1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2018, Google LLC.
4 */
5 #ifndef SELFTEST_KVM_UTIL_H
6 #define SELFTEST_KVM_UTIL_H
7
8 #include "test_util.h"
9
10 #include <linux/compiler.h>
11 #include "linux/hashtable.h"
12 #include "linux/list.h"
13 #include <linux/kernel.h>
14 #include <linux/kvm.h>
15 #include "linux/rbtree.h"
16 #include <linux/types.h>
17
18 #include <asm/atomic.h>
19 #include <asm/kvm.h>
20
21 #include <sys/eventfd.h>
22 #include <sys/ioctl.h>
23
24 #include <pthread.h>
25
26 #include "kvm_util_arch.h"
27 #include "kvm_util_types.h"
28 #include "sparsebit.h"
29
30 #define KVM_DEV_PATH "/dev/kvm"
31 #define KVM_MAX_VCPUS 512
32
33 #define NSEC_PER_SEC 1000000000L
34
35 struct userspace_mem_region {
36 struct kvm_userspace_memory_region2 region;
37 struct sparsebit *unused_phy_pages;
38 struct sparsebit *protected_phy_pages;
39 int fd;
40 off_t offset;
41 enum vm_mem_backing_src_type backing_src_type;
42 void *host_mem;
43 void *host_alias;
44 void *mmap_start;
45 void *mmap_alias;
46 size_t mmap_size;
47 struct rb_node gpa_node;
48 struct rb_node hva_node;
49 struct hlist_node slot_node;
50 };
51
52 struct kvm_binary_stats {
53 int fd;
54 struct kvm_stats_header header;
55 struct kvm_stats_desc *desc;
56 };
57
58 struct kvm_vcpu {
59 struct list_head list;
60 uint32_t id;
61 int fd;
62 struct kvm_vm *vm;
63 struct kvm_run *run;
64 #ifdef __x86_64__
65 struct kvm_cpuid2 *cpuid;
66 #endif
67 #ifdef __aarch64__
68 struct kvm_vcpu_init init;
69 #endif
70 struct kvm_binary_stats stats;
71 struct kvm_dirty_gfn *dirty_gfns;
72 uint32_t fetch_index;
73 uint32_t dirty_gfns_count;
74 };
75
76 struct userspace_mem_regions {
77 struct rb_root gpa_tree;
78 struct rb_root hva_tree;
79 DECLARE_HASHTABLE(slot_hash, 9);
80 };
81
82 enum kvm_mem_region_type {
83 MEM_REGION_CODE,
84 MEM_REGION_DATA,
85 MEM_REGION_PT,
86 MEM_REGION_TEST_DATA,
87 NR_MEM_REGIONS,
88 };
89
90 struct kvm_vm {
91 int mode;
92 unsigned long type;
93 int kvm_fd;
94 int fd;
95 unsigned int pgtable_levels;
96 unsigned int page_size;
97 unsigned int page_shift;
98 unsigned int pa_bits;
99 unsigned int va_bits;
100 uint64_t max_gfn;
101 struct list_head vcpus;
102 struct userspace_mem_regions regions;
103 struct sparsebit *vpages_valid;
104 struct sparsebit *vpages_mapped;
105 bool has_irqchip;
106 bool pgd_created;
107 vm_paddr_t ucall_mmio_addr;
108 vm_paddr_t pgd;
109 vm_vaddr_t handlers;
110 uint32_t dirty_ring_size;
111 uint64_t gpa_tag_mask;
112
113 struct kvm_vm_arch arch;
114
115 struct kvm_binary_stats stats;
116
117 /*
118 * KVM region slots. These are the default memslots used by page
119 * allocators, e.g., lib/elf uses the memslots[MEM_REGION_CODE]
120 * memslot.
121 */
122 uint32_t memslots[NR_MEM_REGIONS];
123 };
124
125 struct vcpu_reg_sublist {
126 const char *name;
127 long capability;
128 int feature;
129 int feature_type;
130 bool finalize;
131 __u64 *regs;
132 __u64 regs_n;
133 __u64 *rejects_set;
134 __u64 rejects_set_n;
135 __u64 *skips_set;
136 __u64 skips_set_n;
137 };
138
139 struct vcpu_reg_list {
140 char *name;
141 struct vcpu_reg_sublist sublists[];
142 };
143
144 #define for_each_sublist(c, s) \
145 for ((s) = &(c)->sublists[0]; (s)->regs; ++(s))
146
147 #define kvm_for_each_vcpu(vm, i, vcpu) \
148 for ((i) = 0; (i) <= (vm)->last_vcpu_id; (i)++) \
149 if (!((vcpu) = vm->vcpus[i])) \
150 continue; \
151 else
152
153 struct userspace_mem_region *
154 memslot2region(struct kvm_vm *vm, uint32_t memslot);
155
vm_get_mem_region(struct kvm_vm * vm,enum kvm_mem_region_type type)156 static inline struct userspace_mem_region *vm_get_mem_region(struct kvm_vm *vm,
157 enum kvm_mem_region_type type)
158 {
159 assert(type < NR_MEM_REGIONS);
160 return memslot2region(vm, vm->memslots[type]);
161 }
162
163 /* Minimum allocated guest virtual and physical addresses */
164 #define KVM_UTIL_MIN_VADDR 0x2000
165 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
166
167 #define DEFAULT_GUEST_STACK_VADDR_MIN 0xab6000
168 #define DEFAULT_STACK_PGS 5
169
170 enum vm_guest_mode {
171 VM_MODE_P52V48_4K,
172 VM_MODE_P52V48_16K,
173 VM_MODE_P52V48_64K,
174 VM_MODE_P48V48_4K,
175 VM_MODE_P48V48_16K,
176 VM_MODE_P48V48_64K,
177 VM_MODE_P40V48_4K,
178 VM_MODE_P40V48_16K,
179 VM_MODE_P40V48_64K,
180 VM_MODE_PXXV48_4K, /* For 48bits VA but ANY bits PA */
181 VM_MODE_P47V64_4K,
182 VM_MODE_P44V64_4K,
183 VM_MODE_P36V48_4K,
184 VM_MODE_P36V48_16K,
185 VM_MODE_P36V48_64K,
186 VM_MODE_P47V47_16K,
187 VM_MODE_P36V47_16K,
188 NUM_VM_MODES,
189 };
190
191 struct vm_shape {
192 uint32_t type;
193 uint8_t mode;
194 uint8_t pad0;
195 uint16_t pad1;
196 };
197
198 kvm_static_assert(sizeof(struct vm_shape) == sizeof(uint64_t));
199
200 #define VM_TYPE_DEFAULT 0
201
202 #define VM_SHAPE(__mode) \
203 ({ \
204 struct vm_shape shape = { \
205 .mode = (__mode), \
206 .type = VM_TYPE_DEFAULT \
207 }; \
208 \
209 shape; \
210 })
211
212 #if defined(__aarch64__)
213
214 extern enum vm_guest_mode vm_mode_default;
215
216 #define VM_MODE_DEFAULT vm_mode_default
217 #define MIN_PAGE_SHIFT 12U
218 #define ptes_per_page(page_size) ((page_size) / 8)
219
220 #elif defined(__x86_64__)
221
222 #define VM_MODE_DEFAULT VM_MODE_PXXV48_4K
223 #define MIN_PAGE_SHIFT 12U
224 #define ptes_per_page(page_size) ((page_size) / 8)
225
226 #elif defined(__s390x__)
227
228 #define VM_MODE_DEFAULT VM_MODE_P44V64_4K
229 #define MIN_PAGE_SHIFT 12U
230 #define ptes_per_page(page_size) ((page_size) / 16)
231
232 #elif defined(__riscv)
233
234 #if __riscv_xlen == 32
235 #error "RISC-V 32-bit kvm selftests not supported"
236 #endif
237
238 #define VM_MODE_DEFAULT VM_MODE_P40V48_4K
239 #define MIN_PAGE_SHIFT 12U
240 #define ptes_per_page(page_size) ((page_size) / 8)
241
242 #elif defined(__loongarch__)
243 #define VM_MODE_DEFAULT VM_MODE_P47V47_16K
244 #define MIN_PAGE_SHIFT 12U
245 #define ptes_per_page(page_size) ((page_size) / 8)
246
247 #endif
248
249 #define VM_SHAPE_DEFAULT VM_SHAPE(VM_MODE_DEFAULT)
250
251 #define MIN_PAGE_SIZE (1U << MIN_PAGE_SHIFT)
252 #define PTES_PER_MIN_PAGE ptes_per_page(MIN_PAGE_SIZE)
253
254 struct vm_guest_mode_params {
255 unsigned int pa_bits;
256 unsigned int va_bits;
257 unsigned int page_size;
258 unsigned int page_shift;
259 };
260 extern const struct vm_guest_mode_params vm_guest_mode_params[];
261
262 int __open_path_or_exit(const char *path, int flags, const char *enoent_help);
263 int open_path_or_exit(const char *path, int flags);
264 int open_kvm_dev_path_or_exit(void);
265
266 int kvm_get_module_param_integer(const char *module_name, const char *param);
267 bool kvm_get_module_param_bool(const char *module_name, const char *param);
268
get_kvm_param_bool(const char * param)269 static inline bool get_kvm_param_bool(const char *param)
270 {
271 return kvm_get_module_param_bool("kvm", param);
272 }
273
get_kvm_param_integer(const char * param)274 static inline int get_kvm_param_integer(const char *param)
275 {
276 return kvm_get_module_param_integer("kvm", param);
277 }
278
279 unsigned int kvm_check_cap(long cap);
280
kvm_has_cap(long cap)281 static inline bool kvm_has_cap(long cap)
282 {
283 return kvm_check_cap(cap);
284 }
285
286 #define __KVM_SYSCALL_ERROR(_name, _ret) \
287 "%s failed, rc: %i errno: %i (%s)", (_name), (_ret), errno, strerror(errno)
288
289 /*
290 * Use the "inner", double-underscore macro when reporting errors from within
291 * other macros so that the name of ioctl() and not its literal numeric value
292 * is printed on error. The "outer" macro is strongly preferred when reporting
293 * errors "directly", i.e. without an additional layer of macros, as it reduces
294 * the probability of passing in the wrong string.
295 */
296 #define __KVM_IOCTL_ERROR(_name, _ret) __KVM_SYSCALL_ERROR(_name, _ret)
297 #define KVM_IOCTL_ERROR(_ioctl, _ret) __KVM_IOCTL_ERROR(#_ioctl, _ret)
298
299 #define kvm_do_ioctl(fd, cmd, arg) \
300 ({ \
301 kvm_static_assert(!_IOC_SIZE(cmd) || sizeof(*arg) == _IOC_SIZE(cmd)); \
302 ioctl(fd, cmd, arg); \
303 })
304
305 #define __kvm_ioctl(kvm_fd, cmd, arg) \
306 kvm_do_ioctl(kvm_fd, cmd, arg)
307
308 #define kvm_ioctl(kvm_fd, cmd, arg) \
309 ({ \
310 int ret = __kvm_ioctl(kvm_fd, cmd, arg); \
311 \
312 TEST_ASSERT(!ret, __KVM_IOCTL_ERROR(#cmd, ret)); \
313 })
314
static_assert_is_vm(struct kvm_vm * vm)315 static __always_inline void static_assert_is_vm(struct kvm_vm *vm) { }
316
317 #define __vm_ioctl(vm, cmd, arg) \
318 ({ \
319 static_assert_is_vm(vm); \
320 kvm_do_ioctl((vm)->fd, cmd, arg); \
321 })
322
323 /*
324 * Assert that a VM or vCPU ioctl() succeeded, with extra magic to detect if
325 * the ioctl() failed because KVM killed/bugged the VM. To detect a dead VM,
326 * probe KVM_CAP_USER_MEMORY, which (a) has been supported by KVM since before
327 * selftests existed and (b) should never outright fail, i.e. is supposed to
328 * return 0 or 1. If KVM kills a VM, KVM returns -EIO for all ioctl()s for the
329 * VM and its vCPUs, including KVM_CHECK_EXTENSION.
330 */
331 #define __TEST_ASSERT_VM_VCPU_IOCTL(cond, name, ret, vm) \
332 do { \
333 int __errno = errno; \
334 \
335 static_assert_is_vm(vm); \
336 \
337 if (cond) \
338 break; \
339 \
340 if (errno == EIO && \
341 __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)KVM_CAP_USER_MEMORY) < 0) { \
342 TEST_ASSERT(errno == EIO, "KVM killed the VM, should return -EIO"); \
343 TEST_FAIL("KVM killed/bugged the VM, check the kernel log for clues"); \
344 } \
345 errno = __errno; \
346 TEST_ASSERT(cond, __KVM_IOCTL_ERROR(name, ret)); \
347 } while (0)
348
349 #define TEST_ASSERT_VM_VCPU_IOCTL(cond, cmd, ret, vm) \
350 __TEST_ASSERT_VM_VCPU_IOCTL(cond, #cmd, ret, vm)
351
352 #define vm_ioctl(vm, cmd, arg) \
353 ({ \
354 int ret = __vm_ioctl(vm, cmd, arg); \
355 \
356 __TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, vm); \
357 })
358
static_assert_is_vcpu(struct kvm_vcpu * vcpu)359 static __always_inline void static_assert_is_vcpu(struct kvm_vcpu *vcpu) { }
360
361 #define __vcpu_ioctl(vcpu, cmd, arg) \
362 ({ \
363 static_assert_is_vcpu(vcpu); \
364 kvm_do_ioctl((vcpu)->fd, cmd, arg); \
365 })
366
367 #define vcpu_ioctl(vcpu, cmd, arg) \
368 ({ \
369 int ret = __vcpu_ioctl(vcpu, cmd, arg); \
370 \
371 __TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, (vcpu)->vm); \
372 })
373
374 /*
375 * Looks up and returns the value corresponding to the capability
376 * (KVM_CAP_*) given by cap.
377 */
vm_check_cap(struct kvm_vm * vm,long cap)378 static inline int vm_check_cap(struct kvm_vm *vm, long cap)
379 {
380 int ret = __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)cap);
381
382 TEST_ASSERT_VM_VCPU_IOCTL(ret >= 0, KVM_CHECK_EXTENSION, ret, vm);
383 return ret;
384 }
385
__vm_enable_cap(struct kvm_vm * vm,uint32_t cap,uint64_t arg0)386 static inline int __vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0)
387 {
388 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
389
390 return __vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap);
391 }
vm_enable_cap(struct kvm_vm * vm,uint32_t cap,uint64_t arg0)392 static inline void vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0)
393 {
394 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
395
396 vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap);
397 }
398
vm_set_memory_attributes(struct kvm_vm * vm,uint64_t gpa,uint64_t size,uint64_t attributes)399 static inline void vm_set_memory_attributes(struct kvm_vm *vm, uint64_t gpa,
400 uint64_t size, uint64_t attributes)
401 {
402 struct kvm_memory_attributes attr = {
403 .attributes = attributes,
404 .address = gpa,
405 .size = size,
406 .flags = 0,
407 };
408
409 /*
410 * KVM_SET_MEMORY_ATTRIBUTES overwrites _all_ attributes. These flows
411 * need significant enhancements to support multiple attributes.
412 */
413 TEST_ASSERT(!attributes || attributes == KVM_MEMORY_ATTRIBUTE_PRIVATE,
414 "Update me to support multiple attributes!");
415
416 vm_ioctl(vm, KVM_SET_MEMORY_ATTRIBUTES, &attr);
417 }
418
419
vm_mem_set_private(struct kvm_vm * vm,uint64_t gpa,uint64_t size)420 static inline void vm_mem_set_private(struct kvm_vm *vm, uint64_t gpa,
421 uint64_t size)
422 {
423 vm_set_memory_attributes(vm, gpa, size, KVM_MEMORY_ATTRIBUTE_PRIVATE);
424 }
425
vm_mem_set_shared(struct kvm_vm * vm,uint64_t gpa,uint64_t size)426 static inline void vm_mem_set_shared(struct kvm_vm *vm, uint64_t gpa,
427 uint64_t size)
428 {
429 vm_set_memory_attributes(vm, gpa, size, 0);
430 }
431
432 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t gpa, uint64_t size,
433 bool punch_hole);
434
vm_guest_mem_punch_hole(struct kvm_vm * vm,uint64_t gpa,uint64_t size)435 static inline void vm_guest_mem_punch_hole(struct kvm_vm *vm, uint64_t gpa,
436 uint64_t size)
437 {
438 vm_guest_mem_fallocate(vm, gpa, size, true);
439 }
440
vm_guest_mem_allocate(struct kvm_vm * vm,uint64_t gpa,uint64_t size)441 static inline void vm_guest_mem_allocate(struct kvm_vm *vm, uint64_t gpa,
442 uint64_t size)
443 {
444 vm_guest_mem_fallocate(vm, gpa, size, false);
445 }
446
447 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size);
448 const char *vm_guest_mode_string(uint32_t i);
449
450 void kvm_vm_free(struct kvm_vm *vmp);
451 void kvm_vm_restart(struct kvm_vm *vmp);
452 void kvm_vm_release(struct kvm_vm *vmp);
453 void kvm_vm_elf_load(struct kvm_vm *vm, const char *filename);
454 int kvm_memfd_alloc(size_t size, bool hugepages);
455
456 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent);
457
kvm_vm_get_dirty_log(struct kvm_vm * vm,int slot,void * log)458 static inline void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
459 {
460 struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
461
462 vm_ioctl(vm, KVM_GET_DIRTY_LOG, &args);
463 }
464
kvm_vm_clear_dirty_log(struct kvm_vm * vm,int slot,void * log,uint64_t first_page,uint32_t num_pages)465 static inline void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
466 uint64_t first_page, uint32_t num_pages)
467 {
468 struct kvm_clear_dirty_log args = {
469 .dirty_bitmap = log,
470 .slot = slot,
471 .first_page = first_page,
472 .num_pages = num_pages
473 };
474
475 vm_ioctl(vm, KVM_CLEAR_DIRTY_LOG, &args);
476 }
477
kvm_vm_reset_dirty_ring(struct kvm_vm * vm)478 static inline uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm)
479 {
480 return __vm_ioctl(vm, KVM_RESET_DIRTY_RINGS, NULL);
481 }
482
kvm_vm_register_coalesced_io(struct kvm_vm * vm,uint64_t address,uint64_t size,bool pio)483 static inline void kvm_vm_register_coalesced_io(struct kvm_vm *vm,
484 uint64_t address,
485 uint64_t size, bool pio)
486 {
487 struct kvm_coalesced_mmio_zone zone = {
488 .addr = address,
489 .size = size,
490 .pio = pio,
491 };
492
493 vm_ioctl(vm, KVM_REGISTER_COALESCED_MMIO, &zone);
494 }
495
kvm_vm_unregister_coalesced_io(struct kvm_vm * vm,uint64_t address,uint64_t size,bool pio)496 static inline void kvm_vm_unregister_coalesced_io(struct kvm_vm *vm,
497 uint64_t address,
498 uint64_t size, bool pio)
499 {
500 struct kvm_coalesced_mmio_zone zone = {
501 .addr = address,
502 .size = size,
503 .pio = pio,
504 };
505
506 vm_ioctl(vm, KVM_UNREGISTER_COALESCED_MMIO, &zone);
507 }
508
vm_get_stats_fd(struct kvm_vm * vm)509 static inline int vm_get_stats_fd(struct kvm_vm *vm)
510 {
511 int fd = __vm_ioctl(vm, KVM_GET_STATS_FD, NULL);
512
513 TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_GET_STATS_FD, fd, vm);
514 return fd;
515 }
516
__kvm_irqfd(struct kvm_vm * vm,uint32_t gsi,int eventfd,uint32_t flags)517 static inline int __kvm_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd,
518 uint32_t flags)
519 {
520 struct kvm_irqfd irqfd = {
521 .fd = eventfd,
522 .gsi = gsi,
523 .flags = flags,
524 .resamplefd = -1,
525 };
526
527 return __vm_ioctl(vm, KVM_IRQFD, &irqfd);
528 }
529
kvm_irqfd(struct kvm_vm * vm,uint32_t gsi,int eventfd,uint32_t flags)530 static inline void kvm_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd,
531 uint32_t flags)
532 {
533 int ret = __kvm_irqfd(vm, gsi, eventfd, flags);
534
535 TEST_ASSERT_VM_VCPU_IOCTL(!ret, KVM_IRQFD, ret, vm);
536 }
537
kvm_assign_irqfd(struct kvm_vm * vm,uint32_t gsi,int eventfd)538 static inline void kvm_assign_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd)
539 {
540 kvm_irqfd(vm, gsi, eventfd, 0);
541 }
542
kvm_deassign_irqfd(struct kvm_vm * vm,uint32_t gsi,int eventfd)543 static inline void kvm_deassign_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd)
544 {
545 kvm_irqfd(vm, gsi, eventfd, KVM_IRQFD_FLAG_DEASSIGN);
546 }
547
kvm_new_eventfd(void)548 static inline int kvm_new_eventfd(void)
549 {
550 int fd = eventfd(0, 0);
551
552 TEST_ASSERT(fd >= 0, __KVM_SYSCALL_ERROR("eventfd()", fd));
553 return fd;
554 }
555
read_stats_header(int stats_fd,struct kvm_stats_header * header)556 static inline void read_stats_header(int stats_fd, struct kvm_stats_header *header)
557 {
558 ssize_t ret;
559
560 ret = pread(stats_fd, header, sizeof(*header), 0);
561 TEST_ASSERT(ret == sizeof(*header),
562 "Failed to read '%lu' header bytes, ret = '%ld'",
563 sizeof(*header), ret);
564 }
565
566 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
567 struct kvm_stats_header *header);
568
get_stats_descriptor_size(struct kvm_stats_header * header)569 static inline ssize_t get_stats_descriptor_size(struct kvm_stats_header *header)
570 {
571 /*
572 * The base size of the descriptor is defined by KVM's ABI, but the
573 * size of the name field is variable, as far as KVM's ABI is
574 * concerned. For a given instance of KVM, the name field is the same
575 * size for all stats and is provided in the overall stats header.
576 */
577 return sizeof(struct kvm_stats_desc) + header->name_size;
578 }
579
get_stats_descriptor(struct kvm_stats_desc * stats,int index,struct kvm_stats_header * header)580 static inline struct kvm_stats_desc *get_stats_descriptor(struct kvm_stats_desc *stats,
581 int index,
582 struct kvm_stats_header *header)
583 {
584 /*
585 * Note, size_desc includes the size of the name field, which is
586 * variable. i.e. this is NOT equivalent to &stats_desc[i].
587 */
588 return (void *)stats + index * get_stats_descriptor_size(header);
589 }
590
591 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
592 struct kvm_stats_desc *desc, uint64_t *data,
593 size_t max_elements);
594
595 void kvm_get_stat(struct kvm_binary_stats *stats, const char *name,
596 uint64_t *data, size_t max_elements);
597
598 #define __get_stat(stats, stat) \
599 ({ \
600 uint64_t data; \
601 \
602 kvm_get_stat(stats, #stat, &data, 1); \
603 data; \
604 })
605
606 #define vm_get_stat(vm, stat) __get_stat(&(vm)->stats, stat)
607 #define vcpu_get_stat(vcpu, stat) __get_stat(&(vcpu)->stats, stat)
608
read_smt_control(char * buf,size_t buf_size)609 static inline bool read_smt_control(char *buf, size_t buf_size)
610 {
611 FILE *f = fopen("/sys/devices/system/cpu/smt/control", "r");
612 bool ret;
613
614 if (!f)
615 return false;
616
617 ret = fread(buf, sizeof(*buf), buf_size, f) > 0;
618 fclose(f);
619
620 return ret;
621 }
622
is_smt_possible(void)623 static inline bool is_smt_possible(void)
624 {
625 char buf[16];
626
627 if (read_smt_control(buf, sizeof(buf)) &&
628 (!strncmp(buf, "forceoff", 8) || !strncmp(buf, "notsupported", 12)))
629 return false;
630
631 return true;
632 }
633
is_smt_on(void)634 static inline bool is_smt_on(void)
635 {
636 char buf[16];
637
638 if (read_smt_control(buf, sizeof(buf)) && !strncmp(buf, "on", 2))
639 return true;
640
641 return false;
642 }
643
644 void vm_create_irqchip(struct kvm_vm *vm);
645
__vm_create_guest_memfd(struct kvm_vm * vm,uint64_t size,uint64_t flags)646 static inline int __vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size,
647 uint64_t flags)
648 {
649 struct kvm_create_guest_memfd guest_memfd = {
650 .size = size,
651 .flags = flags,
652 };
653
654 return __vm_ioctl(vm, KVM_CREATE_GUEST_MEMFD, &guest_memfd);
655 }
656
vm_create_guest_memfd(struct kvm_vm * vm,uint64_t size,uint64_t flags)657 static inline int vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size,
658 uint64_t flags)
659 {
660 int fd = __vm_create_guest_memfd(vm, size, flags);
661
662 TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_GUEST_MEMFD, fd));
663 return fd;
664 }
665
666 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
667 uint64_t gpa, uint64_t size, void *hva);
668 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
669 uint64_t gpa, uint64_t size, void *hva);
670 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
671 uint64_t gpa, uint64_t size, void *hva,
672 uint32_t guest_memfd, uint64_t guest_memfd_offset);
673 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
674 uint64_t gpa, uint64_t size, void *hva,
675 uint32_t guest_memfd, uint64_t guest_memfd_offset);
676
677 void vm_userspace_mem_region_add(struct kvm_vm *vm,
678 enum vm_mem_backing_src_type src_type,
679 uint64_t guest_paddr, uint32_t slot, uint64_t npages,
680 uint32_t flags);
681 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
682 uint64_t guest_paddr, uint32_t slot, uint64_t npages,
683 uint32_t flags, int guest_memfd_fd, uint64_t guest_memfd_offset);
684
685 #ifndef vm_arch_has_protected_memory
vm_arch_has_protected_memory(struct kvm_vm * vm)686 static inline bool vm_arch_has_protected_memory(struct kvm_vm *vm)
687 {
688 return false;
689 }
690 #endif
691
692 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags);
693 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa);
694 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot);
695 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id);
696 void vm_populate_vaddr_bitmap(struct kvm_vm *vm);
697 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
698 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
699 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
700 enum kvm_mem_region_type type);
701 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz,
702 vm_vaddr_t vaddr_min,
703 enum kvm_mem_region_type type);
704 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages);
705 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm,
706 enum kvm_mem_region_type type);
707 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm);
708
709 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
710 unsigned int npages);
711 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa);
712 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva);
713 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva);
714 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa);
715
716 #ifndef vcpu_arch_put_guest
717 #define vcpu_arch_put_guest(mem, val) do { (mem) = (val); } while (0)
718 #endif
719
vm_untag_gpa(struct kvm_vm * vm,vm_paddr_t gpa)720 static inline vm_paddr_t vm_untag_gpa(struct kvm_vm *vm, vm_paddr_t gpa)
721 {
722 return gpa & ~vm->gpa_tag_mask;
723 }
724
725 void vcpu_run(struct kvm_vcpu *vcpu);
726 int _vcpu_run(struct kvm_vcpu *vcpu);
727
__vcpu_run(struct kvm_vcpu * vcpu)728 static inline int __vcpu_run(struct kvm_vcpu *vcpu)
729 {
730 return __vcpu_ioctl(vcpu, KVM_RUN, NULL);
731 }
732
733 void vcpu_run_complete_io(struct kvm_vcpu *vcpu);
734 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu);
735
vcpu_enable_cap(struct kvm_vcpu * vcpu,uint32_t cap,uint64_t arg0)736 static inline void vcpu_enable_cap(struct kvm_vcpu *vcpu, uint32_t cap,
737 uint64_t arg0)
738 {
739 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
740
741 vcpu_ioctl(vcpu, KVM_ENABLE_CAP, &enable_cap);
742 }
743
vcpu_guest_debug_set(struct kvm_vcpu * vcpu,struct kvm_guest_debug * debug)744 static inline void vcpu_guest_debug_set(struct kvm_vcpu *vcpu,
745 struct kvm_guest_debug *debug)
746 {
747 vcpu_ioctl(vcpu, KVM_SET_GUEST_DEBUG, debug);
748 }
749
vcpu_mp_state_get(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)750 static inline void vcpu_mp_state_get(struct kvm_vcpu *vcpu,
751 struct kvm_mp_state *mp_state)
752 {
753 vcpu_ioctl(vcpu, KVM_GET_MP_STATE, mp_state);
754 }
vcpu_mp_state_set(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)755 static inline void vcpu_mp_state_set(struct kvm_vcpu *vcpu,
756 struct kvm_mp_state *mp_state)
757 {
758 vcpu_ioctl(vcpu, KVM_SET_MP_STATE, mp_state);
759 }
760
vcpu_regs_get(struct kvm_vcpu * vcpu,struct kvm_regs * regs)761 static inline void vcpu_regs_get(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
762 {
763 vcpu_ioctl(vcpu, KVM_GET_REGS, regs);
764 }
765
vcpu_regs_set(struct kvm_vcpu * vcpu,struct kvm_regs * regs)766 static inline void vcpu_regs_set(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
767 {
768 vcpu_ioctl(vcpu, KVM_SET_REGS, regs);
769 }
vcpu_sregs_get(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)770 static inline void vcpu_sregs_get(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
771 {
772 vcpu_ioctl(vcpu, KVM_GET_SREGS, sregs);
773
774 }
vcpu_sregs_set(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)775 static inline void vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
776 {
777 vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs);
778 }
_vcpu_sregs_set(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)779 static inline int _vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
780 {
781 return __vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs);
782 }
vcpu_fpu_get(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)783 static inline void vcpu_fpu_get(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
784 {
785 vcpu_ioctl(vcpu, KVM_GET_FPU, fpu);
786 }
vcpu_fpu_set(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)787 static inline void vcpu_fpu_set(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
788 {
789 vcpu_ioctl(vcpu, KVM_SET_FPU, fpu);
790 }
791
__vcpu_get_reg(struct kvm_vcpu * vcpu,uint64_t id,void * addr)792 static inline int __vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id, void *addr)
793 {
794 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)addr };
795
796 return __vcpu_ioctl(vcpu, KVM_GET_ONE_REG, ®);
797 }
__vcpu_set_reg(struct kvm_vcpu * vcpu,uint64_t id,uint64_t val)798 static inline int __vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val)
799 {
800 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
801
802 return __vcpu_ioctl(vcpu, KVM_SET_ONE_REG, ®);
803 }
vcpu_get_reg(struct kvm_vcpu * vcpu,uint64_t id)804 static inline uint64_t vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id)
805 {
806 uint64_t val;
807 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
808
809 TEST_ASSERT(KVM_REG_SIZE(id) <= sizeof(val), "Reg %lx too big", id);
810
811 vcpu_ioctl(vcpu, KVM_GET_ONE_REG, ®);
812 return val;
813 }
vcpu_set_reg(struct kvm_vcpu * vcpu,uint64_t id,uint64_t val)814 static inline void vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val)
815 {
816 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
817
818 TEST_ASSERT(KVM_REG_SIZE(id) <= sizeof(val), "Reg %lx too big", id);
819
820 vcpu_ioctl(vcpu, KVM_SET_ONE_REG, ®);
821 }
822
823 #ifdef __KVM_HAVE_VCPU_EVENTS
vcpu_events_get(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)824 static inline void vcpu_events_get(struct kvm_vcpu *vcpu,
825 struct kvm_vcpu_events *events)
826 {
827 vcpu_ioctl(vcpu, KVM_GET_VCPU_EVENTS, events);
828 }
vcpu_events_set(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)829 static inline void vcpu_events_set(struct kvm_vcpu *vcpu,
830 struct kvm_vcpu_events *events)
831 {
832 vcpu_ioctl(vcpu, KVM_SET_VCPU_EVENTS, events);
833 }
834 #endif
835 #ifdef __x86_64__
vcpu_nested_state_get(struct kvm_vcpu * vcpu,struct kvm_nested_state * state)836 static inline void vcpu_nested_state_get(struct kvm_vcpu *vcpu,
837 struct kvm_nested_state *state)
838 {
839 vcpu_ioctl(vcpu, KVM_GET_NESTED_STATE, state);
840 }
__vcpu_nested_state_set(struct kvm_vcpu * vcpu,struct kvm_nested_state * state)841 static inline int __vcpu_nested_state_set(struct kvm_vcpu *vcpu,
842 struct kvm_nested_state *state)
843 {
844 return __vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state);
845 }
846
vcpu_nested_state_set(struct kvm_vcpu * vcpu,struct kvm_nested_state * state)847 static inline void vcpu_nested_state_set(struct kvm_vcpu *vcpu,
848 struct kvm_nested_state *state)
849 {
850 vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state);
851 }
852 #endif
vcpu_get_stats_fd(struct kvm_vcpu * vcpu)853 static inline int vcpu_get_stats_fd(struct kvm_vcpu *vcpu)
854 {
855 int fd = __vcpu_ioctl(vcpu, KVM_GET_STATS_FD, NULL);
856
857 TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_CHECK_EXTENSION, fd, vcpu->vm);
858 return fd;
859 }
860
861 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr);
862
kvm_has_device_attr(int dev_fd,uint32_t group,uint64_t attr)863 static inline void kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
864 {
865 int ret = __kvm_has_device_attr(dev_fd, group, attr);
866
867 TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno);
868 }
869
870 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val);
871
kvm_device_attr_get(int dev_fd,uint32_t group,uint64_t attr,void * val)872 static inline void kvm_device_attr_get(int dev_fd, uint32_t group,
873 uint64_t attr, void *val)
874 {
875 int ret = __kvm_device_attr_get(dev_fd, group, attr, val);
876
877 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_GET_DEVICE_ATTR, ret));
878 }
879
880 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val);
881
kvm_device_attr_set(int dev_fd,uint32_t group,uint64_t attr,void * val)882 static inline void kvm_device_attr_set(int dev_fd, uint32_t group,
883 uint64_t attr, void *val)
884 {
885 int ret = __kvm_device_attr_set(dev_fd, group, attr, val);
886
887 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_DEVICE_ATTR, ret));
888 }
889
__vcpu_has_device_attr(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr)890 static inline int __vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group,
891 uint64_t attr)
892 {
893 return __kvm_has_device_attr(vcpu->fd, group, attr);
894 }
895
vcpu_has_device_attr(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr)896 static inline void vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group,
897 uint64_t attr)
898 {
899 kvm_has_device_attr(vcpu->fd, group, attr);
900 }
901
__vcpu_device_attr_get(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr,void * val)902 static inline int __vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group,
903 uint64_t attr, void *val)
904 {
905 return __kvm_device_attr_get(vcpu->fd, group, attr, val);
906 }
907
vcpu_device_attr_get(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr,void * val)908 static inline void vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group,
909 uint64_t attr, void *val)
910 {
911 kvm_device_attr_get(vcpu->fd, group, attr, val);
912 }
913
__vcpu_device_attr_set(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr,void * val)914 static inline int __vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group,
915 uint64_t attr, void *val)
916 {
917 return __kvm_device_attr_set(vcpu->fd, group, attr, val);
918 }
919
vcpu_device_attr_set(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr,void * val)920 static inline void vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group,
921 uint64_t attr, void *val)
922 {
923 kvm_device_attr_set(vcpu->fd, group, attr, val);
924 }
925
926 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type);
927 int __kvm_create_device(struct kvm_vm *vm, uint64_t type);
928
kvm_create_device(struct kvm_vm * vm,uint64_t type)929 static inline int kvm_create_device(struct kvm_vm *vm, uint64_t type)
930 {
931 int fd = __kvm_create_device(vm, type);
932
933 TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_DEVICE, fd));
934 return fd;
935 }
936
937 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu);
938
939 /*
940 * VM VCPU Args Set
941 *
942 * Input Args:
943 * vm - Virtual Machine
944 * num - number of arguments
945 * ... - arguments, each of type uint64_t
946 *
947 * Output Args: None
948 *
949 * Return: None
950 *
951 * Sets the first @num input parameters for the function at @vcpu's entry point,
952 * per the C calling convention of the architecture, to the values given as
953 * variable args. Each of the variable args is expected to be of type uint64_t.
954 * The maximum @num can be is specific to the architecture.
955 */
956 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...);
957
958 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level);
959 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level);
960
961 #define KVM_MAX_IRQ_ROUTES 4096
962
963 struct kvm_irq_routing *kvm_gsi_routing_create(void);
964 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
965 uint32_t gsi, uint32_t pin);
966 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing);
967 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing);
968
969 const char *exit_reason_str(unsigned int exit_reason);
970
971 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
972 uint32_t memslot);
973 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
974 vm_paddr_t paddr_min, uint32_t memslot,
975 bool protected);
976 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm);
977
vm_phy_pages_alloc(struct kvm_vm * vm,size_t num,vm_paddr_t paddr_min,uint32_t memslot)978 static inline vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
979 vm_paddr_t paddr_min, uint32_t memslot)
980 {
981 /*
982 * By default, allocate memory as protected for VMs that support
983 * protected memory, as the majority of memory for such VMs is
984 * protected, i.e. using shared memory is effectively opt-in.
985 */
986 return __vm_phy_pages_alloc(vm, num, paddr_min, memslot,
987 vm_arch_has_protected_memory(vm));
988 }
989
990 /*
991 * ____vm_create() does KVM_CREATE_VM and little else. __vm_create() also
992 * loads the test binary into guest memory and creates an IRQ chip (x86 only).
993 * __vm_create() does NOT create vCPUs, @nr_runnable_vcpus is used purely to
994 * calculate the amount of memory needed for per-vCPU data, e.g. stacks.
995 */
996 struct kvm_vm *____vm_create(struct vm_shape shape);
997 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
998 uint64_t nr_extra_pages);
999
vm_create_barebones(void)1000 static inline struct kvm_vm *vm_create_barebones(void)
1001 {
1002 return ____vm_create(VM_SHAPE_DEFAULT);
1003 }
1004
vm_create_barebones_type(unsigned long type)1005 static inline struct kvm_vm *vm_create_barebones_type(unsigned long type)
1006 {
1007 const struct vm_shape shape = {
1008 .mode = VM_MODE_DEFAULT,
1009 .type = type,
1010 };
1011
1012 return ____vm_create(shape);
1013 }
1014
vm_create(uint32_t nr_runnable_vcpus)1015 static inline struct kvm_vm *vm_create(uint32_t nr_runnable_vcpus)
1016 {
1017 return __vm_create(VM_SHAPE_DEFAULT, nr_runnable_vcpus, 0);
1018 }
1019
1020 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
1021 uint64_t extra_mem_pages,
1022 void *guest_code, struct kvm_vcpu *vcpus[]);
1023
vm_create_with_vcpus(uint32_t nr_vcpus,void * guest_code,struct kvm_vcpu * vcpus[])1024 static inline struct kvm_vm *vm_create_with_vcpus(uint32_t nr_vcpus,
1025 void *guest_code,
1026 struct kvm_vcpu *vcpus[])
1027 {
1028 return __vm_create_with_vcpus(VM_SHAPE_DEFAULT, nr_vcpus, 0,
1029 guest_code, vcpus);
1030 }
1031
1032
1033 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
1034 struct kvm_vcpu **vcpu,
1035 uint64_t extra_mem_pages,
1036 void *guest_code);
1037
1038 /*
1039 * Create a VM with a single vCPU with reasonable defaults and @extra_mem_pages
1040 * additional pages of guest memory. Returns the VM and vCPU (via out param).
1041 */
__vm_create_with_one_vcpu(struct kvm_vcpu ** vcpu,uint64_t extra_mem_pages,void * guest_code)1042 static inline struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
1043 uint64_t extra_mem_pages,
1044 void *guest_code)
1045 {
1046 return __vm_create_shape_with_one_vcpu(VM_SHAPE_DEFAULT, vcpu,
1047 extra_mem_pages, guest_code);
1048 }
1049
vm_create_with_one_vcpu(struct kvm_vcpu ** vcpu,void * guest_code)1050 static inline struct kvm_vm *vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
1051 void *guest_code)
1052 {
1053 return __vm_create_with_one_vcpu(vcpu, 0, guest_code);
1054 }
1055
vm_create_shape_with_one_vcpu(struct vm_shape shape,struct kvm_vcpu ** vcpu,void * guest_code)1056 static inline struct kvm_vm *vm_create_shape_with_one_vcpu(struct vm_shape shape,
1057 struct kvm_vcpu **vcpu,
1058 void *guest_code)
1059 {
1060 return __vm_create_shape_with_one_vcpu(shape, vcpu, 0, guest_code);
1061 }
1062
1063 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm);
1064
1065 void kvm_set_files_rlimit(uint32_t nr_vcpus);
1066
1067 int __pin_task_to_cpu(pthread_t task, int cpu);
1068
pin_task_to_cpu(pthread_t task,int cpu)1069 static inline void pin_task_to_cpu(pthread_t task, int cpu)
1070 {
1071 int r;
1072
1073 r = __pin_task_to_cpu(task, cpu);
1074 TEST_ASSERT(!r, "Failed to set thread affinity to pCPU '%u'", cpu);
1075 }
1076
pin_task_to_any_cpu(pthread_t task)1077 static inline int pin_task_to_any_cpu(pthread_t task)
1078 {
1079 int cpu = sched_getcpu();
1080
1081 pin_task_to_cpu(task, cpu);
1082 return cpu;
1083 }
1084
pin_self_to_cpu(int cpu)1085 static inline void pin_self_to_cpu(int cpu)
1086 {
1087 pin_task_to_cpu(pthread_self(), cpu);
1088 }
1089
pin_self_to_any_cpu(void)1090 static inline int pin_self_to_any_cpu(void)
1091 {
1092 return pin_task_to_any_cpu(pthread_self());
1093 }
1094
1095 void kvm_print_vcpu_pinning_help(void);
1096 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
1097 int nr_vcpus);
1098
1099 unsigned long vm_compute_max_gfn(struct kvm_vm *vm);
1100 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size);
1101 unsigned int vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages);
1102 unsigned int vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages);
1103 static inline unsigned int
vm_adjust_num_guest_pages(enum vm_guest_mode mode,unsigned int num_guest_pages)1104 vm_adjust_num_guest_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
1105 {
1106 unsigned int n;
1107 n = vm_num_guest_pages(mode, vm_num_host_pages(mode, num_guest_pages));
1108 #ifdef __s390x__
1109 /* s390 requires 1M aligned guest sizes */
1110 n = (n + 255) & ~255;
1111 #endif
1112 return n;
1113 }
1114
1115 #define sync_global_to_guest(vm, g) ({ \
1116 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \
1117 memcpy(_p, &(g), sizeof(g)); \
1118 })
1119
1120 #define sync_global_from_guest(vm, g) ({ \
1121 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \
1122 memcpy(&(g), _p, sizeof(g)); \
1123 })
1124
1125 /*
1126 * Write a global value, but only in the VM's (guest's) domain. Primarily used
1127 * for "globals" that hold per-VM values (VMs always duplicate code and global
1128 * data into their own region of physical memory), but can be used anytime it's
1129 * undesirable to change the host's copy of the global.
1130 */
1131 #define write_guest_global(vm, g, val) ({ \
1132 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \
1133 typeof(g) _val = val; \
1134 \
1135 memcpy(_p, &(_val), sizeof(g)); \
1136 })
1137
1138 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu);
1139
1140 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu,
1141 uint8_t indent);
1142
vcpu_dump(FILE * stream,struct kvm_vcpu * vcpu,uint8_t indent)1143 static inline void vcpu_dump(FILE *stream, struct kvm_vcpu *vcpu,
1144 uint8_t indent)
1145 {
1146 vcpu_arch_dump(stream, vcpu, indent);
1147 }
1148
1149 /*
1150 * Adds a vCPU with reasonable defaults (e.g. a stack)
1151 *
1152 * Input Args:
1153 * vm - Virtual Machine
1154 * vcpu_id - The id of the VCPU to add to the VM.
1155 */
1156 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id);
1157 void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code);
1158
vm_vcpu_add(struct kvm_vm * vm,uint32_t vcpu_id,void * guest_code)1159 static inline struct kvm_vcpu *vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
1160 void *guest_code)
1161 {
1162 struct kvm_vcpu *vcpu = vm_arch_vcpu_add(vm, vcpu_id);
1163
1164 vcpu_arch_set_entry_point(vcpu, guest_code);
1165
1166 return vcpu;
1167 }
1168
1169 /* Re-create a vCPU after restarting a VM, e.g. for state save/restore tests. */
1170 struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id);
1171
vm_vcpu_recreate(struct kvm_vm * vm,uint32_t vcpu_id)1172 static inline struct kvm_vcpu *vm_vcpu_recreate(struct kvm_vm *vm,
1173 uint32_t vcpu_id)
1174 {
1175 return vm_arch_vcpu_recreate(vm, vcpu_id);
1176 }
1177
1178 void vcpu_arch_free(struct kvm_vcpu *vcpu);
1179
1180 void virt_arch_pgd_alloc(struct kvm_vm *vm);
1181
virt_pgd_alloc(struct kvm_vm * vm)1182 static inline void virt_pgd_alloc(struct kvm_vm *vm)
1183 {
1184 virt_arch_pgd_alloc(vm);
1185 }
1186
1187 /*
1188 * VM Virtual Page Map
1189 *
1190 * Input Args:
1191 * vm - Virtual Machine
1192 * vaddr - VM Virtual Address
1193 * paddr - VM Physical Address
1194 * memslot - Memory region slot for new virtual translation tables
1195 *
1196 * Output Args: None
1197 *
1198 * Return: None
1199 *
1200 * Within @vm, creates a virtual translation for the page starting
1201 * at @vaddr to the page starting at @paddr.
1202 */
1203 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr);
1204
virt_pg_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr)1205 static inline void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
1206 {
1207 virt_arch_pg_map(vm, vaddr, paddr);
1208 }
1209
1210
1211 /*
1212 * Address Guest Virtual to Guest Physical
1213 *
1214 * Input Args:
1215 * vm - Virtual Machine
1216 * gva - VM virtual address
1217 *
1218 * Output Args: None
1219 *
1220 * Return:
1221 * Equivalent VM physical address
1222 *
1223 * Returns the VM physical address of the translated VM virtual
1224 * address given by @gva.
1225 */
1226 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva);
1227
addr_gva2gpa(struct kvm_vm * vm,vm_vaddr_t gva)1228 static inline vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
1229 {
1230 return addr_arch_gva2gpa(vm, gva);
1231 }
1232
1233 /*
1234 * Virtual Translation Tables Dump
1235 *
1236 * Input Args:
1237 * stream - Output FILE stream
1238 * vm - Virtual Machine
1239 * indent - Left margin indent amount
1240 *
1241 * Output Args: None
1242 *
1243 * Return: None
1244 *
1245 * Dumps to the FILE stream given by @stream, the contents of all the
1246 * virtual translation tables for the VM given by @vm.
1247 */
1248 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent);
1249
virt_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent)1250 static inline void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1251 {
1252 virt_arch_dump(stream, vm, indent);
1253 }
1254
1255
__vm_disable_nx_huge_pages(struct kvm_vm * vm)1256 static inline int __vm_disable_nx_huge_pages(struct kvm_vm *vm)
1257 {
1258 return __vm_enable_cap(vm, KVM_CAP_VM_DISABLE_NX_HUGE_PAGES, 0);
1259 }
1260
1261 /*
1262 * Arch hook that is invoked via a constructor, i.e. before exeucting main(),
1263 * to allow for arch-specific setup that is common to all tests, e.g. computing
1264 * the default guest "mode".
1265 */
1266 void kvm_selftest_arch_init(void);
1267
1268 void kvm_arch_vm_post_create(struct kvm_vm *vm, unsigned int nr_vcpus);
1269 void kvm_arch_vm_finalize_vcpus(struct kvm_vm *vm);
1270 void kvm_arch_vm_release(struct kvm_vm *vm);
1271
1272 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr);
1273
1274 uint32_t guest_get_vcpuid(void);
1275
1276 #endif /* SELFTEST_KVM_UTIL_H */
1277