struct * new_vma,unsigned long addr,bool write)1696 bool mmap_read_lock_maybe_expand(struct mm_struct *mm,
1697 struct vm_area_struct *new_vma,
1698 unsigned long addr, bool write)
1699 {
1700 if (!write || addr >= new_vma->vm_start) {
1701 mmap_read_lock(mm);
1702 return true;
1703 }
1704
1705 if (!(new_vma->vm_flags & VM_GROWSDOWN))
1706 return false;
1707
1708 mmap_write_lock(mm);
1709 if (expand_downwards(new_vma, addr)) {
1710 mmap_write_unlock(mm);
1711 return false;
1712 }
1713
1714 mmap_write_downgrade(mm);
1715 return true;
1716 }
1717
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)1718 __latent_entropy int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
1719 {
1720 struct vm_area_struct *mpnt, *tmp;
1721 int retval;
1722 unsigned long charge = 0;
1723 LIST_HEAD(uf);
1724 VMA_ITERATOR(vmi, mm, 0);
1725
1726 if (mmap_write_lock_killable(oldmm))
1727 return -EINTR;
1728 flush_cache_dup_mm(oldmm);
1729 uprobe_dup_mmap(oldmm, mm);
1730 /*
1731 * Not linked in yet - no deadlock potential:
1732 */
1733 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
1734
1735 /* No ordering required: file already has been exposed. */
1736 dup_mm_exe_file(mm, oldmm);
1737
1738 mm->total_vm = oldmm->total_vm;
1739 mm->data_vm = oldmm->data_vm;
1740 mm->exec_vm = oldmm->exec_vm;
1741 mm->stack_vm = oldmm->stack_vm;
1742
1743 /* Use __mt_dup() to efficiently build an identical maple tree. */
1744 retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
1745 if (unlikely(retval))
1746 goto out;
1747
1748 mt_clear_in_rcu(vmi.mas.tree);
1749 for_each_vma(vmi, mpnt) {
1750 struct file *file;
1751
1752 retval = vma_start_write_killable(mpnt);
1753 if (retval < 0)
1754 goto loop_out;
1755 if (mpnt->vm_flags & VM_DONTCOPY) {
1756 retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
1757 mpnt->vm_end, GFP_KERNEL);
1758 if (retval)
1759 goto loop_out;
1760
1761 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
1762 continue;
1763 }
1764 charge = 0;
1765 if (mpnt->vm_flags & VM_ACCOUNT) {
1766 unsigned long len = vma_pages(mpnt);
1767
1768 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
1769 goto fail_nomem;
1770 charge = len;
1771 }
1772
1773 tmp = vm_area_dup(mpnt);
1774 if (!tmp)
1775 goto fail_nomem;
1776 retval = vma_dup_policy(mpnt, tmp);
1777 if (retval)
1778 goto fail_nomem_policy;
1779 tmp->vm_mm = mm;
1780 retval = dup_userfaultfd(tmp, &uf);
1781 if (retval)
1782 goto fail_nomem_anon_vma_fork;
1783 if (tmp->vm_flags & VM_WIPEONFORK) {
1784 /*
1785 * VM_WIPEONFORK gets a clean slate in the child.
1786 * Don't prepare anon_vma until fault since we don't
1787 * copy page for current vma.
1788 */
1789 tmp->anon_vma = NULL;
1790 } else if (anon_vma_fork(tmp, mpnt))
1791 goto fail_nomem_anon_vma_fork;
1792 vm_flags_clear(tmp, VM_LOCKED_MASK);
1793 /*
1794 * Copy/update hugetlb private vma information.
1795 */
1796 if (is_vm_hugetlb_page(tmp))
1797 hugetlb_dup_vma_private(tmp);
1798
1799 /*
1800 * Link the vma into the MT. After using __mt_dup(), memory
1801 * allocation is not necessary here, so it cannot fail.
1802 */
1803 vma_iter_bulk_store(&vmi, tmp);
1804
1805 mm->map_count++;
1806
1807 if (tmp->vm_ops && tmp->vm_ops->open)
1808 tmp->vm_ops->open(tmp);
1809
1810 file = tmp->vm_file;
1811 if (file) {
1812 struct address_space *mapping = file->f_mapping;
1813
1814 get_file(file);
1815 i_mmap_lock_write(mapping);
1816 if (vma_is_shared_maywrite(tmp))
1817 mapping_allow_writable(mapping);
1818 flush_dcache_mmap_lock(mapping);
1819 /* insert tmp into the share list, just after mpnt */
1820 vma_interval_tree_insert_after(tmp, mpnt,
1821 &mapping->i_mmap);
1822 flush_dcache_mmap_unlock(mapping);
1823 i_mmap_unlock_write(mapping);
1824 }
1825
1826 if (!(tmp->vm_flags & VM_WIPEONFORK))
1827 retval = copy_page_range(tmp, mpnt);
1828
1829 if (retval) {
1830 mpnt = vma_next(&vmi);
1831 goto loop_out;
1832 }
1833 }
1834 /* a new mm has just been created */
1835 retval = arch_dup_mmap(oldmm, mm);
1836 loop_out:
1837 vma_iter_free(&vmi);
1838 if (!retval) {
1839 mt_set_in_rcu(vmi.mas.tree);
1840 ksm_fork(mm, oldmm);
1841 khugepaged_fork(mm, oldmm);
1842 } else {
1843
1844 /*
1845 * The entire maple tree has already been duplicated. If the
1846 * mmap duplication fails, mark the failure point with
1847 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
1848 * stop releasing VMAs that have not been duplicated after this
1849 * point.
1850 */
1851 if (mpnt) {
1852 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
1853 mas_store(&vmi.mas, XA_ZERO_ENTRY);
1854 /* Avoid OOM iterating a broken tree */
1855 mm_flags_set(MMF_OOM_SKIP, mm);
1856 }
1857 /*
1858 * The mm_struct is going to exit, but the locks will be dropped
1859 * first. Set the mm_struct as unstable is advisable as it is
1860 * not fully initialised.
1861 */
1862 mm_flags_set(MMF_UNSTABLE, mm);
1863 }
1864 out:
1865 mmap_write_unlock(mm);
1866 flush_tlb_mm(oldmm);
1867 mmap_write_unlock(oldmm);
1868 if (!retval)
1869 dup_userfaultfd_complete(&uf);
1870 else
1871 dup_userfaultfd_fail(&uf);
1872 return retval;
1873
1874 fail_nomem_anon_vma_fork:
1875 mpol_put(vma_policy(tmp));
1876 fail_nomem_policy:
1877 vm_area_free(tmp);
1878 fail_nomem:
1879 retval = -ENOMEM;
1880 vm_unacct_memory(charge);
1881 goto loop_out;
1882 }
1883