1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic pidhash and scalable, time-bounded PID allocator 4 * 5 * (C) 2002-2003 Nadia Yvette Chambers, IBM 6 * (C) 2004 Nadia Yvette Chambers, Oracle 7 * (C) 2002-2004 Ingo Molnar, Red Hat 8 * 9 * pid-structures are backing objects for tasks sharing a given ID to chain 10 * against. There is very little to them aside from hashing them and 11 * parking tasks using given ID's on a list. 12 * 13 * The hash is always changed with the tasklist_lock write-acquired, 14 * and the hash is only accessed with the tasklist_lock at least 15 * read-acquired, so there's no additional SMP locking needed here. 16 * 17 * We have a list of bitmap pages, which bitmaps represent the PID space. 18 * Allocating and freeing PIDs is completely lockless. The worst-case 19 * allocation scenario when all but one out of 1 million PIDs possible are 20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE 21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). 22 * 23 * Pid namespaces: 24 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 25 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 26 * Many thanks to Oleg Nesterov for comments and help 27 * 28 */ 29 30 #include <linux/mm.h> 31 #include <linux/export.h> 32 #include <linux/slab.h> 33 #include <linux/init.h> 34 #include <linux/rculist.h> 35 #include <linux/memblock.h> 36 #include <linux/pid_namespace.h> 37 #include <linux/init_task.h> 38 #include <linux/syscalls.h> 39 #include <linux/proc_ns.h> 40 #include <linux/refcount.h> 41 #include <linux/anon_inodes.h> 42 #include <linux/sched/signal.h> 43 #include <linux/sched/task.h> 44 #include <linux/idr.h> 45 #include <linux/pidfs.h> 46 #include <linux/seqlock.h> 47 #include <net/sock.h> 48 #include <uapi/linux/pidfd.h> 49 50 struct pid init_struct_pid = { 51 .count = REFCOUNT_INIT(1), 52 .tasks = { 53 { .first = NULL }, 54 { .first = NULL }, 55 { .first = NULL }, 56 }, 57 .level = 0, 58 .numbers = { { 59 .nr = 0, 60 .ns = &init_pid_ns, 61 }, } 62 }; 63 64 static int pid_max_min = RESERVED_PIDS + 1; 65 static int pid_max_max = PID_MAX_LIMIT; 66 67 /* 68 * PID-map pages start out as NULL, they get allocated upon 69 * first use and are never deallocated. This way a low pid_max 70 * value does not cause lots of bitmaps to be allocated, but 71 * the scheme scales to up to 4 million PIDs, runtime. 72 */ 73 struct pid_namespace init_pid_ns = { 74 .ns = NS_COMMON_INIT(init_pid_ns), 75 .idr = IDR_INIT(init_pid_ns.idr), 76 .pid_allocated = PIDNS_ADDING, 77 .level = 0, 78 .child_reaper = &init_task, 79 .user_ns = &init_user_ns, 80 .pid_max = PID_MAX_DEFAULT, 81 #if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE) 82 .memfd_noexec_scope = MEMFD_NOEXEC_SCOPE_EXEC, 83 #endif 84 }; 85 EXPORT_SYMBOL_GPL(init_pid_ns); 86 87 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); 88 seqcount_spinlock_t pidmap_lock_seq = SEQCNT_SPINLOCK_ZERO(pidmap_lock_seq, &pidmap_lock); 89 90 void put_pid(struct pid *pid) 91 { 92 struct pid_namespace *ns; 93 94 if (!pid) 95 return; 96 97 ns = pid->numbers[pid->level].ns; 98 if (refcount_dec_and_test(&pid->count)) { 99 pidfs_free_pid(pid); 100 kmem_cache_free(ns->pid_cachep, pid); 101 put_pid_ns(ns); 102 } 103 } 104 EXPORT_SYMBOL_GPL(put_pid); 105 106 static void delayed_put_pid(struct rcu_head *rhp) 107 { 108 struct pid *pid = container_of(rhp, struct pid, rcu); 109 put_pid(pid); 110 } 111 112 void free_pid(struct pid *pid) 113 { 114 int i; 115 struct pid_namespace *active_ns; 116 117 lockdep_assert_not_held(&tasklist_lock); 118 119 active_ns = pid->numbers[pid->level].ns; 120 ns_ref_active_put(active_ns); 121 122 spin_lock(&pidmap_lock); 123 for (i = 0; i <= pid->level; i++) { 124 struct upid *upid = pid->numbers + i; 125 struct pid_namespace *ns = upid->ns; 126 switch (--ns->pid_allocated) { 127 case 2: 128 case 1: 129 /* When all that is left in the pid namespace 130 * is the reaper wake up the reaper. The reaper 131 * may be sleeping in zap_pid_ns_processes(). 132 */ 133 wake_up_process(ns->child_reaper); 134 break; 135 case PIDNS_ADDING: 136 /* Handle a fork failure of the first process */ 137 WARN_ON(ns->child_reaper); 138 ns->pid_allocated = 0; 139 break; 140 } 141 142 idr_remove(&ns->idr, upid->nr); 143 } 144 pidfs_remove_pid(pid); 145 spin_unlock(&pidmap_lock); 146 147 call_rcu(&pid->rcu, delayed_put_pid); 148 } 149 150 void free_pids(struct pid **pids) 151 { 152 int tmp; 153 154 /* 155 * This can batch pidmap_lock. 156 */ 157 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 158 if (pids[tmp]) 159 free_pid(pids[tmp]); 160 } 161 162 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *arg_set_tid, 163 size_t arg_set_tid_size) 164 { 165 int set_tid[MAX_PID_NS_LEVEL + 1] = {}; 166 int pid_max[MAX_PID_NS_LEVEL + 1] = {}; 167 struct pid *pid; 168 enum pid_type type; 169 int i, nr; 170 struct pid_namespace *tmp; 171 struct upid *upid; 172 int retval = -ENOMEM; 173 bool retried_preload; 174 175 /* 176 * arg_set_tid_size contains the size of the arg_set_tid array. Starting at 177 * the most nested currently active PID namespace it tells alloc_pid() 178 * which PID to set for a process in that most nested PID namespace 179 * up to arg_set_tid_size PID namespaces. It does not have to set the PID 180 * for a process in all nested PID namespaces but arg_set_tid_size must 181 * never be greater than the current ns->level + 1. 182 */ 183 if (arg_set_tid_size > ns->level + 1) 184 return ERR_PTR(-EINVAL); 185 186 /* 187 * Prep before we take locks: 188 * 189 * 1. allocate and fill in pid struct 190 */ 191 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); 192 if (!pid) 193 return ERR_PTR(retval); 194 195 get_pid_ns(ns); 196 pid->level = ns->level; 197 refcount_set(&pid->count, 1); 198 spin_lock_init(&pid->lock); 199 for (type = 0; type < PIDTYPE_MAX; ++type) 200 INIT_HLIST_HEAD(&pid->tasks[type]); 201 init_waitqueue_head(&pid->wait_pidfd); 202 INIT_HLIST_HEAD(&pid->inodes); 203 204 /* 205 * 2. perm check checkpoint_restore_ns_capable() 206 * 207 * This stores found pid_max to make sure the used value is the same should 208 * later code need it. 209 */ 210 for (tmp = ns, i = ns->level; i >= 0; i--) { 211 pid_max[ns->level - i] = READ_ONCE(tmp->pid_max); 212 213 if (arg_set_tid_size) { 214 int tid = set_tid[ns->level - i] = arg_set_tid[ns->level - i]; 215 216 retval = -EINVAL; 217 if (tid < 1 || tid >= pid_max[ns->level - i]) 218 goto out_abort; 219 /* 220 * Also fail if a PID != 1 is requested and 221 * no PID 1 exists. 222 */ 223 if (tid != 1 && !tmp->child_reaper) 224 goto out_abort; 225 retval = -EPERM; 226 if (!checkpoint_restore_ns_capable(tmp->user_ns)) 227 goto out_abort; 228 arg_set_tid_size--; 229 } 230 231 tmp = tmp->parent; 232 } 233 234 /* 235 * Prep is done, id allocation goes here: 236 */ 237 retried_preload = false; 238 idr_preload(GFP_KERNEL); 239 spin_lock(&pidmap_lock); 240 for (tmp = ns, i = ns->level; i >= 0;) { 241 int tid = set_tid[ns->level - i]; 242 243 if (tid) { 244 nr = idr_alloc(&tmp->idr, NULL, tid, 245 tid + 1, GFP_ATOMIC); 246 /* 247 * If ENOSPC is returned it means that the PID is 248 * alreay in use. Return EEXIST in that case. 249 */ 250 if (nr == -ENOSPC) 251 252 nr = -EEXIST; 253 } else { 254 int pid_min = 1; 255 /* 256 * init really needs pid 1, but after reaching the 257 * maximum wrap back to RESERVED_PIDS 258 */ 259 if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS) 260 pid_min = RESERVED_PIDS; 261 262 /* 263 * Store a null pointer so find_pid_ns does not find 264 * a partially initialized PID (see below). 265 */ 266 nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min, 267 pid_max[ns->level - i], GFP_ATOMIC); 268 if (nr == -ENOSPC) 269 nr = -EAGAIN; 270 } 271 272 if (unlikely(nr < 0)) { 273 /* 274 * Preload more memory if idr_alloc{,cyclic} failed with -ENOMEM. 275 * 276 * The IDR API only allows us to preload memory for one call, while we may end 277 * up doing several under pidmap_lock with GFP_ATOMIC. The situation may be 278 * salvageable with GFP_KERNEL. But make sure to not loop indefinitely if preload 279 * did not help (the routine unfortunately returns void, so we have no idea 280 * if it got anywhere). 281 * 282 * The lock can be safely dropped and picked up as historically pid allocation 283 * for different namespaces was *not* atomic -- we try to hold on to it the 284 * entire time only for performance reasons. 285 */ 286 if (nr == -ENOMEM && !retried_preload) { 287 spin_unlock(&pidmap_lock); 288 idr_preload_end(); 289 retried_preload = true; 290 idr_preload(GFP_KERNEL); 291 spin_lock(&pidmap_lock); 292 continue; 293 } 294 retval = nr; 295 goto out_free; 296 } 297 298 pid->numbers[i].nr = nr; 299 pid->numbers[i].ns = tmp; 300 tmp = tmp->parent; 301 i--; 302 retried_preload = false; 303 } 304 305 /* 306 * ENOMEM is not the most obvious choice especially for the case 307 * where the child subreaper has already exited and the pid 308 * namespace denies the creation of any new processes. But ENOMEM 309 * is what we have exposed to userspace for a long time and it is 310 * documented behavior for pid namespaces. So we can't easily 311 * change it even if there were an error code better suited. 312 * 313 * This can't be done earlier because we need to preserve other 314 * error conditions. 315 */ 316 retval = -ENOMEM; 317 if (unlikely(!(ns->pid_allocated & PIDNS_ADDING))) 318 goto out_free; 319 pidfs_add_pid(pid); 320 for (upid = pid->numbers + ns->level; upid >= pid->numbers; --upid) { 321 /* Make the PID visible to find_pid_ns. */ 322 idr_replace(&upid->ns->idr, pid, upid->nr); 323 upid->ns->pid_allocated++; 324 } 325 spin_unlock(&pidmap_lock); 326 idr_preload_end(); 327 ns_ref_active_get(ns); 328 329 return pid; 330 331 out_free: 332 while (++i <= ns->level) { 333 upid = pid->numbers + i; 334 idr_remove(&upid->ns->idr, upid->nr); 335 } 336 337 /* On failure to allocate the first pid, reset the state */ 338 if (ns->pid_allocated == PIDNS_ADDING) 339 idr_set_cursor(&ns->idr, 0); 340 341 spin_unlock(&pidmap_lock); 342 idr_preload_end(); 343 344 out_abort: 345 put_pid_ns(ns); 346 kmem_cache_free(ns->pid_cachep, pid); 347 return ERR_PTR(retval); 348 } 349 350 void disable_pid_allocation(struct pid_namespace *ns) 351 { 352 spin_lock(&pidmap_lock); 353 ns->pid_allocated &= ~PIDNS_ADDING; 354 spin_unlock(&pidmap_lock); 355 } 356 357 struct pid *find_pid_ns(int nr, struct pid_namespace *ns) 358 { 359 return idr_find(&ns->idr, nr); 360 } 361 EXPORT_SYMBOL_GPL(find_pid_ns); 362 363 struct pid *find_vpid(int nr) 364 { 365 return find_pid_ns(nr, task_active_pid_ns(current)); 366 } 367 EXPORT_SYMBOL_GPL(find_vpid); 368 369 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type) 370 { 371 return (type == PIDTYPE_PID) ? 372 &task->thread_pid : 373 &task->signal->pids[type]; 374 } 375 376 /* 377 * attach_pid() must be called with the tasklist_lock write-held. 378 */ 379 void attach_pid(struct task_struct *task, enum pid_type type) 380 { 381 struct pid *pid; 382 383 lockdep_assert_held_write(&tasklist_lock); 384 385 pid = *task_pid_ptr(task, type); 386 hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]); 387 } 388 389 static void __change_pid(struct pid **pids, struct task_struct *task, 390 enum pid_type type, struct pid *new) 391 { 392 struct pid **pid_ptr, *pid; 393 int tmp; 394 395 lockdep_assert_held_write(&tasklist_lock); 396 397 pid_ptr = task_pid_ptr(task, type); 398 pid = *pid_ptr; 399 400 hlist_del_rcu(&task->pid_links[type]); 401 *pid_ptr = new; 402 403 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 404 if (pid_has_task(pid, tmp)) 405 return; 406 407 WARN_ON(pids[type]); 408 pids[type] = pid; 409 } 410 411 void detach_pid(struct pid **pids, struct task_struct *task, enum pid_type type) 412 { 413 __change_pid(pids, task, type, NULL); 414 } 415 416 void change_pid(struct pid **pids, struct task_struct *task, enum pid_type type, 417 struct pid *pid) 418 { 419 __change_pid(pids, task, type, pid); 420 attach_pid(task, type); 421 } 422 423 void exchange_tids(struct task_struct *left, struct task_struct *right) 424 { 425 struct pid *pid1 = left->thread_pid; 426 struct pid *pid2 = right->thread_pid; 427 struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID]; 428 struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID]; 429 430 lockdep_assert_held_write(&tasklist_lock); 431 432 /* Swap the single entry tid lists */ 433 hlists_swap_heads_rcu(head1, head2); 434 435 /* Swap the per task_struct pid */ 436 rcu_assign_pointer(left->thread_pid, pid2); 437 rcu_assign_pointer(right->thread_pid, pid1); 438 439 /* Swap the cached value */ 440 WRITE_ONCE(left->pid, pid_nr(pid2)); 441 WRITE_ONCE(right->pid, pid_nr(pid1)); 442 } 443 444 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ 445 void transfer_pid(struct task_struct *old, struct task_struct *new, 446 enum pid_type type) 447 { 448 WARN_ON_ONCE(type == PIDTYPE_PID); 449 lockdep_assert_held_write(&tasklist_lock); 450 hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]); 451 } 452 453 struct task_struct *pid_task(struct pid *pid, enum pid_type type) 454 { 455 struct task_struct *result = NULL; 456 if (pid) { 457 struct hlist_node *first; 458 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), 459 lockdep_tasklist_lock_is_held()); 460 if (first) 461 result = hlist_entry(first, struct task_struct, pid_links[(type)]); 462 } 463 return result; 464 } 465 EXPORT_SYMBOL(pid_task); 466 467 /* 468 * Must be called under rcu_read_lock(). 469 */ 470 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) 471 { 472 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 473 "find_task_by_pid_ns() needs rcu_read_lock() protection"); 474 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); 475 } 476 477 struct task_struct *find_task_by_vpid(pid_t vnr) 478 { 479 return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); 480 } 481 482 struct task_struct *find_get_task_by_vpid(pid_t nr) 483 { 484 struct task_struct *task; 485 486 rcu_read_lock(); 487 task = find_task_by_vpid(nr); 488 if (task) 489 get_task_struct(task); 490 rcu_read_unlock(); 491 492 return task; 493 } 494 495 struct pid *get_task_pid(struct task_struct *task, enum pid_type type) 496 { 497 struct pid *pid; 498 rcu_read_lock(); 499 pid = get_pid(rcu_dereference(*task_pid_ptr(task, type))); 500 rcu_read_unlock(); 501 return pid; 502 } 503 EXPORT_SYMBOL_GPL(get_task_pid); 504 505 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) 506 { 507 struct task_struct *result; 508 rcu_read_lock(); 509 result = pid_task(pid, type); 510 if (result) 511 get_task_struct(result); 512 rcu_read_unlock(); 513 return result; 514 } 515 EXPORT_SYMBOL_GPL(get_pid_task); 516 517 struct pid *find_get_pid(pid_t nr) 518 { 519 struct pid *pid; 520 521 rcu_read_lock(); 522 pid = get_pid(find_vpid(nr)); 523 rcu_read_unlock(); 524 525 return pid; 526 } 527 EXPORT_SYMBOL_GPL(find_get_pid); 528 529 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) 530 { 531 struct upid *upid; 532 pid_t nr = 0; 533 534 if (pid && ns && ns->level <= pid->level) { 535 upid = &pid->numbers[ns->level]; 536 if (upid->ns == ns) 537 nr = upid->nr; 538 } 539 return nr; 540 } 541 EXPORT_SYMBOL_GPL(pid_nr_ns); 542 543 pid_t pid_vnr(struct pid *pid) 544 { 545 return pid_nr_ns(pid, task_active_pid_ns(current)); 546 } 547 EXPORT_SYMBOL_GPL(pid_vnr); 548 549 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 550 struct pid_namespace *ns) 551 { 552 pid_t nr = 0; 553 554 rcu_read_lock(); 555 if (!ns) 556 ns = task_active_pid_ns(current); 557 if (ns) 558 nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns); 559 rcu_read_unlock(); 560 561 return nr; 562 } 563 EXPORT_SYMBOL(__task_pid_nr_ns); 564 565 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) 566 { 567 return ns_of_pid(task_pid(tsk)); 568 } 569 EXPORT_SYMBOL_GPL(task_active_pid_ns); 570 571 /* 572 * Used by proc to find the first pid that is greater than or equal to nr. 573 * 574 * If there is a pid at nr this function is exactly the same as find_pid_ns. 575 */ 576 struct pid *find_ge_pid(int nr, struct pid_namespace *ns) 577 { 578 return idr_get_next(&ns->idr, &nr); 579 } 580 EXPORT_SYMBOL_GPL(find_ge_pid); 581 582 struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags) 583 { 584 CLASS(fd, f)(fd); 585 struct pid *pid; 586 587 if (fd_empty(f)) 588 return ERR_PTR(-EBADF); 589 590 pid = pidfd_pid(fd_file(f)); 591 if (!IS_ERR(pid)) { 592 get_pid(pid); 593 *flags = fd_file(f)->f_flags; 594 } 595 return pid; 596 } 597 598 /** 599 * pidfd_get_task() - Get the task associated with a pidfd 600 * 601 * @pidfd: pidfd for which to get the task 602 * @flags: flags associated with this pidfd 603 * 604 * Return the task associated with @pidfd. The function takes a reference on 605 * the returned task. The caller is responsible for releasing that reference. 606 * 607 * Return: On success, the task_struct associated with the pidfd. 608 * On error, a negative errno number will be returned. 609 */ 610 struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags) 611 { 612 unsigned int f_flags = 0; 613 struct pid *pid; 614 struct task_struct *task; 615 enum pid_type type; 616 617 switch (pidfd) { 618 case PIDFD_SELF_THREAD: 619 type = PIDTYPE_PID; 620 pid = get_task_pid(current, type); 621 break; 622 case PIDFD_SELF_THREAD_GROUP: 623 type = PIDTYPE_TGID; 624 pid = get_task_pid(current, type); 625 break; 626 default: 627 pid = pidfd_get_pid(pidfd, &f_flags); 628 if (IS_ERR(pid)) 629 return ERR_CAST(pid); 630 type = PIDTYPE_TGID; 631 break; 632 } 633 634 task = get_pid_task(pid, type); 635 put_pid(pid); 636 if (!task) 637 return ERR_PTR(-ESRCH); 638 639 *flags = f_flags; 640 return task; 641 } 642 643 /** 644 * pidfd_create() - Create a new pid file descriptor. 645 * 646 * @pid: struct pid that the pidfd will reference 647 * @flags: flags to pass 648 * 649 * This creates a new pid file descriptor with the O_CLOEXEC flag set. 650 * 651 * Note, that this function can only be called after the fd table has 652 * been unshared to avoid leaking the pidfd to the new process. 653 * 654 * This symbol should not be explicitly exported to loadable modules. 655 * 656 * Return: On success, a cloexec pidfd is returned. 657 * On error, a negative errno number will be returned. 658 */ 659 static int pidfd_create(struct pid *pid, unsigned int flags) 660 { 661 int pidfd; 662 struct file *pidfd_file; 663 664 pidfd = pidfd_prepare(pid, flags, &pidfd_file); 665 if (pidfd < 0) 666 return pidfd; 667 668 fd_install(pidfd, pidfd_file); 669 return pidfd; 670 } 671 672 /** 673 * sys_pidfd_open() - Open new pid file descriptor. 674 * 675 * @pid: pid for which to retrieve a pidfd 676 * @flags: flags to pass 677 * 678 * This creates a new pid file descriptor with the O_CLOEXEC flag set for 679 * the task identified by @pid. Without PIDFD_THREAD flag the target task 680 * must be a thread-group leader. 681 * 682 * Return: On success, a cloexec pidfd is returned. 683 * On error, a negative errno number will be returned. 684 */ 685 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags) 686 { 687 int fd; 688 struct pid *p; 689 690 if (flags & ~(PIDFD_NONBLOCK | PIDFD_THREAD)) 691 return -EINVAL; 692 693 if (pid <= 0) 694 return -EINVAL; 695 696 p = find_get_pid(pid); 697 if (!p) 698 return -ESRCH; 699 700 fd = pidfd_create(p, flags); 701 702 put_pid(p); 703 return fd; 704 } 705 706 #ifdef CONFIG_SYSCTL 707 static struct ctl_table_set *pid_table_root_lookup(struct ctl_table_root *root) 708 { 709 return &task_active_pid_ns(current)->set; 710 } 711 712 static int set_is_seen(struct ctl_table_set *set) 713 { 714 return &task_active_pid_ns(current)->set == set; 715 } 716 717 static int pid_table_root_permissions(struct ctl_table_header *head, 718 const struct ctl_table *table) 719 { 720 struct pid_namespace *pidns = 721 container_of(head->set, struct pid_namespace, set); 722 int mode = table->mode; 723 724 if (ns_capable_noaudit(pidns->user_ns, CAP_SYS_ADMIN) || 725 uid_eq(current_euid(), make_kuid(pidns->user_ns, 0))) 726 mode = (mode & S_IRWXU) >> 6; 727 else if (in_egroup_p(make_kgid(pidns->user_ns, 0))) 728 mode = (mode & S_IRWXG) >> 3; 729 else 730 mode = mode & S_IROTH; 731 return (mode << 6) | (mode << 3) | mode; 732 } 733 734 static void pid_table_root_set_ownership(struct ctl_table_header *head, 735 kuid_t *uid, kgid_t *gid) 736 { 737 struct pid_namespace *pidns = 738 container_of(head->set, struct pid_namespace, set); 739 kuid_t ns_root_uid; 740 kgid_t ns_root_gid; 741 742 ns_root_uid = make_kuid(pidns->user_ns, 0); 743 if (uid_valid(ns_root_uid)) 744 *uid = ns_root_uid; 745 746 ns_root_gid = make_kgid(pidns->user_ns, 0); 747 if (gid_valid(ns_root_gid)) 748 *gid = ns_root_gid; 749 } 750 751 static struct ctl_table_root pid_table_root = { 752 .lookup = pid_table_root_lookup, 753 .permissions = pid_table_root_permissions, 754 .set_ownership = pid_table_root_set_ownership, 755 }; 756 757 static int proc_do_cad_pid(const struct ctl_table *table, int write, void *buffer, 758 size_t *lenp, loff_t *ppos) 759 { 760 struct pid *new_pid; 761 pid_t tmp_pid; 762 int r; 763 struct ctl_table tmp_table = *table; 764 765 tmp_pid = pid_vnr(cad_pid); 766 tmp_table.data = &tmp_pid; 767 768 r = proc_dointvec(&tmp_table, write, buffer, lenp, ppos); 769 if (r || !write) 770 return r; 771 772 new_pid = find_get_pid(tmp_pid); 773 if (!new_pid) 774 return -ESRCH; 775 776 put_pid(xchg(&cad_pid, new_pid)); 777 return 0; 778 } 779 780 static const struct ctl_table pid_table[] = { 781 { 782 .procname = "pid_max", 783 .data = &init_pid_ns.pid_max, 784 .maxlen = sizeof(int), 785 .mode = 0644, 786 .proc_handler = proc_dointvec_minmax, 787 .extra1 = &pid_max_min, 788 .extra2 = &pid_max_max, 789 }, 790 #ifdef CONFIG_PROC_SYSCTL 791 { 792 .procname = "cad_pid", 793 .maxlen = sizeof(int), 794 .mode = 0600, 795 .proc_handler = proc_do_cad_pid, 796 }, 797 #endif 798 }; 799 #endif 800 801 int register_pidns_sysctls(struct pid_namespace *pidns) 802 { 803 #ifdef CONFIG_SYSCTL 804 struct ctl_table *tbl; 805 806 setup_sysctl_set(&pidns->set, &pid_table_root, set_is_seen); 807 808 tbl = kmemdup(pid_table, sizeof(pid_table), GFP_KERNEL); 809 if (!tbl) 810 return -ENOMEM; 811 tbl->data = &pidns->pid_max; 812 pidns->pid_max = min(pid_max_max, max_t(int, pidns->pid_max, 813 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 814 815 pidns->sysctls = __register_sysctl_table(&pidns->set, "kernel", tbl, 816 ARRAY_SIZE(pid_table)); 817 if (!pidns->sysctls) { 818 kfree(tbl); 819 retire_sysctl_set(&pidns->set); 820 return -ENOMEM; 821 } 822 #endif 823 return 0; 824 } 825 826 void unregister_pidns_sysctls(struct pid_namespace *pidns) 827 { 828 #ifdef CONFIG_SYSCTL 829 const struct ctl_table *tbl; 830 831 tbl = pidns->sysctls->ctl_table_arg; 832 unregister_sysctl_table(pidns->sysctls); 833 retire_sysctl_set(&pidns->set); 834 kfree(tbl); 835 #endif 836 } 837 838 void __init pid_idr_init(void) 839 { 840 /* Verify no one has done anything silly: */ 841 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING); 842 843 /* bump default and minimum pid_max based on number of cpus */ 844 init_pid_ns.pid_max = min(pid_max_max, max_t(int, init_pid_ns.pid_max, 845 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 846 pid_max_min = max_t(int, pid_max_min, 847 PIDS_PER_CPU_MIN * num_possible_cpus()); 848 pr_info("pid_max: default: %u minimum: %u\n", init_pid_ns.pid_max, pid_max_min); 849 850 idr_init(&init_pid_ns.idr); 851 852 init_pid_ns.pid_cachep = kmem_cache_create("pid", 853 struct_size_t(struct pid, numbers, 1), 854 __alignof__(struct pid), 855 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT, 856 NULL); 857 } 858 859 static __init int pid_namespace_sysctl_init(void) 860 { 861 #ifdef CONFIG_SYSCTL 862 /* "kernel" directory will have already been initialized. */ 863 BUG_ON(register_pidns_sysctls(&init_pid_ns)); 864 #endif 865 return 0; 866 } 867 subsys_initcall(pid_namespace_sysctl_init); 868 869 static struct file *__pidfd_fget(struct task_struct *task, int fd) 870 { 871 struct file *file; 872 int ret; 873 874 ret = down_read_killable(&task->signal->exec_update_lock); 875 if (ret) 876 return ERR_PTR(ret); 877 878 if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS)) 879 file = fget_task(task, fd); 880 else 881 file = ERR_PTR(-EPERM); 882 883 up_read(&task->signal->exec_update_lock); 884 885 if (!file) { 886 /* 887 * It is possible that the target thread is exiting; it can be 888 * either: 889 * 1. before exit_signals(), which gives a real fd 890 * 2. before exit_files() takes the task_lock() gives a real fd 891 * 3. after exit_files() releases task_lock(), ->files is NULL; 892 * this has PF_EXITING, since it was set in exit_signals(), 893 * __pidfd_fget() returns EBADF. 894 * In case 3 we get EBADF, but that really means ESRCH, since 895 * the task is currently exiting and has freed its files 896 * struct, so we fix it up. 897 */ 898 if (task->flags & PF_EXITING) 899 file = ERR_PTR(-ESRCH); 900 else 901 file = ERR_PTR(-EBADF); 902 } 903 904 return file; 905 } 906 907 static int pidfd_getfd(struct pid *pid, int fd) 908 { 909 struct task_struct *task; 910 struct file *file; 911 int ret; 912 913 task = get_pid_task(pid, PIDTYPE_PID); 914 if (!task) 915 return -ESRCH; 916 917 file = __pidfd_fget(task, fd); 918 put_task_struct(task); 919 if (IS_ERR(file)) 920 return PTR_ERR(file); 921 922 ret = receive_fd(file, NULL, O_CLOEXEC); 923 fput(file); 924 925 return ret; 926 } 927 928 /** 929 * sys_pidfd_getfd() - Get a file descriptor from another process 930 * 931 * @pidfd: the pidfd file descriptor of the process 932 * @fd: the file descriptor number to get 933 * @flags: flags on how to get the fd (reserved) 934 * 935 * This syscall gets a copy of a file descriptor from another process 936 * based on the pidfd, and file descriptor number. It requires that 937 * the calling process has the ability to ptrace the process represented 938 * by the pidfd. The process which is having its file descriptor copied 939 * is otherwise unaffected. 940 * 941 * Return: On success, a cloexec file descriptor is returned. 942 * On error, a negative errno number will be returned. 943 */ 944 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd, 945 unsigned int, flags) 946 { 947 struct pid *pid; 948 949 /* flags is currently unused - make sure it's unset */ 950 if (flags) 951 return -EINVAL; 952 953 CLASS(fd, f)(pidfd); 954 if (fd_empty(f)) 955 return -EBADF; 956 957 pid = pidfd_pid(fd_file(f)); 958 if (IS_ERR(pid)) 959 return PTR_ERR(pid); 960 961 return pidfd_getfd(pid, fd); 962 } 963