xref: /linux/kernel/exit.c (revision 509d3f45847627f4c5cdce004c3ec79262b5239c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/freezer.h>
29 #include <linux/binfmts.h>
30 #include <linux/nsproxy.h>
31 #include <linux/pid_namespace.h>
32 #include <linux/ptrace.h>
33 #include <linux/profile.h>
34 #include <linux/mount.h>
35 #include <linux/proc_fs.h>
36 #include <linux/kthread.h>
37 #include <linux/mempolicy.h>
38 #include <linux/taskstats_kern.h>
39 #include <linux/delayacct.h>
40 #include <linux/cgroup.h>
41 #include <linux/syscalls.h>
42 #include <linux/signal.h>
43 #include <linux/posix-timers.h>
44 #include <linux/cn_proc.h>
45 #include <linux/mutex.h>
46 #include <linux/futex.h>
47 #include <linux/pipe_fs_i.h>
48 #include <linux/audit.h> /* for audit_free() */
49 #include <linux/resource.h>
50 #include <linux/task_io_accounting_ops.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_work.h>
53 #include <linux/fs_struct.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/kmsan.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67 #include <linux/kprobes.h>
68 #include <linux/rethook.h>
69 #include <linux/sysfs.h>
70 #include <linux/user_events.h>
71 #include <linux/unwind_deferred.h>
72 #include <linux/uaccess.h>
73 #include <linux/pidfs.h>
74 
75 #include <uapi/linux/wait.h>
76 
77 #include <asm/unistd.h>
78 #include <asm/mmu_context.h>
79 
80 #include "exit.h"
81 
82 /*
83  * The default value should be high enough to not crash a system that randomly
84  * crashes its kernel from time to time, but low enough to at least not permit
85  * overflowing 32-bit refcounts or the ldsem writer count.
86  */
87 static unsigned int oops_limit = 10000;
88 
89 #ifdef CONFIG_SYSCTL
90 static const struct ctl_table kern_exit_table[] = {
91 	{
92 		.procname       = "oops_limit",
93 		.data           = &oops_limit,
94 		.maxlen         = sizeof(oops_limit),
95 		.mode           = 0644,
96 		.proc_handler   = proc_douintvec,
97 	},
98 };
99 
kernel_exit_sysctls_init(void)100 static __init int kernel_exit_sysctls_init(void)
101 {
102 	register_sysctl_init("kernel", kern_exit_table);
103 	return 0;
104 }
105 late_initcall(kernel_exit_sysctls_init);
106 #endif
107 
108 static atomic_t oops_count = ATOMIC_INIT(0);
109 
110 #ifdef CONFIG_SYSFS
oops_count_show(struct kobject * kobj,struct kobj_attribute * attr,char * page)111 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
112 			       char *page)
113 {
114 	return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
115 }
116 
117 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
118 
kernel_exit_sysfs_init(void)119 static __init int kernel_exit_sysfs_init(void)
120 {
121 	sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
122 	return 0;
123 }
124 late_initcall(kernel_exit_sysfs_init);
125 #endif
126 
127 /*
128  * For things release_task() would like to do *after* tasklist_lock is released.
129  */
130 struct release_task_post {
131 	struct pid *pids[PIDTYPE_MAX];
132 };
133 
__unhash_process(struct release_task_post * post,struct task_struct * p,bool group_dead)134 static void __unhash_process(struct release_task_post *post, struct task_struct *p,
135 			     bool group_dead)
136 {
137 	struct pid *pid = task_pid(p);
138 
139 	nr_threads--;
140 
141 	detach_pid(post->pids, p, PIDTYPE_PID);
142 	wake_up_all(&pid->wait_pidfd);
143 
144 	if (group_dead) {
145 		detach_pid(post->pids, p, PIDTYPE_TGID);
146 		detach_pid(post->pids, p, PIDTYPE_PGID);
147 		detach_pid(post->pids, p, PIDTYPE_SID);
148 
149 		list_del_rcu(&p->tasks);
150 		list_del_init(&p->sibling);
151 		__this_cpu_dec(process_counts);
152 	}
153 	list_del_rcu(&p->thread_node);
154 }
155 
156 /*
157  * This function expects the tasklist_lock write-locked.
158  */
__exit_signal(struct release_task_post * post,struct task_struct * tsk)159 static void __exit_signal(struct release_task_post *post, struct task_struct *tsk)
160 {
161 	struct signal_struct *sig = tsk->signal;
162 	bool group_dead = thread_group_leader(tsk);
163 	struct sighand_struct *sighand;
164 	struct tty_struct *tty;
165 	u64 utime, stime;
166 
167 	sighand = rcu_dereference_check(tsk->sighand,
168 					lockdep_tasklist_lock_is_held());
169 	spin_lock(&sighand->siglock);
170 
171 #ifdef CONFIG_POSIX_TIMERS
172 	posix_cpu_timers_exit(tsk);
173 	if (group_dead)
174 		posix_cpu_timers_exit_group(tsk);
175 #endif
176 
177 	if (group_dead) {
178 		tty = sig->tty;
179 		sig->tty = NULL;
180 	} else {
181 		/*
182 		 * If there is any task waiting for the group exit
183 		 * then notify it:
184 		 */
185 		if (sig->notify_count > 0 && !--sig->notify_count)
186 			wake_up_process(sig->group_exec_task);
187 
188 		if (tsk == sig->curr_target)
189 			sig->curr_target = next_thread(tsk);
190 	}
191 
192 	/*
193 	 * Accumulate here the counters for all threads as they die. We could
194 	 * skip the group leader because it is the last user of signal_struct,
195 	 * but we want to avoid the race with thread_group_cputime() which can
196 	 * see the empty ->thread_head list.
197 	 */
198 	task_cputime(tsk, &utime, &stime);
199 	write_seqlock(&sig->stats_lock);
200 	sig->utime += utime;
201 	sig->stime += stime;
202 	sig->gtime += task_gtime(tsk);
203 	sig->min_flt += tsk->min_flt;
204 	sig->maj_flt += tsk->maj_flt;
205 	sig->nvcsw += tsk->nvcsw;
206 	sig->nivcsw += tsk->nivcsw;
207 	sig->inblock += task_io_get_inblock(tsk);
208 	sig->oublock += task_io_get_oublock(tsk);
209 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
210 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
211 	sig->nr_threads--;
212 	__unhash_process(post, tsk, group_dead);
213 	write_sequnlock(&sig->stats_lock);
214 
215 	tsk->sighand = NULL;
216 	spin_unlock(&sighand->siglock);
217 
218 	__cleanup_sighand(sighand);
219 	if (group_dead)
220 		tty_kref_put(tty);
221 }
222 
delayed_put_task_struct(struct rcu_head * rhp)223 static void delayed_put_task_struct(struct rcu_head *rhp)
224 {
225 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
226 
227 	kprobe_flush_task(tsk);
228 	rethook_flush_task(tsk);
229 	perf_event_delayed_put(tsk);
230 	trace_sched_process_free(tsk);
231 	put_task_struct(tsk);
232 }
233 
put_task_struct_rcu_user(struct task_struct * task)234 void put_task_struct_rcu_user(struct task_struct *task)
235 {
236 	if (refcount_dec_and_test(&task->rcu_users))
237 		call_rcu(&task->rcu, delayed_put_task_struct);
238 }
239 
release_thread(struct task_struct * dead_task)240 void __weak release_thread(struct task_struct *dead_task)
241 {
242 }
243 
release_task(struct task_struct * p)244 void release_task(struct task_struct *p)
245 {
246 	struct release_task_post post;
247 	struct task_struct *leader;
248 	struct pid *thread_pid;
249 	int zap_leader;
250 repeat:
251 	memset(&post, 0, sizeof(post));
252 
253 	/* don't need to get the RCU readlock here - the process is dead and
254 	 * can't be modifying its own credentials. */
255 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
256 
257 	pidfs_exit(p);
258 	cgroup_task_release(p);
259 
260 	/* Retrieve @thread_pid before __unhash_process() may set it to NULL. */
261 	thread_pid = task_pid(p);
262 
263 	write_lock_irq(&tasklist_lock);
264 	ptrace_release_task(p);
265 	__exit_signal(&post, p);
266 
267 	/*
268 	 * If we are the last non-leader member of the thread
269 	 * group, and the leader is zombie, then notify the
270 	 * group leader's parent process. (if it wants notification.)
271 	 */
272 	zap_leader = 0;
273 	leader = p->group_leader;
274 	if (leader != p && thread_group_empty(leader)
275 			&& leader->exit_state == EXIT_ZOMBIE) {
276 		/* for pidfs_exit() and do_notify_parent() */
277 		if (leader->signal->flags & SIGNAL_GROUP_EXIT)
278 			leader->exit_code = leader->signal->group_exit_code;
279 		/*
280 		 * If we were the last child thread and the leader has
281 		 * exited already, and the leader's parent ignores SIGCHLD,
282 		 * then we are the one who should release the leader.
283 		 */
284 		zap_leader = do_notify_parent(leader, leader->exit_signal);
285 		if (zap_leader)
286 			leader->exit_state = EXIT_DEAD;
287 	}
288 
289 	write_unlock_irq(&tasklist_lock);
290 	/* @thread_pid can't go away until free_pids() below */
291 	proc_flush_pid(thread_pid);
292 	exit_cred_namespaces(p);
293 	add_device_randomness(&p->se.sum_exec_runtime,
294 			      sizeof(p->se.sum_exec_runtime));
295 	free_pids(post.pids);
296 	release_thread(p);
297 	/*
298 	 * This task was already removed from the process/thread/pid lists
299 	 * and lock_task_sighand(p) can't succeed. Nobody else can touch
300 	 * ->pending or, if group dead, signal->shared_pending. We can call
301 	 * flush_sigqueue() lockless.
302 	 */
303 	flush_sigqueue(&p->pending);
304 	if (thread_group_leader(p))
305 		flush_sigqueue(&p->signal->shared_pending);
306 
307 	put_task_struct_rcu_user(p);
308 
309 	p = leader;
310 	if (unlikely(zap_leader))
311 		goto repeat;
312 }
313 
rcuwait_wake_up(struct rcuwait * w)314 int rcuwait_wake_up(struct rcuwait *w)
315 {
316 	int ret = 0;
317 	struct task_struct *task;
318 
319 	rcu_read_lock();
320 
321 	/*
322 	 * Order condition vs @task, such that everything prior to the load
323 	 * of @task is visible. This is the condition as to why the user called
324 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
325 	 * barrier (A) in rcuwait_wait_event().
326 	 *
327 	 *    WAIT                WAKE
328 	 *    [S] tsk = current	  [S] cond = true
329 	 *        MB (A)	      MB (B)
330 	 *    [L] cond		  [L] tsk
331 	 */
332 	smp_mb(); /* (B) */
333 
334 	task = rcu_dereference(w->task);
335 	if (task)
336 		ret = wake_up_process(task);
337 	rcu_read_unlock();
338 
339 	return ret;
340 }
341 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
342 
343 /*
344  * Determine if a process group is "orphaned", according to the POSIX
345  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
346  * by terminal-generated stop signals.  Newly orphaned process groups are
347  * to receive a SIGHUP and a SIGCONT.
348  *
349  * "I ask you, have you ever known what it is to be an orphan?"
350  */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)351 static int will_become_orphaned_pgrp(struct pid *pgrp,
352 					struct task_struct *ignored_task)
353 {
354 	struct task_struct *p;
355 
356 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
357 		if ((p == ignored_task) ||
358 		    (p->exit_state && thread_group_empty(p)) ||
359 		    is_global_init(p->real_parent))
360 			continue;
361 
362 		if (task_pgrp(p->real_parent) != pgrp &&
363 		    task_session(p->real_parent) == task_session(p))
364 			return 0;
365 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
366 
367 	return 1;
368 }
369 
is_current_pgrp_orphaned(void)370 int is_current_pgrp_orphaned(void)
371 {
372 	int retval;
373 
374 	read_lock(&tasklist_lock);
375 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
376 	read_unlock(&tasklist_lock);
377 
378 	return retval;
379 }
380 
has_stopped_jobs(struct pid * pgrp)381 static bool has_stopped_jobs(struct pid *pgrp)
382 {
383 	struct task_struct *p;
384 
385 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
386 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
387 			return true;
388 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
389 
390 	return false;
391 }
392 
393 /*
394  * Check to see if any process groups have become orphaned as
395  * a result of our exiting, and if they have any stopped jobs,
396  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
397  */
398 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)399 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
400 {
401 	struct pid *pgrp = task_pgrp(tsk);
402 	struct task_struct *ignored_task = tsk;
403 
404 	if (!parent)
405 		/* exit: our father is in a different pgrp than
406 		 * we are and we were the only connection outside.
407 		 */
408 		parent = tsk->real_parent;
409 	else
410 		/* reparent: our child is in a different pgrp than
411 		 * we are, and it was the only connection outside.
412 		 */
413 		ignored_task = NULL;
414 
415 	if (task_pgrp(parent) != pgrp &&
416 	    task_session(parent) == task_session(tsk) &&
417 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
418 	    has_stopped_jobs(pgrp)) {
419 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
420 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
421 	}
422 }
423 
coredump_task_exit(struct task_struct * tsk,struct core_state * core_state)424 static void coredump_task_exit(struct task_struct *tsk,
425 			       struct core_state *core_state)
426 {
427 	struct core_thread self;
428 
429 	self.task = tsk;
430 	if (self.task->flags & PF_SIGNALED)
431 		self.next = xchg(&core_state->dumper.next, &self);
432 	else
433 		self.task = NULL;
434 	/*
435 	 * Implies mb(), the result of xchg() must be visible
436 	 * to core_state->dumper.
437 	 */
438 	if (atomic_dec_and_test(&core_state->nr_threads))
439 		complete(&core_state->startup);
440 
441 	for (;;) {
442 		set_current_state(TASK_IDLE|TASK_FREEZABLE);
443 		if (!self.task) /* see coredump_finish() */
444 			break;
445 		schedule();
446 	}
447 	__set_current_state(TASK_RUNNING);
448 }
449 
450 #ifdef CONFIG_MEMCG
451 /* drops tasklist_lock if succeeds */
__try_to_set_owner(struct task_struct * tsk,struct mm_struct * mm)452 static bool __try_to_set_owner(struct task_struct *tsk, struct mm_struct *mm)
453 {
454 	bool ret = false;
455 
456 	task_lock(tsk);
457 	if (likely(tsk->mm == mm)) {
458 		/* tsk can't pass exit_mm/exec_mmap and exit */
459 		read_unlock(&tasklist_lock);
460 		WRITE_ONCE(mm->owner, tsk);
461 		lru_gen_migrate_mm(mm);
462 		ret = true;
463 	}
464 	task_unlock(tsk);
465 	return ret;
466 }
467 
try_to_set_owner(struct task_struct * g,struct mm_struct * mm)468 static bool try_to_set_owner(struct task_struct *g, struct mm_struct *mm)
469 {
470 	struct task_struct *t;
471 
472 	for_each_thread(g, t) {
473 		struct mm_struct *t_mm = READ_ONCE(t->mm);
474 		if (t_mm == mm) {
475 			if (__try_to_set_owner(t, mm))
476 				return true;
477 		} else if (t_mm)
478 			break;
479 	}
480 
481 	return false;
482 }
483 
484 /*
485  * A task is exiting.   If it owned this mm, find a new owner for the mm.
486  */
mm_update_next_owner(struct mm_struct * mm)487 void mm_update_next_owner(struct mm_struct *mm)
488 {
489 	struct task_struct *g, *p = current;
490 
491 	/*
492 	 * If the exiting or execing task is not the owner, it's
493 	 * someone else's problem.
494 	 */
495 	if (mm->owner != p)
496 		return;
497 	/*
498 	 * The current owner is exiting/execing and there are no other
499 	 * candidates.  Do not leave the mm pointing to a possibly
500 	 * freed task structure.
501 	 */
502 	if (atomic_read(&mm->mm_users) <= 1) {
503 		WRITE_ONCE(mm->owner, NULL);
504 		return;
505 	}
506 
507 	read_lock(&tasklist_lock);
508 	/*
509 	 * Search in the children
510 	 */
511 	list_for_each_entry(g, &p->children, sibling) {
512 		if (try_to_set_owner(g, mm))
513 			goto ret;
514 	}
515 	/*
516 	 * Search in the siblings
517 	 */
518 	list_for_each_entry(g, &p->real_parent->children, sibling) {
519 		if (try_to_set_owner(g, mm))
520 			goto ret;
521 	}
522 	/*
523 	 * Search through everything else, we should not get here often.
524 	 */
525 	for_each_process(g) {
526 		if (atomic_read(&mm->mm_users) <= 1)
527 			break;
528 		if (g->flags & PF_KTHREAD)
529 			continue;
530 		if (try_to_set_owner(g, mm))
531 			goto ret;
532 	}
533 	read_unlock(&tasklist_lock);
534 	/*
535 	 * We found no owner yet mm_users > 1: this implies that we are
536 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
537 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
538 	 */
539 	WRITE_ONCE(mm->owner, NULL);
540  ret:
541 	return;
542 
543 }
544 #endif /* CONFIG_MEMCG */
545 
546 /*
547  * Turn us into a lazy TLB process if we
548  * aren't already..
549  */
exit_mm(void)550 static void exit_mm(void)
551 {
552 	struct mm_struct *mm = current->mm;
553 
554 	exit_mm_release(current, mm);
555 	if (!mm)
556 		return;
557 	mmap_read_lock(mm);
558 	mmgrab_lazy_tlb(mm);
559 	BUG_ON(mm != current->active_mm);
560 	/* more a memory barrier than a real lock */
561 	task_lock(current);
562 	/*
563 	 * When a thread stops operating on an address space, the loop
564 	 * in membarrier_private_expedited() may not observe that
565 	 * tsk->mm, and the loop in membarrier_global_expedited() may
566 	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
567 	 * rq->membarrier_state, so those would not issue an IPI.
568 	 * Membarrier requires a memory barrier after accessing
569 	 * user-space memory, before clearing tsk->mm or the
570 	 * rq->membarrier_state.
571 	 */
572 	smp_mb__after_spinlock();
573 	local_irq_disable();
574 	current->mm = NULL;
575 	membarrier_update_current_mm(NULL);
576 	enter_lazy_tlb(mm, current);
577 	local_irq_enable();
578 	task_unlock(current);
579 	mmap_read_unlock(mm);
580 	mm_update_next_owner(mm);
581 	mmput(mm);
582 	if (test_thread_flag(TIF_MEMDIE))
583 		exit_oom_victim();
584 }
585 
find_alive_thread(struct task_struct * p)586 static struct task_struct *find_alive_thread(struct task_struct *p)
587 {
588 	struct task_struct *t;
589 
590 	for_each_thread(p, t) {
591 		if (!(t->flags & PF_EXITING))
592 			return t;
593 	}
594 	return NULL;
595 }
596 
find_child_reaper(struct task_struct * father,struct list_head * dead)597 static struct task_struct *find_child_reaper(struct task_struct *father,
598 						struct list_head *dead)
599 	__releases(&tasklist_lock)
600 	__acquires(&tasklist_lock)
601 {
602 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
603 	struct task_struct *reaper = pid_ns->child_reaper;
604 	struct task_struct *p, *n;
605 
606 	if (likely(reaper != father))
607 		return reaper;
608 
609 	reaper = find_alive_thread(father);
610 	if (reaper) {
611 		pid_ns->child_reaper = reaper;
612 		return reaper;
613 	}
614 
615 	write_unlock_irq(&tasklist_lock);
616 
617 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
618 		list_del_init(&p->ptrace_entry);
619 		release_task(p);
620 	}
621 
622 	zap_pid_ns_processes(pid_ns);
623 	write_lock_irq(&tasklist_lock);
624 
625 	return father;
626 }
627 
628 /*
629  * When we die, we re-parent all our children, and try to:
630  * 1. give them to another thread in our thread group, if such a member exists
631  * 2. give it to the first ancestor process which prctl'd itself as a
632  *    child_subreaper for its children (like a service manager)
633  * 3. give it to the init process (PID 1) in our pid namespace
634  */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)635 static struct task_struct *find_new_reaper(struct task_struct *father,
636 					   struct task_struct *child_reaper)
637 {
638 	struct task_struct *thread, *reaper;
639 
640 	thread = find_alive_thread(father);
641 	if (thread)
642 		return thread;
643 
644 	if (father->signal->has_child_subreaper) {
645 		unsigned int ns_level = task_pid(father)->level;
646 		/*
647 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
648 		 * We can't check reaper != child_reaper to ensure we do not
649 		 * cross the namespaces, the exiting parent could be injected
650 		 * by setns() + fork().
651 		 * We check pid->level, this is slightly more efficient than
652 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
653 		 */
654 		for (reaper = father->real_parent;
655 		     task_pid(reaper)->level == ns_level;
656 		     reaper = reaper->real_parent) {
657 			if (reaper == &init_task)
658 				break;
659 			if (!reaper->signal->is_child_subreaper)
660 				continue;
661 			thread = find_alive_thread(reaper);
662 			if (thread)
663 				return thread;
664 		}
665 	}
666 
667 	return child_reaper;
668 }
669 
670 /*
671 * Any that need to be release_task'd are put on the @dead list.
672  */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)673 static void reparent_leader(struct task_struct *father, struct task_struct *p,
674 				struct list_head *dead)
675 {
676 	if (unlikely(p->exit_state == EXIT_DEAD))
677 		return;
678 
679 	/* We don't want people slaying init. */
680 	p->exit_signal = SIGCHLD;
681 
682 	/* If it has exited notify the new parent about this child's death. */
683 	if (!p->ptrace &&
684 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
685 		if (do_notify_parent(p, p->exit_signal)) {
686 			p->exit_state = EXIT_DEAD;
687 			list_add(&p->ptrace_entry, dead);
688 		}
689 	}
690 
691 	kill_orphaned_pgrp(p, father);
692 }
693 
694 /*
695  * Make init inherit all the child processes
696  */
forget_original_parent(struct task_struct * father,struct list_head * dead)697 static void forget_original_parent(struct task_struct *father,
698 					struct list_head *dead)
699 {
700 	struct task_struct *p, *t, *reaper;
701 
702 	if (unlikely(!list_empty(&father->ptraced)))
703 		exit_ptrace(father, dead);
704 
705 	/* Can drop and reacquire tasklist_lock */
706 	reaper = find_child_reaper(father, dead);
707 	if (list_empty(&father->children))
708 		return;
709 
710 	reaper = find_new_reaper(father, reaper);
711 	list_for_each_entry(p, &father->children, sibling) {
712 		for_each_thread(p, t) {
713 			RCU_INIT_POINTER(t->real_parent, reaper);
714 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
715 			if (likely(!t->ptrace))
716 				t->parent = t->real_parent;
717 			if (t->pdeath_signal)
718 				group_send_sig_info(t->pdeath_signal,
719 						    SEND_SIG_NOINFO, t,
720 						    PIDTYPE_TGID);
721 		}
722 		/*
723 		 * If this is a threaded reparent there is no need to
724 		 * notify anyone anything has happened.
725 		 */
726 		if (!same_thread_group(reaper, father))
727 			reparent_leader(father, p, dead);
728 	}
729 	list_splice_tail_init(&father->children, &reaper->children);
730 }
731 
732 /*
733  * Send signals to all our closest relatives so that they know
734  * to properly mourn us..
735  */
exit_notify(struct task_struct * tsk,int group_dead)736 static void exit_notify(struct task_struct *tsk, int group_dead)
737 {
738 	bool autoreap;
739 	struct task_struct *p, *n;
740 	LIST_HEAD(dead);
741 
742 	write_lock_irq(&tasklist_lock);
743 	forget_original_parent(tsk, &dead);
744 
745 	if (group_dead)
746 		kill_orphaned_pgrp(tsk->group_leader, NULL);
747 
748 	tsk->exit_state = EXIT_ZOMBIE;
749 
750 	if (unlikely(tsk->ptrace)) {
751 		int sig = thread_group_leader(tsk) &&
752 				thread_group_empty(tsk) &&
753 				!ptrace_reparented(tsk) ?
754 			tsk->exit_signal : SIGCHLD;
755 		autoreap = do_notify_parent(tsk, sig);
756 	} else if (thread_group_leader(tsk)) {
757 		autoreap = thread_group_empty(tsk) &&
758 			do_notify_parent(tsk, tsk->exit_signal);
759 	} else {
760 		autoreap = true;
761 		/* untraced sub-thread */
762 		do_notify_pidfd(tsk);
763 	}
764 
765 	if (autoreap) {
766 		tsk->exit_state = EXIT_DEAD;
767 		list_add(&tsk->ptrace_entry, &dead);
768 	}
769 
770 	/* mt-exec, de_thread() is waiting for group leader */
771 	if (unlikely(tsk->signal->notify_count < 0))
772 		wake_up_process(tsk->signal->group_exec_task);
773 	write_unlock_irq(&tasklist_lock);
774 
775 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
776 		list_del_init(&p->ptrace_entry);
777 		release_task(p);
778 	}
779 }
780 
781 #ifdef CONFIG_DEBUG_STACK_USAGE
782 #ifdef CONFIG_STACK_GROWSUP
stack_not_used(struct task_struct * p)783 unsigned long stack_not_used(struct task_struct *p)
784 {
785 	unsigned long *n = end_of_stack(p);
786 
787 	do {	/* Skip over canary */
788 		n--;
789 	} while (!*n);
790 
791 	return (unsigned long)end_of_stack(p) - (unsigned long)n;
792 }
793 #else /* !CONFIG_STACK_GROWSUP */
stack_not_used(struct task_struct * p)794 unsigned long stack_not_used(struct task_struct *p)
795 {
796 	unsigned long *n = end_of_stack(p);
797 
798 	do {	/* Skip over canary */
799 		n++;
800 	} while (!*n);
801 
802 	return (unsigned long)n - (unsigned long)end_of_stack(p);
803 }
804 #endif /* CONFIG_STACK_GROWSUP */
805 
806 /* Count the maximum pages reached in kernel stacks */
kstack_histogram(unsigned long used_stack)807 static inline void kstack_histogram(unsigned long used_stack)
808 {
809 #ifdef CONFIG_VM_EVENT_COUNTERS
810 	if (used_stack <= 1024)
811 		count_vm_event(KSTACK_1K);
812 #if THREAD_SIZE > 1024
813 	else if (used_stack <= 2048)
814 		count_vm_event(KSTACK_2K);
815 #endif
816 #if THREAD_SIZE > 2048
817 	else if (used_stack <= 4096)
818 		count_vm_event(KSTACK_4K);
819 #endif
820 #if THREAD_SIZE > 4096
821 	else if (used_stack <= 8192)
822 		count_vm_event(KSTACK_8K);
823 #endif
824 #if THREAD_SIZE > 8192
825 	else if (used_stack <= 16384)
826 		count_vm_event(KSTACK_16K);
827 #endif
828 #if THREAD_SIZE > 16384
829 	else if (used_stack <= 32768)
830 		count_vm_event(KSTACK_32K);
831 #endif
832 #if THREAD_SIZE > 32768
833 	else if (used_stack <= 65536)
834 		count_vm_event(KSTACK_64K);
835 #endif
836 #if THREAD_SIZE > 65536
837 	else
838 		count_vm_event(KSTACK_REST);
839 #endif
840 #endif /* CONFIG_VM_EVENT_COUNTERS */
841 }
842 
check_stack_usage(void)843 static void check_stack_usage(void)
844 {
845 	static DEFINE_SPINLOCK(low_water_lock);
846 	static int lowest_to_date = THREAD_SIZE;
847 	unsigned long free;
848 
849 	free = stack_not_used(current);
850 	kstack_histogram(THREAD_SIZE - free);
851 
852 	if (free >= lowest_to_date)
853 		return;
854 
855 	spin_lock(&low_water_lock);
856 	if (free < lowest_to_date) {
857 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
858 			current->comm, task_pid_nr(current), free);
859 		lowest_to_date = free;
860 	}
861 	spin_unlock(&low_water_lock);
862 }
863 #else /* !CONFIG_DEBUG_STACK_USAGE */
check_stack_usage(void)864 static inline void check_stack_usage(void) {}
865 #endif /* CONFIG_DEBUG_STACK_USAGE */
866 
synchronize_group_exit(struct task_struct * tsk,long code)867 static void synchronize_group_exit(struct task_struct *tsk, long code)
868 {
869 	struct sighand_struct *sighand = tsk->sighand;
870 	struct signal_struct *signal = tsk->signal;
871 	struct core_state *core_state;
872 
873 	spin_lock_irq(&sighand->siglock);
874 	signal->quick_threads--;
875 	if ((signal->quick_threads == 0) &&
876 	    !(signal->flags & SIGNAL_GROUP_EXIT)) {
877 		signal->flags = SIGNAL_GROUP_EXIT;
878 		signal->group_exit_code = code;
879 		signal->group_stop_count = 0;
880 	}
881 	/*
882 	 * Serialize with any possible pending coredump.
883 	 * We must hold siglock around checking core_state
884 	 * and setting PF_POSTCOREDUMP.  The core-inducing thread
885 	 * will increment ->nr_threads for each thread in the
886 	 * group without PF_POSTCOREDUMP set.
887 	 */
888 	tsk->flags |= PF_POSTCOREDUMP;
889 	core_state = signal->core_state;
890 	spin_unlock_irq(&sighand->siglock);
891 
892 	if (unlikely(core_state))
893 		coredump_task_exit(tsk, core_state);
894 }
895 
do_exit(long code)896 void __noreturn do_exit(long code)
897 {
898 	struct task_struct *tsk = current;
899 	int group_dead;
900 
901 	WARN_ON(irqs_disabled());
902 	WARN_ON(tsk->plug);
903 
904 	kcov_task_exit(tsk);
905 	kmsan_task_exit(tsk);
906 
907 	synchronize_group_exit(tsk, code);
908 	ptrace_event(PTRACE_EVENT_EXIT, code);
909 	user_events_exit(tsk);
910 
911 	io_uring_files_cancel();
912 	sched_mm_cid_exit(tsk);
913 	exit_signals(tsk);  /* sets PF_EXITING */
914 
915 	seccomp_filter_release(tsk);
916 
917 	acct_update_integrals(tsk);
918 	group_dead = atomic_dec_and_test(&tsk->signal->live);
919 	if (group_dead) {
920 		/*
921 		 * If the last thread of global init has exited, panic
922 		 * immediately to get a useable coredump.
923 		 */
924 		if (unlikely(is_global_init(tsk)))
925 			panic("Attempted to kill init! exitcode=0x%08x\n",
926 				tsk->signal->group_exit_code ?: (int)code);
927 
928 #ifdef CONFIG_POSIX_TIMERS
929 		hrtimer_cancel(&tsk->signal->real_timer);
930 		exit_itimers(tsk);
931 #endif
932 		if (tsk->mm)
933 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
934 	}
935 	acct_collect(code, group_dead);
936 	if (group_dead)
937 		tty_audit_exit();
938 	audit_free(tsk);
939 
940 	tsk->exit_code = code;
941 	taskstats_exit(tsk, group_dead);
942 	trace_sched_process_exit(tsk, group_dead);
943 
944 	/*
945 	 * Since sampling can touch ->mm, make sure to stop everything before we
946 	 * tear it down.
947 	 *
948 	 * Also flushes inherited counters to the parent - before the parent
949 	 * gets woken up by child-exit notifications.
950 	 */
951 	perf_event_exit_task(tsk);
952 	/*
953 	 * PF_EXITING (above) ensures unwind_deferred_request() will no
954 	 * longer add new unwinds. While exit_mm() (below) will destroy the
955 	 * abaility to do unwinds. So flush any pending unwinds here.
956 	 */
957 	unwind_deferred_task_exit(tsk);
958 
959 	exit_mm();
960 
961 	if (group_dead)
962 		acct_process();
963 
964 	exit_sem(tsk);
965 	exit_shm(tsk);
966 	exit_files(tsk);
967 	exit_fs(tsk);
968 	if (group_dead)
969 		disassociate_ctty(1);
970 	exit_nsproxy_namespaces(tsk);
971 	exit_task_work(tsk);
972 	exit_thread(tsk);
973 
974 	sched_autogroup_exit_task(tsk);
975 	cgroup_task_exit(tsk);
976 
977 	/*
978 	 * FIXME: do that only when needed, using sched_exit tracepoint
979 	 */
980 	flush_ptrace_hw_breakpoint(tsk);
981 
982 	exit_tasks_rcu_start();
983 	exit_notify(tsk, group_dead);
984 	proc_exit_connector(tsk);
985 	mpol_put_task_policy(tsk);
986 #ifdef CONFIG_FUTEX
987 	if (unlikely(current->pi_state_cache))
988 		kfree(current->pi_state_cache);
989 #endif
990 	/*
991 	 * Make sure we are holding no locks:
992 	 */
993 	debug_check_no_locks_held();
994 
995 	if (tsk->io_context)
996 		exit_io_context(tsk);
997 
998 	if (tsk->splice_pipe)
999 		free_pipe_info(tsk->splice_pipe);
1000 
1001 	if (tsk->task_frag.page)
1002 		put_page(tsk->task_frag.page);
1003 
1004 	exit_task_stack_account(tsk);
1005 
1006 	check_stack_usage();
1007 	preempt_disable();
1008 	if (tsk->nr_dirtied)
1009 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
1010 	exit_rcu();
1011 	exit_tasks_rcu_finish();
1012 
1013 	lockdep_free_task(tsk);
1014 	do_task_dead();
1015 }
1016 
make_task_dead(int signr)1017 void __noreturn make_task_dead(int signr)
1018 {
1019 	/*
1020 	 * Take the task off the cpu after something catastrophic has
1021 	 * happened.
1022 	 *
1023 	 * We can get here from a kernel oops, sometimes with preemption off.
1024 	 * Start by checking for critical errors.
1025 	 * Then fix up important state like USER_DS and preemption.
1026 	 * Then do everything else.
1027 	 */
1028 	struct task_struct *tsk = current;
1029 	unsigned int limit;
1030 
1031 	if (unlikely(in_interrupt()))
1032 		panic("Aiee, killing interrupt handler!");
1033 	if (unlikely(!tsk->pid))
1034 		panic("Attempted to kill the idle task!");
1035 
1036 	if (unlikely(irqs_disabled())) {
1037 		pr_info("note: %s[%d] exited with irqs disabled\n",
1038 			current->comm, task_pid_nr(current));
1039 		local_irq_enable();
1040 	}
1041 	if (unlikely(in_atomic())) {
1042 		pr_info("note: %s[%d] exited with preempt_count %d\n",
1043 			current->comm, task_pid_nr(current),
1044 			preempt_count());
1045 		preempt_count_set(PREEMPT_ENABLED);
1046 	}
1047 
1048 	/*
1049 	 * Every time the system oopses, if the oops happens while a reference
1050 	 * to an object was held, the reference leaks.
1051 	 * If the oops doesn't also leak memory, repeated oopsing can cause
1052 	 * reference counters to wrap around (if they're not using refcount_t).
1053 	 * This means that repeated oopsing can make unexploitable-looking bugs
1054 	 * exploitable through repeated oopsing.
1055 	 * To make sure this can't happen, place an upper bound on how often the
1056 	 * kernel may oops without panic().
1057 	 */
1058 	limit = READ_ONCE(oops_limit);
1059 	if (atomic_inc_return(&oops_count) >= limit && limit)
1060 		panic("Oopsed too often (kernel.oops_limit is %d)", limit);
1061 
1062 	/*
1063 	 * We're taking recursive faults here in make_task_dead. Safest is to just
1064 	 * leave this task alone and wait for reboot.
1065 	 */
1066 	if (unlikely(tsk->flags & PF_EXITING)) {
1067 		pr_alert("Fixing recursive fault but reboot is needed!\n");
1068 		futex_exit_recursive(tsk);
1069 		tsk->exit_state = EXIT_DEAD;
1070 		refcount_inc(&tsk->rcu_users);
1071 		do_task_dead();
1072 	}
1073 
1074 	do_exit(signr);
1075 }
1076 
SYSCALL_DEFINE1(exit,int,error_code)1077 SYSCALL_DEFINE1(exit, int, error_code)
1078 {
1079 	do_exit((error_code&0xff)<<8);
1080 }
1081 
1082 /*
1083  * Take down every thread in the group.  This is called by fatal signals
1084  * as well as by sys_exit_group (below).
1085  */
1086 void __noreturn
do_group_exit(int exit_code)1087 do_group_exit(int exit_code)
1088 {
1089 	struct signal_struct *sig = current->signal;
1090 
1091 	if (sig->flags & SIGNAL_GROUP_EXIT)
1092 		exit_code = sig->group_exit_code;
1093 	else if (sig->group_exec_task)
1094 		exit_code = 0;
1095 	else {
1096 		struct sighand_struct *const sighand = current->sighand;
1097 
1098 		spin_lock_irq(&sighand->siglock);
1099 		if (sig->flags & SIGNAL_GROUP_EXIT)
1100 			/* Another thread got here before we took the lock.  */
1101 			exit_code = sig->group_exit_code;
1102 		else if (sig->group_exec_task)
1103 			exit_code = 0;
1104 		else {
1105 			sig->group_exit_code = exit_code;
1106 			sig->flags = SIGNAL_GROUP_EXIT;
1107 			zap_other_threads(current);
1108 		}
1109 		spin_unlock_irq(&sighand->siglock);
1110 	}
1111 
1112 	do_exit(exit_code);
1113 	/* NOTREACHED */
1114 }
1115 
1116 /*
1117  * this kills every thread in the thread group. Note that any externally
1118  * wait4()-ing process will get the correct exit code - even if this
1119  * thread is not the thread group leader.
1120  */
SYSCALL_DEFINE1(exit_group,int,error_code)1121 SYSCALL_DEFINE1(exit_group, int, error_code)
1122 {
1123 	do_group_exit((error_code & 0xff) << 8);
1124 	/* NOTREACHED */
1125 	return 0;
1126 }
1127 
eligible_pid(struct wait_opts * wo,struct task_struct * p)1128 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1129 {
1130 	return	wo->wo_type == PIDTYPE_MAX ||
1131 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1132 }
1133 
1134 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)1135 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1136 {
1137 	if (!eligible_pid(wo, p))
1138 		return 0;
1139 
1140 	/*
1141 	 * Wait for all children (clone and not) if __WALL is set or
1142 	 * if it is traced by us.
1143 	 */
1144 	if (ptrace || (wo->wo_flags & __WALL))
1145 		return 1;
1146 
1147 	/*
1148 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1149 	 * otherwise, wait for non-clone children *only*.
1150 	 *
1151 	 * Note: a "clone" child here is one that reports to its parent
1152 	 * using a signal other than SIGCHLD, or a non-leader thread which
1153 	 * we can only see if it is traced by us.
1154 	 */
1155 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1156 		return 0;
1157 
1158 	return 1;
1159 }
1160 
1161 /*
1162  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1163  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1164  * the lock and this task is uninteresting.  If we return nonzero, we have
1165  * released the lock and the system call should return.
1166  */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1167 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1168 {
1169 	int state, status;
1170 	pid_t pid = task_pid_vnr(p);
1171 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1172 	struct waitid_info *infop;
1173 
1174 	if (!likely(wo->wo_flags & WEXITED))
1175 		return 0;
1176 
1177 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1178 		status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1179 			? p->signal->group_exit_code : p->exit_code;
1180 		get_task_struct(p);
1181 		read_unlock(&tasklist_lock);
1182 		sched_annotate_sleep();
1183 		if (wo->wo_rusage)
1184 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1185 		put_task_struct(p);
1186 		goto out_info;
1187 	}
1188 	/*
1189 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1190 	 */
1191 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1192 		EXIT_TRACE : EXIT_DEAD;
1193 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1194 		return 0;
1195 	/*
1196 	 * We own this thread, nobody else can reap it.
1197 	 */
1198 	read_unlock(&tasklist_lock);
1199 	sched_annotate_sleep();
1200 
1201 	/*
1202 	 * Check thread_group_leader() to exclude the traced sub-threads.
1203 	 */
1204 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1205 		struct signal_struct *sig = p->signal;
1206 		struct signal_struct *psig = current->signal;
1207 		unsigned long maxrss;
1208 		u64 tgutime, tgstime;
1209 
1210 		/*
1211 		 * The resource counters for the group leader are in its
1212 		 * own task_struct.  Those for dead threads in the group
1213 		 * are in its signal_struct, as are those for the child
1214 		 * processes it has previously reaped.  All these
1215 		 * accumulate in the parent's signal_struct c* fields.
1216 		 *
1217 		 * We don't bother to take a lock here to protect these
1218 		 * p->signal fields because the whole thread group is dead
1219 		 * and nobody can change them.
1220 		 *
1221 		 * psig->stats_lock also protects us from our sub-threads
1222 		 * which can reap other children at the same time.
1223 		 *
1224 		 * We use thread_group_cputime_adjusted() to get times for
1225 		 * the thread group, which consolidates times for all threads
1226 		 * in the group including the group leader.
1227 		 */
1228 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1229 		write_seqlock_irq(&psig->stats_lock);
1230 		psig->cutime += tgutime + sig->cutime;
1231 		psig->cstime += tgstime + sig->cstime;
1232 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1233 		psig->cmin_flt +=
1234 			p->min_flt + sig->min_flt + sig->cmin_flt;
1235 		psig->cmaj_flt +=
1236 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1237 		psig->cnvcsw +=
1238 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1239 		psig->cnivcsw +=
1240 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1241 		psig->cinblock +=
1242 			task_io_get_inblock(p) +
1243 			sig->inblock + sig->cinblock;
1244 		psig->coublock +=
1245 			task_io_get_oublock(p) +
1246 			sig->oublock + sig->coublock;
1247 		maxrss = max(sig->maxrss, sig->cmaxrss);
1248 		if (psig->cmaxrss < maxrss)
1249 			psig->cmaxrss = maxrss;
1250 		task_io_accounting_add(&psig->ioac, &p->ioac);
1251 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1252 		write_sequnlock_irq(&psig->stats_lock);
1253 	}
1254 
1255 	if (wo->wo_rusage)
1256 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1257 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1258 		? p->signal->group_exit_code : p->exit_code;
1259 	wo->wo_stat = status;
1260 
1261 	if (state == EXIT_TRACE) {
1262 		write_lock_irq(&tasklist_lock);
1263 		/* We dropped tasklist, ptracer could die and untrace */
1264 		ptrace_unlink(p);
1265 
1266 		/* If parent wants a zombie, don't release it now */
1267 		state = EXIT_ZOMBIE;
1268 		if (do_notify_parent(p, p->exit_signal))
1269 			state = EXIT_DEAD;
1270 		p->exit_state = state;
1271 		write_unlock_irq(&tasklist_lock);
1272 	}
1273 	if (state == EXIT_DEAD)
1274 		release_task(p);
1275 
1276 out_info:
1277 	infop = wo->wo_info;
1278 	if (infop) {
1279 		if ((status & 0x7f) == 0) {
1280 			infop->cause = CLD_EXITED;
1281 			infop->status = status >> 8;
1282 		} else {
1283 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1284 			infop->status = status & 0x7f;
1285 		}
1286 		infop->pid = pid;
1287 		infop->uid = uid;
1288 	}
1289 
1290 	return pid;
1291 }
1292 
task_stopped_code(struct task_struct * p,bool ptrace)1293 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1294 {
1295 	if (ptrace) {
1296 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1297 			return &p->exit_code;
1298 	} else {
1299 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1300 			return &p->signal->group_exit_code;
1301 	}
1302 	return NULL;
1303 }
1304 
1305 /**
1306  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1307  * @wo: wait options
1308  * @ptrace: is the wait for ptrace
1309  * @p: task to wait for
1310  *
1311  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1312  *
1313  * CONTEXT:
1314  * read_lock(&tasklist_lock), which is released if return value is
1315  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1316  *
1317  * RETURNS:
1318  * 0 if wait condition didn't exist and search for other wait conditions
1319  * should continue.  Non-zero return, -errno on failure and @p's pid on
1320  * success, implies that tasklist_lock is released and wait condition
1321  * search should terminate.
1322  */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1323 static int wait_task_stopped(struct wait_opts *wo,
1324 				int ptrace, struct task_struct *p)
1325 {
1326 	struct waitid_info *infop;
1327 	int exit_code, *p_code, why;
1328 	uid_t uid = 0; /* unneeded, required by compiler */
1329 	pid_t pid;
1330 
1331 	/*
1332 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1333 	 */
1334 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1335 		return 0;
1336 
1337 	if (!task_stopped_code(p, ptrace))
1338 		return 0;
1339 
1340 	exit_code = 0;
1341 	spin_lock_irq(&p->sighand->siglock);
1342 
1343 	p_code = task_stopped_code(p, ptrace);
1344 	if (unlikely(!p_code))
1345 		goto unlock_sig;
1346 
1347 	exit_code = *p_code;
1348 	if (!exit_code)
1349 		goto unlock_sig;
1350 
1351 	if (!unlikely(wo->wo_flags & WNOWAIT))
1352 		*p_code = 0;
1353 
1354 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1355 unlock_sig:
1356 	spin_unlock_irq(&p->sighand->siglock);
1357 	if (!exit_code)
1358 		return 0;
1359 
1360 	/*
1361 	 * Now we are pretty sure this task is interesting.
1362 	 * Make sure it doesn't get reaped out from under us while we
1363 	 * give up the lock and then examine it below.  We don't want to
1364 	 * keep holding onto the tasklist_lock while we call getrusage and
1365 	 * possibly take page faults for user memory.
1366 	 */
1367 	get_task_struct(p);
1368 	pid = task_pid_vnr(p);
1369 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1370 	read_unlock(&tasklist_lock);
1371 	sched_annotate_sleep();
1372 	if (wo->wo_rusage)
1373 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1374 	put_task_struct(p);
1375 
1376 	if (likely(!(wo->wo_flags & WNOWAIT)))
1377 		wo->wo_stat = (exit_code << 8) | 0x7f;
1378 
1379 	infop = wo->wo_info;
1380 	if (infop) {
1381 		infop->cause = why;
1382 		infop->status = exit_code;
1383 		infop->pid = pid;
1384 		infop->uid = uid;
1385 	}
1386 	return pid;
1387 }
1388 
1389 /*
1390  * Handle do_wait work for one task in a live, non-stopped state.
1391  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1392  * the lock and this task is uninteresting.  If we return nonzero, we have
1393  * released the lock and the system call should return.
1394  */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1395 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1396 {
1397 	struct waitid_info *infop;
1398 	pid_t pid;
1399 	uid_t uid;
1400 
1401 	if (!unlikely(wo->wo_flags & WCONTINUED))
1402 		return 0;
1403 
1404 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1405 		return 0;
1406 
1407 	spin_lock_irq(&p->sighand->siglock);
1408 	/* Re-check with the lock held.  */
1409 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1410 		spin_unlock_irq(&p->sighand->siglock);
1411 		return 0;
1412 	}
1413 	if (!unlikely(wo->wo_flags & WNOWAIT))
1414 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1415 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1416 	spin_unlock_irq(&p->sighand->siglock);
1417 
1418 	pid = task_pid_vnr(p);
1419 	get_task_struct(p);
1420 	read_unlock(&tasklist_lock);
1421 	sched_annotate_sleep();
1422 	if (wo->wo_rusage)
1423 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1424 	put_task_struct(p);
1425 
1426 	infop = wo->wo_info;
1427 	if (!infop) {
1428 		wo->wo_stat = 0xffff;
1429 	} else {
1430 		infop->cause = CLD_CONTINUED;
1431 		infop->pid = pid;
1432 		infop->uid = uid;
1433 		infop->status = SIGCONT;
1434 	}
1435 	return pid;
1436 }
1437 
1438 /*
1439  * Consider @p for a wait by @parent.
1440  *
1441  * -ECHILD should be in ->notask_error before the first call.
1442  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1443  * Returns zero if the search for a child should continue;
1444  * then ->notask_error is 0 if @p is an eligible child,
1445  * or still -ECHILD.
1446  */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1447 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1448 				struct task_struct *p)
1449 {
1450 	/*
1451 	 * We can race with wait_task_zombie() from another thread.
1452 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1453 	 * can't confuse the checks below.
1454 	 */
1455 	int exit_state = READ_ONCE(p->exit_state);
1456 	int ret;
1457 
1458 	if (unlikely(exit_state == EXIT_DEAD))
1459 		return 0;
1460 
1461 	ret = eligible_child(wo, ptrace, p);
1462 	if (!ret)
1463 		return ret;
1464 
1465 	if (unlikely(exit_state == EXIT_TRACE)) {
1466 		/*
1467 		 * ptrace == 0 means we are the natural parent. In this case
1468 		 * we should clear notask_error, debugger will notify us.
1469 		 */
1470 		if (likely(!ptrace))
1471 			wo->notask_error = 0;
1472 		return 0;
1473 	}
1474 
1475 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1476 		/*
1477 		 * If it is traced by its real parent's group, just pretend
1478 		 * the caller is ptrace_do_wait() and reap this child if it
1479 		 * is zombie.
1480 		 *
1481 		 * This also hides group stop state from real parent; otherwise
1482 		 * a single stop can be reported twice as group and ptrace stop.
1483 		 * If a ptracer wants to distinguish these two events for its
1484 		 * own children it should create a separate process which takes
1485 		 * the role of real parent.
1486 		 */
1487 		if (!ptrace_reparented(p))
1488 			ptrace = 1;
1489 	}
1490 
1491 	/* slay zombie? */
1492 	if (exit_state == EXIT_ZOMBIE) {
1493 		/* we don't reap group leaders with subthreads */
1494 		if (!delay_group_leader(p)) {
1495 			/*
1496 			 * A zombie ptracee is only visible to its ptracer.
1497 			 * Notification and reaping will be cascaded to the
1498 			 * real parent when the ptracer detaches.
1499 			 */
1500 			if (unlikely(ptrace) || likely(!p->ptrace))
1501 				return wait_task_zombie(wo, p);
1502 		}
1503 
1504 		/*
1505 		 * Allow access to stopped/continued state via zombie by
1506 		 * falling through.  Clearing of notask_error is complex.
1507 		 *
1508 		 * When !@ptrace:
1509 		 *
1510 		 * If WEXITED is set, notask_error should naturally be
1511 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1512 		 * so, if there are live subthreads, there are events to
1513 		 * wait for.  If all subthreads are dead, it's still safe
1514 		 * to clear - this function will be called again in finite
1515 		 * amount time once all the subthreads are released and
1516 		 * will then return without clearing.
1517 		 *
1518 		 * When @ptrace:
1519 		 *
1520 		 * Stopped state is per-task and thus can't change once the
1521 		 * target task dies.  Only continued and exited can happen.
1522 		 * Clear notask_error if WCONTINUED | WEXITED.
1523 		 */
1524 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1525 			wo->notask_error = 0;
1526 	} else {
1527 		/*
1528 		 * @p is alive and it's gonna stop, continue or exit, so
1529 		 * there always is something to wait for.
1530 		 */
1531 		wo->notask_error = 0;
1532 	}
1533 
1534 	/*
1535 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1536 	 * is used and the two don't interact with each other.
1537 	 */
1538 	ret = wait_task_stopped(wo, ptrace, p);
1539 	if (ret)
1540 		return ret;
1541 
1542 	/*
1543 	 * Wait for continued.  There's only one continued state and the
1544 	 * ptracer can consume it which can confuse the real parent.  Don't
1545 	 * use WCONTINUED from ptracer.  You don't need or want it.
1546 	 */
1547 	return wait_task_continued(wo, p);
1548 }
1549 
1550 /*
1551  * Do the work of do_wait() for one thread in the group, @tsk.
1552  *
1553  * -ECHILD should be in ->notask_error before the first call.
1554  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1555  * Returns zero if the search for a child should continue; then
1556  * ->notask_error is 0 if there were any eligible children,
1557  * or still -ECHILD.
1558  */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1559 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1560 {
1561 	struct task_struct *p;
1562 
1563 	list_for_each_entry(p, &tsk->children, sibling) {
1564 		int ret = wait_consider_task(wo, 0, p);
1565 
1566 		if (ret)
1567 			return ret;
1568 	}
1569 
1570 	return 0;
1571 }
1572 
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1573 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1574 {
1575 	struct task_struct *p;
1576 
1577 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1578 		int ret = wait_consider_task(wo, 1, p);
1579 
1580 		if (ret)
1581 			return ret;
1582 	}
1583 
1584 	return 0;
1585 }
1586 
pid_child_should_wake(struct wait_opts * wo,struct task_struct * p)1587 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
1588 {
1589 	if (!eligible_pid(wo, p))
1590 		return false;
1591 
1592 	if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
1593 		return false;
1594 
1595 	return true;
1596 }
1597 
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1598 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1599 				int sync, void *key)
1600 {
1601 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1602 						child_wait);
1603 	struct task_struct *p = key;
1604 
1605 	if (pid_child_should_wake(wo, p))
1606 		return default_wake_function(wait, mode, sync, key);
1607 
1608 	return 0;
1609 }
1610 
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1611 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1612 {
1613 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1614 			   TASK_INTERRUPTIBLE, p);
1615 }
1616 
is_effectively_child(struct wait_opts * wo,bool ptrace,struct task_struct * target)1617 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1618 				 struct task_struct *target)
1619 {
1620 	struct task_struct *parent =
1621 		!ptrace ? target->real_parent : target->parent;
1622 
1623 	return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1624 				     same_thread_group(current, parent));
1625 }
1626 
1627 /*
1628  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1629  * and tracee lists to find the target task.
1630  */
do_wait_pid(struct wait_opts * wo)1631 static int do_wait_pid(struct wait_opts *wo)
1632 {
1633 	bool ptrace;
1634 	struct task_struct *target;
1635 	int retval;
1636 
1637 	ptrace = false;
1638 	target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1639 	if (target && is_effectively_child(wo, ptrace, target)) {
1640 		retval = wait_consider_task(wo, ptrace, target);
1641 		if (retval)
1642 			return retval;
1643 	}
1644 
1645 	ptrace = true;
1646 	target = pid_task(wo->wo_pid, PIDTYPE_PID);
1647 	if (target && target->ptrace &&
1648 	    is_effectively_child(wo, ptrace, target)) {
1649 		retval = wait_consider_task(wo, ptrace, target);
1650 		if (retval)
1651 			return retval;
1652 	}
1653 
1654 	return 0;
1655 }
1656 
__do_wait(struct wait_opts * wo)1657 long __do_wait(struct wait_opts *wo)
1658 {
1659 	long retval;
1660 
1661 	/*
1662 	 * If there is nothing that can match our criteria, just get out.
1663 	 * We will clear ->notask_error to zero if we see any child that
1664 	 * might later match our criteria, even if we are not able to reap
1665 	 * it yet.
1666 	 */
1667 	wo->notask_error = -ECHILD;
1668 	if ((wo->wo_type < PIDTYPE_MAX) &&
1669 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1670 		goto notask;
1671 
1672 	read_lock(&tasklist_lock);
1673 
1674 	if (wo->wo_type == PIDTYPE_PID) {
1675 		retval = do_wait_pid(wo);
1676 		if (retval)
1677 			return retval;
1678 	} else {
1679 		struct task_struct *tsk = current;
1680 
1681 		do {
1682 			retval = do_wait_thread(wo, tsk);
1683 			if (retval)
1684 				return retval;
1685 
1686 			retval = ptrace_do_wait(wo, tsk);
1687 			if (retval)
1688 				return retval;
1689 
1690 			if (wo->wo_flags & __WNOTHREAD)
1691 				break;
1692 		} while_each_thread(current, tsk);
1693 	}
1694 	read_unlock(&tasklist_lock);
1695 
1696 notask:
1697 	retval = wo->notask_error;
1698 	if (!retval && !(wo->wo_flags & WNOHANG))
1699 		return -ERESTARTSYS;
1700 
1701 	return retval;
1702 }
1703 
do_wait(struct wait_opts * wo)1704 static long do_wait(struct wait_opts *wo)
1705 {
1706 	int retval;
1707 
1708 	trace_sched_process_wait(wo->wo_pid);
1709 
1710 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1711 	wo->child_wait.private = current;
1712 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1713 
1714 	do {
1715 		set_current_state(TASK_INTERRUPTIBLE);
1716 		retval = __do_wait(wo);
1717 		if (retval != -ERESTARTSYS)
1718 			break;
1719 		if (signal_pending(current))
1720 			break;
1721 		schedule();
1722 	} while (1);
1723 
1724 	__set_current_state(TASK_RUNNING);
1725 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1726 	return retval;
1727 }
1728 
kernel_waitid_prepare(struct wait_opts * wo,int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1729 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
1730 			  struct waitid_info *infop, int options,
1731 			  struct rusage *ru)
1732 {
1733 	unsigned int f_flags = 0;
1734 	struct pid *pid = NULL;
1735 	enum pid_type type;
1736 
1737 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1738 			__WNOTHREAD|__WCLONE|__WALL))
1739 		return -EINVAL;
1740 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1741 		return -EINVAL;
1742 
1743 	switch (which) {
1744 	case P_ALL:
1745 		type = PIDTYPE_MAX;
1746 		break;
1747 	case P_PID:
1748 		type = PIDTYPE_PID;
1749 		if (upid <= 0)
1750 			return -EINVAL;
1751 
1752 		pid = find_get_pid(upid);
1753 		break;
1754 	case P_PGID:
1755 		type = PIDTYPE_PGID;
1756 		if (upid < 0)
1757 			return -EINVAL;
1758 
1759 		if (upid)
1760 			pid = find_get_pid(upid);
1761 		else
1762 			pid = get_task_pid(current, PIDTYPE_PGID);
1763 		break;
1764 	case P_PIDFD:
1765 		type = PIDTYPE_PID;
1766 		if (upid < 0)
1767 			return -EINVAL;
1768 
1769 		pid = pidfd_get_pid(upid, &f_flags);
1770 		if (IS_ERR(pid))
1771 			return PTR_ERR(pid);
1772 
1773 		break;
1774 	default:
1775 		return -EINVAL;
1776 	}
1777 
1778 	wo->wo_type	= type;
1779 	wo->wo_pid	= pid;
1780 	wo->wo_flags	= options;
1781 	wo->wo_info	= infop;
1782 	wo->wo_rusage	= ru;
1783 	if (f_flags & O_NONBLOCK)
1784 		wo->wo_flags |= WNOHANG;
1785 
1786 	return 0;
1787 }
1788 
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1789 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1790 			  int options, struct rusage *ru)
1791 {
1792 	struct wait_opts wo;
1793 	long ret;
1794 
1795 	ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
1796 	if (ret)
1797 		return ret;
1798 
1799 	ret = do_wait(&wo);
1800 	if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
1801 		ret = -EAGAIN;
1802 
1803 	put_pid(wo.wo_pid);
1804 	return ret;
1805 }
1806 
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1807 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1808 		infop, int, options, struct rusage __user *, ru)
1809 {
1810 	struct rusage r;
1811 	struct waitid_info info = {.status = 0};
1812 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1813 	int signo = 0;
1814 
1815 	if (err > 0) {
1816 		signo = SIGCHLD;
1817 		err = 0;
1818 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1819 			return -EFAULT;
1820 	}
1821 	if (!infop)
1822 		return err;
1823 
1824 	if (!user_write_access_begin(infop, sizeof(*infop)))
1825 		return -EFAULT;
1826 
1827 	unsafe_put_user(signo, &infop->si_signo, Efault);
1828 	unsafe_put_user(0, &infop->si_errno, Efault);
1829 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1830 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1831 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1832 	unsafe_put_user(info.status, &infop->si_status, Efault);
1833 	user_write_access_end();
1834 	return err;
1835 Efault:
1836 	user_write_access_end();
1837 	return -EFAULT;
1838 }
1839 
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1840 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1841 		  struct rusage *ru)
1842 {
1843 	struct wait_opts wo;
1844 	struct pid *pid = NULL;
1845 	enum pid_type type;
1846 	long ret;
1847 
1848 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1849 			__WNOTHREAD|__WCLONE|__WALL))
1850 		return -EINVAL;
1851 
1852 	/* -INT_MIN is not defined */
1853 	if (upid == INT_MIN)
1854 		return -ESRCH;
1855 
1856 	if (upid == -1)
1857 		type = PIDTYPE_MAX;
1858 	else if (upid < 0) {
1859 		type = PIDTYPE_PGID;
1860 		pid = find_get_pid(-upid);
1861 	} else if (upid == 0) {
1862 		type = PIDTYPE_PGID;
1863 		pid = get_task_pid(current, PIDTYPE_PGID);
1864 	} else /* upid > 0 */ {
1865 		type = PIDTYPE_PID;
1866 		pid = find_get_pid(upid);
1867 	}
1868 
1869 	wo.wo_type	= type;
1870 	wo.wo_pid	= pid;
1871 	wo.wo_flags	= options | WEXITED;
1872 	wo.wo_info	= NULL;
1873 	wo.wo_stat	= 0;
1874 	wo.wo_rusage	= ru;
1875 	ret = do_wait(&wo);
1876 	put_pid(pid);
1877 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1878 		ret = -EFAULT;
1879 
1880 	return ret;
1881 }
1882 
kernel_wait(pid_t pid,int * stat)1883 int kernel_wait(pid_t pid, int *stat)
1884 {
1885 	struct wait_opts wo = {
1886 		.wo_type	= PIDTYPE_PID,
1887 		.wo_pid		= find_get_pid(pid),
1888 		.wo_flags	= WEXITED,
1889 	};
1890 	int ret;
1891 
1892 	ret = do_wait(&wo);
1893 	if (ret > 0 && wo.wo_stat)
1894 		*stat = wo.wo_stat;
1895 	put_pid(wo.wo_pid);
1896 	return ret;
1897 }
1898 
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1899 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1900 		int, options, struct rusage __user *, ru)
1901 {
1902 	struct rusage r;
1903 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1904 
1905 	if (err > 0) {
1906 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1907 			return -EFAULT;
1908 	}
1909 	return err;
1910 }
1911 
1912 #ifdef __ARCH_WANT_SYS_WAITPID
1913 
1914 /*
1915  * sys_waitpid() remains for compatibility. waitpid() should be
1916  * implemented by calling sys_wait4() from libc.a.
1917  */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1918 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1919 {
1920 	return kernel_wait4(pid, stat_addr, options, NULL);
1921 }
1922 
1923 #endif
1924 
1925 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1926 COMPAT_SYSCALL_DEFINE4(wait4,
1927 	compat_pid_t, pid,
1928 	compat_uint_t __user *, stat_addr,
1929 	int, options,
1930 	struct compat_rusage __user *, ru)
1931 {
1932 	struct rusage r;
1933 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1934 	if (err > 0) {
1935 		if (ru && put_compat_rusage(&r, ru))
1936 			return -EFAULT;
1937 	}
1938 	return err;
1939 }
1940 
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1941 COMPAT_SYSCALL_DEFINE5(waitid,
1942 		int, which, compat_pid_t, pid,
1943 		struct compat_siginfo __user *, infop, int, options,
1944 		struct compat_rusage __user *, uru)
1945 {
1946 	struct rusage ru;
1947 	struct waitid_info info = {.status = 0};
1948 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1949 	int signo = 0;
1950 	if (err > 0) {
1951 		signo = SIGCHLD;
1952 		err = 0;
1953 		if (uru) {
1954 			/* kernel_waitid() overwrites everything in ru */
1955 			if (COMPAT_USE_64BIT_TIME)
1956 				err = copy_to_user(uru, &ru, sizeof(ru));
1957 			else
1958 				err = put_compat_rusage(&ru, uru);
1959 			if (err)
1960 				return -EFAULT;
1961 		}
1962 	}
1963 
1964 	if (!infop)
1965 		return err;
1966 
1967 	if (!user_write_access_begin(infop, sizeof(*infop)))
1968 		return -EFAULT;
1969 
1970 	unsafe_put_user(signo, &infop->si_signo, Efault);
1971 	unsafe_put_user(0, &infop->si_errno, Efault);
1972 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1973 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1974 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1975 	unsafe_put_user(info.status, &infop->si_status, Efault);
1976 	user_write_access_end();
1977 	return err;
1978 Efault:
1979 	user_write_access_end();
1980 	return -EFAULT;
1981 }
1982 #endif
1983 
1984 /*
1985  * This needs to be __function_aligned as GCC implicitly makes any
1986  * implementation of abort() cold and drops alignment specified by
1987  * -falign-functions=N.
1988  *
1989  * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1990  */
abort(void)1991 __weak __function_aligned void abort(void)
1992 {
1993 	BUG();
1994 
1995 	/* if that doesn't kill us, halt */
1996 	panic("Oops failed to kill thread");
1997 }
1998 EXPORT_SYMBOL(abort);
1999