1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/fs_struct.h>
13 #include <linux/pagemap.h>
14 #include <linux/highmem.h>
15 #include <linux/time.h>
16 #include <linux/init.h>
17 #include <linux/string.h>
18 #include <linux/backing-dev.h>
19 #include <linux/writeback.h>
20 #include <linux/compat.h>
21 #include <linux/xattr.h>
22 #include <linux/posix_acl.h>
23 #include <linux/falloc.h>
24 #include <linux/slab.h>
25 #include <linux/ratelimit.h>
26 #include <linux/btrfs.h>
27 #include <linux/blkdev.h>
28 #include <linux/posix_acl_xattr.h>
29 #include <linux/uio.h>
30 #include <linux/magic.h>
31 #include <linux/iversion.h>
32 #include <linux/swap.h>
33 #include <linux/migrate.h>
34 #include <linux/sched/mm.h>
35 #include <linux/iomap.h>
36 #include <linux/unaligned.h>
37 #include <linux/fsverity.h>
38 #include "misc.h"
39 #include "ctree.h"
40 #include "disk-io.h"
41 #include "transaction.h"
42 #include "btrfs_inode.h"
43 #include "ordered-data.h"
44 #include "xattr.h"
45 #include "tree-log.h"
46 #include "bio.h"
47 #include "compression.h"
48 #include "locking.h"
49 #include "props.h"
50 #include "qgroup.h"
51 #include "delalloc-space.h"
52 #include "block-group.h"
53 #include "space-info.h"
54 #include "zoned.h"
55 #include "subpage.h"
56 #include "inode-item.h"
57 #include "fs.h"
58 #include "accessors.h"
59 #include "extent-tree.h"
60 #include "root-tree.h"
61 #include "defrag.h"
62 #include "dir-item.h"
63 #include "file-item.h"
64 #include "uuid-tree.h"
65 #include "ioctl.h"
66 #include "file.h"
67 #include "acl.h"
68 #include "relocation.h"
69 #include "verity.h"
70 #include "super.h"
71 #include "orphan.h"
72 #include "backref.h"
73 #include "raid-stripe-tree.h"
74 #include "fiemap.h"
75 #include "delayed-inode.h"
76
77 #define COW_FILE_RANGE_KEEP_LOCKED (1UL << 0)
78 #define COW_FILE_RANGE_NO_INLINE (1UL << 1)
79
80 struct btrfs_iget_args {
81 u64 ino;
82 struct btrfs_root *root;
83 };
84
85 struct btrfs_rename_ctx {
86 /* Output field. Stores the index number of the old directory entry. */
87 u64 index;
88 };
89
90 /*
91 * Used by data_reloc_print_warning_inode() to pass needed info for filename
92 * resolution and output of error message.
93 */
94 struct data_reloc_warn {
95 struct btrfs_path path;
96 struct btrfs_fs_info *fs_info;
97 u64 extent_item_size;
98 u64 logical;
99 int mirror_num;
100 };
101
102 /*
103 * For the file_extent_tree, we want to hold the inode lock when we lookup and
104 * update the disk_i_size, but lockdep will complain because our io_tree we hold
105 * the tree lock and get the inode lock when setting delalloc. These two things
106 * are unrelated, so make a class for the file_extent_tree so we don't get the
107 * two locking patterns mixed up.
108 */
109 static struct lock_class_key file_extent_tree_class;
110
111 static const struct inode_operations btrfs_dir_inode_operations;
112 static const struct inode_operations btrfs_symlink_inode_operations;
113 static const struct inode_operations btrfs_special_inode_operations;
114 static const struct inode_operations btrfs_file_inode_operations;
115 static const struct address_space_operations btrfs_aops;
116 static const struct file_operations btrfs_dir_file_operations;
117
118 static struct kmem_cache *btrfs_inode_cachep;
119
120 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
121 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
122
123 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
124 struct folio *locked_folio, u64 start,
125 u64 end, struct writeback_control *wbc,
126 bool pages_dirty);
127
data_reloc_print_warning_inode(u64 inum,u64 offset,u64 num_bytes,u64 root,void * warn_ctx)128 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
129 u64 root, void *warn_ctx)
130 {
131 struct data_reloc_warn *warn = warn_ctx;
132 struct btrfs_fs_info *fs_info = warn->fs_info;
133 struct extent_buffer *eb;
134 struct btrfs_inode_item *inode_item;
135 struct inode_fs_paths *ipath __free(inode_fs_paths) = NULL;
136 struct btrfs_root *local_root;
137 struct btrfs_key key;
138 unsigned int nofs_flag;
139 u32 nlink;
140 int ret;
141
142 local_root = btrfs_get_fs_root(fs_info, root, true);
143 if (IS_ERR(local_root)) {
144 ret = PTR_ERR(local_root);
145 goto err;
146 }
147
148 /* This makes the path point to (inum INODE_ITEM ioff). */
149 key.objectid = inum;
150 key.type = BTRFS_INODE_ITEM_KEY;
151 key.offset = 0;
152
153 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
154 if (ret) {
155 btrfs_put_root(local_root);
156 btrfs_release_path(&warn->path);
157 goto err;
158 }
159
160 eb = warn->path.nodes[0];
161 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
162 nlink = btrfs_inode_nlink(eb, inode_item);
163 btrfs_release_path(&warn->path);
164
165 nofs_flag = memalloc_nofs_save();
166 ipath = init_ipath(4096, local_root, &warn->path);
167 memalloc_nofs_restore(nofs_flag);
168 if (IS_ERR(ipath)) {
169 btrfs_put_root(local_root);
170 ret = PTR_ERR(ipath);
171 ipath = NULL;
172 /*
173 * -ENOMEM, not a critical error, just output an generic error
174 * without filename.
175 */
176 btrfs_warn(fs_info,
177 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
178 warn->logical, warn->mirror_num, root, inum, offset);
179 return ret;
180 }
181 ret = paths_from_inode(inum, ipath);
182 if (ret < 0) {
183 btrfs_put_root(local_root);
184 goto err;
185 }
186
187 /*
188 * We deliberately ignore the bit ipath might have been too small to
189 * hold all of the paths here
190 */
191 for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
192 btrfs_warn(fs_info,
193 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
194 warn->logical, warn->mirror_num, root, inum, offset,
195 fs_info->sectorsize, nlink,
196 (char *)(unsigned long)ipath->fspath->val[i]);
197 }
198
199 btrfs_put_root(local_root);
200 return 0;
201
202 err:
203 btrfs_warn(fs_info,
204 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
205 warn->logical, warn->mirror_num, root, inum, offset, ret);
206
207 return ret;
208 }
209
210 /*
211 * Do extra user-friendly error output (e.g. lookup all the affected files).
212 *
213 * Return true if we succeeded doing the backref lookup.
214 * Return false if such lookup failed, and has to fallback to the old error message.
215 */
print_data_reloc_error(const struct btrfs_inode * inode,u64 file_off,const u8 * csum,const u8 * csum_expected,int mirror_num)216 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
217 const u8 *csum, const u8 *csum_expected,
218 int mirror_num)
219 {
220 struct btrfs_fs_info *fs_info = inode->root->fs_info;
221 struct btrfs_path path = { 0 };
222 struct btrfs_key found_key = { 0 };
223 struct extent_buffer *eb;
224 struct btrfs_extent_item *ei;
225 const u32 csum_size = fs_info->csum_size;
226 u64 logical;
227 u64 flags;
228 u32 item_size;
229 int ret;
230
231 mutex_lock(&fs_info->reloc_mutex);
232 logical = btrfs_get_reloc_bg_bytenr(fs_info);
233 mutex_unlock(&fs_info->reloc_mutex);
234
235 if (logical == U64_MAX) {
236 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
237 btrfs_warn_rl(fs_info,
238 "csum failed root %lld ino %llu off %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d",
239 btrfs_root_id(inode->root), btrfs_ino(inode), file_off,
240 BTRFS_CSUM_FMT_VALUE(csum_size, csum),
241 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected),
242 mirror_num);
243 return;
244 }
245
246 logical += file_off;
247 btrfs_warn_rl(fs_info,
248 "csum failed root %lld ino %llu off %llu logical %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d",
249 btrfs_root_id(inode->root),
250 btrfs_ino(inode), file_off, logical,
251 BTRFS_CSUM_FMT_VALUE(csum_size, csum),
252 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected),
253 mirror_num);
254
255 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
256 if (ret < 0) {
257 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
258 logical, ret);
259 btrfs_release_path(&path);
260 return;
261 }
262 eb = path.nodes[0];
263 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
264 item_size = btrfs_item_size(eb, path.slots[0]);
265 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
266 unsigned long ptr = 0;
267 u64 ref_root;
268 u8 ref_level;
269
270 while (true) {
271 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
272 item_size, &ref_root,
273 &ref_level);
274 if (ret < 0) {
275 btrfs_warn_rl(fs_info,
276 "failed to resolve tree backref for logical %llu: %d",
277 logical, ret);
278 break;
279 }
280 if (ret > 0)
281 break;
282
283 btrfs_warn_rl(fs_info,
284 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
285 logical, mirror_num,
286 (ref_level ? "node" : "leaf"),
287 ref_level, ref_root);
288 }
289 btrfs_release_path(&path);
290 } else {
291 struct btrfs_backref_walk_ctx ctx = { 0 };
292 struct data_reloc_warn reloc_warn = { 0 };
293
294 btrfs_release_path(&path);
295
296 ctx.bytenr = found_key.objectid;
297 ctx.extent_item_pos = logical - found_key.objectid;
298 ctx.fs_info = fs_info;
299
300 reloc_warn.logical = logical;
301 reloc_warn.extent_item_size = found_key.offset;
302 reloc_warn.mirror_num = mirror_num;
303 reloc_warn.fs_info = fs_info;
304
305 iterate_extent_inodes(&ctx, true,
306 data_reloc_print_warning_inode, &reloc_warn);
307 }
308 }
309
btrfs_print_data_csum_error(struct btrfs_inode * inode,u64 logical_start,u8 * csum,u8 * csum_expected,int mirror_num)310 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
311 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
312 {
313 struct btrfs_root *root = inode->root;
314 const u32 csum_size = root->fs_info->csum_size;
315
316 /* For data reloc tree, it's better to do a backref lookup instead. */
317 if (btrfs_is_data_reloc_root(root))
318 return print_data_reloc_error(inode, logical_start, csum,
319 csum_expected, mirror_num);
320
321 /* Output without objectid, which is more meaningful */
322 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) {
323 btrfs_warn_rl(root->fs_info,
324 "csum failed root %lld ino %lld off %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d",
325 btrfs_root_id(root), btrfs_ino(inode),
326 logical_start,
327 BTRFS_CSUM_FMT_VALUE(csum_size, csum),
328 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected),
329 mirror_num);
330 } else {
331 btrfs_warn_rl(root->fs_info,
332 "csum failed root %llu ino %llu off %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d",
333 btrfs_root_id(root), btrfs_ino(inode),
334 logical_start,
335 BTRFS_CSUM_FMT_VALUE(csum_size, csum),
336 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected),
337 mirror_num);
338 }
339 }
340
341 /*
342 * Lock inode i_rwsem based on arguments passed.
343 *
344 * ilock_flags can have the following bit set:
345 *
346 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
347 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
348 * return -EAGAIN
349 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
350 */
btrfs_inode_lock(struct btrfs_inode * inode,unsigned int ilock_flags)351 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
352 {
353 if (ilock_flags & BTRFS_ILOCK_SHARED) {
354 if (ilock_flags & BTRFS_ILOCK_TRY) {
355 if (!inode_trylock_shared(&inode->vfs_inode))
356 return -EAGAIN;
357 else
358 return 0;
359 }
360 inode_lock_shared(&inode->vfs_inode);
361 } else {
362 if (ilock_flags & BTRFS_ILOCK_TRY) {
363 if (!inode_trylock(&inode->vfs_inode))
364 return -EAGAIN;
365 else
366 return 0;
367 }
368 inode_lock(&inode->vfs_inode);
369 }
370 if (ilock_flags & BTRFS_ILOCK_MMAP)
371 down_write(&inode->i_mmap_lock);
372 return 0;
373 }
374
375 /*
376 * Unlock inode i_rwsem.
377 *
378 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
379 * to decide whether the lock acquired is shared or exclusive.
380 */
btrfs_inode_unlock(struct btrfs_inode * inode,unsigned int ilock_flags)381 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
382 {
383 if (ilock_flags & BTRFS_ILOCK_MMAP)
384 up_write(&inode->i_mmap_lock);
385 if (ilock_flags & BTRFS_ILOCK_SHARED)
386 inode_unlock_shared(&inode->vfs_inode);
387 else
388 inode_unlock(&inode->vfs_inode);
389 }
390
391 /*
392 * Cleanup all submitted ordered extents in specified range to handle errors
393 * from the btrfs_run_delalloc_range() callback.
394 *
395 * NOTE: caller must ensure that when an error happens, it can not call
396 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
397 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
398 * to be released, which we want to happen only when finishing the ordered
399 * extent (btrfs_finish_ordered_io()).
400 */
btrfs_cleanup_ordered_extents(struct btrfs_inode * inode,u64 offset,u64 bytes)401 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
402 u64 offset, u64 bytes)
403 {
404 pgoff_t index = offset >> PAGE_SHIFT;
405 const pgoff_t end_index = (offset + bytes - 1) >> PAGE_SHIFT;
406 struct folio *folio;
407
408 while (index <= end_index) {
409 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index);
410 if (IS_ERR(folio)) {
411 index++;
412 continue;
413 }
414
415 index = folio_next_index(folio);
416 /*
417 * Here we just clear all Ordered bits for every page in the
418 * range, then btrfs_mark_ordered_io_finished() will handle
419 * the ordered extent accounting for the range.
420 */
421 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio,
422 offset, bytes);
423 folio_put(folio);
424 }
425
426 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
427 }
428
429 static int btrfs_dirty_inode(struct btrfs_inode *inode);
430
btrfs_init_inode_security(struct btrfs_trans_handle * trans,struct btrfs_new_inode_args * args)431 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
432 struct btrfs_new_inode_args *args)
433 {
434 int ret;
435
436 if (args->default_acl) {
437 ret = __btrfs_set_acl(trans, args->inode, args->default_acl,
438 ACL_TYPE_DEFAULT);
439 if (ret)
440 return ret;
441 }
442 if (args->acl) {
443 ret = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
444 if (ret)
445 return ret;
446 }
447 if (!args->default_acl && !args->acl)
448 cache_no_acl(args->inode);
449 return btrfs_xattr_security_init(trans, args->inode, args->dir,
450 &args->dentry->d_name);
451 }
452
453 /*
454 * this does all the hard work for inserting an inline extent into
455 * the btree. The caller should have done a btrfs_drop_extents so that
456 * no overlapping inline items exist in the btree
457 */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_inode * inode,bool extent_inserted,size_t size,size_t compressed_size,int compress_type,struct folio * compressed_folio,bool update_i_size)458 static int insert_inline_extent(struct btrfs_trans_handle *trans,
459 struct btrfs_path *path,
460 struct btrfs_inode *inode, bool extent_inserted,
461 size_t size, size_t compressed_size,
462 int compress_type,
463 struct folio *compressed_folio,
464 bool update_i_size)
465 {
466 struct btrfs_root *root = inode->root;
467 struct extent_buffer *leaf;
468 const u32 sectorsize = trans->fs_info->sectorsize;
469 char *kaddr;
470 unsigned long ptr;
471 struct btrfs_file_extent_item *ei;
472 int ret;
473 size_t cur_size = size;
474 u64 i_size;
475
476 /*
477 * The decompressed size must still be no larger than a sector. Under
478 * heavy race, we can have size == 0 passed in, but that shouldn't be a
479 * big deal and we can continue the insertion.
480 */
481 ASSERT(size <= sectorsize);
482
483 /*
484 * The compressed size also needs to be no larger than a sector.
485 * That's also why we only need one page as the parameter.
486 */
487 if (compressed_folio)
488 ASSERT(compressed_size <= sectorsize);
489 else
490 ASSERT(compressed_size == 0);
491
492 if (compressed_size && compressed_folio)
493 cur_size = compressed_size;
494
495 if (!extent_inserted) {
496 struct btrfs_key key;
497 size_t datasize;
498
499 key.objectid = btrfs_ino(inode);
500 key.type = BTRFS_EXTENT_DATA_KEY;
501 key.offset = 0;
502
503 datasize = btrfs_file_extent_calc_inline_size(cur_size);
504 ret = btrfs_insert_empty_item(trans, root, path, &key,
505 datasize);
506 if (ret)
507 goto fail;
508 }
509 leaf = path->nodes[0];
510 ei = btrfs_item_ptr(leaf, path->slots[0],
511 struct btrfs_file_extent_item);
512 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
513 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
514 btrfs_set_file_extent_encryption(leaf, ei, 0);
515 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
516 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
517 ptr = btrfs_file_extent_inline_start(ei);
518
519 if (compress_type != BTRFS_COMPRESS_NONE) {
520 kaddr = kmap_local_folio(compressed_folio, 0);
521 write_extent_buffer(leaf, kaddr, ptr, compressed_size);
522 kunmap_local(kaddr);
523
524 btrfs_set_file_extent_compression(leaf, ei,
525 compress_type);
526 } else {
527 struct folio *folio;
528
529 folio = filemap_get_folio(inode->vfs_inode.i_mapping, 0);
530 ASSERT(!IS_ERR(folio));
531 btrfs_set_file_extent_compression(leaf, ei, 0);
532 kaddr = kmap_local_folio(folio, 0);
533 write_extent_buffer(leaf, kaddr, ptr, size);
534 kunmap_local(kaddr);
535 folio_put(folio);
536 }
537 btrfs_release_path(path);
538
539 /*
540 * We align size to sectorsize for inline extents just for simplicity
541 * sake.
542 */
543 ret = btrfs_inode_set_file_extent_range(inode, 0,
544 ALIGN(size, root->fs_info->sectorsize));
545 if (ret)
546 goto fail;
547
548 /*
549 * We're an inline extent, so nobody can extend the file past i_size
550 * without locking a page we already have locked.
551 *
552 * We must do any i_size and inode updates before we unlock the pages.
553 * Otherwise we could end up racing with unlink.
554 */
555 i_size = i_size_read(&inode->vfs_inode);
556 if (update_i_size && size > i_size) {
557 i_size_write(&inode->vfs_inode, size);
558 i_size = size;
559 }
560 inode->disk_i_size = i_size;
561
562 fail:
563 return ret;
564 }
565
can_cow_file_range_inline(struct btrfs_inode * inode,u64 offset,u64 size,size_t compressed_size)566 static bool can_cow_file_range_inline(struct btrfs_inode *inode,
567 u64 offset, u64 size,
568 size_t compressed_size)
569 {
570 struct btrfs_fs_info *fs_info = inode->root->fs_info;
571 u64 data_len = (compressed_size ?: size);
572
573 /* Inline extents must start at offset 0. */
574 if (offset != 0)
575 return false;
576
577 /* Inline extents are limited to sectorsize. */
578 if (size > fs_info->sectorsize)
579 return false;
580
581 /* We do not allow a non-compressed extent to be as large as block size. */
582 if (data_len >= fs_info->sectorsize)
583 return false;
584
585 /* We cannot exceed the maximum inline data size. */
586 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
587 return false;
588
589 /* We cannot exceed the user specified max_inline size. */
590 if (data_len > fs_info->max_inline)
591 return false;
592
593 /* Inline extents must be the entirety of the file. */
594 if (size < i_size_read(&inode->vfs_inode))
595 return false;
596
597 /* Encrypted file cannot be inlined. */
598 if (IS_ENCRYPTED(&inode->vfs_inode))
599 return false;
600
601 return true;
602 }
603
604 /*
605 * conditionally insert an inline extent into the file. This
606 * does the checks required to make sure the data is small enough
607 * to fit as an inline extent.
608 *
609 * If being used directly, you must have already checked we're allowed to cow
610 * the range by getting true from can_cow_file_range_inline().
611 */
__cow_file_range_inline(struct btrfs_inode * inode,u64 size,size_t compressed_size,int compress_type,struct folio * compressed_folio,bool update_i_size)612 static noinline int __cow_file_range_inline(struct btrfs_inode *inode,
613 u64 size, size_t compressed_size,
614 int compress_type,
615 struct folio *compressed_folio,
616 bool update_i_size)
617 {
618 struct btrfs_drop_extents_args drop_args = { 0 };
619 struct btrfs_root *root = inode->root;
620 struct btrfs_fs_info *fs_info = root->fs_info;
621 struct btrfs_trans_handle *trans = NULL;
622 u64 data_len = (compressed_size ?: size);
623 int ret;
624 struct btrfs_path *path;
625
626 path = btrfs_alloc_path();
627 if (!path) {
628 ret = -ENOMEM;
629 goto out;
630 }
631
632 trans = btrfs_join_transaction(root);
633 if (IS_ERR(trans)) {
634 ret = PTR_ERR(trans);
635 trans = NULL;
636 goto out;
637 }
638 trans->block_rsv = &inode->block_rsv;
639
640 drop_args.path = path;
641 drop_args.start = 0;
642 drop_args.end = fs_info->sectorsize;
643 drop_args.drop_cache = true;
644 drop_args.replace_extent = true;
645 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
646 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
647 if (unlikely(ret)) {
648 btrfs_abort_transaction(trans, ret);
649 goto out;
650 }
651
652 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
653 size, compressed_size, compress_type,
654 compressed_folio, update_i_size);
655 if (unlikely(ret && ret != -ENOSPC)) {
656 btrfs_abort_transaction(trans, ret);
657 goto out;
658 } else if (ret == -ENOSPC) {
659 ret = 1;
660 goto out;
661 }
662
663 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
664 ret = btrfs_update_inode(trans, inode);
665 if (unlikely(ret && ret != -ENOSPC)) {
666 btrfs_abort_transaction(trans, ret);
667 goto out;
668 } else if (ret == -ENOSPC) {
669 ret = 1;
670 goto out;
671 }
672
673 btrfs_set_inode_full_sync(inode);
674 out:
675 /*
676 * Don't forget to free the reserved space, as for inlined extent
677 * it won't count as data extent, free them directly here.
678 * And at reserve time, it's always aligned to page size, so
679 * just free one page here.
680 *
681 * If we fallback to non-inline (ret == 1) due to -ENOSPC, then we need
682 * to keep the data reservation.
683 */
684 if (ret <= 0)
685 btrfs_qgroup_free_data(inode, NULL, 0, fs_info->sectorsize, NULL);
686 btrfs_free_path(path);
687 if (trans)
688 btrfs_end_transaction(trans);
689 return ret;
690 }
691
cow_file_range_inline(struct btrfs_inode * inode,struct folio * locked_folio,u64 offset,u64 end,size_t compressed_size,int compress_type,struct folio * compressed_folio,bool update_i_size)692 static noinline int cow_file_range_inline(struct btrfs_inode *inode,
693 struct folio *locked_folio,
694 u64 offset, u64 end,
695 size_t compressed_size,
696 int compress_type,
697 struct folio *compressed_folio,
698 bool update_i_size)
699 {
700 struct extent_state *cached = NULL;
701 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
702 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED;
703 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1);
704 int ret;
705
706 if (!can_cow_file_range_inline(inode, offset, size, compressed_size))
707 return 1;
708
709 btrfs_lock_extent(&inode->io_tree, offset, end, &cached);
710 ret = __cow_file_range_inline(inode, size, compressed_size,
711 compress_type, compressed_folio,
712 update_i_size);
713 if (ret > 0) {
714 btrfs_unlock_extent(&inode->io_tree, offset, end, &cached);
715 return ret;
716 }
717
718 /*
719 * In the successful case (ret == 0 here), cow_file_range will return 1.
720 *
721 * Quite a bit further up the callstack in extent_writepage(), ret == 1
722 * is treated as a short circuited success and does not unlock the folio,
723 * so we must do it here.
724 *
725 * In the failure case, the locked_folio does get unlocked by
726 * btrfs_folio_end_all_writers, which asserts that it is still locked
727 * at that point, so we must *not* unlock it here.
728 *
729 * The other two callsites in compress_file_range do not have a
730 * locked_folio, so they are not relevant to this logic.
731 */
732 if (ret == 0)
733 locked_folio = NULL;
734
735 extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached,
736 clear_flags, PAGE_UNLOCK |
737 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
738 return ret;
739 }
740
741 struct async_extent {
742 u64 start;
743 u64 ram_size;
744 u64 compressed_size;
745 struct folio **folios;
746 unsigned long nr_folios;
747 int compress_type;
748 struct list_head list;
749 };
750
751 struct async_chunk {
752 struct btrfs_inode *inode;
753 struct folio *locked_folio;
754 u64 start;
755 u64 end;
756 blk_opf_t write_flags;
757 struct list_head extents;
758 struct cgroup_subsys_state *blkcg_css;
759 struct btrfs_work work;
760 struct async_cow *async_cow;
761 };
762
763 struct async_cow {
764 atomic_t num_chunks;
765 struct async_chunk chunks[];
766 };
767
add_async_extent(struct async_chunk * cow,u64 start,u64 ram_size,u64 compressed_size,struct folio ** folios,unsigned long nr_folios,int compress_type)768 static noinline int add_async_extent(struct async_chunk *cow,
769 u64 start, u64 ram_size,
770 u64 compressed_size,
771 struct folio **folios,
772 unsigned long nr_folios,
773 int compress_type)
774 {
775 struct async_extent *async_extent;
776
777 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
778 if (!async_extent)
779 return -ENOMEM;
780 async_extent->start = start;
781 async_extent->ram_size = ram_size;
782 async_extent->compressed_size = compressed_size;
783 async_extent->folios = folios;
784 async_extent->nr_folios = nr_folios;
785 async_extent->compress_type = compress_type;
786 list_add_tail(&async_extent->list, &cow->extents);
787 return 0;
788 }
789
790 /*
791 * Check if the inode needs to be submitted to compression, based on mount
792 * options, defragmentation, properties or heuristics.
793 */
inode_need_compress(struct btrfs_inode * inode,u64 start,u64 end)794 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
795 u64 end)
796 {
797 struct btrfs_fs_info *fs_info = inode->root->fs_info;
798
799 if (!btrfs_inode_can_compress(inode)) {
800 DEBUG_WARN("BTRFS: unexpected compression for ino %llu", btrfs_ino(inode));
801 return 0;
802 }
803
804 /* Defrag ioctl takes precedence over mount options and properties. */
805 if (inode->defrag_compress == BTRFS_DEFRAG_DONT_COMPRESS)
806 return 0;
807 if (BTRFS_COMPRESS_NONE < inode->defrag_compress &&
808 inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES)
809 return 1;
810 /* force compress */
811 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
812 return 1;
813 /* bad compression ratios */
814 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
815 return 0;
816 if (btrfs_test_opt(fs_info, COMPRESS) ||
817 inode->flags & BTRFS_INODE_COMPRESS ||
818 inode->prop_compress)
819 return btrfs_compress_heuristic(inode, start, end);
820 return 0;
821 }
822
inode_should_defrag(struct btrfs_inode * inode,u64 start,u64 end,u64 num_bytes,u32 small_write)823 static inline void inode_should_defrag(struct btrfs_inode *inode,
824 u64 start, u64 end, u64 num_bytes, u32 small_write)
825 {
826 /* If this is a small write inside eof, kick off a defrag */
827 if (num_bytes < small_write &&
828 (start > 0 || end + 1 < inode->disk_i_size))
829 btrfs_add_inode_defrag(inode, small_write);
830 }
831
extent_range_clear_dirty_for_io(struct btrfs_inode * inode,u64 start,u64 end)832 static int extent_range_clear_dirty_for_io(struct btrfs_inode *inode, u64 start, u64 end)
833 {
834 const pgoff_t end_index = end >> PAGE_SHIFT;
835 struct folio *folio;
836 int ret = 0;
837
838 for (pgoff_t index = start >> PAGE_SHIFT; index <= end_index; index++) {
839 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index);
840 if (IS_ERR(folio)) {
841 if (!ret)
842 ret = PTR_ERR(folio);
843 continue;
844 }
845 btrfs_folio_clamp_clear_dirty(inode->root->fs_info, folio, start,
846 end + 1 - start);
847 folio_put(folio);
848 }
849 return ret;
850 }
851
852 /*
853 * Work queue call back to started compression on a file and pages.
854 *
855 * This is done inside an ordered work queue, and the compression is spread
856 * across many cpus. The actual IO submission is step two, and the ordered work
857 * queue takes care of making sure that happens in the same order things were
858 * put onto the queue by writepages and friends.
859 *
860 * If this code finds it can't get good compression, it puts an entry onto the
861 * work queue to write the uncompressed bytes. This makes sure that both
862 * compressed inodes and uncompressed inodes are written in the same order that
863 * the flusher thread sent them down.
864 */
compress_file_range(struct btrfs_work * work)865 static void compress_file_range(struct btrfs_work *work)
866 {
867 struct async_chunk *async_chunk =
868 container_of(work, struct async_chunk, work);
869 struct btrfs_inode *inode = async_chunk->inode;
870 struct btrfs_fs_info *fs_info = inode->root->fs_info;
871 struct address_space *mapping = inode->vfs_inode.i_mapping;
872 const u32 min_folio_shift = PAGE_SHIFT + fs_info->block_min_order;
873 const u32 min_folio_size = btrfs_min_folio_size(fs_info);
874 u64 blocksize = fs_info->sectorsize;
875 u64 start = async_chunk->start;
876 u64 end = async_chunk->end;
877 u64 actual_end;
878 u64 i_size;
879 int ret = 0;
880 struct folio **folios = NULL;
881 unsigned long nr_folios;
882 unsigned long total_compressed = 0;
883 unsigned long total_in = 0;
884 unsigned int loff;
885 int i;
886 int compress_type = fs_info->compress_type;
887 int compress_level = fs_info->compress_level;
888
889 if (unlikely(btrfs_is_shutdown(fs_info)))
890 goto cleanup_and_bail_uncompressed;
891
892 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
893
894 /*
895 * We need to call clear_page_dirty_for_io on each page in the range.
896 * Otherwise applications with the file mmap'd can wander in and change
897 * the page contents while we are compressing them.
898 */
899 ret = extent_range_clear_dirty_for_io(inode, start, end);
900
901 /*
902 * All the folios should have been locked thus no failure.
903 *
904 * And even if some folios are missing, btrfs_compress_folios()
905 * would handle them correctly, so here just do an ASSERT() check for
906 * early logic errors.
907 */
908 ASSERT(ret == 0);
909
910 /*
911 * We need to save i_size before now because it could change in between
912 * us evaluating the size and assigning it. This is because we lock and
913 * unlock the page in truncate and fallocate, and then modify the i_size
914 * later on.
915 *
916 * The barriers are to emulate READ_ONCE, remove that once i_size_read
917 * does that for us.
918 */
919 barrier();
920 i_size = i_size_read(&inode->vfs_inode);
921 barrier();
922 actual_end = min_t(u64, i_size, end + 1);
923 again:
924 folios = NULL;
925 nr_folios = (end >> min_folio_shift) - (start >> min_folio_shift) + 1;
926 nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED >> min_folio_shift);
927
928 /*
929 * we don't want to send crud past the end of i_size through
930 * compression, that's just a waste of CPU time. So, if the
931 * end of the file is before the start of our current
932 * requested range of bytes, we bail out to the uncompressed
933 * cleanup code that can deal with all of this.
934 *
935 * It isn't really the fastest way to fix things, but this is a
936 * very uncommon corner.
937 */
938 if (actual_end <= start)
939 goto cleanup_and_bail_uncompressed;
940
941 total_compressed = actual_end - start;
942
943 /*
944 * Skip compression for a small file range(<=blocksize) that
945 * isn't an inline extent, since it doesn't save disk space at all.
946 */
947 if (total_compressed <= blocksize &&
948 (start > 0 || end + 1 < inode->disk_i_size))
949 goto cleanup_and_bail_uncompressed;
950
951 total_compressed = min_t(unsigned long, total_compressed,
952 BTRFS_MAX_UNCOMPRESSED);
953 total_in = 0;
954 ret = 0;
955
956 /*
957 * We do compression for mount -o compress and when the inode has not
958 * been flagged as NOCOMPRESS. This flag can change at any time if we
959 * discover bad compression ratios.
960 */
961 if (!inode_need_compress(inode, start, end))
962 goto cleanup_and_bail_uncompressed;
963
964 folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS);
965 if (!folios) {
966 /*
967 * Memory allocation failure is not a fatal error, we can fall
968 * back to uncompressed code.
969 */
970 goto cleanup_and_bail_uncompressed;
971 }
972
973 if (0 < inode->defrag_compress && inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES) {
974 compress_type = inode->defrag_compress;
975 compress_level = inode->defrag_compress_level;
976 } else if (inode->prop_compress) {
977 compress_type = inode->prop_compress;
978 }
979
980 /* Compression level is applied here. */
981 ret = btrfs_compress_folios(compress_type, compress_level,
982 inode, start, folios, &nr_folios, &total_in,
983 &total_compressed);
984 if (ret)
985 goto mark_incompressible;
986
987 /*
988 * Zero the tail end of the last folio, as we might be sending it down
989 * to disk.
990 */
991 loff = (total_compressed & (min_folio_size - 1));
992 if (loff)
993 folio_zero_range(folios[nr_folios - 1], loff, min_folio_size - loff);
994
995 /*
996 * Try to create an inline extent.
997 *
998 * If we didn't compress the entire range, try to create an uncompressed
999 * inline extent, else a compressed one.
1000 *
1001 * Check cow_file_range() for why we don't even try to create inline
1002 * extent for the subpage case.
1003 */
1004 if (total_in < actual_end)
1005 ret = cow_file_range_inline(inode, NULL, start, end, 0,
1006 BTRFS_COMPRESS_NONE, NULL, false);
1007 else
1008 ret = cow_file_range_inline(inode, NULL, start, end, total_compressed,
1009 compress_type, folios[0], false);
1010 if (ret <= 0) {
1011 if (ret < 0)
1012 mapping_set_error(mapping, -EIO);
1013 goto free_pages;
1014 }
1015
1016 /*
1017 * We aren't doing an inline extent. Round the compressed size up to a
1018 * block size boundary so the allocator does sane things.
1019 */
1020 total_compressed = ALIGN(total_compressed, blocksize);
1021
1022 /*
1023 * One last check to make sure the compression is really a win, compare
1024 * the page count read with the blocks on disk, compression must free at
1025 * least one sector.
1026 */
1027 total_in = round_up(total_in, fs_info->sectorsize);
1028 if (total_compressed + blocksize > total_in)
1029 goto mark_incompressible;
1030
1031 /*
1032 * The async work queues will take care of doing actual allocation on
1033 * disk for these compressed pages, and will submit the bios.
1034 */
1035 ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios,
1036 nr_folios, compress_type);
1037 BUG_ON(ret);
1038 if (start + total_in < end) {
1039 start += total_in;
1040 cond_resched();
1041 goto again;
1042 }
1043 return;
1044
1045 mark_incompressible:
1046 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1047 inode->flags |= BTRFS_INODE_NOCOMPRESS;
1048 cleanup_and_bail_uncompressed:
1049 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1050 BTRFS_COMPRESS_NONE);
1051 BUG_ON(ret);
1052 free_pages:
1053 if (folios) {
1054 for (i = 0; i < nr_folios; i++) {
1055 WARN_ON(folios[i]->mapping);
1056 btrfs_free_compr_folio(folios[i]);
1057 }
1058 kfree(folios);
1059 }
1060 }
1061
free_async_extent_pages(struct async_extent * async_extent)1062 static void free_async_extent_pages(struct async_extent *async_extent)
1063 {
1064 int i;
1065
1066 if (!async_extent->folios)
1067 return;
1068
1069 for (i = 0; i < async_extent->nr_folios; i++) {
1070 WARN_ON(async_extent->folios[i]->mapping);
1071 btrfs_free_compr_folio(async_extent->folios[i]);
1072 }
1073 kfree(async_extent->folios);
1074 async_extent->nr_folios = 0;
1075 async_extent->folios = NULL;
1076 }
1077
submit_uncompressed_range(struct btrfs_inode * inode,struct async_extent * async_extent,struct folio * locked_folio)1078 static void submit_uncompressed_range(struct btrfs_inode *inode,
1079 struct async_extent *async_extent,
1080 struct folio *locked_folio)
1081 {
1082 u64 start = async_extent->start;
1083 u64 end = async_extent->start + async_extent->ram_size - 1;
1084 int ret;
1085 struct writeback_control wbc = {
1086 .sync_mode = WB_SYNC_ALL,
1087 .range_start = start,
1088 .range_end = end,
1089 .no_cgroup_owner = 1,
1090 };
1091
1092 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1093 ret = run_delalloc_cow(inode, locked_folio, start, end,
1094 &wbc, false);
1095 wbc_detach_inode(&wbc);
1096 if (ret < 0) {
1097 if (locked_folio)
1098 btrfs_folio_end_lock(inode->root->fs_info, locked_folio,
1099 start, async_extent->ram_size);
1100 btrfs_err_rl(inode->root->fs_info,
1101 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d",
1102 __func__, btrfs_root_id(inode->root),
1103 btrfs_ino(inode), start, async_extent->ram_size, ret);
1104 }
1105 }
1106
submit_one_async_extent(struct async_chunk * async_chunk,struct async_extent * async_extent,u64 * alloc_hint)1107 static void submit_one_async_extent(struct async_chunk *async_chunk,
1108 struct async_extent *async_extent,
1109 u64 *alloc_hint)
1110 {
1111 struct btrfs_inode *inode = async_chunk->inode;
1112 struct extent_io_tree *io_tree = &inode->io_tree;
1113 struct btrfs_root *root = inode->root;
1114 struct btrfs_fs_info *fs_info = root->fs_info;
1115 struct btrfs_ordered_extent *ordered;
1116 struct btrfs_file_extent file_extent;
1117 struct btrfs_key ins;
1118 struct folio *locked_folio = NULL;
1119 struct extent_state *cached = NULL;
1120 struct extent_map *em;
1121 int ret = 0;
1122 bool free_pages = false;
1123 u64 start = async_extent->start;
1124 u64 end = async_extent->start + async_extent->ram_size - 1;
1125
1126 if (async_chunk->blkcg_css)
1127 kthread_associate_blkcg(async_chunk->blkcg_css);
1128
1129 /*
1130 * If async_chunk->locked_folio is in the async_extent range, we need to
1131 * handle it.
1132 */
1133 if (async_chunk->locked_folio) {
1134 u64 locked_folio_start = folio_pos(async_chunk->locked_folio);
1135 u64 locked_folio_end = locked_folio_start +
1136 folio_size(async_chunk->locked_folio) - 1;
1137
1138 if (!(start >= locked_folio_end || end <= locked_folio_start))
1139 locked_folio = async_chunk->locked_folio;
1140 }
1141
1142 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1143 ASSERT(!async_extent->folios);
1144 ASSERT(async_extent->nr_folios == 0);
1145 submit_uncompressed_range(inode, async_extent, locked_folio);
1146 free_pages = true;
1147 goto done;
1148 }
1149
1150 ret = btrfs_reserve_extent(root, async_extent->ram_size,
1151 async_extent->compressed_size,
1152 async_extent->compressed_size,
1153 0, *alloc_hint, &ins, true, true);
1154 if (ret) {
1155 /*
1156 * We can't reserve contiguous space for the compressed size.
1157 * Unlikely, but it's possible that we could have enough
1158 * non-contiguous space for the uncompressed size instead. So
1159 * fall back to uncompressed.
1160 */
1161 submit_uncompressed_range(inode, async_extent, locked_folio);
1162 free_pages = true;
1163 goto done;
1164 }
1165
1166 btrfs_lock_extent(io_tree, start, end, &cached);
1167
1168 /* Here we're doing allocation and writeback of the compressed pages */
1169 file_extent.disk_bytenr = ins.objectid;
1170 file_extent.disk_num_bytes = ins.offset;
1171 file_extent.ram_bytes = async_extent->ram_size;
1172 file_extent.num_bytes = async_extent->ram_size;
1173 file_extent.offset = 0;
1174 file_extent.compression = async_extent->compress_type;
1175
1176 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
1177 if (IS_ERR(em)) {
1178 ret = PTR_ERR(em);
1179 goto out_free_reserve;
1180 }
1181 btrfs_free_extent_map(em);
1182
1183 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1184 1U << BTRFS_ORDERED_COMPRESSED);
1185 if (IS_ERR(ordered)) {
1186 btrfs_drop_extent_map_range(inode, start, end, false);
1187 ret = PTR_ERR(ordered);
1188 goto out_free_reserve;
1189 }
1190 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1191
1192 /* Clear dirty, set writeback and unlock the pages. */
1193 extent_clear_unlock_delalloc(inode, start, end,
1194 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC,
1195 PAGE_UNLOCK | PAGE_START_WRITEBACK);
1196 btrfs_submit_compressed_write(ordered,
1197 async_extent->folios, /* compressed_folios */
1198 async_extent->nr_folios,
1199 async_chunk->write_flags, true);
1200 *alloc_hint = ins.objectid + ins.offset;
1201 done:
1202 if (async_chunk->blkcg_css)
1203 kthread_associate_blkcg(NULL);
1204 if (free_pages)
1205 free_async_extent_pages(async_extent);
1206 kfree(async_extent);
1207 return;
1208
1209 out_free_reserve:
1210 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1211 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true);
1212 mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1213 extent_clear_unlock_delalloc(inode, start, end,
1214 NULL, &cached,
1215 EXTENT_LOCKED | EXTENT_DELALLOC |
1216 EXTENT_DELALLOC_NEW |
1217 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1218 PAGE_UNLOCK | PAGE_START_WRITEBACK |
1219 PAGE_END_WRITEBACK);
1220 free_async_extent_pages(async_extent);
1221 if (async_chunk->blkcg_css)
1222 kthread_associate_blkcg(NULL);
1223 btrfs_debug(fs_info,
1224 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1225 btrfs_root_id(root), btrfs_ino(inode), start,
1226 async_extent->ram_size, ret);
1227 kfree(async_extent);
1228 }
1229
btrfs_get_extent_allocation_hint(struct btrfs_inode * inode,u64 start,u64 num_bytes)1230 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1231 u64 num_bytes)
1232 {
1233 struct extent_map_tree *em_tree = &inode->extent_tree;
1234 struct extent_map *em;
1235 u64 alloc_hint = 0;
1236
1237 read_lock(&em_tree->lock);
1238 em = btrfs_search_extent_mapping(em_tree, start, num_bytes);
1239 if (em) {
1240 /*
1241 * if block start isn't an actual block number then find the
1242 * first block in this inode and use that as a hint. If that
1243 * block is also bogus then just don't worry about it.
1244 */
1245 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) {
1246 btrfs_free_extent_map(em);
1247 em = btrfs_search_extent_mapping(em_tree, 0, 0);
1248 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
1249 alloc_hint = btrfs_extent_map_block_start(em);
1250 if (em)
1251 btrfs_free_extent_map(em);
1252 } else {
1253 alloc_hint = btrfs_extent_map_block_start(em);
1254 btrfs_free_extent_map(em);
1255 }
1256 }
1257 read_unlock(&em_tree->lock);
1258
1259 return alloc_hint;
1260 }
1261
1262 /*
1263 * when extent_io.c finds a delayed allocation range in the file,
1264 * the call backs end up in this code. The basic idea is to
1265 * allocate extents on disk for the range, and create ordered data structs
1266 * in ram to track those extents.
1267 *
1268 * locked_folio is the folio that writepage had locked already. We use
1269 * it to make sure we don't do extra locks or unlocks.
1270 *
1271 * When this function fails, it unlocks all folios except @locked_folio.
1272 *
1273 * When this function successfully creates an inline extent, it returns 1 and
1274 * unlocks all folios including locked_folio and starts I/O on them.
1275 * (In reality inline extents are limited to a single block, so locked_folio is
1276 * the only folio handled anyway).
1277 *
1278 * When this function succeed and creates a normal extent, the folio locking
1279 * status depends on the passed in flags:
1280 *
1281 * - If COW_FILE_RANGE_KEEP_LOCKED flag is set, all folios are kept locked.
1282 * - Else all folios except for @locked_folio are unlocked.
1283 *
1284 * When a failure happens in the second or later iteration of the
1285 * while-loop, the ordered extents created in previous iterations are cleaned up.
1286 */
cow_file_range(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,u64 * done_offset,unsigned long flags)1287 static noinline int cow_file_range(struct btrfs_inode *inode,
1288 struct folio *locked_folio, u64 start,
1289 u64 end, u64 *done_offset,
1290 unsigned long flags)
1291 {
1292 struct btrfs_root *root = inode->root;
1293 struct btrfs_fs_info *fs_info = root->fs_info;
1294 struct extent_state *cached = NULL;
1295 u64 alloc_hint = 0;
1296 u64 orig_start = start;
1297 u64 num_bytes;
1298 u64 cur_alloc_size = 0;
1299 u64 min_alloc_size;
1300 u64 blocksize = fs_info->sectorsize;
1301 struct btrfs_key ins;
1302 struct extent_map *em;
1303 unsigned clear_bits;
1304 unsigned long page_ops;
1305 int ret = 0;
1306
1307 if (unlikely(btrfs_is_shutdown(fs_info))) {
1308 ret = -EIO;
1309 goto out_unlock;
1310 }
1311
1312 if (btrfs_is_free_space_inode(inode)) {
1313 ret = -EINVAL;
1314 goto out_unlock;
1315 }
1316
1317 num_bytes = ALIGN(end - start + 1, blocksize);
1318 num_bytes = max(blocksize, num_bytes);
1319 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1320
1321 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1322
1323 if (!(flags & COW_FILE_RANGE_NO_INLINE)) {
1324 /* lets try to make an inline extent */
1325 ret = cow_file_range_inline(inode, locked_folio, start, end, 0,
1326 BTRFS_COMPRESS_NONE, NULL, false);
1327 if (ret <= 0) {
1328 /*
1329 * We succeeded, return 1 so the caller knows we're done
1330 * with this page and already handled the IO.
1331 *
1332 * If there was an error then cow_file_range_inline() has
1333 * already done the cleanup.
1334 */
1335 if (ret == 0)
1336 ret = 1;
1337 goto done;
1338 }
1339 }
1340
1341 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes);
1342
1343 /*
1344 * We're not doing compressed IO, don't unlock the first page (which
1345 * the caller expects to stay locked), don't clear any dirty bits and
1346 * don't set any writeback bits.
1347 *
1348 * Do set the Ordered (Private2) bit so we know this page was properly
1349 * setup for writepage.
1350 */
1351 page_ops = ((flags & COW_FILE_RANGE_KEEP_LOCKED) ? 0 : PAGE_UNLOCK);
1352 page_ops |= PAGE_SET_ORDERED;
1353
1354 /*
1355 * Relocation relies on the relocated extents to have exactly the same
1356 * size as the original extents. Normally writeback for relocation data
1357 * extents follows a NOCOW path because relocation preallocates the
1358 * extents. However, due to an operation such as scrub turning a block
1359 * group to RO mode, it may fallback to COW mode, so we must make sure
1360 * an extent allocated during COW has exactly the requested size and can
1361 * not be split into smaller extents, otherwise relocation breaks and
1362 * fails during the stage where it updates the bytenr of file extent
1363 * items.
1364 */
1365 if (btrfs_is_data_reloc_root(root))
1366 min_alloc_size = num_bytes;
1367 else
1368 min_alloc_size = fs_info->sectorsize;
1369
1370 while (num_bytes > 0) {
1371 struct btrfs_ordered_extent *ordered;
1372 struct btrfs_file_extent file_extent;
1373
1374 ret = btrfs_reserve_extent(root, num_bytes, num_bytes,
1375 min_alloc_size, 0, alloc_hint,
1376 &ins, true, true);
1377 if (ret == -EAGAIN) {
1378 /*
1379 * btrfs_reserve_extent only returns -EAGAIN for zoned
1380 * file systems, which is an indication that there are
1381 * no active zones to allocate from at the moment.
1382 *
1383 * If this is the first loop iteration, wait for at
1384 * least one zone to finish before retrying the
1385 * allocation. Otherwise ask the caller to write out
1386 * the already allocated blocks before coming back to
1387 * us, or return -ENOSPC if it can't handle retries.
1388 */
1389 ASSERT(btrfs_is_zoned(fs_info));
1390 if (start == orig_start) {
1391 wait_on_bit_io(&inode->root->fs_info->flags,
1392 BTRFS_FS_NEED_ZONE_FINISH,
1393 TASK_UNINTERRUPTIBLE);
1394 continue;
1395 }
1396 if (done_offset) {
1397 /*
1398 * Move @end to the end of the processed range,
1399 * and exit the loop to unlock the processed extents.
1400 */
1401 end = start - 1;
1402 ret = 0;
1403 break;
1404 }
1405 ret = -ENOSPC;
1406 }
1407 if (ret < 0)
1408 goto out_unlock;
1409 cur_alloc_size = ins.offset;
1410
1411 file_extent.disk_bytenr = ins.objectid;
1412 file_extent.disk_num_bytes = ins.offset;
1413 file_extent.num_bytes = ins.offset;
1414 file_extent.ram_bytes = ins.offset;
1415 file_extent.offset = 0;
1416 file_extent.compression = BTRFS_COMPRESS_NONE;
1417
1418 /*
1419 * Locked range will be released either during error clean up or
1420 * after the whole range is finished.
1421 */
1422 btrfs_lock_extent(&inode->io_tree, start, start + cur_alloc_size - 1,
1423 &cached);
1424
1425 em = btrfs_create_io_em(inode, start, &file_extent,
1426 BTRFS_ORDERED_REGULAR);
1427 if (IS_ERR(em)) {
1428 btrfs_unlock_extent(&inode->io_tree, start,
1429 start + cur_alloc_size - 1, &cached);
1430 ret = PTR_ERR(em);
1431 goto out_reserve;
1432 }
1433 btrfs_free_extent_map(em);
1434
1435 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1436 1U << BTRFS_ORDERED_REGULAR);
1437 if (IS_ERR(ordered)) {
1438 btrfs_unlock_extent(&inode->io_tree, start,
1439 start + cur_alloc_size - 1, &cached);
1440 ret = PTR_ERR(ordered);
1441 goto out_drop_extent_cache;
1442 }
1443
1444 if (btrfs_is_data_reloc_root(root)) {
1445 ret = btrfs_reloc_clone_csums(ordered);
1446
1447 /*
1448 * Only drop cache here, and process as normal.
1449 *
1450 * We must not allow extent_clear_unlock_delalloc()
1451 * at out_unlock label to free meta of this ordered
1452 * extent, as its meta should be freed by
1453 * btrfs_finish_ordered_io().
1454 *
1455 * So we must continue until @start is increased to
1456 * skip current ordered extent.
1457 */
1458 if (ret)
1459 btrfs_drop_extent_map_range(inode, start,
1460 start + cur_alloc_size - 1,
1461 false);
1462 }
1463 btrfs_put_ordered_extent(ordered);
1464
1465 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1466
1467 if (num_bytes < cur_alloc_size)
1468 num_bytes = 0;
1469 else
1470 num_bytes -= cur_alloc_size;
1471 alloc_hint = ins.objectid + ins.offset;
1472 start += cur_alloc_size;
1473 cur_alloc_size = 0;
1474
1475 /*
1476 * btrfs_reloc_clone_csums() error, since start is increased
1477 * extent_clear_unlock_delalloc() at out_unlock label won't
1478 * free metadata of current ordered extent, we're OK to exit.
1479 */
1480 if (ret)
1481 goto out_unlock;
1482 }
1483 extent_clear_unlock_delalloc(inode, orig_start, end, locked_folio, &cached,
1484 EXTENT_LOCKED | EXTENT_DELALLOC, page_ops);
1485 done:
1486 if (done_offset)
1487 *done_offset = end;
1488 return ret;
1489
1490 out_drop_extent_cache:
1491 btrfs_drop_extent_map_range(inode, start, start + cur_alloc_size - 1, false);
1492 out_reserve:
1493 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1494 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true);
1495 out_unlock:
1496 /*
1497 * Now, we have three regions to clean up:
1498 *
1499 * |-------(1)----|---(2)---|-------------(3)----------|
1500 * `- orig_start `- start `- start + cur_alloc_size `- end
1501 *
1502 * We process each region below.
1503 */
1504
1505 /*
1506 * For the range (1). We have already instantiated the ordered extents
1507 * for this region, thus we need to cleanup those ordered extents.
1508 * EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV
1509 * are also handled by the ordered extents cleanup.
1510 *
1511 * So here we only clear EXTENT_LOCKED and EXTENT_DELALLOC flag, and
1512 * finish the writeback of the involved folios, which will be never submitted.
1513 */
1514 if (orig_start < start) {
1515 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC;
1516 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1517
1518 if (!locked_folio)
1519 mapping_set_error(inode->vfs_inode.i_mapping, ret);
1520
1521 btrfs_cleanup_ordered_extents(inode, orig_start, start - orig_start);
1522 extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1523 locked_folio, NULL, clear_bits, page_ops);
1524 }
1525
1526 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1527 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1528 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1529
1530 /*
1531 * For the range (2). If we reserved an extent for our delalloc range
1532 * (or a subrange) and failed to create the respective ordered extent,
1533 * then it means that when we reserved the extent we decremented the
1534 * extent's size from the data space_info's bytes_may_use counter and
1535 * incremented the space_info's bytes_reserved counter by the same
1536 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1537 * to decrement again the data space_info's bytes_may_use counter,
1538 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1539 */
1540 if (cur_alloc_size) {
1541 extent_clear_unlock_delalloc(inode, start,
1542 start + cur_alloc_size - 1,
1543 locked_folio, &cached, clear_bits,
1544 page_ops);
1545 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL);
1546 }
1547
1548 /*
1549 * For the range (3). We never touched the region. In addition to the
1550 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1551 * space_info's bytes_may_use counter, reserved in
1552 * btrfs_check_data_free_space().
1553 */
1554 if (start + cur_alloc_size < end) {
1555 clear_bits |= EXTENT_CLEAR_DATA_RESV;
1556 extent_clear_unlock_delalloc(inode, start + cur_alloc_size,
1557 end, locked_folio,
1558 &cached, clear_bits, page_ops);
1559 btrfs_qgroup_free_data(inode, NULL, start + cur_alloc_size,
1560 end - start - cur_alloc_size + 1, NULL);
1561 }
1562 btrfs_err(fs_info,
1563 "%s failed, root=%llu inode=%llu start=%llu len=%llu cur_offset=%llu cur_alloc_size=%llu: %d",
1564 __func__, btrfs_root_id(inode->root),
1565 btrfs_ino(inode), orig_start, end + 1 - orig_start,
1566 start, cur_alloc_size, ret);
1567 return ret;
1568 }
1569
1570 /*
1571 * Phase two of compressed writeback. This is the ordered portion of the code,
1572 * which only gets called in the order the work was queued. We walk all the
1573 * async extents created by compress_file_range and send them down to the disk.
1574 *
1575 * If called with @do_free == true then it'll try to finish the work and free
1576 * the work struct eventually.
1577 */
submit_compressed_extents(struct btrfs_work * work,bool do_free)1578 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free)
1579 {
1580 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1581 work);
1582 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1583 struct async_extent *async_extent;
1584 unsigned long nr_pages;
1585 u64 alloc_hint = 0;
1586
1587 if (do_free) {
1588 struct async_cow *async_cow;
1589
1590 btrfs_add_delayed_iput(async_chunk->inode);
1591 if (async_chunk->blkcg_css)
1592 css_put(async_chunk->blkcg_css);
1593
1594 async_cow = async_chunk->async_cow;
1595 if (atomic_dec_and_test(&async_cow->num_chunks))
1596 kvfree(async_cow);
1597 return;
1598 }
1599
1600 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1601 PAGE_SHIFT;
1602
1603 while (!list_empty(&async_chunk->extents)) {
1604 async_extent = list_first_entry(&async_chunk->extents,
1605 struct async_extent, list);
1606 list_del(&async_extent->list);
1607 submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1608 }
1609
1610 /* atomic_sub_return implies a barrier */
1611 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1612 5 * SZ_1M)
1613 cond_wake_up_nomb(&fs_info->async_submit_wait);
1614 }
1615
run_delalloc_compressed(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc)1616 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1617 struct folio *locked_folio, u64 start,
1618 u64 end, struct writeback_control *wbc)
1619 {
1620 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1621 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1622 struct async_cow *ctx;
1623 struct async_chunk *async_chunk;
1624 unsigned long nr_pages;
1625 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1626 int i;
1627 unsigned nofs_flag;
1628 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1629
1630 nofs_flag = memalloc_nofs_save();
1631 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1632 memalloc_nofs_restore(nofs_flag);
1633 if (!ctx)
1634 return false;
1635
1636 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1637
1638 async_chunk = ctx->chunks;
1639 atomic_set(&ctx->num_chunks, num_chunks);
1640
1641 for (i = 0; i < num_chunks; i++) {
1642 u64 cur_end = min(end, start + SZ_512K - 1);
1643
1644 /*
1645 * igrab is called higher up in the call chain, take only the
1646 * lightweight reference for the callback lifetime
1647 */
1648 ihold(&inode->vfs_inode);
1649 async_chunk[i].async_cow = ctx;
1650 async_chunk[i].inode = inode;
1651 async_chunk[i].start = start;
1652 async_chunk[i].end = cur_end;
1653 async_chunk[i].write_flags = write_flags;
1654 INIT_LIST_HEAD(&async_chunk[i].extents);
1655
1656 /*
1657 * The locked_folio comes all the way from writepage and its
1658 * the original folio we were actually given. As we spread
1659 * this large delalloc region across multiple async_chunk
1660 * structs, only the first struct needs a pointer to
1661 * locked_folio.
1662 *
1663 * This way we don't need racey decisions about who is supposed
1664 * to unlock it.
1665 */
1666 if (locked_folio) {
1667 /*
1668 * Depending on the compressibility, the pages might or
1669 * might not go through async. We want all of them to
1670 * be accounted against wbc once. Let's do it here
1671 * before the paths diverge. wbc accounting is used
1672 * only for foreign writeback detection and doesn't
1673 * need full accuracy. Just account the whole thing
1674 * against the first page.
1675 */
1676 wbc_account_cgroup_owner(wbc, locked_folio,
1677 cur_end - start);
1678 async_chunk[i].locked_folio = locked_folio;
1679 locked_folio = NULL;
1680 } else {
1681 async_chunk[i].locked_folio = NULL;
1682 }
1683
1684 if (blkcg_css != blkcg_root_css) {
1685 css_get(blkcg_css);
1686 async_chunk[i].blkcg_css = blkcg_css;
1687 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1688 } else {
1689 async_chunk[i].blkcg_css = NULL;
1690 }
1691
1692 btrfs_init_work(&async_chunk[i].work, compress_file_range,
1693 submit_compressed_extents);
1694
1695 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1696 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1697
1698 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1699
1700 start = cur_end + 1;
1701 }
1702 return true;
1703 }
1704
1705 /*
1706 * Run the delalloc range from start to end, and write back any dirty pages
1707 * covered by the range.
1708 */
run_delalloc_cow(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc,bool pages_dirty)1709 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1710 struct folio *locked_folio, u64 start,
1711 u64 end, struct writeback_control *wbc,
1712 bool pages_dirty)
1713 {
1714 u64 done_offset = end;
1715 int ret;
1716
1717 while (start <= end) {
1718 ret = cow_file_range(inode, locked_folio, start, end,
1719 &done_offset, COW_FILE_RANGE_KEEP_LOCKED);
1720 if (ret)
1721 return ret;
1722 extent_write_locked_range(&inode->vfs_inode, locked_folio,
1723 start, done_offset, wbc, pages_dirty);
1724 start = done_offset + 1;
1725 }
1726
1727 return 1;
1728 }
1729
fallback_to_cow(struct btrfs_inode * inode,struct folio * locked_folio,const u64 start,const u64 end)1730 static int fallback_to_cow(struct btrfs_inode *inode,
1731 struct folio *locked_folio, const u64 start,
1732 const u64 end)
1733 {
1734 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1735 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1736 const u64 range_bytes = end + 1 - start;
1737 struct extent_io_tree *io_tree = &inode->io_tree;
1738 struct extent_state *cached_state = NULL;
1739 u64 range_start = start;
1740 u64 count;
1741 int ret;
1742
1743 /*
1744 * If EXTENT_NORESERVE is set it means that when the buffered write was
1745 * made we had not enough available data space and therefore we did not
1746 * reserve data space for it, since we though we could do NOCOW for the
1747 * respective file range (either there is prealloc extent or the inode
1748 * has the NOCOW bit set).
1749 *
1750 * However when we need to fallback to COW mode (because for example the
1751 * block group for the corresponding extent was turned to RO mode by a
1752 * scrub or relocation) we need to do the following:
1753 *
1754 * 1) We increment the bytes_may_use counter of the data space info.
1755 * If COW succeeds, it allocates a new data extent and after doing
1756 * that it decrements the space info's bytes_may_use counter and
1757 * increments its bytes_reserved counter by the same amount (we do
1758 * this at btrfs_add_reserved_bytes()). So we need to increment the
1759 * bytes_may_use counter to compensate (when space is reserved at
1760 * buffered write time, the bytes_may_use counter is incremented);
1761 *
1762 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1763 * that if the COW path fails for any reason, it decrements (through
1764 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1765 * data space info, which we incremented in the step above.
1766 *
1767 * If we need to fallback to cow and the inode corresponds to a free
1768 * space cache inode or an inode of the data relocation tree, we must
1769 * also increment bytes_may_use of the data space_info for the same
1770 * reason. Space caches and relocated data extents always get a prealloc
1771 * extent for them, however scrub or balance may have set the block
1772 * group that contains that extent to RO mode and therefore force COW
1773 * when starting writeback.
1774 */
1775 btrfs_lock_extent(io_tree, start, end, &cached_state);
1776 count = btrfs_count_range_bits(io_tree, &range_start, end, range_bytes,
1777 EXTENT_NORESERVE, 0, NULL);
1778 if (count > 0 || is_space_ino || is_reloc_ino) {
1779 u64 bytes = count;
1780 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1781 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1782
1783 if (is_space_ino || is_reloc_ino)
1784 bytes = range_bytes;
1785
1786 spin_lock(&sinfo->lock);
1787 btrfs_space_info_update_bytes_may_use(sinfo, bytes);
1788 spin_unlock(&sinfo->lock);
1789
1790 if (count > 0)
1791 btrfs_clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1792 &cached_state);
1793 }
1794 btrfs_unlock_extent(io_tree, start, end, &cached_state);
1795
1796 /*
1797 * Don't try to create inline extents, as a mix of inline extent that
1798 * is written out and unlocked directly and a normal NOCOW extent
1799 * doesn't work.
1800 *
1801 * And here we do not unlock the folio after a successful run.
1802 * The folios will be unlocked after everything is finished, or by error handling.
1803 *
1804 * This is to ensure error handling won't need to clear dirty/ordered flags without
1805 * a locked folio, which can race with writeback.
1806 */
1807 ret = cow_file_range(inode, locked_folio, start, end, NULL,
1808 COW_FILE_RANGE_NO_INLINE | COW_FILE_RANGE_KEEP_LOCKED);
1809 ASSERT(ret != 1);
1810 return ret;
1811 }
1812
1813 struct can_nocow_file_extent_args {
1814 /* Input fields. */
1815
1816 /* Start file offset of the range we want to NOCOW. */
1817 u64 start;
1818 /* End file offset (inclusive) of the range we want to NOCOW. */
1819 u64 end;
1820 bool writeback_path;
1821 /*
1822 * Free the path passed to can_nocow_file_extent() once it's not needed
1823 * anymore.
1824 */
1825 bool free_path;
1826
1827 /*
1828 * Output fields. Only set when can_nocow_file_extent() returns 1.
1829 * The expected file extent for the NOCOW write.
1830 */
1831 struct btrfs_file_extent file_extent;
1832 };
1833
1834 /*
1835 * Check if we can NOCOW the file extent that the path points to.
1836 * This function may return with the path released, so the caller should check
1837 * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1838 *
1839 * Returns: < 0 on error
1840 * 0 if we can not NOCOW
1841 * 1 if we can NOCOW
1842 */
can_nocow_file_extent(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_inode * inode,struct can_nocow_file_extent_args * args)1843 static int can_nocow_file_extent(struct btrfs_path *path,
1844 struct btrfs_key *key,
1845 struct btrfs_inode *inode,
1846 struct can_nocow_file_extent_args *args)
1847 {
1848 const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1849 struct extent_buffer *leaf = path->nodes[0];
1850 struct btrfs_root *root = inode->root;
1851 struct btrfs_file_extent_item *fi;
1852 struct btrfs_root *csum_root;
1853 u64 io_start;
1854 u64 extent_end;
1855 u8 extent_type;
1856 int can_nocow = 0;
1857 int ret = 0;
1858 bool nowait = path->nowait;
1859
1860 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1861 extent_type = btrfs_file_extent_type(leaf, fi);
1862
1863 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1864 goto out;
1865
1866 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1867 extent_type == BTRFS_FILE_EXTENT_REG)
1868 goto out;
1869
1870 /*
1871 * If the extent was created before the generation where the last snapshot
1872 * for its subvolume was created, then this implies the extent is shared,
1873 * hence we must COW.
1874 */
1875 if (btrfs_file_extent_generation(leaf, fi) <=
1876 btrfs_root_last_snapshot(&root->root_item))
1877 goto out;
1878
1879 /* An explicit hole, must COW. */
1880 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
1881 goto out;
1882
1883 /* Compressed/encrypted/encoded extents must be COWed. */
1884 if (btrfs_file_extent_compression(leaf, fi) ||
1885 btrfs_file_extent_encryption(leaf, fi) ||
1886 btrfs_file_extent_other_encoding(leaf, fi))
1887 goto out;
1888
1889 extent_end = btrfs_file_extent_end(path);
1890
1891 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1892 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1893 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1894 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi);
1895 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi);
1896
1897 /*
1898 * The following checks can be expensive, as they need to take other
1899 * locks and do btree or rbtree searches, so release the path to avoid
1900 * blocking other tasks for too long.
1901 */
1902 btrfs_release_path(path);
1903
1904 ret = btrfs_cross_ref_exist(inode, key->offset - args->file_extent.offset,
1905 args->file_extent.disk_bytenr, path);
1906 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1907 if (ret != 0)
1908 goto out;
1909
1910 if (args->free_path) {
1911 /*
1912 * We don't need the path anymore, plus through the
1913 * btrfs_lookup_csums_list() call below we will end up allocating
1914 * another path. So free the path to avoid unnecessary extra
1915 * memory usage.
1916 */
1917 btrfs_free_path(path);
1918 path = NULL;
1919 }
1920
1921 /* If there are pending snapshots for this root, we must COW. */
1922 if (args->writeback_path && !is_freespace_inode &&
1923 atomic_read(&root->snapshot_force_cow))
1924 goto out;
1925
1926 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start;
1927 args->file_extent.offset += args->start - key->offset;
1928 io_start = args->file_extent.disk_bytenr + args->file_extent.offset;
1929
1930 /*
1931 * Force COW if csums exist in the range. This ensures that csums for a
1932 * given extent are either valid or do not exist.
1933 */
1934
1935 csum_root = btrfs_csum_root(root->fs_info, io_start);
1936 ret = btrfs_lookup_csums_list(csum_root, io_start,
1937 io_start + args->file_extent.num_bytes - 1,
1938 NULL, nowait);
1939 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1940 if (ret != 0)
1941 goto out;
1942
1943 can_nocow = 1;
1944 out:
1945 if (args->free_path && path)
1946 btrfs_free_path(path);
1947
1948 return ret < 0 ? ret : can_nocow;
1949 }
1950
nocow_one_range(struct btrfs_inode * inode,struct folio * locked_folio,struct extent_state ** cached,struct can_nocow_file_extent_args * nocow_args,u64 file_pos,bool is_prealloc)1951 static int nocow_one_range(struct btrfs_inode *inode, struct folio *locked_folio,
1952 struct extent_state **cached,
1953 struct can_nocow_file_extent_args *nocow_args,
1954 u64 file_pos, bool is_prealloc)
1955 {
1956 struct btrfs_ordered_extent *ordered;
1957 const u64 len = nocow_args->file_extent.num_bytes;
1958 const u64 end = file_pos + len - 1;
1959 int ret = 0;
1960
1961 btrfs_lock_extent(&inode->io_tree, file_pos, end, cached);
1962
1963 if (is_prealloc) {
1964 struct extent_map *em;
1965
1966 em = btrfs_create_io_em(inode, file_pos, &nocow_args->file_extent,
1967 BTRFS_ORDERED_PREALLOC);
1968 if (IS_ERR(em)) {
1969 ret = PTR_ERR(em);
1970 goto error;
1971 }
1972 btrfs_free_extent_map(em);
1973 }
1974
1975 ordered = btrfs_alloc_ordered_extent(inode, file_pos, &nocow_args->file_extent,
1976 is_prealloc
1977 ? (1U << BTRFS_ORDERED_PREALLOC)
1978 : (1U << BTRFS_ORDERED_NOCOW));
1979 if (IS_ERR(ordered)) {
1980 if (is_prealloc)
1981 btrfs_drop_extent_map_range(inode, file_pos, end, false);
1982 ret = PTR_ERR(ordered);
1983 goto error;
1984 }
1985
1986 if (btrfs_is_data_reloc_root(inode->root))
1987 /*
1988 * Errors are handled later, as we must prevent
1989 * extent_clear_unlock_delalloc() in error handler from freeing
1990 * metadata of the created ordered extent.
1991 */
1992 ret = btrfs_reloc_clone_csums(ordered);
1993 btrfs_put_ordered_extent(ordered);
1994
1995 if (ret < 0)
1996 goto error;
1997 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached,
1998 EXTENT_LOCKED | EXTENT_DELALLOC |
1999 EXTENT_CLEAR_DATA_RESV,
2000 PAGE_SET_ORDERED);
2001 return ret;
2002
2003 error:
2004 btrfs_cleanup_ordered_extents(inode, file_pos, len);
2005 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached,
2006 EXTENT_LOCKED | EXTENT_DELALLOC |
2007 EXTENT_CLEAR_DATA_RESV,
2008 PAGE_UNLOCK | PAGE_START_WRITEBACK |
2009 PAGE_END_WRITEBACK);
2010 btrfs_err(inode->root->fs_info,
2011 "%s failed, root=%lld inode=%llu start=%llu len=%llu: %d",
2012 __func__, btrfs_root_id(inode->root), btrfs_ino(inode),
2013 file_pos, len, ret);
2014 return ret;
2015 }
2016
2017 /*
2018 * When nocow writeback calls back. This checks for snapshots or COW copies
2019 * of the extents that exist in the file, and COWs the file as required.
2020 *
2021 * If no cow copies or snapshots exist, we write directly to the existing
2022 * blocks on disk
2023 */
run_delalloc_nocow(struct btrfs_inode * inode,struct folio * locked_folio,const u64 start,const u64 end)2024 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
2025 struct folio *locked_folio,
2026 const u64 start, const u64 end)
2027 {
2028 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2029 struct btrfs_root *root = inode->root;
2030 struct btrfs_path *path = NULL;
2031 u64 cow_start = (u64)-1;
2032 /*
2033 * If not 0, represents the inclusive end of the last fallback_to_cow()
2034 * range. Only for error handling.
2035 *
2036 * The same for nocow_end, it's to avoid double cleaning up the range
2037 * already cleaned by nocow_one_range().
2038 */
2039 u64 cow_end = 0;
2040 u64 nocow_end = 0;
2041 u64 cur_offset = start;
2042 int ret;
2043 bool check_prev = true;
2044 u64 ino = btrfs_ino(inode);
2045 struct can_nocow_file_extent_args nocow_args = { 0 };
2046 /* The range that has ordered extent(s). */
2047 u64 oe_cleanup_start;
2048 u64 oe_cleanup_len = 0;
2049 /* The range that is untouched. */
2050 u64 untouched_start;
2051 u64 untouched_len = 0;
2052
2053 /*
2054 * Normally on a zoned device we're only doing COW writes, but in case
2055 * of relocation on a zoned filesystem serializes I/O so that we're only
2056 * writing sequentially and can end up here as well.
2057 */
2058 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
2059
2060 if (unlikely(btrfs_is_shutdown(fs_info))) {
2061 ret = -EIO;
2062 goto error;
2063 }
2064 path = btrfs_alloc_path();
2065 if (!path) {
2066 ret = -ENOMEM;
2067 goto error;
2068 }
2069
2070 nocow_args.end = end;
2071 nocow_args.writeback_path = true;
2072
2073 while (cur_offset <= end) {
2074 struct btrfs_block_group *nocow_bg = NULL;
2075 struct btrfs_key found_key;
2076 struct btrfs_file_extent_item *fi;
2077 struct extent_buffer *leaf;
2078 struct extent_state *cached_state = NULL;
2079 u64 extent_end;
2080 int extent_type;
2081
2082 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2083 cur_offset, 0);
2084 if (ret < 0)
2085 goto error;
2086
2087 /*
2088 * If there is no extent for our range when doing the initial
2089 * search, then go back to the previous slot as it will be the
2090 * one containing the search offset
2091 */
2092 if (ret > 0 && path->slots[0] > 0 && check_prev) {
2093 leaf = path->nodes[0];
2094 btrfs_item_key_to_cpu(leaf, &found_key,
2095 path->slots[0] - 1);
2096 if (found_key.objectid == ino &&
2097 found_key.type == BTRFS_EXTENT_DATA_KEY)
2098 path->slots[0]--;
2099 }
2100 check_prev = false;
2101 next_slot:
2102 /* Go to next leaf if we have exhausted the current one */
2103 leaf = path->nodes[0];
2104 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2105 ret = btrfs_next_leaf(root, path);
2106 if (ret < 0)
2107 goto error;
2108 if (ret > 0)
2109 break;
2110 leaf = path->nodes[0];
2111 }
2112
2113 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2114
2115 /* Didn't find anything for our INO */
2116 if (found_key.objectid > ino)
2117 break;
2118 /*
2119 * Keep searching until we find an EXTENT_ITEM or there are no
2120 * more extents for this inode
2121 */
2122 if (WARN_ON_ONCE(found_key.objectid < ino) ||
2123 found_key.type < BTRFS_EXTENT_DATA_KEY) {
2124 path->slots[0]++;
2125 goto next_slot;
2126 }
2127
2128 /* Found key is not EXTENT_DATA_KEY or starts after req range */
2129 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2130 found_key.offset > end)
2131 break;
2132
2133 /*
2134 * If the found extent starts after requested offset, then
2135 * adjust cur_offset to be right before this extent begins.
2136 */
2137 if (found_key.offset > cur_offset) {
2138 if (cow_start == (u64)-1)
2139 cow_start = cur_offset;
2140 cur_offset = found_key.offset;
2141 goto next_slot;
2142 }
2143
2144 /*
2145 * Found extent which begins before our range and potentially
2146 * intersect it
2147 */
2148 fi = btrfs_item_ptr(leaf, path->slots[0],
2149 struct btrfs_file_extent_item);
2150 extent_type = btrfs_file_extent_type(leaf, fi);
2151 /* If this is triggered then we have a memory corruption. */
2152 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2153 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2154 ret = -EUCLEAN;
2155 goto error;
2156 }
2157 extent_end = btrfs_file_extent_end(path);
2158
2159 /*
2160 * If the extent we got ends before our current offset, skip to
2161 * the next extent.
2162 */
2163 if (extent_end <= cur_offset) {
2164 path->slots[0]++;
2165 goto next_slot;
2166 }
2167
2168 nocow_args.start = cur_offset;
2169 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2170 if (ret < 0)
2171 goto error;
2172 if (ret == 0)
2173 goto must_cow;
2174
2175 ret = 0;
2176 nocow_bg = btrfs_inc_nocow_writers(fs_info,
2177 nocow_args.file_extent.disk_bytenr +
2178 nocow_args.file_extent.offset);
2179 if (!nocow_bg) {
2180 must_cow:
2181 /*
2182 * If we can't perform NOCOW writeback for the range,
2183 * then record the beginning of the range that needs to
2184 * be COWed. It will be written out before the next
2185 * NOCOW range if we find one, or when exiting this
2186 * loop.
2187 */
2188 if (cow_start == (u64)-1)
2189 cow_start = cur_offset;
2190 cur_offset = extent_end;
2191 if (cur_offset > end)
2192 break;
2193 if (!path->nodes[0])
2194 continue;
2195 path->slots[0]++;
2196 goto next_slot;
2197 }
2198
2199 /*
2200 * COW range from cow_start to found_key.offset - 1. As the key
2201 * will contain the beginning of the first extent that can be
2202 * NOCOW, following one which needs to be COW'ed
2203 */
2204 if (cow_start != (u64)-1) {
2205 ret = fallback_to_cow(inode, locked_folio, cow_start,
2206 found_key.offset - 1);
2207 if (ret) {
2208 cow_end = found_key.offset - 1;
2209 btrfs_dec_nocow_writers(nocow_bg);
2210 goto error;
2211 }
2212 cow_start = (u64)-1;
2213 }
2214
2215 ret = nocow_one_range(inode, locked_folio, &cached_state,
2216 &nocow_args, cur_offset,
2217 extent_type == BTRFS_FILE_EXTENT_PREALLOC);
2218 btrfs_dec_nocow_writers(nocow_bg);
2219 if (ret < 0) {
2220 nocow_end = cur_offset + nocow_args.file_extent.num_bytes - 1;
2221 goto error;
2222 }
2223 cur_offset = extent_end;
2224 }
2225 btrfs_release_path(path);
2226
2227 if (cur_offset <= end && cow_start == (u64)-1)
2228 cow_start = cur_offset;
2229
2230 if (cow_start != (u64)-1) {
2231 ret = fallback_to_cow(inode, locked_folio, cow_start, end);
2232 if (ret) {
2233 cow_end = end;
2234 goto error;
2235 }
2236 cow_start = (u64)-1;
2237 }
2238
2239 /*
2240 * Everything is finished without an error, can unlock the folios now.
2241 *
2242 * No need to touch the io tree range nor set folio ordered flag, as
2243 * fallback_to_cow() and nocow_one_range() have already handled them.
2244 */
2245 extent_clear_unlock_delalloc(inode, start, end, locked_folio, NULL, 0, PAGE_UNLOCK);
2246
2247 btrfs_free_path(path);
2248 return 0;
2249
2250 error:
2251 if (cow_start == (u64)-1) {
2252 /*
2253 * case a)
2254 * start cur_offset end
2255 * | OE cleanup | Untouched |
2256 *
2257 * We finished a fallback_to_cow() or nocow_one_range() call,
2258 * but failed to check the next range.
2259 *
2260 * or
2261 * start cur_offset nocow_end end
2262 * | OE cleanup | Skip | Untouched |
2263 *
2264 * nocow_one_range() failed, the range [cur_offset, nocow_end] is
2265 * already cleaned up.
2266 */
2267 oe_cleanup_start = start;
2268 oe_cleanup_len = cur_offset - start;
2269 if (nocow_end)
2270 untouched_start = nocow_end + 1;
2271 else
2272 untouched_start = cur_offset;
2273 untouched_len = end + 1 - untouched_start;
2274 } else if (cow_start != (u64)-1 && cow_end == 0) {
2275 /*
2276 * case b)
2277 * start cow_start cur_offset end
2278 * | OE cleanup | Untouched |
2279 *
2280 * We got a range that needs COW, but before we hit the next NOCOW range,
2281 * thus [cow_start, cur_offset) doesn't yet have any OE.
2282 */
2283 oe_cleanup_start = start;
2284 oe_cleanup_len = cow_start - start;
2285 untouched_start = cow_start;
2286 untouched_len = end + 1 - untouched_start;
2287 } else {
2288 /*
2289 * case c)
2290 * start cow_start cow_end end
2291 * | OE cleanup | Skip | Untouched |
2292 *
2293 * fallback_to_cow() failed, and fallback_to_cow() will do the
2294 * cleanup for its range, we shouldn't touch the range
2295 * [cow_start, cow_end].
2296 */
2297 ASSERT(cow_start != (u64)-1 && cow_end != 0);
2298 oe_cleanup_start = start;
2299 oe_cleanup_len = cow_start - start;
2300 untouched_start = cow_end + 1;
2301 untouched_len = end + 1 - untouched_start;
2302 }
2303
2304 if (oe_cleanup_len) {
2305 const u64 oe_cleanup_end = oe_cleanup_start + oe_cleanup_len - 1;
2306 btrfs_cleanup_ordered_extents(inode, oe_cleanup_start, oe_cleanup_len);
2307 extent_clear_unlock_delalloc(inode, oe_cleanup_start, oe_cleanup_end,
2308 locked_folio, NULL,
2309 EXTENT_LOCKED | EXTENT_DELALLOC,
2310 PAGE_UNLOCK | PAGE_START_WRITEBACK |
2311 PAGE_END_WRITEBACK);
2312 }
2313
2314 if (untouched_len) {
2315 struct extent_state *cached = NULL;
2316 const u64 untouched_end = untouched_start + untouched_len - 1;
2317
2318 /*
2319 * We need to lock the extent here because we're clearing DELALLOC and
2320 * we're not locked at this point.
2321 */
2322 btrfs_lock_extent(&inode->io_tree, untouched_start, untouched_end, &cached);
2323 extent_clear_unlock_delalloc(inode, untouched_start, untouched_end,
2324 locked_folio, &cached,
2325 EXTENT_LOCKED | EXTENT_DELALLOC |
2326 EXTENT_DEFRAG |
2327 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2328 PAGE_START_WRITEBACK |
2329 PAGE_END_WRITEBACK);
2330 btrfs_qgroup_free_data(inode, NULL, untouched_start, untouched_len, NULL);
2331 }
2332 btrfs_free_path(path);
2333 btrfs_err(fs_info,
2334 "%s failed, root=%llu inode=%llu start=%llu len=%llu cur_offset=%llu oe_cleanup=%llu oe_cleanup_len=%llu untouched_start=%llu untouched_len=%llu: %d",
2335 __func__, btrfs_root_id(inode->root), btrfs_ino(inode),
2336 start, end + 1 - start, cur_offset, oe_cleanup_start, oe_cleanup_len,
2337 untouched_start, untouched_len, ret);
2338 return ret;
2339 }
2340
should_nocow(struct btrfs_inode * inode,u64 start,u64 end)2341 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2342 {
2343 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2344 if (inode->defrag_bytes &&
2345 btrfs_test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG))
2346 return false;
2347 return true;
2348 }
2349 return false;
2350 }
2351
2352 /*
2353 * Function to process delayed allocation (create CoW) for ranges which are
2354 * being touched for the first time.
2355 */
btrfs_run_delalloc_range(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc)2356 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio,
2357 u64 start, u64 end, struct writeback_control *wbc)
2358 {
2359 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2360 int ret;
2361
2362 /*
2363 * The range must cover part of the @locked_folio, or a return of 1
2364 * can confuse the caller.
2365 */
2366 ASSERT(!(end <= folio_pos(locked_folio) ||
2367 start >= folio_next_pos(locked_folio)));
2368
2369 if (should_nocow(inode, start, end)) {
2370 ret = run_delalloc_nocow(inode, locked_folio, start, end);
2371 return ret;
2372 }
2373
2374 if (btrfs_inode_can_compress(inode) &&
2375 inode_need_compress(inode, start, end) &&
2376 run_delalloc_compressed(inode, locked_folio, start, end, wbc))
2377 return 1;
2378
2379 if (zoned)
2380 ret = run_delalloc_cow(inode, locked_folio, start, end, wbc,
2381 true);
2382 else
2383 ret = cow_file_range(inode, locked_folio, start, end, NULL, 0);
2384 return ret;
2385 }
2386
btrfs_split_delalloc_extent(struct btrfs_inode * inode,struct extent_state * orig,u64 split)2387 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2388 struct extent_state *orig, u64 split)
2389 {
2390 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2391 u64 size;
2392
2393 lockdep_assert_held(&inode->io_tree.lock);
2394
2395 /* not delalloc, ignore it */
2396 if (!(orig->state & EXTENT_DELALLOC))
2397 return;
2398
2399 size = orig->end - orig->start + 1;
2400 if (size > fs_info->max_extent_size) {
2401 u32 num_extents;
2402 u64 new_size;
2403
2404 /*
2405 * See the explanation in btrfs_merge_delalloc_extent, the same
2406 * applies here, just in reverse.
2407 */
2408 new_size = orig->end - split + 1;
2409 num_extents = count_max_extents(fs_info, new_size);
2410 new_size = split - orig->start;
2411 num_extents += count_max_extents(fs_info, new_size);
2412 if (count_max_extents(fs_info, size) >= num_extents)
2413 return;
2414 }
2415
2416 spin_lock(&inode->lock);
2417 btrfs_mod_outstanding_extents(inode, 1);
2418 spin_unlock(&inode->lock);
2419 }
2420
2421 /*
2422 * Handle merged delayed allocation extents so we can keep track of new extents
2423 * that are just merged onto old extents, such as when we are doing sequential
2424 * writes, so we can properly account for the metadata space we'll need.
2425 */
btrfs_merge_delalloc_extent(struct btrfs_inode * inode,struct extent_state * new,struct extent_state * other)2426 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2427 struct extent_state *other)
2428 {
2429 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2430 u64 new_size, old_size;
2431 u32 num_extents;
2432
2433 lockdep_assert_held(&inode->io_tree.lock);
2434
2435 /* not delalloc, ignore it */
2436 if (!(other->state & EXTENT_DELALLOC))
2437 return;
2438
2439 if (new->start > other->start)
2440 new_size = new->end - other->start + 1;
2441 else
2442 new_size = other->end - new->start + 1;
2443
2444 /* we're not bigger than the max, unreserve the space and go */
2445 if (new_size <= fs_info->max_extent_size) {
2446 spin_lock(&inode->lock);
2447 btrfs_mod_outstanding_extents(inode, -1);
2448 spin_unlock(&inode->lock);
2449 return;
2450 }
2451
2452 /*
2453 * We have to add up either side to figure out how many extents were
2454 * accounted for before we merged into one big extent. If the number of
2455 * extents we accounted for is <= the amount we need for the new range
2456 * then we can return, otherwise drop. Think of it like this
2457 *
2458 * [ 4k][MAX_SIZE]
2459 *
2460 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2461 * need 2 outstanding extents, on one side we have 1 and the other side
2462 * we have 1 so they are == and we can return. But in this case
2463 *
2464 * [MAX_SIZE+4k][MAX_SIZE+4k]
2465 *
2466 * Each range on their own accounts for 2 extents, but merged together
2467 * they are only 3 extents worth of accounting, so we need to drop in
2468 * this case.
2469 */
2470 old_size = other->end - other->start + 1;
2471 num_extents = count_max_extents(fs_info, old_size);
2472 old_size = new->end - new->start + 1;
2473 num_extents += count_max_extents(fs_info, old_size);
2474 if (count_max_extents(fs_info, new_size) >= num_extents)
2475 return;
2476
2477 spin_lock(&inode->lock);
2478 btrfs_mod_outstanding_extents(inode, -1);
2479 spin_unlock(&inode->lock);
2480 }
2481
btrfs_add_delalloc_inode(struct btrfs_inode * inode)2482 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode)
2483 {
2484 struct btrfs_root *root = inode->root;
2485 struct btrfs_fs_info *fs_info = root->fs_info;
2486
2487 spin_lock(&root->delalloc_lock);
2488 ASSERT(list_empty(&inode->delalloc_inodes));
2489 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2490 root->nr_delalloc_inodes++;
2491 if (root->nr_delalloc_inodes == 1) {
2492 spin_lock(&fs_info->delalloc_root_lock);
2493 ASSERT(list_empty(&root->delalloc_root));
2494 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots);
2495 spin_unlock(&fs_info->delalloc_root_lock);
2496 }
2497 spin_unlock(&root->delalloc_lock);
2498 }
2499
btrfs_del_delalloc_inode(struct btrfs_inode * inode)2500 void btrfs_del_delalloc_inode(struct btrfs_inode *inode)
2501 {
2502 struct btrfs_root *root = inode->root;
2503 struct btrfs_fs_info *fs_info = root->fs_info;
2504
2505 lockdep_assert_held(&root->delalloc_lock);
2506
2507 /*
2508 * We may be called after the inode was already deleted from the list,
2509 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(),
2510 * and then later through btrfs_clear_delalloc_extent() while the inode
2511 * still has ->delalloc_bytes > 0.
2512 */
2513 if (!list_empty(&inode->delalloc_inodes)) {
2514 list_del_init(&inode->delalloc_inodes);
2515 root->nr_delalloc_inodes--;
2516 if (!root->nr_delalloc_inodes) {
2517 ASSERT(list_empty(&root->delalloc_inodes));
2518 spin_lock(&fs_info->delalloc_root_lock);
2519 ASSERT(!list_empty(&root->delalloc_root));
2520 list_del_init(&root->delalloc_root);
2521 spin_unlock(&fs_info->delalloc_root_lock);
2522 }
2523 }
2524 }
2525
2526 /*
2527 * Properly track delayed allocation bytes in the inode and to maintain the
2528 * list of inodes that have pending delalloc work to be done.
2529 */
btrfs_set_delalloc_extent(struct btrfs_inode * inode,struct extent_state * state,u32 bits)2530 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2531 u32 bits)
2532 {
2533 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2534
2535 lockdep_assert_held(&inode->io_tree.lock);
2536
2537 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2538 WARN_ON(1);
2539 /*
2540 * set_bit and clear bit hooks normally require _irqsave/restore
2541 * but in this case, we are only testing for the DELALLOC
2542 * bit, which is only set or cleared with irqs on
2543 */
2544 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2545 u64 len = state->end + 1 - state->start;
2546 u64 prev_delalloc_bytes;
2547 u32 num_extents = count_max_extents(fs_info, len);
2548
2549 spin_lock(&inode->lock);
2550 btrfs_mod_outstanding_extents(inode, num_extents);
2551 spin_unlock(&inode->lock);
2552
2553 /* For sanity tests */
2554 if (btrfs_is_testing(fs_info))
2555 return;
2556
2557 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2558 fs_info->delalloc_batch);
2559 spin_lock(&inode->lock);
2560 prev_delalloc_bytes = inode->delalloc_bytes;
2561 inode->delalloc_bytes += len;
2562 if (bits & EXTENT_DEFRAG)
2563 inode->defrag_bytes += len;
2564 spin_unlock(&inode->lock);
2565
2566 /*
2567 * We don't need to be under the protection of the inode's lock,
2568 * because we are called while holding the inode's io_tree lock
2569 * and are therefore protected against concurrent calls of this
2570 * function and btrfs_clear_delalloc_extent().
2571 */
2572 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0)
2573 btrfs_add_delalloc_inode(inode);
2574 }
2575
2576 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2577 (bits & EXTENT_DELALLOC_NEW)) {
2578 spin_lock(&inode->lock);
2579 inode->new_delalloc_bytes += state->end + 1 - state->start;
2580 spin_unlock(&inode->lock);
2581 }
2582 }
2583
2584 /*
2585 * Once a range is no longer delalloc this function ensures that proper
2586 * accounting happens.
2587 */
btrfs_clear_delalloc_extent(struct btrfs_inode * inode,struct extent_state * state,u32 bits)2588 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2589 struct extent_state *state, u32 bits)
2590 {
2591 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2592 u64 len = state->end + 1 - state->start;
2593 u32 num_extents = count_max_extents(fs_info, len);
2594
2595 lockdep_assert_held(&inode->io_tree.lock);
2596
2597 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2598 spin_lock(&inode->lock);
2599 inode->defrag_bytes -= len;
2600 spin_unlock(&inode->lock);
2601 }
2602
2603 /*
2604 * set_bit and clear bit hooks normally require _irqsave/restore
2605 * but in this case, we are only testing for the DELALLOC
2606 * bit, which is only set or cleared with irqs on
2607 */
2608 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2609 struct btrfs_root *root = inode->root;
2610 u64 new_delalloc_bytes;
2611
2612 spin_lock(&inode->lock);
2613 btrfs_mod_outstanding_extents(inode, -num_extents);
2614 spin_unlock(&inode->lock);
2615
2616 /*
2617 * We don't reserve metadata space for space cache inodes so we
2618 * don't need to call delalloc_release_metadata if there is an
2619 * error.
2620 */
2621 if (bits & EXTENT_CLEAR_META_RESV &&
2622 root != fs_info->tree_root)
2623 btrfs_delalloc_release_metadata(inode, len, true);
2624
2625 /* For sanity tests. */
2626 if (btrfs_is_testing(fs_info))
2627 return;
2628
2629 if (!btrfs_is_data_reloc_root(root) &&
2630 !btrfs_is_free_space_inode(inode) &&
2631 !(state->state & EXTENT_NORESERVE) &&
2632 (bits & EXTENT_CLEAR_DATA_RESV))
2633 btrfs_free_reserved_data_space_noquota(inode, len);
2634
2635 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2636 fs_info->delalloc_batch);
2637 spin_lock(&inode->lock);
2638 inode->delalloc_bytes -= len;
2639 new_delalloc_bytes = inode->delalloc_bytes;
2640 spin_unlock(&inode->lock);
2641
2642 /*
2643 * We don't need to be under the protection of the inode's lock,
2644 * because we are called while holding the inode's io_tree lock
2645 * and are therefore protected against concurrent calls of this
2646 * function and btrfs_set_delalloc_extent().
2647 */
2648 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) {
2649 spin_lock(&root->delalloc_lock);
2650 btrfs_del_delalloc_inode(inode);
2651 spin_unlock(&root->delalloc_lock);
2652 }
2653 }
2654
2655 if ((state->state & EXTENT_DELALLOC_NEW) &&
2656 (bits & EXTENT_DELALLOC_NEW)) {
2657 spin_lock(&inode->lock);
2658 ASSERT(inode->new_delalloc_bytes >= len);
2659 inode->new_delalloc_bytes -= len;
2660 if (bits & EXTENT_ADD_INODE_BYTES)
2661 inode_add_bytes(&inode->vfs_inode, len);
2662 spin_unlock(&inode->lock);
2663 }
2664 }
2665
2666 /*
2667 * given a list of ordered sums record them in the inode. This happens
2668 * at IO completion time based on sums calculated at bio submission time.
2669 */
add_pending_csums(struct btrfs_trans_handle * trans,struct list_head * list)2670 static int add_pending_csums(struct btrfs_trans_handle *trans,
2671 struct list_head *list)
2672 {
2673 struct btrfs_ordered_sum *sum;
2674 struct btrfs_root *csum_root = NULL;
2675 int ret;
2676
2677 list_for_each_entry(sum, list, list) {
2678 trans->adding_csums = true;
2679 if (!csum_root)
2680 csum_root = btrfs_csum_root(trans->fs_info,
2681 sum->logical);
2682 ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2683 trans->adding_csums = false;
2684 if (ret)
2685 return ret;
2686 }
2687 return 0;
2688 }
2689
btrfs_find_new_delalloc_bytes(struct btrfs_inode * inode,const u64 start,const u64 len,struct extent_state ** cached_state)2690 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2691 const u64 start,
2692 const u64 len,
2693 struct extent_state **cached_state)
2694 {
2695 u64 search_start = start;
2696 const u64 end = start + len - 1;
2697
2698 while (search_start < end) {
2699 const u64 search_len = end - search_start + 1;
2700 struct extent_map *em;
2701 u64 em_len;
2702 int ret = 0;
2703
2704 em = btrfs_get_extent(inode, NULL, search_start, search_len);
2705 if (IS_ERR(em))
2706 return PTR_ERR(em);
2707
2708 if (em->disk_bytenr != EXTENT_MAP_HOLE)
2709 goto next;
2710
2711 em_len = em->len;
2712 if (em->start < search_start)
2713 em_len -= search_start - em->start;
2714 if (em_len > search_len)
2715 em_len = search_len;
2716
2717 ret = btrfs_set_extent_bit(&inode->io_tree, search_start,
2718 search_start + em_len - 1,
2719 EXTENT_DELALLOC_NEW, cached_state);
2720 next:
2721 search_start = btrfs_extent_map_end(em);
2722 btrfs_free_extent_map(em);
2723 if (ret)
2724 return ret;
2725 }
2726 return 0;
2727 }
2728
btrfs_set_extent_delalloc(struct btrfs_inode * inode,u64 start,u64 end,unsigned int extra_bits,struct extent_state ** cached_state)2729 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2730 unsigned int extra_bits,
2731 struct extent_state **cached_state)
2732 {
2733 WARN_ON(PAGE_ALIGNED(end));
2734
2735 if (start >= i_size_read(&inode->vfs_inode) &&
2736 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2737 /*
2738 * There can't be any extents following eof in this case so just
2739 * set the delalloc new bit for the range directly.
2740 */
2741 extra_bits |= EXTENT_DELALLOC_NEW;
2742 } else {
2743 int ret;
2744
2745 ret = btrfs_find_new_delalloc_bytes(inode, start,
2746 end + 1 - start,
2747 cached_state);
2748 if (ret)
2749 return ret;
2750 }
2751
2752 return btrfs_set_extent_bit(&inode->io_tree, start, end,
2753 EXTENT_DELALLOC | extra_bits, cached_state);
2754 }
2755
2756 /* see btrfs_writepage_start_hook for details on why this is required */
2757 struct btrfs_writepage_fixup {
2758 struct folio *folio;
2759 struct btrfs_inode *inode;
2760 struct btrfs_work work;
2761 };
2762
btrfs_writepage_fixup_worker(struct btrfs_work * work)2763 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2764 {
2765 struct btrfs_writepage_fixup *fixup =
2766 container_of(work, struct btrfs_writepage_fixup, work);
2767 struct btrfs_ordered_extent *ordered;
2768 struct extent_state *cached_state = NULL;
2769 struct extent_changeset *data_reserved = NULL;
2770 struct folio *folio = fixup->folio;
2771 struct btrfs_inode *inode = fixup->inode;
2772 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2773 u64 page_start = folio_pos(folio);
2774 u64 page_end = folio_next_pos(folio) - 1;
2775 int ret = 0;
2776 bool free_delalloc_space = true;
2777
2778 /*
2779 * This is similar to page_mkwrite, we need to reserve the space before
2780 * we take the folio lock.
2781 */
2782 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2783 folio_size(folio));
2784 again:
2785 folio_lock(folio);
2786
2787 /*
2788 * Before we queued this fixup, we took a reference on the folio.
2789 * folio->mapping may go NULL, but it shouldn't be moved to a different
2790 * address space.
2791 */
2792 if (!folio->mapping || !folio_test_dirty(folio) ||
2793 !folio_test_checked(folio)) {
2794 /*
2795 * Unfortunately this is a little tricky, either
2796 *
2797 * 1) We got here and our folio had already been dealt with and
2798 * we reserved our space, thus ret == 0, so we need to just
2799 * drop our space reservation and bail. This can happen the
2800 * first time we come into the fixup worker, or could happen
2801 * while waiting for the ordered extent.
2802 * 2) Our folio was already dealt with, but we happened to get an
2803 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2804 * this case we obviously don't have anything to release, but
2805 * because the folio was already dealt with we don't want to
2806 * mark the folio with an error, so make sure we're resetting
2807 * ret to 0. This is why we have this check _before_ the ret
2808 * check, because we do not want to have a surprise ENOSPC
2809 * when the folio was already properly dealt with.
2810 */
2811 if (!ret) {
2812 btrfs_delalloc_release_extents(inode, folio_size(folio));
2813 btrfs_delalloc_release_space(inode, data_reserved,
2814 page_start, folio_size(folio),
2815 true);
2816 }
2817 ret = 0;
2818 goto out_page;
2819 }
2820
2821 /*
2822 * We can't mess with the folio state unless it is locked, so now that
2823 * it is locked bail if we failed to make our space reservation.
2824 */
2825 if (ret)
2826 goto out_page;
2827
2828 btrfs_lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2829
2830 /* already ordered? We're done */
2831 if (folio_test_ordered(folio))
2832 goto out_reserved;
2833
2834 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2835 if (ordered) {
2836 btrfs_unlock_extent(&inode->io_tree, page_start, page_end,
2837 &cached_state);
2838 folio_unlock(folio);
2839 btrfs_start_ordered_extent(ordered);
2840 btrfs_put_ordered_extent(ordered);
2841 goto again;
2842 }
2843
2844 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2845 &cached_state);
2846 if (ret)
2847 goto out_reserved;
2848
2849 /*
2850 * Everything went as planned, we're now the owner of a dirty page with
2851 * delayed allocation bits set and space reserved for our COW
2852 * destination.
2853 *
2854 * The page was dirty when we started, nothing should have cleaned it.
2855 */
2856 BUG_ON(!folio_test_dirty(folio));
2857 free_delalloc_space = false;
2858 out_reserved:
2859 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2860 if (free_delalloc_space)
2861 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2862 PAGE_SIZE, true);
2863 btrfs_unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2864 out_page:
2865 if (ret) {
2866 /*
2867 * We hit ENOSPC or other errors. Update the mapping and page
2868 * to reflect the errors and clean the page.
2869 */
2870 mapping_set_error(folio->mapping, ret);
2871 btrfs_mark_ordered_io_finished(inode, folio, page_start,
2872 folio_size(folio), !ret);
2873 folio_clear_dirty_for_io(folio);
2874 }
2875 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
2876 folio_unlock(folio);
2877 folio_put(folio);
2878 kfree(fixup);
2879 extent_changeset_free(data_reserved);
2880 /*
2881 * As a precaution, do a delayed iput in case it would be the last iput
2882 * that could need flushing space. Recursing back to fixup worker would
2883 * deadlock.
2884 */
2885 btrfs_add_delayed_iput(inode);
2886 }
2887
2888 /*
2889 * There are a few paths in the higher layers of the kernel that directly
2890 * set the folio dirty bit without asking the filesystem if it is a
2891 * good idea. This causes problems because we want to make sure COW
2892 * properly happens and the data=ordered rules are followed.
2893 *
2894 * In our case any range that doesn't have the ORDERED bit set
2895 * hasn't been properly setup for IO. We kick off an async process
2896 * to fix it up. The async helper will wait for ordered extents, set
2897 * the delalloc bit and make it safe to write the folio.
2898 */
btrfs_writepage_cow_fixup(struct folio * folio)2899 int btrfs_writepage_cow_fixup(struct folio *folio)
2900 {
2901 struct inode *inode = folio->mapping->host;
2902 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2903 struct btrfs_writepage_fixup *fixup;
2904
2905 /* This folio has ordered extent covering it already */
2906 if (folio_test_ordered(folio))
2907 return 0;
2908
2909 /*
2910 * For experimental build, we error out instead of EAGAIN.
2911 *
2912 * We should not hit such out-of-band dirty folios anymore.
2913 */
2914 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL)) {
2915 DEBUG_WARN();
2916 btrfs_err_rl(fs_info,
2917 "root %lld ino %llu folio %llu is marked dirty without notifying the fs",
2918 btrfs_root_id(BTRFS_I(inode)->root),
2919 btrfs_ino(BTRFS_I(inode)),
2920 folio_pos(folio));
2921 return -EUCLEAN;
2922 }
2923
2924 /*
2925 * folio_checked is set below when we create a fixup worker for this
2926 * folio, don't try to create another one if we're already
2927 * folio_test_checked.
2928 *
2929 * The extent_io writepage code will redirty the foio if we send back
2930 * EAGAIN.
2931 */
2932 if (folio_test_checked(folio))
2933 return -EAGAIN;
2934
2935 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2936 if (!fixup)
2937 return -EAGAIN;
2938
2939 /*
2940 * We are already holding a reference to this inode from
2941 * write_cache_pages. We need to hold it because the space reservation
2942 * takes place outside of the folio lock, and we can't trust
2943 * folio->mapping outside of the folio lock.
2944 */
2945 ihold(inode);
2946 btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
2947 folio_get(folio);
2948 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL);
2949 fixup->folio = folio;
2950 fixup->inode = BTRFS_I(inode);
2951 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2952
2953 return -EAGAIN;
2954 }
2955
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 file_pos,struct btrfs_file_extent_item * stack_fi,const bool update_inode_bytes,u64 qgroup_reserved)2956 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2957 struct btrfs_inode *inode, u64 file_pos,
2958 struct btrfs_file_extent_item *stack_fi,
2959 const bool update_inode_bytes,
2960 u64 qgroup_reserved)
2961 {
2962 struct btrfs_root *root = inode->root;
2963 const u64 sectorsize = root->fs_info->sectorsize;
2964 BTRFS_PATH_AUTO_FREE(path);
2965 struct extent_buffer *leaf;
2966 struct btrfs_key ins;
2967 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2968 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2969 u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2970 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2971 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2972 struct btrfs_drop_extents_args drop_args = { 0 };
2973 int ret;
2974
2975 path = btrfs_alloc_path();
2976 if (!path)
2977 return -ENOMEM;
2978
2979 /*
2980 * we may be replacing one extent in the tree with another.
2981 * The new extent is pinned in the extent map, and we don't want
2982 * to drop it from the cache until it is completely in the btree.
2983 *
2984 * So, tell btrfs_drop_extents to leave this extent in the cache.
2985 * the caller is expected to unpin it and allow it to be merged
2986 * with the others.
2987 */
2988 drop_args.path = path;
2989 drop_args.start = file_pos;
2990 drop_args.end = file_pos + num_bytes;
2991 drop_args.replace_extent = true;
2992 drop_args.extent_item_size = sizeof(*stack_fi);
2993 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2994 if (ret)
2995 goto out;
2996
2997 if (!drop_args.extent_inserted) {
2998 ins.objectid = btrfs_ino(inode);
2999 ins.type = BTRFS_EXTENT_DATA_KEY;
3000 ins.offset = file_pos;
3001
3002 ret = btrfs_insert_empty_item(trans, root, path, &ins,
3003 sizeof(*stack_fi));
3004 if (ret)
3005 goto out;
3006 }
3007 leaf = path->nodes[0];
3008 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
3009 write_extent_buffer(leaf, stack_fi,
3010 btrfs_item_ptr_offset(leaf, path->slots[0]),
3011 sizeof(struct btrfs_file_extent_item));
3012
3013 btrfs_release_path(path);
3014
3015 /*
3016 * If we dropped an inline extent here, we know the range where it is
3017 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
3018 * number of bytes only for that range containing the inline extent.
3019 * The remaining of the range will be processed when clearing the
3020 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
3021 */
3022 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
3023 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
3024
3025 inline_size = drop_args.bytes_found - inline_size;
3026 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
3027 drop_args.bytes_found -= inline_size;
3028 num_bytes -= sectorsize;
3029 }
3030
3031 if (update_inode_bytes)
3032 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
3033
3034 ins.objectid = disk_bytenr;
3035 ins.type = BTRFS_EXTENT_ITEM_KEY;
3036 ins.offset = disk_num_bytes;
3037
3038 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
3039 if (ret)
3040 goto out;
3041
3042 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
3043 file_pos - offset,
3044 qgroup_reserved, &ins);
3045 out:
3046 return ret;
3047 }
3048
btrfs_release_delalloc_bytes(struct btrfs_fs_info * fs_info,u64 start,u64 len)3049 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
3050 u64 start, u64 len)
3051 {
3052 struct btrfs_block_group *cache;
3053
3054 cache = btrfs_lookup_block_group(fs_info, start);
3055 ASSERT(cache);
3056
3057 spin_lock(&cache->lock);
3058 cache->delalloc_bytes -= len;
3059 spin_unlock(&cache->lock);
3060
3061 btrfs_put_block_group(cache);
3062 }
3063
insert_ordered_extent_file_extent(struct btrfs_trans_handle * trans,struct btrfs_ordered_extent * oe)3064 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
3065 struct btrfs_ordered_extent *oe)
3066 {
3067 struct btrfs_file_extent_item stack_fi;
3068 bool update_inode_bytes;
3069 u64 num_bytes = oe->num_bytes;
3070 u64 ram_bytes = oe->ram_bytes;
3071
3072 memset(&stack_fi, 0, sizeof(stack_fi));
3073 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
3074 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
3075 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
3076 oe->disk_num_bytes);
3077 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
3078 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
3079 num_bytes = oe->truncated_len;
3080 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3081 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3082 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3083 /* Encryption and other encoding is reserved and all 0 */
3084
3085 /*
3086 * For delalloc, when completing an ordered extent we update the inode's
3087 * bytes when clearing the range in the inode's io tree, so pass false
3088 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3089 * except if the ordered extent was truncated.
3090 */
3091 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3092 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3093 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3094
3095 return insert_reserved_file_extent(trans, oe->inode,
3096 oe->file_offset, &stack_fi,
3097 update_inode_bytes, oe->qgroup_rsv);
3098 }
3099
3100 /*
3101 * As ordered data IO finishes, this gets called so we can finish
3102 * an ordered extent if the range of bytes in the file it covers are
3103 * fully written.
3104 */
btrfs_finish_one_ordered(struct btrfs_ordered_extent * ordered_extent)3105 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3106 {
3107 struct btrfs_inode *inode = ordered_extent->inode;
3108 struct btrfs_root *root = inode->root;
3109 struct btrfs_fs_info *fs_info = root->fs_info;
3110 struct btrfs_trans_handle *trans = NULL;
3111 struct extent_io_tree *io_tree = &inode->io_tree;
3112 struct extent_state *cached_state = NULL;
3113 u64 start, end;
3114 int compress_type = 0;
3115 int ret = 0;
3116 u64 logical_len = ordered_extent->num_bytes;
3117 bool freespace_inode;
3118 bool truncated = false;
3119 bool clear_reserved_extent = true;
3120 unsigned int clear_bits = EXTENT_DEFRAG;
3121
3122 start = ordered_extent->file_offset;
3123 end = start + ordered_extent->num_bytes - 1;
3124
3125 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3126 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3127 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3128 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3129 clear_bits |= EXTENT_DELALLOC_NEW;
3130
3131 freespace_inode = btrfs_is_free_space_inode(inode);
3132 if (!freespace_inode)
3133 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3134
3135 if (unlikely(test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags))) {
3136 ret = -EIO;
3137 goto out;
3138 }
3139
3140 ret = btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3141 ordered_extent->disk_num_bytes);
3142 if (ret)
3143 goto out;
3144
3145 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3146 truncated = true;
3147 logical_len = ordered_extent->truncated_len;
3148 /* Truncated the entire extent, don't bother adding */
3149 if (!logical_len)
3150 goto out;
3151 }
3152
3153 /*
3154 * If it's a COW write we need to lock the extent range as we will be
3155 * inserting/replacing file extent items and unpinning an extent map.
3156 * This must be taken before joining a transaction, as it's a higher
3157 * level lock (like the inode's VFS lock), otherwise we can run into an
3158 * ABBA deadlock with other tasks (transactions work like a lock,
3159 * depending on their current state).
3160 */
3161 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3162 clear_bits |= EXTENT_LOCKED | EXTENT_FINISHING_ORDERED;
3163 btrfs_lock_extent_bits(io_tree, start, end,
3164 EXTENT_LOCKED | EXTENT_FINISHING_ORDERED,
3165 &cached_state);
3166 }
3167
3168 if (freespace_inode)
3169 trans = btrfs_join_transaction_spacecache(root);
3170 else
3171 trans = btrfs_join_transaction(root);
3172 if (IS_ERR(trans)) {
3173 ret = PTR_ERR(trans);
3174 trans = NULL;
3175 goto out;
3176 }
3177
3178 trans->block_rsv = &inode->block_rsv;
3179
3180 ret = btrfs_insert_raid_extent(trans, ordered_extent);
3181 if (unlikely(ret)) {
3182 btrfs_abort_transaction(trans, ret);
3183 goto out;
3184 }
3185
3186 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3187 /* Logic error */
3188 ASSERT(list_empty(&ordered_extent->list));
3189 if (unlikely(!list_empty(&ordered_extent->list))) {
3190 ret = -EINVAL;
3191 btrfs_abort_transaction(trans, ret);
3192 goto out;
3193 }
3194
3195 btrfs_inode_safe_disk_i_size_write(inode, 0);
3196 ret = btrfs_update_inode_fallback(trans, inode);
3197 if (unlikely(ret)) {
3198 /* -ENOMEM or corruption */
3199 btrfs_abort_transaction(trans, ret);
3200 }
3201 goto out;
3202 }
3203
3204 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3205 compress_type = ordered_extent->compress_type;
3206 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3207 BUG_ON(compress_type);
3208 ret = btrfs_mark_extent_written(trans, inode,
3209 ordered_extent->file_offset,
3210 ordered_extent->file_offset +
3211 logical_len);
3212 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3213 ordered_extent->disk_num_bytes);
3214 } else {
3215 BUG_ON(root == fs_info->tree_root);
3216 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3217 if (!ret) {
3218 clear_reserved_extent = false;
3219 btrfs_release_delalloc_bytes(fs_info,
3220 ordered_extent->disk_bytenr,
3221 ordered_extent->disk_num_bytes);
3222 }
3223 }
3224 if (unlikely(ret < 0)) {
3225 btrfs_abort_transaction(trans, ret);
3226 goto out;
3227 }
3228
3229 ret = btrfs_unpin_extent_cache(inode, ordered_extent->file_offset,
3230 ordered_extent->num_bytes, trans->transid);
3231 if (unlikely(ret < 0)) {
3232 btrfs_abort_transaction(trans, ret);
3233 goto out;
3234 }
3235
3236 ret = add_pending_csums(trans, &ordered_extent->list);
3237 if (unlikely(ret)) {
3238 btrfs_abort_transaction(trans, ret);
3239 goto out;
3240 }
3241
3242 /*
3243 * If this is a new delalloc range, clear its new delalloc flag to
3244 * update the inode's number of bytes. This needs to be done first
3245 * before updating the inode item.
3246 */
3247 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3248 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3249 btrfs_clear_extent_bit(&inode->io_tree, start, end,
3250 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3251 &cached_state);
3252
3253 btrfs_inode_safe_disk_i_size_write(inode, 0);
3254 ret = btrfs_update_inode_fallback(trans, inode);
3255 if (unlikely(ret)) { /* -ENOMEM or corruption */
3256 btrfs_abort_transaction(trans, ret);
3257 goto out;
3258 }
3259 out:
3260 btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3261 &cached_state);
3262
3263 if (trans)
3264 btrfs_end_transaction(trans);
3265
3266 if (ret || truncated) {
3267 /*
3268 * If we failed to finish this ordered extent for any reason we
3269 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3270 * extent, and mark the inode with the error if it wasn't
3271 * already set. Any error during writeback would have already
3272 * set the mapping error, so we need to set it if we're the ones
3273 * marking this ordered extent as failed.
3274 */
3275 if (ret)
3276 btrfs_mark_ordered_extent_error(ordered_extent);
3277
3278 /*
3279 * Drop extent maps for the part of the extent we didn't write.
3280 *
3281 * We have an exception here for the free_space_inode, this is
3282 * because when we do btrfs_get_extent() on the free space inode
3283 * we will search the commit root. If this is a new block group
3284 * we won't find anything, and we will trip over the assert in
3285 * writepage where we do ASSERT(em->block_start !=
3286 * EXTENT_MAP_HOLE).
3287 *
3288 * Theoretically we could also skip this for any NOCOW extent as
3289 * we don't mess with the extent map tree in the NOCOW case, but
3290 * for now simply skip this if we are the free space inode.
3291 */
3292 if (!btrfs_is_free_space_inode(inode)) {
3293 u64 unwritten_start = start;
3294
3295 if (truncated)
3296 unwritten_start += logical_len;
3297
3298 btrfs_drop_extent_map_range(inode, unwritten_start,
3299 end, false);
3300 }
3301
3302 /*
3303 * If the ordered extent had an IOERR or something else went
3304 * wrong we need to return the space for this ordered extent
3305 * back to the allocator. We only free the extent in the
3306 * truncated case if we didn't write out the extent at all.
3307 *
3308 * If we made it past insert_reserved_file_extent before we
3309 * errored out then we don't need to do this as the accounting
3310 * has already been done.
3311 */
3312 if ((ret || !logical_len) &&
3313 clear_reserved_extent &&
3314 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3315 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3316 /*
3317 * Discard the range before returning it back to the
3318 * free space pool
3319 */
3320 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3321 btrfs_discard_extent(fs_info,
3322 ordered_extent->disk_bytenr,
3323 ordered_extent->disk_num_bytes,
3324 NULL);
3325 btrfs_free_reserved_extent(fs_info,
3326 ordered_extent->disk_bytenr,
3327 ordered_extent->disk_num_bytes, true);
3328 /*
3329 * Actually free the qgroup rsv which was released when
3330 * the ordered extent was created.
3331 */
3332 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root),
3333 ordered_extent->qgroup_rsv,
3334 BTRFS_QGROUP_RSV_DATA);
3335 }
3336 }
3337
3338 /*
3339 * This needs to be done to make sure anybody waiting knows we are done
3340 * updating everything for this ordered extent.
3341 */
3342 btrfs_remove_ordered_extent(inode, ordered_extent);
3343
3344 /* once for us */
3345 btrfs_put_ordered_extent(ordered_extent);
3346 /* once for the tree */
3347 btrfs_put_ordered_extent(ordered_extent);
3348
3349 return ret;
3350 }
3351
btrfs_finish_ordered_io(struct btrfs_ordered_extent * ordered)3352 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3353 {
3354 if (btrfs_is_zoned(ordered->inode->root->fs_info) &&
3355 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3356 list_empty(&ordered->bioc_list))
3357 btrfs_finish_ordered_zoned(ordered);
3358 return btrfs_finish_one_ordered(ordered);
3359 }
3360
3361 /*
3362 * Calculate the checksum of an fs block at physical memory address @paddr,
3363 * and save the result to @dest.
3364 *
3365 * The folio containing @paddr must be large enough to contain a full fs block.
3366 */
btrfs_calculate_block_csum_folio(struct btrfs_fs_info * fs_info,const phys_addr_t paddr,u8 * dest)3367 void btrfs_calculate_block_csum_folio(struct btrfs_fs_info *fs_info,
3368 const phys_addr_t paddr, u8 *dest)
3369 {
3370 struct folio *folio = page_folio(phys_to_page(paddr));
3371 const u32 blocksize = fs_info->sectorsize;
3372 const u32 step = min(blocksize, PAGE_SIZE);
3373 const u32 nr_steps = blocksize / step;
3374 phys_addr_t paddrs[BTRFS_MAX_BLOCKSIZE / PAGE_SIZE];
3375
3376 /* The full block must be inside the folio. */
3377 ASSERT(offset_in_folio(folio, paddr) + blocksize <= folio_size(folio));
3378
3379 for (int i = 0; i < nr_steps; i++) {
3380 u32 pindex = offset_in_folio(folio, paddr + i * step) >> PAGE_SHIFT;
3381
3382 /*
3383 * For bs <= ps cases, we will only run the loop once, so the offset
3384 * inside the page will only added to paddrs[0].
3385 *
3386 * For bs > ps cases, the block must be page aligned, thus offset
3387 * inside the page will always be 0.
3388 */
3389 paddrs[i] = page_to_phys(folio_page(folio, pindex)) + offset_in_page(paddr);
3390 }
3391 return btrfs_calculate_block_csum_pages(fs_info, paddrs, dest);
3392 }
3393
3394 /*
3395 * Calculate the checksum of a fs block backed by multiple noncontiguous pages
3396 * at @paddrs[] and save the result to @dest.
3397 *
3398 * The folio containing @paddr must be large enough to contain a full fs block.
3399 */
btrfs_calculate_block_csum_pages(struct btrfs_fs_info * fs_info,const phys_addr_t paddrs[],u8 * dest)3400 void btrfs_calculate_block_csum_pages(struct btrfs_fs_info *fs_info,
3401 const phys_addr_t paddrs[], u8 *dest)
3402 {
3403 const u32 blocksize = fs_info->sectorsize;
3404 const u32 step = min(blocksize, PAGE_SIZE);
3405 const u32 nr_steps = blocksize / step;
3406 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3407
3408 shash->tfm = fs_info->csum_shash;
3409 crypto_shash_init(shash);
3410 for (int i = 0; i < nr_steps; i++) {
3411 const phys_addr_t paddr = paddrs[i];
3412 void *kaddr;
3413
3414 ASSERT(offset_in_page(paddr) + step <= PAGE_SIZE);
3415 kaddr = kmap_local_page(phys_to_page(paddr)) + offset_in_page(paddr);
3416 crypto_shash_update(shash, kaddr, step);
3417 kunmap_local(kaddr);
3418 }
3419 crypto_shash_final(shash, dest);
3420 }
3421
3422 /*
3423 * Verify the checksum for a single sector without any extra action that depend
3424 * on the type of I/O.
3425 *
3426 * @kaddr must be a properly kmapped address.
3427 */
btrfs_check_block_csum(struct btrfs_fs_info * fs_info,phys_addr_t paddr,u8 * csum,const u8 * const csum_expected)3428 int btrfs_check_block_csum(struct btrfs_fs_info *fs_info, phys_addr_t paddr, u8 *csum,
3429 const u8 * const csum_expected)
3430 {
3431 btrfs_calculate_block_csum_folio(fs_info, paddr, csum);
3432 if (unlikely(memcmp(csum, csum_expected, fs_info->csum_size) != 0))
3433 return -EIO;
3434 return 0;
3435 }
3436
3437 /*
3438 * Verify the checksum of a single data sector, which can be scattered at
3439 * different noncontiguous pages.
3440 *
3441 * @bbio: btrfs_io_bio which contains the csum
3442 * @dev: device the sector is on
3443 * @bio_offset: offset to the beginning of the bio (in bytes)
3444 * @paddrs: physical addresses which back the fs block
3445 *
3446 * Check if the checksum on a data block is valid. When a checksum mismatch is
3447 * detected, report the error and fill the corrupted range with zero.
3448 *
3449 * Return %true if the sector is ok or had no checksum to start with, else %false.
3450 */
btrfs_data_csum_ok(struct btrfs_bio * bbio,struct btrfs_device * dev,u32 bio_offset,const phys_addr_t paddrs[])3451 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3452 u32 bio_offset, const phys_addr_t paddrs[])
3453 {
3454 struct btrfs_inode *inode = bbio->inode;
3455 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3456 const u32 blocksize = fs_info->sectorsize;
3457 const u32 step = min(blocksize, PAGE_SIZE);
3458 const u32 nr_steps = blocksize / step;
3459 u64 file_offset = bbio->file_offset + bio_offset;
3460 u64 end = file_offset + blocksize - 1;
3461 u8 *csum_expected;
3462 u8 csum[BTRFS_CSUM_SIZE];
3463
3464 if (!bbio->csum)
3465 return true;
3466
3467 if (btrfs_is_data_reloc_root(inode->root) &&
3468 btrfs_test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3469 NULL)) {
3470 /* Skip the range without csum for data reloc inode */
3471 btrfs_clear_extent_bit(&inode->io_tree, file_offset, end,
3472 EXTENT_NODATASUM, NULL);
3473 return true;
3474 }
3475
3476 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3477 fs_info->csum_size;
3478 btrfs_calculate_block_csum_pages(fs_info, paddrs, csum);
3479 if (unlikely(memcmp(csum, csum_expected, fs_info->csum_size) != 0))
3480 goto zeroit;
3481 return true;
3482
3483 zeroit:
3484 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3485 bbio->mirror_num);
3486 if (dev)
3487 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3488 for (int i = 0; i < nr_steps; i++)
3489 memzero_page(phys_to_page(paddrs[i]), offset_in_page(paddrs[i]), step);
3490 return false;
3491 }
3492
3493 /*
3494 * Perform a delayed iput on @inode.
3495 *
3496 * @inode: The inode we want to perform iput on
3497 *
3498 * This function uses the generic vfs_inode::i_count to track whether we should
3499 * just decrement it (in case it's > 1) or if this is the last iput then link
3500 * the inode to the delayed iput machinery. Delayed iputs are processed at
3501 * transaction commit time/superblock commit/cleaner kthread.
3502 */
btrfs_add_delayed_iput(struct btrfs_inode * inode)3503 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3504 {
3505 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3506 unsigned long flags;
3507
3508 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3509 return;
3510
3511 WARN_ON_ONCE(test_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state));
3512 atomic_inc(&fs_info->nr_delayed_iputs);
3513 /*
3514 * Need to be irq safe here because we can be called from either an irq
3515 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3516 * context.
3517 */
3518 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3519 ASSERT(list_empty(&inode->delayed_iput));
3520 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3521 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3522 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3523 wake_up_process(fs_info->cleaner_kthread);
3524 }
3525
run_delayed_iput_locked(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3526 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3527 struct btrfs_inode *inode)
3528 {
3529 list_del_init(&inode->delayed_iput);
3530 spin_unlock_irq(&fs_info->delayed_iput_lock);
3531 iput(&inode->vfs_inode);
3532 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3533 wake_up(&fs_info->delayed_iputs_wait);
3534 spin_lock_irq(&fs_info->delayed_iput_lock);
3535 }
3536
btrfs_run_delayed_iput(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3537 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3538 struct btrfs_inode *inode)
3539 {
3540 if (!list_empty(&inode->delayed_iput)) {
3541 spin_lock_irq(&fs_info->delayed_iput_lock);
3542 if (!list_empty(&inode->delayed_iput))
3543 run_delayed_iput_locked(fs_info, inode);
3544 spin_unlock_irq(&fs_info->delayed_iput_lock);
3545 }
3546 }
3547
btrfs_run_delayed_iputs(struct btrfs_fs_info * fs_info)3548 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3549 {
3550 /*
3551 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3552 * calls btrfs_add_delayed_iput() and that needs to lock
3553 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3554 * prevent a deadlock.
3555 */
3556 spin_lock_irq(&fs_info->delayed_iput_lock);
3557 while (!list_empty(&fs_info->delayed_iputs)) {
3558 struct btrfs_inode *inode;
3559
3560 inode = list_first_entry(&fs_info->delayed_iputs,
3561 struct btrfs_inode, delayed_iput);
3562 run_delayed_iput_locked(fs_info, inode);
3563 if (need_resched()) {
3564 spin_unlock_irq(&fs_info->delayed_iput_lock);
3565 cond_resched();
3566 spin_lock_irq(&fs_info->delayed_iput_lock);
3567 }
3568 }
3569 spin_unlock_irq(&fs_info->delayed_iput_lock);
3570 }
3571
3572 /*
3573 * Wait for flushing all delayed iputs
3574 *
3575 * @fs_info: the filesystem
3576 *
3577 * This will wait on any delayed iputs that are currently running with KILLABLE
3578 * set. Once they are all done running we will return, unless we are killed in
3579 * which case we return EINTR. This helps in user operations like fallocate etc
3580 * that might get blocked on the iputs.
3581 *
3582 * Return EINTR if we were killed, 0 if nothing's pending
3583 */
btrfs_wait_on_delayed_iputs(struct btrfs_fs_info * fs_info)3584 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3585 {
3586 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3587 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3588 if (ret)
3589 return -EINTR;
3590 return 0;
3591 }
3592
3593 /*
3594 * This creates an orphan entry for the given inode in case something goes wrong
3595 * in the middle of an unlink.
3596 */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3597 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3598 struct btrfs_inode *inode)
3599 {
3600 int ret;
3601
3602 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3603 if (unlikely(ret && ret != -EEXIST)) {
3604 btrfs_abort_transaction(trans, ret);
3605 return ret;
3606 }
3607
3608 return 0;
3609 }
3610
3611 /*
3612 * We have done the delete so we can go ahead and remove the orphan item for
3613 * this particular inode.
3614 */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3615 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3616 struct btrfs_inode *inode)
3617 {
3618 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3619 }
3620
3621 /*
3622 * this cleans up any orphans that may be left on the list from the last use
3623 * of this root.
3624 */
btrfs_orphan_cleanup(struct btrfs_root * root)3625 int btrfs_orphan_cleanup(struct btrfs_root *root)
3626 {
3627 struct btrfs_fs_info *fs_info = root->fs_info;
3628 BTRFS_PATH_AUTO_FREE(path);
3629 struct extent_buffer *leaf;
3630 struct btrfs_key key, found_key;
3631 struct btrfs_trans_handle *trans;
3632 u64 last_objectid = 0;
3633 int ret = 0, nr_unlink = 0;
3634
3635 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3636 return 0;
3637
3638 path = btrfs_alloc_path();
3639 if (!path) {
3640 ret = -ENOMEM;
3641 goto out;
3642 }
3643 path->reada = READA_BACK;
3644
3645 key.objectid = BTRFS_ORPHAN_OBJECTID;
3646 key.type = BTRFS_ORPHAN_ITEM_KEY;
3647 key.offset = (u64)-1;
3648
3649 while (1) {
3650 struct btrfs_inode *inode;
3651
3652 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3653 if (ret < 0)
3654 goto out;
3655
3656 /*
3657 * if ret == 0 means we found what we were searching for, which
3658 * is weird, but possible, so only screw with path if we didn't
3659 * find the key and see if we have stuff that matches
3660 */
3661 if (ret > 0) {
3662 ret = 0;
3663 if (path->slots[0] == 0)
3664 break;
3665 path->slots[0]--;
3666 }
3667
3668 /* pull out the item */
3669 leaf = path->nodes[0];
3670 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3671
3672 /* make sure the item matches what we want */
3673 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3674 break;
3675 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3676 break;
3677
3678 /* release the path since we're done with it */
3679 btrfs_release_path(path);
3680
3681 /*
3682 * this is where we are basically btrfs_lookup, without the
3683 * crossing root thing. we store the inode number in the
3684 * offset of the orphan item.
3685 */
3686
3687 if (found_key.offset == last_objectid) {
3688 /*
3689 * We found the same inode as before. This means we were
3690 * not able to remove its items via eviction triggered
3691 * by an iput(). A transaction abort may have happened,
3692 * due to -ENOSPC for example, so try to grab the error
3693 * that lead to a transaction abort, if any.
3694 */
3695 btrfs_err(fs_info,
3696 "Error removing orphan entry, stopping orphan cleanup");
3697 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3698 goto out;
3699 }
3700
3701 last_objectid = found_key.offset;
3702
3703 found_key.objectid = found_key.offset;
3704 found_key.type = BTRFS_INODE_ITEM_KEY;
3705 found_key.offset = 0;
3706 inode = btrfs_iget(last_objectid, root);
3707 if (IS_ERR(inode)) {
3708 ret = PTR_ERR(inode);
3709 inode = NULL;
3710 if (ret != -ENOENT)
3711 goto out;
3712 }
3713
3714 if (!inode && root == fs_info->tree_root) {
3715 struct btrfs_root *dead_root;
3716 int is_dead_root = 0;
3717
3718 /*
3719 * This is an orphan in the tree root. Currently these
3720 * could come from 2 sources:
3721 * a) a root (snapshot/subvolume) deletion in progress
3722 * b) a free space cache inode
3723 * We need to distinguish those two, as the orphan item
3724 * for a root must not get deleted before the deletion
3725 * of the snapshot/subvolume's tree completes.
3726 *
3727 * btrfs_find_orphan_roots() ran before us, which has
3728 * found all deleted roots and loaded them into
3729 * fs_info->fs_roots_radix. So here we can find if an
3730 * orphan item corresponds to a deleted root by looking
3731 * up the root from that radix tree.
3732 */
3733
3734 spin_lock(&fs_info->fs_roots_radix_lock);
3735 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3736 (unsigned long)found_key.objectid);
3737 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3738 is_dead_root = 1;
3739 spin_unlock(&fs_info->fs_roots_radix_lock);
3740
3741 if (is_dead_root) {
3742 /* prevent this orphan from being found again */
3743 key.offset = found_key.objectid - 1;
3744 continue;
3745 }
3746
3747 }
3748
3749 /*
3750 * If we have an inode with links, there are a couple of
3751 * possibilities:
3752 *
3753 * 1. We were halfway through creating fsverity metadata for the
3754 * file. In that case, the orphan item represents incomplete
3755 * fsverity metadata which must be cleaned up with
3756 * btrfs_drop_verity_items and deleting the orphan item.
3757
3758 * 2. Old kernels (before v3.12) used to create an
3759 * orphan item for truncate indicating that there were possibly
3760 * extent items past i_size that needed to be deleted. In v3.12,
3761 * truncate was changed to update i_size in sync with the extent
3762 * items, but the (useless) orphan item was still created. Since
3763 * v4.18, we don't create the orphan item for truncate at all.
3764 *
3765 * So, this item could mean that we need to do a truncate, but
3766 * only if this filesystem was last used on a pre-v3.12 kernel
3767 * and was not cleanly unmounted. The odds of that are quite
3768 * slim, and it's a pain to do the truncate now, so just delete
3769 * the orphan item.
3770 *
3771 * It's also possible that this orphan item was supposed to be
3772 * deleted but wasn't. The inode number may have been reused,
3773 * but either way, we can delete the orphan item.
3774 */
3775 if (!inode || inode->vfs_inode.i_nlink) {
3776 if (inode) {
3777 ret = btrfs_drop_verity_items(inode);
3778 iput(&inode->vfs_inode);
3779 inode = NULL;
3780 if (ret)
3781 goto out;
3782 }
3783 trans = btrfs_start_transaction(root, 1);
3784 if (IS_ERR(trans)) {
3785 ret = PTR_ERR(trans);
3786 goto out;
3787 }
3788 btrfs_debug(fs_info, "auto deleting %Lu",
3789 found_key.objectid);
3790 ret = btrfs_del_orphan_item(trans, root,
3791 found_key.objectid);
3792 btrfs_end_transaction(trans);
3793 if (ret)
3794 goto out;
3795 continue;
3796 }
3797
3798 nr_unlink++;
3799
3800 /* this will do delete_inode and everything for us */
3801 iput(&inode->vfs_inode);
3802 }
3803 /* release the path since we're done with it */
3804 btrfs_release_path(path);
3805
3806 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3807 trans = btrfs_join_transaction(root);
3808 if (!IS_ERR(trans))
3809 btrfs_end_transaction(trans);
3810 }
3811
3812 if (nr_unlink)
3813 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3814
3815 out:
3816 if (ret)
3817 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3818 return ret;
3819 }
3820
3821 /*
3822 * Look ahead in the leaf for xattrs. If we don't find any then we know there
3823 * can't be any ACLs.
3824 *
3825 * @leaf: the eb leaf where to search
3826 * @slot: the slot the inode is in
3827 * @objectid: the objectid of the inode
3828 *
3829 * Return true if there is xattr/ACL, false otherwise.
3830 */
acls_after_inode_item(struct extent_buffer * leaf,int slot,u64 objectid,int * first_xattr_slot)3831 static noinline bool acls_after_inode_item(struct extent_buffer *leaf,
3832 int slot, u64 objectid,
3833 int *first_xattr_slot)
3834 {
3835 u32 nritems = btrfs_header_nritems(leaf);
3836 struct btrfs_key found_key;
3837 static u64 xattr_access = 0;
3838 static u64 xattr_default = 0;
3839 int scanned = 0;
3840
3841 if (!xattr_access) {
3842 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3843 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3844 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3845 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3846 }
3847
3848 slot++;
3849 *first_xattr_slot = -1;
3850 while (slot < nritems) {
3851 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3852
3853 /* We found a different objectid, there must be no ACLs. */
3854 if (found_key.objectid != objectid)
3855 return false;
3856
3857 /* We found an xattr, assume we've got an ACL. */
3858 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3859 if (*first_xattr_slot == -1)
3860 *first_xattr_slot = slot;
3861 if (found_key.offset == xattr_access ||
3862 found_key.offset == xattr_default)
3863 return true;
3864 }
3865
3866 /*
3867 * We found a key greater than an xattr key, there can't be any
3868 * ACLs later on.
3869 */
3870 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3871 return false;
3872
3873 slot++;
3874 scanned++;
3875
3876 /*
3877 * The item order goes like:
3878 * - inode
3879 * - inode backrefs
3880 * - xattrs
3881 * - extents,
3882 *
3883 * so if there are lots of hard links to an inode there can be
3884 * a lot of backrefs. Don't waste time searching too hard,
3885 * this is just an optimization.
3886 */
3887 if (scanned >= 8)
3888 break;
3889 }
3890 /*
3891 * We hit the end of the leaf before we found an xattr or something
3892 * larger than an xattr. We have to assume the inode has ACLs.
3893 */
3894 if (*first_xattr_slot == -1)
3895 *first_xattr_slot = slot;
3896 return true;
3897 }
3898
btrfs_init_file_extent_tree(struct btrfs_inode * inode)3899 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode)
3900 {
3901 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3902
3903 if (WARN_ON_ONCE(inode->file_extent_tree))
3904 return 0;
3905 if (btrfs_fs_incompat(fs_info, NO_HOLES))
3906 return 0;
3907 if (!S_ISREG(inode->vfs_inode.i_mode))
3908 return 0;
3909 if (btrfs_is_free_space_inode(inode))
3910 return 0;
3911
3912 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL);
3913 if (!inode->file_extent_tree)
3914 return -ENOMEM;
3915
3916 btrfs_extent_io_tree_init(fs_info, inode->file_extent_tree,
3917 IO_TREE_INODE_FILE_EXTENT);
3918 /* Lockdep class is set only for the file extent tree. */
3919 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class);
3920
3921 return 0;
3922 }
3923
btrfs_add_inode_to_root(struct btrfs_inode * inode,bool prealloc)3924 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc)
3925 {
3926 struct btrfs_root *root = inode->root;
3927 struct btrfs_inode *existing;
3928 const u64 ino = btrfs_ino(inode);
3929 int ret;
3930
3931 if (inode_unhashed(&inode->vfs_inode))
3932 return 0;
3933
3934 if (prealloc) {
3935 ret = xa_reserve(&root->inodes, ino, GFP_NOFS);
3936 if (ret)
3937 return ret;
3938 }
3939
3940 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC);
3941
3942 if (xa_is_err(existing)) {
3943 ret = xa_err(existing);
3944 ASSERT(ret != -EINVAL);
3945 ASSERT(ret != -ENOMEM);
3946 return ret;
3947 } else if (existing) {
3948 WARN_ON(!(inode_state_read_once(&existing->vfs_inode) & (I_WILL_FREE | I_FREEING)));
3949 }
3950
3951 return 0;
3952 }
3953
3954 /*
3955 * Read a locked inode from the btree into the in-memory inode and add it to
3956 * its root list/tree.
3957 *
3958 * On failure clean up the inode.
3959 */
btrfs_read_locked_inode(struct btrfs_inode * inode,struct btrfs_path * path)3960 static int btrfs_read_locked_inode(struct btrfs_inode *inode, struct btrfs_path *path)
3961 {
3962 struct btrfs_root *root = inode->root;
3963 struct btrfs_fs_info *fs_info = root->fs_info;
3964 struct extent_buffer *leaf;
3965 struct btrfs_inode_item *inode_item;
3966 struct inode *vfs_inode = &inode->vfs_inode;
3967 struct btrfs_key location;
3968 unsigned long ptr;
3969 int maybe_acls;
3970 u32 rdev;
3971 int ret;
3972 bool filled = false;
3973 int first_xattr_slot;
3974
3975 ret = btrfs_fill_inode(inode, &rdev);
3976 if (!ret)
3977 filled = true;
3978
3979 ASSERT(path);
3980
3981 btrfs_get_inode_key(inode, &location);
3982
3983 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3984 if (ret) {
3985 /*
3986 * ret > 0 can come from btrfs_search_slot called by
3987 * btrfs_lookup_inode(), this means the inode was not found.
3988 */
3989 if (ret > 0)
3990 ret = -ENOENT;
3991 goto out;
3992 }
3993
3994 leaf = path->nodes[0];
3995
3996 if (filled)
3997 goto cache_index;
3998
3999 inode_item = btrfs_item_ptr(leaf, path->slots[0],
4000 struct btrfs_inode_item);
4001 vfs_inode->i_mode = btrfs_inode_mode(leaf, inode_item);
4002 set_nlink(vfs_inode, btrfs_inode_nlink(leaf, inode_item));
4003 i_uid_write(vfs_inode, btrfs_inode_uid(leaf, inode_item));
4004 i_gid_write(vfs_inode, btrfs_inode_gid(leaf, inode_item));
4005 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
4006
4007 inode_set_atime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->atime),
4008 btrfs_timespec_nsec(leaf, &inode_item->atime));
4009
4010 inode_set_mtime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->mtime),
4011 btrfs_timespec_nsec(leaf, &inode_item->mtime));
4012
4013 inode_set_ctime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
4014 btrfs_timespec_nsec(leaf, &inode_item->ctime));
4015
4016 inode->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime);
4017 inode->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime);
4018
4019 inode_set_bytes(vfs_inode, btrfs_inode_nbytes(leaf, inode_item));
4020 inode->generation = btrfs_inode_generation(leaf, inode_item);
4021 inode->last_trans = btrfs_inode_transid(leaf, inode_item);
4022
4023 inode_set_iversion_queried(vfs_inode, btrfs_inode_sequence(leaf, inode_item));
4024 vfs_inode->i_generation = inode->generation;
4025 vfs_inode->i_rdev = 0;
4026 rdev = btrfs_inode_rdev(leaf, inode_item);
4027
4028 if (S_ISDIR(vfs_inode->i_mode))
4029 inode->index_cnt = (u64)-1;
4030
4031 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
4032 &inode->flags, &inode->ro_flags);
4033 btrfs_update_inode_mapping_flags(inode);
4034 btrfs_set_inode_mapping_order(inode);
4035
4036 cache_index:
4037 ret = btrfs_init_file_extent_tree(inode);
4038 if (ret)
4039 goto out;
4040 btrfs_inode_set_file_extent_range(inode, 0,
4041 round_up(i_size_read(vfs_inode), fs_info->sectorsize));
4042 /*
4043 * If we were modified in the current generation and evicted from memory
4044 * and then re-read we need to do a full sync since we don't have any
4045 * idea about which extents were modified before we were evicted from
4046 * cache.
4047 *
4048 * This is required for both inode re-read from disk and delayed inode
4049 * in the delayed_nodes xarray.
4050 */
4051 if (inode->last_trans == btrfs_get_fs_generation(fs_info))
4052 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
4053
4054 /*
4055 * We don't persist the id of the transaction where an unlink operation
4056 * against the inode was last made. So here we assume the inode might
4057 * have been evicted, and therefore the exact value of last_unlink_trans
4058 * lost, and set it to last_trans to avoid metadata inconsistencies
4059 * between the inode and its parent if the inode is fsync'ed and the log
4060 * replayed. For example, in the scenario:
4061 *
4062 * touch mydir/foo
4063 * ln mydir/foo mydir/bar
4064 * sync
4065 * unlink mydir/bar
4066 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
4067 * xfs_io -c fsync mydir/foo
4068 * <power failure>
4069 * mount fs, triggers fsync log replay
4070 *
4071 * We must make sure that when we fsync our inode foo we also log its
4072 * parent inode, otherwise after log replay the parent still has the
4073 * dentry with the "bar" name but our inode foo has a link count of 1
4074 * and doesn't have an inode ref with the name "bar" anymore.
4075 *
4076 * Setting last_unlink_trans to last_trans is a pessimistic approach,
4077 * but it guarantees correctness at the expense of occasional full
4078 * transaction commits on fsync if our inode is a directory, or if our
4079 * inode is not a directory, logging its parent unnecessarily.
4080 */
4081 inode->last_unlink_trans = inode->last_trans;
4082
4083 /*
4084 * Same logic as for last_unlink_trans. We don't persist the generation
4085 * of the last transaction where this inode was used for a reflink
4086 * operation, so after eviction and reloading the inode we must be
4087 * pessimistic and assume the last transaction that modified the inode.
4088 */
4089 inode->last_reflink_trans = inode->last_trans;
4090
4091 path->slots[0]++;
4092 if (vfs_inode->i_nlink != 1 ||
4093 path->slots[0] >= btrfs_header_nritems(leaf))
4094 goto cache_acl;
4095
4096 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4097 if (location.objectid != btrfs_ino(inode))
4098 goto cache_acl;
4099
4100 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4101 if (location.type == BTRFS_INODE_REF_KEY) {
4102 struct btrfs_inode_ref *ref;
4103
4104 ref = (struct btrfs_inode_ref *)ptr;
4105 inode->dir_index = btrfs_inode_ref_index(leaf, ref);
4106 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
4107 struct btrfs_inode_extref *extref;
4108
4109 extref = (struct btrfs_inode_extref *)ptr;
4110 inode->dir_index = btrfs_inode_extref_index(leaf, extref);
4111 }
4112 cache_acl:
4113 /*
4114 * try to precache a NULL acl entry for files that don't have
4115 * any xattrs or acls
4116 */
4117 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
4118 btrfs_ino(inode), &first_xattr_slot);
4119 if (first_xattr_slot != -1) {
4120 path->slots[0] = first_xattr_slot;
4121 ret = btrfs_load_inode_props(inode, path);
4122 if (ret)
4123 btrfs_err(fs_info,
4124 "error loading props for ino %llu (root %llu): %d",
4125 btrfs_ino(inode), btrfs_root_id(root), ret);
4126 }
4127
4128 if (!maybe_acls)
4129 cache_no_acl(vfs_inode);
4130
4131 switch (vfs_inode->i_mode & S_IFMT) {
4132 case S_IFREG:
4133 vfs_inode->i_mapping->a_ops = &btrfs_aops;
4134 vfs_inode->i_fop = &btrfs_file_operations;
4135 vfs_inode->i_op = &btrfs_file_inode_operations;
4136 break;
4137 case S_IFDIR:
4138 vfs_inode->i_fop = &btrfs_dir_file_operations;
4139 vfs_inode->i_op = &btrfs_dir_inode_operations;
4140 break;
4141 case S_IFLNK:
4142 vfs_inode->i_op = &btrfs_symlink_inode_operations;
4143 inode_nohighmem(vfs_inode);
4144 vfs_inode->i_mapping->a_ops = &btrfs_aops;
4145 break;
4146 default:
4147 vfs_inode->i_op = &btrfs_special_inode_operations;
4148 init_special_inode(vfs_inode, vfs_inode->i_mode, rdev);
4149 break;
4150 }
4151
4152 btrfs_sync_inode_flags_to_i_flags(inode);
4153
4154 ret = btrfs_add_inode_to_root(inode, true);
4155 if (ret)
4156 goto out;
4157
4158 return 0;
4159 out:
4160 iget_failed(vfs_inode);
4161 return ret;
4162 }
4163
4164 /*
4165 * given a leaf and an inode, copy the inode fields into the leaf
4166 */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)4167 static void fill_inode_item(struct btrfs_trans_handle *trans,
4168 struct extent_buffer *leaf,
4169 struct btrfs_inode_item *item,
4170 struct inode *inode)
4171 {
4172 u64 flags;
4173
4174 btrfs_set_inode_uid(leaf, item, i_uid_read(inode));
4175 btrfs_set_inode_gid(leaf, item, i_gid_read(inode));
4176 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
4177 btrfs_set_inode_mode(leaf, item, inode->i_mode);
4178 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
4179
4180 btrfs_set_timespec_sec(leaf, &item->atime, inode_get_atime_sec(inode));
4181 btrfs_set_timespec_nsec(leaf, &item->atime, inode_get_atime_nsec(inode));
4182
4183 btrfs_set_timespec_sec(leaf, &item->mtime, inode_get_mtime_sec(inode));
4184 btrfs_set_timespec_nsec(leaf, &item->mtime, inode_get_mtime_nsec(inode));
4185
4186 btrfs_set_timespec_sec(leaf, &item->ctime, inode_get_ctime_sec(inode));
4187 btrfs_set_timespec_nsec(leaf, &item->ctime, inode_get_ctime_nsec(inode));
4188
4189 btrfs_set_timespec_sec(leaf, &item->otime, BTRFS_I(inode)->i_otime_sec);
4190 btrfs_set_timespec_nsec(leaf, &item->otime, BTRFS_I(inode)->i_otime_nsec);
4191
4192 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
4193 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
4194 btrfs_set_inode_sequence(leaf, item, inode_peek_iversion(inode));
4195 btrfs_set_inode_transid(leaf, item, trans->transid);
4196 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
4197 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4198 BTRFS_I(inode)->ro_flags);
4199 btrfs_set_inode_flags(leaf, item, flags);
4200 btrfs_set_inode_block_group(leaf, item, 0);
4201 }
4202
4203 /*
4204 * copy everything in the in-memory inode into the btree.
4205 */
btrfs_update_inode_item(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)4206 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4207 struct btrfs_inode *inode)
4208 {
4209 struct btrfs_inode_item *inode_item;
4210 BTRFS_PATH_AUTO_FREE(path);
4211 struct extent_buffer *leaf;
4212 struct btrfs_key key;
4213 int ret;
4214
4215 path = btrfs_alloc_path();
4216 if (!path)
4217 return -ENOMEM;
4218
4219 btrfs_get_inode_key(inode, &key);
4220 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1);
4221 if (ret) {
4222 if (ret > 0)
4223 ret = -ENOENT;
4224 return ret;
4225 }
4226
4227 leaf = path->nodes[0];
4228 inode_item = btrfs_item_ptr(leaf, path->slots[0],
4229 struct btrfs_inode_item);
4230
4231 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4232 btrfs_set_inode_last_trans(trans, inode);
4233 return 0;
4234 }
4235
4236 /*
4237 * copy everything in the in-memory inode into the btree.
4238 */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)4239 int btrfs_update_inode(struct btrfs_trans_handle *trans,
4240 struct btrfs_inode *inode)
4241 {
4242 struct btrfs_root *root = inode->root;
4243 struct btrfs_fs_info *fs_info = root->fs_info;
4244 int ret;
4245
4246 /*
4247 * If the inode is a free space inode, we can deadlock during commit
4248 * if we put it into the delayed code.
4249 *
4250 * The data relocation inode should also be directly updated
4251 * without delay
4252 */
4253 if (!btrfs_is_free_space_inode(inode)
4254 && !btrfs_is_data_reloc_root(root)
4255 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4256 btrfs_update_root_times(trans, root);
4257
4258 ret = btrfs_delayed_update_inode(trans, inode);
4259 if (!ret)
4260 btrfs_set_inode_last_trans(trans, inode);
4261 return ret;
4262 }
4263
4264 return btrfs_update_inode_item(trans, inode);
4265 }
4266
btrfs_update_inode_fallback(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)4267 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4268 struct btrfs_inode *inode)
4269 {
4270 int ret;
4271
4272 ret = btrfs_update_inode(trans, inode);
4273 if (ret == -ENOSPC)
4274 return btrfs_update_inode_item(trans, inode);
4275 return ret;
4276 }
4277
update_time_after_link_or_unlink(struct btrfs_inode * dir)4278 static void update_time_after_link_or_unlink(struct btrfs_inode *dir)
4279 {
4280 struct timespec64 now;
4281
4282 /*
4283 * If we are replaying a log tree, we do not want to update the mtime
4284 * and ctime of the parent directory with the current time, since the
4285 * log replay procedure is responsible for setting them to their correct
4286 * values (the ones it had when the fsync was done).
4287 */
4288 if (test_bit(BTRFS_FS_LOG_RECOVERING, &dir->root->fs_info->flags))
4289 return;
4290
4291 now = inode_set_ctime_current(&dir->vfs_inode);
4292 inode_set_mtime_to_ts(&dir->vfs_inode, now);
4293 }
4294
4295 /*
4296 * unlink helper that gets used here in inode.c and in the tree logging
4297 * recovery code. It remove a link in a directory with a given name, and
4298 * also drops the back refs in the inode to the directory
4299 */
__btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name,struct btrfs_rename_ctx * rename_ctx)4300 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4301 struct btrfs_inode *dir,
4302 struct btrfs_inode *inode,
4303 const struct fscrypt_str *name,
4304 struct btrfs_rename_ctx *rename_ctx)
4305 {
4306 struct btrfs_root *root = dir->root;
4307 struct btrfs_fs_info *fs_info = root->fs_info;
4308 struct btrfs_path *path;
4309 int ret = 0;
4310 struct btrfs_dir_item *di;
4311 u64 index;
4312 u64 ino = btrfs_ino(inode);
4313 u64 dir_ino = btrfs_ino(dir);
4314
4315 path = btrfs_alloc_path();
4316 if (!path)
4317 return -ENOMEM;
4318
4319 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4320 if (IS_ERR_OR_NULL(di)) {
4321 btrfs_free_path(path);
4322 return di ? PTR_ERR(di) : -ENOENT;
4323 }
4324 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4325 /*
4326 * Down the call chains below we'll also need to allocate a path, so no
4327 * need to hold on to this one for longer than necessary.
4328 */
4329 btrfs_free_path(path);
4330 if (ret)
4331 return ret;
4332
4333 /*
4334 * If we don't have dir index, we have to get it by looking up
4335 * the inode ref, since we get the inode ref, remove it directly,
4336 * it is unnecessary to do delayed deletion.
4337 *
4338 * But if we have dir index, needn't search inode ref to get it.
4339 * Since the inode ref is close to the inode item, it is better
4340 * that we delay to delete it, and just do this deletion when
4341 * we update the inode item.
4342 */
4343 if (inode->dir_index) {
4344 ret = btrfs_delayed_delete_inode_ref(inode);
4345 if (!ret) {
4346 index = inode->dir_index;
4347 goto skip_backref;
4348 }
4349 }
4350
4351 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4352 if (unlikely(ret)) {
4353 btrfs_crit(fs_info,
4354 "failed to delete reference to %.*s, root %llu inode %llu parent %llu",
4355 name->len, name->name, btrfs_root_id(root), ino, dir_ino);
4356 btrfs_abort_transaction(trans, ret);
4357 return ret;
4358 }
4359 skip_backref:
4360 if (rename_ctx)
4361 rename_ctx->index = index;
4362
4363 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4364 if (unlikely(ret)) {
4365 btrfs_abort_transaction(trans, ret);
4366 return ret;
4367 }
4368
4369 /*
4370 * If we are in a rename context, we don't need to update anything in the
4371 * log. That will be done later during the rename by btrfs_log_new_name().
4372 * Besides that, doing it here would only cause extra unnecessary btree
4373 * operations on the log tree, increasing latency for applications.
4374 */
4375 if (!rename_ctx) {
4376 btrfs_del_inode_ref_in_log(trans, name, inode, dir);
4377 btrfs_del_dir_entries_in_log(trans, name, dir, index);
4378 }
4379
4380 /*
4381 * If we have a pending delayed iput we could end up with the final iput
4382 * being run in btrfs-cleaner context. If we have enough of these built
4383 * up we can end up burning a lot of time in btrfs-cleaner without any
4384 * way to throttle the unlinks. Since we're currently holding a ref on
4385 * the inode we can run the delayed iput here without any issues as the
4386 * final iput won't be done until after we drop the ref we're currently
4387 * holding.
4388 */
4389 btrfs_run_delayed_iput(fs_info, inode);
4390
4391 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4392 inode_inc_iversion(&inode->vfs_inode);
4393 inode_set_ctime_current(&inode->vfs_inode);
4394 inode_inc_iversion(&dir->vfs_inode);
4395 update_time_after_link_or_unlink(dir);
4396
4397 return btrfs_update_inode(trans, dir);
4398 }
4399
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name)4400 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4401 struct btrfs_inode *dir, struct btrfs_inode *inode,
4402 const struct fscrypt_str *name)
4403 {
4404 int ret;
4405
4406 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4407 if (!ret) {
4408 drop_nlink(&inode->vfs_inode);
4409 ret = btrfs_update_inode(trans, inode);
4410 }
4411 return ret;
4412 }
4413
4414 /*
4415 * helper to start transaction for unlink and rmdir.
4416 *
4417 * unlink and rmdir are special in btrfs, they do not always free space, so
4418 * if we cannot make our reservations the normal way try and see if there is
4419 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4420 * allow the unlink to occur.
4421 */
__unlink_start_trans(struct btrfs_inode * dir)4422 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4423 {
4424 struct btrfs_root *root = dir->root;
4425
4426 return btrfs_start_transaction_fallback_global_rsv(root,
4427 BTRFS_UNLINK_METADATA_UNITS);
4428 }
4429
btrfs_unlink(struct inode * dir,struct dentry * dentry)4430 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4431 {
4432 struct btrfs_trans_handle *trans;
4433 struct inode *inode = d_inode(dentry);
4434 int ret;
4435 struct fscrypt_name fname;
4436
4437 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4438 if (ret)
4439 return ret;
4440
4441 /* This needs to handle no-key deletions later on */
4442
4443 trans = __unlink_start_trans(BTRFS_I(dir));
4444 if (IS_ERR(trans)) {
4445 ret = PTR_ERR(trans);
4446 goto fscrypt_free;
4447 }
4448
4449 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4450 false);
4451
4452 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4453 &fname.disk_name);
4454 if (ret)
4455 goto end_trans;
4456
4457 if (inode->i_nlink == 0) {
4458 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4459 if (ret)
4460 goto end_trans;
4461 }
4462
4463 end_trans:
4464 btrfs_end_transaction(trans);
4465 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4466 fscrypt_free:
4467 fscrypt_free_filename(&fname);
4468 return ret;
4469 }
4470
btrfs_unlink_subvol(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct dentry * dentry)4471 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4472 struct btrfs_inode *dir, struct dentry *dentry)
4473 {
4474 struct btrfs_root *root = dir->root;
4475 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4476 BTRFS_PATH_AUTO_FREE(path);
4477 struct extent_buffer *leaf;
4478 struct btrfs_dir_item *di;
4479 struct btrfs_key key;
4480 u64 index;
4481 int ret;
4482 u64 objectid;
4483 u64 dir_ino = btrfs_ino(dir);
4484 struct fscrypt_name fname;
4485
4486 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4487 if (ret)
4488 return ret;
4489
4490 /* This needs to handle no-key deletions later on */
4491
4492 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4493 objectid = btrfs_root_id(inode->root);
4494 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4495 objectid = inode->ref_root_id;
4496 } else {
4497 WARN_ON(1);
4498 fscrypt_free_filename(&fname);
4499 return -EINVAL;
4500 }
4501
4502 path = btrfs_alloc_path();
4503 if (!path) {
4504 ret = -ENOMEM;
4505 goto out;
4506 }
4507
4508 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4509 &fname.disk_name, -1);
4510 if (IS_ERR_OR_NULL(di)) {
4511 ret = di ? PTR_ERR(di) : -ENOENT;
4512 goto out;
4513 }
4514
4515 leaf = path->nodes[0];
4516 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4517 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4518 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4519 if (unlikely(ret)) {
4520 btrfs_abort_transaction(trans, ret);
4521 goto out;
4522 }
4523 btrfs_release_path(path);
4524
4525 /*
4526 * This is a placeholder inode for a subvolume we didn't have a
4527 * reference to at the time of the snapshot creation. In the meantime
4528 * we could have renamed the real subvol link into our snapshot, so
4529 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4530 * Instead simply lookup the dir_index_item for this entry so we can
4531 * remove it. Otherwise we know we have a ref to the root and we can
4532 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4533 */
4534 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4535 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4536 if (IS_ERR(di)) {
4537 ret = PTR_ERR(di);
4538 btrfs_abort_transaction(trans, ret);
4539 goto out;
4540 }
4541
4542 leaf = path->nodes[0];
4543 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4544 index = key.offset;
4545 btrfs_release_path(path);
4546 } else {
4547 ret = btrfs_del_root_ref(trans, objectid,
4548 btrfs_root_id(root), dir_ino,
4549 &index, &fname.disk_name);
4550 if (unlikely(ret)) {
4551 btrfs_abort_transaction(trans, ret);
4552 goto out;
4553 }
4554 }
4555
4556 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4557 if (unlikely(ret)) {
4558 btrfs_abort_transaction(trans, ret);
4559 goto out;
4560 }
4561
4562 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4563 inode_inc_iversion(&dir->vfs_inode);
4564 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4565 ret = btrfs_update_inode_fallback(trans, dir);
4566 if (ret)
4567 btrfs_abort_transaction(trans, ret);
4568 out:
4569 fscrypt_free_filename(&fname);
4570 return ret;
4571 }
4572
4573 /*
4574 * Helper to check if the subvolume references other subvolumes or if it's
4575 * default.
4576 */
may_destroy_subvol(struct btrfs_root * root)4577 static noinline int may_destroy_subvol(struct btrfs_root *root)
4578 {
4579 struct btrfs_fs_info *fs_info = root->fs_info;
4580 BTRFS_PATH_AUTO_FREE(path);
4581 struct btrfs_dir_item *di;
4582 struct btrfs_key key;
4583 struct fscrypt_str name = FSTR_INIT("default", 7);
4584 u64 dir_id;
4585 int ret;
4586
4587 path = btrfs_alloc_path();
4588 if (!path)
4589 return -ENOMEM;
4590
4591 /* Make sure this root isn't set as the default subvol */
4592 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4593 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4594 dir_id, &name, 0);
4595 if (di && !IS_ERR(di)) {
4596 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4597 if (key.objectid == btrfs_root_id(root)) {
4598 ret = -EPERM;
4599 btrfs_err(fs_info,
4600 "deleting default subvolume %llu is not allowed",
4601 key.objectid);
4602 return ret;
4603 }
4604 btrfs_release_path(path);
4605 }
4606
4607 key.objectid = btrfs_root_id(root);
4608 key.type = BTRFS_ROOT_REF_KEY;
4609 key.offset = (u64)-1;
4610
4611 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4612 if (ret < 0)
4613 return ret;
4614 if (unlikely(ret == 0)) {
4615 /*
4616 * Key with offset -1 found, there would have to exist a root
4617 * with such id, but this is out of valid range.
4618 */
4619 return -EUCLEAN;
4620 }
4621
4622 ret = 0;
4623 if (path->slots[0] > 0) {
4624 path->slots[0]--;
4625 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4626 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY)
4627 ret = -ENOTEMPTY;
4628 }
4629
4630 return ret;
4631 }
4632
4633 /* Delete all dentries for inodes belonging to the root */
btrfs_prune_dentries(struct btrfs_root * root)4634 static void btrfs_prune_dentries(struct btrfs_root *root)
4635 {
4636 struct btrfs_fs_info *fs_info = root->fs_info;
4637 struct btrfs_inode *inode;
4638 u64 min_ino = 0;
4639
4640 if (!BTRFS_FS_ERROR(fs_info))
4641 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4642
4643 inode = btrfs_find_first_inode(root, min_ino);
4644 while (inode) {
4645 if (icount_read(&inode->vfs_inode) > 1)
4646 d_prune_aliases(&inode->vfs_inode);
4647
4648 min_ino = btrfs_ino(inode) + 1;
4649 /*
4650 * btrfs_drop_inode() will have it removed from the inode
4651 * cache when its usage count hits zero.
4652 */
4653 iput(&inode->vfs_inode);
4654 cond_resched();
4655 inode = btrfs_find_first_inode(root, min_ino);
4656 }
4657 }
4658
btrfs_delete_subvolume(struct btrfs_inode * dir,struct dentry * dentry)4659 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4660 {
4661 struct btrfs_root *root = dir->root;
4662 struct btrfs_fs_info *fs_info = root->fs_info;
4663 struct inode *inode = d_inode(dentry);
4664 struct btrfs_root *dest = BTRFS_I(inode)->root;
4665 struct btrfs_trans_handle *trans;
4666 struct btrfs_block_rsv block_rsv;
4667 u64 root_flags;
4668 u64 qgroup_reserved = 0;
4669 int ret;
4670
4671 down_write(&fs_info->subvol_sem);
4672
4673 /*
4674 * Don't allow to delete a subvolume with send in progress. This is
4675 * inside the inode lock so the error handling that has to drop the bit
4676 * again is not run concurrently.
4677 */
4678 spin_lock(&dest->root_item_lock);
4679 if (dest->send_in_progress) {
4680 spin_unlock(&dest->root_item_lock);
4681 btrfs_warn(fs_info,
4682 "attempt to delete subvolume %llu during send",
4683 btrfs_root_id(dest));
4684 ret = -EPERM;
4685 goto out_up_write;
4686 }
4687 if (atomic_read(&dest->nr_swapfiles)) {
4688 spin_unlock(&dest->root_item_lock);
4689 btrfs_warn(fs_info,
4690 "attempt to delete subvolume %llu with active swapfile",
4691 btrfs_root_id(root));
4692 ret = -EPERM;
4693 goto out_up_write;
4694 }
4695 root_flags = btrfs_root_flags(&dest->root_item);
4696 btrfs_set_root_flags(&dest->root_item,
4697 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4698 spin_unlock(&dest->root_item_lock);
4699
4700 ret = may_destroy_subvol(dest);
4701 if (ret)
4702 goto out_undead;
4703
4704 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4705 /*
4706 * One for dir inode,
4707 * two for dir entries,
4708 * two for root ref/backref.
4709 */
4710 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4711 if (ret)
4712 goto out_undead;
4713 qgroup_reserved = block_rsv.qgroup_rsv_reserved;
4714
4715 trans = btrfs_start_transaction(root, 0);
4716 if (IS_ERR(trans)) {
4717 ret = PTR_ERR(trans);
4718 goto out_release;
4719 }
4720 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
4721 qgroup_reserved = 0;
4722 trans->block_rsv = &block_rsv;
4723 trans->bytes_reserved = block_rsv.size;
4724
4725 btrfs_record_snapshot_destroy(trans, dir);
4726
4727 ret = btrfs_unlink_subvol(trans, dir, dentry);
4728 if (unlikely(ret)) {
4729 btrfs_abort_transaction(trans, ret);
4730 goto out_end_trans;
4731 }
4732
4733 ret = btrfs_record_root_in_trans(trans, dest);
4734 if (unlikely(ret)) {
4735 btrfs_abort_transaction(trans, ret);
4736 goto out_end_trans;
4737 }
4738
4739 memset(&dest->root_item.drop_progress, 0,
4740 sizeof(dest->root_item.drop_progress));
4741 btrfs_set_root_drop_level(&dest->root_item, 0);
4742 btrfs_set_root_refs(&dest->root_item, 0);
4743
4744 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4745 ret = btrfs_insert_orphan_item(trans,
4746 fs_info->tree_root,
4747 btrfs_root_id(dest));
4748 if (unlikely(ret)) {
4749 btrfs_abort_transaction(trans, ret);
4750 goto out_end_trans;
4751 }
4752 }
4753
4754 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4755 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest));
4756 if (unlikely(ret && ret != -ENOENT)) {
4757 btrfs_abort_transaction(trans, ret);
4758 goto out_end_trans;
4759 }
4760 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4761 ret = btrfs_uuid_tree_remove(trans,
4762 dest->root_item.received_uuid,
4763 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4764 btrfs_root_id(dest));
4765 if (unlikely(ret && ret != -ENOENT)) {
4766 btrfs_abort_transaction(trans, ret);
4767 goto out_end_trans;
4768 }
4769 }
4770
4771 free_anon_bdev(dest->anon_dev);
4772 dest->anon_dev = 0;
4773 out_end_trans:
4774 trans->block_rsv = NULL;
4775 trans->bytes_reserved = 0;
4776 ret = btrfs_end_transaction(trans);
4777 inode->i_flags |= S_DEAD;
4778 out_release:
4779 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
4780 if (qgroup_reserved)
4781 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
4782 out_undead:
4783 if (ret) {
4784 spin_lock(&dest->root_item_lock);
4785 root_flags = btrfs_root_flags(&dest->root_item);
4786 btrfs_set_root_flags(&dest->root_item,
4787 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4788 spin_unlock(&dest->root_item_lock);
4789 }
4790 out_up_write:
4791 up_write(&fs_info->subvol_sem);
4792 if (!ret) {
4793 d_invalidate(dentry);
4794 btrfs_prune_dentries(dest);
4795 ASSERT(dest->send_in_progress == 0);
4796 }
4797
4798 return ret;
4799 }
4800
btrfs_rmdir(struct inode * vfs_dir,struct dentry * dentry)4801 static int btrfs_rmdir(struct inode *vfs_dir, struct dentry *dentry)
4802 {
4803 struct btrfs_inode *dir = BTRFS_I(vfs_dir);
4804 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4805 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4806 int ret = 0;
4807 struct btrfs_trans_handle *trans;
4808 struct fscrypt_name fname;
4809
4810 if (inode->vfs_inode.i_size > BTRFS_EMPTY_DIR_SIZE)
4811 return -ENOTEMPTY;
4812 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4813 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4814 btrfs_err(fs_info,
4815 "extent tree v2 doesn't support snapshot deletion yet");
4816 return -EOPNOTSUPP;
4817 }
4818 return btrfs_delete_subvolume(dir, dentry);
4819 }
4820
4821 ret = fscrypt_setup_filename(vfs_dir, &dentry->d_name, 1, &fname);
4822 if (ret)
4823 return ret;
4824
4825 /* This needs to handle no-key deletions later on */
4826
4827 trans = __unlink_start_trans(dir);
4828 if (IS_ERR(trans)) {
4829 ret = PTR_ERR(trans);
4830 goto out_notrans;
4831 }
4832
4833 /*
4834 * Propagate the last_unlink_trans value of the deleted dir to its
4835 * parent directory. This is to prevent an unrecoverable log tree in the
4836 * case we do something like this:
4837 * 1) create dir foo
4838 * 2) create snapshot under dir foo
4839 * 3) delete the snapshot
4840 * 4) rmdir foo
4841 * 5) mkdir foo
4842 * 6) fsync foo or some file inside foo
4843 *
4844 * This is because we can't unlink other roots when replaying the dir
4845 * deletes for directory foo.
4846 */
4847 if (inode->last_unlink_trans >= trans->transid)
4848 btrfs_record_snapshot_destroy(trans, dir);
4849
4850 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4851 ret = btrfs_unlink_subvol(trans, dir, dentry);
4852 goto out;
4853 }
4854
4855 ret = btrfs_orphan_add(trans, inode);
4856 if (ret)
4857 goto out;
4858
4859 /* now the directory is empty */
4860 ret = btrfs_unlink_inode(trans, dir, inode, &fname.disk_name);
4861 if (!ret)
4862 btrfs_i_size_write(inode, 0);
4863 out:
4864 btrfs_end_transaction(trans);
4865 out_notrans:
4866 btrfs_btree_balance_dirty(fs_info);
4867 fscrypt_free_filename(&fname);
4868
4869 return ret;
4870 }
4871
is_inside_block(u64 bytenr,u64 blockstart,u32 blocksize)4872 static bool is_inside_block(u64 bytenr, u64 blockstart, u32 blocksize)
4873 {
4874 ASSERT(IS_ALIGNED(blockstart, blocksize), "blockstart=%llu blocksize=%u",
4875 blockstart, blocksize);
4876
4877 if (blockstart <= bytenr && bytenr <= blockstart + blocksize - 1)
4878 return true;
4879 return false;
4880 }
4881
truncate_block_zero_beyond_eof(struct btrfs_inode * inode,u64 start)4882 static int truncate_block_zero_beyond_eof(struct btrfs_inode *inode, u64 start)
4883 {
4884 const pgoff_t index = (start >> PAGE_SHIFT);
4885 struct address_space *mapping = inode->vfs_inode.i_mapping;
4886 struct folio *folio;
4887 u64 zero_start;
4888 u64 zero_end;
4889 int ret = 0;
4890
4891 again:
4892 folio = filemap_lock_folio(mapping, index);
4893 /* No folio present. */
4894 if (IS_ERR(folio))
4895 return 0;
4896
4897 if (!folio_test_uptodate(folio)) {
4898 ret = btrfs_read_folio(NULL, folio);
4899 folio_lock(folio);
4900 if (folio->mapping != mapping) {
4901 folio_unlock(folio);
4902 folio_put(folio);
4903 goto again;
4904 }
4905 if (unlikely(!folio_test_uptodate(folio))) {
4906 ret = -EIO;
4907 goto out_unlock;
4908 }
4909 }
4910 folio_wait_writeback(folio);
4911
4912 /*
4913 * We do not need to lock extents nor wait for OE, as it's already
4914 * beyond EOF.
4915 */
4916
4917 zero_start = max_t(u64, folio_pos(folio), start);
4918 zero_end = folio_next_pos(folio);
4919 folio_zero_range(folio, zero_start - folio_pos(folio),
4920 zero_end - zero_start);
4921
4922 out_unlock:
4923 folio_unlock(folio);
4924 folio_put(folio);
4925 return ret;
4926 }
4927
4928 /*
4929 * Handle the truncation of a fs block.
4930 *
4931 * @inode - inode that we're zeroing
4932 * @offset - the file offset of the block to truncate
4933 * The value must be inside [@start, @end], and the function will do
4934 * extra checks if the block that covers @offset needs to be zeroed.
4935 * @start - the start file offset of the range we want to zero
4936 * @end - the end (inclusive) file offset of the range we want to zero.
4937 *
4938 * If the range is not block aligned, read out the folio that covers @offset,
4939 * and if needed zero blocks that are inside the folio and covered by [@start, @end).
4940 * If @start or @end + 1 lands inside a block, that block will be marked dirty
4941 * for writeback.
4942 *
4943 * This is utilized by hole punch, zero range, file expansion.
4944 */
btrfs_truncate_block(struct btrfs_inode * inode,u64 offset,u64 start,u64 end)4945 int btrfs_truncate_block(struct btrfs_inode *inode, u64 offset, u64 start, u64 end)
4946 {
4947 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4948 struct address_space *mapping = inode->vfs_inode.i_mapping;
4949 struct extent_io_tree *io_tree = &inode->io_tree;
4950 struct btrfs_ordered_extent *ordered;
4951 struct extent_state *cached_state = NULL;
4952 struct extent_changeset *data_reserved = NULL;
4953 bool only_release_metadata = false;
4954 u32 blocksize = fs_info->sectorsize;
4955 pgoff_t index = (offset >> PAGE_SHIFT);
4956 struct folio *folio;
4957 gfp_t mask = btrfs_alloc_write_mask(mapping);
4958 int ret = 0;
4959 const bool in_head_block = is_inside_block(offset, round_down(start, blocksize),
4960 blocksize);
4961 const bool in_tail_block = is_inside_block(offset, round_down(end, blocksize),
4962 blocksize);
4963 bool need_truncate_head = false;
4964 bool need_truncate_tail = false;
4965 u64 zero_start;
4966 u64 zero_end;
4967 u64 block_start;
4968 u64 block_end;
4969
4970 /* @offset should be inside the range. */
4971 ASSERT(start <= offset && offset <= end, "offset=%llu start=%llu end=%llu",
4972 offset, start, end);
4973
4974 /* The range is aligned at both ends. */
4975 if (IS_ALIGNED(start, blocksize) && IS_ALIGNED(end + 1, blocksize)) {
4976 /*
4977 * For block size < page size case, we may have polluted blocks
4978 * beyond EOF. So we also need to zero them out.
4979 */
4980 if (end == (u64)-1 && blocksize < PAGE_SIZE)
4981 ret = truncate_block_zero_beyond_eof(inode, start);
4982 goto out;
4983 }
4984
4985 /*
4986 * @offset may not be inside the head nor tail block. In that case we
4987 * don't need to do anything.
4988 */
4989 if (!in_head_block && !in_tail_block)
4990 goto out;
4991
4992 /*
4993 * Skip the truncation if the range in the target block is already aligned.
4994 * The seemingly complex check will also handle the same block case.
4995 */
4996 if (in_head_block && !IS_ALIGNED(start, blocksize))
4997 need_truncate_head = true;
4998 if (in_tail_block && !IS_ALIGNED(end + 1, blocksize))
4999 need_truncate_tail = true;
5000 if (!need_truncate_head && !need_truncate_tail)
5001 goto out;
5002
5003 block_start = round_down(offset, blocksize);
5004 block_end = block_start + blocksize - 1;
5005
5006 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
5007 blocksize, false);
5008 if (ret < 0) {
5009 size_t write_bytes = blocksize;
5010
5011 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
5012 /* For nocow case, no need to reserve data space. */
5013 ASSERT(write_bytes == blocksize, "write_bytes=%zu blocksize=%u",
5014 write_bytes, blocksize);
5015 only_release_metadata = true;
5016 } else {
5017 goto out;
5018 }
5019 }
5020 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
5021 if (ret < 0) {
5022 if (!only_release_metadata)
5023 btrfs_free_reserved_data_space(inode, data_reserved,
5024 block_start, blocksize);
5025 goto out;
5026 }
5027 again:
5028 folio = __filemap_get_folio(mapping, index,
5029 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
5030 if (IS_ERR(folio)) {
5031 if (only_release_metadata)
5032 btrfs_delalloc_release_metadata(inode, blocksize, true);
5033 else
5034 btrfs_delalloc_release_space(inode, data_reserved,
5035 block_start, blocksize, true);
5036 btrfs_delalloc_release_extents(inode, blocksize);
5037 ret = PTR_ERR(folio);
5038 goto out;
5039 }
5040
5041 if (!folio_test_uptodate(folio)) {
5042 ret = btrfs_read_folio(NULL, folio);
5043 folio_lock(folio);
5044 if (folio->mapping != mapping) {
5045 folio_unlock(folio);
5046 folio_put(folio);
5047 goto again;
5048 }
5049 if (unlikely(!folio_test_uptodate(folio))) {
5050 ret = -EIO;
5051 goto out_unlock;
5052 }
5053 }
5054
5055 /*
5056 * We unlock the page after the io is completed and then re-lock it
5057 * above. release_folio() could have come in between that and cleared
5058 * folio private, but left the page in the mapping. Set the page mapped
5059 * here to make sure it's properly set for the subpage stuff.
5060 */
5061 ret = set_folio_extent_mapped(folio);
5062 if (ret < 0)
5063 goto out_unlock;
5064
5065 folio_wait_writeback(folio);
5066
5067 btrfs_lock_extent(io_tree, block_start, block_end, &cached_state);
5068
5069 ordered = btrfs_lookup_ordered_extent(inode, block_start);
5070 if (ordered) {
5071 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state);
5072 folio_unlock(folio);
5073 folio_put(folio);
5074 btrfs_start_ordered_extent(ordered);
5075 btrfs_put_ordered_extent(ordered);
5076 goto again;
5077 }
5078
5079 btrfs_clear_extent_bit(&inode->io_tree, block_start, block_end,
5080 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
5081 &cached_state);
5082
5083 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
5084 &cached_state);
5085 if (ret) {
5086 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state);
5087 goto out_unlock;
5088 }
5089
5090 if (end == (u64)-1) {
5091 /*
5092 * We're truncating beyond EOF, the remaining blocks normally are
5093 * already holes thus no need to zero again, but it's possible for
5094 * fs block size < page size cases to have memory mapped writes
5095 * to pollute ranges beyond EOF.
5096 *
5097 * In that case although such polluted blocks beyond EOF will
5098 * not reach disk, it still affects our page caches.
5099 */
5100 zero_start = max_t(u64, folio_pos(folio), start);
5101 zero_end = min_t(u64, folio_next_pos(folio) - 1, end);
5102 } else {
5103 zero_start = max_t(u64, block_start, start);
5104 zero_end = min_t(u64, block_end, end);
5105 }
5106 folio_zero_range(folio, zero_start - folio_pos(folio),
5107 zero_end - zero_start + 1);
5108
5109 btrfs_folio_clear_checked(fs_info, folio, block_start,
5110 block_end + 1 - block_start);
5111 btrfs_folio_set_dirty(fs_info, folio, block_start,
5112 block_end + 1 - block_start);
5113
5114 if (only_release_metadata)
5115 btrfs_set_extent_bit(&inode->io_tree, block_start, block_end,
5116 EXTENT_NORESERVE, &cached_state);
5117
5118 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state);
5119
5120 out_unlock:
5121 if (ret) {
5122 if (only_release_metadata)
5123 btrfs_delalloc_release_metadata(inode, blocksize, true);
5124 else
5125 btrfs_delalloc_release_space(inode, data_reserved,
5126 block_start, blocksize, true);
5127 }
5128 btrfs_delalloc_release_extents(inode, blocksize);
5129 folio_unlock(folio);
5130 folio_put(folio);
5131 out:
5132 if (only_release_metadata)
5133 btrfs_check_nocow_unlock(inode);
5134 extent_changeset_free(data_reserved);
5135 return ret;
5136 }
5137
maybe_insert_hole(struct btrfs_inode * inode,u64 offset,u64 len)5138 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len)
5139 {
5140 struct btrfs_root *root = inode->root;
5141 struct btrfs_fs_info *fs_info = root->fs_info;
5142 struct btrfs_trans_handle *trans;
5143 struct btrfs_drop_extents_args drop_args = { 0 };
5144 int ret;
5145
5146 /*
5147 * If NO_HOLES is enabled, we don't need to do anything.
5148 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
5149 * or btrfs_update_inode() will be called, which guarantee that the next
5150 * fsync will know this inode was changed and needs to be logged.
5151 */
5152 if (btrfs_fs_incompat(fs_info, NO_HOLES))
5153 return 0;
5154
5155 /*
5156 * 1 - for the one we're dropping
5157 * 1 - for the one we're adding
5158 * 1 - for updating the inode.
5159 */
5160 trans = btrfs_start_transaction(root, 3);
5161 if (IS_ERR(trans))
5162 return PTR_ERR(trans);
5163
5164 drop_args.start = offset;
5165 drop_args.end = offset + len;
5166 drop_args.drop_cache = true;
5167
5168 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
5169 if (unlikely(ret)) {
5170 btrfs_abort_transaction(trans, ret);
5171 btrfs_end_transaction(trans);
5172 return ret;
5173 }
5174
5175 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
5176 if (ret) {
5177 btrfs_abort_transaction(trans, ret);
5178 } else {
5179 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
5180 btrfs_update_inode(trans, inode);
5181 }
5182 btrfs_end_transaction(trans);
5183 return ret;
5184 }
5185
5186 /*
5187 * This function puts in dummy file extents for the area we're creating a hole
5188 * for. So if we are truncating this file to a larger size we need to insert
5189 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5190 * the range between oldsize and size
5191 */
btrfs_cont_expand(struct btrfs_inode * inode,loff_t oldsize,loff_t size)5192 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
5193 {
5194 struct btrfs_root *root = inode->root;
5195 struct btrfs_fs_info *fs_info = root->fs_info;
5196 struct extent_io_tree *io_tree = &inode->io_tree;
5197 struct extent_map *em = NULL;
5198 struct extent_state *cached_state = NULL;
5199 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5200 u64 block_end = ALIGN(size, fs_info->sectorsize);
5201 u64 last_byte;
5202 u64 cur_offset;
5203 u64 hole_size;
5204 int ret = 0;
5205
5206 /*
5207 * If our size started in the middle of a block we need to zero out the
5208 * rest of the block before we expand the i_size, otherwise we could
5209 * expose stale data.
5210 */
5211 ret = btrfs_truncate_block(inode, oldsize, oldsize, -1);
5212 if (ret)
5213 return ret;
5214
5215 if (size <= hole_start)
5216 return 0;
5217
5218 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
5219 &cached_state);
5220 cur_offset = hole_start;
5221 while (1) {
5222 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset);
5223 if (IS_ERR(em)) {
5224 ret = PTR_ERR(em);
5225 em = NULL;
5226 break;
5227 }
5228 last_byte = min(btrfs_extent_map_end(em), block_end);
5229 last_byte = ALIGN(last_byte, fs_info->sectorsize);
5230 hole_size = last_byte - cur_offset;
5231
5232 if (!(em->flags & EXTENT_FLAG_PREALLOC)) {
5233 struct extent_map *hole_em;
5234
5235 ret = maybe_insert_hole(inode, cur_offset, hole_size);
5236 if (ret)
5237 break;
5238
5239 ret = btrfs_inode_set_file_extent_range(inode,
5240 cur_offset, hole_size);
5241 if (ret)
5242 break;
5243
5244 hole_em = btrfs_alloc_extent_map();
5245 if (!hole_em) {
5246 btrfs_drop_extent_map_range(inode, cur_offset,
5247 cur_offset + hole_size - 1,
5248 false);
5249 btrfs_set_inode_full_sync(inode);
5250 goto next;
5251 }
5252 hole_em->start = cur_offset;
5253 hole_em->len = hole_size;
5254
5255 hole_em->disk_bytenr = EXTENT_MAP_HOLE;
5256 hole_em->disk_num_bytes = 0;
5257 hole_em->ram_bytes = hole_size;
5258 hole_em->generation = btrfs_get_fs_generation(fs_info);
5259
5260 ret = btrfs_replace_extent_map_range(inode, hole_em, true);
5261 btrfs_free_extent_map(hole_em);
5262 } else {
5263 ret = btrfs_inode_set_file_extent_range(inode,
5264 cur_offset, hole_size);
5265 if (ret)
5266 break;
5267 }
5268 next:
5269 btrfs_free_extent_map(em);
5270 em = NULL;
5271 cur_offset = last_byte;
5272 if (cur_offset >= block_end)
5273 break;
5274 }
5275 btrfs_free_extent_map(em);
5276 btrfs_unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
5277 return ret;
5278 }
5279
btrfs_setsize(struct inode * inode,struct iattr * attr)5280 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5281 {
5282 struct btrfs_root *root = BTRFS_I(inode)->root;
5283 struct btrfs_trans_handle *trans;
5284 loff_t oldsize = i_size_read(inode);
5285 loff_t newsize = attr->ia_size;
5286 int mask = attr->ia_valid;
5287 int ret;
5288
5289 /*
5290 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5291 * special case where we need to update the times despite not having
5292 * these flags set. For all other operations the VFS set these flags
5293 * explicitly if it wants a timestamp update.
5294 */
5295 if (newsize != oldsize) {
5296 inode_inc_iversion(inode);
5297 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
5298 inode_set_mtime_to_ts(inode,
5299 inode_set_ctime_current(inode));
5300 }
5301 }
5302
5303 if (newsize > oldsize) {
5304 /*
5305 * Don't do an expanding truncate while snapshotting is ongoing.
5306 * This is to ensure the snapshot captures a fully consistent
5307 * state of this file - if the snapshot captures this expanding
5308 * truncation, it must capture all writes that happened before
5309 * this truncation.
5310 */
5311 btrfs_drew_write_lock(&root->snapshot_lock);
5312 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5313 if (ret) {
5314 btrfs_drew_write_unlock(&root->snapshot_lock);
5315 return ret;
5316 }
5317
5318 trans = btrfs_start_transaction(root, 1);
5319 if (IS_ERR(trans)) {
5320 btrfs_drew_write_unlock(&root->snapshot_lock);
5321 return PTR_ERR(trans);
5322 }
5323
5324 i_size_write(inode, newsize);
5325 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5326 pagecache_isize_extended(inode, oldsize, newsize);
5327 ret = btrfs_update_inode(trans, BTRFS_I(inode));
5328 btrfs_drew_write_unlock(&root->snapshot_lock);
5329 btrfs_end_transaction(trans);
5330 } else {
5331 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5332
5333 if (btrfs_is_zoned(fs_info)) {
5334 ret = btrfs_wait_ordered_range(BTRFS_I(inode),
5335 ALIGN(newsize, fs_info->sectorsize),
5336 (u64)-1);
5337 if (ret)
5338 return ret;
5339 }
5340
5341 /*
5342 * We're truncating a file that used to have good data down to
5343 * zero. Make sure any new writes to the file get on disk
5344 * on close.
5345 */
5346 if (newsize == 0)
5347 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5348 &BTRFS_I(inode)->runtime_flags);
5349
5350 truncate_setsize(inode, newsize);
5351
5352 inode_dio_wait(inode);
5353
5354 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5355 if (ret && inode->i_nlink) {
5356 int ret2;
5357
5358 /*
5359 * Truncate failed, so fix up the in-memory size. We
5360 * adjusted disk_i_size down as we removed extents, so
5361 * wait for disk_i_size to be stable and then update the
5362 * in-memory size to match.
5363 */
5364 ret2 = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
5365 if (ret2)
5366 return ret2;
5367 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5368 }
5369 }
5370
5371 return ret;
5372 }
5373
btrfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)5374 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5375 struct iattr *attr)
5376 {
5377 struct inode *inode = d_inode(dentry);
5378 struct btrfs_root *root = BTRFS_I(inode)->root;
5379 int ret;
5380
5381 if (btrfs_root_readonly(root))
5382 return -EROFS;
5383
5384 ret = setattr_prepare(idmap, dentry, attr);
5385 if (ret)
5386 return ret;
5387
5388 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5389 ret = btrfs_setsize(inode, attr);
5390 if (ret)
5391 return ret;
5392 }
5393
5394 if (attr->ia_valid) {
5395 setattr_copy(idmap, inode, attr);
5396 inode_inc_iversion(inode);
5397 ret = btrfs_dirty_inode(BTRFS_I(inode));
5398
5399 if (!ret && attr->ia_valid & ATTR_MODE)
5400 ret = posix_acl_chmod(idmap, dentry, inode->i_mode);
5401 }
5402
5403 return ret;
5404 }
5405
5406 /*
5407 * While truncating the inode pages during eviction, we get the VFS
5408 * calling btrfs_invalidate_folio() against each folio of the inode. This
5409 * is slow because the calls to btrfs_invalidate_folio() result in a
5410 * huge amount of calls to lock_extent() and clear_extent_bit(),
5411 * which keep merging and splitting extent_state structures over and over,
5412 * wasting lots of time.
5413 *
5414 * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5415 * skip all those expensive operations on a per folio basis and do only
5416 * the ordered io finishing, while we release here the extent_map and
5417 * extent_state structures, without the excessive merging and splitting.
5418 */
evict_inode_truncate_pages(struct inode * inode)5419 static void evict_inode_truncate_pages(struct inode *inode)
5420 {
5421 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5422 struct rb_node *node;
5423
5424 ASSERT(inode_state_read_once(inode) & I_FREEING);
5425 truncate_inode_pages_final(&inode->i_data);
5426
5427 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5428
5429 /*
5430 * Keep looping until we have no more ranges in the io tree.
5431 * We can have ongoing bios started by readahead that have
5432 * their endio callback (extent_io.c:end_bio_extent_readpage)
5433 * still in progress (unlocked the pages in the bio but did not yet
5434 * unlocked the ranges in the io tree). Therefore this means some
5435 * ranges can still be locked and eviction started because before
5436 * submitting those bios, which are executed by a separate task (work
5437 * queue kthread), inode references (inode->i_count) were not taken
5438 * (which would be dropped in the end io callback of each bio).
5439 * Therefore here we effectively end up waiting for those bios and
5440 * anyone else holding locked ranges without having bumped the inode's
5441 * reference count - if we don't do it, when they access the inode's
5442 * io_tree to unlock a range it may be too late, leading to an
5443 * use-after-free issue.
5444 */
5445 spin_lock(&io_tree->lock);
5446 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5447 struct extent_state *state;
5448 struct extent_state *cached_state = NULL;
5449 u64 start;
5450 u64 end;
5451 unsigned state_flags;
5452
5453 node = rb_first(&io_tree->state);
5454 state = rb_entry(node, struct extent_state, rb_node);
5455 start = state->start;
5456 end = state->end;
5457 state_flags = state->state;
5458 spin_unlock(&io_tree->lock);
5459
5460 btrfs_lock_extent(io_tree, start, end, &cached_state);
5461
5462 /*
5463 * If still has DELALLOC flag, the extent didn't reach disk,
5464 * and its reserved space won't be freed by delayed_ref.
5465 * So we need to free its reserved space here.
5466 * (Refer to comment in btrfs_invalidate_folio, case 2)
5467 *
5468 * Note, end is the bytenr of last byte, so we need + 1 here.
5469 */
5470 if (state_flags & EXTENT_DELALLOC)
5471 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5472 end - start + 1, NULL);
5473
5474 btrfs_clear_extent_bit(io_tree, start, end,
5475 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5476 &cached_state);
5477
5478 cond_resched();
5479 spin_lock(&io_tree->lock);
5480 }
5481 spin_unlock(&io_tree->lock);
5482 }
5483
evict_refill_and_join(struct btrfs_root * root,struct btrfs_block_rsv * rsv)5484 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5485 struct btrfs_block_rsv *rsv)
5486 {
5487 struct btrfs_fs_info *fs_info = root->fs_info;
5488 struct btrfs_trans_handle *trans;
5489 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5490 int ret;
5491
5492 /*
5493 * Eviction should be taking place at some place safe because of our
5494 * delayed iputs. However the normal flushing code will run delayed
5495 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5496 *
5497 * We reserve the delayed_refs_extra here again because we can't use
5498 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5499 * above. We reserve our extra bit here because we generate a ton of
5500 * delayed refs activity by truncating.
5501 *
5502 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5503 * if we fail to make this reservation we can re-try without the
5504 * delayed_refs_extra so we can make some forward progress.
5505 */
5506 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5507 BTRFS_RESERVE_FLUSH_EVICT);
5508 if (ret) {
5509 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5510 BTRFS_RESERVE_FLUSH_EVICT);
5511 if (ret) {
5512 btrfs_warn(fs_info,
5513 "could not allocate space for delete; will truncate on mount");
5514 return ERR_PTR(-ENOSPC);
5515 }
5516 delayed_refs_extra = 0;
5517 }
5518
5519 trans = btrfs_join_transaction(root);
5520 if (IS_ERR(trans))
5521 return trans;
5522
5523 if (delayed_refs_extra) {
5524 trans->block_rsv = &fs_info->trans_block_rsv;
5525 trans->bytes_reserved = delayed_refs_extra;
5526 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5527 delayed_refs_extra, true);
5528 }
5529 return trans;
5530 }
5531
btrfs_evict_inode(struct inode * inode)5532 void btrfs_evict_inode(struct inode *inode)
5533 {
5534 struct btrfs_fs_info *fs_info;
5535 struct btrfs_trans_handle *trans;
5536 struct btrfs_root *root = BTRFS_I(inode)->root;
5537 struct btrfs_block_rsv rsv;
5538 int ret;
5539
5540 trace_btrfs_inode_evict(inode);
5541
5542 if (!root) {
5543 fsverity_cleanup_inode(inode);
5544 clear_inode(inode);
5545 return;
5546 }
5547
5548 fs_info = inode_to_fs_info(inode);
5549 evict_inode_truncate_pages(inode);
5550
5551 if (inode->i_nlink &&
5552 ((btrfs_root_refs(&root->root_item) != 0 &&
5553 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) ||
5554 btrfs_is_free_space_inode(BTRFS_I(inode))))
5555 goto out;
5556
5557 if (is_bad_inode(inode))
5558 goto out;
5559
5560 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5561 goto out;
5562
5563 if (inode->i_nlink > 0) {
5564 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5565 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID);
5566 goto out;
5567 }
5568
5569 /*
5570 * This makes sure the inode item in tree is uptodate and the space for
5571 * the inode update is released.
5572 */
5573 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5574 if (ret)
5575 goto out;
5576
5577 /*
5578 * This drops any pending insert or delete operations we have for this
5579 * inode. We could have a delayed dir index deletion queued up, but
5580 * we're removing the inode completely so that'll be taken care of in
5581 * the truncate.
5582 */
5583 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5584
5585 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP);
5586 rsv.size = btrfs_calc_metadata_size(fs_info, 1);
5587 rsv.failfast = true;
5588
5589 btrfs_i_size_write(BTRFS_I(inode), 0);
5590
5591 while (1) {
5592 struct btrfs_truncate_control control = {
5593 .inode = BTRFS_I(inode),
5594 .ino = btrfs_ino(BTRFS_I(inode)),
5595 .new_size = 0,
5596 .min_type = 0,
5597 };
5598
5599 trans = evict_refill_and_join(root, &rsv);
5600 if (IS_ERR(trans))
5601 goto out_release;
5602
5603 trans->block_rsv = &rsv;
5604
5605 ret = btrfs_truncate_inode_items(trans, root, &control);
5606 trans->block_rsv = &fs_info->trans_block_rsv;
5607 btrfs_end_transaction(trans);
5608 /*
5609 * We have not added new delayed items for our inode after we
5610 * have flushed its delayed items, so no need to throttle on
5611 * delayed items. However we have modified extent buffers.
5612 */
5613 btrfs_btree_balance_dirty_nodelay(fs_info);
5614 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5615 goto out_release;
5616 else if (!ret)
5617 break;
5618 }
5619
5620 /*
5621 * Errors here aren't a big deal, it just means we leave orphan items in
5622 * the tree. They will be cleaned up on the next mount. If the inode
5623 * number gets reused, cleanup deletes the orphan item without doing
5624 * anything, and unlink reuses the existing orphan item.
5625 *
5626 * If it turns out that we are dropping too many of these, we might want
5627 * to add a mechanism for retrying these after a commit.
5628 */
5629 trans = evict_refill_and_join(root, &rsv);
5630 if (!IS_ERR(trans)) {
5631 trans->block_rsv = &rsv;
5632 btrfs_orphan_del(trans, BTRFS_I(inode));
5633 trans->block_rsv = &fs_info->trans_block_rsv;
5634 btrfs_end_transaction(trans);
5635 }
5636
5637 out_release:
5638 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL);
5639 out:
5640 /*
5641 * If we didn't successfully delete, the orphan item will still be in
5642 * the tree and we'll retry on the next mount. Again, we might also want
5643 * to retry these periodically in the future.
5644 */
5645 btrfs_remove_delayed_node(BTRFS_I(inode));
5646 fsverity_cleanup_inode(inode);
5647 clear_inode(inode);
5648 }
5649
5650 /*
5651 * Return the key found in the dir entry in the location pointer, fill @type
5652 * with BTRFS_FT_*, and return 0.
5653 *
5654 * If no dir entries were found, returns -ENOENT.
5655 * If found a corrupted location in dir entry, returns -EUCLEAN.
5656 */
btrfs_inode_by_name(struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_key * location,u8 * type)5657 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5658 struct btrfs_key *location, u8 *type)
5659 {
5660 struct btrfs_dir_item *di;
5661 BTRFS_PATH_AUTO_FREE(path);
5662 struct btrfs_root *root = dir->root;
5663 int ret = 0;
5664 struct fscrypt_name fname;
5665
5666 path = btrfs_alloc_path();
5667 if (!path)
5668 return -ENOMEM;
5669
5670 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5671 if (ret < 0)
5672 return ret;
5673 /*
5674 * fscrypt_setup_filename() should never return a positive value, but
5675 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5676 */
5677 ASSERT(ret == 0);
5678
5679 /* This needs to handle no-key deletions later on */
5680
5681 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5682 &fname.disk_name, 0);
5683 if (IS_ERR_OR_NULL(di)) {
5684 ret = di ? PTR_ERR(di) : -ENOENT;
5685 goto out;
5686 }
5687
5688 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5689 if (unlikely(location->type != BTRFS_INODE_ITEM_KEY &&
5690 location->type != BTRFS_ROOT_ITEM_KEY)) {
5691 ret = -EUCLEAN;
5692 btrfs_warn(root->fs_info,
5693 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location " BTRFS_KEY_FMT ")",
5694 __func__, fname.disk_name.name, btrfs_ino(dir),
5695 BTRFS_KEY_FMT_VALUE(location));
5696 }
5697 if (!ret)
5698 *type = btrfs_dir_ftype(path->nodes[0], di);
5699 out:
5700 fscrypt_free_filename(&fname);
5701 return ret;
5702 }
5703
5704 /*
5705 * when we hit a tree root in a directory, the btrfs part of the inode
5706 * needs to be changed to reflect the root directory of the tree root. This
5707 * is kind of like crossing a mount point.
5708 */
fixup_tree_root_location(struct btrfs_fs_info * fs_info,struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_key * location,struct btrfs_root ** sub_root)5709 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5710 struct btrfs_inode *dir,
5711 struct dentry *dentry,
5712 struct btrfs_key *location,
5713 struct btrfs_root **sub_root)
5714 {
5715 BTRFS_PATH_AUTO_FREE(path);
5716 struct btrfs_root *new_root;
5717 struct btrfs_root_ref *ref;
5718 struct extent_buffer *leaf;
5719 struct btrfs_key key;
5720 int ret;
5721 int err = 0;
5722 struct fscrypt_name fname;
5723
5724 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5725 if (ret)
5726 return ret;
5727
5728 path = btrfs_alloc_path();
5729 if (!path) {
5730 err = -ENOMEM;
5731 goto out;
5732 }
5733
5734 err = -ENOENT;
5735 key.objectid = btrfs_root_id(dir->root);
5736 key.type = BTRFS_ROOT_REF_KEY;
5737 key.offset = location->objectid;
5738
5739 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5740 if (ret) {
5741 if (ret < 0)
5742 err = ret;
5743 goto out;
5744 }
5745
5746 leaf = path->nodes[0];
5747 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5748 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5749 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5750 goto out;
5751
5752 ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5753 (unsigned long)(ref + 1), fname.disk_name.len);
5754 if (ret)
5755 goto out;
5756
5757 btrfs_release_path(path);
5758
5759 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5760 if (IS_ERR(new_root)) {
5761 err = PTR_ERR(new_root);
5762 goto out;
5763 }
5764
5765 *sub_root = new_root;
5766 location->objectid = btrfs_root_dirid(&new_root->root_item);
5767 location->type = BTRFS_INODE_ITEM_KEY;
5768 location->offset = 0;
5769 err = 0;
5770 out:
5771 fscrypt_free_filename(&fname);
5772 return err;
5773 }
5774
5775
5776
btrfs_del_inode_from_root(struct btrfs_inode * inode)5777 static void btrfs_del_inode_from_root(struct btrfs_inode *inode)
5778 {
5779 struct btrfs_root *root = inode->root;
5780 struct btrfs_inode *entry;
5781 bool empty = false;
5782
5783 xa_lock(&root->inodes);
5784 /*
5785 * This btrfs_inode is being freed and has already been unhashed at this
5786 * point. It's possible that another btrfs_inode has already been
5787 * allocated for the same inode and inserted itself into the root, so
5788 * don't delete it in that case.
5789 *
5790 * Note that this shouldn't need to allocate memory, so the gfp flags
5791 * don't really matter.
5792 */
5793 entry = __xa_cmpxchg(&root->inodes, btrfs_ino(inode), inode, NULL,
5794 GFP_ATOMIC);
5795 if (entry == inode)
5796 empty = xa_empty(&root->inodes);
5797 xa_unlock(&root->inodes);
5798
5799 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5800 xa_lock(&root->inodes);
5801 empty = xa_empty(&root->inodes);
5802 xa_unlock(&root->inodes);
5803 if (empty)
5804 btrfs_add_dead_root(root);
5805 }
5806 }
5807
5808
btrfs_init_locked_inode(struct inode * inode,void * p)5809 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5810 {
5811 struct btrfs_iget_args *args = p;
5812
5813 btrfs_set_inode_number(BTRFS_I(inode), args->ino);
5814 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5815
5816 if (args->root && args->root == args->root->fs_info->tree_root &&
5817 args->ino != BTRFS_BTREE_INODE_OBJECTID)
5818 set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5819 &BTRFS_I(inode)->runtime_flags);
5820 return 0;
5821 }
5822
btrfs_find_actor(struct inode * inode,void * opaque)5823 static int btrfs_find_actor(struct inode *inode, void *opaque)
5824 {
5825 struct btrfs_iget_args *args = opaque;
5826
5827 return args->ino == btrfs_ino(BTRFS_I(inode)) &&
5828 args->root == BTRFS_I(inode)->root;
5829 }
5830
btrfs_iget_locked(u64 ino,struct btrfs_root * root)5831 static struct btrfs_inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root)
5832 {
5833 struct inode *inode;
5834 struct btrfs_iget_args args;
5835 unsigned long hashval = btrfs_inode_hash(ino, root);
5836
5837 args.ino = ino;
5838 args.root = root;
5839
5840 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor,
5841 btrfs_init_locked_inode,
5842 (void *)&args);
5843 if (!inode)
5844 return NULL;
5845 return BTRFS_I(inode);
5846 }
5847
5848 /*
5849 * Get an inode object given its inode number and corresponding root. Path is
5850 * preallocated to prevent recursing back to iget through allocator.
5851 */
btrfs_iget_path(u64 ino,struct btrfs_root * root,struct btrfs_path * path)5852 struct btrfs_inode *btrfs_iget_path(u64 ino, struct btrfs_root *root,
5853 struct btrfs_path *path)
5854 {
5855 struct btrfs_inode *inode;
5856 int ret;
5857
5858 inode = btrfs_iget_locked(ino, root);
5859 if (!inode)
5860 return ERR_PTR(-ENOMEM);
5861
5862 if (!(inode_state_read_once(&inode->vfs_inode) & I_NEW))
5863 return inode;
5864
5865 ret = btrfs_read_locked_inode(inode, path);
5866 if (ret)
5867 return ERR_PTR(ret);
5868
5869 unlock_new_inode(&inode->vfs_inode);
5870 return inode;
5871 }
5872
5873 /*
5874 * Get an inode object given its inode number and corresponding root.
5875 */
btrfs_iget(u64 ino,struct btrfs_root * root)5876 struct btrfs_inode *btrfs_iget(u64 ino, struct btrfs_root *root)
5877 {
5878 struct btrfs_inode *inode;
5879 struct btrfs_path *path;
5880 int ret;
5881
5882 inode = btrfs_iget_locked(ino, root);
5883 if (!inode)
5884 return ERR_PTR(-ENOMEM);
5885
5886 if (!(inode_state_read_once(&inode->vfs_inode) & I_NEW))
5887 return inode;
5888
5889 path = btrfs_alloc_path();
5890 if (!path) {
5891 iget_failed(&inode->vfs_inode);
5892 return ERR_PTR(-ENOMEM);
5893 }
5894
5895 ret = btrfs_read_locked_inode(inode, path);
5896 btrfs_free_path(path);
5897 if (ret)
5898 return ERR_PTR(ret);
5899
5900 if (S_ISDIR(inode->vfs_inode.i_mode))
5901 inode->vfs_inode.i_opflags |= IOP_FASTPERM_MAY_EXEC;
5902 unlock_new_inode(&inode->vfs_inode);
5903 return inode;
5904 }
5905
new_simple_dir(struct inode * dir,struct btrfs_key * key,struct btrfs_root * root)5906 static struct btrfs_inode *new_simple_dir(struct inode *dir,
5907 struct btrfs_key *key,
5908 struct btrfs_root *root)
5909 {
5910 struct timespec64 ts;
5911 struct inode *vfs_inode;
5912 struct btrfs_inode *inode;
5913
5914 vfs_inode = new_inode(dir->i_sb);
5915 if (!vfs_inode)
5916 return ERR_PTR(-ENOMEM);
5917
5918 inode = BTRFS_I(vfs_inode);
5919 inode->root = btrfs_grab_root(root);
5920 inode->ref_root_id = key->objectid;
5921 set_bit(BTRFS_INODE_ROOT_STUB, &inode->runtime_flags);
5922 set_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags);
5923
5924 btrfs_set_inode_number(inode, BTRFS_EMPTY_SUBVOL_DIR_OBJECTID);
5925 /*
5926 * We only need lookup, the rest is read-only and there's no inode
5927 * associated with the dentry
5928 */
5929 vfs_inode->i_op = &simple_dir_inode_operations;
5930 vfs_inode->i_opflags &= ~IOP_XATTR;
5931 vfs_inode->i_fop = &simple_dir_operations;
5932 vfs_inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5933
5934 ts = inode_set_ctime_current(vfs_inode);
5935 inode_set_mtime_to_ts(vfs_inode, ts);
5936 inode_set_atime_to_ts(vfs_inode, inode_get_atime(dir));
5937 inode->i_otime_sec = ts.tv_sec;
5938 inode->i_otime_nsec = ts.tv_nsec;
5939
5940 vfs_inode->i_uid = dir->i_uid;
5941 vfs_inode->i_gid = dir->i_gid;
5942
5943 return inode;
5944 }
5945
5946 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5947 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5948 static_assert(BTRFS_FT_DIR == FT_DIR);
5949 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5950 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5951 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5952 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5953 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5954
btrfs_inode_type(const struct btrfs_inode * inode)5955 static inline u8 btrfs_inode_type(const struct btrfs_inode *inode)
5956 {
5957 return fs_umode_to_ftype(inode->vfs_inode.i_mode);
5958 }
5959
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)5960 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5961 {
5962 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
5963 struct btrfs_inode *inode;
5964 struct btrfs_root *root = BTRFS_I(dir)->root;
5965 struct btrfs_root *sub_root = root;
5966 struct btrfs_key location = { 0 };
5967 u8 di_type = 0;
5968 int ret = 0;
5969
5970 if (dentry->d_name.len > BTRFS_NAME_LEN)
5971 return ERR_PTR(-ENAMETOOLONG);
5972
5973 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5974 if (ret < 0)
5975 return ERR_PTR(ret);
5976
5977 if (location.type == BTRFS_INODE_ITEM_KEY) {
5978 inode = btrfs_iget(location.objectid, root);
5979 if (IS_ERR(inode))
5980 return ERR_CAST(inode);
5981
5982 /* Do extra check against inode mode with di_type */
5983 if (unlikely(btrfs_inode_type(inode) != di_type)) {
5984 btrfs_crit(fs_info,
5985 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5986 inode->vfs_inode.i_mode, btrfs_inode_type(inode),
5987 di_type);
5988 iput(&inode->vfs_inode);
5989 return ERR_PTR(-EUCLEAN);
5990 }
5991 return &inode->vfs_inode;
5992 }
5993
5994 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5995 &location, &sub_root);
5996 if (ret < 0) {
5997 if (ret != -ENOENT)
5998 inode = ERR_PTR(ret);
5999 else
6000 inode = new_simple_dir(dir, &location, root);
6001 } else {
6002 inode = btrfs_iget(location.objectid, sub_root);
6003 btrfs_put_root(sub_root);
6004
6005 if (IS_ERR(inode))
6006 return ERR_CAST(inode);
6007
6008 down_read(&fs_info->cleanup_work_sem);
6009 if (!sb_rdonly(inode->vfs_inode.i_sb))
6010 ret = btrfs_orphan_cleanup(sub_root);
6011 up_read(&fs_info->cleanup_work_sem);
6012 if (ret) {
6013 iput(&inode->vfs_inode);
6014 inode = ERR_PTR(ret);
6015 }
6016 }
6017
6018 if (IS_ERR(inode))
6019 return ERR_CAST(inode);
6020
6021 return &inode->vfs_inode;
6022 }
6023
btrfs_dentry_delete(const struct dentry * dentry)6024 static int btrfs_dentry_delete(const struct dentry *dentry)
6025 {
6026 struct btrfs_root *root;
6027 struct inode *inode = d_inode(dentry);
6028
6029 if (!inode && !IS_ROOT(dentry))
6030 inode = d_inode(dentry->d_parent);
6031
6032 if (inode) {
6033 root = BTRFS_I(inode)->root;
6034 if (btrfs_root_refs(&root->root_item) == 0)
6035 return 1;
6036
6037 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6038 return 1;
6039 }
6040 return 0;
6041 }
6042
btrfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)6043 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
6044 unsigned int flags)
6045 {
6046 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
6047
6048 if (inode == ERR_PTR(-ENOENT))
6049 inode = NULL;
6050 return d_splice_alias(inode, dentry);
6051 }
6052
6053 /*
6054 * Find the highest existing sequence number in a directory and then set the
6055 * in-memory index_cnt variable to the first free sequence number.
6056 */
btrfs_set_inode_index_count(struct btrfs_inode * inode)6057 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6058 {
6059 struct btrfs_root *root = inode->root;
6060 struct btrfs_key key, found_key;
6061 BTRFS_PATH_AUTO_FREE(path);
6062 struct extent_buffer *leaf;
6063 int ret;
6064
6065 key.objectid = btrfs_ino(inode);
6066 key.type = BTRFS_DIR_INDEX_KEY;
6067 key.offset = (u64)-1;
6068
6069 path = btrfs_alloc_path();
6070 if (!path)
6071 return -ENOMEM;
6072
6073 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6074 if (ret < 0)
6075 return ret;
6076 /* FIXME: we should be able to handle this */
6077 if (ret == 0)
6078 return ret;
6079
6080 if (path->slots[0] == 0) {
6081 inode->index_cnt = BTRFS_DIR_START_INDEX;
6082 return 0;
6083 }
6084
6085 path->slots[0]--;
6086
6087 leaf = path->nodes[0];
6088 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6089
6090 if (found_key.objectid != btrfs_ino(inode) ||
6091 found_key.type != BTRFS_DIR_INDEX_KEY) {
6092 inode->index_cnt = BTRFS_DIR_START_INDEX;
6093 return 0;
6094 }
6095
6096 inode->index_cnt = found_key.offset + 1;
6097
6098 return 0;
6099 }
6100
btrfs_get_dir_last_index(struct btrfs_inode * dir,u64 * index)6101 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
6102 {
6103 int ret = 0;
6104
6105 btrfs_inode_lock(dir, 0);
6106 if (dir->index_cnt == (u64)-1) {
6107 ret = btrfs_inode_delayed_dir_index_count(dir);
6108 if (ret) {
6109 ret = btrfs_set_inode_index_count(dir);
6110 if (ret)
6111 goto out;
6112 }
6113 }
6114
6115 /* index_cnt is the index number of next new entry, so decrement it. */
6116 *index = dir->index_cnt - 1;
6117 out:
6118 btrfs_inode_unlock(dir, 0);
6119
6120 return ret;
6121 }
6122
6123 /*
6124 * All this infrastructure exists because dir_emit can fault, and we are holding
6125 * the tree lock when doing readdir. For now just allocate a buffer and copy
6126 * our information into that, and then dir_emit from the buffer. This is
6127 * similar to what NFS does, only we don't keep the buffer around in pagecache
6128 * because I'm afraid I'll mess that up. Long term we need to make filldir do
6129 * copy_to_user_inatomic so we don't have to worry about page faulting under the
6130 * tree lock.
6131 */
btrfs_opendir(struct inode * inode,struct file * file)6132 static int btrfs_opendir(struct inode *inode, struct file *file)
6133 {
6134 struct btrfs_file_private *private;
6135 u64 last_index;
6136 int ret;
6137
6138 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
6139 if (ret)
6140 return ret;
6141
6142 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
6143 if (!private)
6144 return -ENOMEM;
6145 private->last_index = last_index;
6146 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
6147 if (!private->filldir_buf) {
6148 kfree(private);
6149 return -ENOMEM;
6150 }
6151 file->private_data = private;
6152 return 0;
6153 }
6154
btrfs_dir_llseek(struct file * file,loff_t offset,int whence)6155 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
6156 {
6157 struct btrfs_file_private *private = file->private_data;
6158 int ret;
6159
6160 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
6161 &private->last_index);
6162 if (ret)
6163 return ret;
6164
6165 return generic_file_llseek(file, offset, whence);
6166 }
6167
6168 struct dir_entry {
6169 u64 ino;
6170 u64 offset;
6171 unsigned type;
6172 int name_len;
6173 };
6174
btrfs_filldir(void * addr,int entries,struct dir_context * ctx)6175 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
6176 {
6177 while (entries--) {
6178 struct dir_entry *entry = addr;
6179 char *name = (char *)(entry + 1);
6180
6181 ctx->pos = get_unaligned(&entry->offset);
6182 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
6183 get_unaligned(&entry->ino),
6184 get_unaligned(&entry->type)))
6185 return 1;
6186 addr += sizeof(struct dir_entry) +
6187 get_unaligned(&entry->name_len);
6188 ctx->pos++;
6189 }
6190 return 0;
6191 }
6192
btrfs_real_readdir(struct file * file,struct dir_context * ctx)6193 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
6194 {
6195 struct inode *inode = file_inode(file);
6196 struct btrfs_root *root = BTRFS_I(inode)->root;
6197 struct btrfs_file_private *private = file->private_data;
6198 struct btrfs_dir_item *di;
6199 struct btrfs_key key;
6200 struct btrfs_key found_key;
6201 BTRFS_PATH_AUTO_FREE(path);
6202 void *addr;
6203 LIST_HEAD(ins_list);
6204 LIST_HEAD(del_list);
6205 int ret;
6206 char *name_ptr;
6207 int name_len;
6208 int entries = 0;
6209 int total_len = 0;
6210 bool put = false;
6211 struct btrfs_key location;
6212
6213 if (!dir_emit_dots(file, ctx))
6214 return 0;
6215
6216 path = btrfs_alloc_path();
6217 if (!path)
6218 return -ENOMEM;
6219
6220 addr = private->filldir_buf;
6221 path->reada = READA_FORWARD;
6222
6223 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index,
6224 &ins_list, &del_list);
6225
6226 again:
6227 key.type = BTRFS_DIR_INDEX_KEY;
6228 key.offset = ctx->pos;
6229 key.objectid = btrfs_ino(BTRFS_I(inode));
6230
6231 btrfs_for_each_slot(root, &key, &found_key, path, ret) {
6232 struct dir_entry *entry;
6233 struct extent_buffer *leaf = path->nodes[0];
6234 u8 ftype;
6235
6236 if (found_key.objectid != key.objectid)
6237 break;
6238 if (found_key.type != BTRFS_DIR_INDEX_KEY)
6239 break;
6240 if (found_key.offset < ctx->pos)
6241 continue;
6242 if (found_key.offset > private->last_index)
6243 break;
6244 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6245 continue;
6246 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
6247 name_len = btrfs_dir_name_len(leaf, di);
6248 if ((total_len + sizeof(struct dir_entry) + name_len) >=
6249 PAGE_SIZE) {
6250 btrfs_release_path(path);
6251 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6252 if (ret)
6253 goto nopos;
6254 addr = private->filldir_buf;
6255 entries = 0;
6256 total_len = 0;
6257 goto again;
6258 }
6259
6260 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
6261 entry = addr;
6262 name_ptr = (char *)(entry + 1);
6263 read_extent_buffer(leaf, name_ptr,
6264 (unsigned long)(di + 1), name_len);
6265 put_unaligned(name_len, &entry->name_len);
6266 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
6267 btrfs_dir_item_key_to_cpu(leaf, di, &location);
6268 put_unaligned(location.objectid, &entry->ino);
6269 put_unaligned(found_key.offset, &entry->offset);
6270 entries++;
6271 addr += sizeof(struct dir_entry) + name_len;
6272 total_len += sizeof(struct dir_entry) + name_len;
6273 }
6274 /* Catch error encountered during iteration */
6275 if (ret < 0)
6276 goto err;
6277
6278 btrfs_release_path(path);
6279
6280 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6281 if (ret)
6282 goto nopos;
6283
6284 if (btrfs_readdir_delayed_dir_index(ctx, &ins_list))
6285 goto nopos;
6286
6287 /*
6288 * Stop new entries from being returned after we return the last
6289 * entry.
6290 *
6291 * New directory entries are assigned a strictly increasing
6292 * offset. This means that new entries created during readdir
6293 * are *guaranteed* to be seen in the future by that readdir.
6294 * This has broken buggy programs which operate on names as
6295 * they're returned by readdir. Until we reuse freed offsets
6296 * we have this hack to stop new entries from being returned
6297 * under the assumption that they'll never reach this huge
6298 * offset.
6299 *
6300 * This is being careful not to overflow 32bit loff_t unless the
6301 * last entry requires it because doing so has broken 32bit apps
6302 * in the past.
6303 */
6304 if (ctx->pos >= INT_MAX)
6305 ctx->pos = LLONG_MAX;
6306 else
6307 ctx->pos = INT_MAX;
6308 nopos:
6309 ret = 0;
6310 err:
6311 if (put)
6312 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list);
6313 return ret;
6314 }
6315
6316 /*
6317 * This is somewhat expensive, updating the tree every time the
6318 * inode changes. But, it is most likely to find the inode in cache.
6319 * FIXME, needs more benchmarking...there are no reasons other than performance
6320 * to keep or drop this code.
6321 */
btrfs_dirty_inode(struct btrfs_inode * inode)6322 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6323 {
6324 struct btrfs_root *root = inode->root;
6325 struct btrfs_fs_info *fs_info = root->fs_info;
6326 struct btrfs_trans_handle *trans;
6327 int ret;
6328
6329 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6330 return 0;
6331
6332 trans = btrfs_join_transaction(root);
6333 if (IS_ERR(trans))
6334 return PTR_ERR(trans);
6335
6336 ret = btrfs_update_inode(trans, inode);
6337 if (ret == -ENOSPC || ret == -EDQUOT) {
6338 /* whoops, lets try again with the full transaction */
6339 btrfs_end_transaction(trans);
6340 trans = btrfs_start_transaction(root, 1);
6341 if (IS_ERR(trans))
6342 return PTR_ERR(trans);
6343
6344 ret = btrfs_update_inode(trans, inode);
6345 }
6346 btrfs_end_transaction(trans);
6347 if (inode->delayed_node)
6348 btrfs_balance_delayed_items(fs_info);
6349
6350 return ret;
6351 }
6352
6353 /*
6354 * We need our own ->update_time so that we can return error on ENOSPC for
6355 * updating the inode in the case of file write and mmap writes.
6356 */
btrfs_update_time(struct inode * inode,int flags)6357 static int btrfs_update_time(struct inode *inode, int flags)
6358 {
6359 struct btrfs_root *root = BTRFS_I(inode)->root;
6360 bool dirty;
6361
6362 if (btrfs_root_readonly(root))
6363 return -EROFS;
6364
6365 dirty = inode_update_timestamps(inode, flags);
6366 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6367 }
6368
6369 /*
6370 * helper to find a free sequence number in a given directory. This current
6371 * code is very simple, later versions will do smarter things in the btree
6372 */
btrfs_set_inode_index(struct btrfs_inode * dir,u64 * index)6373 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6374 {
6375 int ret = 0;
6376
6377 if (dir->index_cnt == (u64)-1) {
6378 ret = btrfs_inode_delayed_dir_index_count(dir);
6379 if (ret) {
6380 ret = btrfs_set_inode_index_count(dir);
6381 if (ret)
6382 return ret;
6383 }
6384 }
6385
6386 *index = dir->index_cnt;
6387 dir->index_cnt++;
6388
6389 return ret;
6390 }
6391
btrfs_insert_inode_locked(struct inode * inode)6392 static int btrfs_insert_inode_locked(struct inode *inode)
6393 {
6394 struct btrfs_iget_args args;
6395
6396 args.ino = btrfs_ino(BTRFS_I(inode));
6397 args.root = BTRFS_I(inode)->root;
6398
6399 return insert_inode_locked4(inode,
6400 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6401 btrfs_find_actor, &args);
6402 }
6403
btrfs_new_inode_prepare(struct btrfs_new_inode_args * args,unsigned int * trans_num_items)6404 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6405 unsigned int *trans_num_items)
6406 {
6407 struct inode *dir = args->dir;
6408 struct inode *inode = args->inode;
6409 int ret;
6410
6411 if (!args->orphan) {
6412 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6413 &args->fname);
6414 if (ret)
6415 return ret;
6416 }
6417
6418 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6419 if (ret) {
6420 fscrypt_free_filename(&args->fname);
6421 return ret;
6422 }
6423
6424 /* 1 to add inode item */
6425 *trans_num_items = 1;
6426 /* 1 to add compression property */
6427 if (BTRFS_I(dir)->prop_compress)
6428 (*trans_num_items)++;
6429 /* 1 to add default ACL xattr */
6430 if (args->default_acl)
6431 (*trans_num_items)++;
6432 /* 1 to add access ACL xattr */
6433 if (args->acl)
6434 (*trans_num_items)++;
6435 #ifdef CONFIG_SECURITY
6436 /* 1 to add LSM xattr */
6437 if (dir->i_security)
6438 (*trans_num_items)++;
6439 #endif
6440 if (args->orphan) {
6441 /* 1 to add orphan item */
6442 (*trans_num_items)++;
6443 } else {
6444 /*
6445 * 1 to add dir item
6446 * 1 to add dir index
6447 * 1 to update parent inode item
6448 *
6449 * No need for 1 unit for the inode ref item because it is
6450 * inserted in a batch together with the inode item at
6451 * btrfs_create_new_inode().
6452 */
6453 *trans_num_items += 3;
6454 }
6455 return 0;
6456 }
6457
btrfs_new_inode_args_destroy(struct btrfs_new_inode_args * args)6458 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6459 {
6460 posix_acl_release(args->acl);
6461 posix_acl_release(args->default_acl);
6462 fscrypt_free_filename(&args->fname);
6463 }
6464
6465 /*
6466 * Inherit flags from the parent inode.
6467 *
6468 * Currently only the compression flags and the cow flags are inherited.
6469 */
btrfs_inherit_iflags(struct btrfs_inode * inode,struct btrfs_inode * dir)6470 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6471 {
6472 unsigned int flags;
6473
6474 flags = dir->flags;
6475
6476 if (flags & BTRFS_INODE_NOCOMPRESS) {
6477 inode->flags &= ~BTRFS_INODE_COMPRESS;
6478 inode->flags |= BTRFS_INODE_NOCOMPRESS;
6479 } else if (flags & BTRFS_INODE_COMPRESS) {
6480 inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6481 inode->flags |= BTRFS_INODE_COMPRESS;
6482 }
6483
6484 if (flags & BTRFS_INODE_NODATACOW) {
6485 inode->flags |= BTRFS_INODE_NODATACOW;
6486 if (S_ISREG(inode->vfs_inode.i_mode))
6487 inode->flags |= BTRFS_INODE_NODATASUM;
6488 }
6489
6490 btrfs_sync_inode_flags_to_i_flags(inode);
6491 }
6492
btrfs_create_new_inode(struct btrfs_trans_handle * trans,struct btrfs_new_inode_args * args)6493 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6494 struct btrfs_new_inode_args *args)
6495 {
6496 struct timespec64 ts;
6497 struct inode *dir = args->dir;
6498 struct inode *inode = args->inode;
6499 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6500 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6501 struct btrfs_root *root;
6502 struct btrfs_inode_item *inode_item;
6503 struct btrfs_path *path;
6504 u64 objectid;
6505 struct btrfs_inode_ref *ref;
6506 struct btrfs_key key[2];
6507 u32 sizes[2];
6508 struct btrfs_item_batch batch;
6509 unsigned long ptr;
6510 int ret;
6511 bool xa_reserved = false;
6512
6513 path = btrfs_alloc_path();
6514 if (!path)
6515 return -ENOMEM;
6516
6517 if (!args->subvol)
6518 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6519 root = BTRFS_I(inode)->root;
6520
6521 ret = btrfs_init_file_extent_tree(BTRFS_I(inode));
6522 if (ret)
6523 goto out;
6524
6525 ret = btrfs_get_free_objectid(root, &objectid);
6526 if (ret)
6527 goto out;
6528 btrfs_set_inode_number(BTRFS_I(inode), objectid);
6529
6530 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS);
6531 if (ret)
6532 goto out;
6533 xa_reserved = true;
6534
6535 if (args->orphan) {
6536 /*
6537 * O_TMPFILE, set link count to 0, so that after this point, we
6538 * fill in an inode item with the correct link count.
6539 */
6540 set_nlink(inode, 0);
6541 } else {
6542 trace_btrfs_inode_request(dir);
6543
6544 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6545 if (ret)
6546 goto out;
6547 }
6548
6549 if (S_ISDIR(inode->i_mode))
6550 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6551
6552 BTRFS_I(inode)->generation = trans->transid;
6553 inode->i_generation = BTRFS_I(inode)->generation;
6554
6555 /*
6556 * We don't have any capability xattrs set here yet, shortcut any
6557 * queries for the xattrs here. If we add them later via the inode
6558 * security init path or any other path this flag will be cleared.
6559 */
6560 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags);
6561
6562 /*
6563 * Subvolumes don't inherit flags from their parent directory.
6564 * Originally this was probably by accident, but we probably can't
6565 * change it now without compatibility issues.
6566 */
6567 if (!args->subvol)
6568 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6569
6570 btrfs_set_inode_mapping_order(BTRFS_I(inode));
6571 if (S_ISREG(inode->i_mode)) {
6572 if (btrfs_test_opt(fs_info, NODATASUM))
6573 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6574 if (btrfs_test_opt(fs_info, NODATACOW))
6575 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6576 BTRFS_INODE_NODATASUM;
6577 btrfs_update_inode_mapping_flags(BTRFS_I(inode));
6578 }
6579
6580 ret = btrfs_insert_inode_locked(inode);
6581 if (ret < 0) {
6582 if (!args->orphan)
6583 BTRFS_I(dir)->index_cnt--;
6584 goto out;
6585 }
6586
6587 /*
6588 * We could have gotten an inode number from somebody who was fsynced
6589 * and then removed in this same transaction, so let's just set full
6590 * sync since it will be a full sync anyway and this will blow away the
6591 * old info in the log.
6592 */
6593 btrfs_set_inode_full_sync(BTRFS_I(inode));
6594
6595 key[0].objectid = objectid;
6596 key[0].type = BTRFS_INODE_ITEM_KEY;
6597 key[0].offset = 0;
6598
6599 sizes[0] = sizeof(struct btrfs_inode_item);
6600
6601 if (!args->orphan) {
6602 /*
6603 * Start new inodes with an inode_ref. This is slightly more
6604 * efficient for small numbers of hard links since they will
6605 * be packed into one item. Extended refs will kick in if we
6606 * add more hard links than can fit in the ref item.
6607 */
6608 key[1].objectid = objectid;
6609 key[1].type = BTRFS_INODE_REF_KEY;
6610 if (args->subvol) {
6611 key[1].offset = objectid;
6612 sizes[1] = 2 + sizeof(*ref);
6613 } else {
6614 key[1].offset = btrfs_ino(BTRFS_I(dir));
6615 sizes[1] = name->len + sizeof(*ref);
6616 }
6617 }
6618
6619 batch.keys = &key[0];
6620 batch.data_sizes = &sizes[0];
6621 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6622 batch.nr = args->orphan ? 1 : 2;
6623 ret = btrfs_insert_empty_items(trans, root, path, &batch);
6624 if (unlikely(ret != 0)) {
6625 btrfs_abort_transaction(trans, ret);
6626 goto discard;
6627 }
6628
6629 ts = simple_inode_init_ts(inode);
6630 BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
6631 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
6632
6633 /*
6634 * We're going to fill the inode item now, so at this point the inode
6635 * must be fully initialized.
6636 */
6637
6638 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6639 struct btrfs_inode_item);
6640 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6641 sizeof(*inode_item));
6642 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6643
6644 if (!args->orphan) {
6645 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6646 struct btrfs_inode_ref);
6647 ptr = (unsigned long)(ref + 1);
6648 if (args->subvol) {
6649 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6650 btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6651 write_extent_buffer(path->nodes[0], "..", ptr, 2);
6652 } else {
6653 btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6654 name->len);
6655 btrfs_set_inode_ref_index(path->nodes[0], ref,
6656 BTRFS_I(inode)->dir_index);
6657 write_extent_buffer(path->nodes[0], name->name, ptr,
6658 name->len);
6659 }
6660 }
6661
6662 /*
6663 * We don't need the path anymore, plus inheriting properties, adding
6664 * ACLs, security xattrs, orphan item or adding the link, will result in
6665 * allocating yet another path. So just free our path.
6666 */
6667 btrfs_free_path(path);
6668 path = NULL;
6669
6670 if (args->subvol) {
6671 struct btrfs_inode *parent;
6672
6673 /*
6674 * Subvolumes inherit properties from their parent subvolume,
6675 * not the directory they were created in.
6676 */
6677 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root);
6678 if (IS_ERR(parent)) {
6679 ret = PTR_ERR(parent);
6680 } else {
6681 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode),
6682 parent);
6683 iput(&parent->vfs_inode);
6684 }
6685 } else {
6686 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode),
6687 BTRFS_I(dir));
6688 }
6689 if (ret) {
6690 btrfs_err(fs_info,
6691 "error inheriting props for ino %llu (root %llu): %d",
6692 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret);
6693 }
6694
6695 /*
6696 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6697 * probably a bug.
6698 */
6699 if (!args->subvol) {
6700 ret = btrfs_init_inode_security(trans, args);
6701 if (unlikely(ret)) {
6702 btrfs_abort_transaction(trans, ret);
6703 goto discard;
6704 }
6705 }
6706
6707 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false);
6708 if (WARN_ON(ret)) {
6709 /* Shouldn't happen, we used xa_reserve() before. */
6710 btrfs_abort_transaction(trans, ret);
6711 goto discard;
6712 }
6713
6714 trace_btrfs_inode_new(inode);
6715 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6716
6717 btrfs_update_root_times(trans, root);
6718
6719 if (args->orphan) {
6720 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6721 if (unlikely(ret)) {
6722 btrfs_abort_transaction(trans, ret);
6723 goto discard;
6724 }
6725 } else {
6726 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6727 0, BTRFS_I(inode)->dir_index);
6728 if (unlikely(ret)) {
6729 btrfs_abort_transaction(trans, ret);
6730 goto discard;
6731 }
6732 }
6733
6734 return 0;
6735
6736 discard:
6737 /*
6738 * discard_new_inode() calls iput(), but the caller owns the reference
6739 * to the inode.
6740 */
6741 ihold(inode);
6742 discard_new_inode(inode);
6743 out:
6744 if (xa_reserved)
6745 xa_release(&root->inodes, objectid);
6746
6747 btrfs_free_path(path);
6748 return ret;
6749 }
6750
6751 /*
6752 * utility function to add 'inode' into 'parent_inode' with
6753 * a give name and a given sequence number.
6754 * if 'add_backref' is true, also insert a backref from the
6755 * inode to the parent directory.
6756 */
btrfs_add_link(struct btrfs_trans_handle * trans,struct btrfs_inode * parent_inode,struct btrfs_inode * inode,const struct fscrypt_str * name,bool add_backref,u64 index)6757 int btrfs_add_link(struct btrfs_trans_handle *trans,
6758 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6759 const struct fscrypt_str *name, bool add_backref, u64 index)
6760 {
6761 int ret = 0;
6762 struct btrfs_key key;
6763 struct btrfs_root *root = parent_inode->root;
6764 u64 ino = btrfs_ino(inode);
6765 u64 parent_ino = btrfs_ino(parent_inode);
6766
6767 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6768 memcpy(&key, &inode->root->root_key, sizeof(key));
6769 } else {
6770 key.objectid = ino;
6771 key.type = BTRFS_INODE_ITEM_KEY;
6772 key.offset = 0;
6773 }
6774
6775 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6776 ret = btrfs_add_root_ref(trans, key.objectid,
6777 btrfs_root_id(root), parent_ino,
6778 index, name);
6779 } else if (add_backref) {
6780 ret = btrfs_insert_inode_ref(trans, root, name,
6781 ino, parent_ino, index);
6782 }
6783
6784 /* Nothing to clean up yet */
6785 if (ret)
6786 return ret;
6787
6788 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6789 btrfs_inode_type(inode), index);
6790 if (ret == -EEXIST || ret == -EOVERFLOW)
6791 goto fail_dir_item;
6792 else if (unlikely(ret)) {
6793 btrfs_abort_transaction(trans, ret);
6794 return ret;
6795 }
6796
6797 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6798 name->len * 2);
6799 inode_inc_iversion(&parent_inode->vfs_inode);
6800 update_time_after_link_or_unlink(parent_inode);
6801
6802 ret = btrfs_update_inode(trans, parent_inode);
6803 if (ret)
6804 btrfs_abort_transaction(trans, ret);
6805 return ret;
6806
6807 fail_dir_item:
6808 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6809 u64 local_index;
6810 int ret2;
6811
6812 ret2 = btrfs_del_root_ref(trans, key.objectid, btrfs_root_id(root),
6813 parent_ino, &local_index, name);
6814 if (ret2)
6815 btrfs_abort_transaction(trans, ret2);
6816 } else if (add_backref) {
6817 int ret2;
6818
6819 ret2 = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, NULL);
6820 if (ret2)
6821 btrfs_abort_transaction(trans, ret2);
6822 }
6823
6824 /* Return the original error code */
6825 return ret;
6826 }
6827
btrfs_create_common(struct inode * dir,struct dentry * dentry,struct inode * inode)6828 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6829 struct inode *inode)
6830 {
6831 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6832 struct btrfs_root *root = BTRFS_I(dir)->root;
6833 struct btrfs_new_inode_args new_inode_args = {
6834 .dir = dir,
6835 .dentry = dentry,
6836 .inode = inode,
6837 };
6838 unsigned int trans_num_items;
6839 struct btrfs_trans_handle *trans;
6840 int ret;
6841
6842 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6843 if (ret)
6844 goto out_inode;
6845
6846 trans = btrfs_start_transaction(root, trans_num_items);
6847 if (IS_ERR(trans)) {
6848 ret = PTR_ERR(trans);
6849 goto out_new_inode_args;
6850 }
6851
6852 ret = btrfs_create_new_inode(trans, &new_inode_args);
6853 if (!ret) {
6854 if (S_ISDIR(inode->i_mode))
6855 inode->i_opflags |= IOP_FASTPERM_MAY_EXEC;
6856 d_instantiate_new(dentry, inode);
6857 }
6858
6859 btrfs_end_transaction(trans);
6860 btrfs_btree_balance_dirty(fs_info);
6861 out_new_inode_args:
6862 btrfs_new_inode_args_destroy(&new_inode_args);
6863 out_inode:
6864 if (ret)
6865 iput(inode);
6866 return ret;
6867 }
6868
btrfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)6869 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6870 struct dentry *dentry, umode_t mode, dev_t rdev)
6871 {
6872 struct inode *inode;
6873
6874 inode = new_inode(dir->i_sb);
6875 if (!inode)
6876 return -ENOMEM;
6877 inode_init_owner(idmap, inode, dir, mode);
6878 inode->i_op = &btrfs_special_inode_operations;
6879 init_special_inode(inode, inode->i_mode, rdev);
6880 return btrfs_create_common(dir, dentry, inode);
6881 }
6882
btrfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)6883 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6884 struct dentry *dentry, umode_t mode, bool excl)
6885 {
6886 struct inode *inode;
6887
6888 inode = new_inode(dir->i_sb);
6889 if (!inode)
6890 return -ENOMEM;
6891 inode_init_owner(idmap, inode, dir, mode);
6892 inode->i_fop = &btrfs_file_operations;
6893 inode->i_op = &btrfs_file_inode_operations;
6894 inode->i_mapping->a_ops = &btrfs_aops;
6895 return btrfs_create_common(dir, dentry, inode);
6896 }
6897
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)6898 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6899 struct dentry *dentry)
6900 {
6901 struct btrfs_trans_handle *trans = NULL;
6902 struct btrfs_root *root = BTRFS_I(dir)->root;
6903 struct inode *inode = d_inode(old_dentry);
6904 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
6905 struct fscrypt_name fname;
6906 u64 index;
6907 int ret;
6908
6909 /* do not allow sys_link's with other subvols of the same device */
6910 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root))
6911 return -EXDEV;
6912
6913 if (inode->i_nlink >= BTRFS_LINK_MAX)
6914 return -EMLINK;
6915
6916 ret = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6917 if (ret)
6918 goto fail;
6919
6920 ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
6921 if (ret)
6922 goto fail;
6923
6924 /*
6925 * 2 items for inode and inode ref
6926 * 2 items for dir items
6927 * 1 item for parent inode
6928 * 1 item for orphan item deletion if O_TMPFILE
6929 */
6930 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6931 if (IS_ERR(trans)) {
6932 ret = PTR_ERR(trans);
6933 trans = NULL;
6934 goto fail;
6935 }
6936
6937 /* There are several dir indexes for this inode, clear the cache. */
6938 BTRFS_I(inode)->dir_index = 0ULL;
6939 inode_inc_iversion(inode);
6940 inode_set_ctime_current(inode);
6941
6942 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6943 &fname.disk_name, 1, index);
6944 if (ret)
6945 goto fail;
6946
6947 /* Link added now we update the inode item with the new link count. */
6948 inc_nlink(inode);
6949 ret = btrfs_update_inode(trans, BTRFS_I(inode));
6950 if (unlikely(ret)) {
6951 btrfs_abort_transaction(trans, ret);
6952 goto fail;
6953 }
6954
6955 if (inode->i_nlink == 1) {
6956 /*
6957 * If the new hard link count is 1, it's a file created with the
6958 * open(2) O_TMPFILE flag.
6959 */
6960 ret = btrfs_orphan_del(trans, BTRFS_I(inode));
6961 if (unlikely(ret)) {
6962 btrfs_abort_transaction(trans, ret);
6963 goto fail;
6964 }
6965 }
6966
6967 /* Grab reference for the new dentry passed to d_instantiate(). */
6968 ihold(inode);
6969 d_instantiate(dentry, inode);
6970 btrfs_log_new_name(trans, old_dentry, NULL, 0, dentry->d_parent);
6971
6972 fail:
6973 fscrypt_free_filename(&fname);
6974 if (trans)
6975 btrfs_end_transaction(trans);
6976 btrfs_btree_balance_dirty(fs_info);
6977 return ret;
6978 }
6979
btrfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)6980 static struct dentry *btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6981 struct dentry *dentry, umode_t mode)
6982 {
6983 struct inode *inode;
6984
6985 inode = new_inode(dir->i_sb);
6986 if (!inode)
6987 return ERR_PTR(-ENOMEM);
6988 inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6989 inode->i_op = &btrfs_dir_inode_operations;
6990 inode->i_fop = &btrfs_dir_file_operations;
6991 return ERR_PTR(btrfs_create_common(dir, dentry, inode));
6992 }
6993
uncompress_inline(struct btrfs_path * path,struct folio * folio,struct btrfs_file_extent_item * item)6994 static noinline int uncompress_inline(struct btrfs_path *path,
6995 struct folio *folio,
6996 struct btrfs_file_extent_item *item)
6997 {
6998 int ret;
6999 struct extent_buffer *leaf = path->nodes[0];
7000 const u32 blocksize = leaf->fs_info->sectorsize;
7001 char *tmp;
7002 size_t max_size;
7003 unsigned long inline_size;
7004 unsigned long ptr;
7005 int compress_type;
7006
7007 compress_type = btrfs_file_extent_compression(leaf, item);
7008 max_size = btrfs_file_extent_ram_bytes(leaf, item);
7009 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
7010 tmp = kmalloc(inline_size, GFP_NOFS);
7011 if (!tmp)
7012 return -ENOMEM;
7013 ptr = btrfs_file_extent_inline_start(item);
7014
7015 read_extent_buffer(leaf, tmp, ptr, inline_size);
7016
7017 max_size = min_t(unsigned long, blocksize, max_size);
7018 ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size,
7019 max_size);
7020
7021 /*
7022 * decompression code contains a memset to fill in any space between the end
7023 * of the uncompressed data and the end of max_size in case the decompressed
7024 * data ends up shorter than ram_bytes. That doesn't cover the hole between
7025 * the end of an inline extent and the beginning of the next block, so we
7026 * cover that region here.
7027 */
7028
7029 if (max_size < blocksize)
7030 folio_zero_range(folio, max_size, blocksize - max_size);
7031 kfree(tmp);
7032 return ret;
7033 }
7034
read_inline_extent(struct btrfs_path * path,struct folio * folio)7035 static int read_inline_extent(struct btrfs_path *path, struct folio *folio)
7036 {
7037 const u32 blocksize = path->nodes[0]->fs_info->sectorsize;
7038 struct btrfs_file_extent_item *fi;
7039 void *kaddr;
7040 size_t copy_size;
7041
7042 if (!folio || folio_test_uptodate(folio))
7043 return 0;
7044
7045 ASSERT(folio_pos(folio) == 0);
7046
7047 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
7048 struct btrfs_file_extent_item);
7049 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
7050 return uncompress_inline(path, folio, fi);
7051
7052 copy_size = min_t(u64, blocksize,
7053 btrfs_file_extent_ram_bytes(path->nodes[0], fi));
7054 kaddr = kmap_local_folio(folio, 0);
7055 read_extent_buffer(path->nodes[0], kaddr,
7056 btrfs_file_extent_inline_start(fi), copy_size);
7057 kunmap_local(kaddr);
7058 if (copy_size < blocksize)
7059 folio_zero_range(folio, copy_size, blocksize - copy_size);
7060 return 0;
7061 }
7062
7063 /*
7064 * Lookup the first extent overlapping a range in a file.
7065 *
7066 * @inode: file to search in
7067 * @page: page to read extent data into if the extent is inline
7068 * @start: file offset
7069 * @len: length of range starting at @start
7070 *
7071 * Return the first &struct extent_map which overlaps the given range, reading
7072 * it from the B-tree and caching it if necessary. Note that there may be more
7073 * extents which overlap the given range after the returned extent_map.
7074 *
7075 * If @page is not NULL and the extent is inline, this also reads the extent
7076 * data directly into the page and marks the extent up to date in the io_tree.
7077 *
7078 * Return: ERR_PTR on error, non-NULL extent_map on success.
7079 */
btrfs_get_extent(struct btrfs_inode * inode,struct folio * folio,u64 start,u64 len)7080 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
7081 struct folio *folio, u64 start, u64 len)
7082 {
7083 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7084 int ret = 0;
7085 u64 extent_start = 0;
7086 u64 extent_end = 0;
7087 u64 objectid = btrfs_ino(inode);
7088 int extent_type = -1;
7089 struct btrfs_path *path = NULL;
7090 struct btrfs_root *root = inode->root;
7091 struct btrfs_file_extent_item *item;
7092 struct extent_buffer *leaf;
7093 struct btrfs_key found_key;
7094 struct extent_map *em = NULL;
7095 struct extent_map_tree *em_tree = &inode->extent_tree;
7096
7097 read_lock(&em_tree->lock);
7098 em = btrfs_lookup_extent_mapping(em_tree, start, len);
7099 read_unlock(&em_tree->lock);
7100
7101 if (em) {
7102 if (em->start > start || em->start + em->len <= start)
7103 btrfs_free_extent_map(em);
7104 else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio)
7105 btrfs_free_extent_map(em);
7106 else
7107 goto out;
7108 }
7109 em = btrfs_alloc_extent_map();
7110 if (!em) {
7111 ret = -ENOMEM;
7112 goto out;
7113 }
7114 em->start = EXTENT_MAP_HOLE;
7115 em->disk_bytenr = EXTENT_MAP_HOLE;
7116 em->len = (u64)-1;
7117
7118 path = btrfs_alloc_path();
7119 if (!path) {
7120 ret = -ENOMEM;
7121 goto out;
7122 }
7123
7124 /* Chances are we'll be called again, so go ahead and do readahead */
7125 path->reada = READA_FORWARD;
7126
7127 /*
7128 * The same explanation in load_free_space_cache applies here as well,
7129 * we only read when we're loading the free space cache, and at that
7130 * point the commit_root has everything we need.
7131 */
7132 if (btrfs_is_free_space_inode(inode)) {
7133 path->search_commit_root = true;
7134 path->skip_locking = true;
7135 }
7136
7137 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
7138 if (ret < 0) {
7139 goto out;
7140 } else if (ret > 0) {
7141 if (path->slots[0] == 0)
7142 goto not_found;
7143 path->slots[0]--;
7144 ret = 0;
7145 }
7146
7147 leaf = path->nodes[0];
7148 item = btrfs_item_ptr(leaf, path->slots[0],
7149 struct btrfs_file_extent_item);
7150 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7151 if (found_key.objectid != objectid ||
7152 found_key.type != BTRFS_EXTENT_DATA_KEY) {
7153 /*
7154 * If we backup past the first extent we want to move forward
7155 * and see if there is an extent in front of us, otherwise we'll
7156 * say there is a hole for our whole search range which can
7157 * cause problems.
7158 */
7159 extent_end = start;
7160 goto next;
7161 }
7162
7163 extent_type = btrfs_file_extent_type(leaf, item);
7164 extent_start = found_key.offset;
7165 extent_end = btrfs_file_extent_end(path);
7166 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7167 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7168 /* Only regular file could have regular/prealloc extent */
7169 if (unlikely(!S_ISREG(inode->vfs_inode.i_mode))) {
7170 ret = -EUCLEAN;
7171 btrfs_crit(fs_info,
7172 "regular/prealloc extent found for non-regular inode %llu",
7173 btrfs_ino(inode));
7174 goto out;
7175 }
7176 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7177 extent_start);
7178 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7179 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7180 path->slots[0],
7181 extent_start);
7182 }
7183 next:
7184 if (start >= extent_end) {
7185 path->slots[0]++;
7186 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7187 ret = btrfs_next_leaf(root, path);
7188 if (ret < 0)
7189 goto out;
7190 else if (ret > 0)
7191 goto not_found;
7192
7193 leaf = path->nodes[0];
7194 }
7195 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7196 if (found_key.objectid != objectid ||
7197 found_key.type != BTRFS_EXTENT_DATA_KEY)
7198 goto not_found;
7199 if (start + len <= found_key.offset)
7200 goto not_found;
7201 if (start > found_key.offset)
7202 goto next;
7203
7204 /* New extent overlaps with existing one */
7205 em->start = start;
7206 em->len = found_key.offset - start;
7207 em->disk_bytenr = EXTENT_MAP_HOLE;
7208 goto insert;
7209 }
7210
7211 btrfs_extent_item_to_extent_map(inode, path, item, em);
7212
7213 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7214 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7215 goto insert;
7216 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7217 /*
7218 * Inline extent can only exist at file offset 0. This is
7219 * ensured by tree-checker and inline extent creation path.
7220 * Thus all members representing file offsets should be zero.
7221 */
7222 ASSERT(extent_start == 0);
7223 ASSERT(em->start == 0);
7224
7225 /*
7226 * btrfs_extent_item_to_extent_map() should have properly
7227 * initialized em members already.
7228 *
7229 * Other members are not utilized for inline extents.
7230 */
7231 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE);
7232 ASSERT(em->len == fs_info->sectorsize);
7233
7234 ret = read_inline_extent(path, folio);
7235 if (ret < 0)
7236 goto out;
7237 goto insert;
7238 }
7239 not_found:
7240 em->start = start;
7241 em->len = len;
7242 em->disk_bytenr = EXTENT_MAP_HOLE;
7243 insert:
7244 ret = 0;
7245 btrfs_release_path(path);
7246 if (unlikely(em->start > start || btrfs_extent_map_end(em) <= start)) {
7247 btrfs_err(fs_info,
7248 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7249 em->start, em->len, start, len);
7250 ret = -EIO;
7251 goto out;
7252 }
7253
7254 write_lock(&em_tree->lock);
7255 ret = btrfs_add_extent_mapping(inode, &em, start, len);
7256 write_unlock(&em_tree->lock);
7257 out:
7258 btrfs_free_path(path);
7259
7260 trace_btrfs_get_extent(root, inode, em);
7261
7262 if (ret) {
7263 btrfs_free_extent_map(em);
7264 return ERR_PTR(ret);
7265 }
7266 return em;
7267 }
7268
btrfs_extent_readonly(struct btrfs_fs_info * fs_info,u64 bytenr)7269 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7270 {
7271 struct btrfs_block_group *block_group;
7272 bool readonly = false;
7273
7274 block_group = btrfs_lookup_block_group(fs_info, bytenr);
7275 if (!block_group || block_group->ro)
7276 readonly = true;
7277 if (block_group)
7278 btrfs_put_block_group(block_group);
7279 return readonly;
7280 }
7281
7282 /*
7283 * Check if we can do nocow write into the range [@offset, @offset + @len)
7284 *
7285 * @offset: File offset
7286 * @len: The length to write, will be updated to the nocow writeable
7287 * range
7288 * @orig_start: (optional) Return the original file offset of the file extent
7289 * @orig_len: (optional) Return the original on-disk length of the file extent
7290 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7291 *
7292 * Return:
7293 * >0 and update @len if we can do nocow write
7294 * 0 if we can't do nocow write
7295 * <0 if error happened
7296 *
7297 * NOTE: This only checks the file extents, caller is responsible to wait for
7298 * any ordered extents.
7299 */
can_nocow_extent(struct btrfs_inode * inode,u64 offset,u64 * len,struct btrfs_file_extent * file_extent,bool nowait)7300 noinline int can_nocow_extent(struct btrfs_inode *inode, u64 offset, u64 *len,
7301 struct btrfs_file_extent *file_extent,
7302 bool nowait)
7303 {
7304 struct btrfs_root *root = inode->root;
7305 struct btrfs_fs_info *fs_info = root->fs_info;
7306 struct can_nocow_file_extent_args nocow_args = { 0 };
7307 BTRFS_PATH_AUTO_FREE(path);
7308 int ret;
7309 struct extent_buffer *leaf;
7310 struct extent_io_tree *io_tree = &inode->io_tree;
7311 struct btrfs_file_extent_item *fi;
7312 struct btrfs_key key;
7313 int found_type;
7314
7315 path = btrfs_alloc_path();
7316 if (!path)
7317 return -ENOMEM;
7318 path->nowait = nowait;
7319
7320 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7321 offset, 0);
7322 if (ret < 0)
7323 return ret;
7324
7325 if (ret == 1) {
7326 if (path->slots[0] == 0) {
7327 /* Can't find the item, must COW. */
7328 return 0;
7329 }
7330 path->slots[0]--;
7331 }
7332 ret = 0;
7333 leaf = path->nodes[0];
7334 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7335 if (key.objectid != btrfs_ino(inode) ||
7336 key.type != BTRFS_EXTENT_DATA_KEY) {
7337 /* Not our file or wrong item type, must COW. */
7338 return 0;
7339 }
7340
7341 if (key.offset > offset) {
7342 /* Wrong offset, must COW. */
7343 return 0;
7344 }
7345
7346 if (btrfs_file_extent_end(path) <= offset)
7347 return 0;
7348
7349 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7350 found_type = btrfs_file_extent_type(leaf, fi);
7351
7352 nocow_args.start = offset;
7353 nocow_args.end = offset + *len - 1;
7354 nocow_args.free_path = true;
7355
7356 ret = can_nocow_file_extent(path, &key, inode, &nocow_args);
7357 /* can_nocow_file_extent() has freed the path. */
7358 path = NULL;
7359
7360 if (ret != 1) {
7361 /* Treat errors as not being able to NOCOW. */
7362 return 0;
7363 }
7364
7365 if (btrfs_extent_readonly(fs_info,
7366 nocow_args.file_extent.disk_bytenr +
7367 nocow_args.file_extent.offset))
7368 return 0;
7369
7370 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
7371 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7372 u64 range_end;
7373
7374 range_end = round_up(offset + nocow_args.file_extent.num_bytes,
7375 root->fs_info->sectorsize) - 1;
7376 ret = btrfs_test_range_bit_exists(io_tree, offset, range_end,
7377 EXTENT_DELALLOC);
7378 if (ret)
7379 return -EAGAIN;
7380 }
7381
7382 if (file_extent)
7383 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent));
7384
7385 *len = nocow_args.file_extent.num_bytes;
7386
7387 return 1;
7388 }
7389
7390 /* The callers of this must take lock_extent() */
btrfs_create_io_em(struct btrfs_inode * inode,u64 start,const struct btrfs_file_extent * file_extent,int type)7391 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start,
7392 const struct btrfs_file_extent *file_extent,
7393 int type)
7394 {
7395 struct extent_map *em;
7396 int ret;
7397
7398 /*
7399 * Note the missing NOCOW type.
7400 *
7401 * For pure NOCOW writes, we should not create an io extent map, but
7402 * just reusing the existing one.
7403 * Only PREALLOC writes (NOCOW write into preallocated range) can
7404 * create an io extent map.
7405 */
7406 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7407 type == BTRFS_ORDERED_COMPRESSED ||
7408 type == BTRFS_ORDERED_REGULAR);
7409
7410 switch (type) {
7411 case BTRFS_ORDERED_PREALLOC:
7412 /* We're only referring part of a larger preallocated extent. */
7413 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7414 break;
7415 case BTRFS_ORDERED_REGULAR:
7416 /* COW results a new extent matching our file extent size. */
7417 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes);
7418 ASSERT(file_extent->ram_bytes == file_extent->num_bytes);
7419
7420 /* Since it's a new extent, we should not have any offset. */
7421 ASSERT(file_extent->offset == 0);
7422 break;
7423 case BTRFS_ORDERED_COMPRESSED:
7424 /* Must be compressed. */
7425 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE);
7426
7427 /*
7428 * Encoded write can make us to refer to part of the
7429 * uncompressed extent.
7430 */
7431 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7432 break;
7433 }
7434
7435 em = btrfs_alloc_extent_map();
7436 if (!em)
7437 return ERR_PTR(-ENOMEM);
7438
7439 em->start = start;
7440 em->len = file_extent->num_bytes;
7441 em->disk_bytenr = file_extent->disk_bytenr;
7442 em->disk_num_bytes = file_extent->disk_num_bytes;
7443 em->ram_bytes = file_extent->ram_bytes;
7444 em->generation = -1;
7445 em->offset = file_extent->offset;
7446 em->flags |= EXTENT_FLAG_PINNED;
7447 if (type == BTRFS_ORDERED_COMPRESSED)
7448 btrfs_extent_map_set_compression(em, file_extent->compression);
7449
7450 ret = btrfs_replace_extent_map_range(inode, em, true);
7451 if (ret) {
7452 btrfs_free_extent_map(em);
7453 return ERR_PTR(ret);
7454 }
7455
7456 /* em got 2 refs now, callers needs to do btrfs_free_extent_map once. */
7457 return em;
7458 }
7459
7460 /*
7461 * For release_folio() and invalidate_folio() we have a race window where
7462 * folio_end_writeback() is called but the subpage spinlock is not yet released.
7463 * If we continue to release/invalidate the page, we could cause use-after-free
7464 * for subpage spinlock. So this function is to spin and wait for subpage
7465 * spinlock.
7466 */
wait_subpage_spinlock(struct folio * folio)7467 static void wait_subpage_spinlock(struct folio *folio)
7468 {
7469 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
7470 struct btrfs_folio_state *bfs;
7471
7472 if (!btrfs_is_subpage(fs_info, folio))
7473 return;
7474
7475 ASSERT(folio_test_private(folio) && folio_get_private(folio));
7476 bfs = folio_get_private(folio);
7477
7478 /*
7479 * This may look insane as we just acquire the spinlock and release it,
7480 * without doing anything. But we just want to make sure no one is
7481 * still holding the subpage spinlock.
7482 * And since the page is not dirty nor writeback, and we have page
7483 * locked, the only possible way to hold a spinlock is from the endio
7484 * function to clear page writeback.
7485 *
7486 * Here we just acquire the spinlock so that all existing callers
7487 * should exit and we're safe to release/invalidate the page.
7488 */
7489 spin_lock_irq(&bfs->lock);
7490 spin_unlock_irq(&bfs->lock);
7491 }
7492
btrfs_launder_folio(struct folio * folio)7493 static int btrfs_launder_folio(struct folio *folio)
7494 {
7495 return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio),
7496 folio_size(folio), NULL);
7497 }
7498
__btrfs_release_folio(struct folio * folio,gfp_t gfp_flags)7499 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7500 {
7501 if (try_release_extent_mapping(folio, gfp_flags)) {
7502 wait_subpage_spinlock(folio);
7503 clear_folio_extent_mapped(folio);
7504 return true;
7505 }
7506 return false;
7507 }
7508
btrfs_release_folio(struct folio * folio,gfp_t gfp_flags)7509 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7510 {
7511 if (folio_test_writeback(folio) || folio_test_dirty(folio))
7512 return false;
7513 return __btrfs_release_folio(folio, gfp_flags);
7514 }
7515
7516 #ifdef CONFIG_MIGRATION
btrfs_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)7517 static int btrfs_migrate_folio(struct address_space *mapping,
7518 struct folio *dst, struct folio *src,
7519 enum migrate_mode mode)
7520 {
7521 int ret = filemap_migrate_folio(mapping, dst, src, mode);
7522
7523 if (ret)
7524 return ret;
7525
7526 if (folio_test_ordered(src)) {
7527 folio_clear_ordered(src);
7528 folio_set_ordered(dst);
7529 }
7530
7531 return 0;
7532 }
7533 #else
7534 #define btrfs_migrate_folio NULL
7535 #endif
7536
btrfs_invalidate_folio(struct folio * folio,size_t offset,size_t length)7537 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7538 size_t length)
7539 {
7540 struct btrfs_inode *inode = folio_to_inode(folio);
7541 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7542 struct extent_io_tree *tree = &inode->io_tree;
7543 struct extent_state *cached_state = NULL;
7544 u64 page_start = folio_pos(folio);
7545 u64 page_end = page_start + folio_size(folio) - 1;
7546 u64 cur;
7547 int inode_evicting = inode_state_read_once(&inode->vfs_inode) & I_FREEING;
7548
7549 /*
7550 * We have folio locked so no new ordered extent can be created on this
7551 * page, nor bio can be submitted for this folio.
7552 *
7553 * But already submitted bio can still be finished on this folio.
7554 * Furthermore, endio function won't skip folio which has Ordered
7555 * already cleared, so it's possible for endio and
7556 * invalidate_folio to do the same ordered extent accounting twice
7557 * on one folio.
7558 *
7559 * So here we wait for any submitted bios to finish, so that we won't
7560 * do double ordered extent accounting on the same folio.
7561 */
7562 folio_wait_writeback(folio);
7563 wait_subpage_spinlock(folio);
7564
7565 /*
7566 * For subpage case, we have call sites like
7567 * btrfs_punch_hole_lock_range() which passes range not aligned to
7568 * sectorsize.
7569 * If the range doesn't cover the full folio, we don't need to and
7570 * shouldn't clear page extent mapped, as folio->private can still
7571 * record subpage dirty bits for other part of the range.
7572 *
7573 * For cases that invalidate the full folio even the range doesn't
7574 * cover the full folio, like invalidating the last folio, we're
7575 * still safe to wait for ordered extent to finish.
7576 */
7577 if (!(offset == 0 && length == folio_size(folio))) {
7578 btrfs_release_folio(folio, GFP_NOFS);
7579 return;
7580 }
7581
7582 if (!inode_evicting)
7583 btrfs_lock_extent(tree, page_start, page_end, &cached_state);
7584
7585 cur = page_start;
7586 while (cur < page_end) {
7587 struct btrfs_ordered_extent *ordered;
7588 u64 range_end;
7589 u32 range_len;
7590 u32 extra_flags = 0;
7591
7592 ordered = btrfs_lookup_first_ordered_range(inode, cur,
7593 page_end + 1 - cur);
7594 if (!ordered) {
7595 range_end = page_end;
7596 /*
7597 * No ordered extent covering this range, we are safe
7598 * to delete all extent states in the range.
7599 */
7600 extra_flags = EXTENT_CLEAR_ALL_BITS;
7601 goto next;
7602 }
7603 if (ordered->file_offset > cur) {
7604 /*
7605 * There is a range between [cur, oe->file_offset) not
7606 * covered by any ordered extent.
7607 * We are safe to delete all extent states, and handle
7608 * the ordered extent in the next iteration.
7609 */
7610 range_end = ordered->file_offset - 1;
7611 extra_flags = EXTENT_CLEAR_ALL_BITS;
7612 goto next;
7613 }
7614
7615 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
7616 page_end);
7617 ASSERT(range_end + 1 - cur < U32_MAX);
7618 range_len = range_end + 1 - cur;
7619 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) {
7620 /*
7621 * If Ordered is cleared, it means endio has
7622 * already been executed for the range.
7623 * We can't delete the extent states as
7624 * btrfs_finish_ordered_io() may still use some of them.
7625 */
7626 goto next;
7627 }
7628 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len);
7629
7630 /*
7631 * IO on this page will never be started, so we need to account
7632 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
7633 * here, must leave that up for the ordered extent completion.
7634 *
7635 * This will also unlock the range for incoming
7636 * btrfs_finish_ordered_io().
7637 */
7638 if (!inode_evicting)
7639 btrfs_clear_extent_bit(tree, cur, range_end,
7640 EXTENT_DELALLOC |
7641 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7642 EXTENT_DEFRAG, &cached_state);
7643
7644 spin_lock(&inode->ordered_tree_lock);
7645 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7646 ordered->truncated_len = min(ordered->truncated_len,
7647 cur - ordered->file_offset);
7648 spin_unlock(&inode->ordered_tree_lock);
7649
7650 /*
7651 * If the ordered extent has finished, we're safe to delete all
7652 * the extent states of the range, otherwise
7653 * btrfs_finish_ordered_io() will get executed by endio for
7654 * other pages, so we can't delete extent states.
7655 */
7656 if (btrfs_dec_test_ordered_pending(inode, &ordered,
7657 cur, range_end + 1 - cur)) {
7658 btrfs_finish_ordered_io(ordered);
7659 /*
7660 * The ordered extent has finished, now we're again
7661 * safe to delete all extent states of the range.
7662 */
7663 extra_flags = EXTENT_CLEAR_ALL_BITS;
7664 }
7665 next:
7666 if (ordered)
7667 btrfs_put_ordered_extent(ordered);
7668 /*
7669 * Qgroup reserved space handler
7670 * Sector(s) here will be either:
7671 *
7672 * 1) Already written to disk or bio already finished
7673 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
7674 * Qgroup will be handled by its qgroup_record then.
7675 * btrfs_qgroup_free_data() call will do nothing here.
7676 *
7677 * 2) Not written to disk yet
7678 * Then btrfs_qgroup_free_data() call will clear the
7679 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
7680 * reserved data space.
7681 * Since the IO will never happen for this page.
7682 */
7683 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
7684 if (!inode_evicting)
7685 btrfs_clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
7686 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
7687 EXTENT_DEFRAG | extra_flags,
7688 &cached_state);
7689 cur = range_end + 1;
7690 }
7691 /*
7692 * We have iterated through all ordered extents of the page, the page
7693 * should not have Ordered anymore, or the above iteration
7694 * did something wrong.
7695 */
7696 ASSERT(!folio_test_ordered(folio));
7697 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
7698 if (!inode_evicting)
7699 __btrfs_release_folio(folio, GFP_NOFS);
7700 clear_folio_extent_mapped(folio);
7701 }
7702
btrfs_truncate(struct btrfs_inode * inode,bool skip_writeback)7703 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
7704 {
7705 struct btrfs_truncate_control control = {
7706 .inode = inode,
7707 .ino = btrfs_ino(inode),
7708 .min_type = BTRFS_EXTENT_DATA_KEY,
7709 .clear_extent_range = true,
7710 .new_size = inode->vfs_inode.i_size,
7711 };
7712 struct btrfs_root *root = inode->root;
7713 struct btrfs_fs_info *fs_info = root->fs_info;
7714 struct btrfs_block_rsv rsv;
7715 int ret;
7716 struct btrfs_trans_handle *trans;
7717 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
7718 const u64 lock_start = round_down(inode->vfs_inode.i_size, fs_info->sectorsize);
7719 const u64 i_size_up = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
7720
7721 /* Our inode is locked and the i_size can't be changed concurrently. */
7722 btrfs_assert_inode_locked(inode);
7723
7724 if (!skip_writeback) {
7725 ret = btrfs_wait_ordered_range(inode, lock_start, (u64)-1);
7726 if (ret)
7727 return ret;
7728 }
7729
7730 /*
7731 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
7732 * things going on here:
7733 *
7734 * 1) We need to reserve space to update our inode.
7735 *
7736 * 2) We need to have something to cache all the space that is going to
7737 * be free'd up by the truncate operation, but also have some slack
7738 * space reserved in case it uses space during the truncate (thank you
7739 * very much snapshotting).
7740 *
7741 * And we need these to be separate. The fact is we can use a lot of
7742 * space doing the truncate, and we have no earthly idea how much space
7743 * we will use, so we need the truncate reservation to be separate so it
7744 * doesn't end up using space reserved for updating the inode. We also
7745 * need to be able to stop the transaction and start a new one, which
7746 * means we need to be able to update the inode several times, and we
7747 * have no idea of knowing how many times that will be, so we can't just
7748 * reserve 1 item for the entirety of the operation, so that has to be
7749 * done separately as well.
7750 *
7751 * So that leaves us with
7752 *
7753 * 1) rsv - for the truncate reservation, which we will steal from the
7754 * transaction reservation.
7755 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
7756 * updating the inode.
7757 */
7758 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP);
7759 rsv.size = min_size;
7760 rsv.failfast = true;
7761
7762 /*
7763 * 1 for the truncate slack space
7764 * 1 for updating the inode.
7765 */
7766 trans = btrfs_start_transaction(root, 2);
7767 if (IS_ERR(trans)) {
7768 ret = PTR_ERR(trans);
7769 goto out;
7770 }
7771
7772 /* Migrate the slack space for the truncate to our reserve */
7773 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, &rsv,
7774 min_size, false);
7775 /*
7776 * We have reserved 2 metadata units when we started the transaction and
7777 * min_size matches 1 unit, so this should never fail, but if it does,
7778 * it's not critical we just fail truncation.
7779 */
7780 if (WARN_ON(ret)) {
7781 btrfs_end_transaction(trans);
7782 goto out;
7783 }
7784
7785 trans->block_rsv = &rsv;
7786
7787 while (1) {
7788 struct extent_state *cached_state = NULL;
7789
7790 btrfs_lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7791 /*
7792 * We want to drop from the next block forward in case this new
7793 * size is not block aligned since we will be keeping the last
7794 * block of the extent just the way it is.
7795 */
7796 btrfs_drop_extent_map_range(inode, i_size_up, (u64)-1, false);
7797
7798 ret = btrfs_truncate_inode_items(trans, root, &control);
7799
7800 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
7801 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
7802
7803 btrfs_unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7804
7805 trans->block_rsv = &fs_info->trans_block_rsv;
7806 if (ret != -ENOSPC && ret != -EAGAIN)
7807 break;
7808
7809 ret = btrfs_update_inode(trans, inode);
7810 if (ret)
7811 break;
7812
7813 btrfs_end_transaction(trans);
7814 btrfs_btree_balance_dirty(fs_info);
7815
7816 trans = btrfs_start_transaction(root, 2);
7817 if (IS_ERR(trans)) {
7818 ret = PTR_ERR(trans);
7819 trans = NULL;
7820 break;
7821 }
7822
7823 btrfs_block_rsv_release(fs_info, &rsv, -1, NULL);
7824 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
7825 &rsv, min_size, false);
7826 /*
7827 * We have reserved 2 metadata units when we started the
7828 * transaction and min_size matches 1 unit, so this should never
7829 * fail, but if it does, it's not critical we just fail truncation.
7830 */
7831 if (WARN_ON(ret))
7832 break;
7833
7834 trans->block_rsv = &rsv;
7835 }
7836
7837 /*
7838 * We can't call btrfs_truncate_block inside a trans handle as we could
7839 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
7840 * know we've truncated everything except the last little bit, and can
7841 * do btrfs_truncate_block and then update the disk_i_size.
7842 */
7843 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
7844 btrfs_end_transaction(trans);
7845 btrfs_btree_balance_dirty(fs_info);
7846
7847 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size,
7848 inode->vfs_inode.i_size, (u64)-1);
7849 if (ret)
7850 goto out;
7851 trans = btrfs_start_transaction(root, 1);
7852 if (IS_ERR(trans)) {
7853 ret = PTR_ERR(trans);
7854 goto out;
7855 }
7856 btrfs_inode_safe_disk_i_size_write(inode, 0);
7857 }
7858
7859 if (trans) {
7860 int ret2;
7861
7862 trans->block_rsv = &fs_info->trans_block_rsv;
7863 ret2 = btrfs_update_inode(trans, inode);
7864 if (ret2 && !ret)
7865 ret = ret2;
7866
7867 ret2 = btrfs_end_transaction(trans);
7868 if (ret2 && !ret)
7869 ret = ret2;
7870 btrfs_btree_balance_dirty(fs_info);
7871 }
7872 out:
7873 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL);
7874 /*
7875 * So if we truncate and then write and fsync we normally would just
7876 * write the extents that changed, which is a problem if we need to
7877 * first truncate that entire inode. So set this flag so we write out
7878 * all of the extents in the inode to the sync log so we're completely
7879 * safe.
7880 *
7881 * If no extents were dropped or trimmed we don't need to force the next
7882 * fsync to truncate all the inode's items from the log and re-log them
7883 * all. This means the truncate operation did not change the file size,
7884 * or changed it to a smaller size but there was only an implicit hole
7885 * between the old i_size and the new i_size, and there were no prealloc
7886 * extents beyond i_size to drop.
7887 */
7888 if (control.extents_found > 0)
7889 btrfs_set_inode_full_sync(inode);
7890
7891 return ret;
7892 }
7893
btrfs_new_subvol_inode(struct mnt_idmap * idmap,struct inode * dir)7894 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
7895 struct inode *dir)
7896 {
7897 struct inode *inode;
7898
7899 inode = new_inode(dir->i_sb);
7900 if (inode) {
7901 /*
7902 * Subvolumes don't inherit the sgid bit or the parent's gid if
7903 * the parent's sgid bit is set. This is probably a bug.
7904 */
7905 inode_init_owner(idmap, inode, NULL,
7906 S_IFDIR | (~current_umask() & S_IRWXUGO));
7907 inode->i_op = &btrfs_dir_inode_operations;
7908 inode->i_fop = &btrfs_dir_file_operations;
7909 }
7910 return inode;
7911 }
7912
btrfs_alloc_inode(struct super_block * sb)7913 struct inode *btrfs_alloc_inode(struct super_block *sb)
7914 {
7915 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
7916 struct btrfs_inode *ei;
7917 struct inode *inode;
7918
7919 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
7920 if (!ei)
7921 return NULL;
7922
7923 ei->root = NULL;
7924 ei->generation = 0;
7925 ei->last_trans = 0;
7926 ei->last_sub_trans = 0;
7927 ei->logged_trans = 0;
7928 ei->delalloc_bytes = 0;
7929 /* new_delalloc_bytes and last_dir_index_offset are in a union. */
7930 ei->new_delalloc_bytes = 0;
7931 ei->defrag_bytes = 0;
7932 ei->disk_i_size = 0;
7933 ei->flags = 0;
7934 ei->ro_flags = 0;
7935 /*
7936 * ->index_cnt will be properly initialized later when creating a new
7937 * inode (btrfs_create_new_inode()) or when reading an existing inode
7938 * from disk (btrfs_read_locked_inode()).
7939 */
7940 ei->csum_bytes = 0;
7941 ei->dir_index = 0;
7942 ei->last_unlink_trans = 0;
7943 ei->last_reflink_trans = 0;
7944 ei->last_log_commit = 0;
7945
7946 spin_lock_init(&ei->lock);
7947 ei->outstanding_extents = 0;
7948 if (sb->s_magic != BTRFS_TEST_MAGIC)
7949 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
7950 BTRFS_BLOCK_RSV_DELALLOC);
7951 ei->runtime_flags = 0;
7952 ei->prop_compress = BTRFS_COMPRESS_NONE;
7953 ei->defrag_compress = BTRFS_COMPRESS_NONE;
7954
7955 ei->delayed_node = NULL;
7956
7957 ei->i_otime_sec = 0;
7958 ei->i_otime_nsec = 0;
7959
7960 inode = &ei->vfs_inode;
7961 btrfs_extent_map_tree_init(&ei->extent_tree);
7962
7963 /* This io tree sets the valid inode. */
7964 btrfs_extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
7965 ei->io_tree.inode = ei;
7966
7967 ei->file_extent_tree = NULL;
7968
7969 mutex_init(&ei->log_mutex);
7970 spin_lock_init(&ei->ordered_tree_lock);
7971 ei->ordered_tree = RB_ROOT;
7972 ei->ordered_tree_last = NULL;
7973 INIT_LIST_HEAD(&ei->delalloc_inodes);
7974 INIT_LIST_HEAD(&ei->delayed_iput);
7975 init_rwsem(&ei->i_mmap_lock);
7976
7977 return inode;
7978 }
7979
7980 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_destroy_inode(struct inode * inode)7981 void btrfs_test_destroy_inode(struct inode *inode)
7982 {
7983 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
7984 kfree(BTRFS_I(inode)->file_extent_tree);
7985 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7986 }
7987 #endif
7988
btrfs_free_inode(struct inode * inode)7989 void btrfs_free_inode(struct inode *inode)
7990 {
7991 kfree(BTRFS_I(inode)->file_extent_tree);
7992 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7993 }
7994
btrfs_destroy_inode(struct inode * vfs_inode)7995 void btrfs_destroy_inode(struct inode *vfs_inode)
7996 {
7997 struct btrfs_ordered_extent *ordered;
7998 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
7999 struct btrfs_root *root = inode->root;
8000 bool freespace_inode;
8001
8002 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8003 WARN_ON(vfs_inode->i_data.nrpages);
8004 WARN_ON(inode->block_rsv.reserved);
8005 WARN_ON(inode->block_rsv.size);
8006 WARN_ON(inode->outstanding_extents);
8007 if (!S_ISDIR(vfs_inode->i_mode)) {
8008 WARN_ON(inode->delalloc_bytes);
8009 WARN_ON(inode->new_delalloc_bytes);
8010 WARN_ON(inode->csum_bytes);
8011 }
8012 if (!root || !btrfs_is_data_reloc_root(root))
8013 WARN_ON(inode->defrag_bytes);
8014
8015 /*
8016 * This can happen where we create an inode, but somebody else also
8017 * created the same inode and we need to destroy the one we already
8018 * created.
8019 */
8020 if (!root)
8021 return;
8022
8023 /*
8024 * If this is a free space inode do not take the ordered extents lockdep
8025 * map.
8026 */
8027 freespace_inode = btrfs_is_free_space_inode(inode);
8028
8029 while (1) {
8030 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8031 if (!ordered)
8032 break;
8033 else {
8034 btrfs_err(root->fs_info,
8035 "found ordered extent %llu %llu on inode cleanup",
8036 ordered->file_offset, ordered->num_bytes);
8037
8038 if (!freespace_inode)
8039 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8040
8041 btrfs_remove_ordered_extent(inode, ordered);
8042 btrfs_put_ordered_extent(ordered);
8043 btrfs_put_ordered_extent(ordered);
8044 }
8045 }
8046 btrfs_qgroup_check_reserved_leak(inode);
8047 btrfs_del_inode_from_root(inode);
8048 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
8049 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8050 btrfs_put_root(inode->root);
8051 }
8052
btrfs_drop_inode(struct inode * inode)8053 int btrfs_drop_inode(struct inode *inode)
8054 {
8055 struct btrfs_root *root = BTRFS_I(inode)->root;
8056
8057 if (root == NULL)
8058 return 1;
8059
8060 /* the snap/subvol tree is on deleting */
8061 if (btrfs_root_refs(&root->root_item) == 0)
8062 return 1;
8063 else
8064 return inode_generic_drop(inode);
8065 }
8066
init_once(void * foo)8067 static void init_once(void *foo)
8068 {
8069 struct btrfs_inode *ei = foo;
8070
8071 inode_init_once(&ei->vfs_inode);
8072 #ifdef CONFIG_FS_VERITY
8073 ei->i_verity_info = NULL;
8074 #endif
8075 }
8076
btrfs_destroy_cachep(void)8077 void __cold btrfs_destroy_cachep(void)
8078 {
8079 /*
8080 * Make sure all delayed rcu free inodes are flushed before we
8081 * destroy cache.
8082 */
8083 rcu_barrier();
8084 kmem_cache_destroy(btrfs_inode_cachep);
8085 }
8086
btrfs_init_cachep(void)8087 int __init btrfs_init_cachep(void)
8088 {
8089 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8090 sizeof(struct btrfs_inode), 0,
8091 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
8092 init_once);
8093 if (!btrfs_inode_cachep)
8094 return -ENOMEM;
8095
8096 return 0;
8097 }
8098
btrfs_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)8099 static int btrfs_getattr(struct mnt_idmap *idmap,
8100 const struct path *path, struct kstat *stat,
8101 u32 request_mask, unsigned int flags)
8102 {
8103 u64 delalloc_bytes;
8104 u64 inode_bytes;
8105 struct inode *inode = d_inode(path->dentry);
8106 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize;
8107 u32 bi_flags = BTRFS_I(inode)->flags;
8108 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8109
8110 stat->result_mask |= STATX_BTIME;
8111 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec;
8112 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec;
8113 if (bi_flags & BTRFS_INODE_APPEND)
8114 stat->attributes |= STATX_ATTR_APPEND;
8115 if (bi_flags & BTRFS_INODE_COMPRESS)
8116 stat->attributes |= STATX_ATTR_COMPRESSED;
8117 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8118 stat->attributes |= STATX_ATTR_IMMUTABLE;
8119 if (bi_flags & BTRFS_INODE_NODUMP)
8120 stat->attributes |= STATX_ATTR_NODUMP;
8121 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8122 stat->attributes |= STATX_ATTR_VERITY;
8123
8124 stat->attributes_mask |= (STATX_ATTR_APPEND |
8125 STATX_ATTR_COMPRESSED |
8126 STATX_ATTR_IMMUTABLE |
8127 STATX_ATTR_NODUMP);
8128
8129 generic_fillattr(idmap, request_mask, inode, stat);
8130 stat->dev = BTRFS_I(inode)->root->anon_dev;
8131
8132 stat->subvol = btrfs_root_id(BTRFS_I(inode)->root);
8133 stat->result_mask |= STATX_SUBVOL;
8134
8135 spin_lock(&BTRFS_I(inode)->lock);
8136 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8137 inode_bytes = inode_get_bytes(inode);
8138 spin_unlock(&BTRFS_I(inode)->lock);
8139 stat->blocks = (ALIGN(inode_bytes, blocksize) +
8140 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
8141 return 0;
8142 }
8143
btrfs_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)8144 static int btrfs_rename_exchange(struct inode *old_dir,
8145 struct dentry *old_dentry,
8146 struct inode *new_dir,
8147 struct dentry *new_dentry)
8148 {
8149 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
8150 struct btrfs_trans_handle *trans;
8151 unsigned int trans_num_items;
8152 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8153 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8154 struct inode *new_inode = new_dentry->d_inode;
8155 struct inode *old_inode = old_dentry->d_inode;
8156 struct btrfs_rename_ctx old_rename_ctx;
8157 struct btrfs_rename_ctx new_rename_ctx;
8158 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8159 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8160 u64 old_idx = 0;
8161 u64 new_idx = 0;
8162 int ret;
8163 int ret2;
8164 bool need_abort = false;
8165 bool logs_pinned = false;
8166 struct fscrypt_name old_fname, new_fname;
8167 struct fscrypt_str *old_name, *new_name;
8168
8169 /*
8170 * For non-subvolumes allow exchange only within one subvolume, in the
8171 * same inode namespace. Two subvolumes (represented as directory) can
8172 * be exchanged as they're a logical link and have a fixed inode number.
8173 */
8174 if (root != dest &&
8175 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8176 new_ino != BTRFS_FIRST_FREE_OBJECTID))
8177 return -EXDEV;
8178
8179 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8180 if (ret)
8181 return ret;
8182
8183 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8184 if (ret) {
8185 fscrypt_free_filename(&old_fname);
8186 return ret;
8187 }
8188
8189 old_name = &old_fname.disk_name;
8190 new_name = &new_fname.disk_name;
8191
8192 /* close the race window with snapshot create/destroy ioctl */
8193 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8194 new_ino == BTRFS_FIRST_FREE_OBJECTID)
8195 down_read(&fs_info->subvol_sem);
8196
8197 /*
8198 * For each inode:
8199 * 1 to remove old dir item
8200 * 1 to remove old dir index
8201 * 1 to add new dir item
8202 * 1 to add new dir index
8203 * 1 to update parent inode
8204 *
8205 * If the parents are the same, we only need to account for one
8206 */
8207 trans_num_items = (old_dir == new_dir ? 9 : 10);
8208 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8209 /*
8210 * 1 to remove old root ref
8211 * 1 to remove old root backref
8212 * 1 to add new root ref
8213 * 1 to add new root backref
8214 */
8215 trans_num_items += 4;
8216 } else {
8217 /*
8218 * 1 to update inode item
8219 * 1 to remove old inode ref
8220 * 1 to add new inode ref
8221 */
8222 trans_num_items += 3;
8223 }
8224 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8225 trans_num_items += 4;
8226 else
8227 trans_num_items += 3;
8228 trans = btrfs_start_transaction(root, trans_num_items);
8229 if (IS_ERR(trans)) {
8230 ret = PTR_ERR(trans);
8231 goto out_notrans;
8232 }
8233
8234 if (dest != root) {
8235 ret = btrfs_record_root_in_trans(trans, dest);
8236 if (ret)
8237 goto out_fail;
8238 }
8239
8240 /*
8241 * We need to find a free sequence number both in the source and
8242 * in the destination directory for the exchange.
8243 */
8244 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8245 if (ret)
8246 goto out_fail;
8247 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8248 if (ret)
8249 goto out_fail;
8250
8251 BTRFS_I(old_inode)->dir_index = 0ULL;
8252 BTRFS_I(new_inode)->dir_index = 0ULL;
8253
8254 /* Reference for the source. */
8255 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8256 /* force full log commit if subvolume involved. */
8257 btrfs_set_log_full_commit(trans);
8258 } else {
8259 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8260 btrfs_ino(BTRFS_I(new_dir)),
8261 old_idx);
8262 if (ret)
8263 goto out_fail;
8264 need_abort = true;
8265 }
8266
8267 /* And now for the dest. */
8268 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8269 /* force full log commit if subvolume involved. */
8270 btrfs_set_log_full_commit(trans);
8271 } else {
8272 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8273 btrfs_ino(BTRFS_I(old_dir)),
8274 new_idx);
8275 if (ret) {
8276 if (unlikely(need_abort))
8277 btrfs_abort_transaction(trans, ret);
8278 goto out_fail;
8279 }
8280 }
8281
8282 /* Update inode version and ctime/mtime. */
8283 inode_inc_iversion(old_dir);
8284 inode_inc_iversion(new_dir);
8285 inode_inc_iversion(old_inode);
8286 inode_inc_iversion(new_inode);
8287 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8288
8289 if (old_ino != BTRFS_FIRST_FREE_OBJECTID &&
8290 new_ino != BTRFS_FIRST_FREE_OBJECTID) {
8291 /*
8292 * If we are renaming in the same directory (and it's not for
8293 * root entries) pin the log early to prevent any concurrent
8294 * task from logging the directory after we removed the old
8295 * entries and before we add the new entries, otherwise that
8296 * task can sync a log without any entry for the inodes we are
8297 * renaming and therefore replaying that log, if a power failure
8298 * happens after syncing the log, would result in deleting the
8299 * inodes.
8300 *
8301 * If the rename affects two different directories, we want to
8302 * make sure the that there's no log commit that contains
8303 * updates for only one of the directories but not for the
8304 * other.
8305 *
8306 * If we are renaming an entry for a root, we don't care about
8307 * log updates since we called btrfs_set_log_full_commit().
8308 */
8309 btrfs_pin_log_trans(root);
8310 btrfs_pin_log_trans(dest);
8311 logs_pinned = true;
8312 }
8313
8314 if (old_dentry->d_parent != new_dentry->d_parent) {
8315 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8316 BTRFS_I(old_inode), true);
8317 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8318 BTRFS_I(new_inode), true);
8319 }
8320
8321 /* src is a subvolume */
8322 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8323 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8324 if (unlikely(ret)) {
8325 btrfs_abort_transaction(trans, ret);
8326 goto out_fail;
8327 }
8328 } else { /* src is an inode */
8329 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8330 BTRFS_I(old_dentry->d_inode),
8331 old_name, &old_rename_ctx);
8332 if (unlikely(ret)) {
8333 btrfs_abort_transaction(trans, ret);
8334 goto out_fail;
8335 }
8336 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8337 if (unlikely(ret)) {
8338 btrfs_abort_transaction(trans, ret);
8339 goto out_fail;
8340 }
8341 }
8342
8343 /* dest is a subvolume */
8344 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8345 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8346 if (unlikely(ret)) {
8347 btrfs_abort_transaction(trans, ret);
8348 goto out_fail;
8349 }
8350 } else { /* dest is an inode */
8351 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8352 BTRFS_I(new_dentry->d_inode),
8353 new_name, &new_rename_ctx);
8354 if (unlikely(ret)) {
8355 btrfs_abort_transaction(trans, ret);
8356 goto out_fail;
8357 }
8358 ret = btrfs_update_inode(trans, BTRFS_I(new_inode));
8359 if (unlikely(ret)) {
8360 btrfs_abort_transaction(trans, ret);
8361 goto out_fail;
8362 }
8363 }
8364
8365 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8366 new_name, 0, old_idx);
8367 if (unlikely(ret)) {
8368 btrfs_abort_transaction(trans, ret);
8369 goto out_fail;
8370 }
8371
8372 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8373 old_name, 0, new_idx);
8374 if (unlikely(ret)) {
8375 btrfs_abort_transaction(trans, ret);
8376 goto out_fail;
8377 }
8378
8379 if (old_inode->i_nlink == 1)
8380 BTRFS_I(old_inode)->dir_index = old_idx;
8381 if (new_inode->i_nlink == 1)
8382 BTRFS_I(new_inode)->dir_index = new_idx;
8383
8384 /*
8385 * Do the log updates for all inodes.
8386 *
8387 * If either entry is for a root we don't need to update the logs since
8388 * we've called btrfs_set_log_full_commit() before.
8389 */
8390 if (logs_pinned) {
8391 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8392 old_rename_ctx.index, new_dentry->d_parent);
8393 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8394 new_rename_ctx.index, old_dentry->d_parent);
8395 }
8396
8397 out_fail:
8398 if (logs_pinned) {
8399 btrfs_end_log_trans(root);
8400 btrfs_end_log_trans(dest);
8401 }
8402 ret2 = btrfs_end_transaction(trans);
8403 ret = ret ? ret : ret2;
8404 out_notrans:
8405 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8406 old_ino == BTRFS_FIRST_FREE_OBJECTID)
8407 up_read(&fs_info->subvol_sem);
8408
8409 fscrypt_free_filename(&new_fname);
8410 fscrypt_free_filename(&old_fname);
8411 return ret;
8412 }
8413
new_whiteout_inode(struct mnt_idmap * idmap,struct inode * dir)8414 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8415 struct inode *dir)
8416 {
8417 struct inode *inode;
8418
8419 inode = new_inode(dir->i_sb);
8420 if (inode) {
8421 inode_init_owner(idmap, inode, dir,
8422 S_IFCHR | WHITEOUT_MODE);
8423 inode->i_op = &btrfs_special_inode_operations;
8424 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8425 }
8426 return inode;
8427 }
8428
btrfs_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)8429 static int btrfs_rename(struct mnt_idmap *idmap,
8430 struct inode *old_dir, struct dentry *old_dentry,
8431 struct inode *new_dir, struct dentry *new_dentry,
8432 unsigned int flags)
8433 {
8434 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
8435 struct btrfs_new_inode_args whiteout_args = {
8436 .dir = old_dir,
8437 .dentry = old_dentry,
8438 };
8439 struct btrfs_trans_handle *trans;
8440 unsigned int trans_num_items;
8441 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8442 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8443 struct inode *new_inode = d_inode(new_dentry);
8444 struct inode *old_inode = d_inode(old_dentry);
8445 struct btrfs_rename_ctx rename_ctx;
8446 u64 index = 0;
8447 int ret;
8448 int ret2;
8449 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8450 struct fscrypt_name old_fname, new_fname;
8451 bool logs_pinned = false;
8452
8453 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8454 return -EPERM;
8455
8456 /* we only allow rename subvolume link between subvolumes */
8457 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8458 return -EXDEV;
8459
8460 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8461 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
8462 return -ENOTEMPTY;
8463
8464 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8465 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8466 return -ENOTEMPTY;
8467
8468 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8469 if (ret)
8470 return ret;
8471
8472 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8473 if (ret) {
8474 fscrypt_free_filename(&old_fname);
8475 return ret;
8476 }
8477
8478 /* check for collisions, even if the name isn't there */
8479 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
8480 if (ret) {
8481 if (ret == -EEXIST) {
8482 /* we shouldn't get
8483 * eexist without a new_inode */
8484 if (WARN_ON(!new_inode)) {
8485 goto out_fscrypt_names;
8486 }
8487 } else {
8488 /* maybe -EOVERFLOW */
8489 goto out_fscrypt_names;
8490 }
8491 }
8492 ret = 0;
8493
8494 /*
8495 * we're using rename to replace one file with another. Start IO on it
8496 * now so we don't add too much work to the end of the transaction
8497 */
8498 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8499 filemap_flush(old_inode->i_mapping);
8500
8501 if (flags & RENAME_WHITEOUT) {
8502 whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
8503 if (!whiteout_args.inode) {
8504 ret = -ENOMEM;
8505 goto out_fscrypt_names;
8506 }
8507 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
8508 if (ret)
8509 goto out_whiteout_inode;
8510 } else {
8511 /* 1 to update the old parent inode. */
8512 trans_num_items = 1;
8513 }
8514
8515 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8516 /* Close the race window with snapshot create/destroy ioctl */
8517 down_read(&fs_info->subvol_sem);
8518 /*
8519 * 1 to remove old root ref
8520 * 1 to remove old root backref
8521 * 1 to add new root ref
8522 * 1 to add new root backref
8523 */
8524 trans_num_items += 4;
8525 } else {
8526 /*
8527 * 1 to update inode
8528 * 1 to remove old inode ref
8529 * 1 to add new inode ref
8530 */
8531 trans_num_items += 3;
8532 }
8533 /*
8534 * 1 to remove old dir item
8535 * 1 to remove old dir index
8536 * 1 to add new dir item
8537 * 1 to add new dir index
8538 */
8539 trans_num_items += 4;
8540 /* 1 to update new parent inode if it's not the same as the old parent */
8541 if (new_dir != old_dir)
8542 trans_num_items++;
8543 if (new_inode) {
8544 /*
8545 * 1 to update inode
8546 * 1 to remove inode ref
8547 * 1 to remove dir item
8548 * 1 to remove dir index
8549 * 1 to possibly add orphan item
8550 */
8551 trans_num_items += 5;
8552 }
8553 trans = btrfs_start_transaction(root, trans_num_items);
8554 if (IS_ERR(trans)) {
8555 ret = PTR_ERR(trans);
8556 goto out_notrans;
8557 }
8558
8559 if (dest != root) {
8560 ret = btrfs_record_root_in_trans(trans, dest);
8561 if (ret)
8562 goto out_fail;
8563 }
8564
8565 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
8566 if (ret)
8567 goto out_fail;
8568
8569 BTRFS_I(old_inode)->dir_index = 0ULL;
8570 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8571 /* force full log commit if subvolume involved. */
8572 btrfs_set_log_full_commit(trans);
8573 } else {
8574 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
8575 old_ino, btrfs_ino(BTRFS_I(new_dir)),
8576 index);
8577 if (ret)
8578 goto out_fail;
8579 }
8580
8581 inode_inc_iversion(old_dir);
8582 inode_inc_iversion(new_dir);
8583 inode_inc_iversion(old_inode);
8584 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8585
8586 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8587 /*
8588 * If we are renaming in the same directory (and it's not a
8589 * root entry) pin the log to prevent any concurrent task from
8590 * logging the directory after we removed the old entry and
8591 * before we add the new entry, otherwise that task can sync
8592 * a log without any entry for the inode we are renaming and
8593 * therefore replaying that log, if a power failure happens
8594 * after syncing the log, would result in deleting the inode.
8595 *
8596 * If the rename affects two different directories, we want to
8597 * make sure the that there's no log commit that contains
8598 * updates for only one of the directories but not for the
8599 * other.
8600 *
8601 * If we are renaming an entry for a root, we don't care about
8602 * log updates since we called btrfs_set_log_full_commit().
8603 */
8604 btrfs_pin_log_trans(root);
8605 btrfs_pin_log_trans(dest);
8606 logs_pinned = true;
8607 }
8608
8609 if (old_dentry->d_parent != new_dentry->d_parent)
8610 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8611 BTRFS_I(old_inode), true);
8612
8613 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8614 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8615 if (unlikely(ret)) {
8616 btrfs_abort_transaction(trans, ret);
8617 goto out_fail;
8618 }
8619 } else {
8620 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8621 BTRFS_I(d_inode(old_dentry)),
8622 &old_fname.disk_name, &rename_ctx);
8623 if (unlikely(ret)) {
8624 btrfs_abort_transaction(trans, ret);
8625 goto out_fail;
8626 }
8627 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8628 if (unlikely(ret)) {
8629 btrfs_abort_transaction(trans, ret);
8630 goto out_fail;
8631 }
8632 }
8633
8634 if (new_inode) {
8635 inode_inc_iversion(new_inode);
8636 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
8637 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8638 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8639 if (unlikely(ret)) {
8640 btrfs_abort_transaction(trans, ret);
8641 goto out_fail;
8642 }
8643 BUG_ON(new_inode->i_nlink == 0);
8644 } else {
8645 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8646 BTRFS_I(d_inode(new_dentry)),
8647 &new_fname.disk_name);
8648 if (unlikely(ret)) {
8649 btrfs_abort_transaction(trans, ret);
8650 goto out_fail;
8651 }
8652 }
8653 if (new_inode->i_nlink == 0) {
8654 ret = btrfs_orphan_add(trans,
8655 BTRFS_I(d_inode(new_dentry)));
8656 if (unlikely(ret)) {
8657 btrfs_abort_transaction(trans, ret);
8658 goto out_fail;
8659 }
8660 }
8661 }
8662
8663 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8664 &new_fname.disk_name, 0, index);
8665 if (unlikely(ret)) {
8666 btrfs_abort_transaction(trans, ret);
8667 goto out_fail;
8668 }
8669
8670 if (old_inode->i_nlink == 1)
8671 BTRFS_I(old_inode)->dir_index = index;
8672
8673 if (logs_pinned)
8674 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8675 rename_ctx.index, new_dentry->d_parent);
8676
8677 if (flags & RENAME_WHITEOUT) {
8678 ret = btrfs_create_new_inode(trans, &whiteout_args);
8679 if (unlikely(ret)) {
8680 btrfs_abort_transaction(trans, ret);
8681 goto out_fail;
8682 } else {
8683 unlock_new_inode(whiteout_args.inode);
8684 iput(whiteout_args.inode);
8685 whiteout_args.inode = NULL;
8686 }
8687 }
8688 out_fail:
8689 if (logs_pinned) {
8690 btrfs_end_log_trans(root);
8691 btrfs_end_log_trans(dest);
8692 }
8693 ret2 = btrfs_end_transaction(trans);
8694 ret = ret ? ret : ret2;
8695 out_notrans:
8696 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8697 up_read(&fs_info->subvol_sem);
8698 if (flags & RENAME_WHITEOUT)
8699 btrfs_new_inode_args_destroy(&whiteout_args);
8700 out_whiteout_inode:
8701 if (flags & RENAME_WHITEOUT)
8702 iput(whiteout_args.inode);
8703 out_fscrypt_names:
8704 fscrypt_free_filename(&old_fname);
8705 fscrypt_free_filename(&new_fname);
8706 return ret;
8707 }
8708
btrfs_rename2(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)8709 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
8710 struct dentry *old_dentry, struct inode *new_dir,
8711 struct dentry *new_dentry, unsigned int flags)
8712 {
8713 int ret;
8714
8715 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
8716 return -EINVAL;
8717
8718 if (flags & RENAME_EXCHANGE)
8719 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
8720 new_dentry);
8721 else
8722 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
8723 new_dentry, flags);
8724
8725 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
8726
8727 return ret;
8728 }
8729
8730 struct btrfs_delalloc_work {
8731 struct inode *inode;
8732 struct completion completion;
8733 struct list_head list;
8734 struct btrfs_work work;
8735 };
8736
btrfs_run_delalloc_work(struct btrfs_work * work)8737 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8738 {
8739 struct btrfs_delalloc_work *delalloc_work;
8740 struct inode *inode;
8741
8742 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8743 work);
8744 inode = delalloc_work->inode;
8745 filemap_flush(inode->i_mapping);
8746 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8747 &BTRFS_I(inode)->runtime_flags))
8748 filemap_flush(inode->i_mapping);
8749
8750 iput(inode);
8751 complete(&delalloc_work->completion);
8752 }
8753
btrfs_alloc_delalloc_work(struct inode * inode)8754 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8755 {
8756 struct btrfs_delalloc_work *work;
8757
8758 work = kmalloc(sizeof(*work), GFP_NOFS);
8759 if (!work)
8760 return NULL;
8761
8762 init_completion(&work->completion);
8763 INIT_LIST_HEAD(&work->list);
8764 work->inode = inode;
8765 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL);
8766
8767 return work;
8768 }
8769
8770 /*
8771 * some fairly slow code that needs optimization. This walks the list
8772 * of all the inodes with pending delalloc and forces them to disk.
8773 */
start_delalloc_inodes(struct btrfs_root * root,long * nr_to_write,bool snapshot,bool in_reclaim_context)8774 static int start_delalloc_inodes(struct btrfs_root *root, long *nr_to_write,
8775 bool snapshot, bool in_reclaim_context)
8776 {
8777 struct btrfs_delalloc_work *work, *next;
8778 LIST_HEAD(works);
8779 LIST_HEAD(splice);
8780 int ret = 0;
8781
8782 mutex_lock(&root->delalloc_mutex);
8783 spin_lock(&root->delalloc_lock);
8784 list_splice_init(&root->delalloc_inodes, &splice);
8785 while (!list_empty(&splice)) {
8786 struct btrfs_inode *inode;
8787 struct inode *tmp_inode;
8788
8789 inode = list_first_entry(&splice, struct btrfs_inode, delalloc_inodes);
8790
8791 list_move_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
8792
8793 if (in_reclaim_context &&
8794 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags))
8795 continue;
8796
8797 tmp_inode = igrab(&inode->vfs_inode);
8798 if (!tmp_inode) {
8799 cond_resched_lock(&root->delalloc_lock);
8800 continue;
8801 }
8802 spin_unlock(&root->delalloc_lock);
8803
8804 if (snapshot)
8805 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, &inode->runtime_flags);
8806 if (nr_to_write == NULL) {
8807 work = btrfs_alloc_delalloc_work(tmp_inode);
8808 if (!work) {
8809 iput(tmp_inode);
8810 ret = -ENOMEM;
8811 goto out;
8812 }
8813 list_add_tail(&work->list, &works);
8814 btrfs_queue_work(root->fs_info->flush_workers,
8815 &work->work);
8816 } else {
8817 ret = filemap_flush_nr(tmp_inode->i_mapping,
8818 nr_to_write);
8819 btrfs_add_delayed_iput(inode);
8820
8821 if (ret || *nr_to_write <= 0)
8822 goto out;
8823 }
8824 cond_resched();
8825 spin_lock(&root->delalloc_lock);
8826 }
8827 spin_unlock(&root->delalloc_lock);
8828
8829 out:
8830 list_for_each_entry_safe(work, next, &works, list) {
8831 list_del_init(&work->list);
8832 wait_for_completion(&work->completion);
8833 kfree(work);
8834 }
8835
8836 if (!list_empty(&splice)) {
8837 spin_lock(&root->delalloc_lock);
8838 list_splice_tail(&splice, &root->delalloc_inodes);
8839 spin_unlock(&root->delalloc_lock);
8840 }
8841 mutex_unlock(&root->delalloc_mutex);
8842 return ret;
8843 }
8844
btrfs_start_delalloc_snapshot(struct btrfs_root * root,bool in_reclaim_context)8845 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
8846 {
8847 struct btrfs_fs_info *fs_info = root->fs_info;
8848
8849 if (BTRFS_FS_ERROR(fs_info))
8850 return -EROFS;
8851 return start_delalloc_inodes(root, NULL, true, in_reclaim_context);
8852 }
8853
btrfs_start_delalloc_roots(struct btrfs_fs_info * fs_info,long nr,bool in_reclaim_context)8854 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
8855 bool in_reclaim_context)
8856 {
8857 long *nr_to_write = nr == LONG_MAX ? NULL : &nr;
8858 struct btrfs_root *root;
8859 LIST_HEAD(splice);
8860 int ret;
8861
8862 if (BTRFS_FS_ERROR(fs_info))
8863 return -EROFS;
8864
8865 mutex_lock(&fs_info->delalloc_root_mutex);
8866 spin_lock(&fs_info->delalloc_root_lock);
8867 list_splice_init(&fs_info->delalloc_roots, &splice);
8868 while (!list_empty(&splice)) {
8869 root = list_first_entry(&splice, struct btrfs_root,
8870 delalloc_root);
8871 root = btrfs_grab_root(root);
8872 BUG_ON(!root);
8873 list_move_tail(&root->delalloc_root,
8874 &fs_info->delalloc_roots);
8875 spin_unlock(&fs_info->delalloc_root_lock);
8876
8877 ret = start_delalloc_inodes(root, nr_to_write, false,
8878 in_reclaim_context);
8879 btrfs_put_root(root);
8880 if (ret < 0 || nr <= 0)
8881 goto out;
8882 spin_lock(&fs_info->delalloc_root_lock);
8883 }
8884 spin_unlock(&fs_info->delalloc_root_lock);
8885
8886 ret = 0;
8887 out:
8888 if (!list_empty(&splice)) {
8889 spin_lock(&fs_info->delalloc_root_lock);
8890 list_splice_tail(&splice, &fs_info->delalloc_roots);
8891 spin_unlock(&fs_info->delalloc_root_lock);
8892 }
8893 mutex_unlock(&fs_info->delalloc_root_mutex);
8894 return ret;
8895 }
8896
btrfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)8897 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
8898 struct dentry *dentry, const char *symname)
8899 {
8900 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
8901 struct btrfs_trans_handle *trans;
8902 struct btrfs_root *root = BTRFS_I(dir)->root;
8903 struct btrfs_path *path;
8904 struct btrfs_key key;
8905 struct inode *inode;
8906 struct btrfs_new_inode_args new_inode_args = {
8907 .dir = dir,
8908 .dentry = dentry,
8909 };
8910 unsigned int trans_num_items;
8911 int ret;
8912 int name_len;
8913 int datasize;
8914 unsigned long ptr;
8915 struct btrfs_file_extent_item *ei;
8916 struct extent_buffer *leaf;
8917
8918 name_len = strlen(symname);
8919 /*
8920 * Symlinks utilize uncompressed inline extent data, which should not
8921 * reach block size.
8922 */
8923 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
8924 name_len >= fs_info->sectorsize)
8925 return -ENAMETOOLONG;
8926
8927 inode = new_inode(dir->i_sb);
8928 if (!inode)
8929 return -ENOMEM;
8930 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
8931 inode->i_op = &btrfs_symlink_inode_operations;
8932 inode_nohighmem(inode);
8933 inode->i_mapping->a_ops = &btrfs_aops;
8934 btrfs_i_size_write(BTRFS_I(inode), name_len);
8935 inode_set_bytes(inode, name_len);
8936
8937 new_inode_args.inode = inode;
8938 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
8939 if (ret)
8940 goto out_inode;
8941 /* 1 additional item for the inline extent */
8942 trans_num_items++;
8943
8944 trans = btrfs_start_transaction(root, trans_num_items);
8945 if (IS_ERR(trans)) {
8946 ret = PTR_ERR(trans);
8947 goto out_new_inode_args;
8948 }
8949
8950 ret = btrfs_create_new_inode(trans, &new_inode_args);
8951 if (ret)
8952 goto out;
8953
8954 path = btrfs_alloc_path();
8955 if (unlikely(!path)) {
8956 ret = -ENOMEM;
8957 btrfs_abort_transaction(trans, ret);
8958 discard_new_inode(inode);
8959 inode = NULL;
8960 goto out;
8961 }
8962 key.objectid = btrfs_ino(BTRFS_I(inode));
8963 key.type = BTRFS_EXTENT_DATA_KEY;
8964 key.offset = 0;
8965 datasize = btrfs_file_extent_calc_inline_size(name_len);
8966 ret = btrfs_insert_empty_item(trans, root, path, &key, datasize);
8967 if (unlikely(ret)) {
8968 btrfs_abort_transaction(trans, ret);
8969 btrfs_free_path(path);
8970 discard_new_inode(inode);
8971 inode = NULL;
8972 goto out;
8973 }
8974 leaf = path->nodes[0];
8975 ei = btrfs_item_ptr(leaf, path->slots[0],
8976 struct btrfs_file_extent_item);
8977 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8978 btrfs_set_file_extent_type(leaf, ei,
8979 BTRFS_FILE_EXTENT_INLINE);
8980 btrfs_set_file_extent_encryption(leaf, ei, 0);
8981 btrfs_set_file_extent_compression(leaf, ei, 0);
8982 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8983 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8984
8985 ptr = btrfs_file_extent_inline_start(ei);
8986 write_extent_buffer(leaf, symname, ptr, name_len);
8987 btrfs_free_path(path);
8988
8989 d_instantiate_new(dentry, inode);
8990 ret = 0;
8991 out:
8992 btrfs_end_transaction(trans);
8993 btrfs_btree_balance_dirty(fs_info);
8994 out_new_inode_args:
8995 btrfs_new_inode_args_destroy(&new_inode_args);
8996 out_inode:
8997 if (ret)
8998 iput(inode);
8999 return ret;
9000 }
9001
insert_prealloc_file_extent(struct btrfs_trans_handle * trans_in,struct btrfs_inode * inode,struct btrfs_key * ins,u64 file_offset)9002 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9003 struct btrfs_trans_handle *trans_in,
9004 struct btrfs_inode *inode,
9005 struct btrfs_key *ins,
9006 u64 file_offset)
9007 {
9008 struct btrfs_file_extent_item stack_fi;
9009 struct btrfs_replace_extent_info extent_info;
9010 struct btrfs_trans_handle *trans = trans_in;
9011 struct btrfs_path *path;
9012 u64 start = ins->objectid;
9013 u64 len = ins->offset;
9014 u64 qgroup_released = 0;
9015 int ret;
9016
9017 memset(&stack_fi, 0, sizeof(stack_fi));
9018
9019 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9020 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9021 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9022 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9023 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9024 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9025 /* Encryption and other encoding is reserved and all 0 */
9026
9027 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
9028 if (ret < 0)
9029 return ERR_PTR(ret);
9030
9031 if (trans) {
9032 ret = insert_reserved_file_extent(trans, inode,
9033 file_offset, &stack_fi,
9034 true, qgroup_released);
9035 if (ret)
9036 goto free_qgroup;
9037 return trans;
9038 }
9039
9040 extent_info.disk_offset = start;
9041 extent_info.disk_len = len;
9042 extent_info.data_offset = 0;
9043 extent_info.data_len = len;
9044 extent_info.file_offset = file_offset;
9045 extent_info.extent_buf = (char *)&stack_fi;
9046 extent_info.is_new_extent = true;
9047 extent_info.update_times = true;
9048 extent_info.qgroup_reserved = qgroup_released;
9049 extent_info.insertions = 0;
9050
9051 path = btrfs_alloc_path();
9052 if (!path) {
9053 ret = -ENOMEM;
9054 goto free_qgroup;
9055 }
9056
9057 ret = btrfs_replace_file_extents(inode, path, file_offset,
9058 file_offset + len - 1, &extent_info,
9059 &trans);
9060 btrfs_free_path(path);
9061 if (ret)
9062 goto free_qgroup;
9063 return trans;
9064
9065 free_qgroup:
9066 /*
9067 * We have released qgroup data range at the beginning of the function,
9068 * and normally qgroup_released bytes will be freed when committing
9069 * transaction.
9070 * But if we error out early, we have to free what we have released
9071 * or we leak qgroup data reservation.
9072 */
9073 btrfs_qgroup_free_refroot(inode->root->fs_info,
9074 btrfs_root_id(inode->root), qgroup_released,
9075 BTRFS_QGROUP_RSV_DATA);
9076 return ERR_PTR(ret);
9077 }
9078
__btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint,struct btrfs_trans_handle * trans)9079 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9080 u64 start, u64 num_bytes, u64 min_size,
9081 loff_t actual_len, u64 *alloc_hint,
9082 struct btrfs_trans_handle *trans)
9083 {
9084 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
9085 struct extent_map *em;
9086 struct btrfs_root *root = BTRFS_I(inode)->root;
9087 struct btrfs_key ins;
9088 u64 cur_offset = start;
9089 u64 clear_offset = start;
9090 u64 i_size;
9091 u64 cur_bytes;
9092 u64 last_alloc = (u64)-1;
9093 int ret = 0;
9094 bool own_trans = true;
9095 u64 end = start + num_bytes - 1;
9096
9097 if (trans)
9098 own_trans = false;
9099 while (num_bytes > 0) {
9100 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9101 cur_bytes = max(cur_bytes, min_size);
9102 /*
9103 * If we are severely fragmented we could end up with really
9104 * small allocations, so if the allocator is returning small
9105 * chunks lets make its job easier by only searching for those
9106 * sized chunks.
9107 */
9108 cur_bytes = min(cur_bytes, last_alloc);
9109 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9110 min_size, 0, *alloc_hint, &ins, true, false);
9111 if (ret)
9112 break;
9113
9114 /*
9115 * We've reserved this space, and thus converted it from
9116 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9117 * from here on out we will only need to clear our reservation
9118 * for the remaining unreserved area, so advance our
9119 * clear_offset by our extent size.
9120 */
9121 clear_offset += ins.offset;
9122
9123 last_alloc = ins.offset;
9124 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9125 &ins, cur_offset);
9126 /*
9127 * Now that we inserted the prealloc extent we can finally
9128 * decrement the number of reservations in the block group.
9129 * If we did it before, we could race with relocation and have
9130 * relocation miss the reserved extent, making it fail later.
9131 */
9132 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9133 if (IS_ERR(trans)) {
9134 ret = PTR_ERR(trans);
9135 btrfs_free_reserved_extent(fs_info, ins.objectid,
9136 ins.offset, false);
9137 break;
9138 }
9139
9140 em = btrfs_alloc_extent_map();
9141 if (!em) {
9142 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9143 cur_offset + ins.offset - 1, false);
9144 btrfs_set_inode_full_sync(BTRFS_I(inode));
9145 goto next;
9146 }
9147
9148 em->start = cur_offset;
9149 em->len = ins.offset;
9150 em->disk_bytenr = ins.objectid;
9151 em->offset = 0;
9152 em->disk_num_bytes = ins.offset;
9153 em->ram_bytes = ins.offset;
9154 em->flags |= EXTENT_FLAG_PREALLOC;
9155 em->generation = trans->transid;
9156
9157 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
9158 btrfs_free_extent_map(em);
9159 next:
9160 num_bytes -= ins.offset;
9161 cur_offset += ins.offset;
9162 *alloc_hint = ins.objectid + ins.offset;
9163
9164 inode_inc_iversion(inode);
9165 inode_set_ctime_current(inode);
9166 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9167 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9168 (actual_len > inode->i_size) &&
9169 (cur_offset > inode->i_size)) {
9170 if (cur_offset > actual_len)
9171 i_size = actual_len;
9172 else
9173 i_size = cur_offset;
9174 i_size_write(inode, i_size);
9175 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9176 }
9177
9178 ret = btrfs_update_inode(trans, BTRFS_I(inode));
9179
9180 if (unlikely(ret)) {
9181 btrfs_abort_transaction(trans, ret);
9182 if (own_trans)
9183 btrfs_end_transaction(trans);
9184 break;
9185 }
9186
9187 if (own_trans) {
9188 btrfs_end_transaction(trans);
9189 trans = NULL;
9190 }
9191 }
9192 if (clear_offset < end)
9193 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9194 end - clear_offset + 1);
9195 return ret;
9196 }
9197
btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)9198 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9199 u64 start, u64 num_bytes, u64 min_size,
9200 loff_t actual_len, u64 *alloc_hint)
9201 {
9202 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9203 min_size, actual_len, alloc_hint,
9204 NULL);
9205 }
9206
btrfs_prealloc_file_range_trans(struct inode * inode,struct btrfs_trans_handle * trans,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)9207 int btrfs_prealloc_file_range_trans(struct inode *inode,
9208 struct btrfs_trans_handle *trans, int mode,
9209 u64 start, u64 num_bytes, u64 min_size,
9210 loff_t actual_len, u64 *alloc_hint)
9211 {
9212 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9213 min_size, actual_len, alloc_hint, trans);
9214 }
9215
9216 /*
9217 * NOTE: in case you are adding MAY_EXEC check for directories:
9218 * we are marking them with IOP_FASTPERM_MAY_EXEC, allowing path lookup to
9219 * elide calls here.
9220 */
btrfs_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)9221 static int btrfs_permission(struct mnt_idmap *idmap,
9222 struct inode *inode, int mask)
9223 {
9224 struct btrfs_root *root = BTRFS_I(inode)->root;
9225 umode_t mode = inode->i_mode;
9226
9227 if (mask & MAY_WRITE &&
9228 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9229 if (btrfs_root_readonly(root))
9230 return -EROFS;
9231 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9232 return -EACCES;
9233 }
9234 return generic_permission(idmap, inode, mask);
9235 }
9236
btrfs_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)9237 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9238 struct file *file, umode_t mode)
9239 {
9240 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
9241 struct btrfs_trans_handle *trans;
9242 struct btrfs_root *root = BTRFS_I(dir)->root;
9243 struct inode *inode;
9244 struct btrfs_new_inode_args new_inode_args = {
9245 .dir = dir,
9246 .dentry = file->f_path.dentry,
9247 .orphan = true,
9248 };
9249 unsigned int trans_num_items;
9250 int ret;
9251
9252 inode = new_inode(dir->i_sb);
9253 if (!inode)
9254 return -ENOMEM;
9255 inode_init_owner(idmap, inode, dir, mode);
9256 inode->i_fop = &btrfs_file_operations;
9257 inode->i_op = &btrfs_file_inode_operations;
9258 inode->i_mapping->a_ops = &btrfs_aops;
9259
9260 new_inode_args.inode = inode;
9261 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9262 if (ret)
9263 goto out_inode;
9264
9265 trans = btrfs_start_transaction(root, trans_num_items);
9266 if (IS_ERR(trans)) {
9267 ret = PTR_ERR(trans);
9268 goto out_new_inode_args;
9269 }
9270
9271 ret = btrfs_create_new_inode(trans, &new_inode_args);
9272
9273 /*
9274 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9275 * set it to 1 because d_tmpfile() will issue a warning if the count is
9276 * 0, through:
9277 *
9278 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9279 */
9280 set_nlink(inode, 1);
9281
9282 if (!ret) {
9283 d_tmpfile(file, inode);
9284 unlock_new_inode(inode);
9285 mark_inode_dirty(inode);
9286 }
9287
9288 btrfs_end_transaction(trans);
9289 btrfs_btree_balance_dirty(fs_info);
9290 out_new_inode_args:
9291 btrfs_new_inode_args_destroy(&new_inode_args);
9292 out_inode:
9293 if (ret)
9294 iput(inode);
9295 return finish_open_simple(file, ret);
9296 }
9297
btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info * fs_info,int compress_type)9298 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9299 int compress_type)
9300 {
9301 switch (compress_type) {
9302 case BTRFS_COMPRESS_NONE:
9303 return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9304 case BTRFS_COMPRESS_ZLIB:
9305 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9306 case BTRFS_COMPRESS_LZO:
9307 /*
9308 * The LZO format depends on the sector size. 64K is the maximum
9309 * sector size that we support.
9310 */
9311 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9312 return -EINVAL;
9313 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9314 (fs_info->sectorsize_bits - 12);
9315 case BTRFS_COMPRESS_ZSTD:
9316 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9317 default:
9318 return -EUCLEAN;
9319 }
9320 }
9321
btrfs_encoded_read_inline(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state ** cached_state,u64 extent_start,size_t count,struct btrfs_ioctl_encoded_io_args * encoded,bool * unlocked)9322 static ssize_t btrfs_encoded_read_inline(
9323 struct kiocb *iocb,
9324 struct iov_iter *iter, u64 start,
9325 u64 lockend,
9326 struct extent_state **cached_state,
9327 u64 extent_start, size_t count,
9328 struct btrfs_ioctl_encoded_io_args *encoded,
9329 bool *unlocked)
9330 {
9331 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9332 struct btrfs_root *root = inode->root;
9333 struct btrfs_fs_info *fs_info = root->fs_info;
9334 struct extent_io_tree *io_tree = &inode->io_tree;
9335 BTRFS_PATH_AUTO_FREE(path);
9336 struct extent_buffer *leaf;
9337 struct btrfs_file_extent_item *item;
9338 u64 ram_bytes;
9339 unsigned long ptr;
9340 void *tmp;
9341 ssize_t ret;
9342 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
9343
9344 path = btrfs_alloc_path();
9345 if (!path)
9346 return -ENOMEM;
9347
9348 path->nowait = nowait;
9349
9350 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9351 extent_start, 0);
9352 if (ret) {
9353 if (unlikely(ret > 0)) {
9354 /* The extent item disappeared? */
9355 return -EIO;
9356 }
9357 return ret;
9358 }
9359 leaf = path->nodes[0];
9360 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9361
9362 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9363 ptr = btrfs_file_extent_inline_start(item);
9364
9365 encoded->len = min_t(u64, extent_start + ram_bytes,
9366 inode->vfs_inode.i_size) - iocb->ki_pos;
9367 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9368 btrfs_file_extent_compression(leaf, item));
9369 if (ret < 0)
9370 return ret;
9371 encoded->compression = ret;
9372 if (encoded->compression) {
9373 size_t inline_size;
9374
9375 inline_size = btrfs_file_extent_inline_item_len(leaf,
9376 path->slots[0]);
9377 if (inline_size > count)
9378 return -ENOBUFS;
9379
9380 count = inline_size;
9381 encoded->unencoded_len = ram_bytes;
9382 encoded->unencoded_offset = iocb->ki_pos - extent_start;
9383 } else {
9384 count = min_t(u64, count, encoded->len);
9385 encoded->len = count;
9386 encoded->unencoded_len = count;
9387 ptr += iocb->ki_pos - extent_start;
9388 }
9389
9390 tmp = kmalloc(count, GFP_NOFS);
9391 if (!tmp)
9392 return -ENOMEM;
9393
9394 read_extent_buffer(leaf, tmp, ptr, count);
9395 btrfs_release_path(path);
9396 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9397 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9398 *unlocked = true;
9399
9400 ret = copy_to_iter(tmp, count, iter);
9401 if (ret != count)
9402 ret = -EFAULT;
9403 kfree(tmp);
9404
9405 return ret;
9406 }
9407
9408 struct btrfs_encoded_read_private {
9409 struct completion *sync_reads;
9410 void *uring_ctx;
9411 refcount_t pending_refs;
9412 blk_status_t status;
9413 };
9414
btrfs_encoded_read_endio(struct btrfs_bio * bbio)9415 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9416 {
9417 struct btrfs_encoded_read_private *priv = bbio->private;
9418
9419 if (bbio->bio.bi_status) {
9420 /*
9421 * The memory barrier implied by the refcount_dec_and_test() here
9422 * pairs with the memory barrier implied by the refcount_dec_and_test()
9423 * in btrfs_encoded_read_regular_fill_pages() to ensure that
9424 * this write is observed before the load of status in
9425 * btrfs_encoded_read_regular_fill_pages().
9426 */
9427 WRITE_ONCE(priv->status, bbio->bio.bi_status);
9428 }
9429 if (refcount_dec_and_test(&priv->pending_refs)) {
9430 int err = blk_status_to_errno(READ_ONCE(priv->status));
9431
9432 if (priv->uring_ctx) {
9433 btrfs_uring_read_extent_endio(priv->uring_ctx, err);
9434 kfree(priv);
9435 } else {
9436 complete(priv->sync_reads);
9437 }
9438 }
9439 bio_put(&bbio->bio);
9440 }
9441
btrfs_encoded_read_regular_fill_pages(struct btrfs_inode * inode,u64 disk_bytenr,u64 disk_io_size,struct page ** pages,void * uring_ctx)9442 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9443 u64 disk_bytenr, u64 disk_io_size,
9444 struct page **pages, void *uring_ctx)
9445 {
9446 struct btrfs_encoded_read_private *priv, sync_priv;
9447 struct completion sync_reads;
9448 unsigned long i = 0;
9449 struct btrfs_bio *bbio;
9450 int ret;
9451
9452 /*
9453 * Fast path for synchronous reads which completes in this call, io_uring
9454 * needs longer time span.
9455 */
9456 if (uring_ctx) {
9457 priv = kmalloc(sizeof(struct btrfs_encoded_read_private), GFP_NOFS);
9458 if (!priv)
9459 return -ENOMEM;
9460 } else {
9461 priv = &sync_priv;
9462 init_completion(&sync_reads);
9463 priv->sync_reads = &sync_reads;
9464 }
9465
9466 refcount_set(&priv->pending_refs, 1);
9467 priv->status = 0;
9468 priv->uring_ctx = uring_ctx;
9469
9470 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, inode, 0,
9471 btrfs_encoded_read_endio, priv);
9472 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9473
9474 do {
9475 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9476
9477 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
9478 refcount_inc(&priv->pending_refs);
9479 btrfs_submit_bbio(bbio, 0);
9480
9481 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, inode, 0,
9482 btrfs_encoded_read_endio, priv);
9483 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9484 continue;
9485 }
9486
9487 i++;
9488 disk_bytenr += bytes;
9489 disk_io_size -= bytes;
9490 } while (disk_io_size);
9491
9492 refcount_inc(&priv->pending_refs);
9493 btrfs_submit_bbio(bbio, 0);
9494
9495 if (uring_ctx) {
9496 if (refcount_dec_and_test(&priv->pending_refs)) {
9497 ret = blk_status_to_errno(READ_ONCE(priv->status));
9498 btrfs_uring_read_extent_endio(uring_ctx, ret);
9499 kfree(priv);
9500 return ret;
9501 }
9502
9503 return -EIOCBQUEUED;
9504 } else {
9505 if (!refcount_dec_and_test(&priv->pending_refs))
9506 wait_for_completion_io(&sync_reads);
9507 /* See btrfs_encoded_read_endio() for ordering. */
9508 return blk_status_to_errno(READ_ONCE(priv->status));
9509 }
9510 }
9511
btrfs_encoded_read_regular(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state ** cached_state,u64 disk_bytenr,u64 disk_io_size,size_t count,bool compressed,bool * unlocked)9512 ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter,
9513 u64 start, u64 lockend,
9514 struct extent_state **cached_state,
9515 u64 disk_bytenr, u64 disk_io_size,
9516 size_t count, bool compressed, bool *unlocked)
9517 {
9518 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9519 struct extent_io_tree *io_tree = &inode->io_tree;
9520 struct page **pages;
9521 unsigned long nr_pages, i;
9522 u64 cur;
9523 size_t page_offset;
9524 ssize_t ret;
9525
9526 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
9527 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
9528 if (!pages)
9529 return -ENOMEM;
9530 ret = btrfs_alloc_page_array(nr_pages, pages, false);
9531 if (ret) {
9532 ret = -ENOMEM;
9533 goto out;
9534 }
9535
9536 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr,
9537 disk_io_size, pages, NULL);
9538 if (ret)
9539 goto out;
9540
9541 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9542 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9543 *unlocked = true;
9544
9545 if (compressed) {
9546 i = 0;
9547 page_offset = 0;
9548 } else {
9549 i = (iocb->ki_pos - start) >> PAGE_SHIFT;
9550 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
9551 }
9552 cur = 0;
9553 while (cur < count) {
9554 size_t bytes = min_t(size_t, count - cur,
9555 PAGE_SIZE - page_offset);
9556
9557 if (copy_page_to_iter(pages[i], page_offset, bytes,
9558 iter) != bytes) {
9559 ret = -EFAULT;
9560 goto out;
9561 }
9562 i++;
9563 cur += bytes;
9564 page_offset = 0;
9565 }
9566 ret = count;
9567 out:
9568 for (i = 0; i < nr_pages; i++) {
9569 if (pages[i])
9570 __free_page(pages[i]);
9571 }
9572 kfree(pages);
9573 return ret;
9574 }
9575
btrfs_encoded_read(struct kiocb * iocb,struct iov_iter * iter,struct btrfs_ioctl_encoded_io_args * encoded,struct extent_state ** cached_state,u64 * disk_bytenr,u64 * disk_io_size)9576 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
9577 struct btrfs_ioctl_encoded_io_args *encoded,
9578 struct extent_state **cached_state,
9579 u64 *disk_bytenr, u64 *disk_io_size)
9580 {
9581 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9582 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9583 struct extent_io_tree *io_tree = &inode->io_tree;
9584 ssize_t ret;
9585 size_t count = iov_iter_count(iter);
9586 u64 start, lockend;
9587 struct extent_map *em;
9588 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
9589 bool unlocked = false;
9590
9591 file_accessed(iocb->ki_filp);
9592
9593 ret = btrfs_inode_lock(inode,
9594 BTRFS_ILOCK_SHARED | (nowait ? BTRFS_ILOCK_TRY : 0));
9595 if (ret)
9596 return ret;
9597
9598 if (iocb->ki_pos >= inode->vfs_inode.i_size) {
9599 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9600 return 0;
9601 }
9602 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
9603 /*
9604 * We don't know how long the extent containing iocb->ki_pos is, but if
9605 * it's compressed we know that it won't be longer than this.
9606 */
9607 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
9608
9609 if (nowait) {
9610 struct btrfs_ordered_extent *ordered;
9611
9612 if (filemap_range_needs_writeback(inode->vfs_inode.i_mapping,
9613 start, lockend)) {
9614 ret = -EAGAIN;
9615 goto out_unlock_inode;
9616 }
9617
9618 if (!btrfs_try_lock_extent(io_tree, start, lockend, cached_state)) {
9619 ret = -EAGAIN;
9620 goto out_unlock_inode;
9621 }
9622
9623 ordered = btrfs_lookup_ordered_range(inode, start,
9624 lockend - start + 1);
9625 if (ordered) {
9626 btrfs_put_ordered_extent(ordered);
9627 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9628 ret = -EAGAIN;
9629 goto out_unlock_inode;
9630 }
9631 } else {
9632 for (;;) {
9633 struct btrfs_ordered_extent *ordered;
9634
9635 ret = btrfs_wait_ordered_range(inode, start,
9636 lockend - start + 1);
9637 if (ret)
9638 goto out_unlock_inode;
9639
9640 btrfs_lock_extent(io_tree, start, lockend, cached_state);
9641 ordered = btrfs_lookup_ordered_range(inode, start,
9642 lockend - start + 1);
9643 if (!ordered)
9644 break;
9645 btrfs_put_ordered_extent(ordered);
9646 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9647 cond_resched();
9648 }
9649 }
9650
9651 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1);
9652 if (IS_ERR(em)) {
9653 ret = PTR_ERR(em);
9654 goto out_unlock_extent;
9655 }
9656
9657 if (em->disk_bytenr == EXTENT_MAP_INLINE) {
9658 u64 extent_start = em->start;
9659
9660 /*
9661 * For inline extents we get everything we need out of the
9662 * extent item.
9663 */
9664 btrfs_free_extent_map(em);
9665 em = NULL;
9666 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
9667 cached_state, extent_start,
9668 count, encoded, &unlocked);
9669 goto out_unlock_extent;
9670 }
9671
9672 /*
9673 * We only want to return up to EOF even if the extent extends beyond
9674 * that.
9675 */
9676 encoded->len = min_t(u64, btrfs_extent_map_end(em),
9677 inode->vfs_inode.i_size) - iocb->ki_pos;
9678 if (em->disk_bytenr == EXTENT_MAP_HOLE ||
9679 (em->flags & EXTENT_FLAG_PREALLOC)) {
9680 *disk_bytenr = EXTENT_MAP_HOLE;
9681 count = min_t(u64, count, encoded->len);
9682 encoded->len = count;
9683 encoded->unencoded_len = count;
9684 } else if (btrfs_extent_map_is_compressed(em)) {
9685 *disk_bytenr = em->disk_bytenr;
9686 /*
9687 * Bail if the buffer isn't large enough to return the whole
9688 * compressed extent.
9689 */
9690 if (em->disk_num_bytes > count) {
9691 ret = -ENOBUFS;
9692 goto out_em;
9693 }
9694 *disk_io_size = em->disk_num_bytes;
9695 count = em->disk_num_bytes;
9696 encoded->unencoded_len = em->ram_bytes;
9697 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset);
9698 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9699 btrfs_extent_map_compression(em));
9700 if (ret < 0)
9701 goto out_em;
9702 encoded->compression = ret;
9703 } else {
9704 *disk_bytenr = btrfs_extent_map_block_start(em) + (start - em->start);
9705 if (encoded->len > count)
9706 encoded->len = count;
9707 /*
9708 * Don't read beyond what we locked. This also limits the page
9709 * allocations that we'll do.
9710 */
9711 *disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
9712 count = start + *disk_io_size - iocb->ki_pos;
9713 encoded->len = count;
9714 encoded->unencoded_len = count;
9715 *disk_io_size = ALIGN(*disk_io_size, fs_info->sectorsize);
9716 }
9717 btrfs_free_extent_map(em);
9718 em = NULL;
9719
9720 if (*disk_bytenr == EXTENT_MAP_HOLE) {
9721 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9722 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9723 unlocked = true;
9724 ret = iov_iter_zero(count, iter);
9725 if (ret != count)
9726 ret = -EFAULT;
9727 } else {
9728 ret = -EIOCBQUEUED;
9729 goto out_unlock_extent;
9730 }
9731
9732 out_em:
9733 btrfs_free_extent_map(em);
9734 out_unlock_extent:
9735 /* Leave inode and extent locked if we need to do a read. */
9736 if (!unlocked && ret != -EIOCBQUEUED)
9737 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9738 out_unlock_inode:
9739 if (!unlocked && ret != -EIOCBQUEUED)
9740 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9741 return ret;
9742 }
9743
btrfs_do_encoded_write(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)9744 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
9745 const struct btrfs_ioctl_encoded_io_args *encoded)
9746 {
9747 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9748 struct btrfs_root *root = inode->root;
9749 struct btrfs_fs_info *fs_info = root->fs_info;
9750 struct extent_io_tree *io_tree = &inode->io_tree;
9751 struct extent_changeset *data_reserved = NULL;
9752 struct extent_state *cached_state = NULL;
9753 struct btrfs_ordered_extent *ordered;
9754 struct btrfs_file_extent file_extent;
9755 int compression;
9756 size_t orig_count;
9757 u64 start, end;
9758 u64 num_bytes, ram_bytes, disk_num_bytes;
9759 unsigned long nr_folios, i;
9760 struct folio **folios;
9761 struct btrfs_key ins;
9762 bool extent_reserved = false;
9763 struct extent_map *em;
9764 ssize_t ret;
9765
9766 switch (encoded->compression) {
9767 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
9768 compression = BTRFS_COMPRESS_ZLIB;
9769 break;
9770 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
9771 compression = BTRFS_COMPRESS_ZSTD;
9772 break;
9773 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
9774 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
9775 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
9776 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
9777 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
9778 /* The sector size must match for LZO. */
9779 if (encoded->compression -
9780 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
9781 fs_info->sectorsize_bits)
9782 return -EINVAL;
9783 compression = BTRFS_COMPRESS_LZO;
9784 break;
9785 default:
9786 return -EINVAL;
9787 }
9788 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
9789 return -EINVAL;
9790
9791 /*
9792 * Compressed extents should always have checksums, so error out if we
9793 * have a NOCOW file or inode was created while mounted with NODATASUM.
9794 */
9795 if (inode->flags & BTRFS_INODE_NODATASUM)
9796 return -EINVAL;
9797
9798 orig_count = iov_iter_count(from);
9799
9800 /* The extent size must be sane. */
9801 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
9802 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
9803 return -EINVAL;
9804
9805 /*
9806 * The compressed data must be smaller than the decompressed data.
9807 *
9808 * It's of course possible for data to compress to larger or the same
9809 * size, but the buffered I/O path falls back to no compression for such
9810 * data, and we don't want to break any assumptions by creating these
9811 * extents.
9812 *
9813 * Note that this is less strict than the current check we have that the
9814 * compressed data must be at least one sector smaller than the
9815 * decompressed data. We only want to enforce the weaker requirement
9816 * from old kernels that it is at least one byte smaller.
9817 */
9818 if (orig_count >= encoded->unencoded_len)
9819 return -EINVAL;
9820
9821 /* The extent must start on a sector boundary. */
9822 start = iocb->ki_pos;
9823 if (!IS_ALIGNED(start, fs_info->sectorsize))
9824 return -EINVAL;
9825
9826 /*
9827 * The extent must end on a sector boundary. However, we allow a write
9828 * which ends at or extends i_size to have an unaligned length; we round
9829 * up the extent size and set i_size to the unaligned end.
9830 */
9831 if (start + encoded->len < inode->vfs_inode.i_size &&
9832 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
9833 return -EINVAL;
9834
9835 /* Finally, the offset in the unencoded data must be sector-aligned. */
9836 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
9837 return -EINVAL;
9838
9839 num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
9840 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
9841 end = start + num_bytes - 1;
9842
9843 /*
9844 * If the extent cannot be inline, the compressed data on disk must be
9845 * sector-aligned. For convenience, we extend it with zeroes if it
9846 * isn't.
9847 */
9848 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
9849 nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
9850 folios = kvcalloc(nr_folios, sizeof(struct folio *), GFP_KERNEL_ACCOUNT);
9851 if (!folios)
9852 return -ENOMEM;
9853 for (i = 0; i < nr_folios; i++) {
9854 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
9855 char *kaddr;
9856
9857 folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0);
9858 if (!folios[i]) {
9859 ret = -ENOMEM;
9860 goto out_folios;
9861 }
9862 kaddr = kmap_local_folio(folios[i], 0);
9863 if (copy_from_iter(kaddr, bytes, from) != bytes) {
9864 kunmap_local(kaddr);
9865 ret = -EFAULT;
9866 goto out_folios;
9867 }
9868 if (bytes < PAGE_SIZE)
9869 memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
9870 kunmap_local(kaddr);
9871 }
9872
9873 for (;;) {
9874 ret = btrfs_wait_ordered_range(inode, start, num_bytes);
9875 if (ret)
9876 goto out_folios;
9877 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
9878 start >> PAGE_SHIFT,
9879 end >> PAGE_SHIFT);
9880 if (ret)
9881 goto out_folios;
9882 btrfs_lock_extent(io_tree, start, end, &cached_state);
9883 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
9884 if (!ordered &&
9885 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
9886 break;
9887 if (ordered)
9888 btrfs_put_ordered_extent(ordered);
9889 btrfs_unlock_extent(io_tree, start, end, &cached_state);
9890 cond_resched();
9891 }
9892
9893 /*
9894 * We don't use the higher-level delalloc space functions because our
9895 * num_bytes and disk_num_bytes are different.
9896 */
9897 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
9898 if (ret)
9899 goto out_unlock;
9900 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
9901 if (ret)
9902 goto out_free_data_space;
9903 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
9904 false);
9905 if (ret)
9906 goto out_qgroup_free_data;
9907
9908 /* Try an inline extent first. */
9909 if (encoded->unencoded_len == encoded->len &&
9910 encoded->unencoded_offset == 0 &&
9911 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) {
9912 ret = __cow_file_range_inline(inode, encoded->len,
9913 orig_count, compression, folios[0],
9914 true);
9915 if (ret <= 0) {
9916 if (ret == 0)
9917 ret = orig_count;
9918 goto out_delalloc_release;
9919 }
9920 }
9921
9922 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
9923 disk_num_bytes, 0, 0, &ins, true, true);
9924 if (ret)
9925 goto out_delalloc_release;
9926 extent_reserved = true;
9927
9928 file_extent.disk_bytenr = ins.objectid;
9929 file_extent.disk_num_bytes = ins.offset;
9930 file_extent.num_bytes = num_bytes;
9931 file_extent.ram_bytes = ram_bytes;
9932 file_extent.offset = encoded->unencoded_offset;
9933 file_extent.compression = compression;
9934 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
9935 if (IS_ERR(em)) {
9936 ret = PTR_ERR(em);
9937 goto out_free_reserved;
9938 }
9939 btrfs_free_extent_map(em);
9940
9941 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
9942 (1U << BTRFS_ORDERED_ENCODED) |
9943 (1U << BTRFS_ORDERED_COMPRESSED));
9944 if (IS_ERR(ordered)) {
9945 btrfs_drop_extent_map_range(inode, start, end, false);
9946 ret = PTR_ERR(ordered);
9947 goto out_free_reserved;
9948 }
9949 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9950
9951 if (start + encoded->len > inode->vfs_inode.i_size)
9952 i_size_write(&inode->vfs_inode, start + encoded->len);
9953
9954 btrfs_unlock_extent(io_tree, start, end, &cached_state);
9955
9956 btrfs_delalloc_release_extents(inode, num_bytes);
9957
9958 btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false);
9959 ret = orig_count;
9960 goto out;
9961
9962 out_free_reserved:
9963 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9964 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true);
9965 out_delalloc_release:
9966 btrfs_delalloc_release_extents(inode, num_bytes);
9967 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
9968 out_qgroup_free_data:
9969 if (ret < 0)
9970 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
9971 out_free_data_space:
9972 /*
9973 * If btrfs_reserve_extent() succeeded, then we already decremented
9974 * bytes_may_use.
9975 */
9976 if (!extent_reserved)
9977 btrfs_free_reserved_data_space_noquota(inode, disk_num_bytes);
9978 out_unlock:
9979 btrfs_unlock_extent(io_tree, start, end, &cached_state);
9980 out_folios:
9981 for (i = 0; i < nr_folios; i++) {
9982 if (folios[i])
9983 folio_put(folios[i]);
9984 }
9985 kvfree(folios);
9986 out:
9987 if (ret >= 0)
9988 iocb->ki_pos += encoded->len;
9989 return ret;
9990 }
9991
9992 #ifdef CONFIG_SWAP
9993 /*
9994 * Add an entry indicating a block group or device which is pinned by a
9995 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9996 * negative errno on failure.
9997 */
btrfs_add_swapfile_pin(struct inode * inode,void * ptr,bool is_block_group)9998 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
9999 bool is_block_group)
10000 {
10001 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10002 struct btrfs_swapfile_pin *sp, *entry;
10003 struct rb_node **p;
10004 struct rb_node *parent = NULL;
10005
10006 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10007 if (!sp)
10008 return -ENOMEM;
10009 sp->ptr = ptr;
10010 sp->inode = inode;
10011 sp->is_block_group = is_block_group;
10012 sp->bg_extent_count = 1;
10013
10014 spin_lock(&fs_info->swapfile_pins_lock);
10015 p = &fs_info->swapfile_pins.rb_node;
10016 while (*p) {
10017 parent = *p;
10018 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10019 if (sp->ptr < entry->ptr ||
10020 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10021 p = &(*p)->rb_left;
10022 } else if (sp->ptr > entry->ptr ||
10023 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10024 p = &(*p)->rb_right;
10025 } else {
10026 if (is_block_group)
10027 entry->bg_extent_count++;
10028 spin_unlock(&fs_info->swapfile_pins_lock);
10029 kfree(sp);
10030 return 1;
10031 }
10032 }
10033 rb_link_node(&sp->node, parent, p);
10034 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10035 spin_unlock(&fs_info->swapfile_pins_lock);
10036 return 0;
10037 }
10038
10039 /* Free all of the entries pinned by this swapfile. */
btrfs_free_swapfile_pins(struct inode * inode)10040 static void btrfs_free_swapfile_pins(struct inode *inode)
10041 {
10042 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10043 struct btrfs_swapfile_pin *sp;
10044 struct rb_node *node, *next;
10045
10046 spin_lock(&fs_info->swapfile_pins_lock);
10047 node = rb_first(&fs_info->swapfile_pins);
10048 while (node) {
10049 next = rb_next(node);
10050 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10051 if (sp->inode == inode) {
10052 rb_erase(&sp->node, &fs_info->swapfile_pins);
10053 if (sp->is_block_group) {
10054 btrfs_dec_block_group_swap_extents(sp->ptr,
10055 sp->bg_extent_count);
10056 btrfs_put_block_group(sp->ptr);
10057 }
10058 kfree(sp);
10059 }
10060 node = next;
10061 }
10062 spin_unlock(&fs_info->swapfile_pins_lock);
10063 }
10064
10065 struct btrfs_swap_info {
10066 u64 start;
10067 u64 block_start;
10068 u64 block_len;
10069 u64 lowest_ppage;
10070 u64 highest_ppage;
10071 unsigned long nr_pages;
10072 int nr_extents;
10073 };
10074
btrfs_add_swap_extent(struct swap_info_struct * sis,struct btrfs_swap_info * bsi)10075 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10076 struct btrfs_swap_info *bsi)
10077 {
10078 unsigned long nr_pages;
10079 unsigned long max_pages;
10080 u64 first_ppage, first_ppage_reported, next_ppage;
10081 int ret;
10082
10083 /*
10084 * Our swapfile may have had its size extended after the swap header was
10085 * written. In that case activating the swapfile should not go beyond
10086 * the max size set in the swap header.
10087 */
10088 if (bsi->nr_pages >= sis->max)
10089 return 0;
10090
10091 max_pages = sis->max - bsi->nr_pages;
10092 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10093 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
10094
10095 if (first_ppage >= next_ppage)
10096 return 0;
10097 nr_pages = next_ppage - first_ppage;
10098 nr_pages = min(nr_pages, max_pages);
10099
10100 first_ppage_reported = first_ppage;
10101 if (bsi->start == 0)
10102 first_ppage_reported++;
10103 if (bsi->lowest_ppage > first_ppage_reported)
10104 bsi->lowest_ppage = first_ppage_reported;
10105 if (bsi->highest_ppage < (next_ppage - 1))
10106 bsi->highest_ppage = next_ppage - 1;
10107
10108 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10109 if (ret < 0)
10110 return ret;
10111 bsi->nr_extents += ret;
10112 bsi->nr_pages += nr_pages;
10113 return 0;
10114 }
10115
btrfs_swap_deactivate(struct file * file)10116 static void btrfs_swap_deactivate(struct file *file)
10117 {
10118 struct inode *inode = file_inode(file);
10119
10120 btrfs_free_swapfile_pins(inode);
10121 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10122 }
10123
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10124 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10125 sector_t *span)
10126 {
10127 struct inode *inode = file_inode(file);
10128 struct btrfs_root *root = BTRFS_I(inode)->root;
10129 struct btrfs_fs_info *fs_info = root->fs_info;
10130 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10131 struct extent_state *cached_state = NULL;
10132 struct btrfs_chunk_map *map = NULL;
10133 struct btrfs_device *device = NULL;
10134 struct btrfs_swap_info bsi = {
10135 .lowest_ppage = (sector_t)-1ULL,
10136 };
10137 struct btrfs_backref_share_check_ctx *backref_ctx = NULL;
10138 struct btrfs_path *path = NULL;
10139 int ret = 0;
10140 u64 isize;
10141 u64 prev_extent_end = 0;
10142
10143 /*
10144 * Acquire the inode's mmap lock to prevent races with memory mapped
10145 * writes, as they could happen after we flush delalloc below and before
10146 * we lock the extent range further below. The inode was already locked
10147 * up in the call chain.
10148 */
10149 btrfs_assert_inode_locked(BTRFS_I(inode));
10150 down_write(&BTRFS_I(inode)->i_mmap_lock);
10151
10152 /*
10153 * If the swap file was just created, make sure delalloc is done. If the
10154 * file changes again after this, the user is doing something stupid and
10155 * we don't really care.
10156 */
10157 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
10158 if (ret)
10159 goto out_unlock_mmap;
10160
10161 /*
10162 * The inode is locked, so these flags won't change after we check them.
10163 */
10164 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10165 btrfs_warn(fs_info, "swapfile must not be compressed");
10166 ret = -EINVAL;
10167 goto out_unlock_mmap;
10168 }
10169 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10170 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10171 ret = -EINVAL;
10172 goto out_unlock_mmap;
10173 }
10174 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10175 btrfs_warn(fs_info, "swapfile must not be checksummed");
10176 ret = -EINVAL;
10177 goto out_unlock_mmap;
10178 }
10179
10180 path = btrfs_alloc_path();
10181 backref_ctx = btrfs_alloc_backref_share_check_ctx();
10182 if (!path || !backref_ctx) {
10183 ret = -ENOMEM;
10184 goto out_unlock_mmap;
10185 }
10186
10187 /*
10188 * Balance or device remove/replace/resize can move stuff around from
10189 * under us. The exclop protection makes sure they aren't running/won't
10190 * run concurrently while we are mapping the swap extents, and
10191 * fs_info->swapfile_pins prevents them from running while the swap
10192 * file is active and moving the extents. Note that this also prevents
10193 * a concurrent device add which isn't actually necessary, but it's not
10194 * really worth the trouble to allow it.
10195 */
10196 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10197 btrfs_warn(fs_info,
10198 "cannot activate swapfile while exclusive operation is running");
10199 ret = -EBUSY;
10200 goto out_unlock_mmap;
10201 }
10202
10203 /*
10204 * Prevent snapshot creation while we are activating the swap file.
10205 * We do not want to race with snapshot creation. If snapshot creation
10206 * already started before we bumped nr_swapfiles from 0 to 1 and
10207 * completes before the first write into the swap file after it is
10208 * activated, than that write would fallback to COW.
10209 */
10210 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10211 btrfs_exclop_finish(fs_info);
10212 btrfs_warn(fs_info,
10213 "cannot activate swapfile because snapshot creation is in progress");
10214 ret = -EINVAL;
10215 goto out_unlock_mmap;
10216 }
10217 /*
10218 * Snapshots can create extents which require COW even if NODATACOW is
10219 * set. We use this counter to prevent snapshots. We must increment it
10220 * before walking the extents because we don't want a concurrent
10221 * snapshot to run after we've already checked the extents.
10222 *
10223 * It is possible that subvolume is marked for deletion but still not
10224 * removed yet. To prevent this race, we check the root status before
10225 * activating the swapfile.
10226 */
10227 spin_lock(&root->root_item_lock);
10228 if (btrfs_root_dead(root)) {
10229 spin_unlock(&root->root_item_lock);
10230
10231 btrfs_drew_write_unlock(&root->snapshot_lock);
10232 btrfs_exclop_finish(fs_info);
10233 btrfs_warn(fs_info,
10234 "cannot activate swapfile because subvolume %llu is being deleted",
10235 btrfs_root_id(root));
10236 ret = -EPERM;
10237 goto out_unlock_mmap;
10238 }
10239 atomic_inc(&root->nr_swapfiles);
10240 spin_unlock(&root->root_item_lock);
10241
10242 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10243
10244 btrfs_lock_extent(io_tree, 0, isize - 1, &cached_state);
10245 while (prev_extent_end < isize) {
10246 struct btrfs_key key;
10247 struct extent_buffer *leaf;
10248 struct btrfs_file_extent_item *ei;
10249 struct btrfs_block_group *bg;
10250 u64 logical_block_start;
10251 u64 physical_block_start;
10252 u64 extent_gen;
10253 u64 disk_bytenr;
10254 u64 len;
10255
10256 key.objectid = btrfs_ino(BTRFS_I(inode));
10257 key.type = BTRFS_EXTENT_DATA_KEY;
10258 key.offset = prev_extent_end;
10259
10260 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
10261 if (ret < 0)
10262 goto out;
10263
10264 /*
10265 * If key not found it means we have an implicit hole (NO_HOLES
10266 * is enabled).
10267 */
10268 if (ret > 0) {
10269 btrfs_warn(fs_info, "swapfile must not have holes");
10270 ret = -EINVAL;
10271 goto out;
10272 }
10273
10274 leaf = path->nodes[0];
10275 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
10276
10277 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
10278 /*
10279 * It's unlikely we'll ever actually find ourselves
10280 * here, as a file small enough to fit inline won't be
10281 * big enough to store more than the swap header, but in
10282 * case something changes in the future, let's catch it
10283 * here rather than later.
10284 */
10285 btrfs_warn(fs_info, "swapfile must not be inline");
10286 ret = -EINVAL;
10287 goto out;
10288 }
10289
10290 if (btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
10291 btrfs_warn(fs_info, "swapfile must not be compressed");
10292 ret = -EINVAL;
10293 goto out;
10294 }
10295
10296 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
10297 if (disk_bytenr == 0) {
10298 btrfs_warn(fs_info, "swapfile must not have holes");
10299 ret = -EINVAL;
10300 goto out;
10301 }
10302
10303 logical_block_start = disk_bytenr + btrfs_file_extent_offset(leaf, ei);
10304 extent_gen = btrfs_file_extent_generation(leaf, ei);
10305 prev_extent_end = btrfs_file_extent_end(path);
10306
10307 if (prev_extent_end > isize)
10308 len = isize - key.offset;
10309 else
10310 len = btrfs_file_extent_num_bytes(leaf, ei);
10311
10312 backref_ctx->curr_leaf_bytenr = leaf->start;
10313
10314 /*
10315 * Don't need the path anymore, release to avoid deadlocks when
10316 * calling btrfs_is_data_extent_shared() because when joining a
10317 * transaction it can block waiting for the current one's commit
10318 * which in turn may be trying to lock the same leaf to flush
10319 * delayed items for example.
10320 */
10321 btrfs_release_path(path);
10322
10323 ret = btrfs_is_data_extent_shared(BTRFS_I(inode), disk_bytenr,
10324 extent_gen, backref_ctx);
10325 if (ret < 0) {
10326 goto out;
10327 } else if (ret > 0) {
10328 btrfs_warn(fs_info,
10329 "swapfile must not be copy-on-write");
10330 ret = -EINVAL;
10331 goto out;
10332 }
10333
10334 map = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10335 if (IS_ERR(map)) {
10336 ret = PTR_ERR(map);
10337 goto out;
10338 }
10339
10340 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10341 btrfs_warn(fs_info,
10342 "swapfile must have single data profile");
10343 ret = -EINVAL;
10344 goto out;
10345 }
10346
10347 if (device == NULL) {
10348 device = map->stripes[0].dev;
10349 ret = btrfs_add_swapfile_pin(inode, device, false);
10350 if (ret == 1)
10351 ret = 0;
10352 else if (ret)
10353 goto out;
10354 } else if (device != map->stripes[0].dev) {
10355 btrfs_warn(fs_info, "swapfile must be on one device");
10356 ret = -EINVAL;
10357 goto out;
10358 }
10359
10360 physical_block_start = (map->stripes[0].physical +
10361 (logical_block_start - map->start));
10362 btrfs_free_chunk_map(map);
10363 map = NULL;
10364
10365 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10366 if (!bg) {
10367 btrfs_warn(fs_info,
10368 "could not find block group containing swapfile");
10369 ret = -EINVAL;
10370 goto out;
10371 }
10372
10373 if (!btrfs_inc_block_group_swap_extents(bg)) {
10374 btrfs_warn(fs_info,
10375 "block group for swapfile at %llu is read-only%s",
10376 bg->start,
10377 atomic_read(&fs_info->scrubs_running) ?
10378 " (scrub running)" : "");
10379 btrfs_put_block_group(bg);
10380 ret = -EINVAL;
10381 goto out;
10382 }
10383
10384 ret = btrfs_add_swapfile_pin(inode, bg, true);
10385 if (ret) {
10386 btrfs_put_block_group(bg);
10387 if (ret == 1)
10388 ret = 0;
10389 else
10390 goto out;
10391 }
10392
10393 if (bsi.block_len &&
10394 bsi.block_start + bsi.block_len == physical_block_start) {
10395 bsi.block_len += len;
10396 } else {
10397 if (bsi.block_len) {
10398 ret = btrfs_add_swap_extent(sis, &bsi);
10399 if (ret)
10400 goto out;
10401 }
10402 bsi.start = key.offset;
10403 bsi.block_start = physical_block_start;
10404 bsi.block_len = len;
10405 }
10406
10407 if (fatal_signal_pending(current)) {
10408 ret = -EINTR;
10409 goto out;
10410 }
10411
10412 cond_resched();
10413 }
10414
10415 if (bsi.block_len)
10416 ret = btrfs_add_swap_extent(sis, &bsi);
10417
10418 out:
10419 if (!IS_ERR_OR_NULL(map))
10420 btrfs_free_chunk_map(map);
10421
10422 btrfs_unlock_extent(io_tree, 0, isize - 1, &cached_state);
10423
10424 if (ret)
10425 btrfs_swap_deactivate(file);
10426
10427 btrfs_drew_write_unlock(&root->snapshot_lock);
10428
10429 btrfs_exclop_finish(fs_info);
10430
10431 out_unlock_mmap:
10432 up_write(&BTRFS_I(inode)->i_mmap_lock);
10433 btrfs_free_backref_share_ctx(backref_ctx);
10434 btrfs_free_path(path);
10435 if (ret)
10436 return ret;
10437
10438 if (device)
10439 sis->bdev = device->bdev;
10440 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10441 sis->max = bsi.nr_pages;
10442 sis->pages = bsi.nr_pages - 1;
10443 return bsi.nr_extents;
10444 }
10445 #else
btrfs_swap_deactivate(struct file * file)10446 static void btrfs_swap_deactivate(struct file *file)
10447 {
10448 }
10449
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10450 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10451 sector_t *span)
10452 {
10453 return -EOPNOTSUPP;
10454 }
10455 #endif
10456
10457 /*
10458 * Update the number of bytes used in the VFS' inode. When we replace extents in
10459 * a range (clone, dedupe, fallocate's zero range), we must update the number of
10460 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10461 * always get a correct value.
10462 */
btrfs_update_inode_bytes(struct btrfs_inode * inode,const u64 add_bytes,const u64 del_bytes)10463 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10464 const u64 add_bytes,
10465 const u64 del_bytes)
10466 {
10467 if (add_bytes == del_bytes)
10468 return;
10469
10470 spin_lock(&inode->lock);
10471 if (del_bytes > 0)
10472 inode_sub_bytes(&inode->vfs_inode, del_bytes);
10473 if (add_bytes > 0)
10474 inode_add_bytes(&inode->vfs_inode, add_bytes);
10475 spin_unlock(&inode->lock);
10476 }
10477
10478 /*
10479 * Verify that there are no ordered extents for a given file range.
10480 *
10481 * @inode: The target inode.
10482 * @start: Start offset of the file range, should be sector size aligned.
10483 * @end: End offset (inclusive) of the file range, its value +1 should be
10484 * sector size aligned.
10485 *
10486 * This should typically be used for cases where we locked an inode's VFS lock in
10487 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10488 * we have flushed all delalloc in the range, we have waited for all ordered
10489 * extents in the range to complete and finally we have locked the file range in
10490 * the inode's io_tree.
10491 */
btrfs_assert_inode_range_clean(struct btrfs_inode * inode,u64 start,u64 end)10492 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10493 {
10494 struct btrfs_root *root = inode->root;
10495 struct btrfs_ordered_extent *ordered;
10496
10497 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10498 return;
10499
10500 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10501 if (ordered) {
10502 btrfs_err(root->fs_info,
10503 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10504 start, end, btrfs_ino(inode), btrfs_root_id(root),
10505 ordered->file_offset,
10506 ordered->file_offset + ordered->num_bytes - 1);
10507 btrfs_put_ordered_extent(ordered);
10508 }
10509
10510 ASSERT(ordered == NULL);
10511 }
10512
10513 /*
10514 * Find the first inode with a minimum number.
10515 *
10516 * @root: The root to search for.
10517 * @min_ino: The minimum inode number.
10518 *
10519 * Find the first inode in the @root with a number >= @min_ino and return it.
10520 * Returns NULL if no such inode found.
10521 */
btrfs_find_first_inode(struct btrfs_root * root,u64 min_ino)10522 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino)
10523 {
10524 struct btrfs_inode *inode;
10525 unsigned long from = min_ino;
10526
10527 xa_lock(&root->inodes);
10528 while (true) {
10529 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT);
10530 if (!inode)
10531 break;
10532 if (igrab(&inode->vfs_inode))
10533 break;
10534
10535 from = btrfs_ino(inode) + 1;
10536 cond_resched_lock(&root->inodes.xa_lock);
10537 }
10538 xa_unlock(&root->inodes);
10539
10540 return inode;
10541 }
10542
10543 static const struct inode_operations btrfs_dir_inode_operations = {
10544 .getattr = btrfs_getattr,
10545 .lookup = btrfs_lookup,
10546 .create = btrfs_create,
10547 .unlink = btrfs_unlink,
10548 .link = btrfs_link,
10549 .mkdir = btrfs_mkdir,
10550 .rmdir = btrfs_rmdir,
10551 .rename = btrfs_rename2,
10552 .symlink = btrfs_symlink,
10553 .setattr = btrfs_setattr,
10554 .mknod = btrfs_mknod,
10555 .listxattr = btrfs_listxattr,
10556 .permission = btrfs_permission,
10557 .get_inode_acl = btrfs_get_acl,
10558 .set_acl = btrfs_set_acl,
10559 .update_time = btrfs_update_time,
10560 .tmpfile = btrfs_tmpfile,
10561 .fileattr_get = btrfs_fileattr_get,
10562 .fileattr_set = btrfs_fileattr_set,
10563 };
10564
10565 static const struct file_operations btrfs_dir_file_operations = {
10566 .llseek = btrfs_dir_llseek,
10567 .read = generic_read_dir,
10568 .iterate_shared = btrfs_real_readdir,
10569 .open = btrfs_opendir,
10570 .unlocked_ioctl = btrfs_ioctl,
10571 #ifdef CONFIG_COMPAT
10572 .compat_ioctl = btrfs_compat_ioctl,
10573 #endif
10574 .release = btrfs_release_file,
10575 .fsync = btrfs_sync_file,
10576 };
10577
10578 /*
10579 * btrfs doesn't support the bmap operation because swapfiles
10580 * use bmap to make a mapping of extents in the file. They assume
10581 * these extents won't change over the life of the file and they
10582 * use the bmap result to do IO directly to the drive.
10583 *
10584 * the btrfs bmap call would return logical addresses that aren't
10585 * suitable for IO and they also will change frequently as COW
10586 * operations happen. So, swapfile + btrfs == corruption.
10587 *
10588 * For now we're avoiding this by dropping bmap.
10589 */
10590 static const struct address_space_operations btrfs_aops = {
10591 .read_folio = btrfs_read_folio,
10592 .writepages = btrfs_writepages,
10593 .readahead = btrfs_readahead,
10594 .invalidate_folio = btrfs_invalidate_folio,
10595 .launder_folio = btrfs_launder_folio,
10596 .release_folio = btrfs_release_folio,
10597 .migrate_folio = btrfs_migrate_folio,
10598 .dirty_folio = filemap_dirty_folio,
10599 .error_remove_folio = generic_error_remove_folio,
10600 .swap_activate = btrfs_swap_activate,
10601 .swap_deactivate = btrfs_swap_deactivate,
10602 };
10603
10604 static const struct inode_operations btrfs_file_inode_operations = {
10605 .getattr = btrfs_getattr,
10606 .setattr = btrfs_setattr,
10607 .listxattr = btrfs_listxattr,
10608 .permission = btrfs_permission,
10609 .fiemap = btrfs_fiemap,
10610 .get_inode_acl = btrfs_get_acl,
10611 .set_acl = btrfs_set_acl,
10612 .update_time = btrfs_update_time,
10613 .fileattr_get = btrfs_fileattr_get,
10614 .fileattr_set = btrfs_fileattr_set,
10615 };
10616 static const struct inode_operations btrfs_special_inode_operations = {
10617 .getattr = btrfs_getattr,
10618 .setattr = btrfs_setattr,
10619 .permission = btrfs_permission,
10620 .listxattr = btrfs_listxattr,
10621 .get_inode_acl = btrfs_get_acl,
10622 .set_acl = btrfs_set_acl,
10623 .update_time = btrfs_update_time,
10624 };
10625 static const struct inode_operations btrfs_symlink_inode_operations = {
10626 .get_link = page_get_link,
10627 .getattr = btrfs_getattr,
10628 .setattr = btrfs_setattr,
10629 .permission = btrfs_permission,
10630 .listxattr = btrfs_listxattr,
10631 .update_time = btrfs_update_time,
10632 };
10633
10634 const struct dentry_operations btrfs_dentry_operations = {
10635 .d_delete = btrfs_dentry_delete,
10636 };
10637