1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/exit.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/freezer.h>
29 #include <linux/binfmts.h>
30 #include <linux/nsproxy.h>
31 #include <linux/pid_namespace.h>
32 #include <linux/ptrace.h>
33 #include <linux/profile.h>
34 #include <linux/mount.h>
35 #include <linux/proc_fs.h>
36 #include <linux/kthread.h>
37 #include <linux/mempolicy.h>
38 #include <linux/taskstats_kern.h>
39 #include <linux/delayacct.h>
40 #include <linux/cgroup.h>
41 #include <linux/syscalls.h>
42 #include <linux/signal.h>
43 #include <linux/posix-timers.h>
44 #include <linux/cn_proc.h>
45 #include <linux/mutex.h>
46 #include <linux/futex.h>
47 #include <linux/pipe_fs_i.h>
48 #include <linux/audit.h> /* for audit_free() */
49 #include <linux/resource.h>
50 #include <linux/task_io_accounting_ops.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_work.h>
53 #include <linux/fs_struct.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/kmsan.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67 #include <linux/kprobes.h>
68 #include <linux/rethook.h>
69 #include <linux/sysfs.h>
70 #include <linux/user_events.h>
71 #include <linux/uaccess.h>
72 #include <linux/pidfs.h>
73
74 #include <uapi/linux/wait.h>
75
76 #include <asm/unistd.h>
77 #include <asm/mmu_context.h>
78
79 #include "exit.h"
80
81 /*
82 * The default value should be high enough to not crash a system that randomly
83 * crashes its kernel from time to time, but low enough to at least not permit
84 * overflowing 32-bit refcounts or the ldsem writer count.
85 */
86 static unsigned int oops_limit = 10000;
87
88 #ifdef CONFIG_SYSCTL
89 static const struct ctl_table kern_exit_table[] = {
90 {
91 .procname = "oops_limit",
92 .data = &oops_limit,
93 .maxlen = sizeof(oops_limit),
94 .mode = 0644,
95 .proc_handler = proc_douintvec,
96 },
97 };
98
kernel_exit_sysctls_init(void)99 static __init int kernel_exit_sysctls_init(void)
100 {
101 register_sysctl_init("kernel", kern_exit_table);
102 return 0;
103 }
104 late_initcall(kernel_exit_sysctls_init);
105 #endif
106
107 static atomic_t oops_count = ATOMIC_INIT(0);
108
109 #ifdef CONFIG_SYSFS
oops_count_show(struct kobject * kobj,struct kobj_attribute * attr,char * page)110 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
111 char *page)
112 {
113 return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
114 }
115
116 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
117
kernel_exit_sysfs_init(void)118 static __init int kernel_exit_sysfs_init(void)
119 {
120 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
121 return 0;
122 }
123 late_initcall(kernel_exit_sysfs_init);
124 #endif
125
126 /*
127 * For things release_task() would like to do *after* tasklist_lock is released.
128 */
129 struct release_task_post {
130 struct pid *pids[PIDTYPE_MAX];
131 };
132
__unhash_process(struct release_task_post * post,struct task_struct * p,bool group_dead)133 static void __unhash_process(struct release_task_post *post, struct task_struct *p,
134 bool group_dead)
135 {
136 struct pid *pid = task_pid(p);
137
138 nr_threads--;
139
140 detach_pid(post->pids, p, PIDTYPE_PID);
141 wake_up_all(&pid->wait_pidfd);
142
143 if (group_dead) {
144 detach_pid(post->pids, p, PIDTYPE_TGID);
145 detach_pid(post->pids, p, PIDTYPE_PGID);
146 detach_pid(post->pids, p, PIDTYPE_SID);
147
148 list_del_rcu(&p->tasks);
149 list_del_init(&p->sibling);
150 __this_cpu_dec(process_counts);
151 }
152 list_del_rcu(&p->thread_node);
153 }
154
155 /*
156 * This function expects the tasklist_lock write-locked.
157 */
__exit_signal(struct release_task_post * post,struct task_struct * tsk)158 static void __exit_signal(struct release_task_post *post, struct task_struct *tsk)
159 {
160 struct signal_struct *sig = tsk->signal;
161 bool group_dead = thread_group_leader(tsk);
162 struct sighand_struct *sighand;
163 struct tty_struct *tty;
164 u64 utime, stime;
165
166 sighand = rcu_dereference_check(tsk->sighand,
167 lockdep_tasklist_lock_is_held());
168 spin_lock(&sighand->siglock);
169
170 #ifdef CONFIG_POSIX_TIMERS
171 posix_cpu_timers_exit(tsk);
172 if (group_dead)
173 posix_cpu_timers_exit_group(tsk);
174 #endif
175
176 if (group_dead) {
177 tty = sig->tty;
178 sig->tty = NULL;
179 } else {
180 /*
181 * If there is any task waiting for the group exit
182 * then notify it:
183 */
184 if (sig->notify_count > 0 && !--sig->notify_count)
185 wake_up_process(sig->group_exec_task);
186
187 if (tsk == sig->curr_target)
188 sig->curr_target = next_thread(tsk);
189 }
190
191 /*
192 * Accumulate here the counters for all threads as they die. We could
193 * skip the group leader because it is the last user of signal_struct,
194 * but we want to avoid the race with thread_group_cputime() which can
195 * see the empty ->thread_head list.
196 */
197 task_cputime(tsk, &utime, &stime);
198 write_seqlock(&sig->stats_lock);
199 sig->utime += utime;
200 sig->stime += stime;
201 sig->gtime += task_gtime(tsk);
202 sig->min_flt += tsk->min_flt;
203 sig->maj_flt += tsk->maj_flt;
204 sig->nvcsw += tsk->nvcsw;
205 sig->nivcsw += tsk->nivcsw;
206 sig->inblock += task_io_get_inblock(tsk);
207 sig->oublock += task_io_get_oublock(tsk);
208 task_io_accounting_add(&sig->ioac, &tsk->ioac);
209 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
210 sig->nr_threads--;
211 __unhash_process(post, tsk, group_dead);
212 write_sequnlock(&sig->stats_lock);
213
214 tsk->sighand = NULL;
215 spin_unlock(&sighand->siglock);
216
217 __cleanup_sighand(sighand);
218 if (group_dead)
219 tty_kref_put(tty);
220 }
221
delayed_put_task_struct(struct rcu_head * rhp)222 static void delayed_put_task_struct(struct rcu_head *rhp)
223 {
224 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
225
226 kprobe_flush_task(tsk);
227 rethook_flush_task(tsk);
228 perf_event_delayed_put(tsk);
229 trace_sched_process_free(tsk);
230 put_task_struct(tsk);
231 }
232
put_task_struct_rcu_user(struct task_struct * task)233 void put_task_struct_rcu_user(struct task_struct *task)
234 {
235 if (refcount_dec_and_test(&task->rcu_users))
236 call_rcu(&task->rcu, delayed_put_task_struct);
237 }
238
release_thread(struct task_struct * dead_task)239 void __weak release_thread(struct task_struct *dead_task)
240 {
241 }
242
release_task(struct task_struct * p)243 void release_task(struct task_struct *p)
244 {
245 struct release_task_post post;
246 struct task_struct *leader;
247 struct pid *thread_pid;
248 int zap_leader;
249 repeat:
250 memset(&post, 0, sizeof(post));
251
252 /* don't need to get the RCU readlock here - the process is dead and
253 * can't be modifying its own credentials. But shut RCU-lockdep up */
254 rcu_read_lock();
255 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
256 rcu_read_unlock();
257
258 pidfs_exit(p);
259 cgroup_release(p);
260
261 /* Retrieve @thread_pid before __unhash_process() may set it to NULL. */
262 thread_pid = task_pid(p);
263
264 write_lock_irq(&tasklist_lock);
265 ptrace_release_task(p);
266 __exit_signal(&post, p);
267
268 /*
269 * If we are the last non-leader member of the thread
270 * group, and the leader is zombie, then notify the
271 * group leader's parent process. (if it wants notification.)
272 */
273 zap_leader = 0;
274 leader = p->group_leader;
275 if (leader != p && thread_group_empty(leader)
276 && leader->exit_state == EXIT_ZOMBIE) {
277 /* for pidfs_exit() and do_notify_parent() */
278 if (leader->signal->flags & SIGNAL_GROUP_EXIT)
279 leader->exit_code = leader->signal->group_exit_code;
280 /*
281 * If we were the last child thread and the leader has
282 * exited already, and the leader's parent ignores SIGCHLD,
283 * then we are the one who should release the leader.
284 */
285 zap_leader = do_notify_parent(leader, leader->exit_signal);
286 if (zap_leader)
287 leader->exit_state = EXIT_DEAD;
288 }
289
290 write_unlock_irq(&tasklist_lock);
291 /* @thread_pid can't go away until free_pids() below */
292 proc_flush_pid(thread_pid);
293 add_device_randomness(&p->se.sum_exec_runtime,
294 sizeof(p->se.sum_exec_runtime));
295 free_pids(post.pids);
296 release_thread(p);
297 /*
298 * This task was already removed from the process/thread/pid lists
299 * and lock_task_sighand(p) can't succeed. Nobody else can touch
300 * ->pending or, if group dead, signal->shared_pending. We can call
301 * flush_sigqueue() lockless.
302 */
303 flush_sigqueue(&p->pending);
304 if (thread_group_leader(p))
305 flush_sigqueue(&p->signal->shared_pending);
306
307 put_task_struct_rcu_user(p);
308
309 p = leader;
310 if (unlikely(zap_leader))
311 goto repeat;
312 }
313
rcuwait_wake_up(struct rcuwait * w)314 int rcuwait_wake_up(struct rcuwait *w)
315 {
316 int ret = 0;
317 struct task_struct *task;
318
319 rcu_read_lock();
320
321 /*
322 * Order condition vs @task, such that everything prior to the load
323 * of @task is visible. This is the condition as to why the user called
324 * rcuwait_wake() in the first place. Pairs with set_current_state()
325 * barrier (A) in rcuwait_wait_event().
326 *
327 * WAIT WAKE
328 * [S] tsk = current [S] cond = true
329 * MB (A) MB (B)
330 * [L] cond [L] tsk
331 */
332 smp_mb(); /* (B) */
333
334 task = rcu_dereference(w->task);
335 if (task)
336 ret = wake_up_process(task);
337 rcu_read_unlock();
338
339 return ret;
340 }
341 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
342
343 /*
344 * Determine if a process group is "orphaned", according to the POSIX
345 * definition in 2.2.2.52. Orphaned process groups are not to be affected
346 * by terminal-generated stop signals. Newly orphaned process groups are
347 * to receive a SIGHUP and a SIGCONT.
348 *
349 * "I ask you, have you ever known what it is to be an orphan?"
350 */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)351 static int will_become_orphaned_pgrp(struct pid *pgrp,
352 struct task_struct *ignored_task)
353 {
354 struct task_struct *p;
355
356 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
357 if ((p == ignored_task) ||
358 (p->exit_state && thread_group_empty(p)) ||
359 is_global_init(p->real_parent))
360 continue;
361
362 if (task_pgrp(p->real_parent) != pgrp &&
363 task_session(p->real_parent) == task_session(p))
364 return 0;
365 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
366
367 return 1;
368 }
369
is_current_pgrp_orphaned(void)370 int is_current_pgrp_orphaned(void)
371 {
372 int retval;
373
374 read_lock(&tasklist_lock);
375 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
376 read_unlock(&tasklist_lock);
377
378 return retval;
379 }
380
has_stopped_jobs(struct pid * pgrp)381 static bool has_stopped_jobs(struct pid *pgrp)
382 {
383 struct task_struct *p;
384
385 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
386 if (p->signal->flags & SIGNAL_STOP_STOPPED)
387 return true;
388 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
389
390 return false;
391 }
392
393 /*
394 * Check to see if any process groups have become orphaned as
395 * a result of our exiting, and if they have any stopped jobs,
396 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
397 */
398 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)399 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
400 {
401 struct pid *pgrp = task_pgrp(tsk);
402 struct task_struct *ignored_task = tsk;
403
404 if (!parent)
405 /* exit: our father is in a different pgrp than
406 * we are and we were the only connection outside.
407 */
408 parent = tsk->real_parent;
409 else
410 /* reparent: our child is in a different pgrp than
411 * we are, and it was the only connection outside.
412 */
413 ignored_task = NULL;
414
415 if (task_pgrp(parent) != pgrp &&
416 task_session(parent) == task_session(tsk) &&
417 will_become_orphaned_pgrp(pgrp, ignored_task) &&
418 has_stopped_jobs(pgrp)) {
419 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
420 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
421 }
422 }
423
coredump_task_exit(struct task_struct * tsk,struct core_state * core_state)424 static void coredump_task_exit(struct task_struct *tsk,
425 struct core_state *core_state)
426 {
427 struct core_thread self;
428
429 self.task = tsk;
430 if (self.task->flags & PF_SIGNALED)
431 self.next = xchg(&core_state->dumper.next, &self);
432 else
433 self.task = NULL;
434 /*
435 * Implies mb(), the result of xchg() must be visible
436 * to core_state->dumper.
437 */
438 if (atomic_dec_and_test(&core_state->nr_threads))
439 complete(&core_state->startup);
440
441 for (;;) {
442 set_current_state(TASK_IDLE|TASK_FREEZABLE);
443 if (!self.task) /* see coredump_finish() */
444 break;
445 schedule();
446 }
447 __set_current_state(TASK_RUNNING);
448 }
449
450 #ifdef CONFIG_MEMCG
451 /* drops tasklist_lock if succeeds */
__try_to_set_owner(struct task_struct * tsk,struct mm_struct * mm)452 static bool __try_to_set_owner(struct task_struct *tsk, struct mm_struct *mm)
453 {
454 bool ret = false;
455
456 task_lock(tsk);
457 if (likely(tsk->mm == mm)) {
458 /* tsk can't pass exit_mm/exec_mmap and exit */
459 read_unlock(&tasklist_lock);
460 WRITE_ONCE(mm->owner, tsk);
461 lru_gen_migrate_mm(mm);
462 ret = true;
463 }
464 task_unlock(tsk);
465 return ret;
466 }
467
try_to_set_owner(struct task_struct * g,struct mm_struct * mm)468 static bool try_to_set_owner(struct task_struct *g, struct mm_struct *mm)
469 {
470 struct task_struct *t;
471
472 for_each_thread(g, t) {
473 struct mm_struct *t_mm = READ_ONCE(t->mm);
474 if (t_mm == mm) {
475 if (__try_to_set_owner(t, mm))
476 return true;
477 } else if (t_mm)
478 break;
479 }
480
481 return false;
482 }
483
484 /*
485 * A task is exiting. If it owned this mm, find a new owner for the mm.
486 */
mm_update_next_owner(struct mm_struct * mm)487 void mm_update_next_owner(struct mm_struct *mm)
488 {
489 struct task_struct *g, *p = current;
490
491 /*
492 * If the exiting or execing task is not the owner, it's
493 * someone else's problem.
494 */
495 if (mm->owner != p)
496 return;
497 /*
498 * The current owner is exiting/execing and there are no other
499 * candidates. Do not leave the mm pointing to a possibly
500 * freed task structure.
501 */
502 if (atomic_read(&mm->mm_users) <= 1) {
503 WRITE_ONCE(mm->owner, NULL);
504 return;
505 }
506
507 read_lock(&tasklist_lock);
508 /*
509 * Search in the children
510 */
511 list_for_each_entry(g, &p->children, sibling) {
512 if (try_to_set_owner(g, mm))
513 goto ret;
514 }
515 /*
516 * Search in the siblings
517 */
518 list_for_each_entry(g, &p->real_parent->children, sibling) {
519 if (try_to_set_owner(g, mm))
520 goto ret;
521 }
522 /*
523 * Search through everything else, we should not get here often.
524 */
525 for_each_process(g) {
526 if (atomic_read(&mm->mm_users) <= 1)
527 break;
528 if (g->flags & PF_KTHREAD)
529 continue;
530 if (try_to_set_owner(g, mm))
531 goto ret;
532 }
533 read_unlock(&tasklist_lock);
534 /*
535 * We found no owner yet mm_users > 1: this implies that we are
536 * most likely racing with swapoff (try_to_unuse()) or /proc or
537 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
538 */
539 WRITE_ONCE(mm->owner, NULL);
540 ret:
541 return;
542
543 }
544 #endif /* CONFIG_MEMCG */
545
546 /*
547 * Turn us into a lazy TLB process if we
548 * aren't already..
549 */
exit_mm(void)550 static void exit_mm(void)
551 {
552 struct mm_struct *mm = current->mm;
553
554 exit_mm_release(current, mm);
555 if (!mm)
556 return;
557 mmap_read_lock(mm);
558 mmgrab_lazy_tlb(mm);
559 BUG_ON(mm != current->active_mm);
560 /* more a memory barrier than a real lock */
561 task_lock(current);
562 /*
563 * When a thread stops operating on an address space, the loop
564 * in membarrier_private_expedited() may not observe that
565 * tsk->mm, and the loop in membarrier_global_expedited() may
566 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
567 * rq->membarrier_state, so those would not issue an IPI.
568 * Membarrier requires a memory barrier after accessing
569 * user-space memory, before clearing tsk->mm or the
570 * rq->membarrier_state.
571 */
572 smp_mb__after_spinlock();
573 local_irq_disable();
574 current->mm = NULL;
575 membarrier_update_current_mm(NULL);
576 enter_lazy_tlb(mm, current);
577 local_irq_enable();
578 task_unlock(current);
579 mmap_read_unlock(mm);
580 mm_update_next_owner(mm);
581 mmput(mm);
582 if (test_thread_flag(TIF_MEMDIE))
583 exit_oom_victim();
584 }
585
find_alive_thread(struct task_struct * p)586 static struct task_struct *find_alive_thread(struct task_struct *p)
587 {
588 struct task_struct *t;
589
590 for_each_thread(p, t) {
591 if (!(t->flags & PF_EXITING))
592 return t;
593 }
594 return NULL;
595 }
596
find_child_reaper(struct task_struct * father,struct list_head * dead)597 static struct task_struct *find_child_reaper(struct task_struct *father,
598 struct list_head *dead)
599 __releases(&tasklist_lock)
600 __acquires(&tasklist_lock)
601 {
602 struct pid_namespace *pid_ns = task_active_pid_ns(father);
603 struct task_struct *reaper = pid_ns->child_reaper;
604 struct task_struct *p, *n;
605
606 if (likely(reaper != father))
607 return reaper;
608
609 reaper = find_alive_thread(father);
610 if (reaper) {
611 pid_ns->child_reaper = reaper;
612 return reaper;
613 }
614
615 write_unlock_irq(&tasklist_lock);
616
617 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
618 list_del_init(&p->ptrace_entry);
619 release_task(p);
620 }
621
622 zap_pid_ns_processes(pid_ns);
623 write_lock_irq(&tasklist_lock);
624
625 return father;
626 }
627
628 /*
629 * When we die, we re-parent all our children, and try to:
630 * 1. give them to another thread in our thread group, if such a member exists
631 * 2. give it to the first ancestor process which prctl'd itself as a
632 * child_subreaper for its children (like a service manager)
633 * 3. give it to the init process (PID 1) in our pid namespace
634 */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)635 static struct task_struct *find_new_reaper(struct task_struct *father,
636 struct task_struct *child_reaper)
637 {
638 struct task_struct *thread, *reaper;
639
640 thread = find_alive_thread(father);
641 if (thread)
642 return thread;
643
644 if (father->signal->has_child_subreaper) {
645 unsigned int ns_level = task_pid(father)->level;
646 /*
647 * Find the first ->is_child_subreaper ancestor in our pid_ns.
648 * We can't check reaper != child_reaper to ensure we do not
649 * cross the namespaces, the exiting parent could be injected
650 * by setns() + fork().
651 * We check pid->level, this is slightly more efficient than
652 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
653 */
654 for (reaper = father->real_parent;
655 task_pid(reaper)->level == ns_level;
656 reaper = reaper->real_parent) {
657 if (reaper == &init_task)
658 break;
659 if (!reaper->signal->is_child_subreaper)
660 continue;
661 thread = find_alive_thread(reaper);
662 if (thread)
663 return thread;
664 }
665 }
666
667 return child_reaper;
668 }
669
670 /*
671 * Any that need to be release_task'd are put on the @dead list.
672 */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)673 static void reparent_leader(struct task_struct *father, struct task_struct *p,
674 struct list_head *dead)
675 {
676 if (unlikely(p->exit_state == EXIT_DEAD))
677 return;
678
679 /* We don't want people slaying init. */
680 p->exit_signal = SIGCHLD;
681
682 /* If it has exited notify the new parent about this child's death. */
683 if (!p->ptrace &&
684 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
685 if (do_notify_parent(p, p->exit_signal)) {
686 p->exit_state = EXIT_DEAD;
687 list_add(&p->ptrace_entry, dead);
688 }
689 }
690
691 kill_orphaned_pgrp(p, father);
692 }
693
694 /*
695 * This does two things:
696 *
697 * A. Make init inherit all the child processes
698 * B. Check to see if any process groups have become orphaned
699 * as a result of our exiting, and if they have any stopped
700 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
701 */
forget_original_parent(struct task_struct * father,struct list_head * dead)702 static void forget_original_parent(struct task_struct *father,
703 struct list_head *dead)
704 {
705 struct task_struct *p, *t, *reaper;
706
707 if (unlikely(!list_empty(&father->ptraced)))
708 exit_ptrace(father, dead);
709
710 /* Can drop and reacquire tasklist_lock */
711 reaper = find_child_reaper(father, dead);
712 if (list_empty(&father->children))
713 return;
714
715 reaper = find_new_reaper(father, reaper);
716 list_for_each_entry(p, &father->children, sibling) {
717 for_each_thread(p, t) {
718 RCU_INIT_POINTER(t->real_parent, reaper);
719 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
720 if (likely(!t->ptrace))
721 t->parent = t->real_parent;
722 if (t->pdeath_signal)
723 group_send_sig_info(t->pdeath_signal,
724 SEND_SIG_NOINFO, t,
725 PIDTYPE_TGID);
726 }
727 /*
728 * If this is a threaded reparent there is no need to
729 * notify anyone anything has happened.
730 */
731 if (!same_thread_group(reaper, father))
732 reparent_leader(father, p, dead);
733 }
734 list_splice_tail_init(&father->children, &reaper->children);
735 }
736
737 /*
738 * Send signals to all our closest relatives so that they know
739 * to properly mourn us..
740 */
exit_notify(struct task_struct * tsk,int group_dead)741 static void exit_notify(struct task_struct *tsk, int group_dead)
742 {
743 bool autoreap;
744 struct task_struct *p, *n;
745 LIST_HEAD(dead);
746
747 write_lock_irq(&tasklist_lock);
748 forget_original_parent(tsk, &dead);
749
750 if (group_dead)
751 kill_orphaned_pgrp(tsk->group_leader, NULL);
752
753 tsk->exit_state = EXIT_ZOMBIE;
754
755 if (unlikely(tsk->ptrace)) {
756 int sig = thread_group_leader(tsk) &&
757 thread_group_empty(tsk) &&
758 !ptrace_reparented(tsk) ?
759 tsk->exit_signal : SIGCHLD;
760 autoreap = do_notify_parent(tsk, sig);
761 } else if (thread_group_leader(tsk)) {
762 autoreap = thread_group_empty(tsk) &&
763 do_notify_parent(tsk, tsk->exit_signal);
764 } else {
765 autoreap = true;
766 /* untraced sub-thread */
767 do_notify_pidfd(tsk);
768 }
769
770 if (autoreap) {
771 tsk->exit_state = EXIT_DEAD;
772 list_add(&tsk->ptrace_entry, &dead);
773 }
774
775 /* mt-exec, de_thread() is waiting for group leader */
776 if (unlikely(tsk->signal->notify_count < 0))
777 wake_up_process(tsk->signal->group_exec_task);
778 write_unlock_irq(&tasklist_lock);
779
780 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
781 list_del_init(&p->ptrace_entry);
782 release_task(p);
783 }
784 }
785
786 #ifdef CONFIG_DEBUG_STACK_USAGE
stack_not_used(struct task_struct * p)787 unsigned long stack_not_used(struct task_struct *p)
788 {
789 unsigned long *n = end_of_stack(p);
790
791 do { /* Skip over canary */
792 # ifdef CONFIG_STACK_GROWSUP
793 n--;
794 # else
795 n++;
796 # endif
797 } while (!*n);
798
799 # ifdef CONFIG_STACK_GROWSUP
800 return (unsigned long)end_of_stack(p) - (unsigned long)n;
801 # else
802 return (unsigned long)n - (unsigned long)end_of_stack(p);
803 # endif
804 }
805
806 /* Count the maximum pages reached in kernel stacks */
kstack_histogram(unsigned long used_stack)807 static inline void kstack_histogram(unsigned long used_stack)
808 {
809 #ifdef CONFIG_VM_EVENT_COUNTERS
810 if (used_stack <= 1024)
811 count_vm_event(KSTACK_1K);
812 #if THREAD_SIZE > 1024
813 else if (used_stack <= 2048)
814 count_vm_event(KSTACK_2K);
815 #endif
816 #if THREAD_SIZE > 2048
817 else if (used_stack <= 4096)
818 count_vm_event(KSTACK_4K);
819 #endif
820 #if THREAD_SIZE > 4096
821 else if (used_stack <= 8192)
822 count_vm_event(KSTACK_8K);
823 #endif
824 #if THREAD_SIZE > 8192
825 else if (used_stack <= 16384)
826 count_vm_event(KSTACK_16K);
827 #endif
828 #if THREAD_SIZE > 16384
829 else if (used_stack <= 32768)
830 count_vm_event(KSTACK_32K);
831 #endif
832 #if THREAD_SIZE > 32768
833 else if (used_stack <= 65536)
834 count_vm_event(KSTACK_64K);
835 #endif
836 #if THREAD_SIZE > 65536
837 else
838 count_vm_event(KSTACK_REST);
839 #endif
840 #endif /* CONFIG_VM_EVENT_COUNTERS */
841 }
842
check_stack_usage(void)843 static void check_stack_usage(void)
844 {
845 static DEFINE_SPINLOCK(low_water_lock);
846 static int lowest_to_date = THREAD_SIZE;
847 unsigned long free;
848
849 free = stack_not_used(current);
850 kstack_histogram(THREAD_SIZE - free);
851
852 if (free >= lowest_to_date)
853 return;
854
855 spin_lock(&low_water_lock);
856 if (free < lowest_to_date) {
857 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
858 current->comm, task_pid_nr(current), free);
859 lowest_to_date = free;
860 }
861 spin_unlock(&low_water_lock);
862 }
863 #else
check_stack_usage(void)864 static inline void check_stack_usage(void) {}
865 #endif
866
synchronize_group_exit(struct task_struct * tsk,long code)867 static void synchronize_group_exit(struct task_struct *tsk, long code)
868 {
869 struct sighand_struct *sighand = tsk->sighand;
870 struct signal_struct *signal = tsk->signal;
871 struct core_state *core_state;
872
873 spin_lock_irq(&sighand->siglock);
874 signal->quick_threads--;
875 if ((signal->quick_threads == 0) &&
876 !(signal->flags & SIGNAL_GROUP_EXIT)) {
877 signal->flags = SIGNAL_GROUP_EXIT;
878 signal->group_exit_code = code;
879 signal->group_stop_count = 0;
880 }
881 /*
882 * Serialize with any possible pending coredump.
883 * We must hold siglock around checking core_state
884 * and setting PF_POSTCOREDUMP. The core-inducing thread
885 * will increment ->nr_threads for each thread in the
886 * group without PF_POSTCOREDUMP set.
887 */
888 tsk->flags |= PF_POSTCOREDUMP;
889 core_state = signal->core_state;
890 spin_unlock_irq(&sighand->siglock);
891
892 if (unlikely(core_state))
893 coredump_task_exit(tsk, core_state);
894 }
895
do_exit(long code)896 void __noreturn do_exit(long code)
897 {
898 struct task_struct *tsk = current;
899 int group_dead;
900
901 WARN_ON(irqs_disabled());
902 WARN_ON(tsk->plug);
903
904 kcov_task_exit(tsk);
905 kmsan_task_exit(tsk);
906
907 synchronize_group_exit(tsk, code);
908 ptrace_event(PTRACE_EVENT_EXIT, code);
909 user_events_exit(tsk);
910
911 io_uring_files_cancel();
912 exit_signals(tsk); /* sets PF_EXITING */
913
914 seccomp_filter_release(tsk);
915
916 acct_update_integrals(tsk);
917 group_dead = atomic_dec_and_test(&tsk->signal->live);
918 if (group_dead) {
919 /*
920 * If the last thread of global init has exited, panic
921 * immediately to get a useable coredump.
922 */
923 if (unlikely(is_global_init(tsk)))
924 panic("Attempted to kill init! exitcode=0x%08x\n",
925 tsk->signal->group_exit_code ?: (int)code);
926
927 #ifdef CONFIG_POSIX_TIMERS
928 hrtimer_cancel(&tsk->signal->real_timer);
929 exit_itimers(tsk);
930 #endif
931 if (tsk->mm)
932 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
933 }
934 acct_collect(code, group_dead);
935 if (group_dead)
936 tty_audit_exit();
937 audit_free(tsk);
938
939 tsk->exit_code = code;
940 taskstats_exit(tsk, group_dead);
941 trace_sched_process_exit(tsk, group_dead);
942
943 /*
944 * Since sampling can touch ->mm, make sure to stop everything before we
945 * tear it down.
946 *
947 * Also flushes inherited counters to the parent - before the parent
948 * gets woken up by child-exit notifications.
949 */
950 perf_event_exit_task(tsk);
951
952 exit_mm();
953
954 if (group_dead)
955 acct_process();
956
957 exit_sem(tsk);
958 exit_shm(tsk);
959 exit_files(tsk);
960 exit_fs(tsk);
961 if (group_dead)
962 disassociate_ctty(1);
963 exit_task_namespaces(tsk);
964 exit_task_work(tsk);
965 exit_thread(tsk);
966
967 sched_autogroup_exit_task(tsk);
968 cgroup_exit(tsk);
969
970 /*
971 * FIXME: do that only when needed, using sched_exit tracepoint
972 */
973 flush_ptrace_hw_breakpoint(tsk);
974
975 exit_tasks_rcu_start();
976 exit_notify(tsk, group_dead);
977 proc_exit_connector(tsk);
978 mpol_put_task_policy(tsk);
979 #ifdef CONFIG_FUTEX
980 if (unlikely(current->pi_state_cache))
981 kfree(current->pi_state_cache);
982 #endif
983 /*
984 * Make sure we are holding no locks:
985 */
986 debug_check_no_locks_held();
987
988 if (tsk->io_context)
989 exit_io_context(tsk);
990
991 if (tsk->splice_pipe)
992 free_pipe_info(tsk->splice_pipe);
993
994 if (tsk->task_frag.page)
995 put_page(tsk->task_frag.page);
996
997 exit_task_stack_account(tsk);
998
999 check_stack_usage();
1000 preempt_disable();
1001 if (tsk->nr_dirtied)
1002 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
1003 exit_rcu();
1004 exit_tasks_rcu_finish();
1005
1006 lockdep_free_task(tsk);
1007 do_task_dead();
1008 }
1009
make_task_dead(int signr)1010 void __noreturn make_task_dead(int signr)
1011 {
1012 /*
1013 * Take the task off the cpu after something catastrophic has
1014 * happened.
1015 *
1016 * We can get here from a kernel oops, sometimes with preemption off.
1017 * Start by checking for critical errors.
1018 * Then fix up important state like USER_DS and preemption.
1019 * Then do everything else.
1020 */
1021 struct task_struct *tsk = current;
1022 unsigned int limit;
1023
1024 if (unlikely(in_interrupt()))
1025 panic("Aiee, killing interrupt handler!");
1026 if (unlikely(!tsk->pid))
1027 panic("Attempted to kill the idle task!");
1028
1029 if (unlikely(irqs_disabled())) {
1030 pr_info("note: %s[%d] exited with irqs disabled\n",
1031 current->comm, task_pid_nr(current));
1032 local_irq_enable();
1033 }
1034 if (unlikely(in_atomic())) {
1035 pr_info("note: %s[%d] exited with preempt_count %d\n",
1036 current->comm, task_pid_nr(current),
1037 preempt_count());
1038 preempt_count_set(PREEMPT_ENABLED);
1039 }
1040
1041 /*
1042 * Every time the system oopses, if the oops happens while a reference
1043 * to an object was held, the reference leaks.
1044 * If the oops doesn't also leak memory, repeated oopsing can cause
1045 * reference counters to wrap around (if they're not using refcount_t).
1046 * This means that repeated oopsing can make unexploitable-looking bugs
1047 * exploitable through repeated oopsing.
1048 * To make sure this can't happen, place an upper bound on how often the
1049 * kernel may oops without panic().
1050 */
1051 limit = READ_ONCE(oops_limit);
1052 if (atomic_inc_return(&oops_count) >= limit && limit)
1053 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
1054
1055 /*
1056 * We're taking recursive faults here in make_task_dead. Safest is to just
1057 * leave this task alone and wait for reboot.
1058 */
1059 if (unlikely(tsk->flags & PF_EXITING)) {
1060 pr_alert("Fixing recursive fault but reboot is needed!\n");
1061 futex_exit_recursive(tsk);
1062 tsk->exit_state = EXIT_DEAD;
1063 refcount_inc(&tsk->rcu_users);
1064 do_task_dead();
1065 }
1066
1067 do_exit(signr);
1068 }
1069
SYSCALL_DEFINE1(exit,int,error_code)1070 SYSCALL_DEFINE1(exit, int, error_code)
1071 {
1072 do_exit((error_code&0xff)<<8);
1073 }
1074
1075 /*
1076 * Take down every thread in the group. This is called by fatal signals
1077 * as well as by sys_exit_group (below).
1078 */
1079 void __noreturn
do_group_exit(int exit_code)1080 do_group_exit(int exit_code)
1081 {
1082 struct signal_struct *sig = current->signal;
1083
1084 if (sig->flags & SIGNAL_GROUP_EXIT)
1085 exit_code = sig->group_exit_code;
1086 else if (sig->group_exec_task)
1087 exit_code = 0;
1088 else {
1089 struct sighand_struct *const sighand = current->sighand;
1090
1091 spin_lock_irq(&sighand->siglock);
1092 if (sig->flags & SIGNAL_GROUP_EXIT)
1093 /* Another thread got here before we took the lock. */
1094 exit_code = sig->group_exit_code;
1095 else if (sig->group_exec_task)
1096 exit_code = 0;
1097 else {
1098 sig->group_exit_code = exit_code;
1099 sig->flags = SIGNAL_GROUP_EXIT;
1100 zap_other_threads(current);
1101 }
1102 spin_unlock_irq(&sighand->siglock);
1103 }
1104
1105 do_exit(exit_code);
1106 /* NOTREACHED */
1107 }
1108
1109 /*
1110 * this kills every thread in the thread group. Note that any externally
1111 * wait4()-ing process will get the correct exit code - even if this
1112 * thread is not the thread group leader.
1113 */
SYSCALL_DEFINE1(exit_group,int,error_code)1114 SYSCALL_DEFINE1(exit_group, int, error_code)
1115 {
1116 do_group_exit((error_code & 0xff) << 8);
1117 /* NOTREACHED */
1118 return 0;
1119 }
1120
eligible_pid(struct wait_opts * wo,struct task_struct * p)1121 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1122 {
1123 return wo->wo_type == PIDTYPE_MAX ||
1124 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1125 }
1126
1127 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)1128 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1129 {
1130 if (!eligible_pid(wo, p))
1131 return 0;
1132
1133 /*
1134 * Wait for all children (clone and not) if __WALL is set or
1135 * if it is traced by us.
1136 */
1137 if (ptrace || (wo->wo_flags & __WALL))
1138 return 1;
1139
1140 /*
1141 * Otherwise, wait for clone children *only* if __WCLONE is set;
1142 * otherwise, wait for non-clone children *only*.
1143 *
1144 * Note: a "clone" child here is one that reports to its parent
1145 * using a signal other than SIGCHLD, or a non-leader thread which
1146 * we can only see if it is traced by us.
1147 */
1148 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1149 return 0;
1150
1151 return 1;
1152 }
1153
1154 /*
1155 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1156 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1157 * the lock and this task is uninteresting. If we return nonzero, we have
1158 * released the lock and the system call should return.
1159 */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1160 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1161 {
1162 int state, status;
1163 pid_t pid = task_pid_vnr(p);
1164 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1165 struct waitid_info *infop;
1166
1167 if (!likely(wo->wo_flags & WEXITED))
1168 return 0;
1169
1170 if (unlikely(wo->wo_flags & WNOWAIT)) {
1171 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1172 ? p->signal->group_exit_code : p->exit_code;
1173 get_task_struct(p);
1174 read_unlock(&tasklist_lock);
1175 sched_annotate_sleep();
1176 if (wo->wo_rusage)
1177 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1178 put_task_struct(p);
1179 goto out_info;
1180 }
1181 /*
1182 * Move the task's state to DEAD/TRACE, only one thread can do this.
1183 */
1184 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1185 EXIT_TRACE : EXIT_DEAD;
1186 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1187 return 0;
1188 /*
1189 * We own this thread, nobody else can reap it.
1190 */
1191 read_unlock(&tasklist_lock);
1192 sched_annotate_sleep();
1193
1194 /*
1195 * Check thread_group_leader() to exclude the traced sub-threads.
1196 */
1197 if (state == EXIT_DEAD && thread_group_leader(p)) {
1198 struct signal_struct *sig = p->signal;
1199 struct signal_struct *psig = current->signal;
1200 unsigned long maxrss;
1201 u64 tgutime, tgstime;
1202
1203 /*
1204 * The resource counters for the group leader are in its
1205 * own task_struct. Those for dead threads in the group
1206 * are in its signal_struct, as are those for the child
1207 * processes it has previously reaped. All these
1208 * accumulate in the parent's signal_struct c* fields.
1209 *
1210 * We don't bother to take a lock here to protect these
1211 * p->signal fields because the whole thread group is dead
1212 * and nobody can change them.
1213 *
1214 * psig->stats_lock also protects us from our sub-threads
1215 * which can reap other children at the same time.
1216 *
1217 * We use thread_group_cputime_adjusted() to get times for
1218 * the thread group, which consolidates times for all threads
1219 * in the group including the group leader.
1220 */
1221 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1222 write_seqlock_irq(&psig->stats_lock);
1223 psig->cutime += tgutime + sig->cutime;
1224 psig->cstime += tgstime + sig->cstime;
1225 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1226 psig->cmin_flt +=
1227 p->min_flt + sig->min_flt + sig->cmin_flt;
1228 psig->cmaj_flt +=
1229 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1230 psig->cnvcsw +=
1231 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1232 psig->cnivcsw +=
1233 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1234 psig->cinblock +=
1235 task_io_get_inblock(p) +
1236 sig->inblock + sig->cinblock;
1237 psig->coublock +=
1238 task_io_get_oublock(p) +
1239 sig->oublock + sig->coublock;
1240 maxrss = max(sig->maxrss, sig->cmaxrss);
1241 if (psig->cmaxrss < maxrss)
1242 psig->cmaxrss = maxrss;
1243 task_io_accounting_add(&psig->ioac, &p->ioac);
1244 task_io_accounting_add(&psig->ioac, &sig->ioac);
1245 write_sequnlock_irq(&psig->stats_lock);
1246 }
1247
1248 if (wo->wo_rusage)
1249 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1250 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1251 ? p->signal->group_exit_code : p->exit_code;
1252 wo->wo_stat = status;
1253
1254 if (state == EXIT_TRACE) {
1255 write_lock_irq(&tasklist_lock);
1256 /* We dropped tasklist, ptracer could die and untrace */
1257 ptrace_unlink(p);
1258
1259 /* If parent wants a zombie, don't release it now */
1260 state = EXIT_ZOMBIE;
1261 if (do_notify_parent(p, p->exit_signal))
1262 state = EXIT_DEAD;
1263 p->exit_state = state;
1264 write_unlock_irq(&tasklist_lock);
1265 }
1266 if (state == EXIT_DEAD)
1267 release_task(p);
1268
1269 out_info:
1270 infop = wo->wo_info;
1271 if (infop) {
1272 if ((status & 0x7f) == 0) {
1273 infop->cause = CLD_EXITED;
1274 infop->status = status >> 8;
1275 } else {
1276 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1277 infop->status = status & 0x7f;
1278 }
1279 infop->pid = pid;
1280 infop->uid = uid;
1281 }
1282
1283 return pid;
1284 }
1285
task_stopped_code(struct task_struct * p,bool ptrace)1286 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1287 {
1288 if (ptrace) {
1289 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1290 return &p->exit_code;
1291 } else {
1292 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1293 return &p->signal->group_exit_code;
1294 }
1295 return NULL;
1296 }
1297
1298 /**
1299 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1300 * @wo: wait options
1301 * @ptrace: is the wait for ptrace
1302 * @p: task to wait for
1303 *
1304 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1305 *
1306 * CONTEXT:
1307 * read_lock(&tasklist_lock), which is released if return value is
1308 * non-zero. Also, grabs and releases @p->sighand->siglock.
1309 *
1310 * RETURNS:
1311 * 0 if wait condition didn't exist and search for other wait conditions
1312 * should continue. Non-zero return, -errno on failure and @p's pid on
1313 * success, implies that tasklist_lock is released and wait condition
1314 * search should terminate.
1315 */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1316 static int wait_task_stopped(struct wait_opts *wo,
1317 int ptrace, struct task_struct *p)
1318 {
1319 struct waitid_info *infop;
1320 int exit_code, *p_code, why;
1321 uid_t uid = 0; /* unneeded, required by compiler */
1322 pid_t pid;
1323
1324 /*
1325 * Traditionally we see ptrace'd stopped tasks regardless of options.
1326 */
1327 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1328 return 0;
1329
1330 if (!task_stopped_code(p, ptrace))
1331 return 0;
1332
1333 exit_code = 0;
1334 spin_lock_irq(&p->sighand->siglock);
1335
1336 p_code = task_stopped_code(p, ptrace);
1337 if (unlikely(!p_code))
1338 goto unlock_sig;
1339
1340 exit_code = *p_code;
1341 if (!exit_code)
1342 goto unlock_sig;
1343
1344 if (!unlikely(wo->wo_flags & WNOWAIT))
1345 *p_code = 0;
1346
1347 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1348 unlock_sig:
1349 spin_unlock_irq(&p->sighand->siglock);
1350 if (!exit_code)
1351 return 0;
1352
1353 /*
1354 * Now we are pretty sure this task is interesting.
1355 * Make sure it doesn't get reaped out from under us while we
1356 * give up the lock and then examine it below. We don't want to
1357 * keep holding onto the tasklist_lock while we call getrusage and
1358 * possibly take page faults for user memory.
1359 */
1360 get_task_struct(p);
1361 pid = task_pid_vnr(p);
1362 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1363 read_unlock(&tasklist_lock);
1364 sched_annotate_sleep();
1365 if (wo->wo_rusage)
1366 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1367 put_task_struct(p);
1368
1369 if (likely(!(wo->wo_flags & WNOWAIT)))
1370 wo->wo_stat = (exit_code << 8) | 0x7f;
1371
1372 infop = wo->wo_info;
1373 if (infop) {
1374 infop->cause = why;
1375 infop->status = exit_code;
1376 infop->pid = pid;
1377 infop->uid = uid;
1378 }
1379 return pid;
1380 }
1381
1382 /*
1383 * Handle do_wait work for one task in a live, non-stopped state.
1384 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1385 * the lock and this task is uninteresting. If we return nonzero, we have
1386 * released the lock and the system call should return.
1387 */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1388 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1389 {
1390 struct waitid_info *infop;
1391 pid_t pid;
1392 uid_t uid;
1393
1394 if (!unlikely(wo->wo_flags & WCONTINUED))
1395 return 0;
1396
1397 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1398 return 0;
1399
1400 spin_lock_irq(&p->sighand->siglock);
1401 /* Re-check with the lock held. */
1402 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1403 spin_unlock_irq(&p->sighand->siglock);
1404 return 0;
1405 }
1406 if (!unlikely(wo->wo_flags & WNOWAIT))
1407 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1408 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1409 spin_unlock_irq(&p->sighand->siglock);
1410
1411 pid = task_pid_vnr(p);
1412 get_task_struct(p);
1413 read_unlock(&tasklist_lock);
1414 sched_annotate_sleep();
1415 if (wo->wo_rusage)
1416 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1417 put_task_struct(p);
1418
1419 infop = wo->wo_info;
1420 if (!infop) {
1421 wo->wo_stat = 0xffff;
1422 } else {
1423 infop->cause = CLD_CONTINUED;
1424 infop->pid = pid;
1425 infop->uid = uid;
1426 infop->status = SIGCONT;
1427 }
1428 return pid;
1429 }
1430
1431 /*
1432 * Consider @p for a wait by @parent.
1433 *
1434 * -ECHILD should be in ->notask_error before the first call.
1435 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1436 * Returns zero if the search for a child should continue;
1437 * then ->notask_error is 0 if @p is an eligible child,
1438 * or still -ECHILD.
1439 */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1440 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1441 struct task_struct *p)
1442 {
1443 /*
1444 * We can race with wait_task_zombie() from another thread.
1445 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1446 * can't confuse the checks below.
1447 */
1448 int exit_state = READ_ONCE(p->exit_state);
1449 int ret;
1450
1451 if (unlikely(exit_state == EXIT_DEAD))
1452 return 0;
1453
1454 ret = eligible_child(wo, ptrace, p);
1455 if (!ret)
1456 return ret;
1457
1458 if (unlikely(exit_state == EXIT_TRACE)) {
1459 /*
1460 * ptrace == 0 means we are the natural parent. In this case
1461 * we should clear notask_error, debugger will notify us.
1462 */
1463 if (likely(!ptrace))
1464 wo->notask_error = 0;
1465 return 0;
1466 }
1467
1468 if (likely(!ptrace) && unlikely(p->ptrace)) {
1469 /*
1470 * If it is traced by its real parent's group, just pretend
1471 * the caller is ptrace_do_wait() and reap this child if it
1472 * is zombie.
1473 *
1474 * This also hides group stop state from real parent; otherwise
1475 * a single stop can be reported twice as group and ptrace stop.
1476 * If a ptracer wants to distinguish these two events for its
1477 * own children it should create a separate process which takes
1478 * the role of real parent.
1479 */
1480 if (!ptrace_reparented(p))
1481 ptrace = 1;
1482 }
1483
1484 /* slay zombie? */
1485 if (exit_state == EXIT_ZOMBIE) {
1486 /* we don't reap group leaders with subthreads */
1487 if (!delay_group_leader(p)) {
1488 /*
1489 * A zombie ptracee is only visible to its ptracer.
1490 * Notification and reaping will be cascaded to the
1491 * real parent when the ptracer detaches.
1492 */
1493 if (unlikely(ptrace) || likely(!p->ptrace))
1494 return wait_task_zombie(wo, p);
1495 }
1496
1497 /*
1498 * Allow access to stopped/continued state via zombie by
1499 * falling through. Clearing of notask_error is complex.
1500 *
1501 * When !@ptrace:
1502 *
1503 * If WEXITED is set, notask_error should naturally be
1504 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1505 * so, if there are live subthreads, there are events to
1506 * wait for. If all subthreads are dead, it's still safe
1507 * to clear - this function will be called again in finite
1508 * amount time once all the subthreads are released and
1509 * will then return without clearing.
1510 *
1511 * When @ptrace:
1512 *
1513 * Stopped state is per-task and thus can't change once the
1514 * target task dies. Only continued and exited can happen.
1515 * Clear notask_error if WCONTINUED | WEXITED.
1516 */
1517 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1518 wo->notask_error = 0;
1519 } else {
1520 /*
1521 * @p is alive and it's gonna stop, continue or exit, so
1522 * there always is something to wait for.
1523 */
1524 wo->notask_error = 0;
1525 }
1526
1527 /*
1528 * Wait for stopped. Depending on @ptrace, different stopped state
1529 * is used and the two don't interact with each other.
1530 */
1531 ret = wait_task_stopped(wo, ptrace, p);
1532 if (ret)
1533 return ret;
1534
1535 /*
1536 * Wait for continued. There's only one continued state and the
1537 * ptracer can consume it which can confuse the real parent. Don't
1538 * use WCONTINUED from ptracer. You don't need or want it.
1539 */
1540 return wait_task_continued(wo, p);
1541 }
1542
1543 /*
1544 * Do the work of do_wait() for one thread in the group, @tsk.
1545 *
1546 * -ECHILD should be in ->notask_error before the first call.
1547 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1548 * Returns zero if the search for a child should continue; then
1549 * ->notask_error is 0 if there were any eligible children,
1550 * or still -ECHILD.
1551 */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1552 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1553 {
1554 struct task_struct *p;
1555
1556 list_for_each_entry(p, &tsk->children, sibling) {
1557 int ret = wait_consider_task(wo, 0, p);
1558
1559 if (ret)
1560 return ret;
1561 }
1562
1563 return 0;
1564 }
1565
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1566 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1567 {
1568 struct task_struct *p;
1569
1570 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1571 int ret = wait_consider_task(wo, 1, p);
1572
1573 if (ret)
1574 return ret;
1575 }
1576
1577 return 0;
1578 }
1579
pid_child_should_wake(struct wait_opts * wo,struct task_struct * p)1580 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
1581 {
1582 if (!eligible_pid(wo, p))
1583 return false;
1584
1585 if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
1586 return false;
1587
1588 return true;
1589 }
1590
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1591 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1592 int sync, void *key)
1593 {
1594 struct wait_opts *wo = container_of(wait, struct wait_opts,
1595 child_wait);
1596 struct task_struct *p = key;
1597
1598 if (pid_child_should_wake(wo, p))
1599 return default_wake_function(wait, mode, sync, key);
1600
1601 return 0;
1602 }
1603
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1604 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1605 {
1606 __wake_up_sync_key(&parent->signal->wait_chldexit,
1607 TASK_INTERRUPTIBLE, p);
1608 }
1609
is_effectively_child(struct wait_opts * wo,bool ptrace,struct task_struct * target)1610 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1611 struct task_struct *target)
1612 {
1613 struct task_struct *parent =
1614 !ptrace ? target->real_parent : target->parent;
1615
1616 return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1617 same_thread_group(current, parent));
1618 }
1619
1620 /*
1621 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1622 * and tracee lists to find the target task.
1623 */
do_wait_pid(struct wait_opts * wo)1624 static int do_wait_pid(struct wait_opts *wo)
1625 {
1626 bool ptrace;
1627 struct task_struct *target;
1628 int retval;
1629
1630 ptrace = false;
1631 target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1632 if (target && is_effectively_child(wo, ptrace, target)) {
1633 retval = wait_consider_task(wo, ptrace, target);
1634 if (retval)
1635 return retval;
1636 }
1637
1638 ptrace = true;
1639 target = pid_task(wo->wo_pid, PIDTYPE_PID);
1640 if (target && target->ptrace &&
1641 is_effectively_child(wo, ptrace, target)) {
1642 retval = wait_consider_task(wo, ptrace, target);
1643 if (retval)
1644 return retval;
1645 }
1646
1647 return 0;
1648 }
1649
__do_wait(struct wait_opts * wo)1650 long __do_wait(struct wait_opts *wo)
1651 {
1652 long retval;
1653
1654 /*
1655 * If there is nothing that can match our criteria, just get out.
1656 * We will clear ->notask_error to zero if we see any child that
1657 * might later match our criteria, even if we are not able to reap
1658 * it yet.
1659 */
1660 wo->notask_error = -ECHILD;
1661 if ((wo->wo_type < PIDTYPE_MAX) &&
1662 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1663 goto notask;
1664
1665 read_lock(&tasklist_lock);
1666
1667 if (wo->wo_type == PIDTYPE_PID) {
1668 retval = do_wait_pid(wo);
1669 if (retval)
1670 return retval;
1671 } else {
1672 struct task_struct *tsk = current;
1673
1674 do {
1675 retval = do_wait_thread(wo, tsk);
1676 if (retval)
1677 return retval;
1678
1679 retval = ptrace_do_wait(wo, tsk);
1680 if (retval)
1681 return retval;
1682
1683 if (wo->wo_flags & __WNOTHREAD)
1684 break;
1685 } while_each_thread(current, tsk);
1686 }
1687 read_unlock(&tasklist_lock);
1688
1689 notask:
1690 retval = wo->notask_error;
1691 if (!retval && !(wo->wo_flags & WNOHANG))
1692 return -ERESTARTSYS;
1693
1694 return retval;
1695 }
1696
do_wait(struct wait_opts * wo)1697 static long do_wait(struct wait_opts *wo)
1698 {
1699 int retval;
1700
1701 trace_sched_process_wait(wo->wo_pid);
1702
1703 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1704 wo->child_wait.private = current;
1705 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1706
1707 do {
1708 set_current_state(TASK_INTERRUPTIBLE);
1709 retval = __do_wait(wo);
1710 if (retval != -ERESTARTSYS)
1711 break;
1712 if (signal_pending(current))
1713 break;
1714 schedule();
1715 } while (1);
1716
1717 __set_current_state(TASK_RUNNING);
1718 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1719 return retval;
1720 }
1721
kernel_waitid_prepare(struct wait_opts * wo,int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1722 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
1723 struct waitid_info *infop, int options,
1724 struct rusage *ru)
1725 {
1726 unsigned int f_flags = 0;
1727 struct pid *pid = NULL;
1728 enum pid_type type;
1729
1730 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1731 __WNOTHREAD|__WCLONE|__WALL))
1732 return -EINVAL;
1733 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1734 return -EINVAL;
1735
1736 switch (which) {
1737 case P_ALL:
1738 type = PIDTYPE_MAX;
1739 break;
1740 case P_PID:
1741 type = PIDTYPE_PID;
1742 if (upid <= 0)
1743 return -EINVAL;
1744
1745 pid = find_get_pid(upid);
1746 break;
1747 case P_PGID:
1748 type = PIDTYPE_PGID;
1749 if (upid < 0)
1750 return -EINVAL;
1751
1752 if (upid)
1753 pid = find_get_pid(upid);
1754 else
1755 pid = get_task_pid(current, PIDTYPE_PGID);
1756 break;
1757 case P_PIDFD:
1758 type = PIDTYPE_PID;
1759 if (upid < 0)
1760 return -EINVAL;
1761
1762 pid = pidfd_get_pid(upid, &f_flags);
1763 if (IS_ERR(pid))
1764 return PTR_ERR(pid);
1765
1766 break;
1767 default:
1768 return -EINVAL;
1769 }
1770
1771 wo->wo_type = type;
1772 wo->wo_pid = pid;
1773 wo->wo_flags = options;
1774 wo->wo_info = infop;
1775 wo->wo_rusage = ru;
1776 if (f_flags & O_NONBLOCK)
1777 wo->wo_flags |= WNOHANG;
1778
1779 return 0;
1780 }
1781
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1782 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1783 int options, struct rusage *ru)
1784 {
1785 struct wait_opts wo;
1786 long ret;
1787
1788 ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
1789 if (ret)
1790 return ret;
1791
1792 ret = do_wait(&wo);
1793 if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
1794 ret = -EAGAIN;
1795
1796 put_pid(wo.wo_pid);
1797 return ret;
1798 }
1799
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1800 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1801 infop, int, options, struct rusage __user *, ru)
1802 {
1803 struct rusage r;
1804 struct waitid_info info = {.status = 0};
1805 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1806 int signo = 0;
1807
1808 if (err > 0) {
1809 signo = SIGCHLD;
1810 err = 0;
1811 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1812 return -EFAULT;
1813 }
1814 if (!infop)
1815 return err;
1816
1817 if (!user_write_access_begin(infop, sizeof(*infop)))
1818 return -EFAULT;
1819
1820 unsafe_put_user(signo, &infop->si_signo, Efault);
1821 unsafe_put_user(0, &infop->si_errno, Efault);
1822 unsafe_put_user(info.cause, &infop->si_code, Efault);
1823 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1824 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1825 unsafe_put_user(info.status, &infop->si_status, Efault);
1826 user_write_access_end();
1827 return err;
1828 Efault:
1829 user_write_access_end();
1830 return -EFAULT;
1831 }
1832
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1833 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1834 struct rusage *ru)
1835 {
1836 struct wait_opts wo;
1837 struct pid *pid = NULL;
1838 enum pid_type type;
1839 long ret;
1840
1841 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1842 __WNOTHREAD|__WCLONE|__WALL))
1843 return -EINVAL;
1844
1845 /* -INT_MIN is not defined */
1846 if (upid == INT_MIN)
1847 return -ESRCH;
1848
1849 if (upid == -1)
1850 type = PIDTYPE_MAX;
1851 else if (upid < 0) {
1852 type = PIDTYPE_PGID;
1853 pid = find_get_pid(-upid);
1854 } else if (upid == 0) {
1855 type = PIDTYPE_PGID;
1856 pid = get_task_pid(current, PIDTYPE_PGID);
1857 } else /* upid > 0 */ {
1858 type = PIDTYPE_PID;
1859 pid = find_get_pid(upid);
1860 }
1861
1862 wo.wo_type = type;
1863 wo.wo_pid = pid;
1864 wo.wo_flags = options | WEXITED;
1865 wo.wo_info = NULL;
1866 wo.wo_stat = 0;
1867 wo.wo_rusage = ru;
1868 ret = do_wait(&wo);
1869 put_pid(pid);
1870 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1871 ret = -EFAULT;
1872
1873 return ret;
1874 }
1875
kernel_wait(pid_t pid,int * stat)1876 int kernel_wait(pid_t pid, int *stat)
1877 {
1878 struct wait_opts wo = {
1879 .wo_type = PIDTYPE_PID,
1880 .wo_pid = find_get_pid(pid),
1881 .wo_flags = WEXITED,
1882 };
1883 int ret;
1884
1885 ret = do_wait(&wo);
1886 if (ret > 0 && wo.wo_stat)
1887 *stat = wo.wo_stat;
1888 put_pid(wo.wo_pid);
1889 return ret;
1890 }
1891
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1892 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1893 int, options, struct rusage __user *, ru)
1894 {
1895 struct rusage r;
1896 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1897
1898 if (err > 0) {
1899 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1900 return -EFAULT;
1901 }
1902 return err;
1903 }
1904
1905 #ifdef __ARCH_WANT_SYS_WAITPID
1906
1907 /*
1908 * sys_waitpid() remains for compatibility. waitpid() should be
1909 * implemented by calling sys_wait4() from libc.a.
1910 */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1911 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1912 {
1913 return kernel_wait4(pid, stat_addr, options, NULL);
1914 }
1915
1916 #endif
1917
1918 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1919 COMPAT_SYSCALL_DEFINE4(wait4,
1920 compat_pid_t, pid,
1921 compat_uint_t __user *, stat_addr,
1922 int, options,
1923 struct compat_rusage __user *, ru)
1924 {
1925 struct rusage r;
1926 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1927 if (err > 0) {
1928 if (ru && put_compat_rusage(&r, ru))
1929 return -EFAULT;
1930 }
1931 return err;
1932 }
1933
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1934 COMPAT_SYSCALL_DEFINE5(waitid,
1935 int, which, compat_pid_t, pid,
1936 struct compat_siginfo __user *, infop, int, options,
1937 struct compat_rusage __user *, uru)
1938 {
1939 struct rusage ru;
1940 struct waitid_info info = {.status = 0};
1941 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1942 int signo = 0;
1943 if (err > 0) {
1944 signo = SIGCHLD;
1945 err = 0;
1946 if (uru) {
1947 /* kernel_waitid() overwrites everything in ru */
1948 if (COMPAT_USE_64BIT_TIME)
1949 err = copy_to_user(uru, &ru, sizeof(ru));
1950 else
1951 err = put_compat_rusage(&ru, uru);
1952 if (err)
1953 return -EFAULT;
1954 }
1955 }
1956
1957 if (!infop)
1958 return err;
1959
1960 if (!user_write_access_begin(infop, sizeof(*infop)))
1961 return -EFAULT;
1962
1963 unsafe_put_user(signo, &infop->si_signo, Efault);
1964 unsafe_put_user(0, &infop->si_errno, Efault);
1965 unsafe_put_user(info.cause, &infop->si_code, Efault);
1966 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1967 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1968 unsafe_put_user(info.status, &infop->si_status, Efault);
1969 user_write_access_end();
1970 return err;
1971 Efault:
1972 user_write_access_end();
1973 return -EFAULT;
1974 }
1975 #endif
1976
1977 /*
1978 * This needs to be __function_aligned as GCC implicitly makes any
1979 * implementation of abort() cold and drops alignment specified by
1980 * -falign-functions=N.
1981 *
1982 * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1983 */
abort(void)1984 __weak __function_aligned void abort(void)
1985 {
1986 BUG();
1987
1988 /* if that doesn't kill us, halt */
1989 panic("Oops failed to kill thread");
1990 }
1991 EXPORT_SYMBOL(abort);
1992