1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2024 Intel Corporation
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24 /**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <linux/units.h>
61
62 #include <net/cfg80211.h>
63 #include "core.h"
64 #include "reg.h"
65 #include "rdev-ops.h"
66 #include "nl80211.h"
67
68 /*
69 * Grace period we give before making sure all current interfaces reside on
70 * channels allowed by the current regulatory domain.
71 */
72 #define REG_ENFORCE_GRACE_MS 60000
73
74 /**
75 * enum reg_request_treatment - regulatory request treatment
76 *
77 * @REG_REQ_OK: continue processing the regulatory request
78 * @REG_REQ_IGNORE: ignore the regulatory request
79 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
80 * be intersected with the current one.
81 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
82 * regulatory settings, and no further processing is required.
83 */
84 enum reg_request_treatment {
85 REG_REQ_OK,
86 REG_REQ_IGNORE,
87 REG_REQ_INTERSECT,
88 REG_REQ_ALREADY_SET,
89 };
90
91 static struct regulatory_request core_request_world = {
92 .initiator = NL80211_REGDOM_SET_BY_CORE,
93 .alpha2[0] = '0',
94 .alpha2[1] = '0',
95 .intersect = false,
96 .processed = true,
97 .country_ie_env = ENVIRON_ANY,
98 };
99
100 /*
101 * Receipt of information from last regulatory request,
102 * protected by RTNL (and can be accessed with RCU protection)
103 */
104 static struct regulatory_request __rcu *last_request =
105 (void __force __rcu *)&core_request_world;
106
107 /* To trigger userspace events and load firmware */
108 static struct platform_device *reg_pdev;
109
110 /*
111 * Central wireless core regulatory domains, we only need two,
112 * the current one and a world regulatory domain in case we have no
113 * information to give us an alpha2.
114 * (protected by RTNL, can be read under RCU)
115 */
116 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
117
118 /*
119 * Number of devices that registered to the core
120 * that support cellular base station regulatory hints
121 * (protected by RTNL)
122 */
123 static int reg_num_devs_support_basehint;
124
125 /*
126 * State variable indicating if the platform on which the devices
127 * are attached is operating in an indoor environment. The state variable
128 * is relevant for all registered devices.
129 */
130 static bool reg_is_indoor;
131 static DEFINE_SPINLOCK(reg_indoor_lock);
132
133 /* Used to track the userspace process controlling the indoor setting */
134 static u32 reg_is_indoor_portid;
135
136 static void restore_regulatory_settings(bool reset_user, bool cached);
137 static void print_regdomain(const struct ieee80211_regdomain *rd);
138 static void reg_process_hint(struct regulatory_request *reg_request);
139
get_cfg80211_regdom(void)140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
141 {
142 return rcu_dereference_rtnl(cfg80211_regdomain);
143 }
144
145 /*
146 * Returns the regulatory domain associated with the wiphy.
147 *
148 * Requires any of RTNL, wiphy mutex or RCU protection.
149 */
get_wiphy_regdom(struct wiphy * wiphy)150 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
151 {
152 return rcu_dereference_check(wiphy->regd,
153 lockdep_is_held(&wiphy->mtx) ||
154 lockdep_rtnl_is_held());
155 }
156 EXPORT_SYMBOL(get_wiphy_regdom);
157
reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)158 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
159 {
160 switch (dfs_region) {
161 case NL80211_DFS_UNSET:
162 return "unset";
163 case NL80211_DFS_FCC:
164 return "FCC";
165 case NL80211_DFS_ETSI:
166 return "ETSI";
167 case NL80211_DFS_JP:
168 return "JP";
169 }
170 return "Unknown";
171 }
172
reg_get_dfs_region(struct wiphy * wiphy)173 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
174 {
175 const struct ieee80211_regdomain *regd = NULL;
176 const struct ieee80211_regdomain *wiphy_regd = NULL;
177 enum nl80211_dfs_regions dfs_region;
178
179 rcu_read_lock();
180 regd = get_cfg80211_regdom();
181 dfs_region = regd->dfs_region;
182
183 if (!wiphy)
184 goto out;
185
186 wiphy_regd = get_wiphy_regdom(wiphy);
187 if (!wiphy_regd)
188 goto out;
189
190 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
191 dfs_region = wiphy_regd->dfs_region;
192 goto out;
193 }
194
195 if (wiphy_regd->dfs_region == regd->dfs_region)
196 goto out;
197
198 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
199 dev_name(&wiphy->dev),
200 reg_dfs_region_str(wiphy_regd->dfs_region),
201 reg_dfs_region_str(regd->dfs_region));
202
203 out:
204 rcu_read_unlock();
205
206 return dfs_region;
207 }
208
rcu_free_regdom(const struct ieee80211_regdomain * r)209 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
210 {
211 if (!r)
212 return;
213 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
214 }
215
get_last_request(void)216 static struct regulatory_request *get_last_request(void)
217 {
218 return rcu_dereference_rtnl(last_request);
219 }
220
221 /* Used to queue up regulatory hints */
222 static LIST_HEAD(reg_requests_list);
223 static DEFINE_SPINLOCK(reg_requests_lock);
224
225 /* Used to queue up beacon hints for review */
226 static LIST_HEAD(reg_pending_beacons);
227 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
228
229 /* Used to keep track of processed beacon hints */
230 static LIST_HEAD(reg_beacon_list);
231
232 struct reg_beacon {
233 struct list_head list;
234 struct ieee80211_channel chan;
235 };
236
237 static void reg_check_chans_work(struct work_struct *work);
238 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
239
240 static void reg_todo(struct work_struct *work);
241 static DECLARE_WORK(reg_work, reg_todo);
242
243 /* We keep a static world regulatory domain in case of the absence of CRDA */
244 static const struct ieee80211_regdomain world_regdom = {
245 .n_reg_rules = 8,
246 .alpha2 = "00",
247 .reg_rules = {
248 /* IEEE 802.11b/g, channels 1..11 */
249 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
250 /* IEEE 802.11b/g, channels 12..13. */
251 REG_RULE(2467-10, 2472+10, 20, 6, 20,
252 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
253 /* IEEE 802.11 channel 14 - Only JP enables
254 * this and for 802.11b only */
255 REG_RULE(2484-10, 2484+10, 20, 6, 20,
256 NL80211_RRF_NO_IR |
257 NL80211_RRF_NO_OFDM),
258 /* IEEE 802.11a, channel 36..48 */
259 REG_RULE(5180-10, 5240+10, 80, 6, 20,
260 NL80211_RRF_NO_IR |
261 NL80211_RRF_AUTO_BW),
262
263 /* IEEE 802.11a, channel 52..64 - DFS required */
264 REG_RULE(5260-10, 5320+10, 80, 6, 20,
265 NL80211_RRF_NO_IR |
266 NL80211_RRF_AUTO_BW |
267 NL80211_RRF_DFS),
268
269 /* IEEE 802.11a, channel 100..144 - DFS required */
270 REG_RULE(5500-10, 5720+10, 160, 6, 20,
271 NL80211_RRF_NO_IR |
272 NL80211_RRF_DFS),
273
274 /* IEEE 802.11a, channel 149..165 */
275 REG_RULE(5745-10, 5825+10, 80, 6, 20,
276 NL80211_RRF_NO_IR),
277
278 /* IEEE 802.11ad (60GHz), channels 1..3 */
279 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
280 }
281 };
282
283 /* protected by RTNL */
284 static const struct ieee80211_regdomain *cfg80211_world_regdom =
285 &world_regdom;
286
287 static char *ieee80211_regdom = "00";
288 static char user_alpha2[2];
289 static const struct ieee80211_regdomain *cfg80211_user_regdom;
290
291 module_param(ieee80211_regdom, charp, 0444);
292 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
293
reg_free_request(struct regulatory_request * request)294 static void reg_free_request(struct regulatory_request *request)
295 {
296 if (request == &core_request_world)
297 return;
298
299 if (request != get_last_request())
300 kfree(request);
301 }
302
reg_free_last_request(void)303 static void reg_free_last_request(void)
304 {
305 struct regulatory_request *lr = get_last_request();
306
307 if (lr != &core_request_world && lr)
308 kfree_rcu(lr, rcu_head);
309 }
310
reg_update_last_request(struct regulatory_request * request)311 static void reg_update_last_request(struct regulatory_request *request)
312 {
313 struct regulatory_request *lr;
314
315 lr = get_last_request();
316 if (lr == request)
317 return;
318
319 reg_free_last_request();
320 rcu_assign_pointer(last_request, request);
321 }
322
reset_regdomains(bool full_reset,const struct ieee80211_regdomain * new_regdom)323 static void reset_regdomains(bool full_reset,
324 const struct ieee80211_regdomain *new_regdom)
325 {
326 const struct ieee80211_regdomain *r;
327
328 ASSERT_RTNL();
329
330 r = get_cfg80211_regdom();
331
332 /* avoid freeing static information or freeing something twice */
333 if (r == cfg80211_world_regdom)
334 r = NULL;
335 if (cfg80211_world_regdom == &world_regdom)
336 cfg80211_world_regdom = NULL;
337 if (r == &world_regdom)
338 r = NULL;
339
340 rcu_free_regdom(r);
341 rcu_free_regdom(cfg80211_world_regdom);
342
343 cfg80211_world_regdom = &world_regdom;
344 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
345
346 if (!full_reset)
347 return;
348
349 reg_update_last_request(&core_request_world);
350 }
351
352 /*
353 * Dynamic world regulatory domain requested by the wireless
354 * core upon initialization
355 */
update_world_regdomain(const struct ieee80211_regdomain * rd)356 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
357 {
358 struct regulatory_request *lr;
359
360 lr = get_last_request();
361
362 WARN_ON(!lr);
363
364 reset_regdomains(false, rd);
365
366 cfg80211_world_regdom = rd;
367 }
368
is_world_regdom(const char * alpha2)369 bool is_world_regdom(const char *alpha2)
370 {
371 if (!alpha2)
372 return false;
373 return alpha2[0] == '0' && alpha2[1] == '0';
374 }
375
is_alpha2_set(const char * alpha2)376 static bool is_alpha2_set(const char *alpha2)
377 {
378 if (!alpha2)
379 return false;
380 return alpha2[0] && alpha2[1];
381 }
382
is_unknown_alpha2(const char * alpha2)383 static bool is_unknown_alpha2(const char *alpha2)
384 {
385 if (!alpha2)
386 return false;
387 /*
388 * Special case where regulatory domain was built by driver
389 * but a specific alpha2 cannot be determined
390 */
391 return alpha2[0] == '9' && alpha2[1] == '9';
392 }
393
is_intersected_alpha2(const char * alpha2)394 static bool is_intersected_alpha2(const char *alpha2)
395 {
396 if (!alpha2)
397 return false;
398 /*
399 * Special case where regulatory domain is the
400 * result of an intersection between two regulatory domain
401 * structures
402 */
403 return alpha2[0] == '9' && alpha2[1] == '8';
404 }
405
is_an_alpha2(const char * alpha2)406 static bool is_an_alpha2(const char *alpha2)
407 {
408 if (!alpha2)
409 return false;
410 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
411 }
412
alpha2_equal(const char * alpha2_x,const char * alpha2_y)413 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
414 {
415 if (!alpha2_x || !alpha2_y)
416 return false;
417 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
418 }
419
regdom_changes(const char * alpha2)420 static bool regdom_changes(const char *alpha2)
421 {
422 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
423
424 if (!r)
425 return true;
426 return !alpha2_equal(r->alpha2, alpha2);
427 }
428
429 /*
430 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
431 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
432 * has ever been issued.
433 */
is_user_regdom_saved(void)434 static bool is_user_regdom_saved(void)
435 {
436 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
437 return false;
438
439 /* This would indicate a mistake on the design */
440 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
441 "Unexpected user alpha2: %c%c\n",
442 user_alpha2[0], user_alpha2[1]))
443 return false;
444
445 return true;
446 }
447
448 static const struct ieee80211_regdomain *
reg_copy_regd(const struct ieee80211_regdomain * src_regd)449 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
450 {
451 struct ieee80211_regdomain *regd;
452 unsigned int i;
453
454 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
455 GFP_KERNEL);
456 if (!regd)
457 return ERR_PTR(-ENOMEM);
458
459 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
460
461 for (i = 0; i < src_regd->n_reg_rules; i++)
462 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
463 sizeof(struct ieee80211_reg_rule));
464
465 return regd;
466 }
467
cfg80211_save_user_regdom(const struct ieee80211_regdomain * rd)468 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
469 {
470 ASSERT_RTNL();
471
472 if (!IS_ERR(cfg80211_user_regdom))
473 kfree(cfg80211_user_regdom);
474 cfg80211_user_regdom = reg_copy_regd(rd);
475 }
476
477 struct reg_regdb_apply_request {
478 struct list_head list;
479 const struct ieee80211_regdomain *regdom;
480 };
481
482 static LIST_HEAD(reg_regdb_apply_list);
483 static DEFINE_MUTEX(reg_regdb_apply_mutex);
484
reg_regdb_apply(struct work_struct * work)485 static void reg_regdb_apply(struct work_struct *work)
486 {
487 struct reg_regdb_apply_request *request;
488
489 rtnl_lock();
490
491 mutex_lock(®_regdb_apply_mutex);
492 while (!list_empty(®_regdb_apply_list)) {
493 request = list_first_entry(®_regdb_apply_list,
494 struct reg_regdb_apply_request,
495 list);
496 list_del(&request->list);
497
498 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
499 kfree(request);
500 }
501 mutex_unlock(®_regdb_apply_mutex);
502
503 rtnl_unlock();
504 }
505
506 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
507
reg_schedule_apply(const struct ieee80211_regdomain * regdom)508 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
509 {
510 struct reg_regdb_apply_request *request;
511
512 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
513 if (!request) {
514 kfree(regdom);
515 return -ENOMEM;
516 }
517
518 request->regdom = regdom;
519
520 mutex_lock(®_regdb_apply_mutex);
521 list_add_tail(&request->list, ®_regdb_apply_list);
522 mutex_unlock(®_regdb_apply_mutex);
523
524 schedule_work(®_regdb_work);
525 return 0;
526 }
527
528 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
529 /* Max number of consecutive attempts to communicate with CRDA */
530 #define REG_MAX_CRDA_TIMEOUTS 10
531
532 static u32 reg_crda_timeouts;
533
534 static void crda_timeout_work(struct work_struct *work);
535 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
536
crda_timeout_work(struct work_struct * work)537 static void crda_timeout_work(struct work_struct *work)
538 {
539 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
540 rtnl_lock();
541 reg_crda_timeouts++;
542 restore_regulatory_settings(true, false);
543 rtnl_unlock();
544 }
545
cancel_crda_timeout(void)546 static void cancel_crda_timeout(void)
547 {
548 cancel_delayed_work(&crda_timeout);
549 }
550
cancel_crda_timeout_sync(void)551 static void cancel_crda_timeout_sync(void)
552 {
553 cancel_delayed_work_sync(&crda_timeout);
554 }
555
reset_crda_timeouts(void)556 static void reset_crda_timeouts(void)
557 {
558 reg_crda_timeouts = 0;
559 }
560
561 /*
562 * This lets us keep regulatory code which is updated on a regulatory
563 * basis in userspace.
564 */
call_crda(const char * alpha2)565 static int call_crda(const char *alpha2)
566 {
567 char country[12];
568 char *env[] = { country, NULL };
569 int ret;
570
571 snprintf(country, sizeof(country), "COUNTRY=%c%c",
572 alpha2[0], alpha2[1]);
573
574 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
575 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
576 return -EINVAL;
577 }
578
579 if (!is_world_regdom((char *) alpha2))
580 pr_debug("Calling CRDA for country: %c%c\n",
581 alpha2[0], alpha2[1]);
582 else
583 pr_debug("Calling CRDA to update world regulatory domain\n");
584
585 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env);
586 if (ret)
587 return ret;
588
589 queue_delayed_work(system_power_efficient_wq,
590 &crda_timeout, msecs_to_jiffies(3142));
591 return 0;
592 }
593 #else
cancel_crda_timeout(void)594 static inline void cancel_crda_timeout(void) {}
cancel_crda_timeout_sync(void)595 static inline void cancel_crda_timeout_sync(void) {}
reset_crda_timeouts(void)596 static inline void reset_crda_timeouts(void) {}
call_crda(const char * alpha2)597 static inline int call_crda(const char *alpha2)
598 {
599 return -ENODATA;
600 }
601 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
602
603 /* code to directly load a firmware database through request_firmware */
604 static const struct fwdb_header *regdb;
605
606 struct fwdb_country {
607 u8 alpha2[2];
608 __be16 coll_ptr;
609 /* this struct cannot be extended */
610 } __packed __aligned(4);
611
612 struct fwdb_collection {
613 u8 len;
614 u8 n_rules;
615 u8 dfs_region;
616 /* no optional data yet */
617 /* aligned to 2, then followed by __be16 array of rule pointers */
618 } __packed __aligned(4);
619
620 enum fwdb_flags {
621 FWDB_FLAG_NO_OFDM = BIT(0),
622 FWDB_FLAG_NO_OUTDOOR = BIT(1),
623 FWDB_FLAG_DFS = BIT(2),
624 FWDB_FLAG_NO_IR = BIT(3),
625 FWDB_FLAG_AUTO_BW = BIT(4),
626 };
627
628 struct fwdb_wmm_ac {
629 u8 ecw;
630 u8 aifsn;
631 __be16 cot;
632 } __packed;
633
634 struct fwdb_wmm_rule {
635 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
636 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
637 } __packed;
638
639 struct fwdb_rule {
640 u8 len;
641 u8 flags;
642 __be16 max_eirp;
643 __be32 start, end, max_bw;
644 /* start of optional data */
645 __be16 cac_timeout;
646 __be16 wmm_ptr;
647 } __packed __aligned(4);
648
649 #define FWDB_MAGIC 0x52474442
650 #define FWDB_VERSION 20
651
652 struct fwdb_header {
653 __be32 magic;
654 __be32 version;
655 struct fwdb_country country[];
656 } __packed __aligned(4);
657
ecw2cw(int ecw)658 static int ecw2cw(int ecw)
659 {
660 return (1 << ecw) - 1;
661 }
662
valid_wmm(struct fwdb_wmm_rule * rule)663 static bool valid_wmm(struct fwdb_wmm_rule *rule)
664 {
665 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
666 int i;
667
668 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
669 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
670 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
671 u8 aifsn = ac[i].aifsn;
672
673 if (cw_min >= cw_max)
674 return false;
675
676 if (aifsn < 1)
677 return false;
678 }
679
680 return true;
681 }
682
valid_rule(const u8 * data,unsigned int size,u16 rule_ptr)683 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
684 {
685 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
686
687 if ((u8 *)rule + sizeof(rule->len) > data + size)
688 return false;
689
690 /* mandatory fields */
691 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
692 return false;
693 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
694 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
695 struct fwdb_wmm_rule *wmm;
696
697 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
698 return false;
699
700 wmm = (void *)(data + wmm_ptr);
701
702 if (!valid_wmm(wmm))
703 return false;
704 }
705 return true;
706 }
707
valid_country(const u8 * data,unsigned int size,const struct fwdb_country * country)708 static bool valid_country(const u8 *data, unsigned int size,
709 const struct fwdb_country *country)
710 {
711 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
712 struct fwdb_collection *coll = (void *)(data + ptr);
713 __be16 *rules_ptr;
714 unsigned int i;
715
716 /* make sure we can read len/n_rules */
717 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
718 return false;
719
720 /* make sure base struct and all rules fit */
721 if ((u8 *)coll + ALIGN(coll->len, 2) +
722 (coll->n_rules * 2) > data + size)
723 return false;
724
725 /* mandatory fields must exist */
726 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
727 return false;
728
729 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
730
731 for (i = 0; i < coll->n_rules; i++) {
732 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
733
734 if (!valid_rule(data, size, rule_ptr))
735 return false;
736 }
737
738 return true;
739 }
740
741 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
742 #include <keys/asymmetric-type.h>
743
744 static struct key *builtin_regdb_keys;
745
load_builtin_regdb_keys(void)746 static int __init load_builtin_regdb_keys(void)
747 {
748 builtin_regdb_keys =
749 keyring_alloc(".builtin_regdb_keys",
750 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
751 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
752 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
753 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
754 if (IS_ERR(builtin_regdb_keys))
755 return PTR_ERR(builtin_regdb_keys);
756
757 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
758
759 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
760 x509_load_certificate_list(shipped_regdb_certs,
761 shipped_regdb_certs_len,
762 builtin_regdb_keys);
763 #endif
764 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
765 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
766 x509_load_certificate_list(extra_regdb_certs,
767 extra_regdb_certs_len,
768 builtin_regdb_keys);
769 #endif
770
771 return 0;
772 }
773
774 MODULE_FIRMWARE("regulatory.db.p7s");
775
regdb_has_valid_signature(const u8 * data,unsigned int size)776 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
777 {
778 const struct firmware *sig;
779 bool result;
780
781 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev))
782 return false;
783
784 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
785 builtin_regdb_keys,
786 VERIFYING_UNSPECIFIED_SIGNATURE,
787 NULL, NULL) == 0;
788
789 release_firmware(sig);
790
791 return result;
792 }
793
free_regdb_keyring(void)794 static void free_regdb_keyring(void)
795 {
796 key_put(builtin_regdb_keys);
797 }
798 #else
load_builtin_regdb_keys(void)799 static int load_builtin_regdb_keys(void)
800 {
801 return 0;
802 }
803
regdb_has_valid_signature(const u8 * data,unsigned int size)804 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
805 {
806 return true;
807 }
808
free_regdb_keyring(void)809 static void free_regdb_keyring(void)
810 {
811 }
812 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
813
valid_regdb(const u8 * data,unsigned int size)814 static bool valid_regdb(const u8 *data, unsigned int size)
815 {
816 const struct fwdb_header *hdr = (void *)data;
817 const struct fwdb_country *country;
818
819 if (size < sizeof(*hdr))
820 return false;
821
822 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
823 return false;
824
825 if (hdr->version != cpu_to_be32(FWDB_VERSION))
826 return false;
827
828 if (!regdb_has_valid_signature(data, size))
829 return false;
830
831 country = &hdr->country[0];
832 while ((u8 *)(country + 1) <= data + size) {
833 if (!country->coll_ptr)
834 break;
835 if (!valid_country(data, size, country))
836 return false;
837 country++;
838 }
839
840 return true;
841 }
842
set_wmm_rule(const struct fwdb_header * db,const struct fwdb_country * country,const struct fwdb_rule * rule,struct ieee80211_reg_rule * rrule)843 static void set_wmm_rule(const struct fwdb_header *db,
844 const struct fwdb_country *country,
845 const struct fwdb_rule *rule,
846 struct ieee80211_reg_rule *rrule)
847 {
848 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
849 struct fwdb_wmm_rule *wmm;
850 unsigned int i, wmm_ptr;
851
852 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
853 wmm = (void *)((u8 *)db + wmm_ptr);
854
855 if (!valid_wmm(wmm)) {
856 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
857 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
858 country->alpha2[0], country->alpha2[1]);
859 return;
860 }
861
862 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
863 wmm_rule->client[i].cw_min =
864 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
865 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
866 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
867 wmm_rule->client[i].cot =
868 1000 * be16_to_cpu(wmm->client[i].cot);
869 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
870 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
871 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
872 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
873 }
874
875 rrule->has_wmm = true;
876 }
877
__regdb_query_wmm(const struct fwdb_header * db,const struct fwdb_country * country,int freq,struct ieee80211_reg_rule * rrule)878 static int __regdb_query_wmm(const struct fwdb_header *db,
879 const struct fwdb_country *country, int freq,
880 struct ieee80211_reg_rule *rrule)
881 {
882 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
883 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
884 int i;
885
886 for (i = 0; i < coll->n_rules; i++) {
887 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
888 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
889 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
890
891 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
892 continue;
893
894 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
895 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
896 set_wmm_rule(db, country, rule, rrule);
897 return 0;
898 }
899 }
900
901 return -ENODATA;
902 }
903
reg_query_regdb_wmm(char * alpha2,int freq,struct ieee80211_reg_rule * rule)904 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
905 {
906 const struct fwdb_header *hdr = regdb;
907 const struct fwdb_country *country;
908
909 if (!regdb)
910 return -ENODATA;
911
912 if (IS_ERR(regdb))
913 return PTR_ERR(regdb);
914
915 country = &hdr->country[0];
916 while (country->coll_ptr) {
917 if (alpha2_equal(alpha2, country->alpha2))
918 return __regdb_query_wmm(regdb, country, freq, rule);
919
920 country++;
921 }
922
923 return -ENODATA;
924 }
925 EXPORT_SYMBOL(reg_query_regdb_wmm);
926
regdb_query_country(const struct fwdb_header * db,const struct fwdb_country * country)927 static int regdb_query_country(const struct fwdb_header *db,
928 const struct fwdb_country *country)
929 {
930 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
931 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
932 struct ieee80211_regdomain *regdom;
933 unsigned int i;
934
935 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
936 GFP_KERNEL);
937 if (!regdom)
938 return -ENOMEM;
939
940 regdom->n_reg_rules = coll->n_rules;
941 regdom->alpha2[0] = country->alpha2[0];
942 regdom->alpha2[1] = country->alpha2[1];
943 regdom->dfs_region = coll->dfs_region;
944
945 for (i = 0; i < regdom->n_reg_rules; i++) {
946 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
947 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
948 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
949 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i];
950
951 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
952 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
953 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
954
955 rrule->power_rule.max_antenna_gain = 0;
956 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
957
958 rrule->flags = 0;
959 if (rule->flags & FWDB_FLAG_NO_OFDM)
960 rrule->flags |= NL80211_RRF_NO_OFDM;
961 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
962 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
963 if (rule->flags & FWDB_FLAG_DFS)
964 rrule->flags |= NL80211_RRF_DFS;
965 if (rule->flags & FWDB_FLAG_NO_IR)
966 rrule->flags |= NL80211_RRF_NO_IR;
967 if (rule->flags & FWDB_FLAG_AUTO_BW)
968 rrule->flags |= NL80211_RRF_AUTO_BW;
969
970 rrule->dfs_cac_ms = 0;
971
972 /* handle optional data */
973 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
974 rrule->dfs_cac_ms =
975 1000 * be16_to_cpu(rule->cac_timeout);
976 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
977 set_wmm_rule(db, country, rule, rrule);
978 }
979
980 return reg_schedule_apply(regdom);
981 }
982
query_regdb(const char * alpha2)983 static int query_regdb(const char *alpha2)
984 {
985 const struct fwdb_header *hdr = regdb;
986 const struct fwdb_country *country;
987
988 ASSERT_RTNL();
989
990 if (IS_ERR(regdb))
991 return PTR_ERR(regdb);
992
993 country = &hdr->country[0];
994 while (country->coll_ptr) {
995 if (alpha2_equal(alpha2, country->alpha2))
996 return regdb_query_country(regdb, country);
997 country++;
998 }
999
1000 return -ENODATA;
1001 }
1002
regdb_fw_cb(const struct firmware * fw,void * context)1003 static void regdb_fw_cb(const struct firmware *fw, void *context)
1004 {
1005 int set_error = 0;
1006 bool restore = true;
1007 void *db;
1008
1009 if (!fw) {
1010 pr_info("failed to load regulatory.db\n");
1011 set_error = -ENODATA;
1012 } else if (!valid_regdb(fw->data, fw->size)) {
1013 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1014 set_error = -EINVAL;
1015 }
1016
1017 rtnl_lock();
1018 if (regdb && !IS_ERR(regdb)) {
1019 /* negative case - a bug
1020 * positive case - can happen due to race in case of multiple cb's in
1021 * queue, due to usage of asynchronous callback
1022 *
1023 * Either case, just restore and free new db.
1024 */
1025 } else if (set_error) {
1026 regdb = ERR_PTR(set_error);
1027 } else if (fw) {
1028 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1029 if (db) {
1030 regdb = db;
1031 restore = context && query_regdb(context);
1032 } else {
1033 restore = true;
1034 }
1035 }
1036
1037 if (restore)
1038 restore_regulatory_settings(true, false);
1039
1040 rtnl_unlock();
1041
1042 kfree(context);
1043
1044 release_firmware(fw);
1045 }
1046
1047 MODULE_FIRMWARE("regulatory.db");
1048
query_regdb_file(const char * alpha2)1049 static int query_regdb_file(const char *alpha2)
1050 {
1051 int err;
1052
1053 ASSERT_RTNL();
1054
1055 if (regdb)
1056 return query_regdb(alpha2);
1057
1058 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1059 if (!alpha2)
1060 return -ENOMEM;
1061
1062 err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1063 ®_pdev->dev, GFP_KERNEL,
1064 (void *)alpha2, regdb_fw_cb);
1065 if (err)
1066 kfree(alpha2);
1067
1068 return err;
1069 }
1070
reg_reload_regdb(void)1071 int reg_reload_regdb(void)
1072 {
1073 const struct firmware *fw;
1074 void *db;
1075 int err;
1076 const struct ieee80211_regdomain *current_regdomain;
1077 struct regulatory_request *request;
1078
1079 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev);
1080 if (err)
1081 return err;
1082
1083 if (!valid_regdb(fw->data, fw->size)) {
1084 err = -ENODATA;
1085 goto out;
1086 }
1087
1088 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1089 if (!db) {
1090 err = -ENOMEM;
1091 goto out;
1092 }
1093
1094 rtnl_lock();
1095 if (!IS_ERR_OR_NULL(regdb))
1096 kfree(regdb);
1097 regdb = db;
1098
1099 /* reset regulatory domain */
1100 current_regdomain = get_cfg80211_regdom();
1101
1102 request = kzalloc(sizeof(*request), GFP_KERNEL);
1103 if (!request) {
1104 err = -ENOMEM;
1105 goto out_unlock;
1106 }
1107
1108 request->wiphy_idx = WIPHY_IDX_INVALID;
1109 request->alpha2[0] = current_regdomain->alpha2[0];
1110 request->alpha2[1] = current_regdomain->alpha2[1];
1111 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1112 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1113
1114 reg_process_hint(request);
1115
1116 out_unlock:
1117 rtnl_unlock();
1118 out:
1119 release_firmware(fw);
1120 return err;
1121 }
1122
reg_query_database(struct regulatory_request * request)1123 static bool reg_query_database(struct regulatory_request *request)
1124 {
1125 if (query_regdb_file(request->alpha2) == 0)
1126 return true;
1127
1128 if (call_crda(request->alpha2) == 0)
1129 return true;
1130
1131 return false;
1132 }
1133
reg_is_valid_request(const char * alpha2)1134 bool reg_is_valid_request(const char *alpha2)
1135 {
1136 struct regulatory_request *lr = get_last_request();
1137
1138 if (!lr || lr->processed)
1139 return false;
1140
1141 return alpha2_equal(lr->alpha2, alpha2);
1142 }
1143
reg_get_regdomain(struct wiphy * wiphy)1144 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1145 {
1146 struct regulatory_request *lr = get_last_request();
1147
1148 /*
1149 * Follow the driver's regulatory domain, if present, unless a country
1150 * IE has been processed or a user wants to help compliance further
1151 */
1152 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1153 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1154 wiphy->regd)
1155 return get_wiphy_regdom(wiphy);
1156
1157 return get_cfg80211_regdom();
1158 }
1159
1160 static unsigned int
reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1161 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1162 const struct ieee80211_reg_rule *rule)
1163 {
1164 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1165 const struct ieee80211_freq_range *freq_range_tmp;
1166 const struct ieee80211_reg_rule *tmp;
1167 u32 start_freq, end_freq, idx, no;
1168
1169 for (idx = 0; idx < rd->n_reg_rules; idx++)
1170 if (rule == &rd->reg_rules[idx])
1171 break;
1172
1173 if (idx == rd->n_reg_rules)
1174 return 0;
1175
1176 /* get start_freq */
1177 no = idx;
1178
1179 while (no) {
1180 tmp = &rd->reg_rules[--no];
1181 freq_range_tmp = &tmp->freq_range;
1182
1183 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1184 break;
1185
1186 freq_range = freq_range_tmp;
1187 }
1188
1189 start_freq = freq_range->start_freq_khz;
1190
1191 /* get end_freq */
1192 freq_range = &rule->freq_range;
1193 no = idx;
1194
1195 while (no < rd->n_reg_rules - 1) {
1196 tmp = &rd->reg_rules[++no];
1197 freq_range_tmp = &tmp->freq_range;
1198
1199 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1200 break;
1201
1202 freq_range = freq_range_tmp;
1203 }
1204
1205 end_freq = freq_range->end_freq_khz;
1206
1207 return end_freq - start_freq;
1208 }
1209
reg_get_max_bandwidth(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1210 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1211 const struct ieee80211_reg_rule *rule)
1212 {
1213 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1214
1215 if (rule->flags & NL80211_RRF_NO_320MHZ)
1216 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1217 if (rule->flags & NL80211_RRF_NO_160MHZ)
1218 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1219 if (rule->flags & NL80211_RRF_NO_80MHZ)
1220 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1221
1222 /*
1223 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1224 * are not allowed.
1225 */
1226 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1227 rule->flags & NL80211_RRF_NO_HT40PLUS)
1228 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1229
1230 return bw;
1231 }
1232
1233 /* Sanity check on a regulatory rule */
is_valid_reg_rule(const struct ieee80211_reg_rule * rule)1234 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1235 {
1236 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1237 u32 freq_diff;
1238
1239 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1240 return false;
1241
1242 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1243 return false;
1244
1245 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1246
1247 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1248 freq_range->max_bandwidth_khz > freq_diff)
1249 return false;
1250
1251 return true;
1252 }
1253
is_valid_rd(const struct ieee80211_regdomain * rd)1254 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1255 {
1256 const struct ieee80211_reg_rule *reg_rule = NULL;
1257 unsigned int i;
1258
1259 if (!rd->n_reg_rules)
1260 return false;
1261
1262 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1263 return false;
1264
1265 for (i = 0; i < rd->n_reg_rules; i++) {
1266 reg_rule = &rd->reg_rules[i];
1267 if (!is_valid_reg_rule(reg_rule))
1268 return false;
1269 }
1270
1271 return true;
1272 }
1273
1274 /**
1275 * freq_in_rule_band - tells us if a frequency is in a frequency band
1276 * @freq_range: frequency rule we want to query
1277 * @freq_khz: frequency we are inquiring about
1278 *
1279 * This lets us know if a specific frequency rule is or is not relevant to
1280 * a specific frequency's band. Bands are device specific and artificial
1281 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1282 * however it is safe for now to assume that a frequency rule should not be
1283 * part of a frequency's band if the start freq or end freq are off by more
1284 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1285 * 60 GHz band.
1286 * This resolution can be lowered and should be considered as we add
1287 * regulatory rule support for other "bands".
1288 *
1289 * Returns: whether or not the frequency is in the range
1290 */
freq_in_rule_band(const struct ieee80211_freq_range * freq_range,u32 freq_khz)1291 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1292 u32 freq_khz)
1293 {
1294 /*
1295 * From 802.11ad: directional multi-gigabit (DMG):
1296 * Pertaining to operation in a frequency band containing a channel
1297 * with the Channel starting frequency above 45 GHz.
1298 */
1299 u32 limit = freq_khz > 45 * KHZ_PER_GHZ ? 20 * KHZ_PER_GHZ : 2 * KHZ_PER_GHZ;
1300 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1301 return true;
1302 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1303 return true;
1304 return false;
1305 }
1306
1307 /*
1308 * Later on we can perhaps use the more restrictive DFS
1309 * region but we don't have information for that yet so
1310 * for now simply disallow conflicts.
1311 */
1312 static enum nl80211_dfs_regions
reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,const enum nl80211_dfs_regions dfs_region2)1313 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1314 const enum nl80211_dfs_regions dfs_region2)
1315 {
1316 if (dfs_region1 != dfs_region2)
1317 return NL80211_DFS_UNSET;
1318 return dfs_region1;
1319 }
1320
reg_wmm_rules_intersect(const struct ieee80211_wmm_ac * wmm_ac1,const struct ieee80211_wmm_ac * wmm_ac2,struct ieee80211_wmm_ac * intersect)1321 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1322 const struct ieee80211_wmm_ac *wmm_ac2,
1323 struct ieee80211_wmm_ac *intersect)
1324 {
1325 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1326 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1327 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1328 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1329 }
1330
1331 /*
1332 * Helper for regdom_intersect(), this does the real
1333 * mathematical intersection fun
1334 */
reg_rules_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2,const struct ieee80211_reg_rule * rule1,const struct ieee80211_reg_rule * rule2,struct ieee80211_reg_rule * intersected_rule)1335 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1336 const struct ieee80211_regdomain *rd2,
1337 const struct ieee80211_reg_rule *rule1,
1338 const struct ieee80211_reg_rule *rule2,
1339 struct ieee80211_reg_rule *intersected_rule)
1340 {
1341 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1342 struct ieee80211_freq_range *freq_range;
1343 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1344 struct ieee80211_power_rule *power_rule;
1345 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1346 struct ieee80211_wmm_rule *wmm_rule;
1347 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1348
1349 freq_range1 = &rule1->freq_range;
1350 freq_range2 = &rule2->freq_range;
1351 freq_range = &intersected_rule->freq_range;
1352
1353 power_rule1 = &rule1->power_rule;
1354 power_rule2 = &rule2->power_rule;
1355 power_rule = &intersected_rule->power_rule;
1356
1357 wmm_rule1 = &rule1->wmm_rule;
1358 wmm_rule2 = &rule2->wmm_rule;
1359 wmm_rule = &intersected_rule->wmm_rule;
1360
1361 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1362 freq_range2->start_freq_khz);
1363 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1364 freq_range2->end_freq_khz);
1365
1366 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1367 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1368
1369 if (rule1->flags & NL80211_RRF_AUTO_BW)
1370 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1371 if (rule2->flags & NL80211_RRF_AUTO_BW)
1372 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1373
1374 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1375
1376 intersected_rule->flags = rule1->flags | rule2->flags;
1377
1378 /*
1379 * In case NL80211_RRF_AUTO_BW requested for both rules
1380 * set AUTO_BW in intersected rule also. Next we will
1381 * calculate BW correctly in handle_channel function.
1382 * In other case remove AUTO_BW flag while we calculate
1383 * maximum bandwidth correctly and auto calculation is
1384 * not required.
1385 */
1386 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1387 (rule2->flags & NL80211_RRF_AUTO_BW))
1388 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1389 else
1390 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1391
1392 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1393 if (freq_range->max_bandwidth_khz > freq_diff)
1394 freq_range->max_bandwidth_khz = freq_diff;
1395
1396 power_rule->max_eirp = min(power_rule1->max_eirp,
1397 power_rule2->max_eirp);
1398 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1399 power_rule2->max_antenna_gain);
1400
1401 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1402 rule2->dfs_cac_ms);
1403
1404 if (rule1->has_wmm && rule2->has_wmm) {
1405 u8 ac;
1406
1407 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1408 reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1409 &wmm_rule2->client[ac],
1410 &wmm_rule->client[ac]);
1411 reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1412 &wmm_rule2->ap[ac],
1413 &wmm_rule->ap[ac]);
1414 }
1415
1416 intersected_rule->has_wmm = true;
1417 } else if (rule1->has_wmm) {
1418 *wmm_rule = *wmm_rule1;
1419 intersected_rule->has_wmm = true;
1420 } else if (rule2->has_wmm) {
1421 *wmm_rule = *wmm_rule2;
1422 intersected_rule->has_wmm = true;
1423 } else {
1424 intersected_rule->has_wmm = false;
1425 }
1426
1427 if (!is_valid_reg_rule(intersected_rule))
1428 return -EINVAL;
1429
1430 return 0;
1431 }
1432
1433 /* check whether old rule contains new rule */
rule_contains(struct ieee80211_reg_rule * r1,struct ieee80211_reg_rule * r2)1434 static bool rule_contains(struct ieee80211_reg_rule *r1,
1435 struct ieee80211_reg_rule *r2)
1436 {
1437 /* for simplicity, currently consider only same flags */
1438 if (r1->flags != r2->flags)
1439 return false;
1440
1441 /* verify r1 is more restrictive */
1442 if ((r1->power_rule.max_antenna_gain >
1443 r2->power_rule.max_antenna_gain) ||
1444 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1445 return false;
1446
1447 /* make sure r2's range is contained within r1 */
1448 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1449 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1450 return false;
1451
1452 /* and finally verify that r1.max_bw >= r2.max_bw */
1453 if (r1->freq_range.max_bandwidth_khz <
1454 r2->freq_range.max_bandwidth_khz)
1455 return false;
1456
1457 return true;
1458 }
1459
1460 /* add or extend current rules. do nothing if rule is already contained */
add_rule(struct ieee80211_reg_rule * rule,struct ieee80211_reg_rule * reg_rules,u32 * n_rules)1461 static void add_rule(struct ieee80211_reg_rule *rule,
1462 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1463 {
1464 struct ieee80211_reg_rule *tmp_rule;
1465 int i;
1466
1467 for (i = 0; i < *n_rules; i++) {
1468 tmp_rule = ®_rules[i];
1469 /* rule is already contained - do nothing */
1470 if (rule_contains(tmp_rule, rule))
1471 return;
1472
1473 /* extend rule if possible */
1474 if (rule_contains(rule, tmp_rule)) {
1475 memcpy(tmp_rule, rule, sizeof(*rule));
1476 return;
1477 }
1478 }
1479
1480 memcpy(®_rules[*n_rules], rule, sizeof(*rule));
1481 (*n_rules)++;
1482 }
1483
1484 /**
1485 * regdom_intersect - do the intersection between two regulatory domains
1486 * @rd1: first regulatory domain
1487 * @rd2: second regulatory domain
1488 *
1489 * Use this function to get the intersection between two regulatory domains.
1490 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1491 * as no one single alpha2 can represent this regulatory domain.
1492 *
1493 * Returns a pointer to the regulatory domain structure which will hold the
1494 * resulting intersection of rules between rd1 and rd2. We will
1495 * kzalloc() this structure for you.
1496 *
1497 * Returns: the intersected regdomain
1498 */
1499 static struct ieee80211_regdomain *
regdom_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2)1500 regdom_intersect(const struct ieee80211_regdomain *rd1,
1501 const struct ieee80211_regdomain *rd2)
1502 {
1503 int r;
1504 unsigned int x, y;
1505 unsigned int num_rules = 0;
1506 const struct ieee80211_reg_rule *rule1, *rule2;
1507 struct ieee80211_reg_rule intersected_rule;
1508 struct ieee80211_regdomain *rd;
1509
1510 if (!rd1 || !rd2)
1511 return NULL;
1512
1513 /*
1514 * First we get a count of the rules we'll need, then we actually
1515 * build them. This is to so we can malloc() and free() a
1516 * regdomain once. The reason we use reg_rules_intersect() here
1517 * is it will return -EINVAL if the rule computed makes no sense.
1518 * All rules that do check out OK are valid.
1519 */
1520
1521 for (x = 0; x < rd1->n_reg_rules; x++) {
1522 rule1 = &rd1->reg_rules[x];
1523 for (y = 0; y < rd2->n_reg_rules; y++) {
1524 rule2 = &rd2->reg_rules[y];
1525 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1526 &intersected_rule))
1527 num_rules++;
1528 }
1529 }
1530
1531 if (!num_rules)
1532 return NULL;
1533
1534 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1535 if (!rd)
1536 return NULL;
1537
1538 for (x = 0; x < rd1->n_reg_rules; x++) {
1539 rule1 = &rd1->reg_rules[x];
1540 for (y = 0; y < rd2->n_reg_rules; y++) {
1541 rule2 = &rd2->reg_rules[y];
1542 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1543 &intersected_rule);
1544 /*
1545 * No need to memset here the intersected rule here as
1546 * we're not using the stack anymore
1547 */
1548 if (r)
1549 continue;
1550
1551 add_rule(&intersected_rule, rd->reg_rules,
1552 &rd->n_reg_rules);
1553 }
1554 }
1555
1556 rd->alpha2[0] = '9';
1557 rd->alpha2[1] = '8';
1558 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1559 rd2->dfs_region);
1560
1561 return rd;
1562 }
1563
1564 /*
1565 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1566 * want to just have the channel structure use these
1567 */
map_regdom_flags(u32 rd_flags)1568 static u32 map_regdom_flags(u32 rd_flags)
1569 {
1570 u32 channel_flags = 0;
1571 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1572 channel_flags |= IEEE80211_CHAN_NO_IR;
1573 if (rd_flags & NL80211_RRF_DFS)
1574 channel_flags |= IEEE80211_CHAN_RADAR;
1575 if (rd_flags & NL80211_RRF_NO_OFDM)
1576 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1577 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1578 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1579 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1580 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1581 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1582 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1583 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1584 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1585 if (rd_flags & NL80211_RRF_NO_80MHZ)
1586 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1587 if (rd_flags & NL80211_RRF_NO_160MHZ)
1588 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1589 if (rd_flags & NL80211_RRF_NO_HE)
1590 channel_flags |= IEEE80211_CHAN_NO_HE;
1591 if (rd_flags & NL80211_RRF_NO_320MHZ)
1592 channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1593 if (rd_flags & NL80211_RRF_NO_EHT)
1594 channel_flags |= IEEE80211_CHAN_NO_EHT;
1595 if (rd_flags & NL80211_RRF_DFS_CONCURRENT)
1596 channel_flags |= IEEE80211_CHAN_DFS_CONCURRENT;
1597 if (rd_flags & NL80211_RRF_NO_6GHZ_VLP_CLIENT)
1598 channel_flags |= IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT;
1599 if (rd_flags & NL80211_RRF_NO_6GHZ_AFC_CLIENT)
1600 channel_flags |= IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT;
1601 if (rd_flags & NL80211_RRF_PSD)
1602 channel_flags |= IEEE80211_CHAN_PSD;
1603 if (rd_flags & NL80211_RRF_ALLOW_6GHZ_VLP_AP)
1604 channel_flags |= IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP;
1605 return channel_flags;
1606 }
1607
1608 static const struct ieee80211_reg_rule *
freq_reg_info_regd(u32 center_freq,const struct ieee80211_regdomain * regd,u32 bw)1609 freq_reg_info_regd(u32 center_freq,
1610 const struct ieee80211_regdomain *regd, u32 bw)
1611 {
1612 int i;
1613 bool band_rule_found = false;
1614 bool bw_fits = false;
1615
1616 if (!regd)
1617 return ERR_PTR(-EINVAL);
1618
1619 for (i = 0; i < regd->n_reg_rules; i++) {
1620 const struct ieee80211_reg_rule *rr;
1621 const struct ieee80211_freq_range *fr = NULL;
1622
1623 rr = ®d->reg_rules[i];
1624 fr = &rr->freq_range;
1625
1626 /*
1627 * We only need to know if one frequency rule was
1628 * in center_freq's band, that's enough, so let's
1629 * not overwrite it once found
1630 */
1631 if (!band_rule_found)
1632 band_rule_found = freq_in_rule_band(fr, center_freq);
1633
1634 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1635
1636 if (band_rule_found && bw_fits)
1637 return rr;
1638 }
1639
1640 if (!band_rule_found)
1641 return ERR_PTR(-ERANGE);
1642
1643 return ERR_PTR(-EINVAL);
1644 }
1645
1646 static const struct ieee80211_reg_rule *
__freq_reg_info(struct wiphy * wiphy,u32 center_freq,u32 min_bw)1647 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1648 {
1649 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1650 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1651 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1652 int i = ARRAY_SIZE(bws) - 1;
1653 u32 bw;
1654
1655 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1656 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1657 if (!IS_ERR(reg_rule))
1658 return reg_rule;
1659 }
1660
1661 return reg_rule;
1662 }
1663
freq_reg_info(struct wiphy * wiphy,u32 center_freq)1664 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1665 u32 center_freq)
1666 {
1667 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1668
1669 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1670 }
1671 EXPORT_SYMBOL(freq_reg_info);
1672
reg_initiator_name(enum nl80211_reg_initiator initiator)1673 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1674 {
1675 switch (initiator) {
1676 case NL80211_REGDOM_SET_BY_CORE:
1677 return "core";
1678 case NL80211_REGDOM_SET_BY_USER:
1679 return "user";
1680 case NL80211_REGDOM_SET_BY_DRIVER:
1681 return "driver";
1682 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1683 return "country element";
1684 default:
1685 WARN_ON(1);
1686 return "bug";
1687 }
1688 }
1689 EXPORT_SYMBOL(reg_initiator_name);
1690
reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain * regd,const struct ieee80211_reg_rule * reg_rule,const struct ieee80211_channel * chan)1691 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1692 const struct ieee80211_reg_rule *reg_rule,
1693 const struct ieee80211_channel *chan)
1694 {
1695 const struct ieee80211_freq_range *freq_range = NULL;
1696 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1697 bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1698
1699 freq_range = ®_rule->freq_range;
1700
1701 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1702 center_freq_khz = ieee80211_channel_to_khz(chan);
1703 /* Check if auto calculation requested */
1704 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1705 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1706
1707 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1708 if (!cfg80211_does_bw_fit_range(freq_range,
1709 center_freq_khz,
1710 MHZ_TO_KHZ(10)))
1711 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1712 if (!cfg80211_does_bw_fit_range(freq_range,
1713 center_freq_khz,
1714 MHZ_TO_KHZ(20)))
1715 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1716
1717 if (is_s1g) {
1718 /* S1G is strict about non overlapping channels. We can
1719 * calculate which bandwidth is allowed per channel by finding
1720 * the largest bandwidth which cleanly divides the freq_range.
1721 */
1722 int edge_offset;
1723 int ch_bw = max_bandwidth_khz;
1724
1725 while (ch_bw) {
1726 edge_offset = (center_freq_khz - ch_bw / 2) -
1727 freq_range->start_freq_khz;
1728 if (edge_offset % ch_bw == 0) {
1729 switch (KHZ_TO_MHZ(ch_bw)) {
1730 case 1:
1731 bw_flags |= IEEE80211_CHAN_1MHZ;
1732 break;
1733 case 2:
1734 bw_flags |= IEEE80211_CHAN_2MHZ;
1735 break;
1736 case 4:
1737 bw_flags |= IEEE80211_CHAN_4MHZ;
1738 break;
1739 case 8:
1740 bw_flags |= IEEE80211_CHAN_8MHZ;
1741 break;
1742 case 16:
1743 bw_flags |= IEEE80211_CHAN_16MHZ;
1744 break;
1745 default:
1746 /* If we got here, no bandwidths fit on
1747 * this frequency, ie. band edge.
1748 */
1749 bw_flags |= IEEE80211_CHAN_DISABLED;
1750 break;
1751 }
1752 break;
1753 }
1754 ch_bw /= 2;
1755 }
1756 } else {
1757 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1758 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1759 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1760 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1761 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1762 bw_flags |= IEEE80211_CHAN_NO_HT40;
1763 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1764 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1765 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1766 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1767 if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1768 bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1769 }
1770 return bw_flags;
1771 }
1772
handle_channel_single_rule(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan,u32 flags,struct regulatory_request * lr,struct wiphy * request_wiphy,const struct ieee80211_reg_rule * reg_rule)1773 static void handle_channel_single_rule(struct wiphy *wiphy,
1774 enum nl80211_reg_initiator initiator,
1775 struct ieee80211_channel *chan,
1776 u32 flags,
1777 struct regulatory_request *lr,
1778 struct wiphy *request_wiphy,
1779 const struct ieee80211_reg_rule *reg_rule)
1780 {
1781 u32 bw_flags = 0;
1782 const struct ieee80211_power_rule *power_rule = NULL;
1783 const struct ieee80211_regdomain *regd;
1784
1785 regd = reg_get_regdomain(wiphy);
1786
1787 power_rule = ®_rule->power_rule;
1788 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1789
1790 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1791 request_wiphy && request_wiphy == wiphy &&
1792 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1793 /*
1794 * This guarantees the driver's requested regulatory domain
1795 * will always be used as a base for further regulatory
1796 * settings
1797 */
1798 chan->flags = chan->orig_flags =
1799 map_regdom_flags(reg_rule->flags) | bw_flags;
1800 chan->max_antenna_gain = chan->orig_mag =
1801 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1802 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1803 (int) MBM_TO_DBM(power_rule->max_eirp);
1804
1805 if (chan->flags & IEEE80211_CHAN_RADAR) {
1806 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1807 if (reg_rule->dfs_cac_ms)
1808 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1809 }
1810
1811 if (chan->flags & IEEE80211_CHAN_PSD)
1812 chan->psd = reg_rule->psd;
1813
1814 return;
1815 }
1816
1817 chan->dfs_state = NL80211_DFS_USABLE;
1818 chan->dfs_state_entered = jiffies;
1819
1820 chan->beacon_found = false;
1821 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1822 chan->max_antenna_gain =
1823 min_t(int, chan->orig_mag,
1824 MBI_TO_DBI(power_rule->max_antenna_gain));
1825 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1826
1827 if (chan->flags & IEEE80211_CHAN_RADAR) {
1828 if (reg_rule->dfs_cac_ms)
1829 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1830 else
1831 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1832 }
1833
1834 if (chan->flags & IEEE80211_CHAN_PSD)
1835 chan->psd = reg_rule->psd;
1836
1837 if (chan->orig_mpwr) {
1838 /*
1839 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1840 * will always follow the passed country IE power settings.
1841 */
1842 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1843 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1844 chan->max_power = chan->max_reg_power;
1845 else
1846 chan->max_power = min(chan->orig_mpwr,
1847 chan->max_reg_power);
1848 } else
1849 chan->max_power = chan->max_reg_power;
1850 }
1851
handle_channel_adjacent_rules(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan,u32 flags,struct regulatory_request * lr,struct wiphy * request_wiphy,const struct ieee80211_reg_rule * rrule1,const struct ieee80211_reg_rule * rrule2,struct ieee80211_freq_range * comb_range)1852 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1853 enum nl80211_reg_initiator initiator,
1854 struct ieee80211_channel *chan,
1855 u32 flags,
1856 struct regulatory_request *lr,
1857 struct wiphy *request_wiphy,
1858 const struct ieee80211_reg_rule *rrule1,
1859 const struct ieee80211_reg_rule *rrule2,
1860 struct ieee80211_freq_range *comb_range)
1861 {
1862 u32 bw_flags1 = 0;
1863 u32 bw_flags2 = 0;
1864 const struct ieee80211_power_rule *power_rule1 = NULL;
1865 const struct ieee80211_power_rule *power_rule2 = NULL;
1866 const struct ieee80211_regdomain *regd;
1867
1868 regd = reg_get_regdomain(wiphy);
1869
1870 power_rule1 = &rrule1->power_rule;
1871 power_rule2 = &rrule2->power_rule;
1872 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1873 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1874
1875 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1876 request_wiphy && request_wiphy == wiphy &&
1877 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1878 /* This guarantees the driver's requested regulatory domain
1879 * will always be used as a base for further regulatory
1880 * settings
1881 */
1882 chan->flags =
1883 map_regdom_flags(rrule1->flags) |
1884 map_regdom_flags(rrule2->flags) |
1885 bw_flags1 |
1886 bw_flags2;
1887 chan->orig_flags = chan->flags;
1888 chan->max_antenna_gain =
1889 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1890 MBI_TO_DBI(power_rule2->max_antenna_gain));
1891 chan->orig_mag = chan->max_antenna_gain;
1892 chan->max_reg_power =
1893 min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1894 MBM_TO_DBM(power_rule2->max_eirp));
1895 chan->max_power = chan->max_reg_power;
1896 chan->orig_mpwr = chan->max_reg_power;
1897
1898 if (chan->flags & IEEE80211_CHAN_RADAR) {
1899 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1900 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1901 chan->dfs_cac_ms = max_t(unsigned int,
1902 rrule1->dfs_cac_ms,
1903 rrule2->dfs_cac_ms);
1904 }
1905
1906 if ((rrule1->flags & NL80211_RRF_PSD) &&
1907 (rrule2->flags & NL80211_RRF_PSD))
1908 chan->psd = min_t(s8, rrule1->psd, rrule2->psd);
1909 else
1910 chan->flags &= ~NL80211_RRF_PSD;
1911
1912 return;
1913 }
1914
1915 chan->dfs_state = NL80211_DFS_USABLE;
1916 chan->dfs_state_entered = jiffies;
1917
1918 chan->beacon_found = false;
1919 chan->flags = flags | bw_flags1 | bw_flags2 |
1920 map_regdom_flags(rrule1->flags) |
1921 map_regdom_flags(rrule2->flags);
1922
1923 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1924 * (otherwise no adj. rule case), recheck therefore
1925 */
1926 if (cfg80211_does_bw_fit_range(comb_range,
1927 ieee80211_channel_to_khz(chan),
1928 MHZ_TO_KHZ(10)))
1929 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1930 if (cfg80211_does_bw_fit_range(comb_range,
1931 ieee80211_channel_to_khz(chan),
1932 MHZ_TO_KHZ(20)))
1933 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1934
1935 chan->max_antenna_gain =
1936 min_t(int, chan->orig_mag,
1937 min_t(int,
1938 MBI_TO_DBI(power_rule1->max_antenna_gain),
1939 MBI_TO_DBI(power_rule2->max_antenna_gain)));
1940 chan->max_reg_power = min_t(int,
1941 MBM_TO_DBM(power_rule1->max_eirp),
1942 MBM_TO_DBM(power_rule2->max_eirp));
1943
1944 if (chan->flags & IEEE80211_CHAN_RADAR) {
1945 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1946 chan->dfs_cac_ms = max_t(unsigned int,
1947 rrule1->dfs_cac_ms,
1948 rrule2->dfs_cac_ms);
1949 else
1950 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1951 }
1952
1953 if (chan->orig_mpwr) {
1954 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1955 * will always follow the passed country IE power settings.
1956 */
1957 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1958 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1959 chan->max_power = chan->max_reg_power;
1960 else
1961 chan->max_power = min(chan->orig_mpwr,
1962 chan->max_reg_power);
1963 } else {
1964 chan->max_power = chan->max_reg_power;
1965 }
1966 }
1967
1968 /* Note that right now we assume the desired channel bandwidth
1969 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1970 * per channel, the primary and the extension channel).
1971 */
handle_channel(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan)1972 static void handle_channel(struct wiphy *wiphy,
1973 enum nl80211_reg_initiator initiator,
1974 struct ieee80211_channel *chan)
1975 {
1976 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1977 struct regulatory_request *lr = get_last_request();
1978 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1979 const struct ieee80211_reg_rule *rrule = NULL;
1980 const struct ieee80211_reg_rule *rrule1 = NULL;
1981 const struct ieee80211_reg_rule *rrule2 = NULL;
1982
1983 u32 flags = chan->orig_flags;
1984
1985 rrule = freq_reg_info(wiphy, orig_chan_freq);
1986 if (IS_ERR(rrule)) {
1987 /* check for adjacent match, therefore get rules for
1988 * chan - 20 MHz and chan + 20 MHz and test
1989 * if reg rules are adjacent
1990 */
1991 rrule1 = freq_reg_info(wiphy,
1992 orig_chan_freq - MHZ_TO_KHZ(20));
1993 rrule2 = freq_reg_info(wiphy,
1994 orig_chan_freq + MHZ_TO_KHZ(20));
1995 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1996 struct ieee80211_freq_range comb_range;
1997
1998 if (rrule1->freq_range.end_freq_khz !=
1999 rrule2->freq_range.start_freq_khz)
2000 goto disable_chan;
2001
2002 comb_range.start_freq_khz =
2003 rrule1->freq_range.start_freq_khz;
2004 comb_range.end_freq_khz =
2005 rrule2->freq_range.end_freq_khz;
2006 comb_range.max_bandwidth_khz =
2007 min_t(u32,
2008 rrule1->freq_range.max_bandwidth_khz,
2009 rrule2->freq_range.max_bandwidth_khz);
2010
2011 if (!cfg80211_does_bw_fit_range(&comb_range,
2012 orig_chan_freq,
2013 MHZ_TO_KHZ(20)))
2014 goto disable_chan;
2015
2016 handle_channel_adjacent_rules(wiphy, initiator, chan,
2017 flags, lr, request_wiphy,
2018 rrule1, rrule2,
2019 &comb_range);
2020 return;
2021 }
2022
2023 disable_chan:
2024 /* We will disable all channels that do not match our
2025 * received regulatory rule unless the hint is coming
2026 * from a Country IE and the Country IE had no information
2027 * about a band. The IEEE 802.11 spec allows for an AP
2028 * to send only a subset of the regulatory rules allowed,
2029 * so an AP in the US that only supports 2.4 GHz may only send
2030 * a country IE with information for the 2.4 GHz band
2031 * while 5 GHz is still supported.
2032 */
2033 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2034 PTR_ERR(rrule) == -ERANGE)
2035 return;
2036
2037 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2038 request_wiphy && request_wiphy == wiphy &&
2039 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2040 pr_debug("Disabling freq %d.%03d MHz for good\n",
2041 chan->center_freq, chan->freq_offset);
2042 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2043 chan->flags = chan->orig_flags;
2044 } else {
2045 pr_debug("Disabling freq %d.%03d MHz\n",
2046 chan->center_freq, chan->freq_offset);
2047 chan->flags |= IEEE80211_CHAN_DISABLED;
2048 }
2049 return;
2050 }
2051
2052 handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2053 request_wiphy, rrule);
2054 }
2055
handle_band(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_supported_band * sband)2056 static void handle_band(struct wiphy *wiphy,
2057 enum nl80211_reg_initiator initiator,
2058 struct ieee80211_supported_band *sband)
2059 {
2060 unsigned int i;
2061
2062 if (!sband)
2063 return;
2064
2065 for (i = 0; i < sband->n_channels; i++)
2066 handle_channel(wiphy, initiator, &sband->channels[i]);
2067 }
2068
reg_request_cell_base(struct regulatory_request * request)2069 static bool reg_request_cell_base(struct regulatory_request *request)
2070 {
2071 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2072 return false;
2073 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2074 }
2075
reg_last_request_cell_base(void)2076 bool reg_last_request_cell_base(void)
2077 {
2078 return reg_request_cell_base(get_last_request());
2079 }
2080
2081 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2082 /* Core specific check */
2083 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)2084 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2085 {
2086 struct regulatory_request *lr = get_last_request();
2087
2088 if (!reg_num_devs_support_basehint)
2089 return REG_REQ_IGNORE;
2090
2091 if (reg_request_cell_base(lr) &&
2092 !regdom_changes(pending_request->alpha2))
2093 return REG_REQ_ALREADY_SET;
2094
2095 return REG_REQ_OK;
2096 }
2097
2098 /* Device specific check */
reg_dev_ignore_cell_hint(struct wiphy * wiphy)2099 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2100 {
2101 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2102 }
2103 #else
2104 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)2105 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2106 {
2107 return REG_REQ_IGNORE;
2108 }
2109
reg_dev_ignore_cell_hint(struct wiphy * wiphy)2110 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2111 {
2112 return true;
2113 }
2114 #endif
2115
wiphy_strict_alpha2_regd(struct wiphy * wiphy)2116 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2117 {
2118 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2119 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2120 return true;
2121 return false;
2122 }
2123
ignore_reg_update(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)2124 static bool ignore_reg_update(struct wiphy *wiphy,
2125 enum nl80211_reg_initiator initiator)
2126 {
2127 struct regulatory_request *lr = get_last_request();
2128
2129 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2130 return true;
2131
2132 if (!lr) {
2133 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2134 reg_initiator_name(initiator));
2135 return true;
2136 }
2137
2138 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2139 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2140 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2141 reg_initiator_name(initiator));
2142 return true;
2143 }
2144
2145 /*
2146 * wiphy->regd will be set once the device has its own
2147 * desired regulatory domain set
2148 */
2149 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2150 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2151 !is_world_regdom(lr->alpha2)) {
2152 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2153 reg_initiator_name(initiator));
2154 return true;
2155 }
2156
2157 if (reg_request_cell_base(lr))
2158 return reg_dev_ignore_cell_hint(wiphy);
2159
2160 return false;
2161 }
2162
reg_is_world_roaming(struct wiphy * wiphy)2163 static bool reg_is_world_roaming(struct wiphy *wiphy)
2164 {
2165 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2166 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2167 struct regulatory_request *lr = get_last_request();
2168
2169 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2170 return true;
2171
2172 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2173 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2174 return true;
2175
2176 return false;
2177 }
2178
reg_call_notifier(struct wiphy * wiphy,struct regulatory_request * request)2179 static void reg_call_notifier(struct wiphy *wiphy,
2180 struct regulatory_request *request)
2181 {
2182 if (wiphy->reg_notifier)
2183 wiphy->reg_notifier(wiphy, request);
2184 }
2185
handle_reg_beacon(struct wiphy * wiphy,unsigned int chan_idx,struct reg_beacon * reg_beacon)2186 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2187 struct reg_beacon *reg_beacon)
2188 {
2189 struct ieee80211_supported_band *sband;
2190 struct ieee80211_channel *chan;
2191 bool channel_changed = false;
2192 struct ieee80211_channel chan_before;
2193 struct regulatory_request *lr = get_last_request();
2194
2195 sband = wiphy->bands[reg_beacon->chan.band];
2196 chan = &sband->channels[chan_idx];
2197
2198 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan)))
2199 return;
2200
2201 if (chan->beacon_found)
2202 return;
2203
2204 chan->beacon_found = true;
2205
2206 if (!reg_is_world_roaming(wiphy))
2207 return;
2208
2209 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2210 return;
2211
2212 chan_before = *chan;
2213
2214 if (chan->flags & IEEE80211_CHAN_NO_IR) {
2215 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2216 channel_changed = true;
2217 }
2218
2219 if (channel_changed) {
2220 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2221 if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON)
2222 reg_call_notifier(wiphy, lr);
2223 }
2224 }
2225
2226 /*
2227 * Called when a scan on a wiphy finds a beacon on
2228 * new channel
2229 */
wiphy_update_new_beacon(struct wiphy * wiphy,struct reg_beacon * reg_beacon)2230 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2231 struct reg_beacon *reg_beacon)
2232 {
2233 unsigned int i;
2234 struct ieee80211_supported_band *sband;
2235
2236 if (!wiphy->bands[reg_beacon->chan.band])
2237 return;
2238
2239 sband = wiphy->bands[reg_beacon->chan.band];
2240
2241 for (i = 0; i < sband->n_channels; i++)
2242 handle_reg_beacon(wiphy, i, reg_beacon);
2243 }
2244
2245 /*
2246 * Called upon reg changes or a new wiphy is added
2247 */
wiphy_update_beacon_reg(struct wiphy * wiphy)2248 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2249 {
2250 unsigned int i;
2251 struct ieee80211_supported_band *sband;
2252 struct reg_beacon *reg_beacon;
2253
2254 list_for_each_entry(reg_beacon, ®_beacon_list, list) {
2255 if (!wiphy->bands[reg_beacon->chan.band])
2256 continue;
2257 sband = wiphy->bands[reg_beacon->chan.band];
2258 for (i = 0; i < sband->n_channels; i++)
2259 handle_reg_beacon(wiphy, i, reg_beacon);
2260 }
2261 }
2262
2263 /* Reap the advantages of previously found beacons */
reg_process_beacons(struct wiphy * wiphy)2264 static void reg_process_beacons(struct wiphy *wiphy)
2265 {
2266 /*
2267 * Means we are just firing up cfg80211, so no beacons would
2268 * have been processed yet.
2269 */
2270 if (!last_request)
2271 return;
2272 wiphy_update_beacon_reg(wiphy);
2273 }
2274
is_ht40_allowed(struct ieee80211_channel * chan)2275 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2276 {
2277 if (!chan)
2278 return false;
2279 if (chan->flags & IEEE80211_CHAN_DISABLED)
2280 return false;
2281 /* This would happen when regulatory rules disallow HT40 completely */
2282 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2283 return false;
2284 return true;
2285 }
2286
reg_process_ht_flags_channel(struct wiphy * wiphy,struct ieee80211_channel * channel)2287 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2288 struct ieee80211_channel *channel)
2289 {
2290 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2291 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2292 const struct ieee80211_regdomain *regd;
2293 unsigned int i;
2294 u32 flags;
2295
2296 if (!is_ht40_allowed(channel)) {
2297 channel->flags |= IEEE80211_CHAN_NO_HT40;
2298 return;
2299 }
2300
2301 /*
2302 * We need to ensure the extension channels exist to
2303 * be able to use HT40- or HT40+, this finds them (or not)
2304 */
2305 for (i = 0; i < sband->n_channels; i++) {
2306 struct ieee80211_channel *c = &sband->channels[i];
2307
2308 if (c->center_freq == (channel->center_freq - 20))
2309 channel_before = c;
2310 if (c->center_freq == (channel->center_freq + 20))
2311 channel_after = c;
2312 }
2313
2314 flags = 0;
2315 regd = get_wiphy_regdom(wiphy);
2316 if (regd) {
2317 const struct ieee80211_reg_rule *reg_rule =
2318 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2319 regd, MHZ_TO_KHZ(20));
2320
2321 if (!IS_ERR(reg_rule))
2322 flags = reg_rule->flags;
2323 }
2324
2325 /*
2326 * Please note that this assumes target bandwidth is 20 MHz,
2327 * if that ever changes we also need to change the below logic
2328 * to include that as well.
2329 */
2330 if (!is_ht40_allowed(channel_before) ||
2331 flags & NL80211_RRF_NO_HT40MINUS)
2332 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2333 else
2334 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2335
2336 if (!is_ht40_allowed(channel_after) ||
2337 flags & NL80211_RRF_NO_HT40PLUS)
2338 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2339 else
2340 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2341 }
2342
reg_process_ht_flags_band(struct wiphy * wiphy,struct ieee80211_supported_band * sband)2343 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2344 struct ieee80211_supported_band *sband)
2345 {
2346 unsigned int i;
2347
2348 if (!sband)
2349 return;
2350
2351 for (i = 0; i < sband->n_channels; i++)
2352 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2353 }
2354
reg_process_ht_flags(struct wiphy * wiphy)2355 static void reg_process_ht_flags(struct wiphy *wiphy)
2356 {
2357 enum nl80211_band band;
2358
2359 if (!wiphy)
2360 return;
2361
2362 for (band = 0; band < NUM_NL80211_BANDS; band++)
2363 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2364 }
2365
reg_wdev_chan_valid(struct wiphy * wiphy,struct wireless_dev * wdev)2366 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2367 {
2368 struct cfg80211_chan_def chandef = {};
2369 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2370 enum nl80211_iftype iftype;
2371 bool ret;
2372 int link;
2373
2374 iftype = wdev->iftype;
2375
2376 /* make sure the interface is active */
2377 if (!wdev->netdev || !netif_running(wdev->netdev))
2378 return true;
2379
2380 for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2381 struct ieee80211_channel *chan;
2382
2383 if (!wdev->valid_links && link > 0)
2384 break;
2385 if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2386 continue;
2387 switch (iftype) {
2388 case NL80211_IFTYPE_AP:
2389 case NL80211_IFTYPE_P2P_GO:
2390 if (!wdev->links[link].ap.beacon_interval)
2391 continue;
2392 chandef = wdev->links[link].ap.chandef;
2393 break;
2394 case NL80211_IFTYPE_MESH_POINT:
2395 if (!wdev->u.mesh.beacon_interval)
2396 continue;
2397 chandef = wdev->u.mesh.chandef;
2398 break;
2399 case NL80211_IFTYPE_ADHOC:
2400 if (!wdev->u.ibss.ssid_len)
2401 continue;
2402 chandef = wdev->u.ibss.chandef;
2403 break;
2404 case NL80211_IFTYPE_STATION:
2405 case NL80211_IFTYPE_P2P_CLIENT:
2406 /* Maybe we could consider disabling that link only? */
2407 if (!wdev->links[link].client.current_bss)
2408 continue;
2409
2410 chan = wdev->links[link].client.current_bss->pub.channel;
2411 if (!chan)
2412 continue;
2413
2414 if (!rdev->ops->get_channel ||
2415 rdev_get_channel(rdev, wdev, link, &chandef))
2416 cfg80211_chandef_create(&chandef, chan,
2417 NL80211_CHAN_NO_HT);
2418 break;
2419 case NL80211_IFTYPE_MONITOR:
2420 case NL80211_IFTYPE_AP_VLAN:
2421 case NL80211_IFTYPE_P2P_DEVICE:
2422 /* no enforcement required */
2423 break;
2424 case NL80211_IFTYPE_OCB:
2425 if (!wdev->u.ocb.chandef.chan)
2426 continue;
2427 chandef = wdev->u.ocb.chandef;
2428 break;
2429 case NL80211_IFTYPE_NAN:
2430 /* we have no info, but NAN is also pretty universal */
2431 continue;
2432 default:
2433 /* others not implemented for now */
2434 WARN_ON_ONCE(1);
2435 break;
2436 }
2437
2438 switch (iftype) {
2439 case NL80211_IFTYPE_AP:
2440 case NL80211_IFTYPE_P2P_GO:
2441 case NL80211_IFTYPE_ADHOC:
2442 case NL80211_IFTYPE_MESH_POINT:
2443 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2444 iftype);
2445 if (!ret)
2446 return ret;
2447 break;
2448 case NL80211_IFTYPE_STATION:
2449 case NL80211_IFTYPE_P2P_CLIENT:
2450 ret = cfg80211_chandef_usable(wiphy, &chandef,
2451 IEEE80211_CHAN_DISABLED);
2452 if (!ret)
2453 return ret;
2454 break;
2455 default:
2456 break;
2457 }
2458 }
2459
2460 return true;
2461 }
2462
reg_leave_invalid_chans(struct wiphy * wiphy)2463 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2464 {
2465 struct wireless_dev *wdev;
2466 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2467
2468 wiphy_lock(wiphy);
2469 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2470 if (!reg_wdev_chan_valid(wiphy, wdev))
2471 cfg80211_leave(rdev, wdev);
2472 wiphy_unlock(wiphy);
2473 }
2474
reg_check_chans_work(struct work_struct * work)2475 static void reg_check_chans_work(struct work_struct *work)
2476 {
2477 struct cfg80211_registered_device *rdev;
2478
2479 pr_debug("Verifying active interfaces after reg change\n");
2480 rtnl_lock();
2481
2482 for_each_rdev(rdev)
2483 reg_leave_invalid_chans(&rdev->wiphy);
2484
2485 rtnl_unlock();
2486 }
2487
reg_check_channels(void)2488 void reg_check_channels(void)
2489 {
2490 /*
2491 * Give usermode a chance to do something nicer (move to another
2492 * channel, orderly disconnection), before forcing a disconnection.
2493 */
2494 mod_delayed_work(system_power_efficient_wq,
2495 ®_check_chans,
2496 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2497 }
2498
wiphy_update_regulatory(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)2499 static void wiphy_update_regulatory(struct wiphy *wiphy,
2500 enum nl80211_reg_initiator initiator)
2501 {
2502 enum nl80211_band band;
2503 struct regulatory_request *lr = get_last_request();
2504
2505 if (ignore_reg_update(wiphy, initiator)) {
2506 /*
2507 * Regulatory updates set by CORE are ignored for custom
2508 * regulatory cards. Let us notify the changes to the driver,
2509 * as some drivers used this to restore its orig_* reg domain.
2510 */
2511 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2512 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2513 !(wiphy->regulatory_flags &
2514 REGULATORY_WIPHY_SELF_MANAGED))
2515 reg_call_notifier(wiphy, lr);
2516 return;
2517 }
2518
2519 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2520
2521 for (band = 0; band < NUM_NL80211_BANDS; band++)
2522 handle_band(wiphy, initiator, wiphy->bands[band]);
2523
2524 reg_process_beacons(wiphy);
2525 reg_process_ht_flags(wiphy);
2526 reg_call_notifier(wiphy, lr);
2527 }
2528
update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)2529 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2530 {
2531 struct cfg80211_registered_device *rdev;
2532 struct wiphy *wiphy;
2533
2534 ASSERT_RTNL();
2535
2536 for_each_rdev(rdev) {
2537 wiphy = &rdev->wiphy;
2538 wiphy_update_regulatory(wiphy, initiator);
2539 }
2540
2541 reg_check_channels();
2542 }
2543
handle_channel_custom(struct wiphy * wiphy,struct ieee80211_channel * chan,const struct ieee80211_regdomain * regd,u32 min_bw)2544 static void handle_channel_custom(struct wiphy *wiphy,
2545 struct ieee80211_channel *chan,
2546 const struct ieee80211_regdomain *regd,
2547 u32 min_bw)
2548 {
2549 u32 bw_flags = 0;
2550 const struct ieee80211_reg_rule *reg_rule = NULL;
2551 const struct ieee80211_power_rule *power_rule = NULL;
2552 u32 bw, center_freq_khz;
2553
2554 center_freq_khz = ieee80211_channel_to_khz(chan);
2555 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2556 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2557 if (!IS_ERR(reg_rule))
2558 break;
2559 }
2560
2561 if (IS_ERR_OR_NULL(reg_rule)) {
2562 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2563 chan->center_freq, chan->freq_offset);
2564 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2565 chan->flags |= IEEE80211_CHAN_DISABLED;
2566 } else {
2567 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2568 chan->flags = chan->orig_flags;
2569 }
2570 return;
2571 }
2572
2573 power_rule = ®_rule->power_rule;
2574 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2575
2576 chan->dfs_state_entered = jiffies;
2577 chan->dfs_state = NL80211_DFS_USABLE;
2578
2579 chan->beacon_found = false;
2580
2581 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2582 chan->flags = chan->orig_flags | bw_flags |
2583 map_regdom_flags(reg_rule->flags);
2584 else
2585 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2586
2587 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2588 chan->max_reg_power = chan->max_power =
2589 (int) MBM_TO_DBM(power_rule->max_eirp);
2590
2591 if (chan->flags & IEEE80211_CHAN_RADAR) {
2592 if (reg_rule->dfs_cac_ms)
2593 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2594 else
2595 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2596 }
2597
2598 if (chan->flags & IEEE80211_CHAN_PSD)
2599 chan->psd = reg_rule->psd;
2600
2601 chan->max_power = chan->max_reg_power;
2602 }
2603
handle_band_custom(struct wiphy * wiphy,struct ieee80211_supported_band * sband,const struct ieee80211_regdomain * regd)2604 static void handle_band_custom(struct wiphy *wiphy,
2605 struct ieee80211_supported_band *sband,
2606 const struct ieee80211_regdomain *regd)
2607 {
2608 unsigned int i;
2609
2610 if (!sband)
2611 return;
2612
2613 /*
2614 * We currently assume that you always want at least 20 MHz,
2615 * otherwise channel 12 might get enabled if this rule is
2616 * compatible to US, which permits 2402 - 2472 MHz.
2617 */
2618 for (i = 0; i < sband->n_channels; i++)
2619 handle_channel_custom(wiphy, &sband->channels[i], regd,
2620 MHZ_TO_KHZ(20));
2621 }
2622
2623 /* Used by drivers prior to wiphy registration */
wiphy_apply_custom_regulatory(struct wiphy * wiphy,const struct ieee80211_regdomain * regd)2624 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2625 const struct ieee80211_regdomain *regd)
2626 {
2627 const struct ieee80211_regdomain *new_regd, *tmp;
2628 enum nl80211_band band;
2629 unsigned int bands_set = 0;
2630
2631 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2632 "wiphy should have REGULATORY_CUSTOM_REG\n");
2633 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2634
2635 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2636 if (!wiphy->bands[band])
2637 continue;
2638 handle_band_custom(wiphy, wiphy->bands[band], regd);
2639 bands_set++;
2640 }
2641
2642 /*
2643 * no point in calling this if it won't have any effect
2644 * on your device's supported bands.
2645 */
2646 WARN_ON(!bands_set);
2647 new_regd = reg_copy_regd(regd);
2648 if (IS_ERR(new_regd))
2649 return;
2650
2651 rtnl_lock();
2652 wiphy_lock(wiphy);
2653
2654 tmp = get_wiphy_regdom(wiphy);
2655 rcu_assign_pointer(wiphy->regd, new_regd);
2656 rcu_free_regdom(tmp);
2657
2658 wiphy_unlock(wiphy);
2659 rtnl_unlock();
2660 }
2661 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2662
reg_set_request_processed(void)2663 static void reg_set_request_processed(void)
2664 {
2665 bool need_more_processing = false;
2666 struct regulatory_request *lr = get_last_request();
2667
2668 lr->processed = true;
2669
2670 spin_lock(®_requests_lock);
2671 if (!list_empty(®_requests_list))
2672 need_more_processing = true;
2673 spin_unlock(®_requests_lock);
2674
2675 cancel_crda_timeout();
2676
2677 if (need_more_processing)
2678 schedule_work(®_work);
2679 }
2680
2681 /**
2682 * reg_process_hint_core - process core regulatory requests
2683 * @core_request: a pending core regulatory request
2684 *
2685 * The wireless subsystem can use this function to process
2686 * a regulatory request issued by the regulatory core.
2687 *
2688 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2689 * hint was processed or ignored
2690 */
2691 static enum reg_request_treatment
reg_process_hint_core(struct regulatory_request * core_request)2692 reg_process_hint_core(struct regulatory_request *core_request)
2693 {
2694 if (reg_query_database(core_request)) {
2695 core_request->intersect = false;
2696 core_request->processed = false;
2697 reg_update_last_request(core_request);
2698 return REG_REQ_OK;
2699 }
2700
2701 return REG_REQ_IGNORE;
2702 }
2703
2704 static enum reg_request_treatment
__reg_process_hint_user(struct regulatory_request * user_request)2705 __reg_process_hint_user(struct regulatory_request *user_request)
2706 {
2707 struct regulatory_request *lr = get_last_request();
2708
2709 if (reg_request_cell_base(user_request))
2710 return reg_ignore_cell_hint(user_request);
2711
2712 if (reg_request_cell_base(lr))
2713 return REG_REQ_IGNORE;
2714
2715 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2716 return REG_REQ_INTERSECT;
2717 /*
2718 * If the user knows better the user should set the regdom
2719 * to their country before the IE is picked up
2720 */
2721 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2722 lr->intersect)
2723 return REG_REQ_IGNORE;
2724 /*
2725 * Process user requests only after previous user/driver/core
2726 * requests have been processed
2727 */
2728 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2729 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2730 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2731 regdom_changes(lr->alpha2))
2732 return REG_REQ_IGNORE;
2733
2734 if (!regdom_changes(user_request->alpha2))
2735 return REG_REQ_ALREADY_SET;
2736
2737 return REG_REQ_OK;
2738 }
2739
2740 /**
2741 * reg_process_hint_user - process user regulatory requests
2742 * @user_request: a pending user regulatory request
2743 *
2744 * The wireless subsystem can use this function to process
2745 * a regulatory request initiated by userspace.
2746 *
2747 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2748 * hint was processed or ignored
2749 */
2750 static enum reg_request_treatment
reg_process_hint_user(struct regulatory_request * user_request)2751 reg_process_hint_user(struct regulatory_request *user_request)
2752 {
2753 enum reg_request_treatment treatment;
2754
2755 treatment = __reg_process_hint_user(user_request);
2756 if (treatment == REG_REQ_IGNORE ||
2757 treatment == REG_REQ_ALREADY_SET)
2758 return REG_REQ_IGNORE;
2759
2760 user_request->intersect = treatment == REG_REQ_INTERSECT;
2761 user_request->processed = false;
2762
2763 if (reg_query_database(user_request)) {
2764 reg_update_last_request(user_request);
2765 user_alpha2[0] = user_request->alpha2[0];
2766 user_alpha2[1] = user_request->alpha2[1];
2767 return REG_REQ_OK;
2768 }
2769
2770 return REG_REQ_IGNORE;
2771 }
2772
2773 static enum reg_request_treatment
__reg_process_hint_driver(struct regulatory_request * driver_request)2774 __reg_process_hint_driver(struct regulatory_request *driver_request)
2775 {
2776 struct regulatory_request *lr = get_last_request();
2777
2778 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2779 if (regdom_changes(driver_request->alpha2))
2780 return REG_REQ_OK;
2781 return REG_REQ_ALREADY_SET;
2782 }
2783
2784 /*
2785 * This would happen if you unplug and plug your card
2786 * back in or if you add a new device for which the previously
2787 * loaded card also agrees on the regulatory domain.
2788 */
2789 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2790 !regdom_changes(driver_request->alpha2))
2791 return REG_REQ_ALREADY_SET;
2792
2793 return REG_REQ_INTERSECT;
2794 }
2795
2796 /**
2797 * reg_process_hint_driver - process driver regulatory requests
2798 * @wiphy: the wireless device for the regulatory request
2799 * @driver_request: a pending driver regulatory request
2800 *
2801 * The wireless subsystem can use this function to process
2802 * a regulatory request issued by an 802.11 driver.
2803 *
2804 * Returns: one of the different reg request treatment values.
2805 */
2806 static enum reg_request_treatment
reg_process_hint_driver(struct wiphy * wiphy,struct regulatory_request * driver_request)2807 reg_process_hint_driver(struct wiphy *wiphy,
2808 struct regulatory_request *driver_request)
2809 {
2810 const struct ieee80211_regdomain *regd, *tmp;
2811 enum reg_request_treatment treatment;
2812
2813 treatment = __reg_process_hint_driver(driver_request);
2814
2815 switch (treatment) {
2816 case REG_REQ_OK:
2817 break;
2818 case REG_REQ_IGNORE:
2819 return REG_REQ_IGNORE;
2820 case REG_REQ_INTERSECT:
2821 case REG_REQ_ALREADY_SET:
2822 regd = reg_copy_regd(get_cfg80211_regdom());
2823 if (IS_ERR(regd))
2824 return REG_REQ_IGNORE;
2825
2826 tmp = get_wiphy_regdom(wiphy);
2827 ASSERT_RTNL();
2828 wiphy_lock(wiphy);
2829 rcu_assign_pointer(wiphy->regd, regd);
2830 wiphy_unlock(wiphy);
2831 rcu_free_regdom(tmp);
2832 }
2833
2834
2835 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2836 driver_request->processed = false;
2837
2838 /*
2839 * Since CRDA will not be called in this case as we already
2840 * have applied the requested regulatory domain before we just
2841 * inform userspace we have processed the request
2842 */
2843 if (treatment == REG_REQ_ALREADY_SET) {
2844 nl80211_send_reg_change_event(driver_request);
2845 reg_update_last_request(driver_request);
2846 reg_set_request_processed();
2847 return REG_REQ_ALREADY_SET;
2848 }
2849
2850 if (reg_query_database(driver_request)) {
2851 reg_update_last_request(driver_request);
2852 return REG_REQ_OK;
2853 }
2854
2855 return REG_REQ_IGNORE;
2856 }
2857
2858 static enum reg_request_treatment
__reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2859 __reg_process_hint_country_ie(struct wiphy *wiphy,
2860 struct regulatory_request *country_ie_request)
2861 {
2862 struct wiphy *last_wiphy = NULL;
2863 struct regulatory_request *lr = get_last_request();
2864
2865 if (reg_request_cell_base(lr)) {
2866 /* Trust a Cell base station over the AP's country IE */
2867 if (regdom_changes(country_ie_request->alpha2))
2868 return REG_REQ_IGNORE;
2869 return REG_REQ_ALREADY_SET;
2870 } else {
2871 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2872 return REG_REQ_IGNORE;
2873 }
2874
2875 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2876 return -EINVAL;
2877
2878 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2879 return REG_REQ_OK;
2880
2881 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2882
2883 if (last_wiphy != wiphy) {
2884 /*
2885 * Two cards with two APs claiming different
2886 * Country IE alpha2s. We could
2887 * intersect them, but that seems unlikely
2888 * to be correct. Reject second one for now.
2889 */
2890 if (regdom_changes(country_ie_request->alpha2))
2891 return REG_REQ_IGNORE;
2892 return REG_REQ_ALREADY_SET;
2893 }
2894
2895 if (regdom_changes(country_ie_request->alpha2))
2896 return REG_REQ_OK;
2897 return REG_REQ_ALREADY_SET;
2898 }
2899
2900 /**
2901 * reg_process_hint_country_ie - process regulatory requests from country IEs
2902 * @wiphy: the wireless device for the regulatory request
2903 * @country_ie_request: a regulatory request from a country IE
2904 *
2905 * The wireless subsystem can use this function to process
2906 * a regulatory request issued by a country Information Element.
2907 *
2908 * Returns: one of the different reg request treatment values.
2909 */
2910 static enum reg_request_treatment
reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2911 reg_process_hint_country_ie(struct wiphy *wiphy,
2912 struct regulatory_request *country_ie_request)
2913 {
2914 enum reg_request_treatment treatment;
2915
2916 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2917
2918 switch (treatment) {
2919 case REG_REQ_OK:
2920 break;
2921 case REG_REQ_IGNORE:
2922 return REG_REQ_IGNORE;
2923 case REG_REQ_ALREADY_SET:
2924 reg_free_request(country_ie_request);
2925 return REG_REQ_ALREADY_SET;
2926 case REG_REQ_INTERSECT:
2927 /*
2928 * This doesn't happen yet, not sure we
2929 * ever want to support it for this case.
2930 */
2931 WARN_ONCE(1, "Unexpected intersection for country elements");
2932 return REG_REQ_IGNORE;
2933 }
2934
2935 country_ie_request->intersect = false;
2936 country_ie_request->processed = false;
2937
2938 if (reg_query_database(country_ie_request)) {
2939 reg_update_last_request(country_ie_request);
2940 return REG_REQ_OK;
2941 }
2942
2943 return REG_REQ_IGNORE;
2944 }
2945
reg_dfs_domain_same(struct wiphy * wiphy1,struct wiphy * wiphy2)2946 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2947 {
2948 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2949 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2950 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2951 bool dfs_domain_same;
2952
2953 rcu_read_lock();
2954
2955 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2956 wiphy1_regd = rcu_dereference(wiphy1->regd);
2957 if (!wiphy1_regd)
2958 wiphy1_regd = cfg80211_regd;
2959
2960 wiphy2_regd = rcu_dereference(wiphy2->regd);
2961 if (!wiphy2_regd)
2962 wiphy2_regd = cfg80211_regd;
2963
2964 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2965
2966 rcu_read_unlock();
2967
2968 return dfs_domain_same;
2969 }
2970
reg_copy_dfs_chan_state(struct ieee80211_channel * dst_chan,struct ieee80211_channel * src_chan)2971 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2972 struct ieee80211_channel *src_chan)
2973 {
2974 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2975 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2976 return;
2977
2978 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2979 src_chan->flags & IEEE80211_CHAN_DISABLED)
2980 return;
2981
2982 if (src_chan->center_freq == dst_chan->center_freq &&
2983 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2984 dst_chan->dfs_state = src_chan->dfs_state;
2985 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2986 }
2987 }
2988
wiphy_share_dfs_chan_state(struct wiphy * dst_wiphy,struct wiphy * src_wiphy)2989 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2990 struct wiphy *src_wiphy)
2991 {
2992 struct ieee80211_supported_band *src_sband, *dst_sband;
2993 struct ieee80211_channel *src_chan, *dst_chan;
2994 int i, j, band;
2995
2996 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2997 return;
2998
2999 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3000 dst_sband = dst_wiphy->bands[band];
3001 src_sband = src_wiphy->bands[band];
3002 if (!dst_sband || !src_sband)
3003 continue;
3004
3005 for (i = 0; i < dst_sband->n_channels; i++) {
3006 dst_chan = &dst_sband->channels[i];
3007 for (j = 0; j < src_sband->n_channels; j++) {
3008 src_chan = &src_sband->channels[j];
3009 reg_copy_dfs_chan_state(dst_chan, src_chan);
3010 }
3011 }
3012 }
3013 }
3014
wiphy_all_share_dfs_chan_state(struct wiphy * wiphy)3015 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
3016 {
3017 struct cfg80211_registered_device *rdev;
3018
3019 ASSERT_RTNL();
3020
3021 for_each_rdev(rdev) {
3022 if (wiphy == &rdev->wiphy)
3023 continue;
3024 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
3025 }
3026 }
3027
3028 /* This processes *all* regulatory hints */
reg_process_hint(struct regulatory_request * reg_request)3029 static void reg_process_hint(struct regulatory_request *reg_request)
3030 {
3031 struct wiphy *wiphy = NULL;
3032 enum reg_request_treatment treatment;
3033 enum nl80211_reg_initiator initiator = reg_request->initiator;
3034
3035 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3036 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3037
3038 switch (initiator) {
3039 case NL80211_REGDOM_SET_BY_CORE:
3040 treatment = reg_process_hint_core(reg_request);
3041 break;
3042 case NL80211_REGDOM_SET_BY_USER:
3043 treatment = reg_process_hint_user(reg_request);
3044 break;
3045 case NL80211_REGDOM_SET_BY_DRIVER:
3046 if (!wiphy)
3047 goto out_free;
3048 treatment = reg_process_hint_driver(wiphy, reg_request);
3049 break;
3050 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3051 if (!wiphy)
3052 goto out_free;
3053 treatment = reg_process_hint_country_ie(wiphy, reg_request);
3054 break;
3055 default:
3056 WARN(1, "invalid initiator %d\n", initiator);
3057 goto out_free;
3058 }
3059
3060 if (treatment == REG_REQ_IGNORE)
3061 goto out_free;
3062
3063 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3064 "unexpected treatment value %d\n", treatment);
3065
3066 /* This is required so that the orig_* parameters are saved.
3067 * NOTE: treatment must be set for any case that reaches here!
3068 */
3069 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3070 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3071 wiphy_update_regulatory(wiphy, initiator);
3072 wiphy_all_share_dfs_chan_state(wiphy);
3073 reg_check_channels();
3074 }
3075
3076 return;
3077
3078 out_free:
3079 reg_free_request(reg_request);
3080 }
3081
notify_self_managed_wiphys(struct regulatory_request * request)3082 static void notify_self_managed_wiphys(struct regulatory_request *request)
3083 {
3084 struct cfg80211_registered_device *rdev;
3085 struct wiphy *wiphy;
3086
3087 for_each_rdev(rdev) {
3088 wiphy = &rdev->wiphy;
3089 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3090 request->initiator == NL80211_REGDOM_SET_BY_USER)
3091 reg_call_notifier(wiphy, request);
3092 }
3093 }
3094
3095 /*
3096 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3097 * Regulatory hints come on a first come first serve basis and we
3098 * must process each one atomically.
3099 */
reg_process_pending_hints(void)3100 static void reg_process_pending_hints(void)
3101 {
3102 struct regulatory_request *reg_request, *lr;
3103
3104 lr = get_last_request();
3105
3106 /* When last_request->processed becomes true this will be rescheduled */
3107 if (lr && !lr->processed) {
3108 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3109 return;
3110 }
3111
3112 spin_lock(®_requests_lock);
3113
3114 if (list_empty(®_requests_list)) {
3115 spin_unlock(®_requests_lock);
3116 return;
3117 }
3118
3119 reg_request = list_first_entry(®_requests_list,
3120 struct regulatory_request,
3121 list);
3122 list_del_init(®_request->list);
3123
3124 spin_unlock(®_requests_lock);
3125
3126 notify_self_managed_wiphys(reg_request);
3127
3128 reg_process_hint(reg_request);
3129
3130 lr = get_last_request();
3131
3132 spin_lock(®_requests_lock);
3133 if (!list_empty(®_requests_list) && lr && lr->processed)
3134 schedule_work(®_work);
3135 spin_unlock(®_requests_lock);
3136 }
3137
3138 /* Processes beacon hints -- this has nothing to do with country IEs */
reg_process_pending_beacon_hints(void)3139 static void reg_process_pending_beacon_hints(void)
3140 {
3141 struct cfg80211_registered_device *rdev;
3142 struct reg_beacon *pending_beacon, *tmp;
3143
3144 /* This goes through the _pending_ beacon list */
3145 spin_lock_bh(®_pending_beacons_lock);
3146
3147 list_for_each_entry_safe(pending_beacon, tmp,
3148 ®_pending_beacons, list) {
3149 list_del_init(&pending_beacon->list);
3150
3151 /* Applies the beacon hint to current wiphys */
3152 for_each_rdev(rdev)
3153 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3154
3155 /* Remembers the beacon hint for new wiphys or reg changes */
3156 list_add_tail(&pending_beacon->list, ®_beacon_list);
3157 }
3158
3159 spin_unlock_bh(®_pending_beacons_lock);
3160 }
3161
reg_process_self_managed_hint(struct wiphy * wiphy)3162 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3163 {
3164 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3165 const struct ieee80211_regdomain *tmp;
3166 const struct ieee80211_regdomain *regd;
3167 enum nl80211_band band;
3168 struct regulatory_request request = {};
3169
3170 ASSERT_RTNL();
3171 lockdep_assert_wiphy(wiphy);
3172
3173 spin_lock(®_requests_lock);
3174 regd = rdev->requested_regd;
3175 rdev->requested_regd = NULL;
3176 spin_unlock(®_requests_lock);
3177
3178 if (!regd)
3179 return;
3180
3181 tmp = get_wiphy_regdom(wiphy);
3182 rcu_assign_pointer(wiphy->regd, regd);
3183 rcu_free_regdom(tmp);
3184
3185 for (band = 0; band < NUM_NL80211_BANDS; band++)
3186 handle_band_custom(wiphy, wiphy->bands[band], regd);
3187
3188 reg_process_ht_flags(wiphy);
3189
3190 request.wiphy_idx = get_wiphy_idx(wiphy);
3191 request.alpha2[0] = regd->alpha2[0];
3192 request.alpha2[1] = regd->alpha2[1];
3193 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3194
3195 if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3196 reg_call_notifier(wiphy, &request);
3197
3198 nl80211_send_wiphy_reg_change_event(&request);
3199 }
3200
reg_process_self_managed_hints(void)3201 static void reg_process_self_managed_hints(void)
3202 {
3203 struct cfg80211_registered_device *rdev;
3204
3205 ASSERT_RTNL();
3206
3207 for_each_rdev(rdev) {
3208 wiphy_lock(&rdev->wiphy);
3209 reg_process_self_managed_hint(&rdev->wiphy);
3210 wiphy_unlock(&rdev->wiphy);
3211 }
3212
3213 reg_check_channels();
3214 }
3215
reg_todo(struct work_struct * work)3216 static void reg_todo(struct work_struct *work)
3217 {
3218 rtnl_lock();
3219 reg_process_pending_hints();
3220 reg_process_pending_beacon_hints();
3221 reg_process_self_managed_hints();
3222 rtnl_unlock();
3223 }
3224
queue_regulatory_request(struct regulatory_request * request)3225 static void queue_regulatory_request(struct regulatory_request *request)
3226 {
3227 request->alpha2[0] = toupper(request->alpha2[0]);
3228 request->alpha2[1] = toupper(request->alpha2[1]);
3229
3230 spin_lock(®_requests_lock);
3231 list_add_tail(&request->list, ®_requests_list);
3232 spin_unlock(®_requests_lock);
3233
3234 schedule_work(®_work);
3235 }
3236
3237 /*
3238 * Core regulatory hint -- happens during cfg80211_init()
3239 * and when we restore regulatory settings.
3240 */
regulatory_hint_core(const char * alpha2)3241 static int regulatory_hint_core(const char *alpha2)
3242 {
3243 struct regulatory_request *request;
3244
3245 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3246 if (!request)
3247 return -ENOMEM;
3248
3249 request->alpha2[0] = alpha2[0];
3250 request->alpha2[1] = alpha2[1];
3251 request->initiator = NL80211_REGDOM_SET_BY_CORE;
3252 request->wiphy_idx = WIPHY_IDX_INVALID;
3253
3254 queue_regulatory_request(request);
3255
3256 return 0;
3257 }
3258
3259 /* User hints */
regulatory_hint_user(const char * alpha2,enum nl80211_user_reg_hint_type user_reg_hint_type)3260 int regulatory_hint_user(const char *alpha2,
3261 enum nl80211_user_reg_hint_type user_reg_hint_type)
3262 {
3263 struct regulatory_request *request;
3264
3265 if (WARN_ON(!alpha2))
3266 return -EINVAL;
3267
3268 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3269 return -EINVAL;
3270
3271 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3272 if (!request)
3273 return -ENOMEM;
3274
3275 request->wiphy_idx = WIPHY_IDX_INVALID;
3276 request->alpha2[0] = alpha2[0];
3277 request->alpha2[1] = alpha2[1];
3278 request->initiator = NL80211_REGDOM_SET_BY_USER;
3279 request->user_reg_hint_type = user_reg_hint_type;
3280
3281 /* Allow calling CRDA again */
3282 reset_crda_timeouts();
3283
3284 queue_regulatory_request(request);
3285
3286 return 0;
3287 }
3288
regulatory_hint_indoor(bool is_indoor,u32 portid)3289 void regulatory_hint_indoor(bool is_indoor, u32 portid)
3290 {
3291 spin_lock(®_indoor_lock);
3292
3293 /* It is possible that more than one user space process is trying to
3294 * configure the indoor setting. To handle such cases, clear the indoor
3295 * setting in case that some process does not think that the device
3296 * is operating in an indoor environment. In addition, if a user space
3297 * process indicates that it is controlling the indoor setting, save its
3298 * portid, i.e., make it the owner.
3299 */
3300 reg_is_indoor = is_indoor;
3301 if (reg_is_indoor) {
3302 if (!reg_is_indoor_portid)
3303 reg_is_indoor_portid = portid;
3304 } else {
3305 reg_is_indoor_portid = 0;
3306 }
3307
3308 spin_unlock(®_indoor_lock);
3309
3310 if (!is_indoor)
3311 reg_check_channels();
3312 }
3313
regulatory_netlink_notify(u32 portid)3314 void regulatory_netlink_notify(u32 portid)
3315 {
3316 spin_lock(®_indoor_lock);
3317
3318 if (reg_is_indoor_portid != portid) {
3319 spin_unlock(®_indoor_lock);
3320 return;
3321 }
3322
3323 reg_is_indoor = false;
3324 reg_is_indoor_portid = 0;
3325
3326 spin_unlock(®_indoor_lock);
3327
3328 reg_check_channels();
3329 }
3330
3331 /* Driver hints */
regulatory_hint(struct wiphy * wiphy,const char * alpha2)3332 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3333 {
3334 struct regulatory_request *request;
3335
3336 if (WARN_ON(!alpha2 || !wiphy))
3337 return -EINVAL;
3338
3339 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3340
3341 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3342 if (!request)
3343 return -ENOMEM;
3344
3345 request->wiphy_idx = get_wiphy_idx(wiphy);
3346
3347 request->alpha2[0] = alpha2[0];
3348 request->alpha2[1] = alpha2[1];
3349 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3350
3351 /* Allow calling CRDA again */
3352 reset_crda_timeouts();
3353
3354 queue_regulatory_request(request);
3355
3356 return 0;
3357 }
3358 EXPORT_SYMBOL(regulatory_hint);
3359
regulatory_hint_country_ie(struct wiphy * wiphy,enum nl80211_band band,const u8 * country_ie,u8 country_ie_len)3360 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3361 const u8 *country_ie, u8 country_ie_len)
3362 {
3363 char alpha2[2];
3364 enum environment_cap env = ENVIRON_ANY;
3365 struct regulatory_request *request = NULL, *lr;
3366
3367 /* IE len must be evenly divisible by 2 */
3368 if (country_ie_len & 0x01)
3369 return;
3370
3371 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3372 return;
3373
3374 request = kzalloc(sizeof(*request), GFP_KERNEL);
3375 if (!request)
3376 return;
3377
3378 alpha2[0] = country_ie[0];
3379 alpha2[1] = country_ie[1];
3380
3381 if (country_ie[2] == 'I')
3382 env = ENVIRON_INDOOR;
3383 else if (country_ie[2] == 'O')
3384 env = ENVIRON_OUTDOOR;
3385
3386 rcu_read_lock();
3387 lr = get_last_request();
3388
3389 if (unlikely(!lr))
3390 goto out;
3391
3392 /*
3393 * We will run this only upon a successful connection on cfg80211.
3394 * We leave conflict resolution to the workqueue, where can hold
3395 * the RTNL.
3396 */
3397 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3398 lr->wiphy_idx != WIPHY_IDX_INVALID)
3399 goto out;
3400
3401 request->wiphy_idx = get_wiphy_idx(wiphy);
3402 request->alpha2[0] = alpha2[0];
3403 request->alpha2[1] = alpha2[1];
3404 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3405 request->country_ie_env = env;
3406
3407 /* Allow calling CRDA again */
3408 reset_crda_timeouts();
3409
3410 queue_regulatory_request(request);
3411 request = NULL;
3412 out:
3413 kfree(request);
3414 rcu_read_unlock();
3415 }
3416
restore_alpha2(char * alpha2,bool reset_user)3417 static void restore_alpha2(char *alpha2, bool reset_user)
3418 {
3419 /* indicates there is no alpha2 to consider for restoration */
3420 alpha2[0] = '9';
3421 alpha2[1] = '7';
3422
3423 /* The user setting has precedence over the module parameter */
3424 if (is_user_regdom_saved()) {
3425 /* Unless we're asked to ignore it and reset it */
3426 if (reset_user) {
3427 pr_debug("Restoring regulatory settings including user preference\n");
3428 user_alpha2[0] = '9';
3429 user_alpha2[1] = '7';
3430
3431 /*
3432 * If we're ignoring user settings, we still need to
3433 * check the module parameter to ensure we put things
3434 * back as they were for a full restore.
3435 */
3436 if (!is_world_regdom(ieee80211_regdom)) {
3437 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3438 ieee80211_regdom[0], ieee80211_regdom[1]);
3439 alpha2[0] = ieee80211_regdom[0];
3440 alpha2[1] = ieee80211_regdom[1];
3441 }
3442 } else {
3443 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3444 user_alpha2[0], user_alpha2[1]);
3445 alpha2[0] = user_alpha2[0];
3446 alpha2[1] = user_alpha2[1];
3447 }
3448 } else if (!is_world_regdom(ieee80211_regdom)) {
3449 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3450 ieee80211_regdom[0], ieee80211_regdom[1]);
3451 alpha2[0] = ieee80211_regdom[0];
3452 alpha2[1] = ieee80211_regdom[1];
3453 } else
3454 pr_debug("Restoring regulatory settings\n");
3455 }
3456
restore_custom_reg_settings(struct wiphy * wiphy)3457 static void restore_custom_reg_settings(struct wiphy *wiphy)
3458 {
3459 struct ieee80211_supported_band *sband;
3460 enum nl80211_band band;
3461 struct ieee80211_channel *chan;
3462 int i;
3463
3464 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3465 sband = wiphy->bands[band];
3466 if (!sband)
3467 continue;
3468 for (i = 0; i < sband->n_channels; i++) {
3469 chan = &sband->channels[i];
3470 chan->flags = chan->orig_flags;
3471 chan->max_antenna_gain = chan->orig_mag;
3472 chan->max_power = chan->orig_mpwr;
3473 chan->beacon_found = false;
3474 }
3475 }
3476 }
3477
3478 /*
3479 * Restoring regulatory settings involves ignoring any
3480 * possibly stale country IE information and user regulatory
3481 * settings if so desired, this includes any beacon hints
3482 * learned as we could have traveled outside to another country
3483 * after disconnection. To restore regulatory settings we do
3484 * exactly what we did at bootup:
3485 *
3486 * - send a core regulatory hint
3487 * - send a user regulatory hint if applicable
3488 *
3489 * Device drivers that send a regulatory hint for a specific country
3490 * keep their own regulatory domain on wiphy->regd so that does
3491 * not need to be remembered.
3492 */
restore_regulatory_settings(bool reset_user,bool cached)3493 static void restore_regulatory_settings(bool reset_user, bool cached)
3494 {
3495 char alpha2[2];
3496 char world_alpha2[2];
3497 struct reg_beacon *reg_beacon, *btmp;
3498 LIST_HEAD(tmp_reg_req_list);
3499 struct cfg80211_registered_device *rdev;
3500
3501 ASSERT_RTNL();
3502
3503 /*
3504 * Clear the indoor setting in case that it is not controlled by user
3505 * space, as otherwise there is no guarantee that the device is still
3506 * operating in an indoor environment.
3507 */
3508 spin_lock(®_indoor_lock);
3509 if (reg_is_indoor && !reg_is_indoor_portid) {
3510 reg_is_indoor = false;
3511 reg_check_channels();
3512 }
3513 spin_unlock(®_indoor_lock);
3514
3515 reset_regdomains(true, &world_regdom);
3516 restore_alpha2(alpha2, reset_user);
3517
3518 /*
3519 * If there's any pending requests we simply
3520 * stash them to a temporary pending queue and
3521 * add then after we've restored regulatory
3522 * settings.
3523 */
3524 spin_lock(®_requests_lock);
3525 list_splice_tail_init(®_requests_list, &tmp_reg_req_list);
3526 spin_unlock(®_requests_lock);
3527
3528 /* Clear beacon hints */
3529 spin_lock_bh(®_pending_beacons_lock);
3530 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
3531 list_del(®_beacon->list);
3532 kfree(reg_beacon);
3533 }
3534 spin_unlock_bh(®_pending_beacons_lock);
3535
3536 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
3537 list_del(®_beacon->list);
3538 kfree(reg_beacon);
3539 }
3540
3541 /* First restore to the basic regulatory settings */
3542 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3543 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3544
3545 for_each_rdev(rdev) {
3546 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3547 continue;
3548 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3549 restore_custom_reg_settings(&rdev->wiphy);
3550 }
3551
3552 if (cached && (!is_an_alpha2(alpha2) ||
3553 !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3554 reset_regdomains(false, cfg80211_world_regdom);
3555 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3556 print_regdomain(get_cfg80211_regdom());
3557 nl80211_send_reg_change_event(&core_request_world);
3558 reg_set_request_processed();
3559
3560 if (is_an_alpha2(alpha2) &&
3561 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3562 struct regulatory_request *ureq;
3563
3564 spin_lock(®_requests_lock);
3565 ureq = list_last_entry(®_requests_list,
3566 struct regulatory_request,
3567 list);
3568 list_del(&ureq->list);
3569 spin_unlock(®_requests_lock);
3570
3571 notify_self_managed_wiphys(ureq);
3572 reg_update_last_request(ureq);
3573 set_regdom(reg_copy_regd(cfg80211_user_regdom),
3574 REGD_SOURCE_CACHED);
3575 }
3576 } else {
3577 regulatory_hint_core(world_alpha2);
3578
3579 /*
3580 * This restores the ieee80211_regdom module parameter
3581 * preference or the last user requested regulatory
3582 * settings, user regulatory settings takes precedence.
3583 */
3584 if (is_an_alpha2(alpha2))
3585 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3586 }
3587
3588 spin_lock(®_requests_lock);
3589 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list);
3590 spin_unlock(®_requests_lock);
3591
3592 pr_debug("Kicking the queue\n");
3593
3594 schedule_work(®_work);
3595 }
3596
is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)3597 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3598 {
3599 struct cfg80211_registered_device *rdev;
3600 struct wireless_dev *wdev;
3601
3602 for_each_rdev(rdev) {
3603 wiphy_lock(&rdev->wiphy);
3604 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3605 if (!(wdev->wiphy->regulatory_flags & flag)) {
3606 wiphy_unlock(&rdev->wiphy);
3607 return false;
3608 }
3609 }
3610 wiphy_unlock(&rdev->wiphy);
3611 }
3612
3613 return true;
3614 }
3615
regulatory_hint_disconnect(void)3616 void regulatory_hint_disconnect(void)
3617 {
3618 /* Restore of regulatory settings is not required when wiphy(s)
3619 * ignore IE from connected access point but clearance of beacon hints
3620 * is required when wiphy(s) supports beacon hints.
3621 */
3622 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3623 struct reg_beacon *reg_beacon, *btmp;
3624
3625 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3626 return;
3627
3628 spin_lock_bh(®_pending_beacons_lock);
3629 list_for_each_entry_safe(reg_beacon, btmp,
3630 ®_pending_beacons, list) {
3631 list_del(®_beacon->list);
3632 kfree(reg_beacon);
3633 }
3634 spin_unlock_bh(®_pending_beacons_lock);
3635
3636 list_for_each_entry_safe(reg_beacon, btmp,
3637 ®_beacon_list, list) {
3638 list_del(®_beacon->list);
3639 kfree(reg_beacon);
3640 }
3641
3642 return;
3643 }
3644
3645 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3646 restore_regulatory_settings(false, true);
3647 }
3648
freq_is_chan_12_13_14(u32 freq)3649 static bool freq_is_chan_12_13_14(u32 freq)
3650 {
3651 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3652 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3653 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3654 return true;
3655 return false;
3656 }
3657
pending_reg_beacon(struct ieee80211_channel * beacon_chan)3658 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3659 {
3660 struct reg_beacon *pending_beacon;
3661
3662 list_for_each_entry(pending_beacon, ®_pending_beacons, list)
3663 if (ieee80211_channel_equal(beacon_chan,
3664 &pending_beacon->chan))
3665 return true;
3666 return false;
3667 }
3668
regulatory_hint_found_beacon(struct wiphy * wiphy,struct ieee80211_channel * beacon_chan,gfp_t gfp)3669 void regulatory_hint_found_beacon(struct wiphy *wiphy,
3670 struct ieee80211_channel *beacon_chan,
3671 gfp_t gfp)
3672 {
3673 struct reg_beacon *reg_beacon;
3674 bool processing;
3675
3676 if (beacon_chan->beacon_found ||
3677 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3678 (beacon_chan->band == NL80211_BAND_2GHZ &&
3679 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3680 return;
3681
3682 spin_lock_bh(®_pending_beacons_lock);
3683 processing = pending_reg_beacon(beacon_chan);
3684 spin_unlock_bh(®_pending_beacons_lock);
3685
3686 if (processing)
3687 return;
3688
3689 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3690 if (!reg_beacon)
3691 return;
3692
3693 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3694 beacon_chan->center_freq, beacon_chan->freq_offset,
3695 ieee80211_freq_khz_to_channel(
3696 ieee80211_channel_to_khz(beacon_chan)),
3697 wiphy_name(wiphy));
3698
3699 memcpy(®_beacon->chan, beacon_chan,
3700 sizeof(struct ieee80211_channel));
3701
3702 /*
3703 * Since we can be called from BH or and non-BH context
3704 * we must use spin_lock_bh()
3705 */
3706 spin_lock_bh(®_pending_beacons_lock);
3707 list_add_tail(®_beacon->list, ®_pending_beacons);
3708 spin_unlock_bh(®_pending_beacons_lock);
3709
3710 schedule_work(®_work);
3711 }
3712
print_rd_rules(const struct ieee80211_regdomain * rd)3713 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3714 {
3715 unsigned int i;
3716 const struct ieee80211_reg_rule *reg_rule = NULL;
3717 const struct ieee80211_freq_range *freq_range = NULL;
3718 const struct ieee80211_power_rule *power_rule = NULL;
3719 char bw[32], cac_time[32];
3720
3721 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3722
3723 for (i = 0; i < rd->n_reg_rules; i++) {
3724 reg_rule = &rd->reg_rules[i];
3725 freq_range = ®_rule->freq_range;
3726 power_rule = ®_rule->power_rule;
3727
3728 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3729 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3730 freq_range->max_bandwidth_khz,
3731 reg_get_max_bandwidth(rd, reg_rule));
3732 else
3733 snprintf(bw, sizeof(bw), "%d KHz",
3734 freq_range->max_bandwidth_khz);
3735
3736 if (reg_rule->flags & NL80211_RRF_DFS)
3737 scnprintf(cac_time, sizeof(cac_time), "%u s",
3738 reg_rule->dfs_cac_ms/1000);
3739 else
3740 scnprintf(cac_time, sizeof(cac_time), "N/A");
3741
3742
3743 /*
3744 * There may not be documentation for max antenna gain
3745 * in certain regions
3746 */
3747 if (power_rule->max_antenna_gain)
3748 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3749 freq_range->start_freq_khz,
3750 freq_range->end_freq_khz,
3751 bw,
3752 power_rule->max_antenna_gain,
3753 power_rule->max_eirp,
3754 cac_time);
3755 else
3756 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3757 freq_range->start_freq_khz,
3758 freq_range->end_freq_khz,
3759 bw,
3760 power_rule->max_eirp,
3761 cac_time);
3762 }
3763 }
3764
reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)3765 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3766 {
3767 switch (dfs_region) {
3768 case NL80211_DFS_UNSET:
3769 case NL80211_DFS_FCC:
3770 case NL80211_DFS_ETSI:
3771 case NL80211_DFS_JP:
3772 return true;
3773 default:
3774 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3775 return false;
3776 }
3777 }
3778
print_regdomain(const struct ieee80211_regdomain * rd)3779 static void print_regdomain(const struct ieee80211_regdomain *rd)
3780 {
3781 struct regulatory_request *lr = get_last_request();
3782
3783 if (is_intersected_alpha2(rd->alpha2)) {
3784 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3785 struct cfg80211_registered_device *rdev;
3786 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3787 if (rdev) {
3788 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3789 rdev->country_ie_alpha2[0],
3790 rdev->country_ie_alpha2[1]);
3791 } else
3792 pr_debug("Current regulatory domain intersected:\n");
3793 } else
3794 pr_debug("Current regulatory domain intersected:\n");
3795 } else if (is_world_regdom(rd->alpha2)) {
3796 pr_debug("World regulatory domain updated:\n");
3797 } else {
3798 if (is_unknown_alpha2(rd->alpha2))
3799 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3800 else {
3801 if (reg_request_cell_base(lr))
3802 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3803 rd->alpha2[0], rd->alpha2[1]);
3804 else
3805 pr_debug("Regulatory domain changed to country: %c%c\n",
3806 rd->alpha2[0], rd->alpha2[1]);
3807 }
3808 }
3809
3810 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3811 print_rd_rules(rd);
3812 }
3813
print_regdomain_info(const struct ieee80211_regdomain * rd)3814 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3815 {
3816 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3817 print_rd_rules(rd);
3818 }
3819
reg_set_rd_core(const struct ieee80211_regdomain * rd)3820 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3821 {
3822 if (!is_world_regdom(rd->alpha2))
3823 return -EINVAL;
3824 update_world_regdomain(rd);
3825 return 0;
3826 }
3827
reg_set_rd_user(const struct ieee80211_regdomain * rd,struct regulatory_request * user_request)3828 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3829 struct regulatory_request *user_request)
3830 {
3831 const struct ieee80211_regdomain *intersected_rd = NULL;
3832
3833 if (!regdom_changes(rd->alpha2))
3834 return -EALREADY;
3835
3836 if (!is_valid_rd(rd)) {
3837 pr_err("Invalid regulatory domain detected: %c%c\n",
3838 rd->alpha2[0], rd->alpha2[1]);
3839 print_regdomain_info(rd);
3840 return -EINVAL;
3841 }
3842
3843 if (!user_request->intersect) {
3844 reset_regdomains(false, rd);
3845 return 0;
3846 }
3847
3848 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3849 if (!intersected_rd)
3850 return -EINVAL;
3851
3852 kfree(rd);
3853 rd = NULL;
3854 reset_regdomains(false, intersected_rd);
3855
3856 return 0;
3857 }
3858
reg_set_rd_driver(const struct ieee80211_regdomain * rd,struct regulatory_request * driver_request)3859 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3860 struct regulatory_request *driver_request)
3861 {
3862 const struct ieee80211_regdomain *regd;
3863 const struct ieee80211_regdomain *intersected_rd = NULL;
3864 const struct ieee80211_regdomain *tmp = NULL;
3865 struct wiphy *request_wiphy;
3866
3867 if (is_world_regdom(rd->alpha2))
3868 return -EINVAL;
3869
3870 if (!regdom_changes(rd->alpha2))
3871 return -EALREADY;
3872
3873 if (!is_valid_rd(rd)) {
3874 pr_err("Invalid regulatory domain detected: %c%c\n",
3875 rd->alpha2[0], rd->alpha2[1]);
3876 print_regdomain_info(rd);
3877 return -EINVAL;
3878 }
3879
3880 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3881 if (!request_wiphy)
3882 return -ENODEV;
3883
3884 if (!driver_request->intersect) {
3885 ASSERT_RTNL();
3886 wiphy_lock(request_wiphy);
3887 if (request_wiphy->regd)
3888 tmp = get_wiphy_regdom(request_wiphy);
3889
3890 regd = reg_copy_regd(rd);
3891 if (IS_ERR(regd)) {
3892 wiphy_unlock(request_wiphy);
3893 return PTR_ERR(regd);
3894 }
3895
3896 rcu_assign_pointer(request_wiphy->regd, regd);
3897 rcu_free_regdom(tmp);
3898 wiphy_unlock(request_wiphy);
3899 reset_regdomains(false, rd);
3900 return 0;
3901 }
3902
3903 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3904 if (!intersected_rd)
3905 return -EINVAL;
3906
3907 /*
3908 * We can trash what CRDA provided now.
3909 * However if a driver requested this specific regulatory
3910 * domain we keep it for its private use
3911 */
3912 tmp = get_wiphy_regdom(request_wiphy);
3913 rcu_assign_pointer(request_wiphy->regd, rd);
3914 rcu_free_regdom(tmp);
3915
3916 rd = NULL;
3917
3918 reset_regdomains(false, intersected_rd);
3919
3920 return 0;
3921 }
3922
reg_set_rd_country_ie(const struct ieee80211_regdomain * rd,struct regulatory_request * country_ie_request)3923 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3924 struct regulatory_request *country_ie_request)
3925 {
3926 struct wiphy *request_wiphy;
3927
3928 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3929 !is_unknown_alpha2(rd->alpha2))
3930 return -EINVAL;
3931
3932 /*
3933 * Lets only bother proceeding on the same alpha2 if the current
3934 * rd is non static (it means CRDA was present and was used last)
3935 * and the pending request came in from a country IE
3936 */
3937
3938 if (!is_valid_rd(rd)) {
3939 pr_err("Invalid regulatory domain detected: %c%c\n",
3940 rd->alpha2[0], rd->alpha2[1]);
3941 print_regdomain_info(rd);
3942 return -EINVAL;
3943 }
3944
3945 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3946 if (!request_wiphy)
3947 return -ENODEV;
3948
3949 if (country_ie_request->intersect)
3950 return -EINVAL;
3951
3952 reset_regdomains(false, rd);
3953 return 0;
3954 }
3955
3956 /*
3957 * Use this call to set the current regulatory domain. Conflicts with
3958 * multiple drivers can be ironed out later. Caller must've already
3959 * kmalloc'd the rd structure.
3960 */
set_regdom(const struct ieee80211_regdomain * rd,enum ieee80211_regd_source regd_src)3961 int set_regdom(const struct ieee80211_regdomain *rd,
3962 enum ieee80211_regd_source regd_src)
3963 {
3964 struct regulatory_request *lr;
3965 bool user_reset = false;
3966 int r;
3967
3968 if (IS_ERR_OR_NULL(rd))
3969 return -ENODATA;
3970
3971 if (!reg_is_valid_request(rd->alpha2)) {
3972 kfree(rd);
3973 return -EINVAL;
3974 }
3975
3976 if (regd_src == REGD_SOURCE_CRDA)
3977 reset_crda_timeouts();
3978
3979 lr = get_last_request();
3980
3981 /* Note that this doesn't update the wiphys, this is done below */
3982 switch (lr->initiator) {
3983 case NL80211_REGDOM_SET_BY_CORE:
3984 r = reg_set_rd_core(rd);
3985 break;
3986 case NL80211_REGDOM_SET_BY_USER:
3987 cfg80211_save_user_regdom(rd);
3988 r = reg_set_rd_user(rd, lr);
3989 user_reset = true;
3990 break;
3991 case NL80211_REGDOM_SET_BY_DRIVER:
3992 r = reg_set_rd_driver(rd, lr);
3993 break;
3994 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3995 r = reg_set_rd_country_ie(rd, lr);
3996 break;
3997 default:
3998 WARN(1, "invalid initiator %d\n", lr->initiator);
3999 kfree(rd);
4000 return -EINVAL;
4001 }
4002
4003 if (r) {
4004 switch (r) {
4005 case -EALREADY:
4006 reg_set_request_processed();
4007 break;
4008 default:
4009 /* Back to world regulatory in case of errors */
4010 restore_regulatory_settings(user_reset, false);
4011 }
4012
4013 kfree(rd);
4014 return r;
4015 }
4016
4017 /* This would make this whole thing pointless */
4018 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
4019 return -EINVAL;
4020
4021 /* update all wiphys now with the new established regulatory domain */
4022 update_all_wiphy_regulatory(lr->initiator);
4023
4024 print_regdomain(get_cfg80211_regdom());
4025
4026 nl80211_send_reg_change_event(lr);
4027
4028 reg_set_request_processed();
4029
4030 return 0;
4031 }
4032
__regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4033 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4034 struct ieee80211_regdomain *rd)
4035 {
4036 const struct ieee80211_regdomain *regd;
4037 const struct ieee80211_regdomain *prev_regd;
4038 struct cfg80211_registered_device *rdev;
4039
4040 if (WARN_ON(!wiphy || !rd))
4041 return -EINVAL;
4042
4043 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4044 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4045 return -EPERM;
4046
4047 if (WARN(!is_valid_rd(rd),
4048 "Invalid regulatory domain detected: %c%c\n",
4049 rd->alpha2[0], rd->alpha2[1])) {
4050 print_regdomain_info(rd);
4051 return -EINVAL;
4052 }
4053
4054 regd = reg_copy_regd(rd);
4055 if (IS_ERR(regd))
4056 return PTR_ERR(regd);
4057
4058 rdev = wiphy_to_rdev(wiphy);
4059
4060 spin_lock(®_requests_lock);
4061 prev_regd = rdev->requested_regd;
4062 rdev->requested_regd = regd;
4063 spin_unlock(®_requests_lock);
4064
4065 kfree(prev_regd);
4066 return 0;
4067 }
4068
regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4069 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4070 struct ieee80211_regdomain *rd)
4071 {
4072 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4073
4074 if (ret)
4075 return ret;
4076
4077 schedule_work(®_work);
4078 return 0;
4079 }
4080 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4081
regulatory_set_wiphy_regd_sync(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4082 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4083 struct ieee80211_regdomain *rd)
4084 {
4085 int ret;
4086
4087 ASSERT_RTNL();
4088
4089 ret = __regulatory_set_wiphy_regd(wiphy, rd);
4090 if (ret)
4091 return ret;
4092
4093 /* process the request immediately */
4094 reg_process_self_managed_hint(wiphy);
4095 reg_check_channels();
4096 return 0;
4097 }
4098 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4099
wiphy_regulatory_register(struct wiphy * wiphy)4100 void wiphy_regulatory_register(struct wiphy *wiphy)
4101 {
4102 struct regulatory_request *lr = get_last_request();
4103
4104 /* self-managed devices ignore beacon hints and country IE */
4105 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4106 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4107 REGULATORY_COUNTRY_IE_IGNORE;
4108
4109 /*
4110 * The last request may have been received before this
4111 * registration call. Call the driver notifier if
4112 * initiator is USER.
4113 */
4114 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4115 reg_call_notifier(wiphy, lr);
4116 }
4117
4118 if (!reg_dev_ignore_cell_hint(wiphy))
4119 reg_num_devs_support_basehint++;
4120
4121 wiphy_update_regulatory(wiphy, lr->initiator);
4122 wiphy_all_share_dfs_chan_state(wiphy);
4123 reg_process_self_managed_hints();
4124 }
4125
wiphy_regulatory_deregister(struct wiphy * wiphy)4126 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4127 {
4128 struct wiphy *request_wiphy = NULL;
4129 struct regulatory_request *lr;
4130
4131 lr = get_last_request();
4132
4133 if (!reg_dev_ignore_cell_hint(wiphy))
4134 reg_num_devs_support_basehint--;
4135
4136 rcu_free_regdom(get_wiphy_regdom(wiphy));
4137 RCU_INIT_POINTER(wiphy->regd, NULL);
4138
4139 if (lr)
4140 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4141
4142 if (!request_wiphy || request_wiphy != wiphy)
4143 return;
4144
4145 lr->wiphy_idx = WIPHY_IDX_INVALID;
4146 lr->country_ie_env = ENVIRON_ANY;
4147 }
4148
4149 /*
4150 * See FCC notices for UNII band definitions
4151 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4152 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4153 */
cfg80211_get_unii(int freq)4154 int cfg80211_get_unii(int freq)
4155 {
4156 /* UNII-1 */
4157 if (freq >= 5150 && freq <= 5250)
4158 return 0;
4159
4160 /* UNII-2A */
4161 if (freq > 5250 && freq <= 5350)
4162 return 1;
4163
4164 /* UNII-2B */
4165 if (freq > 5350 && freq <= 5470)
4166 return 2;
4167
4168 /* UNII-2C */
4169 if (freq > 5470 && freq <= 5725)
4170 return 3;
4171
4172 /* UNII-3 */
4173 if (freq > 5725 && freq <= 5825)
4174 return 4;
4175
4176 /* UNII-5 */
4177 if (freq > 5925 && freq <= 6425)
4178 return 5;
4179
4180 /* UNII-6 */
4181 if (freq > 6425 && freq <= 6525)
4182 return 6;
4183
4184 /* UNII-7 */
4185 if (freq > 6525 && freq <= 6875)
4186 return 7;
4187
4188 /* UNII-8 */
4189 if (freq > 6875 && freq <= 7125)
4190 return 8;
4191
4192 return -EINVAL;
4193 }
4194
regulatory_indoor_allowed(void)4195 bool regulatory_indoor_allowed(void)
4196 {
4197 return reg_is_indoor;
4198 }
4199
regulatory_pre_cac_allowed(struct wiphy * wiphy)4200 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4201 {
4202 const struct ieee80211_regdomain *regd = NULL;
4203 const struct ieee80211_regdomain *wiphy_regd = NULL;
4204 bool pre_cac_allowed = false;
4205
4206 rcu_read_lock();
4207
4208 regd = rcu_dereference(cfg80211_regdomain);
4209 wiphy_regd = rcu_dereference(wiphy->regd);
4210 if (!wiphy_regd) {
4211 if (regd->dfs_region == NL80211_DFS_ETSI)
4212 pre_cac_allowed = true;
4213
4214 rcu_read_unlock();
4215
4216 return pre_cac_allowed;
4217 }
4218
4219 if (regd->dfs_region == wiphy_regd->dfs_region &&
4220 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4221 pre_cac_allowed = true;
4222
4223 rcu_read_unlock();
4224
4225 return pre_cac_allowed;
4226 }
4227 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4228
cfg80211_check_and_end_cac(struct cfg80211_registered_device * rdev)4229 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4230 {
4231 struct wireless_dev *wdev;
4232 unsigned int link_id;
4233
4234 /* If we finished CAC or received radar, we should end any
4235 * CAC running on the same channels.
4236 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4237 * either all channels are available - those the CAC_FINISHED
4238 * event has effected another wdev state, or there is a channel
4239 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4240 * event has effected another wdev state.
4241 * In both cases we should end the CAC on the wdev.
4242 */
4243 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4244 struct cfg80211_chan_def *chandef;
4245
4246 for_each_valid_link(wdev, link_id) {
4247 if (!wdev->links[link_id].cac_started)
4248 continue;
4249
4250 chandef = wdev_chandef(wdev, link_id);
4251 if (!chandef)
4252 continue;
4253
4254 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4255 rdev_end_cac(rdev, wdev->netdev, link_id);
4256 }
4257 }
4258 }
4259
regulatory_propagate_dfs_state(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,enum nl80211_dfs_state dfs_state,enum nl80211_radar_event event)4260 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4261 struct cfg80211_chan_def *chandef,
4262 enum nl80211_dfs_state dfs_state,
4263 enum nl80211_radar_event event)
4264 {
4265 struct cfg80211_registered_device *rdev;
4266
4267 ASSERT_RTNL();
4268
4269 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4270 return;
4271
4272 for_each_rdev(rdev) {
4273 if (wiphy == &rdev->wiphy)
4274 continue;
4275
4276 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4277 continue;
4278
4279 if (!ieee80211_get_channel(&rdev->wiphy,
4280 chandef->chan->center_freq))
4281 continue;
4282
4283 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4284
4285 if (event == NL80211_RADAR_DETECTED ||
4286 event == NL80211_RADAR_CAC_FINISHED) {
4287 cfg80211_sched_dfs_chan_update(rdev);
4288 cfg80211_check_and_end_cac(rdev);
4289 }
4290
4291 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4292 }
4293 }
4294
regulatory_init_db(void)4295 static int __init regulatory_init_db(void)
4296 {
4297 int err;
4298
4299 /*
4300 * It's possible that - due to other bugs/issues - cfg80211
4301 * never called regulatory_init() below, or that it failed;
4302 * in that case, don't try to do any further work here as
4303 * it's doomed to lead to crashes.
4304 */
4305 if (IS_ERR_OR_NULL(reg_pdev))
4306 return -EINVAL;
4307
4308 err = load_builtin_regdb_keys();
4309 if (err) {
4310 platform_device_unregister(reg_pdev);
4311 return err;
4312 }
4313
4314 /* We always try to get an update for the static regdomain */
4315 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4316 if (err) {
4317 if (err == -ENOMEM) {
4318 platform_device_unregister(reg_pdev);
4319 return err;
4320 }
4321 /*
4322 * N.B. kobject_uevent_env() can fail mainly for when we're out
4323 * memory which is handled and propagated appropriately above
4324 * but it can also fail during a netlink_broadcast() or during
4325 * early boot for call_usermodehelper(). For now treat these
4326 * errors as non-fatal.
4327 */
4328 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4329 }
4330
4331 /*
4332 * Finally, if the user set the module parameter treat it
4333 * as a user hint.
4334 */
4335 if (!is_world_regdom(ieee80211_regdom))
4336 regulatory_hint_user(ieee80211_regdom,
4337 NL80211_USER_REG_HINT_USER);
4338
4339 return 0;
4340 }
4341 #ifndef MODULE
4342 late_initcall(regulatory_init_db);
4343 #endif
4344
regulatory_init(void)4345 int __init regulatory_init(void)
4346 {
4347 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4348 if (IS_ERR(reg_pdev))
4349 return PTR_ERR(reg_pdev);
4350
4351 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4352
4353 user_alpha2[0] = '9';
4354 user_alpha2[1] = '7';
4355
4356 #ifdef MODULE
4357 return regulatory_init_db();
4358 #else
4359 return 0;
4360 #endif
4361 }
4362
regulatory_exit(void)4363 void regulatory_exit(void)
4364 {
4365 struct regulatory_request *reg_request, *tmp;
4366 struct reg_beacon *reg_beacon, *btmp;
4367
4368 cancel_work_sync(®_work);
4369 cancel_crda_timeout_sync();
4370 cancel_delayed_work_sync(®_check_chans);
4371
4372 /* Lock to suppress warnings */
4373 rtnl_lock();
4374 reset_regdomains(true, NULL);
4375 rtnl_unlock();
4376
4377 dev_set_uevent_suppress(®_pdev->dev, true);
4378
4379 platform_device_unregister(reg_pdev);
4380
4381 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
4382 list_del(®_beacon->list);
4383 kfree(reg_beacon);
4384 }
4385
4386 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
4387 list_del(®_beacon->list);
4388 kfree(reg_beacon);
4389 }
4390
4391 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) {
4392 list_del(®_request->list);
4393 kfree(reg_request);
4394 }
4395
4396 if (!IS_ERR_OR_NULL(regdb))
4397 kfree(regdb);
4398 if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4399 kfree(cfg80211_user_regdom);
4400
4401 free_regdb_keyring();
4402 }
4403