xref: /linux/tools/testing/selftests/kvm/include/kvm_util.h (revision 0f8e26b38d7ac72b3ad764944a25dd5808f37a6e)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2018, Google LLC.
4  */
5 #ifndef SELFTEST_KVM_UTIL_H
6 #define SELFTEST_KVM_UTIL_H
7 
8 #include "test_util.h"
9 
10 #include <linux/compiler.h>
11 #include "linux/hashtable.h"
12 #include "linux/list.h"
13 #include <linux/kernel.h>
14 #include <linux/kvm.h>
15 #include "linux/rbtree.h"
16 #include <linux/types.h>
17 
18 #include <asm/atomic.h>
19 #include <asm/kvm.h>
20 
21 #include <sys/ioctl.h>
22 
23 #include "kvm_util_arch.h"
24 #include "kvm_util_types.h"
25 #include "sparsebit.h"
26 
27 #define KVM_DEV_PATH "/dev/kvm"
28 #define KVM_MAX_VCPUS 512
29 
30 #define NSEC_PER_SEC 1000000000L
31 
32 struct userspace_mem_region {
33 	struct kvm_userspace_memory_region2 region;
34 	struct sparsebit *unused_phy_pages;
35 	struct sparsebit *protected_phy_pages;
36 	int fd;
37 	off_t offset;
38 	enum vm_mem_backing_src_type backing_src_type;
39 	void *host_mem;
40 	void *host_alias;
41 	void *mmap_start;
42 	void *mmap_alias;
43 	size_t mmap_size;
44 	struct rb_node gpa_node;
45 	struct rb_node hva_node;
46 	struct hlist_node slot_node;
47 };
48 
49 struct kvm_vcpu {
50 	struct list_head list;
51 	uint32_t id;
52 	int fd;
53 	struct kvm_vm *vm;
54 	struct kvm_run *run;
55 #ifdef __x86_64__
56 	struct kvm_cpuid2 *cpuid;
57 #endif
58 	struct kvm_dirty_gfn *dirty_gfns;
59 	uint32_t fetch_index;
60 	uint32_t dirty_gfns_count;
61 };
62 
63 struct userspace_mem_regions {
64 	struct rb_root gpa_tree;
65 	struct rb_root hva_tree;
66 	DECLARE_HASHTABLE(slot_hash, 9);
67 };
68 
69 enum kvm_mem_region_type {
70 	MEM_REGION_CODE,
71 	MEM_REGION_DATA,
72 	MEM_REGION_PT,
73 	MEM_REGION_TEST_DATA,
74 	NR_MEM_REGIONS,
75 };
76 
77 struct kvm_vm {
78 	int mode;
79 	unsigned long type;
80 	int kvm_fd;
81 	int fd;
82 	unsigned int pgtable_levels;
83 	unsigned int page_size;
84 	unsigned int page_shift;
85 	unsigned int pa_bits;
86 	unsigned int va_bits;
87 	uint64_t max_gfn;
88 	struct list_head vcpus;
89 	struct userspace_mem_regions regions;
90 	struct sparsebit *vpages_valid;
91 	struct sparsebit *vpages_mapped;
92 	bool has_irqchip;
93 	bool pgd_created;
94 	vm_paddr_t ucall_mmio_addr;
95 	vm_paddr_t pgd;
96 	vm_vaddr_t handlers;
97 	uint32_t dirty_ring_size;
98 	uint64_t gpa_tag_mask;
99 
100 	struct kvm_vm_arch arch;
101 
102 	/* Cache of information for binary stats interface */
103 	int stats_fd;
104 	struct kvm_stats_header stats_header;
105 	struct kvm_stats_desc *stats_desc;
106 
107 	/*
108 	 * KVM region slots. These are the default memslots used by page
109 	 * allocators, e.g., lib/elf uses the memslots[MEM_REGION_CODE]
110 	 * memslot.
111 	 */
112 	uint32_t memslots[NR_MEM_REGIONS];
113 };
114 
115 struct vcpu_reg_sublist {
116 	const char *name;
117 	long capability;
118 	int feature;
119 	int feature_type;
120 	bool finalize;
121 	__u64 *regs;
122 	__u64 regs_n;
123 	__u64 *rejects_set;
124 	__u64 rejects_set_n;
125 	__u64 *skips_set;
126 	__u64 skips_set_n;
127 };
128 
129 struct vcpu_reg_list {
130 	char *name;
131 	struct vcpu_reg_sublist sublists[];
132 };
133 
134 #define for_each_sublist(c, s)		\
135 	for ((s) = &(c)->sublists[0]; (s)->regs; ++(s))
136 
137 #define kvm_for_each_vcpu(vm, i, vcpu)			\
138 	for ((i) = 0; (i) <= (vm)->last_vcpu_id; (i)++)	\
139 		if (!((vcpu) = vm->vcpus[i]))		\
140 			continue;			\
141 		else
142 
143 struct userspace_mem_region *
144 memslot2region(struct kvm_vm *vm, uint32_t memslot);
145 
146 static inline struct userspace_mem_region *vm_get_mem_region(struct kvm_vm *vm,
147 							     enum kvm_mem_region_type type)
148 {
149 	assert(type < NR_MEM_REGIONS);
150 	return memslot2region(vm, vm->memslots[type]);
151 }
152 
153 /* Minimum allocated guest virtual and physical addresses */
154 #define KVM_UTIL_MIN_VADDR		0x2000
155 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR	0x180000
156 
157 #define DEFAULT_GUEST_STACK_VADDR_MIN	0xab6000
158 #define DEFAULT_STACK_PGS		5
159 
160 enum vm_guest_mode {
161 	VM_MODE_P52V48_4K,
162 	VM_MODE_P52V48_16K,
163 	VM_MODE_P52V48_64K,
164 	VM_MODE_P48V48_4K,
165 	VM_MODE_P48V48_16K,
166 	VM_MODE_P48V48_64K,
167 	VM_MODE_P40V48_4K,
168 	VM_MODE_P40V48_16K,
169 	VM_MODE_P40V48_64K,
170 	VM_MODE_PXXV48_4K,	/* For 48bits VA but ANY bits PA */
171 	VM_MODE_P47V64_4K,
172 	VM_MODE_P44V64_4K,
173 	VM_MODE_P36V48_4K,
174 	VM_MODE_P36V48_16K,
175 	VM_MODE_P36V48_64K,
176 	VM_MODE_P36V47_16K,
177 	NUM_VM_MODES,
178 };
179 
180 struct vm_shape {
181 	uint32_t type;
182 	uint8_t  mode;
183 	uint8_t  pad0;
184 	uint16_t pad1;
185 };
186 
187 kvm_static_assert(sizeof(struct vm_shape) == sizeof(uint64_t));
188 
189 #define VM_TYPE_DEFAULT			0
190 
191 #define VM_SHAPE(__mode)			\
192 ({						\
193 	struct vm_shape shape = {		\
194 		.mode = (__mode),		\
195 		.type = VM_TYPE_DEFAULT		\
196 	};					\
197 						\
198 	shape;					\
199 })
200 
201 #if defined(__aarch64__)
202 
203 extern enum vm_guest_mode vm_mode_default;
204 
205 #define VM_MODE_DEFAULT			vm_mode_default
206 #define MIN_PAGE_SHIFT			12U
207 #define ptes_per_page(page_size)	((page_size) / 8)
208 
209 #elif defined(__x86_64__)
210 
211 #define VM_MODE_DEFAULT			VM_MODE_PXXV48_4K
212 #define MIN_PAGE_SHIFT			12U
213 #define ptes_per_page(page_size)	((page_size) / 8)
214 
215 #elif defined(__s390x__)
216 
217 #define VM_MODE_DEFAULT			VM_MODE_P44V64_4K
218 #define MIN_PAGE_SHIFT			12U
219 #define ptes_per_page(page_size)	((page_size) / 16)
220 
221 #elif defined(__riscv)
222 
223 #if __riscv_xlen == 32
224 #error "RISC-V 32-bit kvm selftests not supported"
225 #endif
226 
227 #define VM_MODE_DEFAULT			VM_MODE_P40V48_4K
228 #define MIN_PAGE_SHIFT			12U
229 #define ptes_per_page(page_size)	((page_size) / 8)
230 
231 #endif
232 
233 #define VM_SHAPE_DEFAULT	VM_SHAPE(VM_MODE_DEFAULT)
234 
235 #define MIN_PAGE_SIZE		(1U << MIN_PAGE_SHIFT)
236 #define PTES_PER_MIN_PAGE	ptes_per_page(MIN_PAGE_SIZE)
237 
238 struct vm_guest_mode_params {
239 	unsigned int pa_bits;
240 	unsigned int va_bits;
241 	unsigned int page_size;
242 	unsigned int page_shift;
243 };
244 extern const struct vm_guest_mode_params vm_guest_mode_params[];
245 
246 int open_path_or_exit(const char *path, int flags);
247 int open_kvm_dev_path_or_exit(void);
248 
249 bool get_kvm_param_bool(const char *param);
250 bool get_kvm_intel_param_bool(const char *param);
251 bool get_kvm_amd_param_bool(const char *param);
252 
253 int get_kvm_param_integer(const char *param);
254 int get_kvm_intel_param_integer(const char *param);
255 int get_kvm_amd_param_integer(const char *param);
256 
257 unsigned int kvm_check_cap(long cap);
258 
259 static inline bool kvm_has_cap(long cap)
260 {
261 	return kvm_check_cap(cap);
262 }
263 
264 #define __KVM_SYSCALL_ERROR(_name, _ret) \
265 	"%s failed, rc: %i errno: %i (%s)", (_name), (_ret), errno, strerror(errno)
266 
267 /*
268  * Use the "inner", double-underscore macro when reporting errors from within
269  * other macros so that the name of ioctl() and not its literal numeric value
270  * is printed on error.  The "outer" macro is strongly preferred when reporting
271  * errors "directly", i.e. without an additional layer of macros, as it reduces
272  * the probability of passing in the wrong string.
273  */
274 #define __KVM_IOCTL_ERROR(_name, _ret)	__KVM_SYSCALL_ERROR(_name, _ret)
275 #define KVM_IOCTL_ERROR(_ioctl, _ret) __KVM_IOCTL_ERROR(#_ioctl, _ret)
276 
277 #define kvm_do_ioctl(fd, cmd, arg)						\
278 ({										\
279 	kvm_static_assert(!_IOC_SIZE(cmd) || sizeof(*arg) == _IOC_SIZE(cmd));	\
280 	ioctl(fd, cmd, arg);							\
281 })
282 
283 #define __kvm_ioctl(kvm_fd, cmd, arg)				\
284 	kvm_do_ioctl(kvm_fd, cmd, arg)
285 
286 #define kvm_ioctl(kvm_fd, cmd, arg)				\
287 ({								\
288 	int ret = __kvm_ioctl(kvm_fd, cmd, arg);		\
289 								\
290 	TEST_ASSERT(!ret, __KVM_IOCTL_ERROR(#cmd, ret));	\
291 })
292 
293 static __always_inline void static_assert_is_vm(struct kvm_vm *vm) { }
294 
295 #define __vm_ioctl(vm, cmd, arg)				\
296 ({								\
297 	static_assert_is_vm(vm);				\
298 	kvm_do_ioctl((vm)->fd, cmd, arg);			\
299 })
300 
301 /*
302  * Assert that a VM or vCPU ioctl() succeeded, with extra magic to detect if
303  * the ioctl() failed because KVM killed/bugged the VM.  To detect a dead VM,
304  * probe KVM_CAP_USER_MEMORY, which (a) has been supported by KVM since before
305  * selftests existed and (b) should never outright fail, i.e. is supposed to
306  * return 0 or 1.  If KVM kills a VM, KVM returns -EIO for all ioctl()s for the
307  * VM and its vCPUs, including KVM_CHECK_EXTENSION.
308  */
309 #define __TEST_ASSERT_VM_VCPU_IOCTL(cond, name, ret, vm)				\
310 do {											\
311 	int __errno = errno;								\
312 											\
313 	static_assert_is_vm(vm);							\
314 											\
315 	if (cond)									\
316 		break;									\
317 											\
318 	if (errno == EIO &&								\
319 	    __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)KVM_CAP_USER_MEMORY) < 0) {	\
320 		TEST_ASSERT(errno == EIO, "KVM killed the VM, should return -EIO");	\
321 		TEST_FAIL("KVM killed/bugged the VM, check the kernel log for clues");	\
322 	}										\
323 	errno = __errno;								\
324 	TEST_ASSERT(cond, __KVM_IOCTL_ERROR(name, ret));				\
325 } while (0)
326 
327 #define TEST_ASSERT_VM_VCPU_IOCTL(cond, cmd, ret, vm)		\
328 	__TEST_ASSERT_VM_VCPU_IOCTL(cond, #cmd, ret, vm)
329 
330 #define vm_ioctl(vm, cmd, arg)					\
331 ({								\
332 	int ret = __vm_ioctl(vm, cmd, arg);			\
333 								\
334 	__TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, vm);		\
335 })
336 
337 static __always_inline void static_assert_is_vcpu(struct kvm_vcpu *vcpu) { }
338 
339 #define __vcpu_ioctl(vcpu, cmd, arg)				\
340 ({								\
341 	static_assert_is_vcpu(vcpu);				\
342 	kvm_do_ioctl((vcpu)->fd, cmd, arg);			\
343 })
344 
345 #define vcpu_ioctl(vcpu, cmd, arg)				\
346 ({								\
347 	int ret = __vcpu_ioctl(vcpu, cmd, arg);			\
348 								\
349 	__TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, (vcpu)->vm);	\
350 })
351 
352 /*
353  * Looks up and returns the value corresponding to the capability
354  * (KVM_CAP_*) given by cap.
355  */
356 static inline int vm_check_cap(struct kvm_vm *vm, long cap)
357 {
358 	int ret =  __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)cap);
359 
360 	TEST_ASSERT_VM_VCPU_IOCTL(ret >= 0, KVM_CHECK_EXTENSION, ret, vm);
361 	return ret;
362 }
363 
364 static inline int __vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0)
365 {
366 	struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
367 
368 	return __vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap);
369 }
370 static inline void vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0)
371 {
372 	struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
373 
374 	vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap);
375 }
376 
377 static inline void vm_set_memory_attributes(struct kvm_vm *vm, uint64_t gpa,
378 					    uint64_t size, uint64_t attributes)
379 {
380 	struct kvm_memory_attributes attr = {
381 		.attributes = attributes,
382 		.address = gpa,
383 		.size = size,
384 		.flags = 0,
385 	};
386 
387 	/*
388 	 * KVM_SET_MEMORY_ATTRIBUTES overwrites _all_ attributes.  These flows
389 	 * need significant enhancements to support multiple attributes.
390 	 */
391 	TEST_ASSERT(!attributes || attributes == KVM_MEMORY_ATTRIBUTE_PRIVATE,
392 		    "Update me to support multiple attributes!");
393 
394 	vm_ioctl(vm, KVM_SET_MEMORY_ATTRIBUTES, &attr);
395 }
396 
397 
398 static inline void vm_mem_set_private(struct kvm_vm *vm, uint64_t gpa,
399 				      uint64_t size)
400 {
401 	vm_set_memory_attributes(vm, gpa, size, KVM_MEMORY_ATTRIBUTE_PRIVATE);
402 }
403 
404 static inline void vm_mem_set_shared(struct kvm_vm *vm, uint64_t gpa,
405 				     uint64_t size)
406 {
407 	vm_set_memory_attributes(vm, gpa, size, 0);
408 }
409 
410 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t gpa, uint64_t size,
411 			    bool punch_hole);
412 
413 static inline void vm_guest_mem_punch_hole(struct kvm_vm *vm, uint64_t gpa,
414 					   uint64_t size)
415 {
416 	vm_guest_mem_fallocate(vm, gpa, size, true);
417 }
418 
419 static inline void vm_guest_mem_allocate(struct kvm_vm *vm, uint64_t gpa,
420 					 uint64_t size)
421 {
422 	vm_guest_mem_fallocate(vm, gpa, size, false);
423 }
424 
425 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size);
426 const char *vm_guest_mode_string(uint32_t i);
427 
428 void kvm_vm_free(struct kvm_vm *vmp);
429 void kvm_vm_restart(struct kvm_vm *vmp);
430 void kvm_vm_release(struct kvm_vm *vmp);
431 void kvm_vm_elf_load(struct kvm_vm *vm, const char *filename);
432 int kvm_memfd_alloc(size_t size, bool hugepages);
433 
434 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent);
435 
436 static inline void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
437 {
438 	struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
439 
440 	vm_ioctl(vm, KVM_GET_DIRTY_LOG, &args);
441 }
442 
443 static inline void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
444 					  uint64_t first_page, uint32_t num_pages)
445 {
446 	struct kvm_clear_dirty_log args = {
447 		.dirty_bitmap = log,
448 		.slot = slot,
449 		.first_page = first_page,
450 		.num_pages = num_pages
451 	};
452 
453 	vm_ioctl(vm, KVM_CLEAR_DIRTY_LOG, &args);
454 }
455 
456 static inline uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm)
457 {
458 	return __vm_ioctl(vm, KVM_RESET_DIRTY_RINGS, NULL);
459 }
460 
461 static inline void kvm_vm_register_coalesced_io(struct kvm_vm *vm,
462 						uint64_t address,
463 						uint64_t size, bool pio)
464 {
465 	struct kvm_coalesced_mmio_zone zone = {
466 		.addr = address,
467 		.size = size,
468 		.pio  = pio,
469 	};
470 
471 	vm_ioctl(vm, KVM_REGISTER_COALESCED_MMIO, &zone);
472 }
473 
474 static inline void kvm_vm_unregister_coalesced_io(struct kvm_vm *vm,
475 						  uint64_t address,
476 						  uint64_t size, bool pio)
477 {
478 	struct kvm_coalesced_mmio_zone zone = {
479 		.addr = address,
480 		.size = size,
481 		.pio  = pio,
482 	};
483 
484 	vm_ioctl(vm, KVM_UNREGISTER_COALESCED_MMIO, &zone);
485 }
486 
487 static inline int vm_get_stats_fd(struct kvm_vm *vm)
488 {
489 	int fd = __vm_ioctl(vm, KVM_GET_STATS_FD, NULL);
490 
491 	TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_GET_STATS_FD, fd, vm);
492 	return fd;
493 }
494 
495 static inline void read_stats_header(int stats_fd, struct kvm_stats_header *header)
496 {
497 	ssize_t ret;
498 
499 	ret = pread(stats_fd, header, sizeof(*header), 0);
500 	TEST_ASSERT(ret == sizeof(*header),
501 		    "Failed to read '%lu' header bytes, ret = '%ld'",
502 		    sizeof(*header), ret);
503 }
504 
505 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
506 					      struct kvm_stats_header *header);
507 
508 static inline ssize_t get_stats_descriptor_size(struct kvm_stats_header *header)
509 {
510 	 /*
511 	  * The base size of the descriptor is defined by KVM's ABI, but the
512 	  * size of the name field is variable, as far as KVM's ABI is
513 	  * concerned. For a given instance of KVM, the name field is the same
514 	  * size for all stats and is provided in the overall stats header.
515 	  */
516 	return sizeof(struct kvm_stats_desc) + header->name_size;
517 }
518 
519 static inline struct kvm_stats_desc *get_stats_descriptor(struct kvm_stats_desc *stats,
520 							  int index,
521 							  struct kvm_stats_header *header)
522 {
523 	/*
524 	 * Note, size_desc includes the size of the name field, which is
525 	 * variable. i.e. this is NOT equivalent to &stats_desc[i].
526 	 */
527 	return (void *)stats + index * get_stats_descriptor_size(header);
528 }
529 
530 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
531 		    struct kvm_stats_desc *desc, uint64_t *data,
532 		    size_t max_elements);
533 
534 void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data,
535 		   size_t max_elements);
536 
537 static inline uint64_t vm_get_stat(struct kvm_vm *vm, const char *stat_name)
538 {
539 	uint64_t data;
540 
541 	__vm_get_stat(vm, stat_name, &data, 1);
542 	return data;
543 }
544 
545 void vm_create_irqchip(struct kvm_vm *vm);
546 
547 static inline int __vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size,
548 					uint64_t flags)
549 {
550 	struct kvm_create_guest_memfd guest_memfd = {
551 		.size = size,
552 		.flags = flags,
553 	};
554 
555 	return __vm_ioctl(vm, KVM_CREATE_GUEST_MEMFD, &guest_memfd);
556 }
557 
558 static inline int vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size,
559 					uint64_t flags)
560 {
561 	int fd = __vm_create_guest_memfd(vm, size, flags);
562 
563 	TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_GUEST_MEMFD, fd));
564 	return fd;
565 }
566 
567 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
568 			       uint64_t gpa, uint64_t size, void *hva);
569 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
570 				uint64_t gpa, uint64_t size, void *hva);
571 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
572 				uint64_t gpa, uint64_t size, void *hva,
573 				uint32_t guest_memfd, uint64_t guest_memfd_offset);
574 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
575 				 uint64_t gpa, uint64_t size, void *hva,
576 				 uint32_t guest_memfd, uint64_t guest_memfd_offset);
577 
578 void vm_userspace_mem_region_add(struct kvm_vm *vm,
579 	enum vm_mem_backing_src_type src_type,
580 	uint64_t guest_paddr, uint32_t slot, uint64_t npages,
581 	uint32_t flags);
582 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
583 		uint64_t guest_paddr, uint32_t slot, uint64_t npages,
584 		uint32_t flags, int guest_memfd_fd, uint64_t guest_memfd_offset);
585 
586 #ifndef vm_arch_has_protected_memory
587 static inline bool vm_arch_has_protected_memory(struct kvm_vm *vm)
588 {
589 	return false;
590 }
591 #endif
592 
593 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags);
594 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa);
595 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot);
596 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id);
597 void vm_populate_vaddr_bitmap(struct kvm_vm *vm);
598 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
599 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
600 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
601 			    enum kvm_mem_region_type type);
602 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz,
603 				 vm_vaddr_t vaddr_min,
604 				 enum kvm_mem_region_type type);
605 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages);
606 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm,
607 				 enum kvm_mem_region_type type);
608 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm);
609 
610 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
611 	      unsigned int npages);
612 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa);
613 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva);
614 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva);
615 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa);
616 
617 #ifndef vcpu_arch_put_guest
618 #define vcpu_arch_put_guest(mem, val) do { (mem) = (val); } while (0)
619 #endif
620 
621 static inline vm_paddr_t vm_untag_gpa(struct kvm_vm *vm, vm_paddr_t gpa)
622 {
623 	return gpa & ~vm->gpa_tag_mask;
624 }
625 
626 void vcpu_run(struct kvm_vcpu *vcpu);
627 int _vcpu_run(struct kvm_vcpu *vcpu);
628 
629 static inline int __vcpu_run(struct kvm_vcpu *vcpu)
630 {
631 	return __vcpu_ioctl(vcpu, KVM_RUN, NULL);
632 }
633 
634 void vcpu_run_complete_io(struct kvm_vcpu *vcpu);
635 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu);
636 
637 static inline void vcpu_enable_cap(struct kvm_vcpu *vcpu, uint32_t cap,
638 				   uint64_t arg0)
639 {
640 	struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
641 
642 	vcpu_ioctl(vcpu, KVM_ENABLE_CAP, &enable_cap);
643 }
644 
645 static inline void vcpu_guest_debug_set(struct kvm_vcpu *vcpu,
646 					struct kvm_guest_debug *debug)
647 {
648 	vcpu_ioctl(vcpu, KVM_SET_GUEST_DEBUG, debug);
649 }
650 
651 static inline void vcpu_mp_state_get(struct kvm_vcpu *vcpu,
652 				     struct kvm_mp_state *mp_state)
653 {
654 	vcpu_ioctl(vcpu, KVM_GET_MP_STATE, mp_state);
655 }
656 static inline void vcpu_mp_state_set(struct kvm_vcpu *vcpu,
657 				     struct kvm_mp_state *mp_state)
658 {
659 	vcpu_ioctl(vcpu, KVM_SET_MP_STATE, mp_state);
660 }
661 
662 static inline void vcpu_regs_get(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
663 {
664 	vcpu_ioctl(vcpu, KVM_GET_REGS, regs);
665 }
666 
667 static inline void vcpu_regs_set(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
668 {
669 	vcpu_ioctl(vcpu, KVM_SET_REGS, regs);
670 }
671 static inline void vcpu_sregs_get(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
672 {
673 	vcpu_ioctl(vcpu, KVM_GET_SREGS, sregs);
674 
675 }
676 static inline void vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
677 {
678 	vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs);
679 }
680 static inline int _vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
681 {
682 	return __vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs);
683 }
684 static inline void vcpu_fpu_get(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
685 {
686 	vcpu_ioctl(vcpu, KVM_GET_FPU, fpu);
687 }
688 static inline void vcpu_fpu_set(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
689 {
690 	vcpu_ioctl(vcpu, KVM_SET_FPU, fpu);
691 }
692 
693 static inline int __vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id, void *addr)
694 {
695 	struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)addr };
696 
697 	return __vcpu_ioctl(vcpu, KVM_GET_ONE_REG, &reg);
698 }
699 static inline int __vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val)
700 {
701 	struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
702 
703 	return __vcpu_ioctl(vcpu, KVM_SET_ONE_REG, &reg);
704 }
705 static inline uint64_t vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id)
706 {
707 	uint64_t val;
708 	struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
709 
710 	TEST_ASSERT(KVM_REG_SIZE(id) <= sizeof(val), "Reg %lx too big", id);
711 
712 	vcpu_ioctl(vcpu, KVM_GET_ONE_REG, &reg);
713 	return val;
714 }
715 static inline void vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val)
716 {
717 	struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
718 
719 	TEST_ASSERT(KVM_REG_SIZE(id) <= sizeof(val), "Reg %lx too big", id);
720 
721 	vcpu_ioctl(vcpu, KVM_SET_ONE_REG, &reg);
722 }
723 
724 #ifdef __KVM_HAVE_VCPU_EVENTS
725 static inline void vcpu_events_get(struct kvm_vcpu *vcpu,
726 				   struct kvm_vcpu_events *events)
727 {
728 	vcpu_ioctl(vcpu, KVM_GET_VCPU_EVENTS, events);
729 }
730 static inline void vcpu_events_set(struct kvm_vcpu *vcpu,
731 				   struct kvm_vcpu_events *events)
732 {
733 	vcpu_ioctl(vcpu, KVM_SET_VCPU_EVENTS, events);
734 }
735 #endif
736 #ifdef __x86_64__
737 static inline void vcpu_nested_state_get(struct kvm_vcpu *vcpu,
738 					 struct kvm_nested_state *state)
739 {
740 	vcpu_ioctl(vcpu, KVM_GET_NESTED_STATE, state);
741 }
742 static inline int __vcpu_nested_state_set(struct kvm_vcpu *vcpu,
743 					  struct kvm_nested_state *state)
744 {
745 	return __vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state);
746 }
747 
748 static inline void vcpu_nested_state_set(struct kvm_vcpu *vcpu,
749 					 struct kvm_nested_state *state)
750 {
751 	vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state);
752 }
753 #endif
754 static inline int vcpu_get_stats_fd(struct kvm_vcpu *vcpu)
755 {
756 	int fd = __vcpu_ioctl(vcpu, KVM_GET_STATS_FD, NULL);
757 
758 	TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_CHECK_EXTENSION, fd, vcpu->vm);
759 	return fd;
760 }
761 
762 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr);
763 
764 static inline void kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
765 {
766 	int ret = __kvm_has_device_attr(dev_fd, group, attr);
767 
768 	TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno);
769 }
770 
771 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val);
772 
773 static inline void kvm_device_attr_get(int dev_fd, uint32_t group,
774 				       uint64_t attr, void *val)
775 {
776 	int ret = __kvm_device_attr_get(dev_fd, group, attr, val);
777 
778 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_GET_DEVICE_ATTR, ret));
779 }
780 
781 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val);
782 
783 static inline void kvm_device_attr_set(int dev_fd, uint32_t group,
784 				       uint64_t attr, void *val)
785 {
786 	int ret = __kvm_device_attr_set(dev_fd, group, attr, val);
787 
788 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_DEVICE_ATTR, ret));
789 }
790 
791 static inline int __vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group,
792 					 uint64_t attr)
793 {
794 	return __kvm_has_device_attr(vcpu->fd, group, attr);
795 }
796 
797 static inline void vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group,
798 					uint64_t attr)
799 {
800 	kvm_has_device_attr(vcpu->fd, group, attr);
801 }
802 
803 static inline int __vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group,
804 					 uint64_t attr, void *val)
805 {
806 	return __kvm_device_attr_get(vcpu->fd, group, attr, val);
807 }
808 
809 static inline void vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group,
810 					uint64_t attr, void *val)
811 {
812 	kvm_device_attr_get(vcpu->fd, group, attr, val);
813 }
814 
815 static inline int __vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group,
816 					 uint64_t attr, void *val)
817 {
818 	return __kvm_device_attr_set(vcpu->fd, group, attr, val);
819 }
820 
821 static inline void vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group,
822 					uint64_t attr, void *val)
823 {
824 	kvm_device_attr_set(vcpu->fd, group, attr, val);
825 }
826 
827 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type);
828 int __kvm_create_device(struct kvm_vm *vm, uint64_t type);
829 
830 static inline int kvm_create_device(struct kvm_vm *vm, uint64_t type)
831 {
832 	int fd = __kvm_create_device(vm, type);
833 
834 	TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_DEVICE, fd));
835 	return fd;
836 }
837 
838 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu);
839 
840 /*
841  * VM VCPU Args Set
842  *
843  * Input Args:
844  *   vm - Virtual Machine
845  *   num - number of arguments
846  *   ... - arguments, each of type uint64_t
847  *
848  * Output Args: None
849  *
850  * Return: None
851  *
852  * Sets the first @num input parameters for the function at @vcpu's entry point,
853  * per the C calling convention of the architecture, to the values given as
854  * variable args. Each of the variable args is expected to be of type uint64_t.
855  * The maximum @num can be is specific to the architecture.
856  */
857 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...);
858 
859 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level);
860 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level);
861 
862 #define KVM_MAX_IRQ_ROUTES		4096
863 
864 struct kvm_irq_routing *kvm_gsi_routing_create(void);
865 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
866 		uint32_t gsi, uint32_t pin);
867 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing);
868 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing);
869 
870 const char *exit_reason_str(unsigned int exit_reason);
871 
872 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
873 			     uint32_t memslot);
874 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
875 				vm_paddr_t paddr_min, uint32_t memslot,
876 				bool protected);
877 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm);
878 
879 static inline vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
880 					    vm_paddr_t paddr_min, uint32_t memslot)
881 {
882 	/*
883 	 * By default, allocate memory as protected for VMs that support
884 	 * protected memory, as the majority of memory for such VMs is
885 	 * protected, i.e. using shared memory is effectively opt-in.
886 	 */
887 	return __vm_phy_pages_alloc(vm, num, paddr_min, memslot,
888 				    vm_arch_has_protected_memory(vm));
889 }
890 
891 /*
892  * ____vm_create() does KVM_CREATE_VM and little else.  __vm_create() also
893  * loads the test binary into guest memory and creates an IRQ chip (x86 only).
894  * __vm_create() does NOT create vCPUs, @nr_runnable_vcpus is used purely to
895  * calculate the amount of memory needed for per-vCPU data, e.g. stacks.
896  */
897 struct kvm_vm *____vm_create(struct vm_shape shape);
898 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
899 			   uint64_t nr_extra_pages);
900 
901 static inline struct kvm_vm *vm_create_barebones(void)
902 {
903 	return ____vm_create(VM_SHAPE_DEFAULT);
904 }
905 
906 static inline struct kvm_vm *vm_create_barebones_type(unsigned long type)
907 {
908 	const struct vm_shape shape = {
909 		.mode = VM_MODE_DEFAULT,
910 		.type = type,
911 	};
912 
913 	return ____vm_create(shape);
914 }
915 
916 static inline struct kvm_vm *vm_create(uint32_t nr_runnable_vcpus)
917 {
918 	return __vm_create(VM_SHAPE_DEFAULT, nr_runnable_vcpus, 0);
919 }
920 
921 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
922 				      uint64_t extra_mem_pages,
923 				      void *guest_code, struct kvm_vcpu *vcpus[]);
924 
925 static inline struct kvm_vm *vm_create_with_vcpus(uint32_t nr_vcpus,
926 						  void *guest_code,
927 						  struct kvm_vcpu *vcpus[])
928 {
929 	return __vm_create_with_vcpus(VM_SHAPE_DEFAULT, nr_vcpus, 0,
930 				      guest_code, vcpus);
931 }
932 
933 
934 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
935 					       struct kvm_vcpu **vcpu,
936 					       uint64_t extra_mem_pages,
937 					       void *guest_code);
938 
939 /*
940  * Create a VM with a single vCPU with reasonable defaults and @extra_mem_pages
941  * additional pages of guest memory.  Returns the VM and vCPU (via out param).
942  */
943 static inline struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
944 						       uint64_t extra_mem_pages,
945 						       void *guest_code)
946 {
947 	return __vm_create_shape_with_one_vcpu(VM_SHAPE_DEFAULT, vcpu,
948 					       extra_mem_pages, guest_code);
949 }
950 
951 static inline struct kvm_vm *vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
952 						     void *guest_code)
953 {
954 	return __vm_create_with_one_vcpu(vcpu, 0, guest_code);
955 }
956 
957 static inline struct kvm_vm *vm_create_shape_with_one_vcpu(struct vm_shape shape,
958 							   struct kvm_vcpu **vcpu,
959 							   void *guest_code)
960 {
961 	return __vm_create_shape_with_one_vcpu(shape, vcpu, 0, guest_code);
962 }
963 
964 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm);
965 
966 void kvm_pin_this_task_to_pcpu(uint32_t pcpu);
967 void kvm_print_vcpu_pinning_help(void);
968 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
969 			    int nr_vcpus);
970 
971 unsigned long vm_compute_max_gfn(struct kvm_vm *vm);
972 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size);
973 unsigned int vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages);
974 unsigned int vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages);
975 static inline unsigned int
976 vm_adjust_num_guest_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
977 {
978 	unsigned int n;
979 	n = vm_num_guest_pages(mode, vm_num_host_pages(mode, num_guest_pages));
980 #ifdef __s390x__
981 	/* s390 requires 1M aligned guest sizes */
982 	n = (n + 255) & ~255;
983 #endif
984 	return n;
985 }
986 
987 #define sync_global_to_guest(vm, g) ({				\
988 	typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g));	\
989 	memcpy(_p, &(g), sizeof(g));				\
990 })
991 
992 #define sync_global_from_guest(vm, g) ({			\
993 	typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g));	\
994 	memcpy(&(g), _p, sizeof(g));				\
995 })
996 
997 /*
998  * Write a global value, but only in the VM's (guest's) domain.  Primarily used
999  * for "globals" that hold per-VM values (VMs always duplicate code and global
1000  * data into their own region of physical memory), but can be used anytime it's
1001  * undesirable to change the host's copy of the global.
1002  */
1003 #define write_guest_global(vm, g, val) ({			\
1004 	typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g));	\
1005 	typeof(g) _val = val;					\
1006 								\
1007 	memcpy(_p, &(_val), sizeof(g));				\
1008 })
1009 
1010 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu);
1011 
1012 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu,
1013 		    uint8_t indent);
1014 
1015 static inline void vcpu_dump(FILE *stream, struct kvm_vcpu *vcpu,
1016 			     uint8_t indent)
1017 {
1018 	vcpu_arch_dump(stream, vcpu, indent);
1019 }
1020 
1021 /*
1022  * Adds a vCPU with reasonable defaults (e.g. a stack)
1023  *
1024  * Input Args:
1025  *   vm - Virtual Machine
1026  *   vcpu_id - The id of the VCPU to add to the VM.
1027  */
1028 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id);
1029 void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code);
1030 
1031 static inline struct kvm_vcpu *vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
1032 					   void *guest_code)
1033 {
1034 	struct kvm_vcpu *vcpu = vm_arch_vcpu_add(vm, vcpu_id);
1035 
1036 	vcpu_arch_set_entry_point(vcpu, guest_code);
1037 
1038 	return vcpu;
1039 }
1040 
1041 /* Re-create a vCPU after restarting a VM, e.g. for state save/restore tests. */
1042 struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id);
1043 
1044 static inline struct kvm_vcpu *vm_vcpu_recreate(struct kvm_vm *vm,
1045 						uint32_t vcpu_id)
1046 {
1047 	return vm_arch_vcpu_recreate(vm, vcpu_id);
1048 }
1049 
1050 void vcpu_arch_free(struct kvm_vcpu *vcpu);
1051 
1052 void virt_arch_pgd_alloc(struct kvm_vm *vm);
1053 
1054 static inline void virt_pgd_alloc(struct kvm_vm *vm)
1055 {
1056 	virt_arch_pgd_alloc(vm);
1057 }
1058 
1059 /*
1060  * VM Virtual Page Map
1061  *
1062  * Input Args:
1063  *   vm - Virtual Machine
1064  *   vaddr - VM Virtual Address
1065  *   paddr - VM Physical Address
1066  *   memslot - Memory region slot for new virtual translation tables
1067  *
1068  * Output Args: None
1069  *
1070  * Return: None
1071  *
1072  * Within @vm, creates a virtual translation for the page starting
1073  * at @vaddr to the page starting at @paddr.
1074  */
1075 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr);
1076 
1077 static inline void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
1078 {
1079 	virt_arch_pg_map(vm, vaddr, paddr);
1080 }
1081 
1082 
1083 /*
1084  * Address Guest Virtual to Guest Physical
1085  *
1086  * Input Args:
1087  *   vm - Virtual Machine
1088  *   gva - VM virtual address
1089  *
1090  * Output Args: None
1091  *
1092  * Return:
1093  *   Equivalent VM physical address
1094  *
1095  * Returns the VM physical address of the translated VM virtual
1096  * address given by @gva.
1097  */
1098 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva);
1099 
1100 static inline vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
1101 {
1102 	return addr_arch_gva2gpa(vm, gva);
1103 }
1104 
1105 /*
1106  * Virtual Translation Tables Dump
1107  *
1108  * Input Args:
1109  *   stream - Output FILE stream
1110  *   vm     - Virtual Machine
1111  *   indent - Left margin indent amount
1112  *
1113  * Output Args: None
1114  *
1115  * Return: None
1116  *
1117  * Dumps to the FILE stream given by @stream, the contents of all the
1118  * virtual translation tables for the VM given by @vm.
1119  */
1120 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent);
1121 
1122 static inline void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1123 {
1124 	virt_arch_dump(stream, vm, indent);
1125 }
1126 
1127 
1128 static inline int __vm_disable_nx_huge_pages(struct kvm_vm *vm)
1129 {
1130 	return __vm_enable_cap(vm, KVM_CAP_VM_DISABLE_NX_HUGE_PAGES, 0);
1131 }
1132 
1133 /*
1134  * Arch hook that is invoked via a constructor, i.e. before exeucting main(),
1135  * to allow for arch-specific setup that is common to all tests, e.g. computing
1136  * the default guest "mode".
1137  */
1138 void kvm_selftest_arch_init(void);
1139 
1140 void kvm_arch_vm_post_create(struct kvm_vm *vm);
1141 
1142 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr);
1143 
1144 uint32_t guest_get_vcpuid(void);
1145 
1146 #endif /* SELFTEST_KVM_UTIL_H */
1147