xref: /linux/kernel/relay.c (revision e991acf1bce7a428794514cbbe216973c9c0a3c8)
1 /*
2  * Public API and common code for kernel->userspace relay file support.
3  *
4  * See Documentation/filesystems/relay.rst for an overview.
5  *
6  * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7  * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8  *
9  * Moved to kernel/relay.c by Paul Mundt, 2006.
10  * November 2006 - CPU hotplug support by Mathieu Desnoyers
11  * 	(mathieu.desnoyers@polymtl.ca)
12  *
13  * This file is released under the GPL.
14  */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25 
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29 
30 /*
31  * fault() vm_op implementation for relay file mapping.
32  */
relay_buf_fault(struct vm_fault * vmf)33 static vm_fault_t relay_buf_fault(struct vm_fault *vmf)
34 {
35 	struct page *page;
36 	struct rchan_buf *buf = vmf->vma->vm_private_data;
37 	pgoff_t pgoff = vmf->pgoff;
38 
39 	if (!buf)
40 		return VM_FAULT_OOM;
41 
42 	page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
43 	if (!page)
44 		return VM_FAULT_SIGBUS;
45 	get_page(page);
46 	vmf->page = page;
47 
48 	return 0;
49 }
50 
51 /*
52  * vm_ops for relay file mappings.
53  */
54 static const struct vm_operations_struct relay_file_mmap_ops = {
55 	.fault = relay_buf_fault,
56 };
57 
58 /*
59  * allocate an array of pointers of struct page
60  */
relay_alloc_page_array(unsigned int n_pages)61 static struct page **relay_alloc_page_array(unsigned int n_pages)
62 {
63 	return kvcalloc(n_pages, sizeof(struct page *), GFP_KERNEL);
64 }
65 
66 /*
67  * free an array of pointers of struct page
68  */
relay_free_page_array(struct page ** array)69 static void relay_free_page_array(struct page **array)
70 {
71 	kvfree(array);
72 }
73 
74 /**
75  *	relay_mmap_buf: - mmap channel buffer to process address space
76  *	@buf: relay channel buffer
77  *	@vma: vm_area_struct describing memory to be mapped
78  *
79  *	Returns 0 if ok, negative on error
80  *
81  *	Caller should already have grabbed mmap_lock.
82  */
relay_mmap_buf(struct rchan_buf * buf,struct vm_area_struct * vma)83 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
84 {
85 	unsigned long length = vma->vm_end - vma->vm_start;
86 
87 	if (!buf)
88 		return -EBADF;
89 
90 	if (length != (unsigned long)buf->chan->alloc_size)
91 		return -EINVAL;
92 
93 	vma->vm_ops = &relay_file_mmap_ops;
94 	vm_flags_set(vma, VM_DONTEXPAND);
95 	vma->vm_private_data = buf;
96 
97 	return 0;
98 }
99 
100 /**
101  *	relay_alloc_buf - allocate a channel buffer
102  *	@buf: the buffer struct
103  *	@size: total size of the buffer
104  *
105  *	Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
106  *	passed in size will get page aligned, if it isn't already.
107  */
relay_alloc_buf(struct rchan_buf * buf,size_t * size)108 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
109 {
110 	void *mem;
111 	unsigned int i, j, n_pages;
112 
113 	*size = PAGE_ALIGN(*size);
114 	n_pages = *size >> PAGE_SHIFT;
115 
116 	buf->page_array = relay_alloc_page_array(n_pages);
117 	if (!buf->page_array)
118 		return NULL;
119 
120 	for (i = 0; i < n_pages; i++) {
121 		buf->page_array[i] = alloc_page(GFP_KERNEL | __GFP_ZERO);
122 		if (unlikely(!buf->page_array[i]))
123 			goto depopulate;
124 		set_page_private(buf->page_array[i], (unsigned long)buf);
125 	}
126 	mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
127 	if (!mem)
128 		goto depopulate;
129 
130 	buf->page_count = n_pages;
131 	return mem;
132 
133 depopulate:
134 	for (j = 0; j < i; j++)
135 		__free_page(buf->page_array[j]);
136 	relay_free_page_array(buf->page_array);
137 	return NULL;
138 }
139 
140 /**
141  *	relay_create_buf - allocate and initialize a channel buffer
142  *	@chan: the relay channel
143  *
144  *	Returns channel buffer if successful, %NULL otherwise.
145  */
relay_create_buf(struct rchan * chan)146 static struct rchan_buf *relay_create_buf(struct rchan *chan)
147 {
148 	struct rchan_buf *buf;
149 
150 	if (chan->n_subbufs > KMALLOC_MAX_SIZE / sizeof(size_t))
151 		return NULL;
152 
153 	buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
154 	if (!buf)
155 		return NULL;
156 	buf->padding = kmalloc_array(chan->n_subbufs, sizeof(size_t),
157 				     GFP_KERNEL);
158 	if (!buf->padding)
159 		goto free_buf;
160 
161 	buf->start = relay_alloc_buf(buf, &chan->alloc_size);
162 	if (!buf->start)
163 		goto free_buf;
164 
165 	buf->chan = chan;
166 	kref_get(&buf->chan->kref);
167 	return buf;
168 
169 free_buf:
170 	kfree(buf->padding);
171 	kfree(buf);
172 	return NULL;
173 }
174 
175 /**
176  *	relay_destroy_channel - free the channel struct
177  *	@kref: target kernel reference that contains the relay channel
178  *
179  *	Should only be called from kref_put().
180  */
relay_destroy_channel(struct kref * kref)181 static void relay_destroy_channel(struct kref *kref)
182 {
183 	struct rchan *chan = container_of(kref, struct rchan, kref);
184 	free_percpu(chan->buf);
185 	kfree(chan);
186 }
187 
188 /**
189  *	relay_destroy_buf - destroy an rchan_buf struct and associated buffer
190  *	@buf: the buffer struct
191  */
relay_destroy_buf(struct rchan_buf * buf)192 static void relay_destroy_buf(struct rchan_buf *buf)
193 {
194 	struct rchan *chan = buf->chan;
195 	unsigned int i;
196 
197 	if (likely(buf->start)) {
198 		vunmap(buf->start);
199 		for (i = 0; i < buf->page_count; i++)
200 			__free_page(buf->page_array[i]);
201 		relay_free_page_array(buf->page_array);
202 	}
203 	*per_cpu_ptr(chan->buf, buf->cpu) = NULL;
204 	kfree(buf->padding);
205 	kfree(buf);
206 	kref_put(&chan->kref, relay_destroy_channel);
207 }
208 
209 /**
210  *	relay_remove_buf - remove a channel buffer
211  *	@kref: target kernel reference that contains the relay buffer
212  *
213  *	Removes the file from the filesystem, which also frees the
214  *	rchan_buf_struct and the channel buffer.  Should only be called from
215  *	kref_put().
216  */
relay_remove_buf(struct kref * kref)217 static void relay_remove_buf(struct kref *kref)
218 {
219 	struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
220 	relay_destroy_buf(buf);
221 }
222 
223 /**
224  *	relay_buf_empty - boolean, is the channel buffer empty?
225  *	@buf: channel buffer
226  *
227  *	Returns 1 if the buffer is empty, 0 otherwise.
228  */
relay_buf_empty(struct rchan_buf * buf)229 static int relay_buf_empty(struct rchan_buf *buf)
230 {
231 	return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
232 }
233 
234 /**
235  *	relay_buf_full - boolean, is the channel buffer full?
236  *	@buf: channel buffer
237  *
238  *	Returns 1 if the buffer is full, 0 otherwise.
239  */
relay_buf_full(struct rchan_buf * buf)240 int relay_buf_full(struct rchan_buf *buf)
241 {
242 	size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
243 	return (ready >= buf->chan->n_subbufs) ? 1 : 0;
244 }
245 EXPORT_SYMBOL_GPL(relay_buf_full);
246 
247 /*
248  * High-level relay kernel API and associated functions.
249  */
250 
relay_subbuf_start(struct rchan_buf * buf,void * subbuf,void * prev_subbuf)251 static int relay_subbuf_start(struct rchan_buf *buf, void *subbuf,
252 			      void *prev_subbuf)
253 {
254 	int full = relay_buf_full(buf);
255 
256 	if (full)
257 		buf->stats.full_count++;
258 
259 	if (!buf->chan->cb->subbuf_start)
260 		return !full;
261 
262 	return buf->chan->cb->subbuf_start(buf, subbuf,
263 					   prev_subbuf);
264 }
265 
266 /**
267  *	wakeup_readers - wake up readers waiting on a channel
268  *	@work: contains the channel buffer
269  *
270  *	This is the function used to defer reader waking
271  */
wakeup_readers(struct irq_work * work)272 static void wakeup_readers(struct irq_work *work)
273 {
274 	struct rchan_buf *buf;
275 
276 	buf = container_of(work, struct rchan_buf, wakeup_work);
277 	wake_up_interruptible(&buf->read_wait);
278 }
279 
280 /**
281  *	__relay_reset - reset a channel buffer
282  *	@buf: the channel buffer
283  *	@init: 1 if this is a first-time initialization
284  *
285  *	See relay_reset() for description of effect.
286  */
__relay_reset(struct rchan_buf * buf,unsigned int init)287 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
288 {
289 	size_t i;
290 
291 	if (init) {
292 		init_waitqueue_head(&buf->read_wait);
293 		kref_init(&buf->kref);
294 		init_irq_work(&buf->wakeup_work, wakeup_readers);
295 	} else {
296 		irq_work_sync(&buf->wakeup_work);
297 	}
298 
299 	buf->subbufs_produced = 0;
300 	buf->subbufs_consumed = 0;
301 	buf->bytes_consumed = 0;
302 	buf->finalized = 0;
303 	buf->data = buf->start;
304 	buf->offset = 0;
305 	buf->stats.full_count = 0;
306 	buf->stats.big_count = 0;
307 
308 	for (i = 0; i < buf->chan->n_subbufs; i++)
309 		buf->padding[i] = 0;
310 
311 	relay_subbuf_start(buf, buf->data, NULL);
312 }
313 
314 /**
315  *	relay_reset - reset the channel
316  *	@chan: the channel
317  *
318  *	This has the effect of erasing all data from all channel buffers
319  *	and restarting the channel in its initial state.  The buffers
320  *	are not freed, so any mappings are still in effect.
321  *
322  *	NOTE. Care should be taken that the channel isn't actually
323  *	being used by anything when this call is made.
324  */
relay_reset(struct rchan * chan)325 void relay_reset(struct rchan *chan)
326 {
327 	struct rchan_buf *buf;
328 	unsigned int i;
329 
330 	if (!chan)
331 		return;
332 
333 	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
334 		__relay_reset(buf, 0);
335 		return;
336 	}
337 
338 	mutex_lock(&relay_channels_mutex);
339 	for_each_possible_cpu(i)
340 		if ((buf = *per_cpu_ptr(chan->buf, i)))
341 			__relay_reset(buf, 0);
342 	mutex_unlock(&relay_channels_mutex);
343 }
344 EXPORT_SYMBOL_GPL(relay_reset);
345 
relay_set_buf_dentry(struct rchan_buf * buf,struct dentry * dentry)346 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
347 					struct dentry *dentry)
348 {
349 	buf->dentry = dentry;
350 	d_inode(buf->dentry)->i_size = buf->early_bytes;
351 }
352 
relay_create_buf_file(struct rchan * chan,struct rchan_buf * buf,unsigned int cpu)353 static struct dentry *relay_create_buf_file(struct rchan *chan,
354 					    struct rchan_buf *buf,
355 					    unsigned int cpu)
356 {
357 	struct dentry *dentry;
358 	char *tmpname;
359 
360 	tmpname = kasprintf(GFP_KERNEL, "%s%d", chan->base_filename, cpu);
361 	if (!tmpname)
362 		return NULL;
363 
364 	/* Create file in fs */
365 	dentry = chan->cb->create_buf_file(tmpname, chan->parent,
366 					   S_IRUSR, buf,
367 					   &chan->is_global);
368 	if (IS_ERR(dentry))
369 		dentry = NULL;
370 
371 	kfree(tmpname);
372 
373 	return dentry;
374 }
375 
376 /*
377  *	relay_open_buf - create a new relay channel buffer
378  *
379  *	used by relay_open() and CPU hotplug.
380  */
relay_open_buf(struct rchan * chan,unsigned int cpu)381 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
382 {
383 	struct rchan_buf *buf;
384 	struct dentry *dentry;
385 
386  	if (chan->is_global)
387 		return *per_cpu_ptr(chan->buf, 0);
388 
389 	buf = relay_create_buf(chan);
390 	if (!buf)
391 		return NULL;
392 
393 	if (chan->has_base_filename) {
394 		dentry = relay_create_buf_file(chan, buf, cpu);
395 		if (!dentry)
396 			goto free_buf;
397 		relay_set_buf_dentry(buf, dentry);
398 	} else {
399 		/* Only retrieve global info, nothing more, nothing less */
400 		dentry = chan->cb->create_buf_file(NULL, NULL,
401 						   S_IRUSR, buf,
402 						   &chan->is_global);
403 		if (IS_ERR_OR_NULL(dentry))
404 			goto free_buf;
405 	}
406 
407  	buf->cpu = cpu;
408  	__relay_reset(buf, 1);
409 
410  	if(chan->is_global) {
411 		*per_cpu_ptr(chan->buf, 0) = buf;
412  		buf->cpu = 0;
413   	}
414 
415 	return buf;
416 
417 free_buf:
418  	relay_destroy_buf(buf);
419 	return NULL;
420 }
421 
422 /**
423  *	relay_close_buf - close a channel buffer
424  *	@buf: channel buffer
425  *
426  *	Marks the buffer finalized and restores the default callbacks.
427  *	The channel buffer and channel buffer data structure are then freed
428  *	automatically when the last reference is given up.
429  */
relay_close_buf(struct rchan_buf * buf)430 static void relay_close_buf(struct rchan_buf *buf)
431 {
432 	buf->finalized = 1;
433 	irq_work_sync(&buf->wakeup_work);
434 	buf->chan->cb->remove_buf_file(buf->dentry);
435 	kref_put(&buf->kref, relay_remove_buf);
436 }
437 
relay_prepare_cpu(unsigned int cpu)438 int relay_prepare_cpu(unsigned int cpu)
439 {
440 	struct rchan *chan;
441 	struct rchan_buf *buf;
442 
443 	mutex_lock(&relay_channels_mutex);
444 	list_for_each_entry(chan, &relay_channels, list) {
445 		if (*per_cpu_ptr(chan->buf, cpu))
446 			continue;
447 		buf = relay_open_buf(chan, cpu);
448 		if (!buf) {
449 			pr_err("relay: cpu %d buffer creation failed\n", cpu);
450 			mutex_unlock(&relay_channels_mutex);
451 			return -ENOMEM;
452 		}
453 		*per_cpu_ptr(chan->buf, cpu) = buf;
454 	}
455 	mutex_unlock(&relay_channels_mutex);
456 	return 0;
457 }
458 
459 /**
460  *	relay_open - create a new relay channel
461  *	@base_filename: base name of files to create
462  *	@parent: dentry of parent directory, %NULL for root directory or buffer
463  *	@subbuf_size: size of sub-buffers
464  *	@n_subbufs: number of sub-buffers
465  *	@cb: client callback functions
466  *	@private_data: user-defined data
467  *
468  *	Returns channel pointer if successful, %NULL otherwise.
469  *
470  *	Creates a channel buffer for each cpu using the sizes and
471  *	attributes specified.  The created channel buffer files
472  *	will be named base_filename0...base_filenameN-1.  File
473  *	permissions will be %S_IRUSR.
474  */
relay_open(const char * base_filename,struct dentry * parent,size_t subbuf_size,size_t n_subbufs,const struct rchan_callbacks * cb,void * private_data)475 struct rchan *relay_open(const char *base_filename,
476 			 struct dentry *parent,
477 			 size_t subbuf_size,
478 			 size_t n_subbufs,
479 			 const struct rchan_callbacks *cb,
480 			 void *private_data)
481 {
482 	unsigned int i;
483 	struct rchan *chan;
484 	struct rchan_buf *buf;
485 
486 	if (!(subbuf_size && n_subbufs))
487 		return NULL;
488 	if (subbuf_size > UINT_MAX / n_subbufs)
489 		return NULL;
490 	if (!cb || !cb->create_buf_file || !cb->remove_buf_file)
491 		return NULL;
492 
493 	chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
494 	if (!chan)
495 		return NULL;
496 
497 	chan->buf = alloc_percpu(struct rchan_buf *);
498 	if (!chan->buf) {
499 		kfree(chan);
500 		return NULL;
501 	}
502 
503 	chan->version = RELAYFS_CHANNEL_VERSION;
504 	chan->n_subbufs = n_subbufs;
505 	chan->subbuf_size = subbuf_size;
506 	chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
507 	chan->parent = parent;
508 	chan->private_data = private_data;
509 	if (base_filename) {
510 		chan->has_base_filename = 1;
511 		strscpy(chan->base_filename, base_filename, NAME_MAX);
512 	}
513 	chan->cb = cb;
514 	kref_init(&chan->kref);
515 
516 	mutex_lock(&relay_channels_mutex);
517 	for_each_online_cpu(i) {
518 		buf = relay_open_buf(chan, i);
519 		if (!buf)
520 			goto free_bufs;
521 		*per_cpu_ptr(chan->buf, i) = buf;
522 	}
523 	list_add(&chan->list, &relay_channels);
524 	mutex_unlock(&relay_channels_mutex);
525 
526 	return chan;
527 
528 free_bufs:
529 	for_each_possible_cpu(i) {
530 		if ((buf = *per_cpu_ptr(chan->buf, i)))
531 			relay_close_buf(buf);
532 	}
533 
534 	kref_put(&chan->kref, relay_destroy_channel);
535 	mutex_unlock(&relay_channels_mutex);
536 	return NULL;
537 }
538 EXPORT_SYMBOL_GPL(relay_open);
539 
540 struct rchan_percpu_buf_dispatcher {
541 	struct rchan_buf *buf;
542 	struct dentry *dentry;
543 };
544 
545 /**
546  *	relay_switch_subbuf - switch to a new sub-buffer
547  *	@buf: channel buffer
548  *	@length: size of current event
549  *
550  *	Returns either the length passed in or 0 if full.
551  *
552  *	Performs sub-buffer-switch tasks such as invoking callbacks,
553  *	updating padding counts, waking up readers, etc.
554  */
relay_switch_subbuf(struct rchan_buf * buf,size_t length)555 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
556 {
557 	void *old, *new;
558 	size_t old_subbuf, new_subbuf;
559 
560 	if (unlikely(length > buf->chan->subbuf_size))
561 		goto toobig;
562 
563 	if (buf->offset != buf->chan->subbuf_size + 1) {
564 		size_t prev_padding;
565 
566 		prev_padding = buf->chan->subbuf_size - buf->offset;
567 		old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
568 		buf->padding[old_subbuf] = prev_padding;
569 		buf->subbufs_produced++;
570 		if (buf->dentry)
571 			d_inode(buf->dentry)->i_size +=
572 				buf->chan->subbuf_size -
573 				buf->padding[old_subbuf];
574 		else
575 			buf->early_bytes += buf->chan->subbuf_size -
576 					    buf->padding[old_subbuf];
577 		smp_mb();
578 		if (waitqueue_active(&buf->read_wait)) {
579 			/*
580 			 * Calling wake_up_interruptible() from here
581 			 * will deadlock if we happen to be logging
582 			 * from the scheduler (trying to re-grab
583 			 * rq->lock), so defer it.
584 			 */
585 			irq_work_queue(&buf->wakeup_work);
586 		}
587 	}
588 
589 	old = buf->data;
590 	new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
591 	new = buf->start + new_subbuf * buf->chan->subbuf_size;
592 	buf->offset = 0;
593 	if (!relay_subbuf_start(buf, new, old)) {
594 		buf->offset = buf->chan->subbuf_size + 1;
595 		return 0;
596 	}
597 	buf->data = new;
598 	buf->padding[new_subbuf] = 0;
599 
600 	if (unlikely(length + buf->offset > buf->chan->subbuf_size))
601 		goto toobig;
602 
603 	return length;
604 
605 toobig:
606 	buf->stats.big_count++;
607 	return 0;
608 }
609 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
610 
611 /**
612  *	relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
613  *	@chan: the channel
614  *	@cpu: the cpu associated with the channel buffer to update
615  *	@subbufs_consumed: number of sub-buffers to add to current buf's count
616  *
617  *	Adds to the channel buffer's consumed sub-buffer count.
618  *	subbufs_consumed should be the number of sub-buffers newly consumed,
619  *	not the total consumed.
620  *
621  *	NOTE. Kernel clients don't need to call this function if the channel
622  *	mode is 'overwrite'.
623  */
relay_subbufs_consumed(struct rchan * chan,unsigned int cpu,size_t subbufs_consumed)624 void relay_subbufs_consumed(struct rchan *chan,
625 			    unsigned int cpu,
626 			    size_t subbufs_consumed)
627 {
628 	struct rchan_buf *buf;
629 
630 	if (!chan || cpu >= NR_CPUS)
631 		return;
632 
633 	buf = *per_cpu_ptr(chan->buf, cpu);
634 	if (!buf || subbufs_consumed > chan->n_subbufs)
635 		return;
636 
637 	if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
638 		buf->subbufs_consumed = buf->subbufs_produced;
639 	else
640 		buf->subbufs_consumed += subbufs_consumed;
641 }
642 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
643 
644 /**
645  *	relay_close - close the channel
646  *	@chan: the channel
647  *
648  *	Closes all channel buffers and frees the channel.
649  */
relay_close(struct rchan * chan)650 void relay_close(struct rchan *chan)
651 {
652 	struct rchan_buf *buf;
653 	unsigned int i;
654 
655 	if (!chan)
656 		return;
657 
658 	mutex_lock(&relay_channels_mutex);
659 	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0)))
660 		relay_close_buf(buf);
661 	else
662 		for_each_possible_cpu(i)
663 			if ((buf = *per_cpu_ptr(chan->buf, i)))
664 				relay_close_buf(buf);
665 
666 	list_del(&chan->list);
667 	kref_put(&chan->kref, relay_destroy_channel);
668 	mutex_unlock(&relay_channels_mutex);
669 }
670 EXPORT_SYMBOL_GPL(relay_close);
671 
672 /**
673  *	relay_flush - close the channel
674  *	@chan: the channel
675  *
676  *	Flushes all channel buffers, i.e. forces buffer switch.
677  */
relay_flush(struct rchan * chan)678 void relay_flush(struct rchan *chan)
679 {
680 	struct rchan_buf *buf;
681 	unsigned int i;
682 
683 	if (!chan)
684 		return;
685 
686 	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
687 		relay_switch_subbuf(buf, 0);
688 		return;
689 	}
690 
691 	mutex_lock(&relay_channels_mutex);
692 	for_each_possible_cpu(i)
693 		if ((buf = *per_cpu_ptr(chan->buf, i)))
694 			relay_switch_subbuf(buf, 0);
695 	mutex_unlock(&relay_channels_mutex);
696 }
697 EXPORT_SYMBOL_GPL(relay_flush);
698 
699 /**
700  *	relay_stats - get channel buffer statistics
701  *	@chan: the channel
702  *	@flags: select particular information to get
703  *
704  *	Returns the count of certain field that caller specifies.
705  */
relay_stats(struct rchan * chan,int flags)706 size_t relay_stats(struct rchan *chan, int flags)
707 {
708 	unsigned int i, count = 0;
709 	struct rchan_buf *rbuf;
710 
711 	if (!chan || flags > RELAY_STATS_LAST)
712 		return 0;
713 
714 	if (chan->is_global) {
715 		rbuf = *per_cpu_ptr(chan->buf, 0);
716 		if (flags & RELAY_STATS_BUF_FULL)
717 			count = rbuf->stats.full_count;
718 		else if (flags & RELAY_STATS_WRT_BIG)
719 			count = rbuf->stats.big_count;
720 	} else {
721 		for_each_online_cpu(i) {
722 			rbuf = *per_cpu_ptr(chan->buf, i);
723 			if (rbuf) {
724 				if (flags & RELAY_STATS_BUF_FULL)
725 					count += rbuf->stats.full_count;
726 				else if (flags & RELAY_STATS_WRT_BIG)
727 					count += rbuf->stats.big_count;
728 			}
729 		}
730 	}
731 
732 	return count;
733 }
734 
735 /**
736  *	relay_file_open - open file op for relay files
737  *	@inode: the inode
738  *	@filp: the file
739  *
740  *	Increments the channel buffer refcount.
741  */
relay_file_open(struct inode * inode,struct file * filp)742 static int relay_file_open(struct inode *inode, struct file *filp)
743 {
744 	struct rchan_buf *buf = inode->i_private;
745 	kref_get(&buf->kref);
746 	filp->private_data = buf;
747 
748 	return nonseekable_open(inode, filp);
749 }
750 
751 /**
752  *	relay_file_mmap - mmap file op for relay files
753  *	@filp: the file
754  *	@vma: the vma describing what to map
755  *
756  *	Calls upon relay_mmap_buf() to map the file into user space.
757  */
relay_file_mmap(struct file * filp,struct vm_area_struct * vma)758 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
759 {
760 	struct rchan_buf *buf = filp->private_data;
761 	return relay_mmap_buf(buf, vma);
762 }
763 
764 /**
765  *	relay_file_poll - poll file op for relay files
766  *	@filp: the file
767  *	@wait: poll table
768  *
769  *	Poll implemention.
770  */
relay_file_poll(struct file * filp,poll_table * wait)771 static __poll_t relay_file_poll(struct file *filp, poll_table *wait)
772 {
773 	__poll_t mask = 0;
774 	struct rchan_buf *buf = filp->private_data;
775 
776 	if (buf->finalized)
777 		return EPOLLERR;
778 
779 	if (filp->f_mode & FMODE_READ) {
780 		poll_wait(filp, &buf->read_wait, wait);
781 		if (!relay_buf_empty(buf))
782 			mask |= EPOLLIN | EPOLLRDNORM;
783 	}
784 
785 	return mask;
786 }
787 
788 /**
789  *	relay_file_release - release file op for relay files
790  *	@inode: the inode
791  *	@filp: the file
792  *
793  *	Decrements the channel refcount, as the filesystem is
794  *	no longer using it.
795  */
relay_file_release(struct inode * inode,struct file * filp)796 static int relay_file_release(struct inode *inode, struct file *filp)
797 {
798 	struct rchan_buf *buf = filp->private_data;
799 	kref_put(&buf->kref, relay_remove_buf);
800 
801 	return 0;
802 }
803 
804 /*
805  *	relay_file_read_consume - update the consumed count for the buffer
806  */
relay_file_read_consume(struct rchan_buf * buf,size_t read_pos,size_t bytes_consumed)807 static void relay_file_read_consume(struct rchan_buf *buf,
808 				    size_t read_pos,
809 				    size_t bytes_consumed)
810 {
811 	size_t subbuf_size = buf->chan->subbuf_size;
812 	size_t n_subbufs = buf->chan->n_subbufs;
813 	size_t read_subbuf;
814 
815 	if (buf->subbufs_produced == buf->subbufs_consumed &&
816 	    buf->offset == buf->bytes_consumed)
817 		return;
818 
819 	if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
820 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
821 		buf->bytes_consumed = 0;
822 	}
823 
824 	buf->bytes_consumed += bytes_consumed;
825 	if (!read_pos)
826 		read_subbuf = buf->subbufs_consumed % n_subbufs;
827 	else
828 		read_subbuf = read_pos / buf->chan->subbuf_size;
829 	if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
830 		if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
831 		    (buf->offset == subbuf_size))
832 			return;
833 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
834 		buf->bytes_consumed = 0;
835 	}
836 }
837 
838 /*
839  *	relay_file_read_avail - boolean, are there unconsumed bytes available?
840  */
relay_file_read_avail(struct rchan_buf * buf)841 static int relay_file_read_avail(struct rchan_buf *buf)
842 {
843 	size_t subbuf_size = buf->chan->subbuf_size;
844 	size_t n_subbufs = buf->chan->n_subbufs;
845 	size_t produced = buf->subbufs_produced;
846 	size_t consumed;
847 
848 	relay_file_read_consume(buf, 0, 0);
849 
850 	consumed = buf->subbufs_consumed;
851 
852 	if (unlikely(buf->offset > subbuf_size)) {
853 		if (produced == consumed)
854 			return 0;
855 		return 1;
856 	}
857 
858 	if (unlikely(produced - consumed >= n_subbufs)) {
859 		consumed = produced - n_subbufs + 1;
860 		buf->subbufs_consumed = consumed;
861 		buf->bytes_consumed = 0;
862 	}
863 
864 	produced = (produced % n_subbufs) * subbuf_size + buf->offset;
865 	consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
866 
867 	if (consumed > produced)
868 		produced += n_subbufs * subbuf_size;
869 
870 	if (consumed == produced) {
871 		if (buf->offset == subbuf_size &&
872 		    buf->subbufs_produced > buf->subbufs_consumed)
873 			return 1;
874 		return 0;
875 	}
876 
877 	return 1;
878 }
879 
880 /**
881  *	relay_file_read_subbuf_avail - return bytes available in sub-buffer
882  *	@read_pos: file read position
883  *	@buf: relay channel buffer
884  */
relay_file_read_subbuf_avail(size_t read_pos,struct rchan_buf * buf)885 static size_t relay_file_read_subbuf_avail(size_t read_pos,
886 					   struct rchan_buf *buf)
887 {
888 	size_t padding, avail = 0;
889 	size_t read_subbuf, read_offset, write_subbuf, write_offset;
890 	size_t subbuf_size = buf->chan->subbuf_size;
891 
892 	write_subbuf = (buf->data - buf->start) / subbuf_size;
893 	write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
894 	read_subbuf = read_pos / subbuf_size;
895 	read_offset = read_pos % subbuf_size;
896 	padding = buf->padding[read_subbuf];
897 
898 	if (read_subbuf == write_subbuf) {
899 		if (read_offset + padding < write_offset)
900 			avail = write_offset - (read_offset + padding);
901 	} else
902 		avail = (subbuf_size - padding) - read_offset;
903 
904 	return avail;
905 }
906 
907 /**
908  *	relay_file_read_start_pos - find the first available byte to read
909  *	@buf: relay channel buffer
910  *
911  *	If the read_pos is in the middle of padding, return the
912  *	position of the first actually available byte, otherwise
913  *	return the original value.
914  */
relay_file_read_start_pos(struct rchan_buf * buf)915 static size_t relay_file_read_start_pos(struct rchan_buf *buf)
916 {
917 	size_t read_subbuf, padding, padding_start, padding_end;
918 	size_t subbuf_size = buf->chan->subbuf_size;
919 	size_t n_subbufs = buf->chan->n_subbufs;
920 	size_t consumed = buf->subbufs_consumed % n_subbufs;
921 	size_t read_pos = (consumed * subbuf_size + buf->bytes_consumed)
922 			% (n_subbufs * subbuf_size);
923 
924 	read_subbuf = read_pos / subbuf_size;
925 	padding = buf->padding[read_subbuf];
926 	padding_start = (read_subbuf + 1) * subbuf_size - padding;
927 	padding_end = (read_subbuf + 1) * subbuf_size;
928 	if (read_pos >= padding_start && read_pos < padding_end) {
929 		read_subbuf = (read_subbuf + 1) % n_subbufs;
930 		read_pos = read_subbuf * subbuf_size;
931 	}
932 
933 	return read_pos;
934 }
935 
936 /**
937  *	relay_file_read_end_pos - return the new read position
938  *	@read_pos: file read position
939  *	@buf: relay channel buffer
940  *	@count: number of bytes to be read
941  */
relay_file_read_end_pos(struct rchan_buf * buf,size_t read_pos,size_t count)942 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
943 				      size_t read_pos,
944 				      size_t count)
945 {
946 	size_t read_subbuf, padding, end_pos;
947 	size_t subbuf_size = buf->chan->subbuf_size;
948 	size_t n_subbufs = buf->chan->n_subbufs;
949 
950 	read_subbuf = read_pos / subbuf_size;
951 	padding = buf->padding[read_subbuf];
952 	if (read_pos % subbuf_size + count + padding == subbuf_size)
953 		end_pos = (read_subbuf + 1) * subbuf_size;
954 	else
955 		end_pos = read_pos + count;
956 	if (end_pos >= subbuf_size * n_subbufs)
957 		end_pos = 0;
958 
959 	return end_pos;
960 }
961 
relay_file_read(struct file * filp,char __user * buffer,size_t count,loff_t * ppos)962 static ssize_t relay_file_read(struct file *filp,
963 			       char __user *buffer,
964 			       size_t count,
965 			       loff_t *ppos)
966 {
967 	struct rchan_buf *buf = filp->private_data;
968 	size_t read_start, avail;
969 	size_t written = 0;
970 	int ret;
971 
972 	if (!count)
973 		return 0;
974 
975 	inode_lock(file_inode(filp));
976 	do {
977 		void *from;
978 
979 		if (!relay_file_read_avail(buf))
980 			break;
981 
982 		read_start = relay_file_read_start_pos(buf);
983 		avail = relay_file_read_subbuf_avail(read_start, buf);
984 		if (!avail)
985 			break;
986 
987 		avail = min(count, avail);
988 		from = buf->start + read_start;
989 		ret = avail;
990 		if (copy_to_user(buffer, from, avail))
991 			break;
992 
993 		buffer += ret;
994 		written += ret;
995 		count -= ret;
996 
997 		relay_file_read_consume(buf, read_start, ret);
998 		*ppos = relay_file_read_end_pos(buf, read_start, ret);
999 	} while (count);
1000 	inode_unlock(file_inode(filp));
1001 
1002 	return written;
1003 }
1004 
1005 
1006 const struct file_operations relay_file_operations = {
1007 	.open		= relay_file_open,
1008 	.poll		= relay_file_poll,
1009 	.mmap		= relay_file_mmap,
1010 	.read		= relay_file_read,
1011 	.release	= relay_file_release,
1012 };
1013 EXPORT_SYMBOL_GPL(relay_file_operations);
1014