xref: /linux/arch/arm64/kernel/module.c (revision a49468240e89628236b738b5ab9416eae8f90c15)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AArch64 loadable module support.
4  *
5  * Copyright (C) 2012 ARM Limited
6  *
7  * Author: Will Deacon <will.deacon@arm.com>
8  */
9 
10 #define pr_fmt(fmt) "Modules: " fmt
11 
12 #include <linux/bitops.h>
13 #include <linux/elf.h>
14 #include <linux/ftrace.h>
15 #include <linux/kasan.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/moduleloader.h>
19 #include <linux/random.h>
20 #include <linux/scs.h>
21 
22 #include <asm/alternative.h>
23 #include <asm/insn.h>
24 #include <asm/scs.h>
25 #include <asm/sections.h>
26 
27 enum aarch64_reloc_op {
28 	RELOC_OP_NONE,
29 	RELOC_OP_ABS,
30 	RELOC_OP_PREL,
31 	RELOC_OP_PAGE,
32 };
33 
do_reloc(enum aarch64_reloc_op reloc_op,__le32 * place,u64 val)34 static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val)
35 {
36 	switch (reloc_op) {
37 	case RELOC_OP_ABS:
38 		return val;
39 	case RELOC_OP_PREL:
40 		return val - (u64)place;
41 	case RELOC_OP_PAGE:
42 		return (val & ~0xfff) - ((u64)place & ~0xfff);
43 	case RELOC_OP_NONE:
44 		return 0;
45 	}
46 
47 	pr_err("do_reloc: unknown relocation operation %d\n", reloc_op);
48 	return 0;
49 }
50 
reloc_data(enum aarch64_reloc_op op,void * place,u64 val,int len)51 static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len)
52 {
53 	s64 sval = do_reloc(op, place, val);
54 
55 	/*
56 	 * The ELF psABI for AArch64 documents the 16-bit and 32-bit place
57 	 * relative and absolute relocations as having a range of [-2^15, 2^16)
58 	 * or [-2^31, 2^32), respectively. However, in order to be able to
59 	 * detect overflows reliably, we have to choose whether we interpret
60 	 * such quantities as signed or as unsigned, and stick with it.
61 	 * The way we organize our address space requires a signed
62 	 * interpretation of 32-bit relative references, so let's use that
63 	 * for all R_AARCH64_PRELxx relocations. This means our upper
64 	 * bound for overflow detection should be Sxx_MAX rather than Uxx_MAX.
65 	 */
66 
67 	switch (len) {
68 	case 16:
69 		*(s16 *)place = sval;
70 		switch (op) {
71 		case RELOC_OP_ABS:
72 			if (sval < 0 || sval > U16_MAX)
73 				return -ERANGE;
74 			break;
75 		case RELOC_OP_PREL:
76 			if (sval < S16_MIN || sval > S16_MAX)
77 				return -ERANGE;
78 			break;
79 		default:
80 			pr_err("Invalid 16-bit data relocation (%d)\n", op);
81 			return 0;
82 		}
83 		break;
84 	case 32:
85 		*(s32 *)place = sval;
86 		switch (op) {
87 		case RELOC_OP_ABS:
88 			if (sval < 0 || sval > U32_MAX)
89 				return -ERANGE;
90 			break;
91 		case RELOC_OP_PREL:
92 			if (sval < S32_MIN || sval > S32_MAX)
93 				return -ERANGE;
94 			break;
95 		default:
96 			pr_err("Invalid 32-bit data relocation (%d)\n", op);
97 			return 0;
98 		}
99 		break;
100 	case 64:
101 		*(s64 *)place = sval;
102 		break;
103 	default:
104 		pr_err("Invalid length (%d) for data relocation\n", len);
105 		return 0;
106 	}
107 	return 0;
108 }
109 
110 enum aarch64_insn_movw_imm_type {
111 	AARCH64_INSN_IMM_MOVNZ,
112 	AARCH64_INSN_IMM_MOVKZ,
113 };
114 
reloc_insn_movw(enum aarch64_reloc_op op,__le32 * place,u64 val,int lsb,enum aarch64_insn_movw_imm_type imm_type)115 static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val,
116 			   int lsb, enum aarch64_insn_movw_imm_type imm_type)
117 {
118 	u64 imm;
119 	s64 sval;
120 	u32 insn = le32_to_cpu(*place);
121 
122 	sval = do_reloc(op, place, val);
123 	imm = sval >> lsb;
124 
125 	if (imm_type == AARCH64_INSN_IMM_MOVNZ) {
126 		/*
127 		 * For signed MOVW relocations, we have to manipulate the
128 		 * instruction encoding depending on whether or not the
129 		 * immediate is less than zero.
130 		 */
131 		insn &= ~(3 << 29);
132 		if (sval >= 0) {
133 			/* >=0: Set the instruction to MOVZ (opcode 10b). */
134 			insn |= 2 << 29;
135 		} else {
136 			/*
137 			 * <0: Set the instruction to MOVN (opcode 00b).
138 			 *     Since we've masked the opcode already, we
139 			 *     don't need to do anything other than
140 			 *     inverting the new immediate field.
141 			 */
142 			imm = ~imm;
143 		}
144 	}
145 
146 	/* Update the instruction with the new encoding. */
147 	insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm);
148 	*place = cpu_to_le32(insn);
149 
150 	if (imm > U16_MAX)
151 		return -ERANGE;
152 
153 	return 0;
154 }
155 
reloc_insn_imm(enum aarch64_reloc_op op,__le32 * place,u64 val,int lsb,int len,enum aarch64_insn_imm_type imm_type)156 static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val,
157 			  int lsb, int len, enum aarch64_insn_imm_type imm_type)
158 {
159 	u64 imm, imm_mask;
160 	s64 sval;
161 	u32 insn = le32_to_cpu(*place);
162 
163 	/* Calculate the relocation value. */
164 	sval = do_reloc(op, place, val);
165 	sval >>= lsb;
166 
167 	/* Extract the value bits and shift them to bit 0. */
168 	imm_mask = (BIT(lsb + len) - 1) >> lsb;
169 	imm = sval & imm_mask;
170 
171 	/* Update the instruction's immediate field. */
172 	insn = aarch64_insn_encode_immediate(imm_type, insn, imm);
173 	*place = cpu_to_le32(insn);
174 
175 	/*
176 	 * Extract the upper value bits (including the sign bit) and
177 	 * shift them to bit 0.
178 	 */
179 	sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1);
180 
181 	/*
182 	 * Overflow has occurred if the upper bits are not all equal to
183 	 * the sign bit of the value.
184 	 */
185 	if ((u64)(sval + 1) >= 2)
186 		return -ERANGE;
187 
188 	return 0;
189 }
190 
reloc_insn_adrp(struct module * mod,Elf64_Shdr * sechdrs,__le32 * place,u64 val)191 static int reloc_insn_adrp(struct module *mod, Elf64_Shdr *sechdrs,
192 			   __le32 *place, u64 val)
193 {
194 	u32 insn;
195 
196 	if (!is_forbidden_offset_for_adrp(place))
197 		return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21,
198 				      AARCH64_INSN_IMM_ADR);
199 
200 	/* patch ADRP to ADR if it is in range */
201 	if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21,
202 			    AARCH64_INSN_IMM_ADR)) {
203 		insn = le32_to_cpu(*place);
204 		insn &= ~BIT(31);
205 	} else {
206 		/* out of range for ADR -> emit a veneer */
207 		val = module_emit_veneer_for_adrp(mod, sechdrs, place, val & ~0xfff);
208 		if (!val)
209 			return -ENOEXEC;
210 		insn = aarch64_insn_gen_branch_imm((u64)place, val,
211 						   AARCH64_INSN_BRANCH_NOLINK);
212 	}
213 
214 	*place = cpu_to_le32(insn);
215 	return 0;
216 }
217 
apply_relocate_add(Elf64_Shdr * sechdrs,const char * strtab,unsigned int symindex,unsigned int relsec,struct module * me)218 int apply_relocate_add(Elf64_Shdr *sechdrs,
219 		       const char *strtab,
220 		       unsigned int symindex,
221 		       unsigned int relsec,
222 		       struct module *me)
223 {
224 	unsigned int i;
225 	int ovf;
226 	bool overflow_check;
227 	Elf64_Sym *sym;
228 	void *loc;
229 	u64 val;
230 	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
231 
232 	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
233 		/* loc corresponds to P in the AArch64 ELF document. */
234 		loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
235 			+ rel[i].r_offset;
236 
237 		/* sym is the ELF symbol we're referring to. */
238 		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
239 			+ ELF64_R_SYM(rel[i].r_info);
240 
241 		/* val corresponds to (S + A) in the AArch64 ELF document. */
242 		val = sym->st_value + rel[i].r_addend;
243 
244 		/* Check for overflow by default. */
245 		overflow_check = true;
246 
247 		/* Perform the static relocation. */
248 		switch (ELF64_R_TYPE(rel[i].r_info)) {
249 		/* Null relocations. */
250 		case R_ARM_NONE:
251 		case R_AARCH64_NONE:
252 			ovf = 0;
253 			break;
254 
255 		/* Data relocations. */
256 		case R_AARCH64_ABS64:
257 			overflow_check = false;
258 			ovf = reloc_data(RELOC_OP_ABS, loc, val, 64);
259 			break;
260 		case R_AARCH64_ABS32:
261 			ovf = reloc_data(RELOC_OP_ABS, loc, val, 32);
262 			break;
263 		case R_AARCH64_ABS16:
264 			ovf = reloc_data(RELOC_OP_ABS, loc, val, 16);
265 			break;
266 		case R_AARCH64_PREL64:
267 			overflow_check = false;
268 			ovf = reloc_data(RELOC_OP_PREL, loc, val, 64);
269 			break;
270 		case R_AARCH64_PREL32:
271 			ovf = reloc_data(RELOC_OP_PREL, loc, val, 32);
272 			break;
273 		case R_AARCH64_PREL16:
274 			ovf = reloc_data(RELOC_OP_PREL, loc, val, 16);
275 			break;
276 
277 		/* MOVW instruction relocations. */
278 		case R_AARCH64_MOVW_UABS_G0_NC:
279 			overflow_check = false;
280 			fallthrough;
281 		case R_AARCH64_MOVW_UABS_G0:
282 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
283 					      AARCH64_INSN_IMM_MOVKZ);
284 			break;
285 		case R_AARCH64_MOVW_UABS_G1_NC:
286 			overflow_check = false;
287 			fallthrough;
288 		case R_AARCH64_MOVW_UABS_G1:
289 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
290 					      AARCH64_INSN_IMM_MOVKZ);
291 			break;
292 		case R_AARCH64_MOVW_UABS_G2_NC:
293 			overflow_check = false;
294 			fallthrough;
295 		case R_AARCH64_MOVW_UABS_G2:
296 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
297 					      AARCH64_INSN_IMM_MOVKZ);
298 			break;
299 		case R_AARCH64_MOVW_UABS_G3:
300 			/* We're using the top bits so we can't overflow. */
301 			overflow_check = false;
302 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48,
303 					      AARCH64_INSN_IMM_MOVKZ);
304 			break;
305 		case R_AARCH64_MOVW_SABS_G0:
306 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
307 					      AARCH64_INSN_IMM_MOVNZ);
308 			break;
309 		case R_AARCH64_MOVW_SABS_G1:
310 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
311 					      AARCH64_INSN_IMM_MOVNZ);
312 			break;
313 		case R_AARCH64_MOVW_SABS_G2:
314 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
315 					      AARCH64_INSN_IMM_MOVNZ);
316 			break;
317 		case R_AARCH64_MOVW_PREL_G0_NC:
318 			overflow_check = false;
319 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
320 					      AARCH64_INSN_IMM_MOVKZ);
321 			break;
322 		case R_AARCH64_MOVW_PREL_G0:
323 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
324 					      AARCH64_INSN_IMM_MOVNZ);
325 			break;
326 		case R_AARCH64_MOVW_PREL_G1_NC:
327 			overflow_check = false;
328 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
329 					      AARCH64_INSN_IMM_MOVKZ);
330 			break;
331 		case R_AARCH64_MOVW_PREL_G1:
332 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
333 					      AARCH64_INSN_IMM_MOVNZ);
334 			break;
335 		case R_AARCH64_MOVW_PREL_G2_NC:
336 			overflow_check = false;
337 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
338 					      AARCH64_INSN_IMM_MOVKZ);
339 			break;
340 		case R_AARCH64_MOVW_PREL_G2:
341 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
342 					      AARCH64_INSN_IMM_MOVNZ);
343 			break;
344 		case R_AARCH64_MOVW_PREL_G3:
345 			/* We're using the top bits so we can't overflow. */
346 			overflow_check = false;
347 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48,
348 					      AARCH64_INSN_IMM_MOVNZ);
349 			break;
350 
351 		/* Immediate instruction relocations. */
352 		case R_AARCH64_LD_PREL_LO19:
353 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
354 					     AARCH64_INSN_IMM_19);
355 			break;
356 		case R_AARCH64_ADR_PREL_LO21:
357 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21,
358 					     AARCH64_INSN_IMM_ADR);
359 			break;
360 		case R_AARCH64_ADR_PREL_PG_HI21_NC:
361 			overflow_check = false;
362 			fallthrough;
363 		case R_AARCH64_ADR_PREL_PG_HI21:
364 			ovf = reloc_insn_adrp(me, sechdrs, loc, val);
365 			if (ovf && ovf != -ERANGE)
366 				return ovf;
367 			break;
368 		case R_AARCH64_ADD_ABS_LO12_NC:
369 		case R_AARCH64_LDST8_ABS_LO12_NC:
370 			overflow_check = false;
371 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12,
372 					     AARCH64_INSN_IMM_12);
373 			break;
374 		case R_AARCH64_LDST16_ABS_LO12_NC:
375 			overflow_check = false;
376 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11,
377 					     AARCH64_INSN_IMM_12);
378 			break;
379 		case R_AARCH64_LDST32_ABS_LO12_NC:
380 			overflow_check = false;
381 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10,
382 					     AARCH64_INSN_IMM_12);
383 			break;
384 		case R_AARCH64_LDST64_ABS_LO12_NC:
385 			overflow_check = false;
386 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9,
387 					     AARCH64_INSN_IMM_12);
388 			break;
389 		case R_AARCH64_LDST128_ABS_LO12_NC:
390 			overflow_check = false;
391 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8,
392 					     AARCH64_INSN_IMM_12);
393 			break;
394 		case R_AARCH64_TSTBR14:
395 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14,
396 					     AARCH64_INSN_IMM_14);
397 			break;
398 		case R_AARCH64_CONDBR19:
399 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
400 					     AARCH64_INSN_IMM_19);
401 			break;
402 		case R_AARCH64_JUMP26:
403 		case R_AARCH64_CALL26:
404 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26,
405 					     AARCH64_INSN_IMM_26);
406 			if (ovf == -ERANGE) {
407 				val = module_emit_plt_entry(me, sechdrs, loc, &rel[i], sym);
408 				if (!val)
409 					return -ENOEXEC;
410 				ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2,
411 						     26, AARCH64_INSN_IMM_26);
412 			}
413 			break;
414 
415 		default:
416 			pr_err("module %s: unsupported RELA relocation: %llu\n",
417 			       me->name, ELF64_R_TYPE(rel[i].r_info));
418 			return -ENOEXEC;
419 		}
420 
421 		if (overflow_check && ovf == -ERANGE)
422 			goto overflow;
423 
424 	}
425 
426 	return 0;
427 
428 overflow:
429 	pr_err("module %s: overflow in relocation type %d val %Lx\n",
430 	       me->name, (int)ELF64_R_TYPE(rel[i].r_info), val);
431 	return -ENOEXEC;
432 }
433 
__init_plt(struct plt_entry * plt,unsigned long addr)434 static inline void __init_plt(struct plt_entry *plt, unsigned long addr)
435 {
436 	*plt = get_plt_entry(addr, plt);
437 }
438 
module_init_ftrace_plt(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * mod)439 static int module_init_ftrace_plt(const Elf_Ehdr *hdr,
440 				  const Elf_Shdr *sechdrs,
441 				  struct module *mod)
442 {
443 #if defined(CONFIG_DYNAMIC_FTRACE)
444 	const Elf_Shdr *s;
445 	struct plt_entry *plts;
446 
447 	s = find_section(hdr, sechdrs, ".text.ftrace_trampoline");
448 	if (!s)
449 		return -ENOEXEC;
450 
451 	plts = (void *)s->sh_addr;
452 
453 	__init_plt(&plts[FTRACE_PLT_IDX], FTRACE_ADDR);
454 
455 	mod->arch.ftrace_trampolines = plts;
456 #endif
457 	return 0;
458 }
459 
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)460 int module_finalize(const Elf_Ehdr *hdr,
461 		    const Elf_Shdr *sechdrs,
462 		    struct module *me)
463 {
464 	const Elf_Shdr *s;
465 	s = find_section(hdr, sechdrs, ".altinstructions");
466 	if (s)
467 		apply_alternatives_module((void *)s->sh_addr, s->sh_size);
468 
469 	if (scs_is_dynamic()) {
470 		s = find_section(hdr, sechdrs, ".init.eh_frame");
471 		if (s)
472 			__pi_scs_patch((void *)s->sh_addr, s->sh_size);
473 	}
474 
475 	return module_init_ftrace_plt(hdr, sechdrs, me);
476 }
477