1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // regmap based irq_chip
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/irqdomain.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17
18 #include "internal.h"
19
20 struct regmap_irq_chip_data {
21 struct mutex lock;
22 struct irq_chip irq_chip;
23
24 struct regmap *map;
25 const struct regmap_irq_chip *chip;
26
27 int irq_base;
28 struct irq_domain *domain;
29
30 int irq;
31 int wake_count;
32
33 void *status_reg_buf;
34 unsigned int *main_status_buf;
35 unsigned int *status_buf;
36 unsigned int *mask_buf;
37 unsigned int *mask_buf_def;
38 unsigned int *wake_buf;
39 unsigned int *type_buf;
40 unsigned int *type_buf_def;
41 unsigned int **config_buf;
42
43 unsigned int irq_reg_stride;
44
45 unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data,
46 unsigned int base, int index);
47
48 unsigned int clear_status:1;
49 };
50
51 static inline const
irq_to_regmap_irq(struct regmap_irq_chip_data * data,int irq)52 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
53 int irq)
54 {
55 return &data->chip->irqs[irq];
56 }
57
regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data * data)58 static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data)
59 {
60 struct regmap *map = data->map;
61
62 /*
63 * While possible that a user-defined ->get_irq_reg() callback might
64 * be linear enough to support bulk reads, most of the time it won't.
65 * Therefore only allow them if the default callback is being used.
66 */
67 return data->irq_reg_stride == 1 && map->reg_stride == 1 &&
68 data->get_irq_reg == regmap_irq_get_irq_reg_linear &&
69 !map->use_single_read;
70 }
71
regmap_irq_lock(struct irq_data * data)72 static void regmap_irq_lock(struct irq_data *data)
73 {
74 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
75
76 mutex_lock(&d->lock);
77 }
78
regmap_irq_sync_unlock(struct irq_data * data)79 static void regmap_irq_sync_unlock(struct irq_data *data)
80 {
81 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
82 struct regmap *map = d->map;
83 int i, j, ret;
84 u32 reg;
85 u32 val;
86
87 if (d->chip->runtime_pm) {
88 ret = pm_runtime_get_sync(map->dev);
89 if (ret < 0)
90 dev_err(map->dev, "IRQ sync failed to resume: %d\n",
91 ret);
92 }
93
94 if (d->clear_status) {
95 for (i = 0; i < d->chip->num_regs; i++) {
96 reg = d->get_irq_reg(d, d->chip->status_base, i);
97
98 ret = regmap_read(map, reg, &val);
99 if (ret)
100 dev_err(d->map->dev,
101 "Failed to clear the interrupt status bits\n");
102 }
103
104 d->clear_status = false;
105 }
106
107 /*
108 * If there's been a change in the mask write it back to the
109 * hardware. We rely on the use of the regmap core cache to
110 * suppress pointless writes.
111 */
112 for (i = 0; i < d->chip->num_regs; i++) {
113 if (d->chip->handle_mask_sync)
114 d->chip->handle_mask_sync(i, d->mask_buf_def[i],
115 d->mask_buf[i],
116 d->chip->irq_drv_data);
117
118 if (d->chip->mask_base && !d->chip->handle_mask_sync) {
119 reg = d->get_irq_reg(d, d->chip->mask_base, i);
120 ret = regmap_update_bits(d->map, reg,
121 d->mask_buf_def[i],
122 d->mask_buf[i]);
123 if (ret)
124 dev_err(d->map->dev, "Failed to sync masks in %x\n", reg);
125 }
126
127 if (d->chip->unmask_base && !d->chip->handle_mask_sync) {
128 reg = d->get_irq_reg(d, d->chip->unmask_base, i);
129 ret = regmap_update_bits(d->map, reg,
130 d->mask_buf_def[i], ~d->mask_buf[i]);
131 if (ret)
132 dev_err(d->map->dev, "Failed to sync masks in %x\n",
133 reg);
134 }
135
136 reg = d->get_irq_reg(d, d->chip->wake_base, i);
137 if (d->wake_buf) {
138 if (d->chip->wake_invert)
139 ret = regmap_update_bits(d->map, reg,
140 d->mask_buf_def[i],
141 ~d->wake_buf[i]);
142 else
143 ret = regmap_update_bits(d->map, reg,
144 d->mask_buf_def[i],
145 d->wake_buf[i]);
146 if (ret != 0)
147 dev_err(d->map->dev,
148 "Failed to sync wakes in %x: %d\n",
149 reg, ret);
150 }
151
152 if (!d->chip->init_ack_masked)
153 continue;
154 /*
155 * Ack all the masked interrupts unconditionally,
156 * OR if there is masked interrupt which hasn't been Acked,
157 * it'll be ignored in irq handler, then may introduce irq storm
158 */
159 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
160 reg = d->get_irq_reg(d, d->chip->ack_base, i);
161
162 /* some chips ack by write 0 */
163 if (d->chip->ack_invert)
164 ret = regmap_write(map, reg, ~d->mask_buf[i]);
165 else
166 ret = regmap_write(map, reg, d->mask_buf[i]);
167 if (d->chip->clear_ack) {
168 if (d->chip->ack_invert && !ret)
169 ret = regmap_write(map, reg, UINT_MAX);
170 else if (!ret)
171 ret = regmap_write(map, reg, 0);
172 }
173 if (ret != 0)
174 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
175 reg, ret);
176 }
177 }
178
179 for (i = 0; i < d->chip->num_config_bases; i++) {
180 for (j = 0; j < d->chip->num_config_regs; j++) {
181 reg = d->get_irq_reg(d, d->chip->config_base[i], j);
182 ret = regmap_write(map, reg, d->config_buf[i][j]);
183 if (ret)
184 dev_err(d->map->dev,
185 "Failed to write config %x: %d\n",
186 reg, ret);
187 }
188 }
189
190 if (d->chip->runtime_pm)
191 pm_runtime_put(map->dev);
192
193 /* If we've changed our wakeup count propagate it to the parent */
194 if (d->wake_count < 0)
195 for (i = d->wake_count; i < 0; i++)
196 irq_set_irq_wake(d->irq, 0);
197 else if (d->wake_count > 0)
198 for (i = 0; i < d->wake_count; i++)
199 irq_set_irq_wake(d->irq, 1);
200
201 d->wake_count = 0;
202
203 mutex_unlock(&d->lock);
204 }
205
regmap_irq_enable(struct irq_data * data)206 static void regmap_irq_enable(struct irq_data *data)
207 {
208 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
209 struct regmap *map = d->map;
210 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
211 unsigned int reg = irq_data->reg_offset / map->reg_stride;
212 unsigned int mask;
213
214 /*
215 * The type_in_mask flag means that the underlying hardware uses
216 * separate mask bits for each interrupt trigger type, but we want
217 * to have a single logical interrupt with a configurable type.
218 *
219 * If the interrupt we're enabling defines any supported types
220 * then instead of using the regular mask bits for this interrupt,
221 * use the value previously written to the type buffer at the
222 * corresponding offset in regmap_irq_set_type().
223 */
224 if (d->chip->type_in_mask && irq_data->type.types_supported)
225 mask = d->type_buf[reg] & irq_data->mask;
226 else
227 mask = irq_data->mask;
228
229 if (d->chip->clear_on_unmask)
230 d->clear_status = true;
231
232 d->mask_buf[reg] &= ~mask;
233 }
234
regmap_irq_disable(struct irq_data * data)235 static void regmap_irq_disable(struct irq_data *data)
236 {
237 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
238 struct regmap *map = d->map;
239 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
240
241 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
242 }
243
regmap_irq_set_type(struct irq_data * data,unsigned int type)244 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
245 {
246 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
247 struct regmap *map = d->map;
248 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
249 int reg, ret;
250 const struct regmap_irq_type *t = &irq_data->type;
251
252 if ((t->types_supported & type) != type)
253 return 0;
254
255 reg = t->type_reg_offset / map->reg_stride;
256
257 if (d->chip->type_in_mask) {
258 ret = regmap_irq_set_type_config_simple(&d->type_buf, type,
259 irq_data, reg, d->chip->irq_drv_data);
260 if (ret)
261 return ret;
262 }
263
264 if (d->chip->set_type_config) {
265 ret = d->chip->set_type_config(d->config_buf, type, irq_data,
266 reg, d->chip->irq_drv_data);
267 if (ret)
268 return ret;
269 }
270
271 return 0;
272 }
273
regmap_irq_set_wake(struct irq_data * data,unsigned int on)274 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
275 {
276 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
277 struct regmap *map = d->map;
278 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
279
280 if (on) {
281 if (d->wake_buf)
282 d->wake_buf[irq_data->reg_offset / map->reg_stride]
283 &= ~irq_data->mask;
284 d->wake_count++;
285 } else {
286 if (d->wake_buf)
287 d->wake_buf[irq_data->reg_offset / map->reg_stride]
288 |= irq_data->mask;
289 d->wake_count--;
290 }
291
292 return 0;
293 }
294
295 static const struct irq_chip regmap_irq_chip = {
296 .irq_bus_lock = regmap_irq_lock,
297 .irq_bus_sync_unlock = regmap_irq_sync_unlock,
298 .irq_disable = regmap_irq_disable,
299 .irq_enable = regmap_irq_enable,
300 .irq_set_type = regmap_irq_set_type,
301 .irq_set_wake = regmap_irq_set_wake,
302 };
303
read_sub_irq_data(struct regmap_irq_chip_data * data,unsigned int b)304 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
305 unsigned int b)
306 {
307 const struct regmap_irq_chip *chip = data->chip;
308 const struct regmap_irq_sub_irq_map *subreg;
309 struct regmap *map = data->map;
310 unsigned int reg;
311 int i, ret = 0;
312
313 if (!chip->sub_reg_offsets) {
314 reg = data->get_irq_reg(data, chip->status_base, b);
315 ret = regmap_read(map, reg, &data->status_buf[b]);
316 } else {
317 /*
318 * Note we can't use ->get_irq_reg() here because the offsets
319 * in 'subreg' are *not* interchangeable with indices.
320 */
321 subreg = &chip->sub_reg_offsets[b];
322 for (i = 0; i < subreg->num_regs; i++) {
323 unsigned int offset = subreg->offset[i];
324 unsigned int index = offset / map->reg_stride;
325
326 ret = regmap_read(map, chip->status_base + offset,
327 &data->status_buf[index]);
328 if (ret)
329 break;
330 }
331 }
332 return ret;
333 }
334
regmap_irq_thread(int irq,void * d)335 static irqreturn_t regmap_irq_thread(int irq, void *d)
336 {
337 struct regmap_irq_chip_data *data = d;
338 const struct regmap_irq_chip *chip = data->chip;
339 struct regmap *map = data->map;
340 int ret, i;
341 bool handled = false;
342 u32 reg;
343
344 if (chip->handle_pre_irq)
345 chip->handle_pre_irq(chip->irq_drv_data);
346
347 if (chip->runtime_pm) {
348 ret = pm_runtime_get_sync(map->dev);
349 if (ret < 0) {
350 dev_err(map->dev, "IRQ thread failed to resume: %d\n",
351 ret);
352 goto exit;
353 }
354 }
355
356 /*
357 * Read only registers with active IRQs if the chip has 'main status
358 * register'. Else read in the statuses, using a single bulk read if
359 * possible in order to reduce the I/O overheads.
360 */
361
362 if (chip->no_status) {
363 /* no status register so default to all active */
364 memset32(data->status_buf, GENMASK(31, 0), chip->num_regs);
365 } else if (chip->num_main_regs) {
366 unsigned int max_main_bits;
367
368 max_main_bits = (chip->num_main_status_bits) ?
369 chip->num_main_status_bits : chip->num_regs;
370 /* Clear the status buf as we don't read all status regs */
371 memset32(data->status_buf, 0, chip->num_regs);
372
373 /* We could support bulk read for main status registers
374 * but I don't expect to see devices with really many main
375 * status registers so let's only support single reads for the
376 * sake of simplicity. and add bulk reads only if needed
377 */
378 for (i = 0; i < chip->num_main_regs; i++) {
379 reg = data->get_irq_reg(data, chip->main_status, i);
380 ret = regmap_read(map, reg, &data->main_status_buf[i]);
381 if (ret) {
382 dev_err(map->dev,
383 "Failed to read IRQ status %d\n",
384 ret);
385 goto exit;
386 }
387 }
388
389 /* Read sub registers with active IRQs */
390 for (i = 0; i < chip->num_main_regs; i++) {
391 unsigned int b;
392 const unsigned long mreg = data->main_status_buf[i];
393
394 for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
395 if (i * map->format.val_bytes * 8 + b >
396 max_main_bits)
397 break;
398 ret = read_sub_irq_data(data, b);
399
400 if (ret != 0) {
401 dev_err(map->dev,
402 "Failed to read IRQ status %d\n",
403 ret);
404 goto exit;
405 }
406 }
407
408 }
409 } else if (regmap_irq_can_bulk_read_status(data)) {
410
411 u8 *buf8 = data->status_reg_buf;
412 u16 *buf16 = data->status_reg_buf;
413 u32 *buf32 = data->status_reg_buf;
414
415 BUG_ON(!data->status_reg_buf);
416
417 ret = regmap_bulk_read(map, chip->status_base,
418 data->status_reg_buf,
419 chip->num_regs);
420 if (ret != 0) {
421 dev_err(map->dev, "Failed to read IRQ status: %d\n",
422 ret);
423 goto exit;
424 }
425
426 for (i = 0; i < data->chip->num_regs; i++) {
427 switch (map->format.val_bytes) {
428 case 1:
429 data->status_buf[i] = buf8[i];
430 break;
431 case 2:
432 data->status_buf[i] = buf16[i];
433 break;
434 case 4:
435 data->status_buf[i] = buf32[i];
436 break;
437 default:
438 BUG();
439 goto exit;
440 }
441 }
442
443 } else {
444 for (i = 0; i < data->chip->num_regs; i++) {
445 unsigned int reg = data->get_irq_reg(data,
446 data->chip->status_base, i);
447 ret = regmap_read(map, reg, &data->status_buf[i]);
448
449 if (ret != 0) {
450 dev_err(map->dev,
451 "Failed to read IRQ status: %d\n",
452 ret);
453 goto exit;
454 }
455 }
456 }
457
458 if (chip->status_invert)
459 for (i = 0; i < data->chip->num_regs; i++)
460 data->status_buf[i] = ~data->status_buf[i];
461
462 /*
463 * Ignore masked IRQs and ack if we need to; we ack early so
464 * there is no race between handling and acknowledging the
465 * interrupt. We assume that typically few of the interrupts
466 * will fire simultaneously so don't worry about overhead from
467 * doing a write per register.
468 */
469 for (i = 0; i < data->chip->num_regs; i++) {
470 data->status_buf[i] &= ~data->mask_buf[i];
471
472 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
473 reg = data->get_irq_reg(data, data->chip->ack_base, i);
474
475 if (chip->ack_invert)
476 ret = regmap_write(map, reg,
477 ~data->status_buf[i]);
478 else
479 ret = regmap_write(map, reg,
480 data->status_buf[i]);
481 if (chip->clear_ack) {
482 if (chip->ack_invert && !ret)
483 ret = regmap_write(map, reg, UINT_MAX);
484 else if (!ret)
485 ret = regmap_write(map, reg, 0);
486 }
487 if (ret != 0)
488 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
489 reg, ret);
490 }
491 }
492
493 for (i = 0; i < chip->num_irqs; i++) {
494 if (data->status_buf[chip->irqs[i].reg_offset /
495 map->reg_stride] & chip->irqs[i].mask) {
496 handle_nested_irq(irq_find_mapping(data->domain, i));
497 handled = true;
498 }
499 }
500
501 exit:
502 if (chip->handle_post_irq)
503 chip->handle_post_irq(chip->irq_drv_data);
504
505 if (chip->runtime_pm)
506 pm_runtime_put(map->dev);
507
508 if (handled)
509 return IRQ_HANDLED;
510 else
511 return IRQ_NONE;
512 }
513
514 static struct lock_class_key regmap_irq_lock_class;
515 static struct lock_class_key regmap_irq_request_class;
516
regmap_irq_map(struct irq_domain * h,unsigned int virq,irq_hw_number_t hw)517 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
518 irq_hw_number_t hw)
519 {
520 struct regmap_irq_chip_data *data = h->host_data;
521
522 irq_set_chip_data(virq, data);
523 irq_set_lockdep_class(virq, ®map_irq_lock_class, ®map_irq_request_class);
524 irq_set_chip(virq, &data->irq_chip);
525 irq_set_nested_thread(virq, 1);
526 irq_set_parent(virq, data->irq);
527 irq_set_noprobe(virq);
528
529 return 0;
530 }
531
532 static const struct irq_domain_ops regmap_domain_ops = {
533 .map = regmap_irq_map,
534 .xlate = irq_domain_xlate_onetwocell,
535 };
536
537 /**
538 * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback.
539 * @data: Data for the &struct regmap_irq_chip
540 * @base: Base register
541 * @index: Register index
542 *
543 * Returns the register address corresponding to the given @base and @index
544 * by the formula ``base + index * regmap_stride * irq_reg_stride``.
545 */
regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data * data,unsigned int base,int index)546 unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data,
547 unsigned int base, int index)
548 {
549 struct regmap *map = data->map;
550
551 return base + index * map->reg_stride * data->irq_reg_stride;
552 }
553 EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear);
554
555 /**
556 * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback.
557 * @buf: Buffer containing configuration register values, this is a 2D array of
558 * `num_config_bases` rows, each of `num_config_regs` elements.
559 * @type: The requested IRQ type.
560 * @irq_data: The IRQ being configured.
561 * @idx: Index of the irq's config registers within each array `buf[i]`
562 * @irq_drv_data: Driver specific IRQ data
563 *
564 * This is a &struct regmap_irq_chip->set_type_config callback suitable for
565 * chips with one config register. Register values are updated according to
566 * the &struct regmap_irq_type data associated with an IRQ.
567 */
regmap_irq_set_type_config_simple(unsigned int ** buf,unsigned int type,const struct regmap_irq * irq_data,int idx,void * irq_drv_data)568 int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type,
569 const struct regmap_irq *irq_data,
570 int idx, void *irq_drv_data)
571 {
572 const struct regmap_irq_type *t = &irq_data->type;
573
574 if (t->type_reg_mask)
575 buf[0][idx] &= ~t->type_reg_mask;
576 else
577 buf[0][idx] &= ~(t->type_falling_val |
578 t->type_rising_val |
579 t->type_level_low_val |
580 t->type_level_high_val);
581
582 switch (type) {
583 case IRQ_TYPE_EDGE_FALLING:
584 buf[0][idx] |= t->type_falling_val;
585 break;
586
587 case IRQ_TYPE_EDGE_RISING:
588 buf[0][idx] |= t->type_rising_val;
589 break;
590
591 case IRQ_TYPE_EDGE_BOTH:
592 buf[0][idx] |= (t->type_falling_val |
593 t->type_rising_val);
594 break;
595
596 case IRQ_TYPE_LEVEL_HIGH:
597 buf[0][idx] |= t->type_level_high_val;
598 break;
599
600 case IRQ_TYPE_LEVEL_LOW:
601 buf[0][idx] |= t->type_level_low_val;
602 break;
603
604 default:
605 return -EINVAL;
606 }
607
608 return 0;
609 }
610 EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple);
611
regmap_irq_create_domain(struct fwnode_handle * fwnode,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data * d)612 static int regmap_irq_create_domain(struct fwnode_handle *fwnode, int irq_base,
613 const struct regmap_irq_chip *chip,
614 struct regmap_irq_chip_data *d)
615 {
616 struct irq_domain_info info = {
617 .fwnode = fwnode,
618 .size = chip->num_irqs,
619 .hwirq_max = chip->num_irqs,
620 .virq_base = irq_base,
621 .ops = ®map_domain_ops,
622 .host_data = d,
623 .name_suffix = chip->domain_suffix,
624 };
625
626 d->domain = irq_domain_instantiate(&info);
627 if (IS_ERR(d->domain)) {
628 dev_err(d->map->dev, "Failed to create IRQ domain\n");
629 return PTR_ERR(d->domain);
630 }
631
632 return 0;
633 }
634
635
636 /**
637 * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
638 *
639 * @fwnode: The firmware node where the IRQ domain should be added to.
640 * @map: The regmap for the device.
641 * @irq: The IRQ the device uses to signal interrupts.
642 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
643 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
644 * @chip: Configuration for the interrupt controller.
645 * @data: Runtime data structure for the controller, allocated on success.
646 *
647 * Returns 0 on success or an errno on failure.
648 *
649 * In order for this to be efficient the chip really should use a
650 * register cache. The chip driver is responsible for restoring the
651 * register values used by the IRQ controller over suspend and resume.
652 */
regmap_add_irq_chip_fwnode(struct fwnode_handle * fwnode,struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)653 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
654 struct regmap *map, int irq,
655 int irq_flags, int irq_base,
656 const struct regmap_irq_chip *chip,
657 struct regmap_irq_chip_data **data)
658 {
659 struct regmap_irq_chip_data *d;
660 int i;
661 int ret = -ENOMEM;
662 u32 reg;
663
664 if (chip->num_regs <= 0)
665 return -EINVAL;
666
667 if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
668 return -EINVAL;
669
670 if (chip->mask_base && chip->unmask_base && !chip->mask_unmask_non_inverted)
671 return -EINVAL;
672
673 for (i = 0; i < chip->num_irqs; i++) {
674 if (chip->irqs[i].reg_offset % map->reg_stride)
675 return -EINVAL;
676 if (chip->irqs[i].reg_offset / map->reg_stride >=
677 chip->num_regs)
678 return -EINVAL;
679 }
680
681 if (irq_base) {
682 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
683 if (irq_base < 0) {
684 dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
685 irq_base);
686 return irq_base;
687 }
688 }
689
690 d = kzalloc(sizeof(*d), GFP_KERNEL);
691 if (!d)
692 return -ENOMEM;
693
694 if (chip->num_main_regs) {
695 d->main_status_buf = kcalloc(chip->num_main_regs,
696 sizeof(*d->main_status_buf),
697 GFP_KERNEL);
698
699 if (!d->main_status_buf)
700 goto err_alloc;
701 }
702
703 d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf),
704 GFP_KERNEL);
705 if (!d->status_buf)
706 goto err_alloc;
707
708 d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf),
709 GFP_KERNEL);
710 if (!d->mask_buf)
711 goto err_alloc;
712
713 d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def),
714 GFP_KERNEL);
715 if (!d->mask_buf_def)
716 goto err_alloc;
717
718 if (chip->wake_base) {
719 d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf),
720 GFP_KERNEL);
721 if (!d->wake_buf)
722 goto err_alloc;
723 }
724
725 if (chip->type_in_mask) {
726 d->type_buf_def = kcalloc(chip->num_regs,
727 sizeof(*d->type_buf_def), GFP_KERNEL);
728 if (!d->type_buf_def)
729 goto err_alloc;
730
731 d->type_buf = kcalloc(chip->num_regs, sizeof(*d->type_buf), GFP_KERNEL);
732 if (!d->type_buf)
733 goto err_alloc;
734 }
735
736 if (chip->num_config_bases && chip->num_config_regs) {
737 /*
738 * Create config_buf[num_config_bases][num_config_regs]
739 */
740 d->config_buf = kcalloc(chip->num_config_bases,
741 sizeof(*d->config_buf), GFP_KERNEL);
742 if (!d->config_buf)
743 goto err_alloc;
744
745 for (i = 0; i < chip->num_config_bases; i++) {
746 d->config_buf[i] = kcalloc(chip->num_config_regs,
747 sizeof(**d->config_buf),
748 GFP_KERNEL);
749 if (!d->config_buf[i])
750 goto err_alloc;
751 }
752 }
753
754 d->irq_chip = regmap_irq_chip;
755 d->irq_chip.name = chip->name;
756 d->irq = irq;
757 d->map = map;
758 d->chip = chip;
759 d->irq_base = irq_base;
760
761 if (chip->irq_reg_stride)
762 d->irq_reg_stride = chip->irq_reg_stride;
763 else
764 d->irq_reg_stride = 1;
765
766 if (chip->get_irq_reg)
767 d->get_irq_reg = chip->get_irq_reg;
768 else
769 d->get_irq_reg = regmap_irq_get_irq_reg_linear;
770
771 if (regmap_irq_can_bulk_read_status(d)) {
772 d->status_reg_buf = kmalloc_array(chip->num_regs,
773 map->format.val_bytes,
774 GFP_KERNEL);
775 if (!d->status_reg_buf)
776 goto err_alloc;
777 }
778
779 mutex_init(&d->lock);
780
781 for (i = 0; i < chip->num_irqs; i++)
782 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
783 |= chip->irqs[i].mask;
784
785 /* Mask all the interrupts by default */
786 for (i = 0; i < chip->num_regs; i++) {
787 d->mask_buf[i] = d->mask_buf_def[i];
788
789 if (chip->handle_mask_sync) {
790 ret = chip->handle_mask_sync(i, d->mask_buf_def[i],
791 d->mask_buf[i],
792 chip->irq_drv_data);
793 if (ret)
794 goto err_alloc;
795 }
796
797 if (chip->mask_base && !chip->handle_mask_sync) {
798 reg = d->get_irq_reg(d, chip->mask_base, i);
799 ret = regmap_update_bits(d->map, reg,
800 d->mask_buf_def[i],
801 d->mask_buf[i]);
802 if (ret) {
803 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
804 reg, ret);
805 goto err_alloc;
806 }
807 }
808
809 if (chip->unmask_base && !chip->handle_mask_sync) {
810 reg = d->get_irq_reg(d, chip->unmask_base, i);
811 ret = regmap_update_bits(d->map, reg,
812 d->mask_buf_def[i], ~d->mask_buf[i]);
813 if (ret) {
814 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
815 reg, ret);
816 goto err_alloc;
817 }
818 }
819
820 if (!chip->init_ack_masked)
821 continue;
822
823 /* Ack masked but set interrupts */
824 if (d->chip->no_status) {
825 /* no status register so default to all active */
826 d->status_buf[i] = GENMASK(31, 0);
827 } else {
828 reg = d->get_irq_reg(d, d->chip->status_base, i);
829 ret = regmap_read(map, reg, &d->status_buf[i]);
830 if (ret != 0) {
831 dev_err(map->dev, "Failed to read IRQ status: %d\n",
832 ret);
833 goto err_alloc;
834 }
835 }
836
837 if (chip->status_invert)
838 d->status_buf[i] = ~d->status_buf[i];
839
840 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
841 reg = d->get_irq_reg(d, d->chip->ack_base, i);
842 if (chip->ack_invert)
843 ret = regmap_write(map, reg,
844 ~(d->status_buf[i] & d->mask_buf[i]));
845 else
846 ret = regmap_write(map, reg,
847 d->status_buf[i] & d->mask_buf[i]);
848 if (chip->clear_ack) {
849 if (chip->ack_invert && !ret)
850 ret = regmap_write(map, reg, UINT_MAX);
851 else if (!ret)
852 ret = regmap_write(map, reg, 0);
853 }
854 if (ret != 0) {
855 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
856 reg, ret);
857 goto err_alloc;
858 }
859 }
860 }
861
862 /* Wake is disabled by default */
863 if (d->wake_buf) {
864 for (i = 0; i < chip->num_regs; i++) {
865 d->wake_buf[i] = d->mask_buf_def[i];
866 reg = d->get_irq_reg(d, d->chip->wake_base, i);
867
868 if (chip->wake_invert)
869 ret = regmap_update_bits(d->map, reg,
870 d->mask_buf_def[i],
871 0);
872 else
873 ret = regmap_update_bits(d->map, reg,
874 d->mask_buf_def[i],
875 d->wake_buf[i]);
876 if (ret != 0) {
877 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
878 reg, ret);
879 goto err_alloc;
880 }
881 }
882 }
883
884 ret = regmap_irq_create_domain(fwnode, irq_base, chip, d);
885 if (ret)
886 goto err_alloc;
887
888 ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
889 irq_flags | IRQF_ONESHOT,
890 chip->name, d);
891 if (ret != 0) {
892 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
893 irq, chip->name, ret);
894 goto err_domain;
895 }
896
897 *data = d;
898
899 return 0;
900
901 err_domain:
902 /* Should really dispose of the domain but... */
903 err_alloc:
904 kfree(d->type_buf);
905 kfree(d->type_buf_def);
906 kfree(d->wake_buf);
907 kfree(d->mask_buf_def);
908 kfree(d->mask_buf);
909 kfree(d->status_buf);
910 kfree(d->status_reg_buf);
911 if (d->config_buf) {
912 for (i = 0; i < chip->num_config_bases; i++)
913 kfree(d->config_buf[i]);
914 kfree(d->config_buf);
915 }
916 kfree(d);
917 return ret;
918 }
919 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
920
921 /**
922 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
923 *
924 * @map: The regmap for the device.
925 * @irq: The IRQ the device uses to signal interrupts.
926 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
927 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
928 * @chip: Configuration for the interrupt controller.
929 * @data: Runtime data structure for the controller, allocated on success.
930 *
931 * Returns 0 on success or an errno on failure.
932 *
933 * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
934 * node of the regmap is used.
935 */
regmap_add_irq_chip(struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)936 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
937 int irq_base, const struct regmap_irq_chip *chip,
938 struct regmap_irq_chip_data **data)
939 {
940 return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
941 irq_flags, irq_base, chip, data);
942 }
943 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
944
945 /**
946 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
947 *
948 * @irq: Primary IRQ for the device
949 * @d: ®map_irq_chip_data allocated by regmap_add_irq_chip()
950 *
951 * This function also disposes of all mapped IRQs on the chip.
952 */
regmap_del_irq_chip(int irq,struct regmap_irq_chip_data * d)953 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
954 {
955 unsigned int virq;
956 int i, hwirq;
957
958 if (!d)
959 return;
960
961 free_irq(irq, d);
962
963 /* Dispose all virtual irq from irq domain before removing it */
964 for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
965 /* Ignore hwirq if holes in the IRQ list */
966 if (!d->chip->irqs[hwirq].mask)
967 continue;
968
969 /*
970 * Find the virtual irq of hwirq on chip and if it is
971 * there then dispose it
972 */
973 virq = irq_find_mapping(d->domain, hwirq);
974 if (virq)
975 irq_dispose_mapping(virq);
976 }
977
978 irq_domain_remove(d->domain);
979 kfree(d->type_buf);
980 kfree(d->type_buf_def);
981 kfree(d->wake_buf);
982 kfree(d->mask_buf_def);
983 kfree(d->mask_buf);
984 kfree(d->status_reg_buf);
985 kfree(d->status_buf);
986 if (d->config_buf) {
987 for (i = 0; i < d->chip->num_config_bases; i++)
988 kfree(d->config_buf[i]);
989 kfree(d->config_buf);
990 }
991 kfree(d);
992 }
993 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
994
devm_regmap_irq_chip_release(struct device * dev,void * res)995 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
996 {
997 struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
998
999 regmap_del_irq_chip(d->irq, d);
1000 }
1001
devm_regmap_irq_chip_match(struct device * dev,void * res,void * data)1002 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
1003
1004 {
1005 struct regmap_irq_chip_data **r = res;
1006
1007 if (!r || !*r) {
1008 WARN_ON(!r || !*r);
1009 return 0;
1010 }
1011 return *r == data;
1012 }
1013
1014 /**
1015 * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1016 *
1017 * @dev: The device pointer on which irq_chip belongs to.
1018 * @fwnode: The firmware node where the IRQ domain should be added to.
1019 * @map: The regmap for the device.
1020 * @irq: The IRQ the device uses to signal interrupts
1021 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1022 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1023 * @chip: Configuration for the interrupt controller.
1024 * @data: Runtime data structure for the controller, allocated on success
1025 *
1026 * Returns 0 on success or an errno on failure.
1027 *
1028 * The ®map_irq_chip_data will be automatically released when the device is
1029 * unbound.
1030 */
devm_regmap_add_irq_chip_fwnode(struct device * dev,struct fwnode_handle * fwnode,struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)1031 int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1032 struct fwnode_handle *fwnode,
1033 struct regmap *map, int irq,
1034 int irq_flags, int irq_base,
1035 const struct regmap_irq_chip *chip,
1036 struct regmap_irq_chip_data **data)
1037 {
1038 struct regmap_irq_chip_data **ptr, *d;
1039 int ret;
1040
1041 ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1042 GFP_KERNEL);
1043 if (!ptr)
1044 return -ENOMEM;
1045
1046 ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1047 chip, &d);
1048 if (ret < 0) {
1049 devres_free(ptr);
1050 return ret;
1051 }
1052
1053 *ptr = d;
1054 devres_add(dev, ptr);
1055 *data = d;
1056 return 0;
1057 }
1058 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1059
1060 /**
1061 * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1062 *
1063 * @dev: The device pointer on which irq_chip belongs to.
1064 * @map: The regmap for the device.
1065 * @irq: The IRQ the device uses to signal interrupts
1066 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1067 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1068 * @chip: Configuration for the interrupt controller.
1069 * @data: Runtime data structure for the controller, allocated on success
1070 *
1071 * Returns 0 on success or an errno on failure.
1072 *
1073 * The ®map_irq_chip_data will be automatically released when the device is
1074 * unbound.
1075 */
devm_regmap_add_irq_chip(struct device * dev,struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)1076 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1077 int irq_flags, int irq_base,
1078 const struct regmap_irq_chip *chip,
1079 struct regmap_irq_chip_data **data)
1080 {
1081 return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1082 irq, irq_flags, irq_base, chip,
1083 data);
1084 }
1085 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1086
1087 /**
1088 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1089 *
1090 * @dev: Device for which the resource was allocated.
1091 * @irq: Primary IRQ for the device.
1092 * @data: ®map_irq_chip_data allocated by regmap_add_irq_chip().
1093 *
1094 * A resource managed version of regmap_del_irq_chip().
1095 */
devm_regmap_del_irq_chip(struct device * dev,int irq,struct regmap_irq_chip_data * data)1096 void devm_regmap_del_irq_chip(struct device *dev, int irq,
1097 struct regmap_irq_chip_data *data)
1098 {
1099 int rc;
1100
1101 WARN_ON(irq != data->irq);
1102 rc = devres_release(dev, devm_regmap_irq_chip_release,
1103 devm_regmap_irq_chip_match, data);
1104
1105 if (rc != 0)
1106 WARN_ON(rc);
1107 }
1108 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1109
1110 /**
1111 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1112 *
1113 * @data: regmap irq controller to operate on.
1114 *
1115 * Useful for drivers to request their own IRQs.
1116 */
regmap_irq_chip_get_base(struct regmap_irq_chip_data * data)1117 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1118 {
1119 WARN_ON(!data->irq_base);
1120 return data->irq_base;
1121 }
1122 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1123
1124 /**
1125 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1126 *
1127 * @data: regmap irq controller to operate on.
1128 * @irq: index of the interrupt requested in the chip IRQs.
1129 *
1130 * Useful for drivers to request their own IRQs.
1131 */
regmap_irq_get_virq(struct regmap_irq_chip_data * data,int irq)1132 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1133 {
1134 /* Handle holes in the IRQ list */
1135 if (!data->chip->irqs[irq].mask)
1136 return -EINVAL;
1137
1138 return irq_create_mapping(data->domain, irq);
1139 }
1140 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1141
1142 /**
1143 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1144 *
1145 * @data: regmap_irq controller to operate on.
1146 *
1147 * Useful for drivers to request their own IRQs and for integration
1148 * with subsystems. For ease of integration NULL is accepted as a
1149 * domain, allowing devices to just call this even if no domain is
1150 * allocated.
1151 */
regmap_irq_get_domain(struct regmap_irq_chip_data * data)1152 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1153 {
1154 if (data)
1155 return data->domain;
1156 else
1157 return NULL;
1158 }
1159 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1160