xref: /linux/kernel/relay.c (revision 7d4e49a77d9930c69751b9192448fda6ff9100f1)
1 /*
2  * Public API and common code for kernel->userspace relay file support.
3  *
4  * See Documentation/filesystems/relay.rst for an overview.
5  *
6  * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7  * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8  *
9  * Moved to kernel/relay.c by Paul Mundt, 2006.
10  * November 2006 - CPU hotplug support by Mathieu Desnoyers
11  * 	(mathieu.desnoyers@polymtl.ca)
12  *
13  * This file is released under the GPL.
14  */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25 
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29 
30 /*
31  * fault() vm_op implementation for relay file mapping.
32  */
relay_buf_fault(struct vm_fault * vmf)33 static vm_fault_t relay_buf_fault(struct vm_fault *vmf)
34 {
35 	struct page *page;
36 	struct rchan_buf *buf = vmf->vma->vm_private_data;
37 	pgoff_t pgoff = vmf->pgoff;
38 
39 	if (!buf)
40 		return VM_FAULT_OOM;
41 
42 	page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
43 	if (!page)
44 		return VM_FAULT_SIGBUS;
45 	get_page(page);
46 	vmf->page = page;
47 
48 	return 0;
49 }
50 
51 /*
52  * vm_ops for relay file mappings.
53  */
54 static const struct vm_operations_struct relay_file_mmap_ops = {
55 	.fault = relay_buf_fault,
56 };
57 
58 /*
59  * allocate an array of pointers of struct page
60  */
relay_alloc_page_array(unsigned int n_pages)61 static struct page **relay_alloc_page_array(unsigned int n_pages)
62 {
63 	return kvcalloc(n_pages, sizeof(struct page *), GFP_KERNEL);
64 }
65 
66 /*
67  * free an array of pointers of struct page
68  */
relay_free_page_array(struct page ** array)69 static void relay_free_page_array(struct page **array)
70 {
71 	kvfree(array);
72 }
73 
74 /**
75  *	relay_mmap_buf: - mmap channel buffer to process address space
76  *	@buf: relay channel buffer
77  *	@vma: vm_area_struct describing memory to be mapped
78  *
79  *	Returns 0 if ok, negative on error
80  *
81  *	Caller should already have grabbed mmap_lock.
82  */
relay_mmap_buf(struct rchan_buf * buf,struct vm_area_struct * vma)83 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
84 {
85 	unsigned long length = vma->vm_end - vma->vm_start;
86 
87 	if (!buf)
88 		return -EBADF;
89 
90 	if (length != (unsigned long)buf->chan->alloc_size)
91 		return -EINVAL;
92 
93 	vma->vm_ops = &relay_file_mmap_ops;
94 	vm_flags_set(vma, VM_DONTEXPAND);
95 	vma->vm_private_data = buf;
96 
97 	return 0;
98 }
99 
100 /**
101  *	relay_alloc_buf - allocate a channel buffer
102  *	@buf: the buffer struct
103  *	@size: total size of the buffer
104  *
105  *	Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
106  *	passed in size will get page aligned, if it isn't already.
107  */
relay_alloc_buf(struct rchan_buf * buf,size_t * size)108 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
109 {
110 	void *mem;
111 	unsigned int i, j, n_pages;
112 
113 	*size = PAGE_ALIGN(*size);
114 	n_pages = *size >> PAGE_SHIFT;
115 
116 	buf->page_array = relay_alloc_page_array(n_pages);
117 	if (!buf->page_array)
118 		return NULL;
119 
120 	for (i = 0; i < n_pages; i++) {
121 		buf->page_array[i] = alloc_page(GFP_KERNEL);
122 		if (unlikely(!buf->page_array[i]))
123 			goto depopulate;
124 		set_page_private(buf->page_array[i], (unsigned long)buf);
125 	}
126 	mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
127 	if (!mem)
128 		goto depopulate;
129 
130 	memset(mem, 0, *size);
131 	buf->page_count = n_pages;
132 	return mem;
133 
134 depopulate:
135 	for (j = 0; j < i; j++)
136 		__free_page(buf->page_array[j]);
137 	relay_free_page_array(buf->page_array);
138 	return NULL;
139 }
140 
141 /**
142  *	relay_create_buf - allocate and initialize a channel buffer
143  *	@chan: the relay channel
144  *
145  *	Returns channel buffer if successful, %NULL otherwise.
146  */
relay_create_buf(struct rchan * chan)147 static struct rchan_buf *relay_create_buf(struct rchan *chan)
148 {
149 	struct rchan_buf *buf;
150 
151 	if (chan->n_subbufs > KMALLOC_MAX_SIZE / sizeof(size_t))
152 		return NULL;
153 
154 	buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
155 	if (!buf)
156 		return NULL;
157 	buf->padding = kmalloc_array(chan->n_subbufs, sizeof(size_t),
158 				     GFP_KERNEL);
159 	if (!buf->padding)
160 		goto free_buf;
161 
162 	buf->start = relay_alloc_buf(buf, &chan->alloc_size);
163 	if (!buf->start)
164 		goto free_buf;
165 
166 	buf->chan = chan;
167 	kref_get(&buf->chan->kref);
168 	return buf;
169 
170 free_buf:
171 	kfree(buf->padding);
172 	kfree(buf);
173 	return NULL;
174 }
175 
176 /**
177  *	relay_destroy_channel - free the channel struct
178  *	@kref: target kernel reference that contains the relay channel
179  *
180  *	Should only be called from kref_put().
181  */
relay_destroy_channel(struct kref * kref)182 static void relay_destroy_channel(struct kref *kref)
183 {
184 	struct rchan *chan = container_of(kref, struct rchan, kref);
185 	free_percpu(chan->buf);
186 	kfree(chan);
187 }
188 
189 /**
190  *	relay_destroy_buf - destroy an rchan_buf struct and associated buffer
191  *	@buf: the buffer struct
192  */
relay_destroy_buf(struct rchan_buf * buf)193 static void relay_destroy_buf(struct rchan_buf *buf)
194 {
195 	struct rchan *chan = buf->chan;
196 	unsigned int i;
197 
198 	if (likely(buf->start)) {
199 		vunmap(buf->start);
200 		for (i = 0; i < buf->page_count; i++)
201 			__free_page(buf->page_array[i]);
202 		relay_free_page_array(buf->page_array);
203 	}
204 	*per_cpu_ptr(chan->buf, buf->cpu) = NULL;
205 	kfree(buf->padding);
206 	kfree(buf);
207 	kref_put(&chan->kref, relay_destroy_channel);
208 }
209 
210 /**
211  *	relay_remove_buf - remove a channel buffer
212  *	@kref: target kernel reference that contains the relay buffer
213  *
214  *	Removes the file from the filesystem, which also frees the
215  *	rchan_buf_struct and the channel buffer.  Should only be called from
216  *	kref_put().
217  */
relay_remove_buf(struct kref * kref)218 static void relay_remove_buf(struct kref *kref)
219 {
220 	struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
221 	relay_destroy_buf(buf);
222 }
223 
224 /**
225  *	relay_buf_empty - boolean, is the channel buffer empty?
226  *	@buf: channel buffer
227  *
228  *	Returns 1 if the buffer is empty, 0 otherwise.
229  */
relay_buf_empty(struct rchan_buf * buf)230 static int relay_buf_empty(struct rchan_buf *buf)
231 {
232 	return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
233 }
234 
235 /**
236  *	relay_buf_full - boolean, is the channel buffer full?
237  *	@buf: channel buffer
238  *
239  *	Returns 1 if the buffer is full, 0 otherwise.
240  */
relay_buf_full(struct rchan_buf * buf)241 int relay_buf_full(struct rchan_buf *buf)
242 {
243 	size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
244 	return (ready >= buf->chan->n_subbufs) ? 1 : 0;
245 }
246 EXPORT_SYMBOL_GPL(relay_buf_full);
247 
248 /*
249  * High-level relay kernel API and associated functions.
250  */
251 
relay_subbuf_start(struct rchan_buf * buf,void * subbuf,void * prev_subbuf,size_t prev_padding)252 static int relay_subbuf_start(struct rchan_buf *buf, void *subbuf,
253 			      void *prev_subbuf, size_t prev_padding)
254 {
255 	if (!buf->chan->cb->subbuf_start)
256 		return !relay_buf_full(buf);
257 
258 	return buf->chan->cb->subbuf_start(buf, subbuf,
259 					   prev_subbuf, prev_padding);
260 }
261 
262 /**
263  *	wakeup_readers - wake up readers waiting on a channel
264  *	@work: contains the channel buffer
265  *
266  *	This is the function used to defer reader waking
267  */
wakeup_readers(struct irq_work * work)268 static void wakeup_readers(struct irq_work *work)
269 {
270 	struct rchan_buf *buf;
271 
272 	buf = container_of(work, struct rchan_buf, wakeup_work);
273 	wake_up_interruptible(&buf->read_wait);
274 }
275 
276 /**
277  *	__relay_reset - reset a channel buffer
278  *	@buf: the channel buffer
279  *	@init: 1 if this is a first-time initialization
280  *
281  *	See relay_reset() for description of effect.
282  */
__relay_reset(struct rchan_buf * buf,unsigned int init)283 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
284 {
285 	size_t i;
286 
287 	if (init) {
288 		init_waitqueue_head(&buf->read_wait);
289 		kref_init(&buf->kref);
290 		init_irq_work(&buf->wakeup_work, wakeup_readers);
291 	} else {
292 		irq_work_sync(&buf->wakeup_work);
293 	}
294 
295 	buf->subbufs_produced = 0;
296 	buf->subbufs_consumed = 0;
297 	buf->bytes_consumed = 0;
298 	buf->finalized = 0;
299 	buf->data = buf->start;
300 	buf->offset = 0;
301 
302 	for (i = 0; i < buf->chan->n_subbufs; i++)
303 		buf->padding[i] = 0;
304 
305 	relay_subbuf_start(buf, buf->data, NULL, 0);
306 }
307 
308 /**
309  *	relay_reset - reset the channel
310  *	@chan: the channel
311  *
312  *	This has the effect of erasing all data from all channel buffers
313  *	and restarting the channel in its initial state.  The buffers
314  *	are not freed, so any mappings are still in effect.
315  *
316  *	NOTE. Care should be taken that the channel isn't actually
317  *	being used by anything when this call is made.
318  */
relay_reset(struct rchan * chan)319 void relay_reset(struct rchan *chan)
320 {
321 	struct rchan_buf *buf;
322 	unsigned int i;
323 
324 	if (!chan)
325 		return;
326 
327 	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
328 		__relay_reset(buf, 0);
329 		return;
330 	}
331 
332 	mutex_lock(&relay_channels_mutex);
333 	for_each_possible_cpu(i)
334 		if ((buf = *per_cpu_ptr(chan->buf, i)))
335 			__relay_reset(buf, 0);
336 	mutex_unlock(&relay_channels_mutex);
337 }
338 EXPORT_SYMBOL_GPL(relay_reset);
339 
relay_set_buf_dentry(struct rchan_buf * buf,struct dentry * dentry)340 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
341 					struct dentry *dentry)
342 {
343 	buf->dentry = dentry;
344 	d_inode(buf->dentry)->i_size = buf->early_bytes;
345 }
346 
relay_create_buf_file(struct rchan * chan,struct rchan_buf * buf,unsigned int cpu)347 static struct dentry *relay_create_buf_file(struct rchan *chan,
348 					    struct rchan_buf *buf,
349 					    unsigned int cpu)
350 {
351 	struct dentry *dentry;
352 	char *tmpname;
353 
354 	tmpname = kasprintf(GFP_KERNEL, "%s%d", chan->base_filename, cpu);
355 	if (!tmpname)
356 		return NULL;
357 
358 	/* Create file in fs */
359 	dentry = chan->cb->create_buf_file(tmpname, chan->parent,
360 					   S_IRUSR, buf,
361 					   &chan->is_global);
362 	if (IS_ERR(dentry))
363 		dentry = NULL;
364 
365 	kfree(tmpname);
366 
367 	return dentry;
368 }
369 
370 /*
371  *	relay_open_buf - create a new relay channel buffer
372  *
373  *	used by relay_open() and CPU hotplug.
374  */
relay_open_buf(struct rchan * chan,unsigned int cpu)375 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
376 {
377 	struct rchan_buf *buf;
378 	struct dentry *dentry;
379 
380  	if (chan->is_global)
381 		return *per_cpu_ptr(chan->buf, 0);
382 
383 	buf = relay_create_buf(chan);
384 	if (!buf)
385 		return NULL;
386 
387 	if (chan->has_base_filename) {
388 		dentry = relay_create_buf_file(chan, buf, cpu);
389 		if (!dentry)
390 			goto free_buf;
391 		relay_set_buf_dentry(buf, dentry);
392 	} else {
393 		/* Only retrieve global info, nothing more, nothing less */
394 		dentry = chan->cb->create_buf_file(NULL, NULL,
395 						   S_IRUSR, buf,
396 						   &chan->is_global);
397 		if (IS_ERR_OR_NULL(dentry))
398 			goto free_buf;
399 	}
400 
401  	buf->cpu = cpu;
402  	__relay_reset(buf, 1);
403 
404  	if(chan->is_global) {
405 		*per_cpu_ptr(chan->buf, 0) = buf;
406  		buf->cpu = 0;
407   	}
408 
409 	return buf;
410 
411 free_buf:
412  	relay_destroy_buf(buf);
413 	return NULL;
414 }
415 
416 /**
417  *	relay_close_buf - close a channel buffer
418  *	@buf: channel buffer
419  *
420  *	Marks the buffer finalized and restores the default callbacks.
421  *	The channel buffer and channel buffer data structure are then freed
422  *	automatically when the last reference is given up.
423  */
relay_close_buf(struct rchan_buf * buf)424 static void relay_close_buf(struct rchan_buf *buf)
425 {
426 	buf->finalized = 1;
427 	irq_work_sync(&buf->wakeup_work);
428 	buf->chan->cb->remove_buf_file(buf->dentry);
429 	kref_put(&buf->kref, relay_remove_buf);
430 }
431 
relay_prepare_cpu(unsigned int cpu)432 int relay_prepare_cpu(unsigned int cpu)
433 {
434 	struct rchan *chan;
435 	struct rchan_buf *buf;
436 
437 	mutex_lock(&relay_channels_mutex);
438 	list_for_each_entry(chan, &relay_channels, list) {
439 		if (*per_cpu_ptr(chan->buf, cpu))
440 			continue;
441 		buf = relay_open_buf(chan, cpu);
442 		if (!buf) {
443 			pr_err("relay: cpu %d buffer creation failed\n", cpu);
444 			mutex_unlock(&relay_channels_mutex);
445 			return -ENOMEM;
446 		}
447 		*per_cpu_ptr(chan->buf, cpu) = buf;
448 	}
449 	mutex_unlock(&relay_channels_mutex);
450 	return 0;
451 }
452 
453 /**
454  *	relay_open - create a new relay channel
455  *	@base_filename: base name of files to create
456  *	@parent: dentry of parent directory, %NULL for root directory or buffer
457  *	@subbuf_size: size of sub-buffers
458  *	@n_subbufs: number of sub-buffers
459  *	@cb: client callback functions
460  *	@private_data: user-defined data
461  *
462  *	Returns channel pointer if successful, %NULL otherwise.
463  *
464  *	Creates a channel buffer for each cpu using the sizes and
465  *	attributes specified.  The created channel buffer files
466  *	will be named base_filename0...base_filenameN-1.  File
467  *	permissions will be %S_IRUSR.
468  */
relay_open(const char * base_filename,struct dentry * parent,size_t subbuf_size,size_t n_subbufs,const struct rchan_callbacks * cb,void * private_data)469 struct rchan *relay_open(const char *base_filename,
470 			 struct dentry *parent,
471 			 size_t subbuf_size,
472 			 size_t n_subbufs,
473 			 const struct rchan_callbacks *cb,
474 			 void *private_data)
475 {
476 	unsigned int i;
477 	struct rchan *chan;
478 	struct rchan_buf *buf;
479 
480 	if (!(subbuf_size && n_subbufs))
481 		return NULL;
482 	if (subbuf_size > UINT_MAX / n_subbufs)
483 		return NULL;
484 	if (!cb || !cb->create_buf_file || !cb->remove_buf_file)
485 		return NULL;
486 
487 	chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
488 	if (!chan)
489 		return NULL;
490 
491 	chan->buf = alloc_percpu(struct rchan_buf *);
492 	if (!chan->buf) {
493 		kfree(chan);
494 		return NULL;
495 	}
496 
497 	chan->version = RELAYFS_CHANNEL_VERSION;
498 	chan->n_subbufs = n_subbufs;
499 	chan->subbuf_size = subbuf_size;
500 	chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
501 	chan->parent = parent;
502 	chan->private_data = private_data;
503 	if (base_filename) {
504 		chan->has_base_filename = 1;
505 		strscpy(chan->base_filename, base_filename, NAME_MAX);
506 	}
507 	chan->cb = cb;
508 	kref_init(&chan->kref);
509 
510 	mutex_lock(&relay_channels_mutex);
511 	for_each_online_cpu(i) {
512 		buf = relay_open_buf(chan, i);
513 		if (!buf)
514 			goto free_bufs;
515 		*per_cpu_ptr(chan->buf, i) = buf;
516 	}
517 	list_add(&chan->list, &relay_channels);
518 	mutex_unlock(&relay_channels_mutex);
519 
520 	return chan;
521 
522 free_bufs:
523 	for_each_possible_cpu(i) {
524 		if ((buf = *per_cpu_ptr(chan->buf, i)))
525 			relay_close_buf(buf);
526 	}
527 
528 	kref_put(&chan->kref, relay_destroy_channel);
529 	mutex_unlock(&relay_channels_mutex);
530 	return NULL;
531 }
532 EXPORT_SYMBOL_GPL(relay_open);
533 
534 struct rchan_percpu_buf_dispatcher {
535 	struct rchan_buf *buf;
536 	struct dentry *dentry;
537 };
538 
539 /**
540  *	relay_switch_subbuf - switch to a new sub-buffer
541  *	@buf: channel buffer
542  *	@length: size of current event
543  *
544  *	Returns either the length passed in or 0 if full.
545  *
546  *	Performs sub-buffer-switch tasks such as invoking callbacks,
547  *	updating padding counts, waking up readers, etc.
548  */
relay_switch_subbuf(struct rchan_buf * buf,size_t length)549 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
550 {
551 	void *old, *new;
552 	size_t old_subbuf, new_subbuf;
553 
554 	if (unlikely(length > buf->chan->subbuf_size))
555 		goto toobig;
556 
557 	if (buf->offset != buf->chan->subbuf_size + 1) {
558 		buf->prev_padding = buf->chan->subbuf_size - buf->offset;
559 		old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
560 		buf->padding[old_subbuf] = buf->prev_padding;
561 		buf->subbufs_produced++;
562 		if (buf->dentry)
563 			d_inode(buf->dentry)->i_size +=
564 				buf->chan->subbuf_size -
565 				buf->padding[old_subbuf];
566 		else
567 			buf->early_bytes += buf->chan->subbuf_size -
568 					    buf->padding[old_subbuf];
569 		smp_mb();
570 		if (waitqueue_active(&buf->read_wait)) {
571 			/*
572 			 * Calling wake_up_interruptible() from here
573 			 * will deadlock if we happen to be logging
574 			 * from the scheduler (trying to re-grab
575 			 * rq->lock), so defer it.
576 			 */
577 			irq_work_queue(&buf->wakeup_work);
578 		}
579 	}
580 
581 	old = buf->data;
582 	new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
583 	new = buf->start + new_subbuf * buf->chan->subbuf_size;
584 	buf->offset = 0;
585 	if (!relay_subbuf_start(buf, new, old, buf->prev_padding)) {
586 		buf->offset = buf->chan->subbuf_size + 1;
587 		return 0;
588 	}
589 	buf->data = new;
590 	buf->padding[new_subbuf] = 0;
591 
592 	if (unlikely(length + buf->offset > buf->chan->subbuf_size))
593 		goto toobig;
594 
595 	return length;
596 
597 toobig:
598 	buf->chan->last_toobig = length;
599 	return 0;
600 }
601 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
602 
603 /**
604  *	relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
605  *	@chan: the channel
606  *	@cpu: the cpu associated with the channel buffer to update
607  *	@subbufs_consumed: number of sub-buffers to add to current buf's count
608  *
609  *	Adds to the channel buffer's consumed sub-buffer count.
610  *	subbufs_consumed should be the number of sub-buffers newly consumed,
611  *	not the total consumed.
612  *
613  *	NOTE. Kernel clients don't need to call this function if the channel
614  *	mode is 'overwrite'.
615  */
relay_subbufs_consumed(struct rchan * chan,unsigned int cpu,size_t subbufs_consumed)616 void relay_subbufs_consumed(struct rchan *chan,
617 			    unsigned int cpu,
618 			    size_t subbufs_consumed)
619 {
620 	struct rchan_buf *buf;
621 
622 	if (!chan || cpu >= NR_CPUS)
623 		return;
624 
625 	buf = *per_cpu_ptr(chan->buf, cpu);
626 	if (!buf || subbufs_consumed > chan->n_subbufs)
627 		return;
628 
629 	if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
630 		buf->subbufs_consumed = buf->subbufs_produced;
631 	else
632 		buf->subbufs_consumed += subbufs_consumed;
633 }
634 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
635 
636 /**
637  *	relay_close - close the channel
638  *	@chan: the channel
639  *
640  *	Closes all channel buffers and frees the channel.
641  */
relay_close(struct rchan * chan)642 void relay_close(struct rchan *chan)
643 {
644 	struct rchan_buf *buf;
645 	unsigned int i;
646 
647 	if (!chan)
648 		return;
649 
650 	mutex_lock(&relay_channels_mutex);
651 	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0)))
652 		relay_close_buf(buf);
653 	else
654 		for_each_possible_cpu(i)
655 			if ((buf = *per_cpu_ptr(chan->buf, i)))
656 				relay_close_buf(buf);
657 
658 	if (chan->last_toobig)
659 		printk(KERN_WARNING "relay: one or more items not logged "
660 		       "[item size (%zd) > sub-buffer size (%zd)]\n",
661 		       chan->last_toobig, chan->subbuf_size);
662 
663 	list_del(&chan->list);
664 	kref_put(&chan->kref, relay_destroy_channel);
665 	mutex_unlock(&relay_channels_mutex);
666 }
667 EXPORT_SYMBOL_GPL(relay_close);
668 
669 /**
670  *	relay_flush - close the channel
671  *	@chan: the channel
672  *
673  *	Flushes all channel buffers, i.e. forces buffer switch.
674  */
relay_flush(struct rchan * chan)675 void relay_flush(struct rchan *chan)
676 {
677 	struct rchan_buf *buf;
678 	unsigned int i;
679 
680 	if (!chan)
681 		return;
682 
683 	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
684 		relay_switch_subbuf(buf, 0);
685 		return;
686 	}
687 
688 	mutex_lock(&relay_channels_mutex);
689 	for_each_possible_cpu(i)
690 		if ((buf = *per_cpu_ptr(chan->buf, i)))
691 			relay_switch_subbuf(buf, 0);
692 	mutex_unlock(&relay_channels_mutex);
693 }
694 EXPORT_SYMBOL_GPL(relay_flush);
695 
696 /**
697  *	relay_file_open - open file op for relay files
698  *	@inode: the inode
699  *	@filp: the file
700  *
701  *	Increments the channel buffer refcount.
702  */
relay_file_open(struct inode * inode,struct file * filp)703 static int relay_file_open(struct inode *inode, struct file *filp)
704 {
705 	struct rchan_buf *buf = inode->i_private;
706 	kref_get(&buf->kref);
707 	filp->private_data = buf;
708 
709 	return nonseekable_open(inode, filp);
710 }
711 
712 /**
713  *	relay_file_mmap - mmap file op for relay files
714  *	@filp: the file
715  *	@vma: the vma describing what to map
716  *
717  *	Calls upon relay_mmap_buf() to map the file into user space.
718  */
relay_file_mmap(struct file * filp,struct vm_area_struct * vma)719 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
720 {
721 	struct rchan_buf *buf = filp->private_data;
722 	return relay_mmap_buf(buf, vma);
723 }
724 
725 /**
726  *	relay_file_poll - poll file op for relay files
727  *	@filp: the file
728  *	@wait: poll table
729  *
730  *	Poll implemention.
731  */
relay_file_poll(struct file * filp,poll_table * wait)732 static __poll_t relay_file_poll(struct file *filp, poll_table *wait)
733 {
734 	__poll_t mask = 0;
735 	struct rchan_buf *buf = filp->private_data;
736 
737 	if (buf->finalized)
738 		return EPOLLERR;
739 
740 	if (filp->f_mode & FMODE_READ) {
741 		poll_wait(filp, &buf->read_wait, wait);
742 		if (!relay_buf_empty(buf))
743 			mask |= EPOLLIN | EPOLLRDNORM;
744 	}
745 
746 	return mask;
747 }
748 
749 /**
750  *	relay_file_release - release file op for relay files
751  *	@inode: the inode
752  *	@filp: the file
753  *
754  *	Decrements the channel refcount, as the filesystem is
755  *	no longer using it.
756  */
relay_file_release(struct inode * inode,struct file * filp)757 static int relay_file_release(struct inode *inode, struct file *filp)
758 {
759 	struct rchan_buf *buf = filp->private_data;
760 	kref_put(&buf->kref, relay_remove_buf);
761 
762 	return 0;
763 }
764 
765 /*
766  *	relay_file_read_consume - update the consumed count for the buffer
767  */
relay_file_read_consume(struct rchan_buf * buf,size_t read_pos,size_t bytes_consumed)768 static void relay_file_read_consume(struct rchan_buf *buf,
769 				    size_t read_pos,
770 				    size_t bytes_consumed)
771 {
772 	size_t subbuf_size = buf->chan->subbuf_size;
773 	size_t n_subbufs = buf->chan->n_subbufs;
774 	size_t read_subbuf;
775 
776 	if (buf->subbufs_produced == buf->subbufs_consumed &&
777 	    buf->offset == buf->bytes_consumed)
778 		return;
779 
780 	if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
781 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
782 		buf->bytes_consumed = 0;
783 	}
784 
785 	buf->bytes_consumed += bytes_consumed;
786 	if (!read_pos)
787 		read_subbuf = buf->subbufs_consumed % n_subbufs;
788 	else
789 		read_subbuf = read_pos / buf->chan->subbuf_size;
790 	if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
791 		if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
792 		    (buf->offset == subbuf_size))
793 			return;
794 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
795 		buf->bytes_consumed = 0;
796 	}
797 }
798 
799 /*
800  *	relay_file_read_avail - boolean, are there unconsumed bytes available?
801  */
relay_file_read_avail(struct rchan_buf * buf)802 static int relay_file_read_avail(struct rchan_buf *buf)
803 {
804 	size_t subbuf_size = buf->chan->subbuf_size;
805 	size_t n_subbufs = buf->chan->n_subbufs;
806 	size_t produced = buf->subbufs_produced;
807 	size_t consumed;
808 
809 	relay_file_read_consume(buf, 0, 0);
810 
811 	consumed = buf->subbufs_consumed;
812 
813 	if (unlikely(buf->offset > subbuf_size)) {
814 		if (produced == consumed)
815 			return 0;
816 		return 1;
817 	}
818 
819 	if (unlikely(produced - consumed >= n_subbufs)) {
820 		consumed = produced - n_subbufs + 1;
821 		buf->subbufs_consumed = consumed;
822 		buf->bytes_consumed = 0;
823 	}
824 
825 	produced = (produced % n_subbufs) * subbuf_size + buf->offset;
826 	consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
827 
828 	if (consumed > produced)
829 		produced += n_subbufs * subbuf_size;
830 
831 	if (consumed == produced) {
832 		if (buf->offset == subbuf_size &&
833 		    buf->subbufs_produced > buf->subbufs_consumed)
834 			return 1;
835 		return 0;
836 	}
837 
838 	return 1;
839 }
840 
841 /**
842  *	relay_file_read_subbuf_avail - return bytes available in sub-buffer
843  *	@read_pos: file read position
844  *	@buf: relay channel buffer
845  */
relay_file_read_subbuf_avail(size_t read_pos,struct rchan_buf * buf)846 static size_t relay_file_read_subbuf_avail(size_t read_pos,
847 					   struct rchan_buf *buf)
848 {
849 	size_t padding, avail = 0;
850 	size_t read_subbuf, read_offset, write_subbuf, write_offset;
851 	size_t subbuf_size = buf->chan->subbuf_size;
852 
853 	write_subbuf = (buf->data - buf->start) / subbuf_size;
854 	write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
855 	read_subbuf = read_pos / subbuf_size;
856 	read_offset = read_pos % subbuf_size;
857 	padding = buf->padding[read_subbuf];
858 
859 	if (read_subbuf == write_subbuf) {
860 		if (read_offset + padding < write_offset)
861 			avail = write_offset - (read_offset + padding);
862 	} else
863 		avail = (subbuf_size - padding) - read_offset;
864 
865 	return avail;
866 }
867 
868 /**
869  *	relay_file_read_start_pos - find the first available byte to read
870  *	@buf: relay channel buffer
871  *
872  *	If the read_pos is in the middle of padding, return the
873  *	position of the first actually available byte, otherwise
874  *	return the original value.
875  */
relay_file_read_start_pos(struct rchan_buf * buf)876 static size_t relay_file_read_start_pos(struct rchan_buf *buf)
877 {
878 	size_t read_subbuf, padding, padding_start, padding_end;
879 	size_t subbuf_size = buf->chan->subbuf_size;
880 	size_t n_subbufs = buf->chan->n_subbufs;
881 	size_t consumed = buf->subbufs_consumed % n_subbufs;
882 	size_t read_pos = (consumed * subbuf_size + buf->bytes_consumed)
883 			% (n_subbufs * subbuf_size);
884 
885 	read_subbuf = read_pos / subbuf_size;
886 	padding = buf->padding[read_subbuf];
887 	padding_start = (read_subbuf + 1) * subbuf_size - padding;
888 	padding_end = (read_subbuf + 1) * subbuf_size;
889 	if (read_pos >= padding_start && read_pos < padding_end) {
890 		read_subbuf = (read_subbuf + 1) % n_subbufs;
891 		read_pos = read_subbuf * subbuf_size;
892 	}
893 
894 	return read_pos;
895 }
896 
897 /**
898  *	relay_file_read_end_pos - return the new read position
899  *	@read_pos: file read position
900  *	@buf: relay channel buffer
901  *	@count: number of bytes to be read
902  */
relay_file_read_end_pos(struct rchan_buf * buf,size_t read_pos,size_t count)903 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
904 				      size_t read_pos,
905 				      size_t count)
906 {
907 	size_t read_subbuf, padding, end_pos;
908 	size_t subbuf_size = buf->chan->subbuf_size;
909 	size_t n_subbufs = buf->chan->n_subbufs;
910 
911 	read_subbuf = read_pos / subbuf_size;
912 	padding = buf->padding[read_subbuf];
913 	if (read_pos % subbuf_size + count + padding == subbuf_size)
914 		end_pos = (read_subbuf + 1) * subbuf_size;
915 	else
916 		end_pos = read_pos + count;
917 	if (end_pos >= subbuf_size * n_subbufs)
918 		end_pos = 0;
919 
920 	return end_pos;
921 }
922 
relay_file_read(struct file * filp,char __user * buffer,size_t count,loff_t * ppos)923 static ssize_t relay_file_read(struct file *filp,
924 			       char __user *buffer,
925 			       size_t count,
926 			       loff_t *ppos)
927 {
928 	struct rchan_buf *buf = filp->private_data;
929 	size_t read_start, avail;
930 	size_t written = 0;
931 	int ret;
932 
933 	if (!count)
934 		return 0;
935 
936 	inode_lock(file_inode(filp));
937 	do {
938 		void *from;
939 
940 		if (!relay_file_read_avail(buf))
941 			break;
942 
943 		read_start = relay_file_read_start_pos(buf);
944 		avail = relay_file_read_subbuf_avail(read_start, buf);
945 		if (!avail)
946 			break;
947 
948 		avail = min(count, avail);
949 		from = buf->start + read_start;
950 		ret = avail;
951 		if (copy_to_user(buffer, from, avail))
952 			break;
953 
954 		buffer += ret;
955 		written += ret;
956 		count -= ret;
957 
958 		relay_file_read_consume(buf, read_start, ret);
959 		*ppos = relay_file_read_end_pos(buf, read_start, ret);
960 	} while (count);
961 	inode_unlock(file_inode(filp));
962 
963 	return written;
964 }
965 
966 
967 const struct file_operations relay_file_operations = {
968 	.open		= relay_file_open,
969 	.poll		= relay_file_poll,
970 	.mmap		= relay_file_mmap,
971 	.read		= relay_file_read,
972 	.release	= relay_file_release,
973 };
974 EXPORT_SYMBOL_GPL(relay_file_operations);
975