1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1999 Eric Youngdale
4 * Copyright (C) 2014 Christoph Hellwig
5 *
6 * SCSI queueing library.
7 * Initial versions: Eric Youngdale (eric@andante.org).
8 * Based upon conversations with large numbers
9 * of people at Linux Expo.
10 */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <linux/unaligned.h>
27
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* scsi_init_limits() */
36 #include <scsi/scsi_dh.h>
37
38 #include <trace/events/scsi.h>
39
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43
44 /*
45 * Size of integrity metadata is usually small, 1 inline sg should
46 * cover normal cases.
47 */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define SCSI_INLINE_PROT_SG_CNT 0
50 #define SCSI_INLINE_SG_CNT 0
51 #else
52 #define SCSI_INLINE_PROT_SG_CNT 1
53 #define SCSI_INLINE_SG_CNT 2
54 #endif
55
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60
scsi_init_sense_cache(struct Scsi_Host * shost)61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63 int ret = 0;
64
65 mutex_lock(&scsi_sense_cache_mutex);
66 if (!scsi_sense_cache) {
67 scsi_sense_cache =
68 kmem_cache_create_usercopy("scsi_sense_cache",
69 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70 0, SCSI_SENSE_BUFFERSIZE, NULL);
71 if (!scsi_sense_cache)
72 ret = -ENOMEM;
73 }
74 mutex_unlock(&scsi_sense_cache_mutex);
75 return ret;
76 }
77
78 static void
scsi_set_blocked(struct scsi_cmnd * cmd,int reason)79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
80 {
81 struct Scsi_Host *host = cmd->device->host;
82 struct scsi_device *device = cmd->device;
83 struct scsi_target *starget = scsi_target(device);
84
85 /*
86 * Set the appropriate busy bit for the device/host.
87 *
88 * If the host/device isn't busy, assume that something actually
89 * completed, and that we should be able to queue a command now.
90 *
91 * Note that the prior mid-layer assumption that any host could
92 * always queue at least one command is now broken. The mid-layer
93 * will implement a user specifiable stall (see
94 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
95 * if a command is requeued with no other commands outstanding
96 * either for the device or for the host.
97 */
98 switch (reason) {
99 case SCSI_MLQUEUE_HOST_BUSY:
100 atomic_set(&host->host_blocked, host->max_host_blocked);
101 break;
102 case SCSI_MLQUEUE_DEVICE_BUSY:
103 case SCSI_MLQUEUE_EH_RETRY:
104 atomic_set(&device->device_blocked,
105 device->max_device_blocked);
106 break;
107 case SCSI_MLQUEUE_TARGET_BUSY:
108 atomic_set(&starget->target_blocked,
109 starget->max_target_blocked);
110 break;
111 }
112 }
113
scsi_mq_requeue_cmd(struct scsi_cmnd * cmd,unsigned long msecs)114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
115 {
116 struct request *rq = scsi_cmd_to_rq(cmd);
117
118 if (rq->rq_flags & RQF_DONTPREP) {
119 rq->rq_flags &= ~RQF_DONTPREP;
120 scsi_mq_uninit_cmd(cmd);
121 } else {
122 WARN_ON_ONCE(true);
123 }
124
125 blk_mq_requeue_request(rq, false);
126 if (!scsi_host_in_recovery(cmd->device->host))
127 blk_mq_delay_kick_requeue_list(rq->q, msecs);
128 }
129
130 /**
131 * __scsi_queue_insert - private queue insertion
132 * @cmd: The SCSI command being requeued
133 * @reason: The reason for the requeue
134 * @unbusy: Whether the queue should be unbusied
135 *
136 * This is a private queue insertion. The public interface
137 * scsi_queue_insert() always assumes the queue should be unbusied
138 * because it's always called before the completion. This function is
139 * for a requeue after completion, which should only occur in this
140 * file.
141 */
__scsi_queue_insert(struct scsi_cmnd * cmd,int reason,bool unbusy)142 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
143 {
144 struct scsi_device *device = cmd->device;
145
146 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147 "Inserting command %p into mlqueue\n", cmd));
148
149 scsi_set_blocked(cmd, reason);
150
151 /*
152 * Decrement the counters, since these commands are no longer
153 * active on the host/device.
154 */
155 if (unbusy)
156 scsi_device_unbusy(device, cmd);
157
158 /*
159 * Requeue this command. It will go before all other commands
160 * that are already in the queue. Schedule requeue work under
161 * lock such that the kblockd_schedule_work() call happens
162 * before blk_mq_destroy_queue() finishes.
163 */
164 cmd->result = 0;
165
166 blk_mq_requeue_request(scsi_cmd_to_rq(cmd),
167 !scsi_host_in_recovery(cmd->device->host));
168 }
169
170 /**
171 * scsi_queue_insert - Reinsert a command in the queue.
172 * @cmd: command that we are adding to queue.
173 * @reason: why we are inserting command to queue.
174 *
175 * We do this for one of two cases. Either the host is busy and it cannot accept
176 * any more commands for the time being, or the device returned QUEUE_FULL and
177 * can accept no more commands.
178 *
179 * Context: This could be called either from an interrupt context or a normal
180 * process context.
181 */
scsi_queue_insert(struct scsi_cmnd * cmd,int reason)182 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
183 {
184 __scsi_queue_insert(cmd, reason, true);
185 }
186
187 /**
188 * scsi_failures_reset_retries - reset all failures to zero
189 * @failures: &struct scsi_failures with specific failure modes set
190 */
scsi_failures_reset_retries(struct scsi_failures * failures)191 void scsi_failures_reset_retries(struct scsi_failures *failures)
192 {
193 struct scsi_failure *failure;
194
195 failures->total_retries = 0;
196
197 for (failure = failures->failure_definitions; failure->result;
198 failure++)
199 failure->retries = 0;
200 }
201 EXPORT_SYMBOL_GPL(scsi_failures_reset_retries);
202
203 /**
204 * scsi_check_passthrough - Determine if passthrough scsi_cmnd needs a retry.
205 * @scmd: scsi_cmnd to check.
206 * @failures: scsi_failures struct that lists failures to check for.
207 *
208 * Returns -EAGAIN if the caller should retry else 0.
209 */
scsi_check_passthrough(struct scsi_cmnd * scmd,struct scsi_failures * failures)210 static int scsi_check_passthrough(struct scsi_cmnd *scmd,
211 struct scsi_failures *failures)
212 {
213 struct scsi_failure *failure;
214 struct scsi_sense_hdr sshdr;
215 enum sam_status status;
216
217 if (!scmd->result)
218 return 0;
219
220 if (!failures)
221 return 0;
222
223 for (failure = failures->failure_definitions; failure->result;
224 failure++) {
225 if (failure->result == SCMD_FAILURE_RESULT_ANY)
226 goto maybe_retry;
227
228 if (host_byte(scmd->result) &&
229 host_byte(scmd->result) == host_byte(failure->result))
230 goto maybe_retry;
231
232 status = status_byte(scmd->result);
233 if (!status)
234 continue;
235
236 if (failure->result == SCMD_FAILURE_STAT_ANY &&
237 !scsi_status_is_good(scmd->result))
238 goto maybe_retry;
239
240 if (status != status_byte(failure->result))
241 continue;
242
243 if (status_byte(failure->result) != SAM_STAT_CHECK_CONDITION ||
244 failure->sense == SCMD_FAILURE_SENSE_ANY)
245 goto maybe_retry;
246
247 if (!scsi_command_normalize_sense(scmd, &sshdr))
248 return 0;
249
250 if (failure->sense != sshdr.sense_key)
251 continue;
252
253 if (failure->asc == SCMD_FAILURE_ASC_ANY)
254 goto maybe_retry;
255
256 if (failure->asc != sshdr.asc)
257 continue;
258
259 if (failure->ascq == SCMD_FAILURE_ASCQ_ANY ||
260 failure->ascq == sshdr.ascq)
261 goto maybe_retry;
262 }
263
264 return 0;
265
266 maybe_retry:
267 if (failure->allowed) {
268 if (failure->allowed == SCMD_FAILURE_NO_LIMIT ||
269 ++failure->retries <= failure->allowed)
270 return -EAGAIN;
271 } else {
272 if (failures->total_allowed == SCMD_FAILURE_NO_LIMIT ||
273 ++failures->total_retries <= failures->total_allowed)
274 return -EAGAIN;
275 }
276
277 return 0;
278 }
279
280 /**
281 * scsi_execute_cmd - insert request and wait for the result
282 * @sdev: scsi_device
283 * @cmd: scsi command
284 * @opf: block layer request cmd_flags
285 * @buffer: data buffer
286 * @bufflen: len of buffer
287 * @timeout: request timeout in HZ
288 * @ml_retries: number of times SCSI midlayer will retry request
289 * @args: Optional args. See struct definition for field descriptions
290 *
291 * Returns the scsi_cmnd result field if a command was executed, or a negative
292 * Linux error code if we didn't get that far.
293 */
scsi_execute_cmd(struct scsi_device * sdev,const unsigned char * cmd,blk_opf_t opf,void * buffer,unsigned int bufflen,int timeout,int ml_retries,const struct scsi_exec_args * args)294 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
295 blk_opf_t opf, void *buffer, unsigned int bufflen,
296 int timeout, int ml_retries,
297 const struct scsi_exec_args *args)
298 {
299 static const struct scsi_exec_args default_args;
300 struct request *req;
301 struct scsi_cmnd *scmd;
302 int ret;
303
304 if (!args)
305 args = &default_args;
306 else if (WARN_ON_ONCE(args->sense &&
307 args->sense_len != SCSI_SENSE_BUFFERSIZE))
308 return -EINVAL;
309
310 retry:
311 req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
312 if (IS_ERR(req))
313 return PTR_ERR(req);
314
315 if (bufflen) {
316 ret = blk_rq_map_kern(sdev->request_queue, req,
317 buffer, bufflen, GFP_NOIO);
318 if (ret)
319 goto out;
320 }
321 scmd = blk_mq_rq_to_pdu(req);
322 scmd->cmd_len = COMMAND_SIZE(cmd[0]);
323 memcpy(scmd->cmnd, cmd, scmd->cmd_len);
324 scmd->allowed = ml_retries;
325 scmd->flags |= args->scmd_flags;
326 req->timeout = timeout;
327 req->rq_flags |= RQF_QUIET;
328
329 /*
330 * head injection *required* here otherwise quiesce won't work
331 */
332 blk_execute_rq(req, true);
333
334 if (scsi_check_passthrough(scmd, args->failures) == -EAGAIN) {
335 blk_mq_free_request(req);
336 goto retry;
337 }
338
339 /*
340 * Some devices (USB mass-storage in particular) may transfer
341 * garbage data together with a residue indicating that the data
342 * is invalid. Prevent the garbage from being misinterpreted
343 * and prevent security leaks by zeroing out the excess data.
344 */
345 if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
346 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
347
348 if (args->resid)
349 *args->resid = scmd->resid_len;
350 if (args->sense)
351 memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
352 if (args->sshdr)
353 scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
354 args->sshdr);
355
356 ret = scmd->result;
357 out:
358 blk_mq_free_request(req);
359
360 return ret;
361 }
362 EXPORT_SYMBOL(scsi_execute_cmd);
363
364 /*
365 * Wake up the error handler if necessary. Avoid as follows that the error
366 * handler is not woken up if host in-flight requests number ==
367 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
368 * with an RCU read lock in this function to ensure that this function in
369 * its entirety either finishes before scsi_eh_scmd_add() increases the
370 * host_failed counter or that it notices the shost state change made by
371 * scsi_eh_scmd_add().
372 */
scsi_dec_host_busy(struct Scsi_Host * shost,struct scsi_cmnd * cmd)373 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
374 {
375 unsigned long flags;
376
377 rcu_read_lock();
378 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
379 if (unlikely(scsi_host_in_recovery(shost))) {
380 unsigned int busy = scsi_host_busy(shost);
381
382 spin_lock_irqsave(shost->host_lock, flags);
383 if (shost->host_failed || shost->host_eh_scheduled)
384 scsi_eh_wakeup(shost, busy);
385 spin_unlock_irqrestore(shost->host_lock, flags);
386 }
387 rcu_read_unlock();
388 }
389
scsi_device_unbusy(struct scsi_device * sdev,struct scsi_cmnd * cmd)390 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
391 {
392 struct Scsi_Host *shost = sdev->host;
393 struct scsi_target *starget = scsi_target(sdev);
394
395 scsi_dec_host_busy(shost, cmd);
396
397 if (starget->can_queue > 0)
398 atomic_dec(&starget->target_busy);
399
400 sbitmap_put(&sdev->budget_map, cmd->budget_token);
401 cmd->budget_token = -1;
402 }
403
404 /*
405 * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
406 * interrupts disabled.
407 */
scsi_kick_sdev_queue(struct scsi_device * sdev,void * data)408 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
409 {
410 struct scsi_device *current_sdev = data;
411
412 if (sdev != current_sdev)
413 blk_mq_run_hw_queues(sdev->request_queue, true);
414 }
415
416 /*
417 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
418 * and call blk_run_queue for all the scsi_devices on the target -
419 * including current_sdev first.
420 *
421 * Called with *no* scsi locks held.
422 */
scsi_single_lun_run(struct scsi_device * current_sdev)423 static void scsi_single_lun_run(struct scsi_device *current_sdev)
424 {
425 struct Scsi_Host *shost = current_sdev->host;
426 struct scsi_target *starget = scsi_target(current_sdev);
427 unsigned long flags;
428
429 spin_lock_irqsave(shost->host_lock, flags);
430 starget->starget_sdev_user = NULL;
431 spin_unlock_irqrestore(shost->host_lock, flags);
432
433 /*
434 * Call blk_run_queue for all LUNs on the target, starting with
435 * current_sdev. We race with others (to set starget_sdev_user),
436 * but in most cases, we will be first. Ideally, each LU on the
437 * target would get some limited time or requests on the target.
438 */
439 blk_mq_run_hw_queues(current_sdev->request_queue,
440 shost->queuecommand_may_block);
441
442 spin_lock_irqsave(shost->host_lock, flags);
443 if (!starget->starget_sdev_user)
444 __starget_for_each_device(starget, current_sdev,
445 scsi_kick_sdev_queue);
446 spin_unlock_irqrestore(shost->host_lock, flags);
447 }
448
scsi_device_is_busy(struct scsi_device * sdev)449 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
450 {
451 if (scsi_device_busy(sdev) >= sdev->queue_depth)
452 return true;
453 if (atomic_read(&sdev->device_blocked) > 0)
454 return true;
455 return false;
456 }
457
scsi_target_is_busy(struct scsi_target * starget)458 static inline bool scsi_target_is_busy(struct scsi_target *starget)
459 {
460 if (starget->can_queue > 0) {
461 if (atomic_read(&starget->target_busy) >= starget->can_queue)
462 return true;
463 if (atomic_read(&starget->target_blocked) > 0)
464 return true;
465 }
466 return false;
467 }
468
scsi_host_is_busy(struct Scsi_Host * shost)469 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
470 {
471 if (atomic_read(&shost->host_blocked) > 0)
472 return true;
473 if (shost->host_self_blocked)
474 return true;
475 return false;
476 }
477
scsi_starved_list_run(struct Scsi_Host * shost)478 static void scsi_starved_list_run(struct Scsi_Host *shost)
479 {
480 LIST_HEAD(starved_list);
481 struct scsi_device *sdev;
482 unsigned long flags;
483
484 spin_lock_irqsave(shost->host_lock, flags);
485 list_splice_init(&shost->starved_list, &starved_list);
486
487 while (!list_empty(&starved_list)) {
488 struct request_queue *slq;
489
490 /*
491 * As long as shost is accepting commands and we have
492 * starved queues, call blk_run_queue. scsi_request_fn
493 * drops the queue_lock and can add us back to the
494 * starved_list.
495 *
496 * host_lock protects the starved_list and starved_entry.
497 * scsi_request_fn must get the host_lock before checking
498 * or modifying starved_list or starved_entry.
499 */
500 if (scsi_host_is_busy(shost))
501 break;
502
503 sdev = list_entry(starved_list.next,
504 struct scsi_device, starved_entry);
505 list_del_init(&sdev->starved_entry);
506 if (scsi_target_is_busy(scsi_target(sdev))) {
507 list_move_tail(&sdev->starved_entry,
508 &shost->starved_list);
509 continue;
510 }
511
512 /*
513 * Once we drop the host lock, a racing scsi_remove_device()
514 * call may remove the sdev from the starved list and destroy
515 * it and the queue. Mitigate by taking a reference to the
516 * queue and never touching the sdev again after we drop the
517 * host lock. Note: if __scsi_remove_device() invokes
518 * blk_mq_destroy_queue() before the queue is run from this
519 * function then blk_run_queue() will return immediately since
520 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
521 */
522 slq = sdev->request_queue;
523 if (!blk_get_queue(slq))
524 continue;
525 spin_unlock_irqrestore(shost->host_lock, flags);
526
527 blk_mq_run_hw_queues(slq, false);
528 blk_put_queue(slq);
529
530 spin_lock_irqsave(shost->host_lock, flags);
531 }
532 /* put any unprocessed entries back */
533 list_splice(&starved_list, &shost->starved_list);
534 spin_unlock_irqrestore(shost->host_lock, flags);
535 }
536
537 /**
538 * scsi_run_queue - Select a proper request queue to serve next.
539 * @q: last request's queue
540 *
541 * The previous command was completely finished, start a new one if possible.
542 */
scsi_run_queue(struct request_queue * q)543 static void scsi_run_queue(struct request_queue *q)
544 {
545 struct scsi_device *sdev = q->queuedata;
546
547 if (scsi_target(sdev)->single_lun)
548 scsi_single_lun_run(sdev);
549 if (!list_empty(&sdev->host->starved_list))
550 scsi_starved_list_run(sdev->host);
551
552 /* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */
553 blk_mq_kick_requeue_list(q);
554 }
555
scsi_requeue_run_queue(struct work_struct * work)556 void scsi_requeue_run_queue(struct work_struct *work)
557 {
558 struct scsi_device *sdev;
559 struct request_queue *q;
560
561 sdev = container_of(work, struct scsi_device, requeue_work);
562 q = sdev->request_queue;
563 scsi_run_queue(q);
564 }
565
scsi_run_host_queues(struct Scsi_Host * shost)566 void scsi_run_host_queues(struct Scsi_Host *shost)
567 {
568 struct scsi_device *sdev;
569
570 shost_for_each_device(sdev, shost)
571 scsi_run_queue(sdev->request_queue);
572 }
573
scsi_uninit_cmd(struct scsi_cmnd * cmd)574 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
575 {
576 if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
577 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
578
579 if (drv->uninit_command)
580 drv->uninit_command(cmd);
581 }
582 }
583
scsi_free_sgtables(struct scsi_cmnd * cmd)584 void scsi_free_sgtables(struct scsi_cmnd *cmd)
585 {
586 if (cmd->sdb.table.nents)
587 sg_free_table_chained(&cmd->sdb.table,
588 SCSI_INLINE_SG_CNT);
589 if (scsi_prot_sg_count(cmd))
590 sg_free_table_chained(&cmd->prot_sdb->table,
591 SCSI_INLINE_PROT_SG_CNT);
592 }
593 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
594
scsi_mq_uninit_cmd(struct scsi_cmnd * cmd)595 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
596 {
597 scsi_free_sgtables(cmd);
598 scsi_uninit_cmd(cmd);
599 }
600
scsi_run_queue_async(struct scsi_device * sdev)601 static void scsi_run_queue_async(struct scsi_device *sdev)
602 {
603 if (scsi_host_in_recovery(sdev->host))
604 return;
605
606 if (scsi_target(sdev)->single_lun ||
607 !list_empty(&sdev->host->starved_list)) {
608 kblockd_schedule_work(&sdev->requeue_work);
609 } else {
610 /*
611 * smp_mb() present in sbitmap_queue_clear() or implied in
612 * .end_io is for ordering writing .device_busy in
613 * scsi_device_unbusy() and reading sdev->restarts.
614 */
615 int old = atomic_read(&sdev->restarts);
616
617 /*
618 * ->restarts has to be kept as non-zero if new budget
619 * contention occurs.
620 *
621 * No need to run queue when either another re-run
622 * queue wins in updating ->restarts or a new budget
623 * contention occurs.
624 */
625 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
626 blk_mq_run_hw_queues(sdev->request_queue, true);
627 }
628 }
629
630 /* Returns false when no more bytes to process, true if there are more */
scsi_end_request(struct request * req,blk_status_t error,unsigned int bytes)631 static bool scsi_end_request(struct request *req, blk_status_t error,
632 unsigned int bytes)
633 {
634 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
635 struct scsi_device *sdev = cmd->device;
636 struct request_queue *q = sdev->request_queue;
637
638 if (blk_update_request(req, error, bytes))
639 return true;
640
641 if (q->limits.features & BLK_FEAT_ADD_RANDOM)
642 add_disk_randomness(req->q->disk);
643
644 WARN_ON_ONCE(!blk_rq_is_passthrough(req) &&
645 !(cmd->flags & SCMD_INITIALIZED));
646 cmd->flags = 0;
647
648 /*
649 * Calling rcu_barrier() is not necessary here because the
650 * SCSI error handler guarantees that the function called by
651 * call_rcu() has been called before scsi_end_request() is
652 * called.
653 */
654 destroy_rcu_head(&cmd->rcu);
655
656 /*
657 * In the MQ case the command gets freed by __blk_mq_end_request,
658 * so we have to do all cleanup that depends on it earlier.
659 *
660 * We also can't kick the queues from irq context, so we
661 * will have to defer it to a workqueue.
662 */
663 scsi_mq_uninit_cmd(cmd);
664
665 /*
666 * queue is still alive, so grab the ref for preventing it
667 * from being cleaned up during running queue.
668 */
669 percpu_ref_get(&q->q_usage_counter);
670
671 __blk_mq_end_request(req, error);
672
673 scsi_run_queue_async(sdev);
674
675 percpu_ref_put(&q->q_usage_counter);
676 return false;
677 }
678
679 /**
680 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
681 * @result: scsi error code
682 *
683 * Translate a SCSI result code into a blk_status_t value.
684 */
scsi_result_to_blk_status(int result)685 static blk_status_t scsi_result_to_blk_status(int result)
686 {
687 /*
688 * Check the scsi-ml byte first in case we converted a host or status
689 * byte.
690 */
691 switch (scsi_ml_byte(result)) {
692 case SCSIML_STAT_OK:
693 break;
694 case SCSIML_STAT_RESV_CONFLICT:
695 return BLK_STS_RESV_CONFLICT;
696 case SCSIML_STAT_NOSPC:
697 return BLK_STS_NOSPC;
698 case SCSIML_STAT_MED_ERROR:
699 return BLK_STS_MEDIUM;
700 case SCSIML_STAT_TGT_FAILURE:
701 return BLK_STS_TARGET;
702 case SCSIML_STAT_DL_TIMEOUT:
703 return BLK_STS_DURATION_LIMIT;
704 }
705
706 switch (host_byte(result)) {
707 case DID_OK:
708 if (scsi_status_is_good(result))
709 return BLK_STS_OK;
710 return BLK_STS_IOERR;
711 case DID_TRANSPORT_FAILFAST:
712 case DID_TRANSPORT_MARGINAL:
713 return BLK_STS_TRANSPORT;
714 default:
715 return BLK_STS_IOERR;
716 }
717 }
718
719 /**
720 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
721 * @rq: request to examine
722 *
723 * Description:
724 * A request could be merge of IOs which require different failure
725 * handling. This function determines the number of bytes which
726 * can be failed from the beginning of the request without
727 * crossing into area which need to be retried further.
728 *
729 * Return:
730 * The number of bytes to fail.
731 */
scsi_rq_err_bytes(const struct request * rq)732 static unsigned int scsi_rq_err_bytes(const struct request *rq)
733 {
734 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
735 unsigned int bytes = 0;
736 struct bio *bio;
737
738 if (!(rq->rq_flags & RQF_MIXED_MERGE))
739 return blk_rq_bytes(rq);
740
741 /*
742 * Currently the only 'mixing' which can happen is between
743 * different fastfail types. We can safely fail portions
744 * which have all the failfast bits that the first one has -
745 * the ones which are at least as eager to fail as the first
746 * one.
747 */
748 for (bio = rq->bio; bio; bio = bio->bi_next) {
749 if ((bio->bi_opf & ff) != ff)
750 break;
751 bytes += bio->bi_iter.bi_size;
752 }
753
754 /* this could lead to infinite loop */
755 BUG_ON(blk_rq_bytes(rq) && !bytes);
756 return bytes;
757 }
758
scsi_cmd_runtime_exceeced(struct scsi_cmnd * cmd)759 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
760 {
761 struct request *req = scsi_cmd_to_rq(cmd);
762 unsigned long wait_for;
763
764 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
765 return false;
766
767 wait_for = (cmd->allowed + 1) * req->timeout;
768 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
769 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
770 wait_for/HZ);
771 return true;
772 }
773 return false;
774 }
775
776 /*
777 * When ALUA transition state is returned, reprep the cmd to
778 * use the ALUA handler's transition timeout. Delay the reprep
779 * 1 sec to avoid aggressive retries of the target in that
780 * state.
781 */
782 #define ALUA_TRANSITION_REPREP_DELAY 1000
783
784 /* Helper for scsi_io_completion() when special action required. */
scsi_io_completion_action(struct scsi_cmnd * cmd,int result)785 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
786 {
787 struct request *req = scsi_cmd_to_rq(cmd);
788 int level = 0;
789 enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
790 ACTION_RETRY, ACTION_DELAYED_RETRY} action;
791 struct scsi_sense_hdr sshdr;
792 bool sense_valid;
793 bool sense_current = true; /* false implies "deferred sense" */
794 blk_status_t blk_stat;
795
796 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
797 if (sense_valid)
798 sense_current = !scsi_sense_is_deferred(&sshdr);
799
800 blk_stat = scsi_result_to_blk_status(result);
801
802 if (host_byte(result) == DID_RESET) {
803 /* Third party bus reset or reset for error recovery
804 * reasons. Just retry the command and see what
805 * happens.
806 */
807 action = ACTION_RETRY;
808 } else if (sense_valid && sense_current) {
809 switch (sshdr.sense_key) {
810 case UNIT_ATTENTION:
811 if (cmd->device->removable) {
812 /* Detected disc change. Set a bit
813 * and quietly refuse further access.
814 */
815 cmd->device->changed = 1;
816 action = ACTION_FAIL;
817 } else {
818 /* Must have been a power glitch, or a
819 * bus reset. Could not have been a
820 * media change, so we just retry the
821 * command and see what happens.
822 */
823 action = ACTION_RETRY;
824 }
825 break;
826 case ILLEGAL_REQUEST:
827 /* If we had an ILLEGAL REQUEST returned, then
828 * we may have performed an unsupported
829 * command. The only thing this should be
830 * would be a ten byte read where only a six
831 * byte read was supported. Also, on a system
832 * where READ CAPACITY failed, we may have
833 * read past the end of the disk.
834 */
835 if ((cmd->device->use_10_for_rw &&
836 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
837 (cmd->cmnd[0] == READ_10 ||
838 cmd->cmnd[0] == WRITE_10)) {
839 /* This will issue a new 6-byte command. */
840 cmd->device->use_10_for_rw = 0;
841 action = ACTION_REPREP;
842 } else if (sshdr.asc == 0x10) /* DIX */ {
843 action = ACTION_FAIL;
844 blk_stat = BLK_STS_PROTECTION;
845 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
846 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
847 action = ACTION_FAIL;
848 blk_stat = BLK_STS_TARGET;
849 } else
850 action = ACTION_FAIL;
851 break;
852 case ABORTED_COMMAND:
853 action = ACTION_FAIL;
854 if (sshdr.asc == 0x10) /* DIF */
855 blk_stat = BLK_STS_PROTECTION;
856 break;
857 case NOT_READY:
858 /* If the device is in the process of becoming
859 * ready, or has a temporary blockage, retry.
860 */
861 if (sshdr.asc == 0x04) {
862 switch (sshdr.ascq) {
863 case 0x01: /* becoming ready */
864 case 0x04: /* format in progress */
865 case 0x05: /* rebuild in progress */
866 case 0x06: /* recalculation in progress */
867 case 0x07: /* operation in progress */
868 case 0x08: /* Long write in progress */
869 case 0x09: /* self test in progress */
870 case 0x11: /* notify (enable spinup) required */
871 case 0x14: /* space allocation in progress */
872 case 0x1a: /* start stop unit in progress */
873 case 0x1b: /* sanitize in progress */
874 case 0x1d: /* configuration in progress */
875 action = ACTION_DELAYED_RETRY;
876 break;
877 case 0x0a: /* ALUA state transition */
878 action = ACTION_DELAYED_REPREP;
879 break;
880 /*
881 * Depopulation might take many hours,
882 * thus it is not worthwhile to retry.
883 */
884 case 0x24: /* depopulation in progress */
885 case 0x25: /* depopulation restore in progress */
886 fallthrough;
887 default:
888 action = ACTION_FAIL;
889 break;
890 }
891 } else
892 action = ACTION_FAIL;
893 break;
894 case VOLUME_OVERFLOW:
895 /* See SSC3rXX or current. */
896 action = ACTION_FAIL;
897 break;
898 case DATA_PROTECT:
899 action = ACTION_FAIL;
900 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
901 (sshdr.asc == 0x55 &&
902 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
903 /* Insufficient zone resources */
904 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
905 }
906 break;
907 case COMPLETED:
908 fallthrough;
909 default:
910 action = ACTION_FAIL;
911 break;
912 }
913 } else
914 action = ACTION_FAIL;
915
916 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
917 action = ACTION_FAIL;
918
919 switch (action) {
920 case ACTION_FAIL:
921 /* Give up and fail the remainder of the request */
922 if (!(req->rq_flags & RQF_QUIET)) {
923 static DEFINE_RATELIMIT_STATE(_rs,
924 DEFAULT_RATELIMIT_INTERVAL,
925 DEFAULT_RATELIMIT_BURST);
926
927 if (unlikely(scsi_logging_level))
928 level =
929 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
930 SCSI_LOG_MLCOMPLETE_BITS);
931
932 /*
933 * if logging is enabled the failure will be printed
934 * in scsi_log_completion(), so avoid duplicate messages
935 */
936 if (!level && __ratelimit(&_rs)) {
937 scsi_print_result(cmd, NULL, FAILED);
938 if (sense_valid)
939 scsi_print_sense(cmd);
940 scsi_print_command(cmd);
941 }
942 }
943 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
944 return;
945 fallthrough;
946 case ACTION_REPREP:
947 scsi_mq_requeue_cmd(cmd, 0);
948 break;
949 case ACTION_DELAYED_REPREP:
950 scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
951 break;
952 case ACTION_RETRY:
953 /* Retry the same command immediately */
954 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
955 break;
956 case ACTION_DELAYED_RETRY:
957 /* Retry the same command after a delay */
958 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
959 break;
960 }
961 }
962
963 /*
964 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
965 * new result that may suppress further error checking. Also modifies
966 * *blk_statp in some cases.
967 */
scsi_io_completion_nz_result(struct scsi_cmnd * cmd,int result,blk_status_t * blk_statp)968 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
969 blk_status_t *blk_statp)
970 {
971 bool sense_valid;
972 bool sense_current = true; /* false implies "deferred sense" */
973 struct request *req = scsi_cmd_to_rq(cmd);
974 struct scsi_sense_hdr sshdr;
975
976 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
977 if (sense_valid)
978 sense_current = !scsi_sense_is_deferred(&sshdr);
979
980 if (blk_rq_is_passthrough(req)) {
981 if (sense_valid) {
982 /*
983 * SG_IO wants current and deferred errors
984 */
985 cmd->sense_len = min(8 + cmd->sense_buffer[7],
986 SCSI_SENSE_BUFFERSIZE);
987 }
988 if (sense_current)
989 *blk_statp = scsi_result_to_blk_status(result);
990 } else if (blk_rq_bytes(req) == 0 && sense_current) {
991 /*
992 * Flush commands do not transfers any data, and thus cannot use
993 * good_bytes != blk_rq_bytes(req) as the signal for an error.
994 * This sets *blk_statp explicitly for the problem case.
995 */
996 *blk_statp = scsi_result_to_blk_status(result);
997 }
998 /*
999 * Recovered errors need reporting, but they're always treated as
1000 * success, so fiddle the result code here. For passthrough requests
1001 * we already took a copy of the original into sreq->result which
1002 * is what gets returned to the user
1003 */
1004 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
1005 bool do_print = true;
1006 /*
1007 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
1008 * skip print since caller wants ATA registers. Only occurs
1009 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
1010 */
1011 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
1012 do_print = false;
1013 else if (req->rq_flags & RQF_QUIET)
1014 do_print = false;
1015 if (do_print)
1016 scsi_print_sense(cmd);
1017 result = 0;
1018 /* for passthrough, *blk_statp may be set */
1019 *blk_statp = BLK_STS_OK;
1020 }
1021 /*
1022 * Another corner case: the SCSI status byte is non-zero but 'good'.
1023 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
1024 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
1025 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
1026 * intermediate statuses (both obsolete in SAM-4) as good.
1027 */
1028 if ((result & 0xff) && scsi_status_is_good(result)) {
1029 result = 0;
1030 *blk_statp = BLK_STS_OK;
1031 }
1032 return result;
1033 }
1034
1035 /**
1036 * scsi_io_completion - Completion processing for SCSI commands.
1037 * @cmd: command that is finished.
1038 * @good_bytes: number of processed bytes.
1039 *
1040 * We will finish off the specified number of sectors. If we are done, the
1041 * command block will be released and the queue function will be goosed. If we
1042 * are not done then we have to figure out what to do next:
1043 *
1044 * a) We can call scsi_mq_requeue_cmd(). The request will be
1045 * unprepared and put back on the queue. Then a new command will
1046 * be created for it. This should be used if we made forward
1047 * progress, or if we want to switch from READ(10) to READ(6) for
1048 * example.
1049 *
1050 * b) We can call scsi_io_completion_action(). The request will be
1051 * put back on the queue and retried using the same command as
1052 * before, possibly after a delay.
1053 *
1054 * c) We can call scsi_end_request() with blk_stat other than
1055 * BLK_STS_OK, to fail the remainder of the request.
1056 */
scsi_io_completion(struct scsi_cmnd * cmd,unsigned int good_bytes)1057 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
1058 {
1059 int result = cmd->result;
1060 struct request *req = scsi_cmd_to_rq(cmd);
1061 blk_status_t blk_stat = BLK_STS_OK;
1062
1063 if (unlikely(result)) /* a nz result may or may not be an error */
1064 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
1065
1066 /*
1067 * Next deal with any sectors which we were able to correctly
1068 * handle.
1069 */
1070 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
1071 "%u sectors total, %d bytes done.\n",
1072 blk_rq_sectors(req), good_bytes));
1073
1074 /*
1075 * Failed, zero length commands always need to drop down
1076 * to retry code. Fast path should return in this block.
1077 */
1078 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
1079 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
1080 return; /* no bytes remaining */
1081 }
1082
1083 /* Kill remainder if no retries. */
1084 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
1085 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
1086 WARN_ONCE(true,
1087 "Bytes remaining after failed, no-retry command");
1088 return;
1089 }
1090
1091 /*
1092 * If there had been no error, but we have leftover bytes in the
1093 * request just queue the command up again.
1094 */
1095 if (likely(result == 0))
1096 scsi_mq_requeue_cmd(cmd, 0);
1097 else
1098 scsi_io_completion_action(cmd, result);
1099 }
1100
scsi_cmd_needs_dma_drain(struct scsi_device * sdev,struct request * rq)1101 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
1102 struct request *rq)
1103 {
1104 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1105 !op_is_write(req_op(rq)) &&
1106 sdev->host->hostt->dma_need_drain(rq);
1107 }
1108
1109 /**
1110 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1111 * @cmd: SCSI command data structure to initialize.
1112 *
1113 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1114 * for @cmd.
1115 *
1116 * Returns:
1117 * * BLK_STS_OK - on success
1118 * * BLK_STS_RESOURCE - if the failure is retryable
1119 * * BLK_STS_IOERR - if the failure is fatal
1120 */
scsi_alloc_sgtables(struct scsi_cmnd * cmd)1121 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1122 {
1123 struct scsi_device *sdev = cmd->device;
1124 struct request *rq = scsi_cmd_to_rq(cmd);
1125 unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1126 struct scatterlist *last_sg = NULL;
1127 blk_status_t ret;
1128 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1129 int count;
1130
1131 if (WARN_ON_ONCE(!nr_segs))
1132 return BLK_STS_IOERR;
1133
1134 /*
1135 * Make sure there is space for the drain. The driver must adjust
1136 * max_hw_segments to be prepared for this.
1137 */
1138 if (need_drain)
1139 nr_segs++;
1140
1141 /*
1142 * If sg table allocation fails, requeue request later.
1143 */
1144 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1145 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1146 return BLK_STS_RESOURCE;
1147
1148 /*
1149 * Next, walk the list, and fill in the addresses and sizes of
1150 * each segment.
1151 */
1152 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1153
1154 if (blk_rq_bytes(rq) & rq->q->limits.dma_pad_mask) {
1155 unsigned int pad_len =
1156 (rq->q->limits.dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1157
1158 last_sg->length += pad_len;
1159 cmd->extra_len += pad_len;
1160 }
1161
1162 if (need_drain) {
1163 sg_unmark_end(last_sg);
1164 last_sg = sg_next(last_sg);
1165 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1166 sg_mark_end(last_sg);
1167
1168 cmd->extra_len += sdev->dma_drain_len;
1169 count++;
1170 }
1171
1172 BUG_ON(count > cmd->sdb.table.nents);
1173 cmd->sdb.table.nents = count;
1174 cmd->sdb.length = blk_rq_payload_bytes(rq);
1175
1176 if (blk_integrity_rq(rq)) {
1177 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1178
1179 if (WARN_ON_ONCE(!prot_sdb)) {
1180 /*
1181 * This can happen if someone (e.g. multipath)
1182 * queues a command to a device on an adapter
1183 * that does not support DIX.
1184 */
1185 ret = BLK_STS_IOERR;
1186 goto out_free_sgtables;
1187 }
1188
1189 if (sg_alloc_table_chained(&prot_sdb->table,
1190 rq->nr_integrity_segments,
1191 prot_sdb->table.sgl,
1192 SCSI_INLINE_PROT_SG_CNT)) {
1193 ret = BLK_STS_RESOURCE;
1194 goto out_free_sgtables;
1195 }
1196
1197 count = blk_rq_map_integrity_sg(rq, prot_sdb->table.sgl);
1198 cmd->prot_sdb = prot_sdb;
1199 cmd->prot_sdb->table.nents = count;
1200 }
1201
1202 return BLK_STS_OK;
1203 out_free_sgtables:
1204 scsi_free_sgtables(cmd);
1205 return ret;
1206 }
1207 EXPORT_SYMBOL(scsi_alloc_sgtables);
1208
1209 /**
1210 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1211 * @rq: Request associated with the SCSI command to be initialized.
1212 *
1213 * This function initializes the members of struct scsi_cmnd that must be
1214 * initialized before request processing starts and that won't be
1215 * reinitialized if a SCSI command is requeued.
1216 */
scsi_initialize_rq(struct request * rq)1217 static void scsi_initialize_rq(struct request *rq)
1218 {
1219 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1220
1221 memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1222 cmd->cmd_len = MAX_COMMAND_SIZE;
1223 cmd->sense_len = 0;
1224 init_rcu_head(&cmd->rcu);
1225 cmd->jiffies_at_alloc = jiffies;
1226 cmd->retries = 0;
1227 }
1228
1229 /**
1230 * scsi_alloc_request - allocate a block request and partially
1231 * initialize its &scsi_cmnd
1232 * @q: the device's request queue
1233 * @opf: the request operation code
1234 * @flags: block layer allocation flags
1235 *
1236 * Return: &struct request pointer on success or %NULL on failure
1237 */
scsi_alloc_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)1238 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1239 blk_mq_req_flags_t flags)
1240 {
1241 struct request *rq;
1242
1243 rq = blk_mq_alloc_request(q, opf, flags);
1244 if (!IS_ERR(rq))
1245 scsi_initialize_rq(rq);
1246 return rq;
1247 }
1248 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1249
1250 /*
1251 * Only called when the request isn't completed by SCSI, and not freed by
1252 * SCSI
1253 */
scsi_cleanup_rq(struct request * rq)1254 static void scsi_cleanup_rq(struct request *rq)
1255 {
1256 if (rq->rq_flags & RQF_DONTPREP) {
1257 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1258 rq->rq_flags &= ~RQF_DONTPREP;
1259 }
1260 }
1261
1262 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
scsi_init_command(struct scsi_device * dev,struct scsi_cmnd * cmd)1263 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1264 {
1265 struct request *rq = scsi_cmd_to_rq(cmd);
1266
1267 if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1268 cmd->flags |= SCMD_INITIALIZED;
1269 scsi_initialize_rq(rq);
1270 }
1271
1272 cmd->device = dev;
1273 INIT_LIST_HEAD(&cmd->eh_entry);
1274 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1275 }
1276
scsi_setup_scsi_cmnd(struct scsi_device * sdev,struct request * req)1277 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1278 struct request *req)
1279 {
1280 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1281
1282 /*
1283 * Passthrough requests may transfer data, in which case they must
1284 * a bio attached to them. Or they might contain a SCSI command
1285 * that does not transfer data, in which case they may optionally
1286 * submit a request without an attached bio.
1287 */
1288 if (req->bio) {
1289 blk_status_t ret = scsi_alloc_sgtables(cmd);
1290 if (unlikely(ret != BLK_STS_OK))
1291 return ret;
1292 } else {
1293 BUG_ON(blk_rq_bytes(req));
1294
1295 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1296 }
1297
1298 cmd->transfersize = blk_rq_bytes(req);
1299 return BLK_STS_OK;
1300 }
1301
1302 static blk_status_t
scsi_device_state_check(struct scsi_device * sdev,struct request * req)1303 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1304 {
1305 switch (sdev->sdev_state) {
1306 case SDEV_CREATED:
1307 return BLK_STS_OK;
1308 case SDEV_OFFLINE:
1309 case SDEV_TRANSPORT_OFFLINE:
1310 /*
1311 * If the device is offline we refuse to process any
1312 * commands. The device must be brought online
1313 * before trying any recovery commands.
1314 */
1315 if (!sdev->offline_already) {
1316 sdev->offline_already = true;
1317 sdev_printk(KERN_ERR, sdev,
1318 "rejecting I/O to offline device\n");
1319 }
1320 return BLK_STS_IOERR;
1321 case SDEV_DEL:
1322 /*
1323 * If the device is fully deleted, we refuse to
1324 * process any commands as well.
1325 */
1326 sdev_printk(KERN_ERR, sdev,
1327 "rejecting I/O to dead device\n");
1328 return BLK_STS_IOERR;
1329 case SDEV_BLOCK:
1330 case SDEV_CREATED_BLOCK:
1331 return BLK_STS_RESOURCE;
1332 case SDEV_QUIESCE:
1333 /*
1334 * If the device is blocked we only accept power management
1335 * commands.
1336 */
1337 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1338 return BLK_STS_RESOURCE;
1339 return BLK_STS_OK;
1340 default:
1341 /*
1342 * For any other not fully online state we only allow
1343 * power management commands.
1344 */
1345 if (req && !(req->rq_flags & RQF_PM))
1346 return BLK_STS_OFFLINE;
1347 return BLK_STS_OK;
1348 }
1349 }
1350
1351 /*
1352 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1353 * and return the token else return -1.
1354 */
scsi_dev_queue_ready(struct request_queue * q,struct scsi_device * sdev)1355 static inline int scsi_dev_queue_ready(struct request_queue *q,
1356 struct scsi_device *sdev)
1357 {
1358 int token;
1359
1360 token = sbitmap_get(&sdev->budget_map);
1361 if (token < 0)
1362 return -1;
1363
1364 if (!atomic_read(&sdev->device_blocked))
1365 return token;
1366
1367 /*
1368 * Only unblock if no other commands are pending and
1369 * if device_blocked has decreased to zero
1370 */
1371 if (scsi_device_busy(sdev) > 1 ||
1372 atomic_dec_return(&sdev->device_blocked) > 0) {
1373 sbitmap_put(&sdev->budget_map, token);
1374 return -1;
1375 }
1376
1377 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1378 "unblocking device at zero depth\n"));
1379
1380 return token;
1381 }
1382
1383 /*
1384 * scsi_target_queue_ready: checks if there we can send commands to target
1385 * @sdev: scsi device on starget to check.
1386 */
scsi_target_queue_ready(struct Scsi_Host * shost,struct scsi_device * sdev)1387 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1388 struct scsi_device *sdev)
1389 {
1390 struct scsi_target *starget = scsi_target(sdev);
1391 unsigned int busy;
1392
1393 if (starget->single_lun) {
1394 spin_lock_irq(shost->host_lock);
1395 if (starget->starget_sdev_user &&
1396 starget->starget_sdev_user != sdev) {
1397 spin_unlock_irq(shost->host_lock);
1398 return 0;
1399 }
1400 starget->starget_sdev_user = sdev;
1401 spin_unlock_irq(shost->host_lock);
1402 }
1403
1404 if (starget->can_queue <= 0)
1405 return 1;
1406
1407 busy = atomic_inc_return(&starget->target_busy) - 1;
1408 if (atomic_read(&starget->target_blocked) > 0) {
1409 if (busy)
1410 goto starved;
1411
1412 /*
1413 * unblock after target_blocked iterates to zero
1414 */
1415 if (atomic_dec_return(&starget->target_blocked) > 0)
1416 goto out_dec;
1417
1418 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1419 "unblocking target at zero depth\n"));
1420 }
1421
1422 if (busy >= starget->can_queue)
1423 goto starved;
1424
1425 return 1;
1426
1427 starved:
1428 spin_lock_irq(shost->host_lock);
1429 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1430 spin_unlock_irq(shost->host_lock);
1431 out_dec:
1432 if (starget->can_queue > 0)
1433 atomic_dec(&starget->target_busy);
1434 return 0;
1435 }
1436
1437 /*
1438 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1439 * return 0. We must end up running the queue again whenever 0 is
1440 * returned, else IO can hang.
1441 */
scsi_host_queue_ready(struct request_queue * q,struct Scsi_Host * shost,struct scsi_device * sdev,struct scsi_cmnd * cmd)1442 static inline int scsi_host_queue_ready(struct request_queue *q,
1443 struct Scsi_Host *shost,
1444 struct scsi_device *sdev,
1445 struct scsi_cmnd *cmd)
1446 {
1447 if (atomic_read(&shost->host_blocked) > 0) {
1448 if (scsi_host_busy(shost) > 0)
1449 goto starved;
1450
1451 /*
1452 * unblock after host_blocked iterates to zero
1453 */
1454 if (atomic_dec_return(&shost->host_blocked) > 0)
1455 goto out_dec;
1456
1457 SCSI_LOG_MLQUEUE(3,
1458 shost_printk(KERN_INFO, shost,
1459 "unblocking host at zero depth\n"));
1460 }
1461
1462 if (shost->host_self_blocked)
1463 goto starved;
1464
1465 /* We're OK to process the command, so we can't be starved */
1466 if (!list_empty(&sdev->starved_entry)) {
1467 spin_lock_irq(shost->host_lock);
1468 if (!list_empty(&sdev->starved_entry))
1469 list_del_init(&sdev->starved_entry);
1470 spin_unlock_irq(shost->host_lock);
1471 }
1472
1473 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1474
1475 return 1;
1476
1477 starved:
1478 spin_lock_irq(shost->host_lock);
1479 if (list_empty(&sdev->starved_entry))
1480 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1481 spin_unlock_irq(shost->host_lock);
1482 out_dec:
1483 scsi_dec_host_busy(shost, cmd);
1484 return 0;
1485 }
1486
1487 /*
1488 * Busy state exporting function for request stacking drivers.
1489 *
1490 * For efficiency, no lock is taken to check the busy state of
1491 * shost/starget/sdev, since the returned value is not guaranteed and
1492 * may be changed after request stacking drivers call the function,
1493 * regardless of taking lock or not.
1494 *
1495 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1496 * needs to return 'not busy'. Otherwise, request stacking drivers
1497 * may hold requests forever.
1498 */
scsi_mq_lld_busy(struct request_queue * q)1499 static bool scsi_mq_lld_busy(struct request_queue *q)
1500 {
1501 struct scsi_device *sdev = q->queuedata;
1502 struct Scsi_Host *shost;
1503
1504 if (blk_queue_dying(q))
1505 return false;
1506
1507 shost = sdev->host;
1508
1509 /*
1510 * Ignore host/starget busy state.
1511 * Since block layer does not have a concept of fairness across
1512 * multiple queues, congestion of host/starget needs to be handled
1513 * in SCSI layer.
1514 */
1515 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1516 return true;
1517
1518 return false;
1519 }
1520
1521 /*
1522 * Block layer request completion callback. May be called from interrupt
1523 * context.
1524 */
scsi_complete(struct request * rq)1525 static void scsi_complete(struct request *rq)
1526 {
1527 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1528 enum scsi_disposition disposition;
1529
1530 INIT_LIST_HEAD(&cmd->eh_entry);
1531
1532 atomic_inc(&cmd->device->iodone_cnt);
1533 if (cmd->result)
1534 atomic_inc(&cmd->device->ioerr_cnt);
1535
1536 disposition = scsi_decide_disposition(cmd);
1537 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1538 disposition = SUCCESS;
1539
1540 scsi_log_completion(cmd, disposition);
1541
1542 switch (disposition) {
1543 case SUCCESS:
1544 scsi_finish_command(cmd);
1545 break;
1546 case NEEDS_RETRY:
1547 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1548 break;
1549 case ADD_TO_MLQUEUE:
1550 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1551 break;
1552 default:
1553 scsi_eh_scmd_add(cmd);
1554 break;
1555 }
1556 }
1557
1558 /**
1559 * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1560 * @cmd: command block we are dispatching.
1561 *
1562 * Return: nonzero return request was rejected and device's queue needs to be
1563 * plugged.
1564 */
scsi_dispatch_cmd(struct scsi_cmnd * cmd)1565 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1566 {
1567 struct Scsi_Host *host = cmd->device->host;
1568 int rtn = 0;
1569
1570 atomic_inc(&cmd->device->iorequest_cnt);
1571
1572 /* check if the device is still usable */
1573 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1574 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1575 * returns an immediate error upwards, and signals
1576 * that the device is no longer present */
1577 cmd->result = DID_NO_CONNECT << 16;
1578 goto done;
1579 }
1580
1581 /* Check to see if the scsi lld made this device blocked. */
1582 if (unlikely(scsi_device_blocked(cmd->device))) {
1583 /*
1584 * in blocked state, the command is just put back on
1585 * the device queue. The suspend state has already
1586 * blocked the queue so future requests should not
1587 * occur until the device transitions out of the
1588 * suspend state.
1589 */
1590 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1591 "queuecommand : device blocked\n"));
1592 atomic_dec(&cmd->device->iorequest_cnt);
1593 return SCSI_MLQUEUE_DEVICE_BUSY;
1594 }
1595
1596 /* Store the LUN value in cmnd, if needed. */
1597 if (cmd->device->lun_in_cdb)
1598 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1599 (cmd->device->lun << 5 & 0xe0);
1600
1601 scsi_log_send(cmd);
1602
1603 /*
1604 * Before we queue this command, check if the command
1605 * length exceeds what the host adapter can handle.
1606 */
1607 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1608 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1609 "queuecommand : command too long. "
1610 "cdb_size=%d host->max_cmd_len=%d\n",
1611 cmd->cmd_len, cmd->device->host->max_cmd_len));
1612 cmd->result = (DID_ABORT << 16);
1613 goto done;
1614 }
1615
1616 if (unlikely(host->shost_state == SHOST_DEL)) {
1617 cmd->result = (DID_NO_CONNECT << 16);
1618 goto done;
1619
1620 }
1621
1622 trace_scsi_dispatch_cmd_start(cmd);
1623 rtn = host->hostt->queuecommand(host, cmd);
1624 if (rtn) {
1625 atomic_dec(&cmd->device->iorequest_cnt);
1626 trace_scsi_dispatch_cmd_error(cmd, rtn);
1627 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1628 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1629 rtn = SCSI_MLQUEUE_HOST_BUSY;
1630
1631 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1632 "queuecommand : request rejected\n"));
1633 }
1634
1635 return rtn;
1636 done:
1637 scsi_done(cmd);
1638 return 0;
1639 }
1640
1641 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
scsi_mq_inline_sgl_size(struct Scsi_Host * shost)1642 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1643 {
1644 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1645 sizeof(struct scatterlist);
1646 }
1647
scsi_prepare_cmd(struct request * req)1648 static blk_status_t scsi_prepare_cmd(struct request *req)
1649 {
1650 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1651 struct scsi_device *sdev = req->q->queuedata;
1652 struct Scsi_Host *shost = sdev->host;
1653 bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1654 struct scatterlist *sg;
1655
1656 scsi_init_command(sdev, cmd);
1657
1658 cmd->eh_eflags = 0;
1659 cmd->prot_type = 0;
1660 cmd->prot_flags = 0;
1661 cmd->submitter = 0;
1662 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1663 cmd->underflow = 0;
1664 cmd->transfersize = 0;
1665 cmd->host_scribble = NULL;
1666 cmd->result = 0;
1667 cmd->extra_len = 0;
1668 cmd->state = 0;
1669 if (in_flight)
1670 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1671
1672 cmd->prot_op = SCSI_PROT_NORMAL;
1673 if (blk_rq_bytes(req))
1674 cmd->sc_data_direction = rq_dma_dir(req);
1675 else
1676 cmd->sc_data_direction = DMA_NONE;
1677
1678 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1679 cmd->sdb.table.sgl = sg;
1680
1681 if (scsi_host_get_prot(shost)) {
1682 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1683
1684 cmd->prot_sdb->table.sgl =
1685 (struct scatterlist *)(cmd->prot_sdb + 1);
1686 }
1687
1688 /*
1689 * Special handling for passthrough commands, which don't go to the ULP
1690 * at all:
1691 */
1692 if (blk_rq_is_passthrough(req))
1693 return scsi_setup_scsi_cmnd(sdev, req);
1694
1695 if (sdev->handler && sdev->handler->prep_fn) {
1696 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1697
1698 if (ret != BLK_STS_OK)
1699 return ret;
1700 }
1701
1702 /* Usually overridden by the ULP */
1703 cmd->allowed = 0;
1704 memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1705 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1706 }
1707
scsi_done_internal(struct scsi_cmnd * cmd,bool complete_directly)1708 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1709 {
1710 struct request *req = scsi_cmd_to_rq(cmd);
1711
1712 switch (cmd->submitter) {
1713 case SUBMITTED_BY_BLOCK_LAYER:
1714 break;
1715 case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1716 return scsi_eh_done(cmd);
1717 case SUBMITTED_BY_SCSI_RESET_IOCTL:
1718 return;
1719 }
1720
1721 if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1722 return;
1723 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1724 return;
1725 trace_scsi_dispatch_cmd_done(cmd);
1726
1727 if (complete_directly)
1728 blk_mq_complete_request_direct(req, scsi_complete);
1729 else
1730 blk_mq_complete_request(req);
1731 }
1732
scsi_done(struct scsi_cmnd * cmd)1733 void scsi_done(struct scsi_cmnd *cmd)
1734 {
1735 scsi_done_internal(cmd, false);
1736 }
1737 EXPORT_SYMBOL(scsi_done);
1738
scsi_done_direct(struct scsi_cmnd * cmd)1739 void scsi_done_direct(struct scsi_cmnd *cmd)
1740 {
1741 scsi_done_internal(cmd, true);
1742 }
1743 EXPORT_SYMBOL(scsi_done_direct);
1744
scsi_mq_put_budget(struct request_queue * q,int budget_token)1745 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1746 {
1747 struct scsi_device *sdev = q->queuedata;
1748
1749 sbitmap_put(&sdev->budget_map, budget_token);
1750 }
1751
1752 /*
1753 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1754 * not change behaviour from the previous unplug mechanism, experimentation
1755 * may prove this needs changing.
1756 */
1757 #define SCSI_QUEUE_DELAY 3
1758
scsi_mq_get_budget(struct request_queue * q)1759 static int scsi_mq_get_budget(struct request_queue *q)
1760 {
1761 struct scsi_device *sdev = q->queuedata;
1762 int token = scsi_dev_queue_ready(q, sdev);
1763
1764 if (token >= 0)
1765 return token;
1766
1767 atomic_inc(&sdev->restarts);
1768
1769 /*
1770 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1771 * .restarts must be incremented before .device_busy is read because the
1772 * code in scsi_run_queue_async() depends on the order of these operations.
1773 */
1774 smp_mb__after_atomic();
1775
1776 /*
1777 * If all in-flight requests originated from this LUN are completed
1778 * before reading .device_busy, sdev->device_busy will be observed as
1779 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1780 * soon. Otherwise, completion of one of these requests will observe
1781 * the .restarts flag, and the request queue will be run for handling
1782 * this request, see scsi_end_request().
1783 */
1784 if (unlikely(scsi_device_busy(sdev) == 0 &&
1785 !scsi_device_blocked(sdev)))
1786 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1787 return -1;
1788 }
1789
scsi_mq_set_rq_budget_token(struct request * req,int token)1790 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1791 {
1792 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1793
1794 cmd->budget_token = token;
1795 }
1796
scsi_mq_get_rq_budget_token(struct request * req)1797 static int scsi_mq_get_rq_budget_token(struct request *req)
1798 {
1799 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1800
1801 return cmd->budget_token;
1802 }
1803
scsi_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1804 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1805 const struct blk_mq_queue_data *bd)
1806 {
1807 struct request *req = bd->rq;
1808 struct request_queue *q = req->q;
1809 struct scsi_device *sdev = q->queuedata;
1810 struct Scsi_Host *shost = sdev->host;
1811 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1812 blk_status_t ret;
1813 int reason;
1814
1815 WARN_ON_ONCE(cmd->budget_token < 0);
1816
1817 /*
1818 * If the device is not in running state we will reject some or all
1819 * commands.
1820 */
1821 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1822 ret = scsi_device_state_check(sdev, req);
1823 if (ret != BLK_STS_OK)
1824 goto out_put_budget;
1825 }
1826
1827 ret = BLK_STS_RESOURCE;
1828 if (!scsi_target_queue_ready(shost, sdev))
1829 goto out_put_budget;
1830 if (unlikely(scsi_host_in_recovery(shost))) {
1831 if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1832 ret = BLK_STS_OFFLINE;
1833 goto out_dec_target_busy;
1834 }
1835 if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1836 goto out_dec_target_busy;
1837
1838 /*
1839 * Only clear the driver-private command data if the LLD does not supply
1840 * a function to initialize that data.
1841 */
1842 if (shost->hostt->cmd_size && !shost->hostt->init_cmd_priv)
1843 memset(cmd + 1, 0, shost->hostt->cmd_size);
1844
1845 if (!(req->rq_flags & RQF_DONTPREP)) {
1846 ret = scsi_prepare_cmd(req);
1847 if (ret != BLK_STS_OK)
1848 goto out_dec_host_busy;
1849 req->rq_flags |= RQF_DONTPREP;
1850 } else {
1851 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1852 }
1853
1854 cmd->flags &= SCMD_PRESERVED_FLAGS;
1855 if (sdev->simple_tags)
1856 cmd->flags |= SCMD_TAGGED;
1857 if (bd->last)
1858 cmd->flags |= SCMD_LAST;
1859
1860 scsi_set_resid(cmd, 0);
1861 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1862 cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1863
1864 blk_mq_start_request(req);
1865 reason = scsi_dispatch_cmd(cmd);
1866 if (reason) {
1867 scsi_set_blocked(cmd, reason);
1868 ret = BLK_STS_RESOURCE;
1869 goto out_dec_host_busy;
1870 }
1871
1872 return BLK_STS_OK;
1873
1874 out_dec_host_busy:
1875 scsi_dec_host_busy(shost, cmd);
1876 out_dec_target_busy:
1877 if (scsi_target(sdev)->can_queue > 0)
1878 atomic_dec(&scsi_target(sdev)->target_busy);
1879 out_put_budget:
1880 scsi_mq_put_budget(q, cmd->budget_token);
1881 cmd->budget_token = -1;
1882 switch (ret) {
1883 case BLK_STS_OK:
1884 break;
1885 case BLK_STS_RESOURCE:
1886 if (scsi_device_blocked(sdev))
1887 ret = BLK_STS_DEV_RESOURCE;
1888 break;
1889 case BLK_STS_AGAIN:
1890 cmd->result = DID_BUS_BUSY << 16;
1891 if (req->rq_flags & RQF_DONTPREP)
1892 scsi_mq_uninit_cmd(cmd);
1893 break;
1894 default:
1895 if (unlikely(!scsi_device_online(sdev)))
1896 cmd->result = DID_NO_CONNECT << 16;
1897 else
1898 cmd->result = DID_ERROR << 16;
1899 /*
1900 * Make sure to release all allocated resources when
1901 * we hit an error, as we will never see this command
1902 * again.
1903 */
1904 if (req->rq_flags & RQF_DONTPREP)
1905 scsi_mq_uninit_cmd(cmd);
1906 scsi_run_queue_async(sdev);
1907 break;
1908 }
1909 return ret;
1910 }
1911
scsi_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)1912 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1913 unsigned int hctx_idx, unsigned int numa_node)
1914 {
1915 struct Scsi_Host *shost = set->driver_data;
1916 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1917 struct scatterlist *sg;
1918 int ret = 0;
1919
1920 cmd->sense_buffer =
1921 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1922 if (!cmd->sense_buffer)
1923 return -ENOMEM;
1924
1925 if (scsi_host_get_prot(shost)) {
1926 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1927 shost->hostt->cmd_size;
1928 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1929 }
1930
1931 if (shost->hostt->init_cmd_priv) {
1932 ret = shost->hostt->init_cmd_priv(shost, cmd);
1933 if (ret < 0)
1934 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1935 }
1936
1937 return ret;
1938 }
1939
scsi_mq_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)1940 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1941 unsigned int hctx_idx)
1942 {
1943 struct Scsi_Host *shost = set->driver_data;
1944 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1945
1946 if (shost->hostt->exit_cmd_priv)
1947 shost->hostt->exit_cmd_priv(shost, cmd);
1948 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1949 }
1950
1951
scsi_mq_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1952 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1953 {
1954 struct Scsi_Host *shost = hctx->driver_data;
1955
1956 if (shost->hostt->mq_poll)
1957 return shost->hostt->mq_poll(shost, hctx->queue_num);
1958
1959 return 0;
1960 }
1961
scsi_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)1962 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1963 unsigned int hctx_idx)
1964 {
1965 struct Scsi_Host *shost = data;
1966
1967 hctx->driver_data = shost;
1968 return 0;
1969 }
1970
scsi_map_queues(struct blk_mq_tag_set * set)1971 static void scsi_map_queues(struct blk_mq_tag_set *set)
1972 {
1973 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1974
1975 if (shost->hostt->map_queues)
1976 return shost->hostt->map_queues(shost);
1977 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1978 }
1979
scsi_init_limits(struct Scsi_Host * shost,struct queue_limits * lim)1980 void scsi_init_limits(struct Scsi_Host *shost, struct queue_limits *lim)
1981 {
1982 struct device *dev = shost->dma_dev;
1983
1984 memset(lim, 0, sizeof(*lim));
1985 lim->max_segments =
1986 min_t(unsigned short, shost->sg_tablesize, SG_MAX_SEGMENTS);
1987
1988 if (scsi_host_prot_dma(shost)) {
1989 shost->sg_prot_tablesize =
1990 min_not_zero(shost->sg_prot_tablesize,
1991 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1992 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1993 lim->max_integrity_segments = shost->sg_prot_tablesize;
1994 }
1995
1996 lim->max_hw_sectors = shost->max_sectors;
1997 lim->seg_boundary_mask = shost->dma_boundary;
1998 lim->max_segment_size = shost->max_segment_size;
1999 lim->virt_boundary_mask = shost->virt_boundary_mask;
2000 lim->dma_alignment = max_t(unsigned int,
2001 shost->dma_alignment, dma_get_cache_alignment() - 1);
2002
2003 if (shost->no_highmem)
2004 lim->features |= BLK_FEAT_BOUNCE_HIGH;
2005
2006 /*
2007 * Propagate the DMA formation properties to the dma-mapping layer as
2008 * a courtesy service to the LLDDs. This needs to check that the buses
2009 * actually support the DMA API first, though.
2010 */
2011 if (dev->dma_parms) {
2012 dma_set_seg_boundary(dev, shost->dma_boundary);
2013 dma_set_max_seg_size(dev, shost->max_segment_size);
2014 }
2015 }
2016 EXPORT_SYMBOL_GPL(scsi_init_limits);
2017
2018 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
2019 .get_budget = scsi_mq_get_budget,
2020 .put_budget = scsi_mq_put_budget,
2021 .queue_rq = scsi_queue_rq,
2022 .complete = scsi_complete,
2023 .timeout = scsi_timeout,
2024 #ifdef CONFIG_BLK_DEBUG_FS
2025 .show_rq = scsi_show_rq,
2026 #endif
2027 .init_request = scsi_mq_init_request,
2028 .exit_request = scsi_mq_exit_request,
2029 .cleanup_rq = scsi_cleanup_rq,
2030 .busy = scsi_mq_lld_busy,
2031 .map_queues = scsi_map_queues,
2032 .init_hctx = scsi_init_hctx,
2033 .poll = scsi_mq_poll,
2034 .set_rq_budget_token = scsi_mq_set_rq_budget_token,
2035 .get_rq_budget_token = scsi_mq_get_rq_budget_token,
2036 };
2037
2038
scsi_commit_rqs(struct blk_mq_hw_ctx * hctx)2039 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
2040 {
2041 struct Scsi_Host *shost = hctx->driver_data;
2042
2043 shost->hostt->commit_rqs(shost, hctx->queue_num);
2044 }
2045
2046 static const struct blk_mq_ops scsi_mq_ops = {
2047 .get_budget = scsi_mq_get_budget,
2048 .put_budget = scsi_mq_put_budget,
2049 .queue_rq = scsi_queue_rq,
2050 .commit_rqs = scsi_commit_rqs,
2051 .complete = scsi_complete,
2052 .timeout = scsi_timeout,
2053 #ifdef CONFIG_BLK_DEBUG_FS
2054 .show_rq = scsi_show_rq,
2055 #endif
2056 .init_request = scsi_mq_init_request,
2057 .exit_request = scsi_mq_exit_request,
2058 .cleanup_rq = scsi_cleanup_rq,
2059 .busy = scsi_mq_lld_busy,
2060 .map_queues = scsi_map_queues,
2061 .init_hctx = scsi_init_hctx,
2062 .poll = scsi_mq_poll,
2063 .set_rq_budget_token = scsi_mq_set_rq_budget_token,
2064 .get_rq_budget_token = scsi_mq_get_rq_budget_token,
2065 };
2066
scsi_mq_setup_tags(struct Scsi_Host * shost)2067 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2068 {
2069 unsigned int cmd_size, sgl_size;
2070 struct blk_mq_tag_set *tag_set = &shost->tag_set;
2071
2072 sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
2073 scsi_mq_inline_sgl_size(shost));
2074 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2075 if (scsi_host_get_prot(shost))
2076 cmd_size += sizeof(struct scsi_data_buffer) +
2077 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
2078
2079 memset(tag_set, 0, sizeof(*tag_set));
2080 if (shost->hostt->commit_rqs)
2081 tag_set->ops = &scsi_mq_ops;
2082 else
2083 tag_set->ops = &scsi_mq_ops_no_commit;
2084 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
2085 tag_set->nr_maps = shost->nr_maps ? : 1;
2086 tag_set->queue_depth = shost->can_queue;
2087 tag_set->cmd_size = cmd_size;
2088 tag_set->numa_node = dev_to_node(shost->dma_dev);
2089 if (shost->hostt->tag_alloc_policy_rr)
2090 tag_set->flags |= BLK_MQ_F_TAG_RR;
2091 if (shost->queuecommand_may_block)
2092 tag_set->flags |= BLK_MQ_F_BLOCKING;
2093 tag_set->driver_data = shost;
2094 if (shost->host_tagset)
2095 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
2096
2097 return blk_mq_alloc_tag_set(tag_set);
2098 }
2099
scsi_mq_free_tags(struct kref * kref)2100 void scsi_mq_free_tags(struct kref *kref)
2101 {
2102 struct Scsi_Host *shost = container_of(kref, typeof(*shost),
2103 tagset_refcnt);
2104
2105 blk_mq_free_tag_set(&shost->tag_set);
2106 complete(&shost->tagset_freed);
2107 }
2108
2109 /**
2110 * scsi_device_from_queue - return sdev associated with a request_queue
2111 * @q: The request queue to return the sdev from
2112 *
2113 * Return the sdev associated with a request queue or NULL if the
2114 * request_queue does not reference a SCSI device.
2115 */
scsi_device_from_queue(struct request_queue * q)2116 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2117 {
2118 struct scsi_device *sdev = NULL;
2119
2120 if (q->mq_ops == &scsi_mq_ops_no_commit ||
2121 q->mq_ops == &scsi_mq_ops)
2122 sdev = q->queuedata;
2123 if (!sdev || !get_device(&sdev->sdev_gendev))
2124 sdev = NULL;
2125
2126 return sdev;
2127 }
2128 /*
2129 * pktcdvd should have been integrated into the SCSI layers, but for historical
2130 * reasons like the old IDE driver it isn't. This export allows it to safely
2131 * probe if a given device is a SCSI one and only attach to that.
2132 */
2133 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2134 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2135 #endif
2136
2137 /**
2138 * scsi_block_requests - Utility function used by low-level drivers to prevent
2139 * further commands from being queued to the device.
2140 * @shost: host in question
2141 *
2142 * There is no timer nor any other means by which the requests get unblocked
2143 * other than the low-level driver calling scsi_unblock_requests().
2144 */
scsi_block_requests(struct Scsi_Host * shost)2145 void scsi_block_requests(struct Scsi_Host *shost)
2146 {
2147 shost->host_self_blocked = 1;
2148 }
2149 EXPORT_SYMBOL(scsi_block_requests);
2150
2151 /**
2152 * scsi_unblock_requests - Utility function used by low-level drivers to allow
2153 * further commands to be queued to the device.
2154 * @shost: host in question
2155 *
2156 * There is no timer nor any other means by which the requests get unblocked
2157 * other than the low-level driver calling scsi_unblock_requests(). This is done
2158 * as an API function so that changes to the internals of the scsi mid-layer
2159 * won't require wholesale changes to drivers that use this feature.
2160 */
scsi_unblock_requests(struct Scsi_Host * shost)2161 void scsi_unblock_requests(struct Scsi_Host *shost)
2162 {
2163 shost->host_self_blocked = 0;
2164 scsi_run_host_queues(shost);
2165 }
2166 EXPORT_SYMBOL(scsi_unblock_requests);
2167
scsi_exit_queue(void)2168 void scsi_exit_queue(void)
2169 {
2170 kmem_cache_destroy(scsi_sense_cache);
2171 }
2172
2173 /**
2174 * scsi_mode_select - issue a mode select
2175 * @sdev: SCSI device to be queried
2176 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2177 * @sp: Save page bit (0 == don't save, 1 == save)
2178 * @buffer: request buffer (may not be smaller than eight bytes)
2179 * @len: length of request buffer.
2180 * @timeout: command timeout
2181 * @retries: number of retries before failing
2182 * @data: returns a structure abstracting the mode header data
2183 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2184 * must be SCSI_SENSE_BUFFERSIZE big.
2185 *
2186 * Returns zero if successful; negative error number or scsi
2187 * status on error
2188 *
2189 */
scsi_mode_select(struct scsi_device * sdev,int pf,int sp,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2190 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2191 unsigned char *buffer, int len, int timeout, int retries,
2192 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2193 {
2194 unsigned char cmd[10];
2195 unsigned char *real_buffer;
2196 const struct scsi_exec_args exec_args = {
2197 .sshdr = sshdr,
2198 };
2199 int ret;
2200
2201 memset(cmd, 0, sizeof(cmd));
2202 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2203
2204 /*
2205 * Use MODE SELECT(10) if the device asked for it or if the mode page
2206 * and the mode select header cannot fit within the maximumm 255 bytes
2207 * of the MODE SELECT(6) command.
2208 */
2209 if (sdev->use_10_for_ms ||
2210 len + 4 > 255 ||
2211 data->block_descriptor_length > 255) {
2212 if (len > 65535 - 8)
2213 return -EINVAL;
2214 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2215 if (!real_buffer)
2216 return -ENOMEM;
2217 memcpy(real_buffer + 8, buffer, len);
2218 len += 8;
2219 real_buffer[0] = 0;
2220 real_buffer[1] = 0;
2221 real_buffer[2] = data->medium_type;
2222 real_buffer[3] = data->device_specific;
2223 real_buffer[4] = data->longlba ? 0x01 : 0;
2224 real_buffer[5] = 0;
2225 put_unaligned_be16(data->block_descriptor_length,
2226 &real_buffer[6]);
2227
2228 cmd[0] = MODE_SELECT_10;
2229 put_unaligned_be16(len, &cmd[7]);
2230 } else {
2231 if (data->longlba)
2232 return -EINVAL;
2233
2234 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2235 if (!real_buffer)
2236 return -ENOMEM;
2237 memcpy(real_buffer + 4, buffer, len);
2238 len += 4;
2239 real_buffer[0] = 0;
2240 real_buffer[1] = data->medium_type;
2241 real_buffer[2] = data->device_specific;
2242 real_buffer[3] = data->block_descriptor_length;
2243
2244 cmd[0] = MODE_SELECT;
2245 cmd[4] = len;
2246 }
2247
2248 ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2249 timeout, retries, &exec_args);
2250 kfree(real_buffer);
2251 return ret;
2252 }
2253 EXPORT_SYMBOL_GPL(scsi_mode_select);
2254
2255 /**
2256 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2257 * @sdev: SCSI device to be queried
2258 * @dbd: set to prevent mode sense from returning block descriptors
2259 * @modepage: mode page being requested
2260 * @subpage: sub-page of the mode page being requested
2261 * @buffer: request buffer (may not be smaller than eight bytes)
2262 * @len: length of request buffer.
2263 * @timeout: command timeout
2264 * @retries: number of retries before failing
2265 * @data: returns a structure abstracting the mode header data
2266 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2267 * must be SCSI_SENSE_BUFFERSIZE big.
2268 *
2269 * Returns zero if successful, or a negative error number on failure
2270 */
2271 int
scsi_mode_sense(struct scsi_device * sdev,int dbd,int modepage,int subpage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2272 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage,
2273 unsigned char *buffer, int len, int timeout, int retries,
2274 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2275 {
2276 unsigned char cmd[12];
2277 int use_10_for_ms;
2278 int header_length;
2279 int result;
2280 struct scsi_sense_hdr my_sshdr;
2281 struct scsi_failure failure_defs[] = {
2282 {
2283 .sense = UNIT_ATTENTION,
2284 .asc = SCMD_FAILURE_ASC_ANY,
2285 .ascq = SCMD_FAILURE_ASCQ_ANY,
2286 .allowed = retries,
2287 .result = SAM_STAT_CHECK_CONDITION,
2288 },
2289 {}
2290 };
2291 struct scsi_failures failures = {
2292 .failure_definitions = failure_defs,
2293 };
2294 const struct scsi_exec_args exec_args = {
2295 /* caller might not be interested in sense, but we need it */
2296 .sshdr = sshdr ? : &my_sshdr,
2297 .failures = &failures,
2298 };
2299
2300 memset(data, 0, sizeof(*data));
2301 memset(&cmd[0], 0, 12);
2302
2303 dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2304 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2305 cmd[2] = modepage;
2306 cmd[3] = subpage;
2307
2308 sshdr = exec_args.sshdr;
2309
2310 retry:
2311 use_10_for_ms = sdev->use_10_for_ms || len > 255;
2312
2313 if (use_10_for_ms) {
2314 if (len < 8 || len > 65535)
2315 return -EINVAL;
2316
2317 cmd[0] = MODE_SENSE_10;
2318 put_unaligned_be16(len, &cmd[7]);
2319 header_length = 8;
2320 } else {
2321 if (len < 4)
2322 return -EINVAL;
2323
2324 cmd[0] = MODE_SENSE;
2325 cmd[4] = len;
2326 header_length = 4;
2327 }
2328
2329 memset(buffer, 0, len);
2330
2331 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2332 timeout, retries, &exec_args);
2333 if (result < 0)
2334 return result;
2335
2336 /* This code looks awful: what it's doing is making sure an
2337 * ILLEGAL REQUEST sense return identifies the actual command
2338 * byte as the problem. MODE_SENSE commands can return
2339 * ILLEGAL REQUEST if the code page isn't supported */
2340
2341 if (!scsi_status_is_good(result)) {
2342 if (scsi_sense_valid(sshdr)) {
2343 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2344 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2345 /*
2346 * Invalid command operation code: retry using
2347 * MODE SENSE(6) if this was a MODE SENSE(10)
2348 * request, except if the request mode page is
2349 * too large for MODE SENSE single byte
2350 * allocation length field.
2351 */
2352 if (use_10_for_ms) {
2353 if (len > 255)
2354 return -EIO;
2355 sdev->use_10_for_ms = 0;
2356 goto retry;
2357 }
2358 }
2359 }
2360 return -EIO;
2361 }
2362 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2363 (modepage == 6 || modepage == 8))) {
2364 /* Initio breakage? */
2365 header_length = 0;
2366 data->length = 13;
2367 data->medium_type = 0;
2368 data->device_specific = 0;
2369 data->longlba = 0;
2370 data->block_descriptor_length = 0;
2371 } else if (use_10_for_ms) {
2372 data->length = get_unaligned_be16(&buffer[0]) + 2;
2373 data->medium_type = buffer[2];
2374 data->device_specific = buffer[3];
2375 data->longlba = buffer[4] & 0x01;
2376 data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2377 } else {
2378 data->length = buffer[0] + 1;
2379 data->medium_type = buffer[1];
2380 data->device_specific = buffer[2];
2381 data->block_descriptor_length = buffer[3];
2382 }
2383 data->header_length = header_length;
2384
2385 return 0;
2386 }
2387 EXPORT_SYMBOL(scsi_mode_sense);
2388
2389 /**
2390 * scsi_test_unit_ready - test if unit is ready
2391 * @sdev: scsi device to change the state of.
2392 * @timeout: command timeout
2393 * @retries: number of retries before failing
2394 * @sshdr: outpout pointer for decoded sense information.
2395 *
2396 * Returns zero if unsuccessful or an error if TUR failed. For
2397 * removable media, UNIT_ATTENTION sets ->changed flag.
2398 **/
2399 int
scsi_test_unit_ready(struct scsi_device * sdev,int timeout,int retries,struct scsi_sense_hdr * sshdr)2400 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2401 struct scsi_sense_hdr *sshdr)
2402 {
2403 char cmd[] = {
2404 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2405 };
2406 const struct scsi_exec_args exec_args = {
2407 .sshdr = sshdr,
2408 };
2409 int result;
2410
2411 /* try to eat the UNIT_ATTENTION if there are enough retries */
2412 do {
2413 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2414 timeout, 1, &exec_args);
2415 if (sdev->removable && result > 0 && scsi_sense_valid(sshdr) &&
2416 sshdr->sense_key == UNIT_ATTENTION)
2417 sdev->changed = 1;
2418 } while (result > 0 && scsi_sense_valid(sshdr) &&
2419 sshdr->sense_key == UNIT_ATTENTION && --retries);
2420
2421 return result;
2422 }
2423 EXPORT_SYMBOL(scsi_test_unit_ready);
2424
2425 /**
2426 * scsi_device_set_state - Take the given device through the device state model.
2427 * @sdev: scsi device to change the state of.
2428 * @state: state to change to.
2429 *
2430 * Returns zero if successful or an error if the requested
2431 * transition is illegal.
2432 */
2433 int
scsi_device_set_state(struct scsi_device * sdev,enum scsi_device_state state)2434 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2435 {
2436 enum scsi_device_state oldstate = sdev->sdev_state;
2437
2438 if (state == oldstate)
2439 return 0;
2440
2441 switch (state) {
2442 case SDEV_CREATED:
2443 switch (oldstate) {
2444 case SDEV_CREATED_BLOCK:
2445 break;
2446 default:
2447 goto illegal;
2448 }
2449 break;
2450
2451 case SDEV_RUNNING:
2452 switch (oldstate) {
2453 case SDEV_CREATED:
2454 case SDEV_OFFLINE:
2455 case SDEV_TRANSPORT_OFFLINE:
2456 case SDEV_QUIESCE:
2457 case SDEV_BLOCK:
2458 break;
2459 default:
2460 goto illegal;
2461 }
2462 break;
2463
2464 case SDEV_QUIESCE:
2465 switch (oldstate) {
2466 case SDEV_RUNNING:
2467 case SDEV_OFFLINE:
2468 case SDEV_TRANSPORT_OFFLINE:
2469 break;
2470 default:
2471 goto illegal;
2472 }
2473 break;
2474
2475 case SDEV_OFFLINE:
2476 case SDEV_TRANSPORT_OFFLINE:
2477 switch (oldstate) {
2478 case SDEV_CREATED:
2479 case SDEV_RUNNING:
2480 case SDEV_QUIESCE:
2481 case SDEV_BLOCK:
2482 break;
2483 default:
2484 goto illegal;
2485 }
2486 break;
2487
2488 case SDEV_BLOCK:
2489 switch (oldstate) {
2490 case SDEV_RUNNING:
2491 case SDEV_CREATED_BLOCK:
2492 case SDEV_QUIESCE:
2493 case SDEV_OFFLINE:
2494 break;
2495 default:
2496 goto illegal;
2497 }
2498 break;
2499
2500 case SDEV_CREATED_BLOCK:
2501 switch (oldstate) {
2502 case SDEV_CREATED:
2503 break;
2504 default:
2505 goto illegal;
2506 }
2507 break;
2508
2509 case SDEV_CANCEL:
2510 switch (oldstate) {
2511 case SDEV_CREATED:
2512 case SDEV_RUNNING:
2513 case SDEV_QUIESCE:
2514 case SDEV_OFFLINE:
2515 case SDEV_TRANSPORT_OFFLINE:
2516 break;
2517 default:
2518 goto illegal;
2519 }
2520 break;
2521
2522 case SDEV_DEL:
2523 switch (oldstate) {
2524 case SDEV_CREATED:
2525 case SDEV_RUNNING:
2526 case SDEV_OFFLINE:
2527 case SDEV_TRANSPORT_OFFLINE:
2528 case SDEV_CANCEL:
2529 case SDEV_BLOCK:
2530 case SDEV_CREATED_BLOCK:
2531 break;
2532 default:
2533 goto illegal;
2534 }
2535 break;
2536
2537 }
2538 sdev->offline_already = false;
2539 sdev->sdev_state = state;
2540 return 0;
2541
2542 illegal:
2543 SCSI_LOG_ERROR_RECOVERY(1,
2544 sdev_printk(KERN_ERR, sdev,
2545 "Illegal state transition %s->%s",
2546 scsi_device_state_name(oldstate),
2547 scsi_device_state_name(state))
2548 );
2549 return -EINVAL;
2550 }
2551 EXPORT_SYMBOL(scsi_device_set_state);
2552
2553 /**
2554 * scsi_evt_emit - emit a single SCSI device uevent
2555 * @sdev: associated SCSI device
2556 * @evt: event to emit
2557 *
2558 * Send a single uevent (scsi_event) to the associated scsi_device.
2559 */
scsi_evt_emit(struct scsi_device * sdev,struct scsi_event * evt)2560 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2561 {
2562 int idx = 0;
2563 char *envp[3];
2564
2565 switch (evt->evt_type) {
2566 case SDEV_EVT_MEDIA_CHANGE:
2567 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2568 break;
2569 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2570 scsi_rescan_device(sdev);
2571 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2572 break;
2573 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2574 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2575 break;
2576 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2577 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2578 break;
2579 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2580 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2581 break;
2582 case SDEV_EVT_LUN_CHANGE_REPORTED:
2583 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2584 break;
2585 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2586 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2587 break;
2588 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2589 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2590 break;
2591 default:
2592 /* do nothing */
2593 break;
2594 }
2595
2596 envp[idx++] = NULL;
2597
2598 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2599 }
2600
2601 /**
2602 * scsi_evt_thread - send a uevent for each scsi event
2603 * @work: work struct for scsi_device
2604 *
2605 * Dispatch queued events to their associated scsi_device kobjects
2606 * as uevents.
2607 */
scsi_evt_thread(struct work_struct * work)2608 void scsi_evt_thread(struct work_struct *work)
2609 {
2610 struct scsi_device *sdev;
2611 enum scsi_device_event evt_type;
2612 LIST_HEAD(event_list);
2613
2614 sdev = container_of(work, struct scsi_device, event_work);
2615
2616 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2617 if (test_and_clear_bit(evt_type, sdev->pending_events))
2618 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2619
2620 while (1) {
2621 struct scsi_event *evt;
2622 struct list_head *this, *tmp;
2623 unsigned long flags;
2624
2625 spin_lock_irqsave(&sdev->list_lock, flags);
2626 list_splice_init(&sdev->event_list, &event_list);
2627 spin_unlock_irqrestore(&sdev->list_lock, flags);
2628
2629 if (list_empty(&event_list))
2630 break;
2631
2632 list_for_each_safe(this, tmp, &event_list) {
2633 evt = list_entry(this, struct scsi_event, node);
2634 list_del(&evt->node);
2635 scsi_evt_emit(sdev, evt);
2636 kfree(evt);
2637 }
2638 }
2639 }
2640
2641 /**
2642 * sdev_evt_send - send asserted event to uevent thread
2643 * @sdev: scsi_device event occurred on
2644 * @evt: event to send
2645 *
2646 * Assert scsi device event asynchronously.
2647 */
sdev_evt_send(struct scsi_device * sdev,struct scsi_event * evt)2648 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2649 {
2650 unsigned long flags;
2651
2652 #if 0
2653 /* FIXME: currently this check eliminates all media change events
2654 * for polled devices. Need to update to discriminate between AN
2655 * and polled events */
2656 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2657 kfree(evt);
2658 return;
2659 }
2660 #endif
2661
2662 spin_lock_irqsave(&sdev->list_lock, flags);
2663 list_add_tail(&evt->node, &sdev->event_list);
2664 schedule_work(&sdev->event_work);
2665 spin_unlock_irqrestore(&sdev->list_lock, flags);
2666 }
2667 EXPORT_SYMBOL_GPL(sdev_evt_send);
2668
2669 /**
2670 * sdev_evt_alloc - allocate a new scsi event
2671 * @evt_type: type of event to allocate
2672 * @gfpflags: GFP flags for allocation
2673 *
2674 * Allocates and returns a new scsi_event.
2675 */
sdev_evt_alloc(enum scsi_device_event evt_type,gfp_t gfpflags)2676 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2677 gfp_t gfpflags)
2678 {
2679 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2680 if (!evt)
2681 return NULL;
2682
2683 evt->evt_type = evt_type;
2684 INIT_LIST_HEAD(&evt->node);
2685
2686 /* evt_type-specific initialization, if any */
2687 switch (evt_type) {
2688 case SDEV_EVT_MEDIA_CHANGE:
2689 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2690 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2691 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2692 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2693 case SDEV_EVT_LUN_CHANGE_REPORTED:
2694 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2695 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2696 default:
2697 /* do nothing */
2698 break;
2699 }
2700
2701 return evt;
2702 }
2703 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2704
2705 /**
2706 * sdev_evt_send_simple - send asserted event to uevent thread
2707 * @sdev: scsi_device event occurred on
2708 * @evt_type: type of event to send
2709 * @gfpflags: GFP flags for allocation
2710 *
2711 * Assert scsi device event asynchronously, given an event type.
2712 */
sdev_evt_send_simple(struct scsi_device * sdev,enum scsi_device_event evt_type,gfp_t gfpflags)2713 void sdev_evt_send_simple(struct scsi_device *sdev,
2714 enum scsi_device_event evt_type, gfp_t gfpflags)
2715 {
2716 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2717 if (!evt) {
2718 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2719 evt_type);
2720 return;
2721 }
2722
2723 sdev_evt_send(sdev, evt);
2724 }
2725 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2726
2727 /**
2728 * scsi_device_quiesce - Block all commands except power management.
2729 * @sdev: scsi device to quiesce.
2730 *
2731 * This works by trying to transition to the SDEV_QUIESCE state
2732 * (which must be a legal transition). When the device is in this
2733 * state, only power management requests will be accepted, all others will
2734 * be deferred.
2735 *
2736 * Must be called with user context, may sleep.
2737 *
2738 * Returns zero if unsuccessful or an error if not.
2739 */
2740 int
scsi_device_quiesce(struct scsi_device * sdev)2741 scsi_device_quiesce(struct scsi_device *sdev)
2742 {
2743 struct request_queue *q = sdev->request_queue;
2744 unsigned int memflags;
2745 int err;
2746
2747 /*
2748 * It is allowed to call scsi_device_quiesce() multiple times from
2749 * the same context but concurrent scsi_device_quiesce() calls are
2750 * not allowed.
2751 */
2752 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2753
2754 if (sdev->quiesced_by == current)
2755 return 0;
2756
2757 blk_set_pm_only(q);
2758
2759 memflags = blk_mq_freeze_queue(q);
2760 /*
2761 * Ensure that the effect of blk_set_pm_only() will be visible
2762 * for percpu_ref_tryget() callers that occur after the queue
2763 * unfreeze even if the queue was already frozen before this function
2764 * was called. See also https://lwn.net/Articles/573497/.
2765 */
2766 synchronize_rcu();
2767 blk_mq_unfreeze_queue(q, memflags);
2768
2769 mutex_lock(&sdev->state_mutex);
2770 err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2771 if (err == 0)
2772 sdev->quiesced_by = current;
2773 else
2774 blk_clear_pm_only(q);
2775 mutex_unlock(&sdev->state_mutex);
2776
2777 return err;
2778 }
2779 EXPORT_SYMBOL(scsi_device_quiesce);
2780
2781 /**
2782 * scsi_device_resume - Restart user issued commands to a quiesced device.
2783 * @sdev: scsi device to resume.
2784 *
2785 * Moves the device from quiesced back to running and restarts the
2786 * queues.
2787 *
2788 * Must be called with user context, may sleep.
2789 */
scsi_device_resume(struct scsi_device * sdev)2790 void scsi_device_resume(struct scsi_device *sdev)
2791 {
2792 /* check if the device state was mutated prior to resume, and if
2793 * so assume the state is being managed elsewhere (for example
2794 * device deleted during suspend)
2795 */
2796 mutex_lock(&sdev->state_mutex);
2797 if (sdev->sdev_state == SDEV_QUIESCE)
2798 scsi_device_set_state(sdev, SDEV_RUNNING);
2799 if (sdev->quiesced_by) {
2800 sdev->quiesced_by = NULL;
2801 blk_clear_pm_only(sdev->request_queue);
2802 }
2803 mutex_unlock(&sdev->state_mutex);
2804 }
2805 EXPORT_SYMBOL(scsi_device_resume);
2806
2807 static void
device_quiesce_fn(struct scsi_device * sdev,void * data)2808 device_quiesce_fn(struct scsi_device *sdev, void *data)
2809 {
2810 scsi_device_quiesce(sdev);
2811 }
2812
2813 void
scsi_target_quiesce(struct scsi_target * starget)2814 scsi_target_quiesce(struct scsi_target *starget)
2815 {
2816 starget_for_each_device(starget, NULL, device_quiesce_fn);
2817 }
2818 EXPORT_SYMBOL(scsi_target_quiesce);
2819
2820 static void
device_resume_fn(struct scsi_device * sdev,void * data)2821 device_resume_fn(struct scsi_device *sdev, void *data)
2822 {
2823 scsi_device_resume(sdev);
2824 }
2825
2826 void
scsi_target_resume(struct scsi_target * starget)2827 scsi_target_resume(struct scsi_target *starget)
2828 {
2829 starget_for_each_device(starget, NULL, device_resume_fn);
2830 }
2831 EXPORT_SYMBOL(scsi_target_resume);
2832
__scsi_internal_device_block_nowait(struct scsi_device * sdev)2833 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2834 {
2835 if (scsi_device_set_state(sdev, SDEV_BLOCK))
2836 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2837
2838 return 0;
2839 }
2840
scsi_start_queue(struct scsi_device * sdev)2841 void scsi_start_queue(struct scsi_device *sdev)
2842 {
2843 if (cmpxchg(&sdev->queue_stopped, 1, 0))
2844 blk_mq_unquiesce_queue(sdev->request_queue);
2845 }
2846
scsi_stop_queue(struct scsi_device * sdev)2847 static void scsi_stop_queue(struct scsi_device *sdev)
2848 {
2849 /*
2850 * The atomic variable of ->queue_stopped covers that
2851 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2852 *
2853 * The caller needs to wait until quiesce is done.
2854 */
2855 if (!cmpxchg(&sdev->queue_stopped, 0, 1))
2856 blk_mq_quiesce_queue_nowait(sdev->request_queue);
2857 }
2858
2859 /**
2860 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2861 * @sdev: device to block
2862 *
2863 * Pause SCSI command processing on the specified device. Does not sleep.
2864 *
2865 * Returns zero if successful or a negative error code upon failure.
2866 *
2867 * Notes:
2868 * This routine transitions the device to the SDEV_BLOCK state (which must be
2869 * a legal transition). When the device is in this state, command processing
2870 * is paused until the device leaves the SDEV_BLOCK state. See also
2871 * scsi_internal_device_unblock_nowait().
2872 */
scsi_internal_device_block_nowait(struct scsi_device * sdev)2873 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2874 {
2875 int ret = __scsi_internal_device_block_nowait(sdev);
2876
2877 /*
2878 * The device has transitioned to SDEV_BLOCK. Stop the
2879 * block layer from calling the midlayer with this device's
2880 * request queue.
2881 */
2882 if (!ret)
2883 scsi_stop_queue(sdev);
2884 return ret;
2885 }
2886 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2887
2888 /**
2889 * scsi_device_block - try to transition to the SDEV_BLOCK state
2890 * @sdev: device to block
2891 * @data: dummy argument, ignored
2892 *
2893 * Pause SCSI command processing on the specified device. Callers must wait
2894 * until all ongoing scsi_queue_rq() calls have finished after this function
2895 * returns.
2896 *
2897 * Note:
2898 * This routine transitions the device to the SDEV_BLOCK state (which must be
2899 * a legal transition). When the device is in this state, command processing
2900 * is paused until the device leaves the SDEV_BLOCK state. See also
2901 * scsi_internal_device_unblock().
2902 */
scsi_device_block(struct scsi_device * sdev,void * data)2903 static void scsi_device_block(struct scsi_device *sdev, void *data)
2904 {
2905 int err;
2906 enum scsi_device_state state;
2907
2908 mutex_lock(&sdev->state_mutex);
2909 err = __scsi_internal_device_block_nowait(sdev);
2910 state = sdev->sdev_state;
2911 if (err == 0)
2912 /*
2913 * scsi_stop_queue() must be called with the state_mutex
2914 * held. Otherwise a simultaneous scsi_start_queue() call
2915 * might unquiesce the queue before we quiesce it.
2916 */
2917 scsi_stop_queue(sdev);
2918
2919 mutex_unlock(&sdev->state_mutex);
2920
2921 WARN_ONCE(err, "%s: failed to block %s in state %d\n",
2922 __func__, dev_name(&sdev->sdev_gendev), state);
2923 }
2924
2925 /**
2926 * scsi_internal_device_unblock_nowait - resume a device after a block request
2927 * @sdev: device to resume
2928 * @new_state: state to set the device to after unblocking
2929 *
2930 * Restart the device queue for a previously suspended SCSI device. Does not
2931 * sleep.
2932 *
2933 * Returns zero if successful or a negative error code upon failure.
2934 *
2935 * Notes:
2936 * This routine transitions the device to the SDEV_RUNNING state or to one of
2937 * the offline states (which must be a legal transition) allowing the midlayer
2938 * to goose the queue for this device.
2939 */
scsi_internal_device_unblock_nowait(struct scsi_device * sdev,enum scsi_device_state new_state)2940 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2941 enum scsi_device_state new_state)
2942 {
2943 switch (new_state) {
2944 case SDEV_RUNNING:
2945 case SDEV_TRANSPORT_OFFLINE:
2946 break;
2947 default:
2948 return -EINVAL;
2949 }
2950
2951 /*
2952 * Try to transition the scsi device to SDEV_RUNNING or one of the
2953 * offlined states and goose the device queue if successful.
2954 */
2955 switch (sdev->sdev_state) {
2956 case SDEV_BLOCK:
2957 case SDEV_TRANSPORT_OFFLINE:
2958 sdev->sdev_state = new_state;
2959 break;
2960 case SDEV_CREATED_BLOCK:
2961 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2962 new_state == SDEV_OFFLINE)
2963 sdev->sdev_state = new_state;
2964 else
2965 sdev->sdev_state = SDEV_CREATED;
2966 break;
2967 case SDEV_CANCEL:
2968 case SDEV_OFFLINE:
2969 break;
2970 default:
2971 return -EINVAL;
2972 }
2973 scsi_start_queue(sdev);
2974
2975 return 0;
2976 }
2977 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2978
2979 /**
2980 * scsi_internal_device_unblock - resume a device after a block request
2981 * @sdev: device to resume
2982 * @new_state: state to set the device to after unblocking
2983 *
2984 * Restart the device queue for a previously suspended SCSI device. May sleep.
2985 *
2986 * Returns zero if successful or a negative error code upon failure.
2987 *
2988 * Notes:
2989 * This routine transitions the device to the SDEV_RUNNING state or to one of
2990 * the offline states (which must be a legal transition) allowing the midlayer
2991 * to goose the queue for this device.
2992 */
scsi_internal_device_unblock(struct scsi_device * sdev,enum scsi_device_state new_state)2993 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2994 enum scsi_device_state new_state)
2995 {
2996 int ret;
2997
2998 mutex_lock(&sdev->state_mutex);
2999 ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3000 mutex_unlock(&sdev->state_mutex);
3001
3002 return ret;
3003 }
3004
3005 static int
target_block(struct device * dev,void * data)3006 target_block(struct device *dev, void *data)
3007 {
3008 if (scsi_is_target_device(dev))
3009 starget_for_each_device(to_scsi_target(dev), NULL,
3010 scsi_device_block);
3011 return 0;
3012 }
3013
3014 /**
3015 * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state
3016 * @dev: a parent device of one or more scsi_target devices
3017 * @shost: the Scsi_Host to which this device belongs
3018 *
3019 * Iterate over all children of @dev, which should be scsi_target devices,
3020 * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for
3021 * ongoing scsi_queue_rq() calls to finish. May sleep.
3022 *
3023 * Note:
3024 * @dev must not itself be a scsi_target device.
3025 */
3026 void
scsi_block_targets(struct Scsi_Host * shost,struct device * dev)3027 scsi_block_targets(struct Scsi_Host *shost, struct device *dev)
3028 {
3029 WARN_ON_ONCE(scsi_is_target_device(dev));
3030 device_for_each_child(dev, NULL, target_block);
3031 blk_mq_wait_quiesce_done(&shost->tag_set);
3032 }
3033 EXPORT_SYMBOL_GPL(scsi_block_targets);
3034
3035 static void
device_unblock(struct scsi_device * sdev,void * data)3036 device_unblock(struct scsi_device *sdev, void *data)
3037 {
3038 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3039 }
3040
3041 static int
target_unblock(struct device * dev,void * data)3042 target_unblock(struct device *dev, void *data)
3043 {
3044 if (scsi_is_target_device(dev))
3045 starget_for_each_device(to_scsi_target(dev), data,
3046 device_unblock);
3047 return 0;
3048 }
3049
3050 void
scsi_target_unblock(struct device * dev,enum scsi_device_state new_state)3051 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3052 {
3053 if (scsi_is_target_device(dev))
3054 starget_for_each_device(to_scsi_target(dev), &new_state,
3055 device_unblock);
3056 else
3057 device_for_each_child(dev, &new_state, target_unblock);
3058 }
3059 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3060
3061 /**
3062 * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state
3063 * @shost: device to block
3064 *
3065 * Pause SCSI command processing for all logical units associated with the SCSI
3066 * host and wait until pending scsi_queue_rq() calls have finished.
3067 *
3068 * Returns zero if successful or a negative error code upon failure.
3069 */
3070 int
scsi_host_block(struct Scsi_Host * shost)3071 scsi_host_block(struct Scsi_Host *shost)
3072 {
3073 struct scsi_device *sdev;
3074 int ret;
3075
3076 /*
3077 * Call scsi_internal_device_block_nowait so we can avoid
3078 * calling synchronize_rcu() for each LUN.
3079 */
3080 shost_for_each_device(sdev, shost) {
3081 mutex_lock(&sdev->state_mutex);
3082 ret = scsi_internal_device_block_nowait(sdev);
3083 mutex_unlock(&sdev->state_mutex);
3084 if (ret) {
3085 scsi_device_put(sdev);
3086 return ret;
3087 }
3088 }
3089
3090 /* Wait for ongoing scsi_queue_rq() calls to finish. */
3091 blk_mq_wait_quiesce_done(&shost->tag_set);
3092
3093 return 0;
3094 }
3095 EXPORT_SYMBOL_GPL(scsi_host_block);
3096
3097 int
scsi_host_unblock(struct Scsi_Host * shost,int new_state)3098 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
3099 {
3100 struct scsi_device *sdev;
3101 int ret = 0;
3102
3103 shost_for_each_device(sdev, shost) {
3104 ret = scsi_internal_device_unblock(sdev, new_state);
3105 if (ret) {
3106 scsi_device_put(sdev);
3107 break;
3108 }
3109 }
3110 return ret;
3111 }
3112 EXPORT_SYMBOL_GPL(scsi_host_unblock);
3113
3114 /**
3115 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3116 * @sgl: scatter-gather list
3117 * @sg_count: number of segments in sg
3118 * @offset: offset in bytes into sg, on return offset into the mapped area
3119 * @len: bytes to map, on return number of bytes mapped
3120 *
3121 * Returns virtual address of the start of the mapped page
3122 */
scsi_kmap_atomic_sg(struct scatterlist * sgl,int sg_count,size_t * offset,size_t * len)3123 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3124 size_t *offset, size_t *len)
3125 {
3126 int i;
3127 size_t sg_len = 0, len_complete = 0;
3128 struct scatterlist *sg;
3129 struct page *page;
3130
3131 WARN_ON(!irqs_disabled());
3132
3133 for_each_sg(sgl, sg, sg_count, i) {
3134 len_complete = sg_len; /* Complete sg-entries */
3135 sg_len += sg->length;
3136 if (sg_len > *offset)
3137 break;
3138 }
3139
3140 if (unlikely(i == sg_count)) {
3141 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3142 "elements %d\n",
3143 __func__, sg_len, *offset, sg_count);
3144 WARN_ON(1);
3145 return NULL;
3146 }
3147
3148 /* Offset starting from the beginning of first page in this sg-entry */
3149 *offset = *offset - len_complete + sg->offset;
3150
3151 /* Assumption: contiguous pages can be accessed as "page + i" */
3152 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3153 *offset &= ~PAGE_MASK;
3154
3155 /* Bytes in this sg-entry from *offset to the end of the page */
3156 sg_len = PAGE_SIZE - *offset;
3157 if (*len > sg_len)
3158 *len = sg_len;
3159
3160 return kmap_atomic(page);
3161 }
3162 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3163
3164 /**
3165 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3166 * @virt: virtual address to be unmapped
3167 */
scsi_kunmap_atomic_sg(void * virt)3168 void scsi_kunmap_atomic_sg(void *virt)
3169 {
3170 kunmap_atomic(virt);
3171 }
3172 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3173
sdev_disable_disk_events(struct scsi_device * sdev)3174 void sdev_disable_disk_events(struct scsi_device *sdev)
3175 {
3176 atomic_inc(&sdev->disk_events_disable_depth);
3177 }
3178 EXPORT_SYMBOL(sdev_disable_disk_events);
3179
sdev_enable_disk_events(struct scsi_device * sdev)3180 void sdev_enable_disk_events(struct scsi_device *sdev)
3181 {
3182 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3183 return;
3184 atomic_dec(&sdev->disk_events_disable_depth);
3185 }
3186 EXPORT_SYMBOL(sdev_enable_disk_events);
3187
designator_prio(const unsigned char * d)3188 static unsigned char designator_prio(const unsigned char *d)
3189 {
3190 if (d[1] & 0x30)
3191 /* not associated with LUN */
3192 return 0;
3193
3194 if (d[3] == 0)
3195 /* invalid length */
3196 return 0;
3197
3198 /*
3199 * Order of preference for lun descriptor:
3200 * - SCSI name string
3201 * - NAA IEEE Registered Extended
3202 * - EUI-64 based 16-byte
3203 * - EUI-64 based 12-byte
3204 * - NAA IEEE Registered
3205 * - NAA IEEE Extended
3206 * - EUI-64 based 8-byte
3207 * - SCSI name string (truncated)
3208 * - T10 Vendor ID
3209 * as longer descriptors reduce the likelyhood
3210 * of identification clashes.
3211 */
3212
3213 switch (d[1] & 0xf) {
3214 case 8:
3215 /* SCSI name string, variable-length UTF-8 */
3216 return 9;
3217 case 3:
3218 switch (d[4] >> 4) {
3219 case 6:
3220 /* NAA registered extended */
3221 return 8;
3222 case 5:
3223 /* NAA registered */
3224 return 5;
3225 case 4:
3226 /* NAA extended */
3227 return 4;
3228 case 3:
3229 /* NAA locally assigned */
3230 return 1;
3231 default:
3232 break;
3233 }
3234 break;
3235 case 2:
3236 switch (d[3]) {
3237 case 16:
3238 /* EUI64-based, 16 byte */
3239 return 7;
3240 case 12:
3241 /* EUI64-based, 12 byte */
3242 return 6;
3243 case 8:
3244 /* EUI64-based, 8 byte */
3245 return 3;
3246 default:
3247 break;
3248 }
3249 break;
3250 case 1:
3251 /* T10 vendor ID */
3252 return 1;
3253 default:
3254 break;
3255 }
3256
3257 return 0;
3258 }
3259
3260 /**
3261 * scsi_vpd_lun_id - return a unique device identification
3262 * @sdev: SCSI device
3263 * @id: buffer for the identification
3264 * @id_len: length of the buffer
3265 *
3266 * Copies a unique device identification into @id based
3267 * on the information in the VPD page 0x83 of the device.
3268 * The string will be formatted as a SCSI name string.
3269 *
3270 * Returns the length of the identification or error on failure.
3271 * If the identifier is longer than the supplied buffer the actual
3272 * identifier length is returned and the buffer is not zero-padded.
3273 */
scsi_vpd_lun_id(struct scsi_device * sdev,char * id,size_t id_len)3274 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3275 {
3276 u8 cur_id_prio = 0;
3277 u8 cur_id_size = 0;
3278 const unsigned char *d, *cur_id_str;
3279 const struct scsi_vpd *vpd_pg83;
3280 int id_size = -EINVAL;
3281
3282 rcu_read_lock();
3283 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3284 if (!vpd_pg83) {
3285 rcu_read_unlock();
3286 return -ENXIO;
3287 }
3288
3289 /* The id string must be at least 20 bytes + terminating NULL byte */
3290 if (id_len < 21) {
3291 rcu_read_unlock();
3292 return -EINVAL;
3293 }
3294
3295 memset(id, 0, id_len);
3296 for (d = vpd_pg83->data + 4;
3297 d < vpd_pg83->data + vpd_pg83->len;
3298 d += d[3] + 4) {
3299 u8 prio = designator_prio(d);
3300
3301 if (prio == 0 || cur_id_prio > prio)
3302 continue;
3303
3304 switch (d[1] & 0xf) {
3305 case 0x1:
3306 /* T10 Vendor ID */
3307 if (cur_id_size > d[3])
3308 break;
3309 cur_id_prio = prio;
3310 cur_id_size = d[3];
3311 if (cur_id_size + 4 > id_len)
3312 cur_id_size = id_len - 4;
3313 cur_id_str = d + 4;
3314 id_size = snprintf(id, id_len, "t10.%*pE",
3315 cur_id_size, cur_id_str);
3316 break;
3317 case 0x2:
3318 /* EUI-64 */
3319 cur_id_prio = prio;
3320 cur_id_size = d[3];
3321 cur_id_str = d + 4;
3322 switch (cur_id_size) {
3323 case 8:
3324 id_size = snprintf(id, id_len,
3325 "eui.%8phN",
3326 cur_id_str);
3327 break;
3328 case 12:
3329 id_size = snprintf(id, id_len,
3330 "eui.%12phN",
3331 cur_id_str);
3332 break;
3333 case 16:
3334 id_size = snprintf(id, id_len,
3335 "eui.%16phN",
3336 cur_id_str);
3337 break;
3338 default:
3339 break;
3340 }
3341 break;
3342 case 0x3:
3343 /* NAA */
3344 cur_id_prio = prio;
3345 cur_id_size = d[3];
3346 cur_id_str = d + 4;
3347 switch (cur_id_size) {
3348 case 8:
3349 id_size = snprintf(id, id_len,
3350 "naa.%8phN",
3351 cur_id_str);
3352 break;
3353 case 16:
3354 id_size = snprintf(id, id_len,
3355 "naa.%16phN",
3356 cur_id_str);
3357 break;
3358 default:
3359 break;
3360 }
3361 break;
3362 case 0x8:
3363 /* SCSI name string */
3364 if (cur_id_size > d[3])
3365 break;
3366 /* Prefer others for truncated descriptor */
3367 if (d[3] > id_len) {
3368 prio = 2;
3369 if (cur_id_prio > prio)
3370 break;
3371 }
3372 cur_id_prio = prio;
3373 cur_id_size = id_size = d[3];
3374 cur_id_str = d + 4;
3375 if (cur_id_size >= id_len)
3376 cur_id_size = id_len - 1;
3377 memcpy(id, cur_id_str, cur_id_size);
3378 break;
3379 default:
3380 break;
3381 }
3382 }
3383 rcu_read_unlock();
3384
3385 return id_size;
3386 }
3387 EXPORT_SYMBOL(scsi_vpd_lun_id);
3388
3389 /**
3390 * scsi_vpd_tpg_id - return a target port group identifier
3391 * @sdev: SCSI device
3392 * @rel_id: pointer to return relative target port in if not %NULL
3393 *
3394 * Returns the Target Port Group identifier from the information
3395 * from VPD page 0x83 of the device.
3396 * Optionally sets @rel_id to the relative target port on success.
3397 *
3398 * Return: the identifier or error on failure.
3399 */
scsi_vpd_tpg_id(struct scsi_device * sdev,int * rel_id)3400 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3401 {
3402 const unsigned char *d;
3403 const struct scsi_vpd *vpd_pg83;
3404 int group_id = -EAGAIN, rel_port = -1;
3405
3406 rcu_read_lock();
3407 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3408 if (!vpd_pg83) {
3409 rcu_read_unlock();
3410 return -ENXIO;
3411 }
3412
3413 d = vpd_pg83->data + 4;
3414 while (d < vpd_pg83->data + vpd_pg83->len) {
3415 switch (d[1] & 0xf) {
3416 case 0x4:
3417 /* Relative target port */
3418 rel_port = get_unaligned_be16(&d[6]);
3419 break;
3420 case 0x5:
3421 /* Target port group */
3422 group_id = get_unaligned_be16(&d[6]);
3423 break;
3424 default:
3425 break;
3426 }
3427 d += d[3] + 4;
3428 }
3429 rcu_read_unlock();
3430
3431 if (group_id >= 0 && rel_id && rel_port != -1)
3432 *rel_id = rel_port;
3433
3434 return group_id;
3435 }
3436 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3437
3438 /**
3439 * scsi_build_sense - build sense data for a command
3440 * @scmd: scsi command for which the sense should be formatted
3441 * @desc: Sense format (non-zero == descriptor format,
3442 * 0 == fixed format)
3443 * @key: Sense key
3444 * @asc: Additional sense code
3445 * @ascq: Additional sense code qualifier
3446 *
3447 **/
scsi_build_sense(struct scsi_cmnd * scmd,int desc,u8 key,u8 asc,u8 ascq)3448 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3449 {
3450 scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3451 scmd->result = SAM_STAT_CHECK_CONDITION;
3452 }
3453 EXPORT_SYMBOL_GPL(scsi_build_sense);
3454
3455 #ifdef CONFIG_SCSI_LIB_KUNIT_TEST
3456 #include "scsi_lib_test.c"
3457 #endif
3458