1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * core.c - Kernel Live Patching Core
4 *
5 * Copyright (C) 2014 Seth Jennings <sjenning@redhat.com>
6 * Copyright (C) 2014 SUSE
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/mutex.h>
14 #include <linux/slab.h>
15 #include <linux/list.h>
16 #include <linux/kallsyms.h>
17 #include <linux/livepatch.h>
18 #include <linux/elf.h>
19 #include <linux/moduleloader.h>
20 #include <linux/completion.h>
21 #include <linux/memory.h>
22 #include <linux/rcupdate.h>
23 #include <asm/cacheflush.h>
24 #include "core.h"
25 #include "patch.h"
26 #include "state.h"
27 #include "transition.h"
28
29 /*
30 * klp_mutex is a coarse lock which serializes access to klp data. All
31 * accesses to klp-related variables and structures must have mutex protection,
32 * except within the following functions which carefully avoid the need for it:
33 *
34 * - klp_ftrace_handler()
35 * - klp_update_patch_state()
36 * - __klp_sched_try_switch()
37 */
38 DEFINE_MUTEX(klp_mutex);
39
40 /*
41 * Actively used patches: enabled or in transition. Note that replaced
42 * or disabled patches are not listed even though the related kernel
43 * module still can be loaded.
44 */
45 LIST_HEAD(klp_patches);
46
47 static struct kobject *klp_root_kobj;
48
klp_is_module(struct klp_object * obj)49 static bool klp_is_module(struct klp_object *obj)
50 {
51 return obj->name;
52 }
53
54 /* sets obj->mod if object is not vmlinux and module is found */
klp_find_object_module(struct klp_object * obj)55 static void klp_find_object_module(struct klp_object *obj)
56 {
57 struct module *mod;
58
59 if (!klp_is_module(obj))
60 return;
61
62 rcu_read_lock_sched();
63 /*
64 * We do not want to block removal of patched modules and therefore
65 * we do not take a reference here. The patches are removed by
66 * klp_module_going() instead.
67 */
68 mod = find_module(obj->name);
69 /*
70 * Do not mess work of klp_module_coming() and klp_module_going().
71 * Note that the patch might still be needed before klp_module_going()
72 * is called. Module functions can be called even in the GOING state
73 * until mod->exit() finishes. This is especially important for
74 * patches that modify semantic of the functions.
75 */
76 if (mod && mod->klp_alive)
77 obj->mod = mod;
78
79 rcu_read_unlock_sched();
80 }
81
klp_initialized(void)82 static bool klp_initialized(void)
83 {
84 return !!klp_root_kobj;
85 }
86
klp_find_func(struct klp_object * obj,struct klp_func * old_func)87 static struct klp_func *klp_find_func(struct klp_object *obj,
88 struct klp_func *old_func)
89 {
90 struct klp_func *func;
91
92 klp_for_each_func(obj, func) {
93 if ((strcmp(old_func->old_name, func->old_name) == 0) &&
94 (old_func->old_sympos == func->old_sympos)) {
95 return func;
96 }
97 }
98
99 return NULL;
100 }
101
klp_find_object(struct klp_patch * patch,struct klp_object * old_obj)102 static struct klp_object *klp_find_object(struct klp_patch *patch,
103 struct klp_object *old_obj)
104 {
105 struct klp_object *obj;
106
107 klp_for_each_object(patch, obj) {
108 if (klp_is_module(old_obj)) {
109 if (klp_is_module(obj) &&
110 strcmp(old_obj->name, obj->name) == 0) {
111 return obj;
112 }
113 } else if (!klp_is_module(obj)) {
114 return obj;
115 }
116 }
117
118 return NULL;
119 }
120
121 struct klp_find_arg {
122 const char *name;
123 unsigned long addr;
124 unsigned long count;
125 unsigned long pos;
126 };
127
klp_match_callback(void * data,unsigned long addr)128 static int klp_match_callback(void *data, unsigned long addr)
129 {
130 struct klp_find_arg *args = data;
131
132 args->addr = addr;
133 args->count++;
134
135 /*
136 * Finish the search when the symbol is found for the desired position
137 * or the position is not defined for a non-unique symbol.
138 */
139 if ((args->pos && (args->count == args->pos)) ||
140 (!args->pos && (args->count > 1)))
141 return 1;
142
143 return 0;
144 }
145
klp_find_callback(void * data,const char * name,unsigned long addr)146 static int klp_find_callback(void *data, const char *name, unsigned long addr)
147 {
148 struct klp_find_arg *args = data;
149
150 if (strcmp(args->name, name))
151 return 0;
152
153 return klp_match_callback(data, addr);
154 }
155
klp_find_object_symbol(const char * objname,const char * name,unsigned long sympos,unsigned long * addr)156 static int klp_find_object_symbol(const char *objname, const char *name,
157 unsigned long sympos, unsigned long *addr)
158 {
159 struct klp_find_arg args = {
160 .name = name,
161 .addr = 0,
162 .count = 0,
163 .pos = sympos,
164 };
165
166 if (objname)
167 module_kallsyms_on_each_symbol(objname, klp_find_callback, &args);
168 else
169 kallsyms_on_each_match_symbol(klp_match_callback, name, &args);
170
171 /*
172 * Ensure an address was found. If sympos is 0, ensure symbol is unique;
173 * otherwise ensure the symbol position count matches sympos.
174 */
175 if (args.addr == 0)
176 pr_err("symbol '%s' not found in symbol table\n", name);
177 else if (args.count > 1 && sympos == 0) {
178 pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n",
179 name, objname);
180 } else if (sympos != args.count && sympos > 0) {
181 pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n",
182 sympos, name, objname ? objname : "vmlinux");
183 } else {
184 *addr = args.addr;
185 return 0;
186 }
187
188 *addr = 0;
189 return -EINVAL;
190 }
191
klp_resolve_symbols(Elf_Shdr * sechdrs,const char * strtab,unsigned int symndx,Elf_Shdr * relasec,const char * sec_objname)192 static int klp_resolve_symbols(Elf_Shdr *sechdrs, const char *strtab,
193 unsigned int symndx, Elf_Shdr *relasec,
194 const char *sec_objname)
195 {
196 int i, cnt, ret;
197 char sym_objname[MODULE_NAME_LEN];
198 char sym_name[KSYM_NAME_LEN];
199 Elf_Rela *relas;
200 Elf_Sym *sym;
201 unsigned long sympos, addr;
202 bool sym_vmlinux;
203 bool sec_vmlinux = !strcmp(sec_objname, "vmlinux");
204
205 /*
206 * Since the field widths for sym_objname and sym_name in the sscanf()
207 * call are hard-coded and correspond to MODULE_NAME_LEN and
208 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN
209 * and KSYM_NAME_LEN have the values we expect them to have.
210 *
211 * Because the value of MODULE_NAME_LEN can differ among architectures,
212 * we use the smallest/strictest upper bound possible (56, based on
213 * the current definition of MODULE_NAME_LEN) to prevent overflows.
214 */
215 BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 512);
216
217 relas = (Elf_Rela *) relasec->sh_addr;
218 /* For each rela in this klp relocation section */
219 for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) {
220 sym = (Elf_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info);
221 if (sym->st_shndx != SHN_LIVEPATCH) {
222 pr_err("symbol %s is not marked as a livepatch symbol\n",
223 strtab + sym->st_name);
224 return -EINVAL;
225 }
226
227 /* Format: .klp.sym.sym_objname.sym_name,sympos */
228 cnt = sscanf(strtab + sym->st_name,
229 ".klp.sym.%55[^.].%511[^,],%lu",
230 sym_objname, sym_name, &sympos);
231 if (cnt != 3) {
232 pr_err("symbol %s has an incorrectly formatted name\n",
233 strtab + sym->st_name);
234 return -EINVAL;
235 }
236
237 sym_vmlinux = !strcmp(sym_objname, "vmlinux");
238
239 /*
240 * Prevent module-specific KLP rela sections from referencing
241 * vmlinux symbols. This helps prevent ordering issues with
242 * module special section initializations. Presumably such
243 * symbols are exported and normal relas can be used instead.
244 */
245 if (!sec_vmlinux && sym_vmlinux) {
246 pr_err("invalid access to vmlinux symbol '%s' from module-specific livepatch relocation section\n",
247 sym_name);
248 return -EINVAL;
249 }
250
251 /* klp_find_object_symbol() treats a NULL objname as vmlinux */
252 ret = klp_find_object_symbol(sym_vmlinux ? NULL : sym_objname,
253 sym_name, sympos, &addr);
254 if (ret)
255 return ret;
256
257 sym->st_value = addr;
258 }
259
260 return 0;
261 }
262
clear_relocate_add(Elf_Shdr * sechdrs,const char * strtab,unsigned int symindex,unsigned int relsec,struct module * me)263 void __weak clear_relocate_add(Elf_Shdr *sechdrs,
264 const char *strtab,
265 unsigned int symindex,
266 unsigned int relsec,
267 struct module *me)
268 {
269 }
270
271 /*
272 * At a high-level, there are two types of klp relocation sections: those which
273 * reference symbols which live in vmlinux; and those which reference symbols
274 * which live in other modules. This function is called for both types:
275 *
276 * 1) When a klp module itself loads, the module code calls this function to
277 * write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections).
278 * These relocations are written to the klp module text to allow the patched
279 * code/data to reference unexported vmlinux symbols. They're written as
280 * early as possible to ensure that other module init code (.e.g.,
281 * jump_label_apply_nops) can access any unexported vmlinux symbols which
282 * might be referenced by the klp module's special sections.
283 *
284 * 2) When a to-be-patched module loads -- or is already loaded when a
285 * corresponding klp module loads -- klp code calls this function to write
286 * module-specific klp relocations (.klp.rela.{module}.* sections). These
287 * are written to the klp module text to allow the patched code/data to
288 * reference symbols which live in the to-be-patched module or one of its
289 * module dependencies. Exported symbols are supported, in addition to
290 * unexported symbols, in order to enable late module patching, which allows
291 * the to-be-patched module to be loaded and patched sometime *after* the
292 * klp module is loaded.
293 */
klp_write_section_relocs(struct module * pmod,Elf_Shdr * sechdrs,const char * shstrtab,const char * strtab,unsigned int symndx,unsigned int secndx,const char * objname,bool apply)294 static int klp_write_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
295 const char *shstrtab, const char *strtab,
296 unsigned int symndx, unsigned int secndx,
297 const char *objname, bool apply)
298 {
299 int cnt, ret;
300 char sec_objname[MODULE_NAME_LEN];
301 Elf_Shdr *sec = sechdrs + secndx;
302
303 /*
304 * Format: .klp.rela.sec_objname.section_name
305 * See comment in klp_resolve_symbols() for an explanation
306 * of the selected field width value.
307 */
308 cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]",
309 sec_objname);
310 if (cnt != 1) {
311 pr_err("section %s has an incorrectly formatted name\n",
312 shstrtab + sec->sh_name);
313 return -EINVAL;
314 }
315
316 if (strcmp(objname ? objname : "vmlinux", sec_objname))
317 return 0;
318
319 if (apply) {
320 ret = klp_resolve_symbols(sechdrs, strtab, symndx,
321 sec, sec_objname);
322 if (ret)
323 return ret;
324
325 return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
326 }
327
328 clear_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
329 return 0;
330 }
331
klp_apply_section_relocs(struct module * pmod,Elf_Shdr * sechdrs,const char * shstrtab,const char * strtab,unsigned int symndx,unsigned int secndx,const char * objname)332 int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
333 const char *shstrtab, const char *strtab,
334 unsigned int symndx, unsigned int secndx,
335 const char *objname)
336 {
337 return klp_write_section_relocs(pmod, sechdrs, shstrtab, strtab, symndx,
338 secndx, objname, true);
339 }
340
341 /*
342 * Sysfs Interface
343 *
344 * /sys/kernel/livepatch
345 * /sys/kernel/livepatch/<patch>
346 * /sys/kernel/livepatch/<patch>/enabled
347 * /sys/kernel/livepatch/<patch>/transition
348 * /sys/kernel/livepatch/<patch>/force
349 * /sys/kernel/livepatch/<patch>/replace
350 * /sys/kernel/livepatch/<patch>/stack_order
351 * /sys/kernel/livepatch/<patch>/<object>
352 * /sys/kernel/livepatch/<patch>/<object>/patched
353 * /sys/kernel/livepatch/<patch>/<object>/<function,sympos>
354 */
355 static int __klp_disable_patch(struct klp_patch *patch);
356
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)357 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
358 const char *buf, size_t count)
359 {
360 struct klp_patch *patch;
361 int ret;
362 bool enabled;
363
364 ret = kstrtobool(buf, &enabled);
365 if (ret)
366 return ret;
367
368 patch = container_of(kobj, struct klp_patch, kobj);
369
370 mutex_lock(&klp_mutex);
371
372 if (patch->enabled == enabled) {
373 /* already in requested state */
374 ret = -EINVAL;
375 goto out;
376 }
377
378 /*
379 * Allow to reverse a pending transition in both ways. It might be
380 * necessary to complete the transition without forcing and breaking
381 * the system integrity.
382 *
383 * Do not allow to re-enable a disabled patch.
384 */
385 if (patch == klp_transition_patch)
386 klp_reverse_transition();
387 else if (!enabled)
388 ret = __klp_disable_patch(patch);
389 else
390 ret = -EINVAL;
391
392 out:
393 mutex_unlock(&klp_mutex);
394
395 if (ret)
396 return ret;
397 return count;
398 }
399
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)400 static ssize_t enabled_show(struct kobject *kobj,
401 struct kobj_attribute *attr, char *buf)
402 {
403 struct klp_patch *patch;
404
405 patch = container_of(kobj, struct klp_patch, kobj);
406 return sysfs_emit(buf, "%d\n", patch->enabled);
407 }
408
transition_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)409 static ssize_t transition_show(struct kobject *kobj,
410 struct kobj_attribute *attr, char *buf)
411 {
412 struct klp_patch *patch;
413
414 patch = container_of(kobj, struct klp_patch, kobj);
415 return sysfs_emit(buf, "%d\n", patch == klp_transition_patch);
416 }
417
force_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)418 static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
419 const char *buf, size_t count)
420 {
421 struct klp_patch *patch;
422 int ret;
423 bool val;
424
425 ret = kstrtobool(buf, &val);
426 if (ret)
427 return ret;
428
429 if (!val)
430 return count;
431
432 mutex_lock(&klp_mutex);
433
434 patch = container_of(kobj, struct klp_patch, kobj);
435 if (patch != klp_transition_patch) {
436 mutex_unlock(&klp_mutex);
437 return -EINVAL;
438 }
439
440 klp_force_transition();
441
442 mutex_unlock(&klp_mutex);
443
444 return count;
445 }
446
replace_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)447 static ssize_t replace_show(struct kobject *kobj,
448 struct kobj_attribute *attr, char *buf)
449 {
450 struct klp_patch *patch;
451
452 patch = container_of(kobj, struct klp_patch, kobj);
453 return sysfs_emit(buf, "%d\n", patch->replace);
454 }
455
stack_order_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)456 static ssize_t stack_order_show(struct kobject *kobj,
457 struct kobj_attribute *attr, char *buf)
458 {
459 struct klp_patch *patch, *this_patch;
460 int stack_order = 0;
461
462 this_patch = container_of(kobj, struct klp_patch, kobj);
463
464 mutex_lock(&klp_mutex);
465
466 klp_for_each_patch(patch) {
467 stack_order++;
468 if (patch == this_patch)
469 break;
470 }
471
472 mutex_unlock(&klp_mutex);
473
474 return sysfs_emit(buf, "%d\n", stack_order);
475 }
476
477 static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled);
478 static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition);
479 static struct kobj_attribute force_kobj_attr = __ATTR_WO(force);
480 static struct kobj_attribute replace_kobj_attr = __ATTR_RO(replace);
481 static struct kobj_attribute stack_order_kobj_attr = __ATTR_RO(stack_order);
482 static struct attribute *klp_patch_attrs[] = {
483 &enabled_kobj_attr.attr,
484 &transition_kobj_attr.attr,
485 &force_kobj_attr.attr,
486 &replace_kobj_attr.attr,
487 &stack_order_kobj_attr.attr,
488 NULL
489 };
490 ATTRIBUTE_GROUPS(klp_patch);
491
patched_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)492 static ssize_t patched_show(struct kobject *kobj,
493 struct kobj_attribute *attr, char *buf)
494 {
495 struct klp_object *obj;
496
497 obj = container_of(kobj, struct klp_object, kobj);
498 return sysfs_emit(buf, "%d\n", obj->patched);
499 }
500
501 static struct kobj_attribute patched_kobj_attr = __ATTR_RO(patched);
502 static struct attribute *klp_object_attrs[] = {
503 &patched_kobj_attr.attr,
504 NULL,
505 };
506 ATTRIBUTE_GROUPS(klp_object);
507
klp_free_object_dynamic(struct klp_object * obj)508 static void klp_free_object_dynamic(struct klp_object *obj)
509 {
510 kfree(obj->name);
511 kfree(obj);
512 }
513
514 static void klp_init_func_early(struct klp_object *obj,
515 struct klp_func *func);
516 static void klp_init_object_early(struct klp_patch *patch,
517 struct klp_object *obj);
518
klp_alloc_object_dynamic(const char * name,struct klp_patch * patch)519 static struct klp_object *klp_alloc_object_dynamic(const char *name,
520 struct klp_patch *patch)
521 {
522 struct klp_object *obj;
523
524 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
525 if (!obj)
526 return NULL;
527
528 if (name) {
529 obj->name = kstrdup(name, GFP_KERNEL);
530 if (!obj->name) {
531 kfree(obj);
532 return NULL;
533 }
534 }
535
536 klp_init_object_early(patch, obj);
537 obj->dynamic = true;
538
539 return obj;
540 }
541
klp_free_func_nop(struct klp_func * func)542 static void klp_free_func_nop(struct klp_func *func)
543 {
544 kfree(func->old_name);
545 kfree(func);
546 }
547
klp_alloc_func_nop(struct klp_func * old_func,struct klp_object * obj)548 static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func,
549 struct klp_object *obj)
550 {
551 struct klp_func *func;
552
553 func = kzalloc(sizeof(*func), GFP_KERNEL);
554 if (!func)
555 return NULL;
556
557 if (old_func->old_name) {
558 func->old_name = kstrdup(old_func->old_name, GFP_KERNEL);
559 if (!func->old_name) {
560 kfree(func);
561 return NULL;
562 }
563 }
564
565 klp_init_func_early(obj, func);
566 /*
567 * func->new_func is same as func->old_func. These addresses are
568 * set when the object is loaded, see klp_init_object_loaded().
569 */
570 func->old_sympos = old_func->old_sympos;
571 func->nop = true;
572
573 return func;
574 }
575
klp_add_object_nops(struct klp_patch * patch,struct klp_object * old_obj)576 static int klp_add_object_nops(struct klp_patch *patch,
577 struct klp_object *old_obj)
578 {
579 struct klp_object *obj;
580 struct klp_func *func, *old_func;
581
582 obj = klp_find_object(patch, old_obj);
583
584 if (!obj) {
585 obj = klp_alloc_object_dynamic(old_obj->name, patch);
586 if (!obj)
587 return -ENOMEM;
588 }
589
590 klp_for_each_func(old_obj, old_func) {
591 func = klp_find_func(obj, old_func);
592 if (func)
593 continue;
594
595 func = klp_alloc_func_nop(old_func, obj);
596 if (!func)
597 return -ENOMEM;
598 }
599
600 return 0;
601 }
602
603 /*
604 * Add 'nop' functions which simply return to the caller to run the
605 * original function.
606 *
607 * They are added only when the atomic replace mode is used and only for
608 * functions which are currently livepatched but are no longer included
609 * in the new livepatch.
610 */
klp_add_nops(struct klp_patch * patch)611 static int klp_add_nops(struct klp_patch *patch)
612 {
613 struct klp_patch *old_patch;
614 struct klp_object *old_obj;
615
616 klp_for_each_patch(old_patch) {
617 klp_for_each_object(old_patch, old_obj) {
618 int err;
619
620 err = klp_add_object_nops(patch, old_obj);
621 if (err)
622 return err;
623 }
624 }
625
626 return 0;
627 }
628
klp_kobj_release_patch(struct kobject * kobj)629 static void klp_kobj_release_patch(struct kobject *kobj)
630 {
631 struct klp_patch *patch;
632
633 patch = container_of(kobj, struct klp_patch, kobj);
634 complete(&patch->finish);
635 }
636
637 static const struct kobj_type klp_ktype_patch = {
638 .release = klp_kobj_release_patch,
639 .sysfs_ops = &kobj_sysfs_ops,
640 .default_groups = klp_patch_groups,
641 };
642
klp_kobj_release_object(struct kobject * kobj)643 static void klp_kobj_release_object(struct kobject *kobj)
644 {
645 struct klp_object *obj;
646
647 obj = container_of(kobj, struct klp_object, kobj);
648
649 if (obj->dynamic)
650 klp_free_object_dynamic(obj);
651 }
652
653 static const struct kobj_type klp_ktype_object = {
654 .release = klp_kobj_release_object,
655 .sysfs_ops = &kobj_sysfs_ops,
656 .default_groups = klp_object_groups,
657 };
658
klp_kobj_release_func(struct kobject * kobj)659 static void klp_kobj_release_func(struct kobject *kobj)
660 {
661 struct klp_func *func;
662
663 func = container_of(kobj, struct klp_func, kobj);
664
665 if (func->nop)
666 klp_free_func_nop(func);
667 }
668
669 static const struct kobj_type klp_ktype_func = {
670 .release = klp_kobj_release_func,
671 .sysfs_ops = &kobj_sysfs_ops,
672 };
673
__klp_free_funcs(struct klp_object * obj,bool nops_only)674 static void __klp_free_funcs(struct klp_object *obj, bool nops_only)
675 {
676 struct klp_func *func, *tmp_func;
677
678 klp_for_each_func_safe(obj, func, tmp_func) {
679 if (nops_only && !func->nop)
680 continue;
681
682 list_del(&func->node);
683 kobject_put(&func->kobj);
684 }
685 }
686
687 /* Clean up when a patched object is unloaded */
klp_free_object_loaded(struct klp_object * obj)688 static void klp_free_object_loaded(struct klp_object *obj)
689 {
690 struct klp_func *func;
691
692 obj->mod = NULL;
693
694 klp_for_each_func(obj, func) {
695 func->old_func = NULL;
696
697 if (func->nop)
698 func->new_func = NULL;
699 }
700 }
701
__klp_free_objects(struct klp_patch * patch,bool nops_only)702 static void __klp_free_objects(struct klp_patch *patch, bool nops_only)
703 {
704 struct klp_object *obj, *tmp_obj;
705
706 klp_for_each_object_safe(patch, obj, tmp_obj) {
707 __klp_free_funcs(obj, nops_only);
708
709 if (nops_only && !obj->dynamic)
710 continue;
711
712 list_del(&obj->node);
713 kobject_put(&obj->kobj);
714 }
715 }
716
klp_free_objects(struct klp_patch * patch)717 static void klp_free_objects(struct klp_patch *patch)
718 {
719 __klp_free_objects(patch, false);
720 }
721
klp_free_objects_dynamic(struct klp_patch * patch)722 static void klp_free_objects_dynamic(struct klp_patch *patch)
723 {
724 __klp_free_objects(patch, true);
725 }
726
727 /*
728 * This function implements the free operations that can be called safely
729 * under klp_mutex.
730 *
731 * The operation must be completed by calling klp_free_patch_finish()
732 * outside klp_mutex.
733 */
klp_free_patch_start(struct klp_patch * patch)734 static void klp_free_patch_start(struct klp_patch *patch)
735 {
736 if (!list_empty(&patch->list))
737 list_del(&patch->list);
738
739 klp_free_objects(patch);
740 }
741
742 /*
743 * This function implements the free part that must be called outside
744 * klp_mutex.
745 *
746 * It must be called after klp_free_patch_start(). And it has to be
747 * the last function accessing the livepatch structures when the patch
748 * gets disabled.
749 */
klp_free_patch_finish(struct klp_patch * patch)750 static void klp_free_patch_finish(struct klp_patch *patch)
751 {
752 /*
753 * Avoid deadlock with enabled_store() sysfs callback by
754 * calling this outside klp_mutex. It is safe because
755 * this is called when the patch gets disabled and it
756 * cannot get enabled again.
757 */
758 kobject_put(&patch->kobj);
759 wait_for_completion(&patch->finish);
760
761 /* Put the module after the last access to struct klp_patch. */
762 if (!patch->forced)
763 module_put(patch->mod);
764 }
765
766 /*
767 * The livepatch might be freed from sysfs interface created by the patch.
768 * This work allows to wait until the interface is destroyed in a separate
769 * context.
770 */
klp_free_patch_work_fn(struct work_struct * work)771 static void klp_free_patch_work_fn(struct work_struct *work)
772 {
773 struct klp_patch *patch =
774 container_of(work, struct klp_patch, free_work);
775
776 klp_free_patch_finish(patch);
777 }
778
klp_free_patch_async(struct klp_patch * patch)779 void klp_free_patch_async(struct klp_patch *patch)
780 {
781 klp_free_patch_start(patch);
782 schedule_work(&patch->free_work);
783 }
784
klp_free_replaced_patches_async(struct klp_patch * new_patch)785 void klp_free_replaced_patches_async(struct klp_patch *new_patch)
786 {
787 struct klp_patch *old_patch, *tmp_patch;
788
789 klp_for_each_patch_safe(old_patch, tmp_patch) {
790 if (old_patch == new_patch)
791 return;
792 klp_free_patch_async(old_patch);
793 }
794 }
795
klp_init_func(struct klp_object * obj,struct klp_func * func)796 static int klp_init_func(struct klp_object *obj, struct klp_func *func)
797 {
798 if (!func->old_name)
799 return -EINVAL;
800
801 /*
802 * NOPs get the address later. The patched module must be loaded,
803 * see klp_init_object_loaded().
804 */
805 if (!func->new_func && !func->nop)
806 return -EINVAL;
807
808 if (strlen(func->old_name) >= KSYM_NAME_LEN)
809 return -EINVAL;
810
811 INIT_LIST_HEAD(&func->stack_node);
812 func->patched = false;
813 func->transition = false;
814
815 /* The format for the sysfs directory is <function,sympos> where sympos
816 * is the nth occurrence of this symbol in kallsyms for the patched
817 * object. If the user selects 0 for old_sympos, then 1 will be used
818 * since a unique symbol will be the first occurrence.
819 */
820 return kobject_add(&func->kobj, &obj->kobj, "%s,%lu",
821 func->old_name,
822 func->old_sympos ? func->old_sympos : 1);
823 }
824
klp_write_object_relocs(struct klp_patch * patch,struct klp_object * obj,bool apply)825 static int klp_write_object_relocs(struct klp_patch *patch,
826 struct klp_object *obj,
827 bool apply)
828 {
829 int i, ret;
830 struct klp_modinfo *info = patch->mod->klp_info;
831
832 for (i = 1; i < info->hdr.e_shnum; i++) {
833 Elf_Shdr *sec = info->sechdrs + i;
834
835 if (!(sec->sh_flags & SHF_RELA_LIVEPATCH))
836 continue;
837
838 ret = klp_write_section_relocs(patch->mod, info->sechdrs,
839 info->secstrings,
840 patch->mod->core_kallsyms.strtab,
841 info->symndx, i, obj->name, apply);
842 if (ret)
843 return ret;
844 }
845
846 return 0;
847 }
848
klp_apply_object_relocs(struct klp_patch * patch,struct klp_object * obj)849 static int klp_apply_object_relocs(struct klp_patch *patch,
850 struct klp_object *obj)
851 {
852 return klp_write_object_relocs(patch, obj, true);
853 }
854
klp_clear_object_relocs(struct klp_patch * patch,struct klp_object * obj)855 static void klp_clear_object_relocs(struct klp_patch *patch,
856 struct klp_object *obj)
857 {
858 klp_write_object_relocs(patch, obj, false);
859 }
860
861 /* parts of the initialization that is done only when the object is loaded */
klp_init_object_loaded(struct klp_patch * patch,struct klp_object * obj)862 static int klp_init_object_loaded(struct klp_patch *patch,
863 struct klp_object *obj)
864 {
865 struct klp_func *func;
866 int ret;
867
868 if (klp_is_module(obj)) {
869 /*
870 * Only write module-specific relocations here
871 * (.klp.rela.{module}.*). vmlinux-specific relocations were
872 * written earlier during the initialization of the klp module
873 * itself.
874 */
875 ret = klp_apply_object_relocs(patch, obj);
876 if (ret)
877 return ret;
878 }
879
880 klp_for_each_func(obj, func) {
881 ret = klp_find_object_symbol(obj->name, func->old_name,
882 func->old_sympos,
883 (unsigned long *)&func->old_func);
884 if (ret)
885 return ret;
886
887 ret = kallsyms_lookup_size_offset((unsigned long)func->old_func,
888 &func->old_size, NULL);
889 if (!ret) {
890 pr_err("kallsyms size lookup failed for '%s'\n",
891 func->old_name);
892 return -ENOENT;
893 }
894
895 if (func->nop)
896 func->new_func = func->old_func;
897
898 ret = kallsyms_lookup_size_offset((unsigned long)func->new_func,
899 &func->new_size, NULL);
900 if (!ret) {
901 pr_err("kallsyms size lookup failed for '%s' replacement\n",
902 func->old_name);
903 return -ENOENT;
904 }
905 }
906
907 return 0;
908 }
909
klp_init_object(struct klp_patch * patch,struct klp_object * obj)910 static int klp_init_object(struct klp_patch *patch, struct klp_object *obj)
911 {
912 struct klp_func *func;
913 int ret;
914 const char *name;
915
916 if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN)
917 return -EINVAL;
918
919 obj->patched = false;
920 obj->mod = NULL;
921
922 klp_find_object_module(obj);
923
924 name = klp_is_module(obj) ? obj->name : "vmlinux";
925 ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name);
926 if (ret)
927 return ret;
928
929 klp_for_each_func(obj, func) {
930 ret = klp_init_func(obj, func);
931 if (ret)
932 return ret;
933 }
934
935 if (klp_is_object_loaded(obj))
936 ret = klp_init_object_loaded(patch, obj);
937
938 return ret;
939 }
940
klp_init_func_early(struct klp_object * obj,struct klp_func * func)941 static void klp_init_func_early(struct klp_object *obj,
942 struct klp_func *func)
943 {
944 kobject_init(&func->kobj, &klp_ktype_func);
945 list_add_tail(&func->node, &obj->func_list);
946 }
947
klp_init_object_early(struct klp_patch * patch,struct klp_object * obj)948 static void klp_init_object_early(struct klp_patch *patch,
949 struct klp_object *obj)
950 {
951 INIT_LIST_HEAD(&obj->func_list);
952 kobject_init(&obj->kobj, &klp_ktype_object);
953 list_add_tail(&obj->node, &patch->obj_list);
954 }
955
klp_init_patch_early(struct klp_patch * patch)956 static void klp_init_patch_early(struct klp_patch *patch)
957 {
958 struct klp_object *obj;
959 struct klp_func *func;
960
961 INIT_LIST_HEAD(&patch->list);
962 INIT_LIST_HEAD(&patch->obj_list);
963 kobject_init(&patch->kobj, &klp_ktype_patch);
964 patch->enabled = false;
965 patch->forced = false;
966 INIT_WORK(&patch->free_work, klp_free_patch_work_fn);
967 init_completion(&patch->finish);
968
969 klp_for_each_object_static(patch, obj) {
970 klp_init_object_early(patch, obj);
971
972 klp_for_each_func_static(obj, func) {
973 klp_init_func_early(obj, func);
974 }
975 }
976 }
977
klp_init_patch(struct klp_patch * patch)978 static int klp_init_patch(struct klp_patch *patch)
979 {
980 struct klp_object *obj;
981 int ret;
982
983 ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name);
984 if (ret)
985 return ret;
986
987 if (patch->replace) {
988 ret = klp_add_nops(patch);
989 if (ret)
990 return ret;
991 }
992
993 klp_for_each_object(patch, obj) {
994 ret = klp_init_object(patch, obj);
995 if (ret)
996 return ret;
997 }
998
999 list_add_tail(&patch->list, &klp_patches);
1000
1001 return 0;
1002 }
1003
__klp_disable_patch(struct klp_patch * patch)1004 static int __klp_disable_patch(struct klp_patch *patch)
1005 {
1006 struct klp_object *obj;
1007
1008 if (WARN_ON(!patch->enabled))
1009 return -EINVAL;
1010
1011 if (klp_transition_patch)
1012 return -EBUSY;
1013
1014 klp_init_transition(patch, KLP_TRANSITION_UNPATCHED);
1015
1016 klp_for_each_object(patch, obj)
1017 if (obj->patched)
1018 klp_pre_unpatch_callback(obj);
1019
1020 /*
1021 * Enforce the order of the func->transition writes in
1022 * klp_init_transition() and the TIF_PATCH_PENDING writes in
1023 * klp_start_transition(). In the rare case where klp_ftrace_handler()
1024 * is called shortly after klp_update_patch_state() switches the task,
1025 * this ensures the handler sees that func->transition is set.
1026 */
1027 smp_wmb();
1028
1029 klp_start_transition();
1030 patch->enabled = false;
1031 klp_try_complete_transition();
1032
1033 return 0;
1034 }
1035
__klp_enable_patch(struct klp_patch * patch)1036 static int __klp_enable_patch(struct klp_patch *patch)
1037 {
1038 struct klp_object *obj;
1039 int ret;
1040
1041 if (klp_transition_patch)
1042 return -EBUSY;
1043
1044 if (WARN_ON(patch->enabled))
1045 return -EINVAL;
1046
1047 pr_notice("enabling patch '%s'\n", patch->mod->name);
1048
1049 klp_init_transition(patch, KLP_TRANSITION_PATCHED);
1050
1051 /*
1052 * Enforce the order of the func->transition writes in
1053 * klp_init_transition() and the ops->func_stack writes in
1054 * klp_patch_object(), so that klp_ftrace_handler() will see the
1055 * func->transition updates before the handler is registered and the
1056 * new funcs become visible to the handler.
1057 */
1058 smp_wmb();
1059
1060 klp_for_each_object(patch, obj) {
1061 if (!klp_is_object_loaded(obj))
1062 continue;
1063
1064 ret = klp_pre_patch_callback(obj);
1065 if (ret) {
1066 pr_warn("pre-patch callback failed for object '%s'\n",
1067 klp_is_module(obj) ? obj->name : "vmlinux");
1068 goto err;
1069 }
1070
1071 ret = klp_patch_object(obj);
1072 if (ret) {
1073 pr_warn("failed to patch object '%s'\n",
1074 klp_is_module(obj) ? obj->name : "vmlinux");
1075 goto err;
1076 }
1077 }
1078
1079 klp_start_transition();
1080 patch->enabled = true;
1081 klp_try_complete_transition();
1082
1083 return 0;
1084 err:
1085 pr_warn("failed to enable patch '%s'\n", patch->mod->name);
1086
1087 klp_cancel_transition();
1088 return ret;
1089 }
1090
1091 /**
1092 * klp_enable_patch() - enable the livepatch
1093 * @patch: patch to be enabled
1094 *
1095 * Initializes the data structure associated with the patch, creates the sysfs
1096 * interface, performs the needed symbol lookups and code relocations,
1097 * registers the patched functions with ftrace.
1098 *
1099 * This function is supposed to be called from the livepatch module_init()
1100 * callback.
1101 *
1102 * Return: 0 on success, otherwise error
1103 */
klp_enable_patch(struct klp_patch * patch)1104 int klp_enable_patch(struct klp_patch *patch)
1105 {
1106 int ret;
1107 struct klp_object *obj;
1108
1109 if (!patch || !patch->mod || !patch->objs)
1110 return -EINVAL;
1111
1112 klp_for_each_object_static(patch, obj) {
1113 if (!obj->funcs)
1114 return -EINVAL;
1115 }
1116
1117
1118 if (!is_livepatch_module(patch->mod)) {
1119 pr_err("module %s is not marked as a livepatch module\n",
1120 patch->mod->name);
1121 return -EINVAL;
1122 }
1123
1124 if (!klp_initialized())
1125 return -ENODEV;
1126
1127 if (!klp_have_reliable_stack()) {
1128 pr_warn("This architecture doesn't have support for the livepatch consistency model.\n");
1129 pr_warn("The livepatch transition may never complete.\n");
1130 }
1131
1132 mutex_lock(&klp_mutex);
1133
1134 if (!klp_is_patch_compatible(patch)) {
1135 pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n",
1136 patch->mod->name);
1137 mutex_unlock(&klp_mutex);
1138 return -EINVAL;
1139 }
1140
1141 if (!try_module_get(patch->mod)) {
1142 mutex_unlock(&klp_mutex);
1143 return -ENODEV;
1144 }
1145
1146 klp_init_patch_early(patch);
1147
1148 ret = klp_init_patch(patch);
1149 if (ret)
1150 goto err;
1151
1152 ret = __klp_enable_patch(patch);
1153 if (ret)
1154 goto err;
1155
1156 mutex_unlock(&klp_mutex);
1157
1158 return 0;
1159
1160 err:
1161 klp_free_patch_start(patch);
1162
1163 mutex_unlock(&klp_mutex);
1164
1165 klp_free_patch_finish(patch);
1166
1167 return ret;
1168 }
1169 EXPORT_SYMBOL_GPL(klp_enable_patch);
1170
1171 /*
1172 * This function unpatches objects from the replaced livepatches.
1173 *
1174 * We could be pretty aggressive here. It is called in the situation where
1175 * these structures are no longer accessed from the ftrace handler.
1176 * All functions are redirected by the klp_transition_patch. They
1177 * use either a new code or they are in the original code because
1178 * of the special nop function patches.
1179 *
1180 * The only exception is when the transition was forced. In this case,
1181 * klp_ftrace_handler() might still see the replaced patch on the stack.
1182 * Fortunately, it is carefully designed to work with removed functions
1183 * thanks to RCU. We only have to keep the patches on the system. Also
1184 * this is handled transparently by patch->module_put.
1185 */
klp_unpatch_replaced_patches(struct klp_patch * new_patch)1186 void klp_unpatch_replaced_patches(struct klp_patch *new_patch)
1187 {
1188 struct klp_patch *old_patch;
1189
1190 klp_for_each_patch(old_patch) {
1191 if (old_patch == new_patch)
1192 return;
1193
1194 old_patch->enabled = false;
1195 klp_unpatch_objects(old_patch);
1196 }
1197 }
1198
1199 /*
1200 * This function removes the dynamically allocated 'nop' functions.
1201 *
1202 * We could be pretty aggressive. NOPs do not change the existing
1203 * behavior except for adding unnecessary delay by the ftrace handler.
1204 *
1205 * It is safe even when the transition was forced. The ftrace handler
1206 * will see a valid ops->func_stack entry thanks to RCU.
1207 *
1208 * We could even free the NOPs structures. They must be the last entry
1209 * in ops->func_stack. Therefore unregister_ftrace_function() is called.
1210 * It does the same as klp_synchronize_transition() to make sure that
1211 * nobody is inside the ftrace handler once the operation finishes.
1212 *
1213 * IMPORTANT: It must be called right after removing the replaced patches!
1214 */
klp_discard_nops(struct klp_patch * new_patch)1215 void klp_discard_nops(struct klp_patch *new_patch)
1216 {
1217 klp_unpatch_objects_dynamic(klp_transition_patch);
1218 klp_free_objects_dynamic(klp_transition_patch);
1219 }
1220
1221 /*
1222 * Remove parts of patches that touch a given kernel module. The list of
1223 * patches processed might be limited. When limit is NULL, all patches
1224 * will be handled.
1225 */
klp_cleanup_module_patches_limited(struct module * mod,struct klp_patch * limit)1226 static void klp_cleanup_module_patches_limited(struct module *mod,
1227 struct klp_patch *limit)
1228 {
1229 struct klp_patch *patch;
1230 struct klp_object *obj;
1231
1232 klp_for_each_patch(patch) {
1233 if (patch == limit)
1234 break;
1235
1236 klp_for_each_object(patch, obj) {
1237 if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1238 continue;
1239
1240 if (patch != klp_transition_patch)
1241 klp_pre_unpatch_callback(obj);
1242
1243 pr_notice("reverting patch '%s' on unloading module '%s'\n",
1244 patch->mod->name, obj->mod->name);
1245 klp_unpatch_object(obj);
1246
1247 klp_post_unpatch_callback(obj);
1248 klp_clear_object_relocs(patch, obj);
1249 klp_free_object_loaded(obj);
1250 break;
1251 }
1252 }
1253 }
1254
klp_module_coming(struct module * mod)1255 int klp_module_coming(struct module *mod)
1256 {
1257 int ret;
1258 struct klp_patch *patch;
1259 struct klp_object *obj;
1260
1261 if (WARN_ON(mod->state != MODULE_STATE_COMING))
1262 return -EINVAL;
1263
1264 if (!strcmp(mod->name, "vmlinux")) {
1265 pr_err("vmlinux.ko: invalid module name\n");
1266 return -EINVAL;
1267 }
1268
1269 mutex_lock(&klp_mutex);
1270 /*
1271 * Each module has to know that klp_module_coming()
1272 * has been called. We never know what module will
1273 * get patched by a new patch.
1274 */
1275 mod->klp_alive = true;
1276
1277 klp_for_each_patch(patch) {
1278 klp_for_each_object(patch, obj) {
1279 if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1280 continue;
1281
1282 obj->mod = mod;
1283
1284 ret = klp_init_object_loaded(patch, obj);
1285 if (ret) {
1286 pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n",
1287 patch->mod->name, obj->mod->name, ret);
1288 goto err;
1289 }
1290
1291 pr_notice("applying patch '%s' to loading module '%s'\n",
1292 patch->mod->name, obj->mod->name);
1293
1294 ret = klp_pre_patch_callback(obj);
1295 if (ret) {
1296 pr_warn("pre-patch callback failed for object '%s'\n",
1297 obj->name);
1298 goto err;
1299 }
1300
1301 ret = klp_patch_object(obj);
1302 if (ret) {
1303 pr_warn("failed to apply patch '%s' to module '%s' (%d)\n",
1304 patch->mod->name, obj->mod->name, ret);
1305
1306 klp_post_unpatch_callback(obj);
1307 goto err;
1308 }
1309
1310 if (patch != klp_transition_patch)
1311 klp_post_patch_callback(obj);
1312
1313 break;
1314 }
1315 }
1316
1317 mutex_unlock(&klp_mutex);
1318
1319 return 0;
1320
1321 err:
1322 /*
1323 * If a patch is unsuccessfully applied, return
1324 * error to the module loader.
1325 */
1326 pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n",
1327 patch->mod->name, obj->mod->name, obj->mod->name);
1328 mod->klp_alive = false;
1329 obj->mod = NULL;
1330 klp_cleanup_module_patches_limited(mod, patch);
1331 mutex_unlock(&klp_mutex);
1332
1333 return ret;
1334 }
1335
klp_module_going(struct module * mod)1336 void klp_module_going(struct module *mod)
1337 {
1338 if (WARN_ON(mod->state != MODULE_STATE_GOING &&
1339 mod->state != MODULE_STATE_COMING))
1340 return;
1341
1342 mutex_lock(&klp_mutex);
1343 /*
1344 * Each module has to know that klp_module_going()
1345 * has been called. We never know what module will
1346 * get patched by a new patch.
1347 */
1348 mod->klp_alive = false;
1349
1350 klp_cleanup_module_patches_limited(mod, NULL);
1351
1352 mutex_unlock(&klp_mutex);
1353 }
1354
klp_init(void)1355 static int __init klp_init(void)
1356 {
1357 klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj);
1358 if (!klp_root_kobj)
1359 return -ENOMEM;
1360
1361 return 0;
1362 }
1363
1364 module_init(klp_init);
1365