1 /*
2 * Public API and common code for kernel->userspace relay file support.
3 *
4 * See Documentation/filesystems/relay.rst for an overview.
5 *
6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8 *
9 * Moved to kernel/relay.c by Paul Mundt, 2006.
10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
11 * (mathieu.desnoyers@polymtl.ca)
12 *
13 * This file is released under the GPL.
14 */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29
30 /*
31 * fault() vm_op implementation for relay file mapping.
32 */
relay_buf_fault(struct vm_fault * vmf)33 static vm_fault_t relay_buf_fault(struct vm_fault *vmf)
34 {
35 struct page *page;
36 struct rchan_buf *buf = vmf->vma->vm_private_data;
37 pgoff_t pgoff = vmf->pgoff;
38
39 if (!buf)
40 return VM_FAULT_OOM;
41
42 page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
43 if (!page)
44 return VM_FAULT_SIGBUS;
45 get_page(page);
46 vmf->page = page;
47
48 return 0;
49 }
50
51 /*
52 * vm_ops for relay file mappings.
53 */
54 static const struct vm_operations_struct relay_file_mmap_ops = {
55 .fault = relay_buf_fault,
56 };
57
58 /*
59 * allocate an array of pointers of struct page
60 */
relay_alloc_page_array(unsigned int n_pages)61 static struct page **relay_alloc_page_array(unsigned int n_pages)
62 {
63 return kvcalloc(n_pages, sizeof(struct page *), GFP_KERNEL);
64 }
65
66 /*
67 * free an array of pointers of struct page
68 */
relay_free_page_array(struct page ** array)69 static void relay_free_page_array(struct page **array)
70 {
71 kvfree(array);
72 }
73
74 /**
75 * relay_mmap_buf: - mmap channel buffer to process address space
76 * @buf: relay channel buffer
77 * @vma: vm_area_struct describing memory to be mapped
78 *
79 * Returns 0 if ok, negative on error
80 *
81 * Caller should already have grabbed mmap_lock.
82 */
relay_mmap_buf(struct rchan_buf * buf,struct vm_area_struct * vma)83 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
84 {
85 unsigned long length = vma->vm_end - vma->vm_start;
86
87 if (!buf)
88 return -EBADF;
89
90 if (length != (unsigned long)buf->chan->alloc_size)
91 return -EINVAL;
92
93 vma->vm_ops = &relay_file_mmap_ops;
94 vm_flags_set(vma, VM_DONTEXPAND);
95 vma->vm_private_data = buf;
96
97 return 0;
98 }
99
100 /**
101 * relay_alloc_buf - allocate a channel buffer
102 * @buf: the buffer struct
103 * @size: total size of the buffer
104 *
105 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
106 * passed in size will get page aligned, if it isn't already.
107 */
relay_alloc_buf(struct rchan_buf * buf,size_t * size)108 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
109 {
110 void *mem;
111 unsigned int i, j, n_pages;
112
113 *size = PAGE_ALIGN(*size);
114 n_pages = *size >> PAGE_SHIFT;
115
116 buf->page_array = relay_alloc_page_array(n_pages);
117 if (!buf->page_array)
118 return NULL;
119
120 for (i = 0; i < n_pages; i++) {
121 buf->page_array[i] = alloc_page(GFP_KERNEL | __GFP_ZERO);
122 if (unlikely(!buf->page_array[i]))
123 goto depopulate;
124 set_page_private(buf->page_array[i], (unsigned long)buf);
125 }
126 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
127 if (!mem)
128 goto depopulate;
129
130 buf->page_count = n_pages;
131 return mem;
132
133 depopulate:
134 for (j = 0; j < i; j++)
135 __free_page(buf->page_array[j]);
136 relay_free_page_array(buf->page_array);
137 return NULL;
138 }
139
140 /**
141 * relay_create_buf - allocate and initialize a channel buffer
142 * @chan: the relay channel
143 *
144 * Returns channel buffer if successful, %NULL otherwise.
145 */
relay_create_buf(struct rchan * chan)146 static struct rchan_buf *relay_create_buf(struct rchan *chan)
147 {
148 struct rchan_buf *buf;
149
150 if (chan->n_subbufs > KMALLOC_MAX_SIZE / sizeof(size_t))
151 return NULL;
152
153 buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
154 if (!buf)
155 return NULL;
156 buf->padding = kmalloc_array(chan->n_subbufs, sizeof(size_t),
157 GFP_KERNEL);
158 if (!buf->padding)
159 goto free_buf;
160
161 buf->start = relay_alloc_buf(buf, &chan->alloc_size);
162 if (!buf->start)
163 goto free_buf;
164
165 buf->chan = chan;
166 kref_get(&buf->chan->kref);
167 return buf;
168
169 free_buf:
170 kfree(buf->padding);
171 kfree(buf);
172 return NULL;
173 }
174
175 /**
176 * relay_destroy_channel - free the channel struct
177 * @kref: target kernel reference that contains the relay channel
178 *
179 * Should only be called from kref_put().
180 */
relay_destroy_channel(struct kref * kref)181 static void relay_destroy_channel(struct kref *kref)
182 {
183 struct rchan *chan = container_of(kref, struct rchan, kref);
184 free_percpu(chan->buf);
185 kfree(chan);
186 }
187
188 /**
189 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer
190 * @buf: the buffer struct
191 */
relay_destroy_buf(struct rchan_buf * buf)192 static void relay_destroy_buf(struct rchan_buf *buf)
193 {
194 struct rchan *chan = buf->chan;
195 unsigned int i;
196
197 if (likely(buf->start)) {
198 vunmap(buf->start);
199 for (i = 0; i < buf->page_count; i++)
200 __free_page(buf->page_array[i]);
201 relay_free_page_array(buf->page_array);
202 }
203 *per_cpu_ptr(chan->buf, buf->cpu) = NULL;
204 kfree(buf->padding);
205 kfree(buf);
206 kref_put(&chan->kref, relay_destroy_channel);
207 }
208
209 /**
210 * relay_remove_buf - remove a channel buffer
211 * @kref: target kernel reference that contains the relay buffer
212 *
213 * Removes the file from the filesystem, which also frees the
214 * rchan_buf_struct and the channel buffer. Should only be called from
215 * kref_put().
216 */
relay_remove_buf(struct kref * kref)217 static void relay_remove_buf(struct kref *kref)
218 {
219 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
220 relay_destroy_buf(buf);
221 }
222
223 /**
224 * relay_buf_empty - boolean, is the channel buffer empty?
225 * @buf: channel buffer
226 *
227 * Returns 1 if the buffer is empty, 0 otherwise.
228 */
relay_buf_empty(struct rchan_buf * buf)229 static int relay_buf_empty(struct rchan_buf *buf)
230 {
231 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
232 }
233
234 /**
235 * relay_buf_full - boolean, is the channel buffer full?
236 * @buf: channel buffer
237 *
238 * Returns 1 if the buffer is full, 0 otherwise.
239 */
relay_buf_full(struct rchan_buf * buf)240 int relay_buf_full(struct rchan_buf *buf)
241 {
242 size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
243 return (ready >= buf->chan->n_subbufs) ? 1 : 0;
244 }
245 EXPORT_SYMBOL_GPL(relay_buf_full);
246
247 /*
248 * High-level relay kernel API and associated functions.
249 */
250
relay_subbuf_start(struct rchan_buf * buf,void * subbuf,void * prev_subbuf)251 static int relay_subbuf_start(struct rchan_buf *buf, void *subbuf,
252 void *prev_subbuf)
253 {
254 int full = relay_buf_full(buf);
255
256 if (full)
257 buf->stats.full_count++;
258
259 if (!buf->chan->cb->subbuf_start)
260 return !full;
261
262 return buf->chan->cb->subbuf_start(buf, subbuf,
263 prev_subbuf);
264 }
265
266 /**
267 * wakeup_readers - wake up readers waiting on a channel
268 * @work: contains the channel buffer
269 *
270 * This is the function used to defer reader waking
271 */
wakeup_readers(struct irq_work * work)272 static void wakeup_readers(struct irq_work *work)
273 {
274 struct rchan_buf *buf;
275
276 buf = container_of(work, struct rchan_buf, wakeup_work);
277 wake_up_interruptible(&buf->read_wait);
278 }
279
280 /**
281 * __relay_reset - reset a channel buffer
282 * @buf: the channel buffer
283 * @init: 1 if this is a first-time initialization
284 *
285 * See relay_reset() for description of effect.
286 */
__relay_reset(struct rchan_buf * buf,unsigned int init)287 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
288 {
289 size_t i;
290
291 if (init) {
292 init_waitqueue_head(&buf->read_wait);
293 kref_init(&buf->kref);
294 init_irq_work(&buf->wakeup_work, wakeup_readers);
295 } else {
296 irq_work_sync(&buf->wakeup_work);
297 }
298
299 buf->subbufs_produced = 0;
300 buf->subbufs_consumed = 0;
301 buf->bytes_consumed = 0;
302 buf->finalized = 0;
303 buf->data = buf->start;
304 buf->offset = 0;
305 buf->stats.full_count = 0;
306 buf->stats.big_count = 0;
307
308 for (i = 0; i < buf->chan->n_subbufs; i++)
309 buf->padding[i] = 0;
310
311 relay_subbuf_start(buf, buf->data, NULL);
312 }
313
314 /**
315 * relay_reset - reset the channel
316 * @chan: the channel
317 *
318 * This has the effect of erasing all data from all channel buffers
319 * and restarting the channel in its initial state. The buffers
320 * are not freed, so any mappings are still in effect.
321 *
322 * NOTE. Care should be taken that the channel isn't actually
323 * being used by anything when this call is made.
324 */
relay_reset(struct rchan * chan)325 void relay_reset(struct rchan *chan)
326 {
327 struct rchan_buf *buf;
328 unsigned int i;
329
330 if (!chan)
331 return;
332
333 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
334 __relay_reset(buf, 0);
335 return;
336 }
337
338 mutex_lock(&relay_channels_mutex);
339 for_each_possible_cpu(i)
340 if ((buf = *per_cpu_ptr(chan->buf, i)))
341 __relay_reset(buf, 0);
342 mutex_unlock(&relay_channels_mutex);
343 }
344 EXPORT_SYMBOL_GPL(relay_reset);
345
relay_set_buf_dentry(struct rchan_buf * buf,struct dentry * dentry)346 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
347 struct dentry *dentry)
348 {
349 buf->dentry = dentry;
350 d_inode(buf->dentry)->i_size = buf->early_bytes;
351 }
352
relay_create_buf_file(struct rchan * chan,struct rchan_buf * buf,unsigned int cpu)353 static struct dentry *relay_create_buf_file(struct rchan *chan,
354 struct rchan_buf *buf,
355 unsigned int cpu)
356 {
357 struct dentry *dentry;
358 char *tmpname;
359
360 tmpname = kasprintf(GFP_KERNEL, "%s%d", chan->base_filename, cpu);
361 if (!tmpname)
362 return NULL;
363
364 /* Create file in fs */
365 dentry = chan->cb->create_buf_file(tmpname, chan->parent,
366 S_IRUSR, buf,
367 &chan->is_global);
368 if (IS_ERR(dentry))
369 dentry = NULL;
370
371 kfree(tmpname);
372
373 return dentry;
374 }
375
376 /*
377 * relay_open_buf - create a new relay channel buffer
378 *
379 * used by relay_open() and CPU hotplug.
380 */
relay_open_buf(struct rchan * chan,unsigned int cpu)381 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
382 {
383 struct rchan_buf *buf;
384 struct dentry *dentry;
385
386 if (chan->is_global)
387 return *per_cpu_ptr(chan->buf, 0);
388
389 buf = relay_create_buf(chan);
390 if (!buf)
391 return NULL;
392
393 if (chan->has_base_filename) {
394 dentry = relay_create_buf_file(chan, buf, cpu);
395 if (!dentry)
396 goto free_buf;
397 relay_set_buf_dentry(buf, dentry);
398 } else {
399 /* Only retrieve global info, nothing more, nothing less */
400 dentry = chan->cb->create_buf_file(NULL, NULL,
401 S_IRUSR, buf,
402 &chan->is_global);
403 if (IS_ERR_OR_NULL(dentry))
404 goto free_buf;
405 }
406
407 buf->cpu = cpu;
408 __relay_reset(buf, 1);
409
410 if(chan->is_global) {
411 *per_cpu_ptr(chan->buf, 0) = buf;
412 buf->cpu = 0;
413 }
414
415 return buf;
416
417 free_buf:
418 relay_destroy_buf(buf);
419 return NULL;
420 }
421
422 /**
423 * relay_close_buf - close a channel buffer
424 * @buf: channel buffer
425 *
426 * Marks the buffer finalized and restores the default callbacks.
427 * The channel buffer and channel buffer data structure are then freed
428 * automatically when the last reference is given up.
429 */
relay_close_buf(struct rchan_buf * buf)430 static void relay_close_buf(struct rchan_buf *buf)
431 {
432 buf->finalized = 1;
433 irq_work_sync(&buf->wakeup_work);
434 buf->chan->cb->remove_buf_file(buf->dentry);
435 kref_put(&buf->kref, relay_remove_buf);
436 }
437
relay_prepare_cpu(unsigned int cpu)438 int relay_prepare_cpu(unsigned int cpu)
439 {
440 struct rchan *chan;
441 struct rchan_buf *buf;
442
443 mutex_lock(&relay_channels_mutex);
444 list_for_each_entry(chan, &relay_channels, list) {
445 if (*per_cpu_ptr(chan->buf, cpu))
446 continue;
447 buf = relay_open_buf(chan, cpu);
448 if (!buf) {
449 pr_err("relay: cpu %d buffer creation failed\n", cpu);
450 mutex_unlock(&relay_channels_mutex);
451 return -ENOMEM;
452 }
453 *per_cpu_ptr(chan->buf, cpu) = buf;
454 }
455 mutex_unlock(&relay_channels_mutex);
456 return 0;
457 }
458
459 /**
460 * relay_open - create a new relay channel
461 * @base_filename: base name of files to create
462 * @parent: dentry of parent directory, %NULL for root directory or buffer
463 * @subbuf_size: size of sub-buffers
464 * @n_subbufs: number of sub-buffers
465 * @cb: client callback functions
466 * @private_data: user-defined data
467 *
468 * Returns channel pointer if successful, %NULL otherwise.
469 *
470 * Creates a channel buffer for each cpu using the sizes and
471 * attributes specified. The created channel buffer files
472 * will be named base_filename0...base_filenameN-1. File
473 * permissions will be %S_IRUSR.
474 */
relay_open(const char * base_filename,struct dentry * parent,size_t subbuf_size,size_t n_subbufs,const struct rchan_callbacks * cb,void * private_data)475 struct rchan *relay_open(const char *base_filename,
476 struct dentry *parent,
477 size_t subbuf_size,
478 size_t n_subbufs,
479 const struct rchan_callbacks *cb,
480 void *private_data)
481 {
482 unsigned int i;
483 struct rchan *chan;
484 struct rchan_buf *buf;
485
486 if (!(subbuf_size && n_subbufs))
487 return NULL;
488 if (subbuf_size > UINT_MAX / n_subbufs)
489 return NULL;
490 if (!cb || !cb->create_buf_file || !cb->remove_buf_file)
491 return NULL;
492
493 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
494 if (!chan)
495 return NULL;
496
497 chan->buf = alloc_percpu(struct rchan_buf *);
498 if (!chan->buf) {
499 kfree(chan);
500 return NULL;
501 }
502
503 chan->version = RELAYFS_CHANNEL_VERSION;
504 chan->n_subbufs = n_subbufs;
505 chan->subbuf_size = subbuf_size;
506 chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
507 chan->parent = parent;
508 chan->private_data = private_data;
509 if (base_filename) {
510 chan->has_base_filename = 1;
511 strscpy(chan->base_filename, base_filename, NAME_MAX);
512 }
513 chan->cb = cb;
514 kref_init(&chan->kref);
515
516 mutex_lock(&relay_channels_mutex);
517 for_each_online_cpu(i) {
518 buf = relay_open_buf(chan, i);
519 if (!buf)
520 goto free_bufs;
521 *per_cpu_ptr(chan->buf, i) = buf;
522 }
523 list_add(&chan->list, &relay_channels);
524 mutex_unlock(&relay_channels_mutex);
525
526 return chan;
527
528 free_bufs:
529 for_each_possible_cpu(i) {
530 if ((buf = *per_cpu_ptr(chan->buf, i)))
531 relay_close_buf(buf);
532 }
533
534 kref_put(&chan->kref, relay_destroy_channel);
535 mutex_unlock(&relay_channels_mutex);
536 return NULL;
537 }
538 EXPORT_SYMBOL_GPL(relay_open);
539
540 struct rchan_percpu_buf_dispatcher {
541 struct rchan_buf *buf;
542 struct dentry *dentry;
543 };
544
545 /**
546 * relay_switch_subbuf - switch to a new sub-buffer
547 * @buf: channel buffer
548 * @length: size of current event
549 *
550 * Returns either the length passed in or 0 if full.
551 *
552 * Performs sub-buffer-switch tasks such as invoking callbacks,
553 * updating padding counts, waking up readers, etc.
554 */
relay_switch_subbuf(struct rchan_buf * buf,size_t length)555 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
556 {
557 void *old, *new;
558 size_t old_subbuf, new_subbuf;
559
560 if (unlikely(length > buf->chan->subbuf_size))
561 goto toobig;
562
563 if (buf->offset != buf->chan->subbuf_size + 1) {
564 size_t prev_padding;
565
566 prev_padding = buf->chan->subbuf_size - buf->offset;
567 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
568 buf->padding[old_subbuf] = prev_padding;
569 buf->subbufs_produced++;
570 if (buf->dentry)
571 d_inode(buf->dentry)->i_size +=
572 buf->chan->subbuf_size -
573 buf->padding[old_subbuf];
574 else
575 buf->early_bytes += buf->chan->subbuf_size -
576 buf->padding[old_subbuf];
577 smp_mb();
578 if (waitqueue_active(&buf->read_wait)) {
579 /*
580 * Calling wake_up_interruptible() from here
581 * will deadlock if we happen to be logging
582 * from the scheduler (trying to re-grab
583 * rq->lock), so defer it.
584 */
585 irq_work_queue(&buf->wakeup_work);
586 }
587 }
588
589 old = buf->data;
590 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
591 new = buf->start + new_subbuf * buf->chan->subbuf_size;
592 buf->offset = 0;
593 if (!relay_subbuf_start(buf, new, old)) {
594 buf->offset = buf->chan->subbuf_size + 1;
595 return 0;
596 }
597 buf->data = new;
598 buf->padding[new_subbuf] = 0;
599
600 if (unlikely(length + buf->offset > buf->chan->subbuf_size))
601 goto toobig;
602
603 return length;
604
605 toobig:
606 buf->stats.big_count++;
607 return 0;
608 }
609 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
610
611 /**
612 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
613 * @chan: the channel
614 * @cpu: the cpu associated with the channel buffer to update
615 * @subbufs_consumed: number of sub-buffers to add to current buf's count
616 *
617 * Adds to the channel buffer's consumed sub-buffer count.
618 * subbufs_consumed should be the number of sub-buffers newly consumed,
619 * not the total consumed.
620 *
621 * NOTE. Kernel clients don't need to call this function if the channel
622 * mode is 'overwrite'.
623 */
relay_subbufs_consumed(struct rchan * chan,unsigned int cpu,size_t subbufs_consumed)624 void relay_subbufs_consumed(struct rchan *chan,
625 unsigned int cpu,
626 size_t subbufs_consumed)
627 {
628 struct rchan_buf *buf;
629
630 if (!chan || cpu >= NR_CPUS)
631 return;
632
633 buf = *per_cpu_ptr(chan->buf, cpu);
634 if (!buf || subbufs_consumed > chan->n_subbufs)
635 return;
636
637 if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
638 buf->subbufs_consumed = buf->subbufs_produced;
639 else
640 buf->subbufs_consumed += subbufs_consumed;
641 }
642 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
643
644 /**
645 * relay_close - close the channel
646 * @chan: the channel
647 *
648 * Closes all channel buffers and frees the channel.
649 */
relay_close(struct rchan * chan)650 void relay_close(struct rchan *chan)
651 {
652 struct rchan_buf *buf;
653 unsigned int i;
654
655 if (!chan)
656 return;
657
658 mutex_lock(&relay_channels_mutex);
659 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0)))
660 relay_close_buf(buf);
661 else
662 for_each_possible_cpu(i)
663 if ((buf = *per_cpu_ptr(chan->buf, i)))
664 relay_close_buf(buf);
665
666 list_del(&chan->list);
667 kref_put(&chan->kref, relay_destroy_channel);
668 mutex_unlock(&relay_channels_mutex);
669 }
670 EXPORT_SYMBOL_GPL(relay_close);
671
672 /**
673 * relay_flush - close the channel
674 * @chan: the channel
675 *
676 * Flushes all channel buffers, i.e. forces buffer switch.
677 */
relay_flush(struct rchan * chan)678 void relay_flush(struct rchan *chan)
679 {
680 struct rchan_buf *buf;
681 unsigned int i;
682
683 if (!chan)
684 return;
685
686 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
687 relay_switch_subbuf(buf, 0);
688 return;
689 }
690
691 mutex_lock(&relay_channels_mutex);
692 for_each_possible_cpu(i)
693 if ((buf = *per_cpu_ptr(chan->buf, i)))
694 relay_switch_subbuf(buf, 0);
695 mutex_unlock(&relay_channels_mutex);
696 }
697 EXPORT_SYMBOL_GPL(relay_flush);
698
699 /**
700 * relay_stats - get channel buffer statistics
701 * @chan: the channel
702 * @flags: select particular information to get
703 *
704 * Returns the count of certain field that caller specifies.
705 */
relay_stats(struct rchan * chan,int flags)706 size_t relay_stats(struct rchan *chan, int flags)
707 {
708 unsigned int i, count = 0;
709 struct rchan_buf *rbuf;
710
711 if (!chan || flags > RELAY_STATS_LAST)
712 return 0;
713
714 if (chan->is_global) {
715 rbuf = *per_cpu_ptr(chan->buf, 0);
716 if (flags & RELAY_STATS_BUF_FULL)
717 count = rbuf->stats.full_count;
718 else if (flags & RELAY_STATS_WRT_BIG)
719 count = rbuf->stats.big_count;
720 } else {
721 for_each_online_cpu(i) {
722 rbuf = *per_cpu_ptr(chan->buf, i);
723 if (rbuf) {
724 if (flags & RELAY_STATS_BUF_FULL)
725 count += rbuf->stats.full_count;
726 else if (flags & RELAY_STATS_WRT_BIG)
727 count += rbuf->stats.big_count;
728 }
729 }
730 }
731
732 return count;
733 }
734
735 /**
736 * relay_file_open - open file op for relay files
737 * @inode: the inode
738 * @filp: the file
739 *
740 * Increments the channel buffer refcount.
741 */
relay_file_open(struct inode * inode,struct file * filp)742 static int relay_file_open(struct inode *inode, struct file *filp)
743 {
744 struct rchan_buf *buf = inode->i_private;
745 kref_get(&buf->kref);
746 filp->private_data = buf;
747
748 return nonseekable_open(inode, filp);
749 }
750
751 /**
752 * relay_file_mmap - mmap file op for relay files
753 * @filp: the file
754 * @vma: the vma describing what to map
755 *
756 * Calls upon relay_mmap_buf() to map the file into user space.
757 */
relay_file_mmap(struct file * filp,struct vm_area_struct * vma)758 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
759 {
760 struct rchan_buf *buf = filp->private_data;
761 return relay_mmap_buf(buf, vma);
762 }
763
764 /**
765 * relay_file_poll - poll file op for relay files
766 * @filp: the file
767 * @wait: poll table
768 *
769 * Poll implemention.
770 */
relay_file_poll(struct file * filp,poll_table * wait)771 static __poll_t relay_file_poll(struct file *filp, poll_table *wait)
772 {
773 __poll_t mask = 0;
774 struct rchan_buf *buf = filp->private_data;
775
776 if (buf->finalized)
777 return EPOLLERR;
778
779 if (filp->f_mode & FMODE_READ) {
780 poll_wait(filp, &buf->read_wait, wait);
781 if (!relay_buf_empty(buf))
782 mask |= EPOLLIN | EPOLLRDNORM;
783 }
784
785 return mask;
786 }
787
788 /**
789 * relay_file_release - release file op for relay files
790 * @inode: the inode
791 * @filp: the file
792 *
793 * Decrements the channel refcount, as the filesystem is
794 * no longer using it.
795 */
relay_file_release(struct inode * inode,struct file * filp)796 static int relay_file_release(struct inode *inode, struct file *filp)
797 {
798 struct rchan_buf *buf = filp->private_data;
799 kref_put(&buf->kref, relay_remove_buf);
800
801 return 0;
802 }
803
804 /*
805 * relay_file_read_consume - update the consumed count for the buffer
806 */
relay_file_read_consume(struct rchan_buf * buf,size_t read_pos,size_t bytes_consumed)807 static void relay_file_read_consume(struct rchan_buf *buf,
808 size_t read_pos,
809 size_t bytes_consumed)
810 {
811 size_t subbuf_size = buf->chan->subbuf_size;
812 size_t n_subbufs = buf->chan->n_subbufs;
813 size_t read_subbuf;
814
815 if (buf->subbufs_produced == buf->subbufs_consumed &&
816 buf->offset == buf->bytes_consumed)
817 return;
818
819 if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
820 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
821 buf->bytes_consumed = 0;
822 }
823
824 buf->bytes_consumed += bytes_consumed;
825 if (!read_pos)
826 read_subbuf = buf->subbufs_consumed % n_subbufs;
827 else
828 read_subbuf = read_pos / buf->chan->subbuf_size;
829 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
830 if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
831 (buf->offset == subbuf_size))
832 return;
833 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
834 buf->bytes_consumed = 0;
835 }
836 }
837
838 /*
839 * relay_file_read_avail - boolean, are there unconsumed bytes available?
840 */
relay_file_read_avail(struct rchan_buf * buf)841 static int relay_file_read_avail(struct rchan_buf *buf)
842 {
843 size_t subbuf_size = buf->chan->subbuf_size;
844 size_t n_subbufs = buf->chan->n_subbufs;
845 size_t produced = buf->subbufs_produced;
846 size_t consumed;
847
848 relay_file_read_consume(buf, 0, 0);
849
850 consumed = buf->subbufs_consumed;
851
852 if (unlikely(buf->offset > subbuf_size)) {
853 if (produced == consumed)
854 return 0;
855 return 1;
856 }
857
858 if (unlikely(produced - consumed >= n_subbufs)) {
859 consumed = produced - n_subbufs + 1;
860 buf->subbufs_consumed = consumed;
861 buf->bytes_consumed = 0;
862 }
863
864 produced = (produced % n_subbufs) * subbuf_size + buf->offset;
865 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
866
867 if (consumed > produced)
868 produced += n_subbufs * subbuf_size;
869
870 if (consumed == produced) {
871 if (buf->offset == subbuf_size &&
872 buf->subbufs_produced > buf->subbufs_consumed)
873 return 1;
874 return 0;
875 }
876
877 return 1;
878 }
879
880 /**
881 * relay_file_read_subbuf_avail - return bytes available in sub-buffer
882 * @read_pos: file read position
883 * @buf: relay channel buffer
884 */
relay_file_read_subbuf_avail(size_t read_pos,struct rchan_buf * buf)885 static size_t relay_file_read_subbuf_avail(size_t read_pos,
886 struct rchan_buf *buf)
887 {
888 size_t padding, avail = 0;
889 size_t read_subbuf, read_offset, write_subbuf, write_offset;
890 size_t subbuf_size = buf->chan->subbuf_size;
891
892 write_subbuf = (buf->data - buf->start) / subbuf_size;
893 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
894 read_subbuf = read_pos / subbuf_size;
895 read_offset = read_pos % subbuf_size;
896 padding = buf->padding[read_subbuf];
897
898 if (read_subbuf == write_subbuf) {
899 if (read_offset + padding < write_offset)
900 avail = write_offset - (read_offset + padding);
901 } else
902 avail = (subbuf_size - padding) - read_offset;
903
904 return avail;
905 }
906
907 /**
908 * relay_file_read_start_pos - find the first available byte to read
909 * @buf: relay channel buffer
910 *
911 * If the read_pos is in the middle of padding, return the
912 * position of the first actually available byte, otherwise
913 * return the original value.
914 */
relay_file_read_start_pos(struct rchan_buf * buf)915 static size_t relay_file_read_start_pos(struct rchan_buf *buf)
916 {
917 size_t read_subbuf, padding, padding_start, padding_end;
918 size_t subbuf_size = buf->chan->subbuf_size;
919 size_t n_subbufs = buf->chan->n_subbufs;
920 size_t consumed = buf->subbufs_consumed % n_subbufs;
921 size_t read_pos = (consumed * subbuf_size + buf->bytes_consumed)
922 % (n_subbufs * subbuf_size);
923
924 read_subbuf = read_pos / subbuf_size;
925 padding = buf->padding[read_subbuf];
926 padding_start = (read_subbuf + 1) * subbuf_size - padding;
927 padding_end = (read_subbuf + 1) * subbuf_size;
928 if (read_pos >= padding_start && read_pos < padding_end) {
929 read_subbuf = (read_subbuf + 1) % n_subbufs;
930 read_pos = read_subbuf * subbuf_size;
931 }
932
933 return read_pos;
934 }
935
936 /**
937 * relay_file_read_end_pos - return the new read position
938 * @read_pos: file read position
939 * @buf: relay channel buffer
940 * @count: number of bytes to be read
941 */
relay_file_read_end_pos(struct rchan_buf * buf,size_t read_pos,size_t count)942 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
943 size_t read_pos,
944 size_t count)
945 {
946 size_t read_subbuf, padding, end_pos;
947 size_t subbuf_size = buf->chan->subbuf_size;
948 size_t n_subbufs = buf->chan->n_subbufs;
949
950 read_subbuf = read_pos / subbuf_size;
951 padding = buf->padding[read_subbuf];
952 if (read_pos % subbuf_size + count + padding == subbuf_size)
953 end_pos = (read_subbuf + 1) * subbuf_size;
954 else
955 end_pos = read_pos + count;
956 if (end_pos >= subbuf_size * n_subbufs)
957 end_pos = 0;
958
959 return end_pos;
960 }
961
relay_file_read(struct file * filp,char __user * buffer,size_t count,loff_t * ppos)962 static ssize_t relay_file_read(struct file *filp,
963 char __user *buffer,
964 size_t count,
965 loff_t *ppos)
966 {
967 struct rchan_buf *buf = filp->private_data;
968 size_t read_start, avail;
969 size_t written = 0;
970 int ret;
971
972 if (!count)
973 return 0;
974
975 inode_lock(file_inode(filp));
976 do {
977 void *from;
978
979 if (!relay_file_read_avail(buf))
980 break;
981
982 read_start = relay_file_read_start_pos(buf);
983 avail = relay_file_read_subbuf_avail(read_start, buf);
984 if (!avail)
985 break;
986
987 avail = min(count, avail);
988 from = buf->start + read_start;
989 ret = avail;
990 if (copy_to_user(buffer, from, avail))
991 break;
992
993 buffer += ret;
994 written += ret;
995 count -= ret;
996
997 relay_file_read_consume(buf, read_start, ret);
998 *ppos = relay_file_read_end_pos(buf, read_start, ret);
999 } while (count);
1000 inode_unlock(file_inode(filp));
1001
1002 return written;
1003 }
1004
1005
1006 const struct file_operations relay_file_operations = {
1007 .open = relay_file_open,
1008 .poll = relay_file_poll,
1009 .mmap = relay_file_mmap,
1010 .read = relay_file_read,
1011 .release = relay_file_release,
1012 };
1013 EXPORT_SYMBOL_GPL(relay_file_operations);
1014