xref: /linux/net/wireless/reg.c (revision 9410645520e9b820069761f3450ef6661418e279)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2024 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <linux/units.h>
61 
62 #include <net/cfg80211.h>
63 #include "core.h"
64 #include "reg.h"
65 #include "rdev-ops.h"
66 #include "nl80211.h"
67 
68 /*
69  * Grace period we give before making sure all current interfaces reside on
70  * channels allowed by the current regulatory domain.
71  */
72 #define REG_ENFORCE_GRACE_MS 60000
73 
74 /**
75  * enum reg_request_treatment - regulatory request treatment
76  *
77  * @REG_REQ_OK: continue processing the regulatory request
78  * @REG_REQ_IGNORE: ignore the regulatory request
79  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
80  *	be intersected with the current one.
81  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
82  *	regulatory settings, and no further processing is required.
83  */
84 enum reg_request_treatment {
85 	REG_REQ_OK,
86 	REG_REQ_IGNORE,
87 	REG_REQ_INTERSECT,
88 	REG_REQ_ALREADY_SET,
89 };
90 
91 static struct regulatory_request core_request_world = {
92 	.initiator = NL80211_REGDOM_SET_BY_CORE,
93 	.alpha2[0] = '0',
94 	.alpha2[1] = '0',
95 	.intersect = false,
96 	.processed = true,
97 	.country_ie_env = ENVIRON_ANY,
98 };
99 
100 /*
101  * Receipt of information from last regulatory request,
102  * protected by RTNL (and can be accessed with RCU protection)
103  */
104 static struct regulatory_request __rcu *last_request =
105 	(void __force __rcu *)&core_request_world;
106 
107 /* To trigger userspace events and load firmware */
108 static struct platform_device *reg_pdev;
109 
110 /*
111  * Central wireless core regulatory domains, we only need two,
112  * the current one and a world regulatory domain in case we have no
113  * information to give us an alpha2.
114  * (protected by RTNL, can be read under RCU)
115  */
116 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
117 
118 /*
119  * Number of devices that registered to the core
120  * that support cellular base station regulatory hints
121  * (protected by RTNL)
122  */
123 static int reg_num_devs_support_basehint;
124 
125 /*
126  * State variable indicating if the platform on which the devices
127  * are attached is operating in an indoor environment. The state variable
128  * is relevant for all registered devices.
129  */
130 static bool reg_is_indoor;
131 static DEFINE_SPINLOCK(reg_indoor_lock);
132 
133 /* Used to track the userspace process controlling the indoor setting */
134 static u32 reg_is_indoor_portid;
135 
136 static void restore_regulatory_settings(bool reset_user, bool cached);
137 static void print_regdomain(const struct ieee80211_regdomain *rd);
138 static void reg_process_hint(struct regulatory_request *reg_request);
139 
get_cfg80211_regdom(void)140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
141 {
142 	return rcu_dereference_rtnl(cfg80211_regdomain);
143 }
144 
145 /*
146  * Returns the regulatory domain associated with the wiphy.
147  *
148  * Requires any of RTNL, wiphy mutex or RCU protection.
149  */
get_wiphy_regdom(struct wiphy * wiphy)150 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
151 {
152 	return rcu_dereference_check(wiphy->regd,
153 				     lockdep_is_held(&wiphy->mtx) ||
154 				     lockdep_rtnl_is_held());
155 }
156 EXPORT_SYMBOL(get_wiphy_regdom);
157 
reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)158 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
159 {
160 	switch (dfs_region) {
161 	case NL80211_DFS_UNSET:
162 		return "unset";
163 	case NL80211_DFS_FCC:
164 		return "FCC";
165 	case NL80211_DFS_ETSI:
166 		return "ETSI";
167 	case NL80211_DFS_JP:
168 		return "JP";
169 	}
170 	return "Unknown";
171 }
172 
reg_get_dfs_region(struct wiphy * wiphy)173 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
174 {
175 	const struct ieee80211_regdomain *regd = NULL;
176 	const struct ieee80211_regdomain *wiphy_regd = NULL;
177 	enum nl80211_dfs_regions dfs_region;
178 
179 	rcu_read_lock();
180 	regd = get_cfg80211_regdom();
181 	dfs_region = regd->dfs_region;
182 
183 	if (!wiphy)
184 		goto out;
185 
186 	wiphy_regd = get_wiphy_regdom(wiphy);
187 	if (!wiphy_regd)
188 		goto out;
189 
190 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
191 		dfs_region = wiphy_regd->dfs_region;
192 		goto out;
193 	}
194 
195 	if (wiphy_regd->dfs_region == regd->dfs_region)
196 		goto out;
197 
198 	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
199 		 dev_name(&wiphy->dev),
200 		 reg_dfs_region_str(wiphy_regd->dfs_region),
201 		 reg_dfs_region_str(regd->dfs_region));
202 
203 out:
204 	rcu_read_unlock();
205 
206 	return dfs_region;
207 }
208 
rcu_free_regdom(const struct ieee80211_regdomain * r)209 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
210 {
211 	if (!r)
212 		return;
213 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
214 }
215 
get_last_request(void)216 static struct regulatory_request *get_last_request(void)
217 {
218 	return rcu_dereference_rtnl(last_request);
219 }
220 
221 /* Used to queue up regulatory hints */
222 static LIST_HEAD(reg_requests_list);
223 static DEFINE_SPINLOCK(reg_requests_lock);
224 
225 /* Used to queue up beacon hints for review */
226 static LIST_HEAD(reg_pending_beacons);
227 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
228 
229 /* Used to keep track of processed beacon hints */
230 static LIST_HEAD(reg_beacon_list);
231 
232 struct reg_beacon {
233 	struct list_head list;
234 	struct ieee80211_channel chan;
235 };
236 
237 static void reg_check_chans_work(struct work_struct *work);
238 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
239 
240 static void reg_todo(struct work_struct *work);
241 static DECLARE_WORK(reg_work, reg_todo);
242 
243 /* We keep a static world regulatory domain in case of the absence of CRDA */
244 static const struct ieee80211_regdomain world_regdom = {
245 	.n_reg_rules = 8,
246 	.alpha2 =  "00",
247 	.reg_rules = {
248 		/* IEEE 802.11b/g, channels 1..11 */
249 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
250 		/* IEEE 802.11b/g, channels 12..13. */
251 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
252 			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
253 		/* IEEE 802.11 channel 14 - Only JP enables
254 		 * this and for 802.11b only */
255 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
256 			NL80211_RRF_NO_IR |
257 			NL80211_RRF_NO_OFDM),
258 		/* IEEE 802.11a, channel 36..48 */
259 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
260                         NL80211_RRF_NO_IR |
261                         NL80211_RRF_AUTO_BW),
262 
263 		/* IEEE 802.11a, channel 52..64 - DFS required */
264 		REG_RULE(5260-10, 5320+10, 80, 6, 20,
265 			NL80211_RRF_NO_IR |
266 			NL80211_RRF_AUTO_BW |
267 			NL80211_RRF_DFS),
268 
269 		/* IEEE 802.11a, channel 100..144 - DFS required */
270 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
271 			NL80211_RRF_NO_IR |
272 			NL80211_RRF_DFS),
273 
274 		/* IEEE 802.11a, channel 149..165 */
275 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
276 			NL80211_RRF_NO_IR),
277 
278 		/* IEEE 802.11ad (60GHz), channels 1..3 */
279 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
280 	}
281 };
282 
283 /* protected by RTNL */
284 static const struct ieee80211_regdomain *cfg80211_world_regdom =
285 	&world_regdom;
286 
287 static char *ieee80211_regdom = "00";
288 static char user_alpha2[2];
289 static const struct ieee80211_regdomain *cfg80211_user_regdom;
290 
291 module_param(ieee80211_regdom, charp, 0444);
292 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
293 
reg_free_request(struct regulatory_request * request)294 static void reg_free_request(struct regulatory_request *request)
295 {
296 	if (request == &core_request_world)
297 		return;
298 
299 	if (request != get_last_request())
300 		kfree(request);
301 }
302 
reg_free_last_request(void)303 static void reg_free_last_request(void)
304 {
305 	struct regulatory_request *lr = get_last_request();
306 
307 	if (lr != &core_request_world && lr)
308 		kfree_rcu(lr, rcu_head);
309 }
310 
reg_update_last_request(struct regulatory_request * request)311 static void reg_update_last_request(struct regulatory_request *request)
312 {
313 	struct regulatory_request *lr;
314 
315 	lr = get_last_request();
316 	if (lr == request)
317 		return;
318 
319 	reg_free_last_request();
320 	rcu_assign_pointer(last_request, request);
321 }
322 
reset_regdomains(bool full_reset,const struct ieee80211_regdomain * new_regdom)323 static void reset_regdomains(bool full_reset,
324 			     const struct ieee80211_regdomain *new_regdom)
325 {
326 	const struct ieee80211_regdomain *r;
327 
328 	ASSERT_RTNL();
329 
330 	r = get_cfg80211_regdom();
331 
332 	/* avoid freeing static information or freeing something twice */
333 	if (r == cfg80211_world_regdom)
334 		r = NULL;
335 	if (cfg80211_world_regdom == &world_regdom)
336 		cfg80211_world_regdom = NULL;
337 	if (r == &world_regdom)
338 		r = NULL;
339 
340 	rcu_free_regdom(r);
341 	rcu_free_regdom(cfg80211_world_regdom);
342 
343 	cfg80211_world_regdom = &world_regdom;
344 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
345 
346 	if (!full_reset)
347 		return;
348 
349 	reg_update_last_request(&core_request_world);
350 }
351 
352 /*
353  * Dynamic world regulatory domain requested by the wireless
354  * core upon initialization
355  */
update_world_regdomain(const struct ieee80211_regdomain * rd)356 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
357 {
358 	struct regulatory_request *lr;
359 
360 	lr = get_last_request();
361 
362 	WARN_ON(!lr);
363 
364 	reset_regdomains(false, rd);
365 
366 	cfg80211_world_regdom = rd;
367 }
368 
is_world_regdom(const char * alpha2)369 bool is_world_regdom(const char *alpha2)
370 {
371 	if (!alpha2)
372 		return false;
373 	return alpha2[0] == '0' && alpha2[1] == '0';
374 }
375 
is_alpha2_set(const char * alpha2)376 static bool is_alpha2_set(const char *alpha2)
377 {
378 	if (!alpha2)
379 		return false;
380 	return alpha2[0] && alpha2[1];
381 }
382 
is_unknown_alpha2(const char * alpha2)383 static bool is_unknown_alpha2(const char *alpha2)
384 {
385 	if (!alpha2)
386 		return false;
387 	/*
388 	 * Special case where regulatory domain was built by driver
389 	 * but a specific alpha2 cannot be determined
390 	 */
391 	return alpha2[0] == '9' && alpha2[1] == '9';
392 }
393 
is_intersected_alpha2(const char * alpha2)394 static bool is_intersected_alpha2(const char *alpha2)
395 {
396 	if (!alpha2)
397 		return false;
398 	/*
399 	 * Special case where regulatory domain is the
400 	 * result of an intersection between two regulatory domain
401 	 * structures
402 	 */
403 	return alpha2[0] == '9' && alpha2[1] == '8';
404 }
405 
is_an_alpha2(const char * alpha2)406 static bool is_an_alpha2(const char *alpha2)
407 {
408 	if (!alpha2)
409 		return false;
410 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
411 }
412 
alpha2_equal(const char * alpha2_x,const char * alpha2_y)413 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
414 {
415 	if (!alpha2_x || !alpha2_y)
416 		return false;
417 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
418 }
419 
regdom_changes(const char * alpha2)420 static bool regdom_changes(const char *alpha2)
421 {
422 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
423 
424 	if (!r)
425 		return true;
426 	return !alpha2_equal(r->alpha2, alpha2);
427 }
428 
429 /*
430  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
431  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
432  * has ever been issued.
433  */
is_user_regdom_saved(void)434 static bool is_user_regdom_saved(void)
435 {
436 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
437 		return false;
438 
439 	/* This would indicate a mistake on the design */
440 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
441 		 "Unexpected user alpha2: %c%c\n",
442 		 user_alpha2[0], user_alpha2[1]))
443 		return false;
444 
445 	return true;
446 }
447 
448 static const struct ieee80211_regdomain *
reg_copy_regd(const struct ieee80211_regdomain * src_regd)449 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
450 {
451 	struct ieee80211_regdomain *regd;
452 	unsigned int i;
453 
454 	regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
455 		       GFP_KERNEL);
456 	if (!regd)
457 		return ERR_PTR(-ENOMEM);
458 
459 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
460 
461 	for (i = 0; i < src_regd->n_reg_rules; i++)
462 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
463 		       sizeof(struct ieee80211_reg_rule));
464 
465 	return regd;
466 }
467 
cfg80211_save_user_regdom(const struct ieee80211_regdomain * rd)468 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
469 {
470 	ASSERT_RTNL();
471 
472 	if (!IS_ERR(cfg80211_user_regdom))
473 		kfree(cfg80211_user_regdom);
474 	cfg80211_user_regdom = reg_copy_regd(rd);
475 }
476 
477 struct reg_regdb_apply_request {
478 	struct list_head list;
479 	const struct ieee80211_regdomain *regdom;
480 };
481 
482 static LIST_HEAD(reg_regdb_apply_list);
483 static DEFINE_MUTEX(reg_regdb_apply_mutex);
484 
reg_regdb_apply(struct work_struct * work)485 static void reg_regdb_apply(struct work_struct *work)
486 {
487 	struct reg_regdb_apply_request *request;
488 
489 	rtnl_lock();
490 
491 	mutex_lock(&reg_regdb_apply_mutex);
492 	while (!list_empty(&reg_regdb_apply_list)) {
493 		request = list_first_entry(&reg_regdb_apply_list,
494 					   struct reg_regdb_apply_request,
495 					   list);
496 		list_del(&request->list);
497 
498 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
499 		kfree(request);
500 	}
501 	mutex_unlock(&reg_regdb_apply_mutex);
502 
503 	rtnl_unlock();
504 }
505 
506 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
507 
reg_schedule_apply(const struct ieee80211_regdomain * regdom)508 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
509 {
510 	struct reg_regdb_apply_request *request;
511 
512 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
513 	if (!request) {
514 		kfree(regdom);
515 		return -ENOMEM;
516 	}
517 
518 	request->regdom = regdom;
519 
520 	mutex_lock(&reg_regdb_apply_mutex);
521 	list_add_tail(&request->list, &reg_regdb_apply_list);
522 	mutex_unlock(&reg_regdb_apply_mutex);
523 
524 	schedule_work(&reg_regdb_work);
525 	return 0;
526 }
527 
528 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
529 /* Max number of consecutive attempts to communicate with CRDA  */
530 #define REG_MAX_CRDA_TIMEOUTS 10
531 
532 static u32 reg_crda_timeouts;
533 
534 static void crda_timeout_work(struct work_struct *work);
535 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
536 
crda_timeout_work(struct work_struct * work)537 static void crda_timeout_work(struct work_struct *work)
538 {
539 	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
540 	rtnl_lock();
541 	reg_crda_timeouts++;
542 	restore_regulatory_settings(true, false);
543 	rtnl_unlock();
544 }
545 
cancel_crda_timeout(void)546 static void cancel_crda_timeout(void)
547 {
548 	cancel_delayed_work(&crda_timeout);
549 }
550 
cancel_crda_timeout_sync(void)551 static void cancel_crda_timeout_sync(void)
552 {
553 	cancel_delayed_work_sync(&crda_timeout);
554 }
555 
reset_crda_timeouts(void)556 static void reset_crda_timeouts(void)
557 {
558 	reg_crda_timeouts = 0;
559 }
560 
561 /*
562  * This lets us keep regulatory code which is updated on a regulatory
563  * basis in userspace.
564  */
call_crda(const char * alpha2)565 static int call_crda(const char *alpha2)
566 {
567 	char country[12];
568 	char *env[] = { country, NULL };
569 	int ret;
570 
571 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
572 		 alpha2[0], alpha2[1]);
573 
574 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
575 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
576 		return -EINVAL;
577 	}
578 
579 	if (!is_world_regdom((char *) alpha2))
580 		pr_debug("Calling CRDA for country: %c%c\n",
581 			 alpha2[0], alpha2[1]);
582 	else
583 		pr_debug("Calling CRDA to update world regulatory domain\n");
584 
585 	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
586 	if (ret)
587 		return ret;
588 
589 	queue_delayed_work(system_power_efficient_wq,
590 			   &crda_timeout, msecs_to_jiffies(3142));
591 	return 0;
592 }
593 #else
cancel_crda_timeout(void)594 static inline void cancel_crda_timeout(void) {}
cancel_crda_timeout_sync(void)595 static inline void cancel_crda_timeout_sync(void) {}
reset_crda_timeouts(void)596 static inline void reset_crda_timeouts(void) {}
call_crda(const char * alpha2)597 static inline int call_crda(const char *alpha2)
598 {
599 	return -ENODATA;
600 }
601 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
602 
603 /* code to directly load a firmware database through request_firmware */
604 static const struct fwdb_header *regdb;
605 
606 struct fwdb_country {
607 	u8 alpha2[2];
608 	__be16 coll_ptr;
609 	/* this struct cannot be extended */
610 } __packed __aligned(4);
611 
612 struct fwdb_collection {
613 	u8 len;
614 	u8 n_rules;
615 	u8 dfs_region;
616 	/* no optional data yet */
617 	/* aligned to 2, then followed by __be16 array of rule pointers */
618 } __packed __aligned(4);
619 
620 enum fwdb_flags {
621 	FWDB_FLAG_NO_OFDM	= BIT(0),
622 	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
623 	FWDB_FLAG_DFS		= BIT(2),
624 	FWDB_FLAG_NO_IR		= BIT(3),
625 	FWDB_FLAG_AUTO_BW	= BIT(4),
626 };
627 
628 struct fwdb_wmm_ac {
629 	u8 ecw;
630 	u8 aifsn;
631 	__be16 cot;
632 } __packed;
633 
634 struct fwdb_wmm_rule {
635 	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
636 	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
637 } __packed;
638 
639 struct fwdb_rule {
640 	u8 len;
641 	u8 flags;
642 	__be16 max_eirp;
643 	__be32 start, end, max_bw;
644 	/* start of optional data */
645 	__be16 cac_timeout;
646 	__be16 wmm_ptr;
647 } __packed __aligned(4);
648 
649 #define FWDB_MAGIC 0x52474442
650 #define FWDB_VERSION 20
651 
652 struct fwdb_header {
653 	__be32 magic;
654 	__be32 version;
655 	struct fwdb_country country[];
656 } __packed __aligned(4);
657 
ecw2cw(int ecw)658 static int ecw2cw(int ecw)
659 {
660 	return (1 << ecw) - 1;
661 }
662 
valid_wmm(struct fwdb_wmm_rule * rule)663 static bool valid_wmm(struct fwdb_wmm_rule *rule)
664 {
665 	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
666 	int i;
667 
668 	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
669 		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
670 		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
671 		u8 aifsn = ac[i].aifsn;
672 
673 		if (cw_min >= cw_max)
674 			return false;
675 
676 		if (aifsn < 1)
677 			return false;
678 	}
679 
680 	return true;
681 }
682 
valid_rule(const u8 * data,unsigned int size,u16 rule_ptr)683 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
684 {
685 	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
686 
687 	if ((u8 *)rule + sizeof(rule->len) > data + size)
688 		return false;
689 
690 	/* mandatory fields */
691 	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
692 		return false;
693 	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
694 		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
695 		struct fwdb_wmm_rule *wmm;
696 
697 		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
698 			return false;
699 
700 		wmm = (void *)(data + wmm_ptr);
701 
702 		if (!valid_wmm(wmm))
703 			return false;
704 	}
705 	return true;
706 }
707 
valid_country(const u8 * data,unsigned int size,const struct fwdb_country * country)708 static bool valid_country(const u8 *data, unsigned int size,
709 			  const struct fwdb_country *country)
710 {
711 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
712 	struct fwdb_collection *coll = (void *)(data + ptr);
713 	__be16 *rules_ptr;
714 	unsigned int i;
715 
716 	/* make sure we can read len/n_rules */
717 	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
718 		return false;
719 
720 	/* make sure base struct and all rules fit */
721 	if ((u8 *)coll + ALIGN(coll->len, 2) +
722 	    (coll->n_rules * 2) > data + size)
723 		return false;
724 
725 	/* mandatory fields must exist */
726 	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
727 		return false;
728 
729 	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
730 
731 	for (i = 0; i < coll->n_rules; i++) {
732 		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
733 
734 		if (!valid_rule(data, size, rule_ptr))
735 			return false;
736 	}
737 
738 	return true;
739 }
740 
741 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
742 #include <keys/asymmetric-type.h>
743 
744 static struct key *builtin_regdb_keys;
745 
load_builtin_regdb_keys(void)746 static int __init load_builtin_regdb_keys(void)
747 {
748 	builtin_regdb_keys =
749 		keyring_alloc(".builtin_regdb_keys",
750 			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
751 			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
752 			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
753 			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
754 	if (IS_ERR(builtin_regdb_keys))
755 		return PTR_ERR(builtin_regdb_keys);
756 
757 	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
758 
759 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
760 	x509_load_certificate_list(shipped_regdb_certs,
761 				   shipped_regdb_certs_len,
762 				   builtin_regdb_keys);
763 #endif
764 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
765 	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
766 		x509_load_certificate_list(extra_regdb_certs,
767 					   extra_regdb_certs_len,
768 					   builtin_regdb_keys);
769 #endif
770 
771 	return 0;
772 }
773 
774 MODULE_FIRMWARE("regulatory.db.p7s");
775 
regdb_has_valid_signature(const u8 * data,unsigned int size)776 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
777 {
778 	const struct firmware *sig;
779 	bool result;
780 
781 	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
782 		return false;
783 
784 	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
785 					builtin_regdb_keys,
786 					VERIFYING_UNSPECIFIED_SIGNATURE,
787 					NULL, NULL) == 0;
788 
789 	release_firmware(sig);
790 
791 	return result;
792 }
793 
free_regdb_keyring(void)794 static void free_regdb_keyring(void)
795 {
796 	key_put(builtin_regdb_keys);
797 }
798 #else
load_builtin_regdb_keys(void)799 static int load_builtin_regdb_keys(void)
800 {
801 	return 0;
802 }
803 
regdb_has_valid_signature(const u8 * data,unsigned int size)804 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
805 {
806 	return true;
807 }
808 
free_regdb_keyring(void)809 static void free_regdb_keyring(void)
810 {
811 }
812 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
813 
valid_regdb(const u8 * data,unsigned int size)814 static bool valid_regdb(const u8 *data, unsigned int size)
815 {
816 	const struct fwdb_header *hdr = (void *)data;
817 	const struct fwdb_country *country;
818 
819 	if (size < sizeof(*hdr))
820 		return false;
821 
822 	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
823 		return false;
824 
825 	if (hdr->version != cpu_to_be32(FWDB_VERSION))
826 		return false;
827 
828 	if (!regdb_has_valid_signature(data, size))
829 		return false;
830 
831 	country = &hdr->country[0];
832 	while ((u8 *)(country + 1) <= data + size) {
833 		if (!country->coll_ptr)
834 			break;
835 		if (!valid_country(data, size, country))
836 			return false;
837 		country++;
838 	}
839 
840 	return true;
841 }
842 
set_wmm_rule(const struct fwdb_header * db,const struct fwdb_country * country,const struct fwdb_rule * rule,struct ieee80211_reg_rule * rrule)843 static void set_wmm_rule(const struct fwdb_header *db,
844 			 const struct fwdb_country *country,
845 			 const struct fwdb_rule *rule,
846 			 struct ieee80211_reg_rule *rrule)
847 {
848 	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
849 	struct fwdb_wmm_rule *wmm;
850 	unsigned int i, wmm_ptr;
851 
852 	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
853 	wmm = (void *)((u8 *)db + wmm_ptr);
854 
855 	if (!valid_wmm(wmm)) {
856 		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
857 		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
858 		       country->alpha2[0], country->alpha2[1]);
859 		return;
860 	}
861 
862 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
863 		wmm_rule->client[i].cw_min =
864 			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
865 		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
866 		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
867 		wmm_rule->client[i].cot =
868 			1000 * be16_to_cpu(wmm->client[i].cot);
869 		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
870 		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
871 		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
872 		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
873 	}
874 
875 	rrule->has_wmm = true;
876 }
877 
__regdb_query_wmm(const struct fwdb_header * db,const struct fwdb_country * country,int freq,struct ieee80211_reg_rule * rrule)878 static int __regdb_query_wmm(const struct fwdb_header *db,
879 			     const struct fwdb_country *country, int freq,
880 			     struct ieee80211_reg_rule *rrule)
881 {
882 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
883 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
884 	int i;
885 
886 	for (i = 0; i < coll->n_rules; i++) {
887 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
888 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
889 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
890 
891 		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
892 			continue;
893 
894 		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
895 		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
896 			set_wmm_rule(db, country, rule, rrule);
897 			return 0;
898 		}
899 	}
900 
901 	return -ENODATA;
902 }
903 
reg_query_regdb_wmm(char * alpha2,int freq,struct ieee80211_reg_rule * rule)904 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
905 {
906 	const struct fwdb_header *hdr = regdb;
907 	const struct fwdb_country *country;
908 
909 	if (!regdb)
910 		return -ENODATA;
911 
912 	if (IS_ERR(regdb))
913 		return PTR_ERR(regdb);
914 
915 	country = &hdr->country[0];
916 	while (country->coll_ptr) {
917 		if (alpha2_equal(alpha2, country->alpha2))
918 			return __regdb_query_wmm(regdb, country, freq, rule);
919 
920 		country++;
921 	}
922 
923 	return -ENODATA;
924 }
925 EXPORT_SYMBOL(reg_query_regdb_wmm);
926 
regdb_query_country(const struct fwdb_header * db,const struct fwdb_country * country)927 static int regdb_query_country(const struct fwdb_header *db,
928 			       const struct fwdb_country *country)
929 {
930 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
931 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
932 	struct ieee80211_regdomain *regdom;
933 	unsigned int i;
934 
935 	regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
936 			 GFP_KERNEL);
937 	if (!regdom)
938 		return -ENOMEM;
939 
940 	regdom->n_reg_rules = coll->n_rules;
941 	regdom->alpha2[0] = country->alpha2[0];
942 	regdom->alpha2[1] = country->alpha2[1];
943 	regdom->dfs_region = coll->dfs_region;
944 
945 	for (i = 0; i < regdom->n_reg_rules; i++) {
946 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
947 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
948 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
949 		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
950 
951 		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
952 		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
953 		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
954 
955 		rrule->power_rule.max_antenna_gain = 0;
956 		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
957 
958 		rrule->flags = 0;
959 		if (rule->flags & FWDB_FLAG_NO_OFDM)
960 			rrule->flags |= NL80211_RRF_NO_OFDM;
961 		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
962 			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
963 		if (rule->flags & FWDB_FLAG_DFS)
964 			rrule->flags |= NL80211_RRF_DFS;
965 		if (rule->flags & FWDB_FLAG_NO_IR)
966 			rrule->flags |= NL80211_RRF_NO_IR;
967 		if (rule->flags & FWDB_FLAG_AUTO_BW)
968 			rrule->flags |= NL80211_RRF_AUTO_BW;
969 
970 		rrule->dfs_cac_ms = 0;
971 
972 		/* handle optional data */
973 		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
974 			rrule->dfs_cac_ms =
975 				1000 * be16_to_cpu(rule->cac_timeout);
976 		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
977 			set_wmm_rule(db, country, rule, rrule);
978 	}
979 
980 	return reg_schedule_apply(regdom);
981 }
982 
query_regdb(const char * alpha2)983 static int query_regdb(const char *alpha2)
984 {
985 	const struct fwdb_header *hdr = regdb;
986 	const struct fwdb_country *country;
987 
988 	ASSERT_RTNL();
989 
990 	if (IS_ERR(regdb))
991 		return PTR_ERR(regdb);
992 
993 	country = &hdr->country[0];
994 	while (country->coll_ptr) {
995 		if (alpha2_equal(alpha2, country->alpha2))
996 			return regdb_query_country(regdb, country);
997 		country++;
998 	}
999 
1000 	return -ENODATA;
1001 }
1002 
regdb_fw_cb(const struct firmware * fw,void * context)1003 static void regdb_fw_cb(const struct firmware *fw, void *context)
1004 {
1005 	int set_error = 0;
1006 	bool restore = true;
1007 	void *db;
1008 
1009 	if (!fw) {
1010 		pr_info("failed to load regulatory.db\n");
1011 		set_error = -ENODATA;
1012 	} else if (!valid_regdb(fw->data, fw->size)) {
1013 		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1014 		set_error = -EINVAL;
1015 	}
1016 
1017 	rtnl_lock();
1018 	if (regdb && !IS_ERR(regdb)) {
1019 		/* negative case - a bug
1020 		 * positive case - can happen due to race in case of multiple cb's in
1021 		 * queue, due to usage of asynchronous callback
1022 		 *
1023 		 * Either case, just restore and free new db.
1024 		 */
1025 	} else if (set_error) {
1026 		regdb = ERR_PTR(set_error);
1027 	} else if (fw) {
1028 		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1029 		if (db) {
1030 			regdb = db;
1031 			restore = context && query_regdb(context);
1032 		} else {
1033 			restore = true;
1034 		}
1035 	}
1036 
1037 	if (restore)
1038 		restore_regulatory_settings(true, false);
1039 
1040 	rtnl_unlock();
1041 
1042 	kfree(context);
1043 
1044 	release_firmware(fw);
1045 }
1046 
1047 MODULE_FIRMWARE("regulatory.db");
1048 
query_regdb_file(const char * alpha2)1049 static int query_regdb_file(const char *alpha2)
1050 {
1051 	int err;
1052 
1053 	ASSERT_RTNL();
1054 
1055 	if (regdb)
1056 		return query_regdb(alpha2);
1057 
1058 	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1059 	if (!alpha2)
1060 		return -ENOMEM;
1061 
1062 	err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1063 				      &reg_pdev->dev, GFP_KERNEL,
1064 				      (void *)alpha2, regdb_fw_cb);
1065 	if (err)
1066 		kfree(alpha2);
1067 
1068 	return err;
1069 }
1070 
reg_reload_regdb(void)1071 int reg_reload_regdb(void)
1072 {
1073 	const struct firmware *fw;
1074 	void *db;
1075 	int err;
1076 	const struct ieee80211_regdomain *current_regdomain;
1077 	struct regulatory_request *request;
1078 
1079 	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1080 	if (err)
1081 		return err;
1082 
1083 	if (!valid_regdb(fw->data, fw->size)) {
1084 		err = -ENODATA;
1085 		goto out;
1086 	}
1087 
1088 	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1089 	if (!db) {
1090 		err = -ENOMEM;
1091 		goto out;
1092 	}
1093 
1094 	rtnl_lock();
1095 	if (!IS_ERR_OR_NULL(regdb))
1096 		kfree(regdb);
1097 	regdb = db;
1098 
1099 	/* reset regulatory domain */
1100 	current_regdomain = get_cfg80211_regdom();
1101 
1102 	request = kzalloc(sizeof(*request), GFP_KERNEL);
1103 	if (!request) {
1104 		err = -ENOMEM;
1105 		goto out_unlock;
1106 	}
1107 
1108 	request->wiphy_idx = WIPHY_IDX_INVALID;
1109 	request->alpha2[0] = current_regdomain->alpha2[0];
1110 	request->alpha2[1] = current_regdomain->alpha2[1];
1111 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1112 	request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1113 
1114 	reg_process_hint(request);
1115 
1116 out_unlock:
1117 	rtnl_unlock();
1118  out:
1119 	release_firmware(fw);
1120 	return err;
1121 }
1122 
reg_query_database(struct regulatory_request * request)1123 static bool reg_query_database(struct regulatory_request *request)
1124 {
1125 	if (query_regdb_file(request->alpha2) == 0)
1126 		return true;
1127 
1128 	if (call_crda(request->alpha2) == 0)
1129 		return true;
1130 
1131 	return false;
1132 }
1133 
reg_is_valid_request(const char * alpha2)1134 bool reg_is_valid_request(const char *alpha2)
1135 {
1136 	struct regulatory_request *lr = get_last_request();
1137 
1138 	if (!lr || lr->processed)
1139 		return false;
1140 
1141 	return alpha2_equal(lr->alpha2, alpha2);
1142 }
1143 
reg_get_regdomain(struct wiphy * wiphy)1144 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1145 {
1146 	struct regulatory_request *lr = get_last_request();
1147 
1148 	/*
1149 	 * Follow the driver's regulatory domain, if present, unless a country
1150 	 * IE has been processed or a user wants to help complaince further
1151 	 */
1152 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1153 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1154 	    wiphy->regd)
1155 		return get_wiphy_regdom(wiphy);
1156 
1157 	return get_cfg80211_regdom();
1158 }
1159 
1160 static unsigned int
reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1161 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1162 				 const struct ieee80211_reg_rule *rule)
1163 {
1164 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1165 	const struct ieee80211_freq_range *freq_range_tmp;
1166 	const struct ieee80211_reg_rule *tmp;
1167 	u32 start_freq, end_freq, idx, no;
1168 
1169 	for (idx = 0; idx < rd->n_reg_rules; idx++)
1170 		if (rule == &rd->reg_rules[idx])
1171 			break;
1172 
1173 	if (idx == rd->n_reg_rules)
1174 		return 0;
1175 
1176 	/* get start_freq */
1177 	no = idx;
1178 
1179 	while (no) {
1180 		tmp = &rd->reg_rules[--no];
1181 		freq_range_tmp = &tmp->freq_range;
1182 
1183 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1184 			break;
1185 
1186 		freq_range = freq_range_tmp;
1187 	}
1188 
1189 	start_freq = freq_range->start_freq_khz;
1190 
1191 	/* get end_freq */
1192 	freq_range = &rule->freq_range;
1193 	no = idx;
1194 
1195 	while (no < rd->n_reg_rules - 1) {
1196 		tmp = &rd->reg_rules[++no];
1197 		freq_range_tmp = &tmp->freq_range;
1198 
1199 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1200 			break;
1201 
1202 		freq_range = freq_range_tmp;
1203 	}
1204 
1205 	end_freq = freq_range->end_freq_khz;
1206 
1207 	return end_freq - start_freq;
1208 }
1209 
reg_get_max_bandwidth(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1210 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1211 				   const struct ieee80211_reg_rule *rule)
1212 {
1213 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1214 
1215 	if (rule->flags & NL80211_RRF_NO_320MHZ)
1216 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1217 	if (rule->flags & NL80211_RRF_NO_160MHZ)
1218 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1219 	if (rule->flags & NL80211_RRF_NO_80MHZ)
1220 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1221 
1222 	/*
1223 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1224 	 * are not allowed.
1225 	 */
1226 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1227 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1228 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1229 
1230 	return bw;
1231 }
1232 
1233 /* Sanity check on a regulatory rule */
is_valid_reg_rule(const struct ieee80211_reg_rule * rule)1234 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1235 {
1236 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1237 	u32 freq_diff;
1238 
1239 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1240 		return false;
1241 
1242 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1243 		return false;
1244 
1245 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1246 
1247 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1248 	    freq_range->max_bandwidth_khz > freq_diff)
1249 		return false;
1250 
1251 	return true;
1252 }
1253 
is_valid_rd(const struct ieee80211_regdomain * rd)1254 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1255 {
1256 	const struct ieee80211_reg_rule *reg_rule = NULL;
1257 	unsigned int i;
1258 
1259 	if (!rd->n_reg_rules)
1260 		return false;
1261 
1262 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1263 		return false;
1264 
1265 	for (i = 0; i < rd->n_reg_rules; i++) {
1266 		reg_rule = &rd->reg_rules[i];
1267 		if (!is_valid_reg_rule(reg_rule))
1268 			return false;
1269 	}
1270 
1271 	return true;
1272 }
1273 
1274 /**
1275  * freq_in_rule_band - tells us if a frequency is in a frequency band
1276  * @freq_range: frequency rule we want to query
1277  * @freq_khz: frequency we are inquiring about
1278  *
1279  * This lets us know if a specific frequency rule is or is not relevant to
1280  * a specific frequency's band. Bands are device specific and artificial
1281  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1282  * however it is safe for now to assume that a frequency rule should not be
1283  * part of a frequency's band if the start freq or end freq are off by more
1284  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1285  * 60 GHz band.
1286  * This resolution can be lowered and should be considered as we add
1287  * regulatory rule support for other "bands".
1288  *
1289  * Returns: whether or not the frequency is in the range
1290  */
freq_in_rule_band(const struct ieee80211_freq_range * freq_range,u32 freq_khz)1291 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1292 			      u32 freq_khz)
1293 {
1294 	/*
1295 	 * From 802.11ad: directional multi-gigabit (DMG):
1296 	 * Pertaining to operation in a frequency band containing a channel
1297 	 * with the Channel starting frequency above 45 GHz.
1298 	 */
1299 	u32 limit = freq_khz > 45 * KHZ_PER_GHZ ? 20 * KHZ_PER_GHZ : 2 * KHZ_PER_GHZ;
1300 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1301 		return true;
1302 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1303 		return true;
1304 	return false;
1305 }
1306 
1307 /*
1308  * Later on we can perhaps use the more restrictive DFS
1309  * region but we don't have information for that yet so
1310  * for now simply disallow conflicts.
1311  */
1312 static enum nl80211_dfs_regions
reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,const enum nl80211_dfs_regions dfs_region2)1313 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1314 			 const enum nl80211_dfs_regions dfs_region2)
1315 {
1316 	if (dfs_region1 != dfs_region2)
1317 		return NL80211_DFS_UNSET;
1318 	return dfs_region1;
1319 }
1320 
reg_wmm_rules_intersect(const struct ieee80211_wmm_ac * wmm_ac1,const struct ieee80211_wmm_ac * wmm_ac2,struct ieee80211_wmm_ac * intersect)1321 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1322 				    const struct ieee80211_wmm_ac *wmm_ac2,
1323 				    struct ieee80211_wmm_ac *intersect)
1324 {
1325 	intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1326 	intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1327 	intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1328 	intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1329 }
1330 
1331 /*
1332  * Helper for regdom_intersect(), this does the real
1333  * mathematical intersection fun
1334  */
reg_rules_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2,const struct ieee80211_reg_rule * rule1,const struct ieee80211_reg_rule * rule2,struct ieee80211_reg_rule * intersected_rule)1335 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1336 			       const struct ieee80211_regdomain *rd2,
1337 			       const struct ieee80211_reg_rule *rule1,
1338 			       const struct ieee80211_reg_rule *rule2,
1339 			       struct ieee80211_reg_rule *intersected_rule)
1340 {
1341 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1342 	struct ieee80211_freq_range *freq_range;
1343 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1344 	struct ieee80211_power_rule *power_rule;
1345 	const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1346 	struct ieee80211_wmm_rule *wmm_rule;
1347 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1348 
1349 	freq_range1 = &rule1->freq_range;
1350 	freq_range2 = &rule2->freq_range;
1351 	freq_range = &intersected_rule->freq_range;
1352 
1353 	power_rule1 = &rule1->power_rule;
1354 	power_rule2 = &rule2->power_rule;
1355 	power_rule = &intersected_rule->power_rule;
1356 
1357 	wmm_rule1 = &rule1->wmm_rule;
1358 	wmm_rule2 = &rule2->wmm_rule;
1359 	wmm_rule = &intersected_rule->wmm_rule;
1360 
1361 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1362 					 freq_range2->start_freq_khz);
1363 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1364 				       freq_range2->end_freq_khz);
1365 
1366 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1367 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1368 
1369 	if (rule1->flags & NL80211_RRF_AUTO_BW)
1370 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1371 	if (rule2->flags & NL80211_RRF_AUTO_BW)
1372 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1373 
1374 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1375 
1376 	intersected_rule->flags = rule1->flags | rule2->flags;
1377 
1378 	/*
1379 	 * In case NL80211_RRF_AUTO_BW requested for both rules
1380 	 * set AUTO_BW in intersected rule also. Next we will
1381 	 * calculate BW correctly in handle_channel function.
1382 	 * In other case remove AUTO_BW flag while we calculate
1383 	 * maximum bandwidth correctly and auto calculation is
1384 	 * not required.
1385 	 */
1386 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1387 	    (rule2->flags & NL80211_RRF_AUTO_BW))
1388 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1389 	else
1390 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1391 
1392 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1393 	if (freq_range->max_bandwidth_khz > freq_diff)
1394 		freq_range->max_bandwidth_khz = freq_diff;
1395 
1396 	power_rule->max_eirp = min(power_rule1->max_eirp,
1397 		power_rule2->max_eirp);
1398 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1399 		power_rule2->max_antenna_gain);
1400 
1401 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1402 					   rule2->dfs_cac_ms);
1403 
1404 	if (rule1->has_wmm && rule2->has_wmm) {
1405 		u8 ac;
1406 
1407 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1408 			reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1409 						&wmm_rule2->client[ac],
1410 						&wmm_rule->client[ac]);
1411 			reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1412 						&wmm_rule2->ap[ac],
1413 						&wmm_rule->ap[ac]);
1414 		}
1415 
1416 		intersected_rule->has_wmm = true;
1417 	} else if (rule1->has_wmm) {
1418 		*wmm_rule = *wmm_rule1;
1419 		intersected_rule->has_wmm = true;
1420 	} else if (rule2->has_wmm) {
1421 		*wmm_rule = *wmm_rule2;
1422 		intersected_rule->has_wmm = true;
1423 	} else {
1424 		intersected_rule->has_wmm = false;
1425 	}
1426 
1427 	if (!is_valid_reg_rule(intersected_rule))
1428 		return -EINVAL;
1429 
1430 	return 0;
1431 }
1432 
1433 /* check whether old rule contains new rule */
rule_contains(struct ieee80211_reg_rule * r1,struct ieee80211_reg_rule * r2)1434 static bool rule_contains(struct ieee80211_reg_rule *r1,
1435 			  struct ieee80211_reg_rule *r2)
1436 {
1437 	/* for simplicity, currently consider only same flags */
1438 	if (r1->flags != r2->flags)
1439 		return false;
1440 
1441 	/* verify r1 is more restrictive */
1442 	if ((r1->power_rule.max_antenna_gain >
1443 	     r2->power_rule.max_antenna_gain) ||
1444 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1445 		return false;
1446 
1447 	/* make sure r2's range is contained within r1 */
1448 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1449 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1450 		return false;
1451 
1452 	/* and finally verify that r1.max_bw >= r2.max_bw */
1453 	if (r1->freq_range.max_bandwidth_khz <
1454 	    r2->freq_range.max_bandwidth_khz)
1455 		return false;
1456 
1457 	return true;
1458 }
1459 
1460 /* add or extend current rules. do nothing if rule is already contained */
add_rule(struct ieee80211_reg_rule * rule,struct ieee80211_reg_rule * reg_rules,u32 * n_rules)1461 static void add_rule(struct ieee80211_reg_rule *rule,
1462 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1463 {
1464 	struct ieee80211_reg_rule *tmp_rule;
1465 	int i;
1466 
1467 	for (i = 0; i < *n_rules; i++) {
1468 		tmp_rule = &reg_rules[i];
1469 		/* rule is already contained - do nothing */
1470 		if (rule_contains(tmp_rule, rule))
1471 			return;
1472 
1473 		/* extend rule if possible */
1474 		if (rule_contains(rule, tmp_rule)) {
1475 			memcpy(tmp_rule, rule, sizeof(*rule));
1476 			return;
1477 		}
1478 	}
1479 
1480 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1481 	(*n_rules)++;
1482 }
1483 
1484 /**
1485  * regdom_intersect - do the intersection between two regulatory domains
1486  * @rd1: first regulatory domain
1487  * @rd2: second regulatory domain
1488  *
1489  * Use this function to get the intersection between two regulatory domains.
1490  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1491  * as no one single alpha2 can represent this regulatory domain.
1492  *
1493  * Returns a pointer to the regulatory domain structure which will hold the
1494  * resulting intersection of rules between rd1 and rd2. We will
1495  * kzalloc() this structure for you.
1496  *
1497  * Returns: the intersected regdomain
1498  */
1499 static struct ieee80211_regdomain *
regdom_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2)1500 regdom_intersect(const struct ieee80211_regdomain *rd1,
1501 		 const struct ieee80211_regdomain *rd2)
1502 {
1503 	int r;
1504 	unsigned int x, y;
1505 	unsigned int num_rules = 0;
1506 	const struct ieee80211_reg_rule *rule1, *rule2;
1507 	struct ieee80211_reg_rule intersected_rule;
1508 	struct ieee80211_regdomain *rd;
1509 
1510 	if (!rd1 || !rd2)
1511 		return NULL;
1512 
1513 	/*
1514 	 * First we get a count of the rules we'll need, then we actually
1515 	 * build them. This is to so we can malloc() and free() a
1516 	 * regdomain once. The reason we use reg_rules_intersect() here
1517 	 * is it will return -EINVAL if the rule computed makes no sense.
1518 	 * All rules that do check out OK are valid.
1519 	 */
1520 
1521 	for (x = 0; x < rd1->n_reg_rules; x++) {
1522 		rule1 = &rd1->reg_rules[x];
1523 		for (y = 0; y < rd2->n_reg_rules; y++) {
1524 			rule2 = &rd2->reg_rules[y];
1525 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1526 						 &intersected_rule))
1527 				num_rules++;
1528 		}
1529 	}
1530 
1531 	if (!num_rules)
1532 		return NULL;
1533 
1534 	rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1535 	if (!rd)
1536 		return NULL;
1537 
1538 	for (x = 0; x < rd1->n_reg_rules; x++) {
1539 		rule1 = &rd1->reg_rules[x];
1540 		for (y = 0; y < rd2->n_reg_rules; y++) {
1541 			rule2 = &rd2->reg_rules[y];
1542 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1543 						&intersected_rule);
1544 			/*
1545 			 * No need to memset here the intersected rule here as
1546 			 * we're not using the stack anymore
1547 			 */
1548 			if (r)
1549 				continue;
1550 
1551 			add_rule(&intersected_rule, rd->reg_rules,
1552 				 &rd->n_reg_rules);
1553 		}
1554 	}
1555 
1556 	rd->alpha2[0] = '9';
1557 	rd->alpha2[1] = '8';
1558 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1559 						  rd2->dfs_region);
1560 
1561 	return rd;
1562 }
1563 
1564 /*
1565  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1566  * want to just have the channel structure use these
1567  */
map_regdom_flags(u32 rd_flags)1568 static u32 map_regdom_flags(u32 rd_flags)
1569 {
1570 	u32 channel_flags = 0;
1571 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1572 		channel_flags |= IEEE80211_CHAN_NO_IR;
1573 	if (rd_flags & NL80211_RRF_DFS)
1574 		channel_flags |= IEEE80211_CHAN_RADAR;
1575 	if (rd_flags & NL80211_RRF_NO_OFDM)
1576 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1577 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1578 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1579 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1580 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1581 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1582 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1583 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1584 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1585 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1586 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1587 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1588 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1589 	if (rd_flags & NL80211_RRF_NO_HE)
1590 		channel_flags |= IEEE80211_CHAN_NO_HE;
1591 	if (rd_flags & NL80211_RRF_NO_320MHZ)
1592 		channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1593 	if (rd_flags & NL80211_RRF_NO_EHT)
1594 		channel_flags |= IEEE80211_CHAN_NO_EHT;
1595 	if (rd_flags & NL80211_RRF_DFS_CONCURRENT)
1596 		channel_flags |= IEEE80211_CHAN_DFS_CONCURRENT;
1597 	if (rd_flags & NL80211_RRF_NO_6GHZ_VLP_CLIENT)
1598 		channel_flags |= IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT;
1599 	if (rd_flags & NL80211_RRF_NO_6GHZ_AFC_CLIENT)
1600 		channel_flags |= IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT;
1601 	if (rd_flags & NL80211_RRF_PSD)
1602 		channel_flags |= IEEE80211_CHAN_PSD;
1603 	if (rd_flags & NL80211_RRF_ALLOW_6GHZ_VLP_AP)
1604 		channel_flags |= IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP;
1605 	return channel_flags;
1606 }
1607 
1608 static const struct ieee80211_reg_rule *
freq_reg_info_regd(u32 center_freq,const struct ieee80211_regdomain * regd,u32 bw)1609 freq_reg_info_regd(u32 center_freq,
1610 		   const struct ieee80211_regdomain *regd, u32 bw)
1611 {
1612 	int i;
1613 	bool band_rule_found = false;
1614 	bool bw_fits = false;
1615 
1616 	if (!regd)
1617 		return ERR_PTR(-EINVAL);
1618 
1619 	for (i = 0; i < regd->n_reg_rules; i++) {
1620 		const struct ieee80211_reg_rule *rr;
1621 		const struct ieee80211_freq_range *fr = NULL;
1622 
1623 		rr = &regd->reg_rules[i];
1624 		fr = &rr->freq_range;
1625 
1626 		/*
1627 		 * We only need to know if one frequency rule was
1628 		 * in center_freq's band, that's enough, so let's
1629 		 * not overwrite it once found
1630 		 */
1631 		if (!band_rule_found)
1632 			band_rule_found = freq_in_rule_band(fr, center_freq);
1633 
1634 		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1635 
1636 		if (band_rule_found && bw_fits)
1637 			return rr;
1638 	}
1639 
1640 	if (!band_rule_found)
1641 		return ERR_PTR(-ERANGE);
1642 
1643 	return ERR_PTR(-EINVAL);
1644 }
1645 
1646 static const struct ieee80211_reg_rule *
__freq_reg_info(struct wiphy * wiphy,u32 center_freq,u32 min_bw)1647 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1648 {
1649 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1650 	static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1651 	const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1652 	int i = ARRAY_SIZE(bws) - 1;
1653 	u32 bw;
1654 
1655 	for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1656 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1657 		if (!IS_ERR(reg_rule))
1658 			return reg_rule;
1659 	}
1660 
1661 	return reg_rule;
1662 }
1663 
freq_reg_info(struct wiphy * wiphy,u32 center_freq)1664 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1665 					       u32 center_freq)
1666 {
1667 	u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1668 
1669 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1670 }
1671 EXPORT_SYMBOL(freq_reg_info);
1672 
reg_initiator_name(enum nl80211_reg_initiator initiator)1673 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1674 {
1675 	switch (initiator) {
1676 	case NL80211_REGDOM_SET_BY_CORE:
1677 		return "core";
1678 	case NL80211_REGDOM_SET_BY_USER:
1679 		return "user";
1680 	case NL80211_REGDOM_SET_BY_DRIVER:
1681 		return "driver";
1682 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1683 		return "country element";
1684 	default:
1685 		WARN_ON(1);
1686 		return "bug";
1687 	}
1688 }
1689 EXPORT_SYMBOL(reg_initiator_name);
1690 
reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain * regd,const struct ieee80211_reg_rule * reg_rule,const struct ieee80211_channel * chan)1691 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1692 					  const struct ieee80211_reg_rule *reg_rule,
1693 					  const struct ieee80211_channel *chan)
1694 {
1695 	const struct ieee80211_freq_range *freq_range = NULL;
1696 	u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1697 	bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1698 
1699 	freq_range = &reg_rule->freq_range;
1700 
1701 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1702 	center_freq_khz = ieee80211_channel_to_khz(chan);
1703 	/* Check if auto calculation requested */
1704 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1705 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1706 
1707 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1708 	if (!cfg80211_does_bw_fit_range(freq_range,
1709 					center_freq_khz,
1710 					MHZ_TO_KHZ(10)))
1711 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1712 	if (!cfg80211_does_bw_fit_range(freq_range,
1713 					center_freq_khz,
1714 					MHZ_TO_KHZ(20)))
1715 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1716 
1717 	if (is_s1g) {
1718 		/* S1G is strict about non overlapping channels. We can
1719 		 * calculate which bandwidth is allowed per channel by finding
1720 		 * the largest bandwidth which cleanly divides the freq_range.
1721 		 */
1722 		int edge_offset;
1723 		int ch_bw = max_bandwidth_khz;
1724 
1725 		while (ch_bw) {
1726 			edge_offset = (center_freq_khz - ch_bw / 2) -
1727 				      freq_range->start_freq_khz;
1728 			if (edge_offset % ch_bw == 0) {
1729 				switch (KHZ_TO_MHZ(ch_bw)) {
1730 				case 1:
1731 					bw_flags |= IEEE80211_CHAN_1MHZ;
1732 					break;
1733 				case 2:
1734 					bw_flags |= IEEE80211_CHAN_2MHZ;
1735 					break;
1736 				case 4:
1737 					bw_flags |= IEEE80211_CHAN_4MHZ;
1738 					break;
1739 				case 8:
1740 					bw_flags |= IEEE80211_CHAN_8MHZ;
1741 					break;
1742 				case 16:
1743 					bw_flags |= IEEE80211_CHAN_16MHZ;
1744 					break;
1745 				default:
1746 					/* If we got here, no bandwidths fit on
1747 					 * this frequency, ie. band edge.
1748 					 */
1749 					bw_flags |= IEEE80211_CHAN_DISABLED;
1750 					break;
1751 				}
1752 				break;
1753 			}
1754 			ch_bw /= 2;
1755 		}
1756 	} else {
1757 		if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1758 			bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1759 		if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1760 			bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1761 		if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1762 			bw_flags |= IEEE80211_CHAN_NO_HT40;
1763 		if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1764 			bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1765 		if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1766 			bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1767 		if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1768 			bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1769 	}
1770 	return bw_flags;
1771 }
1772 
handle_channel_single_rule(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan,u32 flags,struct regulatory_request * lr,struct wiphy * request_wiphy,const struct ieee80211_reg_rule * reg_rule)1773 static void handle_channel_single_rule(struct wiphy *wiphy,
1774 				       enum nl80211_reg_initiator initiator,
1775 				       struct ieee80211_channel *chan,
1776 				       u32 flags,
1777 				       struct regulatory_request *lr,
1778 				       struct wiphy *request_wiphy,
1779 				       const struct ieee80211_reg_rule *reg_rule)
1780 {
1781 	u32 bw_flags = 0;
1782 	const struct ieee80211_power_rule *power_rule = NULL;
1783 	const struct ieee80211_regdomain *regd;
1784 
1785 	regd = reg_get_regdomain(wiphy);
1786 
1787 	power_rule = &reg_rule->power_rule;
1788 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1789 
1790 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1791 	    request_wiphy && request_wiphy == wiphy &&
1792 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1793 		/*
1794 		 * This guarantees the driver's requested regulatory domain
1795 		 * will always be used as a base for further regulatory
1796 		 * settings
1797 		 */
1798 		chan->flags = chan->orig_flags =
1799 			map_regdom_flags(reg_rule->flags) | bw_flags;
1800 		chan->max_antenna_gain = chan->orig_mag =
1801 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1802 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1803 			(int) MBM_TO_DBM(power_rule->max_eirp);
1804 
1805 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1806 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1807 			if (reg_rule->dfs_cac_ms)
1808 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1809 		}
1810 
1811 		if (chan->flags & IEEE80211_CHAN_PSD)
1812 			chan->psd = reg_rule->psd;
1813 
1814 		return;
1815 	}
1816 
1817 	chan->dfs_state = NL80211_DFS_USABLE;
1818 	chan->dfs_state_entered = jiffies;
1819 
1820 	chan->beacon_found = false;
1821 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1822 	chan->max_antenna_gain =
1823 		min_t(int, chan->orig_mag,
1824 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1825 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1826 
1827 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1828 		if (reg_rule->dfs_cac_ms)
1829 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1830 		else
1831 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1832 	}
1833 
1834 	if (chan->flags & IEEE80211_CHAN_PSD)
1835 		chan->psd = reg_rule->psd;
1836 
1837 	if (chan->orig_mpwr) {
1838 		/*
1839 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1840 		 * will always follow the passed country IE power settings.
1841 		 */
1842 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1843 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1844 			chan->max_power = chan->max_reg_power;
1845 		else
1846 			chan->max_power = min(chan->orig_mpwr,
1847 					      chan->max_reg_power);
1848 	} else
1849 		chan->max_power = chan->max_reg_power;
1850 }
1851 
handle_channel_adjacent_rules(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan,u32 flags,struct regulatory_request * lr,struct wiphy * request_wiphy,const struct ieee80211_reg_rule * rrule1,const struct ieee80211_reg_rule * rrule2,struct ieee80211_freq_range * comb_range)1852 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1853 					  enum nl80211_reg_initiator initiator,
1854 					  struct ieee80211_channel *chan,
1855 					  u32 flags,
1856 					  struct regulatory_request *lr,
1857 					  struct wiphy *request_wiphy,
1858 					  const struct ieee80211_reg_rule *rrule1,
1859 					  const struct ieee80211_reg_rule *rrule2,
1860 					  struct ieee80211_freq_range *comb_range)
1861 {
1862 	u32 bw_flags1 = 0;
1863 	u32 bw_flags2 = 0;
1864 	const struct ieee80211_power_rule *power_rule1 = NULL;
1865 	const struct ieee80211_power_rule *power_rule2 = NULL;
1866 	const struct ieee80211_regdomain *regd;
1867 
1868 	regd = reg_get_regdomain(wiphy);
1869 
1870 	power_rule1 = &rrule1->power_rule;
1871 	power_rule2 = &rrule2->power_rule;
1872 	bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1873 	bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1874 
1875 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1876 	    request_wiphy && request_wiphy == wiphy &&
1877 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1878 		/* This guarantees the driver's requested regulatory domain
1879 		 * will always be used as a base for further regulatory
1880 		 * settings
1881 		 */
1882 		chan->flags =
1883 			map_regdom_flags(rrule1->flags) |
1884 			map_regdom_flags(rrule2->flags) |
1885 			bw_flags1 |
1886 			bw_flags2;
1887 		chan->orig_flags = chan->flags;
1888 		chan->max_antenna_gain =
1889 			min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1890 			      MBI_TO_DBI(power_rule2->max_antenna_gain));
1891 		chan->orig_mag = chan->max_antenna_gain;
1892 		chan->max_reg_power =
1893 			min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1894 			      MBM_TO_DBM(power_rule2->max_eirp));
1895 		chan->max_power = chan->max_reg_power;
1896 		chan->orig_mpwr = chan->max_reg_power;
1897 
1898 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1899 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1900 			if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1901 				chan->dfs_cac_ms = max_t(unsigned int,
1902 							 rrule1->dfs_cac_ms,
1903 							 rrule2->dfs_cac_ms);
1904 		}
1905 
1906 		if ((rrule1->flags & NL80211_RRF_PSD) &&
1907 		    (rrule2->flags & NL80211_RRF_PSD))
1908 			chan->psd = min_t(s8, rrule1->psd, rrule2->psd);
1909 		else
1910 			chan->flags &= ~NL80211_RRF_PSD;
1911 
1912 		return;
1913 	}
1914 
1915 	chan->dfs_state = NL80211_DFS_USABLE;
1916 	chan->dfs_state_entered = jiffies;
1917 
1918 	chan->beacon_found = false;
1919 	chan->flags = flags | bw_flags1 | bw_flags2 |
1920 		      map_regdom_flags(rrule1->flags) |
1921 		      map_regdom_flags(rrule2->flags);
1922 
1923 	/* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1924 	 * (otherwise no adj. rule case), recheck therefore
1925 	 */
1926 	if (cfg80211_does_bw_fit_range(comb_range,
1927 				       ieee80211_channel_to_khz(chan),
1928 				       MHZ_TO_KHZ(10)))
1929 		chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1930 	if (cfg80211_does_bw_fit_range(comb_range,
1931 				       ieee80211_channel_to_khz(chan),
1932 				       MHZ_TO_KHZ(20)))
1933 		chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1934 
1935 	chan->max_antenna_gain =
1936 		min_t(int, chan->orig_mag,
1937 		      min_t(int,
1938 			    MBI_TO_DBI(power_rule1->max_antenna_gain),
1939 			    MBI_TO_DBI(power_rule2->max_antenna_gain)));
1940 	chan->max_reg_power = min_t(int,
1941 				    MBM_TO_DBM(power_rule1->max_eirp),
1942 				    MBM_TO_DBM(power_rule2->max_eirp));
1943 
1944 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1945 		if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1946 			chan->dfs_cac_ms = max_t(unsigned int,
1947 						 rrule1->dfs_cac_ms,
1948 						 rrule2->dfs_cac_ms);
1949 		else
1950 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1951 	}
1952 
1953 	if (chan->orig_mpwr) {
1954 		/* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1955 		 * will always follow the passed country IE power settings.
1956 		 */
1957 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1958 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1959 			chan->max_power = chan->max_reg_power;
1960 		else
1961 			chan->max_power = min(chan->orig_mpwr,
1962 					      chan->max_reg_power);
1963 	} else {
1964 		chan->max_power = chan->max_reg_power;
1965 	}
1966 }
1967 
1968 /* Note that right now we assume the desired channel bandwidth
1969  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1970  * per channel, the primary and the extension channel).
1971  */
handle_channel(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan)1972 static void handle_channel(struct wiphy *wiphy,
1973 			   enum nl80211_reg_initiator initiator,
1974 			   struct ieee80211_channel *chan)
1975 {
1976 	const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1977 	struct regulatory_request *lr = get_last_request();
1978 	struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1979 	const struct ieee80211_reg_rule *rrule = NULL;
1980 	const struct ieee80211_reg_rule *rrule1 = NULL;
1981 	const struct ieee80211_reg_rule *rrule2 = NULL;
1982 
1983 	u32 flags = chan->orig_flags;
1984 
1985 	rrule = freq_reg_info(wiphy, orig_chan_freq);
1986 	if (IS_ERR(rrule)) {
1987 		/* check for adjacent match, therefore get rules for
1988 		 * chan - 20 MHz and chan + 20 MHz and test
1989 		 * if reg rules are adjacent
1990 		 */
1991 		rrule1 = freq_reg_info(wiphy,
1992 				       orig_chan_freq - MHZ_TO_KHZ(20));
1993 		rrule2 = freq_reg_info(wiphy,
1994 				       orig_chan_freq + MHZ_TO_KHZ(20));
1995 		if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1996 			struct ieee80211_freq_range comb_range;
1997 
1998 			if (rrule1->freq_range.end_freq_khz !=
1999 			    rrule2->freq_range.start_freq_khz)
2000 				goto disable_chan;
2001 
2002 			comb_range.start_freq_khz =
2003 				rrule1->freq_range.start_freq_khz;
2004 			comb_range.end_freq_khz =
2005 				rrule2->freq_range.end_freq_khz;
2006 			comb_range.max_bandwidth_khz =
2007 				min_t(u32,
2008 				      rrule1->freq_range.max_bandwidth_khz,
2009 				      rrule2->freq_range.max_bandwidth_khz);
2010 
2011 			if (!cfg80211_does_bw_fit_range(&comb_range,
2012 							orig_chan_freq,
2013 							MHZ_TO_KHZ(20)))
2014 				goto disable_chan;
2015 
2016 			handle_channel_adjacent_rules(wiphy, initiator, chan,
2017 						      flags, lr, request_wiphy,
2018 						      rrule1, rrule2,
2019 						      &comb_range);
2020 			return;
2021 		}
2022 
2023 disable_chan:
2024 		/* We will disable all channels that do not match our
2025 		 * received regulatory rule unless the hint is coming
2026 		 * from a Country IE and the Country IE had no information
2027 		 * about a band. The IEEE 802.11 spec allows for an AP
2028 		 * to send only a subset of the regulatory rules allowed,
2029 		 * so an AP in the US that only supports 2.4 GHz may only send
2030 		 * a country IE with information for the 2.4 GHz band
2031 		 * while 5 GHz is still supported.
2032 		 */
2033 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2034 		    PTR_ERR(rrule) == -ERANGE)
2035 			return;
2036 
2037 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2038 		    request_wiphy && request_wiphy == wiphy &&
2039 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2040 			pr_debug("Disabling freq %d.%03d MHz for good\n",
2041 				 chan->center_freq, chan->freq_offset);
2042 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2043 			chan->flags = chan->orig_flags;
2044 		} else {
2045 			pr_debug("Disabling freq %d.%03d MHz\n",
2046 				 chan->center_freq, chan->freq_offset);
2047 			chan->flags |= IEEE80211_CHAN_DISABLED;
2048 		}
2049 		return;
2050 	}
2051 
2052 	handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2053 				   request_wiphy, rrule);
2054 }
2055 
handle_band(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_supported_band * sband)2056 static void handle_band(struct wiphy *wiphy,
2057 			enum nl80211_reg_initiator initiator,
2058 			struct ieee80211_supported_band *sband)
2059 {
2060 	unsigned int i;
2061 
2062 	if (!sband)
2063 		return;
2064 
2065 	for (i = 0; i < sband->n_channels; i++)
2066 		handle_channel(wiphy, initiator, &sband->channels[i]);
2067 }
2068 
reg_request_cell_base(struct regulatory_request * request)2069 static bool reg_request_cell_base(struct regulatory_request *request)
2070 {
2071 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2072 		return false;
2073 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2074 }
2075 
reg_last_request_cell_base(void)2076 bool reg_last_request_cell_base(void)
2077 {
2078 	return reg_request_cell_base(get_last_request());
2079 }
2080 
2081 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2082 /* Core specific check */
2083 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)2084 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2085 {
2086 	struct regulatory_request *lr = get_last_request();
2087 
2088 	if (!reg_num_devs_support_basehint)
2089 		return REG_REQ_IGNORE;
2090 
2091 	if (reg_request_cell_base(lr) &&
2092 	    !regdom_changes(pending_request->alpha2))
2093 		return REG_REQ_ALREADY_SET;
2094 
2095 	return REG_REQ_OK;
2096 }
2097 
2098 /* Device specific check */
reg_dev_ignore_cell_hint(struct wiphy * wiphy)2099 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2100 {
2101 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2102 }
2103 #else
2104 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)2105 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2106 {
2107 	return REG_REQ_IGNORE;
2108 }
2109 
reg_dev_ignore_cell_hint(struct wiphy * wiphy)2110 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2111 {
2112 	return true;
2113 }
2114 #endif
2115 
wiphy_strict_alpha2_regd(struct wiphy * wiphy)2116 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2117 {
2118 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2119 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2120 		return true;
2121 	return false;
2122 }
2123 
ignore_reg_update(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)2124 static bool ignore_reg_update(struct wiphy *wiphy,
2125 			      enum nl80211_reg_initiator initiator)
2126 {
2127 	struct regulatory_request *lr = get_last_request();
2128 
2129 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2130 		return true;
2131 
2132 	if (!lr) {
2133 		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2134 			 reg_initiator_name(initiator));
2135 		return true;
2136 	}
2137 
2138 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2139 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2140 		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2141 			 reg_initiator_name(initiator));
2142 		return true;
2143 	}
2144 
2145 	/*
2146 	 * wiphy->regd will be set once the device has its own
2147 	 * desired regulatory domain set
2148 	 */
2149 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2150 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2151 	    !is_world_regdom(lr->alpha2)) {
2152 		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2153 			 reg_initiator_name(initiator));
2154 		return true;
2155 	}
2156 
2157 	if (reg_request_cell_base(lr))
2158 		return reg_dev_ignore_cell_hint(wiphy);
2159 
2160 	return false;
2161 }
2162 
reg_is_world_roaming(struct wiphy * wiphy)2163 static bool reg_is_world_roaming(struct wiphy *wiphy)
2164 {
2165 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2166 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2167 	struct regulatory_request *lr = get_last_request();
2168 
2169 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2170 		return true;
2171 
2172 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2173 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2174 		return true;
2175 
2176 	return false;
2177 }
2178 
reg_call_notifier(struct wiphy * wiphy,struct regulatory_request * request)2179 static void reg_call_notifier(struct wiphy *wiphy,
2180 			      struct regulatory_request *request)
2181 {
2182 	if (wiphy->reg_notifier)
2183 		wiphy->reg_notifier(wiphy, request);
2184 }
2185 
handle_reg_beacon(struct wiphy * wiphy,unsigned int chan_idx,struct reg_beacon * reg_beacon)2186 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2187 			      struct reg_beacon *reg_beacon)
2188 {
2189 	struct ieee80211_supported_band *sband;
2190 	struct ieee80211_channel *chan;
2191 	bool channel_changed = false;
2192 	struct ieee80211_channel chan_before;
2193 	struct regulatory_request *lr = get_last_request();
2194 
2195 	sband = wiphy->bands[reg_beacon->chan.band];
2196 	chan = &sband->channels[chan_idx];
2197 
2198 	if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2199 		return;
2200 
2201 	if (chan->beacon_found)
2202 		return;
2203 
2204 	chan->beacon_found = true;
2205 
2206 	if (!reg_is_world_roaming(wiphy))
2207 		return;
2208 
2209 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2210 		return;
2211 
2212 	chan_before = *chan;
2213 
2214 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
2215 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
2216 		channel_changed = true;
2217 	}
2218 
2219 	if (channel_changed) {
2220 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2221 		if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON)
2222 			reg_call_notifier(wiphy, lr);
2223 	}
2224 }
2225 
2226 /*
2227  * Called when a scan on a wiphy finds a beacon on
2228  * new channel
2229  */
wiphy_update_new_beacon(struct wiphy * wiphy,struct reg_beacon * reg_beacon)2230 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2231 				    struct reg_beacon *reg_beacon)
2232 {
2233 	unsigned int i;
2234 	struct ieee80211_supported_band *sband;
2235 
2236 	if (!wiphy->bands[reg_beacon->chan.band])
2237 		return;
2238 
2239 	sband = wiphy->bands[reg_beacon->chan.band];
2240 
2241 	for (i = 0; i < sband->n_channels; i++)
2242 		handle_reg_beacon(wiphy, i, reg_beacon);
2243 }
2244 
2245 /*
2246  * Called upon reg changes or a new wiphy is added
2247  */
wiphy_update_beacon_reg(struct wiphy * wiphy)2248 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2249 {
2250 	unsigned int i;
2251 	struct ieee80211_supported_band *sband;
2252 	struct reg_beacon *reg_beacon;
2253 
2254 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2255 		if (!wiphy->bands[reg_beacon->chan.band])
2256 			continue;
2257 		sband = wiphy->bands[reg_beacon->chan.band];
2258 		for (i = 0; i < sband->n_channels; i++)
2259 			handle_reg_beacon(wiphy, i, reg_beacon);
2260 	}
2261 }
2262 
2263 /* Reap the advantages of previously found beacons */
reg_process_beacons(struct wiphy * wiphy)2264 static void reg_process_beacons(struct wiphy *wiphy)
2265 {
2266 	/*
2267 	 * Means we are just firing up cfg80211, so no beacons would
2268 	 * have been processed yet.
2269 	 */
2270 	if (!last_request)
2271 		return;
2272 	wiphy_update_beacon_reg(wiphy);
2273 }
2274 
is_ht40_allowed(struct ieee80211_channel * chan)2275 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2276 {
2277 	if (!chan)
2278 		return false;
2279 	if (chan->flags & IEEE80211_CHAN_DISABLED)
2280 		return false;
2281 	/* This would happen when regulatory rules disallow HT40 completely */
2282 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2283 		return false;
2284 	return true;
2285 }
2286 
reg_process_ht_flags_channel(struct wiphy * wiphy,struct ieee80211_channel * channel)2287 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2288 					 struct ieee80211_channel *channel)
2289 {
2290 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2291 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2292 	const struct ieee80211_regdomain *regd;
2293 	unsigned int i;
2294 	u32 flags;
2295 
2296 	if (!is_ht40_allowed(channel)) {
2297 		channel->flags |= IEEE80211_CHAN_NO_HT40;
2298 		return;
2299 	}
2300 
2301 	/*
2302 	 * We need to ensure the extension channels exist to
2303 	 * be able to use HT40- or HT40+, this finds them (or not)
2304 	 */
2305 	for (i = 0; i < sband->n_channels; i++) {
2306 		struct ieee80211_channel *c = &sband->channels[i];
2307 
2308 		if (c->center_freq == (channel->center_freq - 20))
2309 			channel_before = c;
2310 		if (c->center_freq == (channel->center_freq + 20))
2311 			channel_after = c;
2312 	}
2313 
2314 	flags = 0;
2315 	regd = get_wiphy_regdom(wiphy);
2316 	if (regd) {
2317 		const struct ieee80211_reg_rule *reg_rule =
2318 			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2319 					   regd, MHZ_TO_KHZ(20));
2320 
2321 		if (!IS_ERR(reg_rule))
2322 			flags = reg_rule->flags;
2323 	}
2324 
2325 	/*
2326 	 * Please note that this assumes target bandwidth is 20 MHz,
2327 	 * if that ever changes we also need to change the below logic
2328 	 * to include that as well.
2329 	 */
2330 	if (!is_ht40_allowed(channel_before) ||
2331 	    flags & NL80211_RRF_NO_HT40MINUS)
2332 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2333 	else
2334 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2335 
2336 	if (!is_ht40_allowed(channel_after) ||
2337 	    flags & NL80211_RRF_NO_HT40PLUS)
2338 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2339 	else
2340 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2341 }
2342 
reg_process_ht_flags_band(struct wiphy * wiphy,struct ieee80211_supported_band * sband)2343 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2344 				      struct ieee80211_supported_band *sband)
2345 {
2346 	unsigned int i;
2347 
2348 	if (!sband)
2349 		return;
2350 
2351 	for (i = 0; i < sband->n_channels; i++)
2352 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2353 }
2354 
reg_process_ht_flags(struct wiphy * wiphy)2355 static void reg_process_ht_flags(struct wiphy *wiphy)
2356 {
2357 	enum nl80211_band band;
2358 
2359 	if (!wiphy)
2360 		return;
2361 
2362 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2363 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2364 }
2365 
reg_wdev_chan_valid(struct wiphy * wiphy,struct wireless_dev * wdev)2366 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2367 {
2368 	struct cfg80211_chan_def chandef = {};
2369 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2370 	enum nl80211_iftype iftype;
2371 	bool ret;
2372 	int link;
2373 
2374 	iftype = wdev->iftype;
2375 
2376 	/* make sure the interface is active */
2377 	if (!wdev->netdev || !netif_running(wdev->netdev))
2378 		return true;
2379 
2380 	for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2381 		struct ieee80211_channel *chan;
2382 
2383 		if (!wdev->valid_links && link > 0)
2384 			break;
2385 		if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2386 			continue;
2387 		switch (iftype) {
2388 		case NL80211_IFTYPE_AP:
2389 		case NL80211_IFTYPE_P2P_GO:
2390 			if (!wdev->links[link].ap.beacon_interval)
2391 				continue;
2392 			chandef = wdev->links[link].ap.chandef;
2393 			break;
2394 		case NL80211_IFTYPE_MESH_POINT:
2395 			if (!wdev->u.mesh.beacon_interval)
2396 				continue;
2397 			chandef = wdev->u.mesh.chandef;
2398 			break;
2399 		case NL80211_IFTYPE_ADHOC:
2400 			if (!wdev->u.ibss.ssid_len)
2401 				continue;
2402 			chandef = wdev->u.ibss.chandef;
2403 			break;
2404 		case NL80211_IFTYPE_STATION:
2405 		case NL80211_IFTYPE_P2P_CLIENT:
2406 			/* Maybe we could consider disabling that link only? */
2407 			if (!wdev->links[link].client.current_bss)
2408 				continue;
2409 
2410 			chan = wdev->links[link].client.current_bss->pub.channel;
2411 			if (!chan)
2412 				continue;
2413 
2414 			if (!rdev->ops->get_channel ||
2415 			    rdev_get_channel(rdev, wdev, link, &chandef))
2416 				cfg80211_chandef_create(&chandef, chan,
2417 							NL80211_CHAN_NO_HT);
2418 			break;
2419 		case NL80211_IFTYPE_MONITOR:
2420 		case NL80211_IFTYPE_AP_VLAN:
2421 		case NL80211_IFTYPE_P2P_DEVICE:
2422 			/* no enforcement required */
2423 			break;
2424 		case NL80211_IFTYPE_OCB:
2425 			if (!wdev->u.ocb.chandef.chan)
2426 				continue;
2427 			chandef = wdev->u.ocb.chandef;
2428 			break;
2429 		case NL80211_IFTYPE_NAN:
2430 			/* we have no info, but NAN is also pretty universal */
2431 			continue;
2432 		default:
2433 			/* others not implemented for now */
2434 			WARN_ON_ONCE(1);
2435 			break;
2436 		}
2437 
2438 		switch (iftype) {
2439 		case NL80211_IFTYPE_AP:
2440 		case NL80211_IFTYPE_P2P_GO:
2441 		case NL80211_IFTYPE_ADHOC:
2442 		case NL80211_IFTYPE_MESH_POINT:
2443 			ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2444 							    iftype);
2445 			if (!ret)
2446 				return ret;
2447 			break;
2448 		case NL80211_IFTYPE_STATION:
2449 		case NL80211_IFTYPE_P2P_CLIENT:
2450 			ret = cfg80211_chandef_usable(wiphy, &chandef,
2451 						      IEEE80211_CHAN_DISABLED);
2452 			if (!ret)
2453 				return ret;
2454 			break;
2455 		default:
2456 			break;
2457 		}
2458 	}
2459 
2460 	return true;
2461 }
2462 
reg_leave_invalid_chans(struct wiphy * wiphy)2463 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2464 {
2465 	struct wireless_dev *wdev;
2466 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2467 
2468 	wiphy_lock(wiphy);
2469 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2470 		if (!reg_wdev_chan_valid(wiphy, wdev))
2471 			cfg80211_leave(rdev, wdev);
2472 	wiphy_unlock(wiphy);
2473 }
2474 
reg_check_chans_work(struct work_struct * work)2475 static void reg_check_chans_work(struct work_struct *work)
2476 {
2477 	struct cfg80211_registered_device *rdev;
2478 
2479 	pr_debug("Verifying active interfaces after reg change\n");
2480 	rtnl_lock();
2481 
2482 	for_each_rdev(rdev)
2483 		reg_leave_invalid_chans(&rdev->wiphy);
2484 
2485 	rtnl_unlock();
2486 }
2487 
reg_check_channels(void)2488 void reg_check_channels(void)
2489 {
2490 	/*
2491 	 * Give usermode a chance to do something nicer (move to another
2492 	 * channel, orderly disconnection), before forcing a disconnection.
2493 	 */
2494 	mod_delayed_work(system_power_efficient_wq,
2495 			 &reg_check_chans,
2496 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2497 }
2498 
wiphy_update_regulatory(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)2499 static void wiphy_update_regulatory(struct wiphy *wiphy,
2500 				    enum nl80211_reg_initiator initiator)
2501 {
2502 	enum nl80211_band band;
2503 	struct regulatory_request *lr = get_last_request();
2504 
2505 	if (ignore_reg_update(wiphy, initiator)) {
2506 		/*
2507 		 * Regulatory updates set by CORE are ignored for custom
2508 		 * regulatory cards. Let us notify the changes to the driver,
2509 		 * as some drivers used this to restore its orig_* reg domain.
2510 		 */
2511 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2512 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2513 		    !(wiphy->regulatory_flags &
2514 		      REGULATORY_WIPHY_SELF_MANAGED))
2515 			reg_call_notifier(wiphy, lr);
2516 		return;
2517 	}
2518 
2519 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2520 
2521 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2522 		handle_band(wiphy, initiator, wiphy->bands[band]);
2523 
2524 	reg_process_beacons(wiphy);
2525 	reg_process_ht_flags(wiphy);
2526 	reg_call_notifier(wiphy, lr);
2527 }
2528 
update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)2529 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2530 {
2531 	struct cfg80211_registered_device *rdev;
2532 	struct wiphy *wiphy;
2533 
2534 	ASSERT_RTNL();
2535 
2536 	for_each_rdev(rdev) {
2537 		wiphy = &rdev->wiphy;
2538 		wiphy_update_regulatory(wiphy, initiator);
2539 	}
2540 
2541 	reg_check_channels();
2542 }
2543 
handle_channel_custom(struct wiphy * wiphy,struct ieee80211_channel * chan,const struct ieee80211_regdomain * regd,u32 min_bw)2544 static void handle_channel_custom(struct wiphy *wiphy,
2545 				  struct ieee80211_channel *chan,
2546 				  const struct ieee80211_regdomain *regd,
2547 				  u32 min_bw)
2548 {
2549 	u32 bw_flags = 0;
2550 	const struct ieee80211_reg_rule *reg_rule = NULL;
2551 	const struct ieee80211_power_rule *power_rule = NULL;
2552 	u32 bw, center_freq_khz;
2553 
2554 	center_freq_khz = ieee80211_channel_to_khz(chan);
2555 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2556 		reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2557 		if (!IS_ERR(reg_rule))
2558 			break;
2559 	}
2560 
2561 	if (IS_ERR_OR_NULL(reg_rule)) {
2562 		pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2563 			 chan->center_freq, chan->freq_offset);
2564 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2565 			chan->flags |= IEEE80211_CHAN_DISABLED;
2566 		} else {
2567 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2568 			chan->flags = chan->orig_flags;
2569 		}
2570 		return;
2571 	}
2572 
2573 	power_rule = &reg_rule->power_rule;
2574 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2575 
2576 	chan->dfs_state_entered = jiffies;
2577 	chan->dfs_state = NL80211_DFS_USABLE;
2578 
2579 	chan->beacon_found = false;
2580 
2581 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2582 		chan->flags = chan->orig_flags | bw_flags |
2583 			      map_regdom_flags(reg_rule->flags);
2584 	else
2585 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2586 
2587 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2588 	chan->max_reg_power = chan->max_power =
2589 		(int) MBM_TO_DBM(power_rule->max_eirp);
2590 
2591 	if (chan->flags & IEEE80211_CHAN_RADAR) {
2592 		if (reg_rule->dfs_cac_ms)
2593 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2594 		else
2595 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2596 	}
2597 
2598 	if (chan->flags & IEEE80211_CHAN_PSD)
2599 		chan->psd = reg_rule->psd;
2600 
2601 	chan->max_power = chan->max_reg_power;
2602 }
2603 
handle_band_custom(struct wiphy * wiphy,struct ieee80211_supported_band * sband,const struct ieee80211_regdomain * regd)2604 static void handle_band_custom(struct wiphy *wiphy,
2605 			       struct ieee80211_supported_band *sband,
2606 			       const struct ieee80211_regdomain *regd)
2607 {
2608 	unsigned int i;
2609 
2610 	if (!sband)
2611 		return;
2612 
2613 	/*
2614 	 * We currently assume that you always want at least 20 MHz,
2615 	 * otherwise channel 12 might get enabled if this rule is
2616 	 * compatible to US, which permits 2402 - 2472 MHz.
2617 	 */
2618 	for (i = 0; i < sband->n_channels; i++)
2619 		handle_channel_custom(wiphy, &sband->channels[i], regd,
2620 				      MHZ_TO_KHZ(20));
2621 }
2622 
2623 /* Used by drivers prior to wiphy registration */
wiphy_apply_custom_regulatory(struct wiphy * wiphy,const struct ieee80211_regdomain * regd)2624 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2625 				   const struct ieee80211_regdomain *regd)
2626 {
2627 	const struct ieee80211_regdomain *new_regd, *tmp;
2628 	enum nl80211_band band;
2629 	unsigned int bands_set = 0;
2630 
2631 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2632 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2633 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2634 
2635 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2636 		if (!wiphy->bands[band])
2637 			continue;
2638 		handle_band_custom(wiphy, wiphy->bands[band], regd);
2639 		bands_set++;
2640 	}
2641 
2642 	/*
2643 	 * no point in calling this if it won't have any effect
2644 	 * on your device's supported bands.
2645 	 */
2646 	WARN_ON(!bands_set);
2647 	new_regd = reg_copy_regd(regd);
2648 	if (IS_ERR(new_regd))
2649 		return;
2650 
2651 	rtnl_lock();
2652 	wiphy_lock(wiphy);
2653 
2654 	tmp = get_wiphy_regdom(wiphy);
2655 	rcu_assign_pointer(wiphy->regd, new_regd);
2656 	rcu_free_regdom(tmp);
2657 
2658 	wiphy_unlock(wiphy);
2659 	rtnl_unlock();
2660 }
2661 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2662 
reg_set_request_processed(void)2663 static void reg_set_request_processed(void)
2664 {
2665 	bool need_more_processing = false;
2666 	struct regulatory_request *lr = get_last_request();
2667 
2668 	lr->processed = true;
2669 
2670 	spin_lock(&reg_requests_lock);
2671 	if (!list_empty(&reg_requests_list))
2672 		need_more_processing = true;
2673 	spin_unlock(&reg_requests_lock);
2674 
2675 	cancel_crda_timeout();
2676 
2677 	if (need_more_processing)
2678 		schedule_work(&reg_work);
2679 }
2680 
2681 /**
2682  * reg_process_hint_core - process core regulatory requests
2683  * @core_request: a pending core regulatory request
2684  *
2685  * The wireless subsystem can use this function to process
2686  * a regulatory request issued by the regulatory core.
2687  *
2688  * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2689  *	hint was processed or ignored
2690  */
2691 static enum reg_request_treatment
reg_process_hint_core(struct regulatory_request * core_request)2692 reg_process_hint_core(struct regulatory_request *core_request)
2693 {
2694 	if (reg_query_database(core_request)) {
2695 		core_request->intersect = false;
2696 		core_request->processed = false;
2697 		reg_update_last_request(core_request);
2698 		return REG_REQ_OK;
2699 	}
2700 
2701 	return REG_REQ_IGNORE;
2702 }
2703 
2704 static enum reg_request_treatment
__reg_process_hint_user(struct regulatory_request * user_request)2705 __reg_process_hint_user(struct regulatory_request *user_request)
2706 {
2707 	struct regulatory_request *lr = get_last_request();
2708 
2709 	if (reg_request_cell_base(user_request))
2710 		return reg_ignore_cell_hint(user_request);
2711 
2712 	if (reg_request_cell_base(lr))
2713 		return REG_REQ_IGNORE;
2714 
2715 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2716 		return REG_REQ_INTERSECT;
2717 	/*
2718 	 * If the user knows better the user should set the regdom
2719 	 * to their country before the IE is picked up
2720 	 */
2721 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2722 	    lr->intersect)
2723 		return REG_REQ_IGNORE;
2724 	/*
2725 	 * Process user requests only after previous user/driver/core
2726 	 * requests have been processed
2727 	 */
2728 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2729 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2730 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2731 	    regdom_changes(lr->alpha2))
2732 		return REG_REQ_IGNORE;
2733 
2734 	if (!regdom_changes(user_request->alpha2))
2735 		return REG_REQ_ALREADY_SET;
2736 
2737 	return REG_REQ_OK;
2738 }
2739 
2740 /**
2741  * reg_process_hint_user - process user regulatory requests
2742  * @user_request: a pending user regulatory request
2743  *
2744  * The wireless subsystem can use this function to process
2745  * a regulatory request initiated by userspace.
2746  *
2747  * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2748  *	hint was processed or ignored
2749  */
2750 static enum reg_request_treatment
reg_process_hint_user(struct regulatory_request * user_request)2751 reg_process_hint_user(struct regulatory_request *user_request)
2752 {
2753 	enum reg_request_treatment treatment;
2754 
2755 	treatment = __reg_process_hint_user(user_request);
2756 	if (treatment == REG_REQ_IGNORE ||
2757 	    treatment == REG_REQ_ALREADY_SET)
2758 		return REG_REQ_IGNORE;
2759 
2760 	user_request->intersect = treatment == REG_REQ_INTERSECT;
2761 	user_request->processed = false;
2762 
2763 	if (reg_query_database(user_request)) {
2764 		reg_update_last_request(user_request);
2765 		user_alpha2[0] = user_request->alpha2[0];
2766 		user_alpha2[1] = user_request->alpha2[1];
2767 		return REG_REQ_OK;
2768 	}
2769 
2770 	return REG_REQ_IGNORE;
2771 }
2772 
2773 static enum reg_request_treatment
__reg_process_hint_driver(struct regulatory_request * driver_request)2774 __reg_process_hint_driver(struct regulatory_request *driver_request)
2775 {
2776 	struct regulatory_request *lr = get_last_request();
2777 
2778 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2779 		if (regdom_changes(driver_request->alpha2))
2780 			return REG_REQ_OK;
2781 		return REG_REQ_ALREADY_SET;
2782 	}
2783 
2784 	/*
2785 	 * This would happen if you unplug and plug your card
2786 	 * back in or if you add a new device for which the previously
2787 	 * loaded card also agrees on the regulatory domain.
2788 	 */
2789 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2790 	    !regdom_changes(driver_request->alpha2))
2791 		return REG_REQ_ALREADY_SET;
2792 
2793 	return REG_REQ_INTERSECT;
2794 }
2795 
2796 /**
2797  * reg_process_hint_driver - process driver regulatory requests
2798  * @wiphy: the wireless device for the regulatory request
2799  * @driver_request: a pending driver regulatory request
2800  *
2801  * The wireless subsystem can use this function to process
2802  * a regulatory request issued by an 802.11 driver.
2803  *
2804  * Returns: one of the different reg request treatment values.
2805  */
2806 static enum reg_request_treatment
reg_process_hint_driver(struct wiphy * wiphy,struct regulatory_request * driver_request)2807 reg_process_hint_driver(struct wiphy *wiphy,
2808 			struct regulatory_request *driver_request)
2809 {
2810 	const struct ieee80211_regdomain *regd, *tmp;
2811 	enum reg_request_treatment treatment;
2812 
2813 	treatment = __reg_process_hint_driver(driver_request);
2814 
2815 	switch (treatment) {
2816 	case REG_REQ_OK:
2817 		break;
2818 	case REG_REQ_IGNORE:
2819 		return REG_REQ_IGNORE;
2820 	case REG_REQ_INTERSECT:
2821 	case REG_REQ_ALREADY_SET:
2822 		regd = reg_copy_regd(get_cfg80211_regdom());
2823 		if (IS_ERR(regd))
2824 			return REG_REQ_IGNORE;
2825 
2826 		tmp = get_wiphy_regdom(wiphy);
2827 		ASSERT_RTNL();
2828 		wiphy_lock(wiphy);
2829 		rcu_assign_pointer(wiphy->regd, regd);
2830 		wiphy_unlock(wiphy);
2831 		rcu_free_regdom(tmp);
2832 	}
2833 
2834 
2835 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2836 	driver_request->processed = false;
2837 
2838 	/*
2839 	 * Since CRDA will not be called in this case as we already
2840 	 * have applied the requested regulatory domain before we just
2841 	 * inform userspace we have processed the request
2842 	 */
2843 	if (treatment == REG_REQ_ALREADY_SET) {
2844 		nl80211_send_reg_change_event(driver_request);
2845 		reg_update_last_request(driver_request);
2846 		reg_set_request_processed();
2847 		return REG_REQ_ALREADY_SET;
2848 	}
2849 
2850 	if (reg_query_database(driver_request)) {
2851 		reg_update_last_request(driver_request);
2852 		return REG_REQ_OK;
2853 	}
2854 
2855 	return REG_REQ_IGNORE;
2856 }
2857 
2858 static enum reg_request_treatment
__reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2859 __reg_process_hint_country_ie(struct wiphy *wiphy,
2860 			      struct regulatory_request *country_ie_request)
2861 {
2862 	struct wiphy *last_wiphy = NULL;
2863 	struct regulatory_request *lr = get_last_request();
2864 
2865 	if (reg_request_cell_base(lr)) {
2866 		/* Trust a Cell base station over the AP's country IE */
2867 		if (regdom_changes(country_ie_request->alpha2))
2868 			return REG_REQ_IGNORE;
2869 		return REG_REQ_ALREADY_SET;
2870 	} else {
2871 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2872 			return REG_REQ_IGNORE;
2873 	}
2874 
2875 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2876 		return -EINVAL;
2877 
2878 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2879 		return REG_REQ_OK;
2880 
2881 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2882 
2883 	if (last_wiphy != wiphy) {
2884 		/*
2885 		 * Two cards with two APs claiming different
2886 		 * Country IE alpha2s. We could
2887 		 * intersect them, but that seems unlikely
2888 		 * to be correct. Reject second one for now.
2889 		 */
2890 		if (regdom_changes(country_ie_request->alpha2))
2891 			return REG_REQ_IGNORE;
2892 		return REG_REQ_ALREADY_SET;
2893 	}
2894 
2895 	if (regdom_changes(country_ie_request->alpha2))
2896 		return REG_REQ_OK;
2897 	return REG_REQ_ALREADY_SET;
2898 }
2899 
2900 /**
2901  * reg_process_hint_country_ie - process regulatory requests from country IEs
2902  * @wiphy: the wireless device for the regulatory request
2903  * @country_ie_request: a regulatory request from a country IE
2904  *
2905  * The wireless subsystem can use this function to process
2906  * a regulatory request issued by a country Information Element.
2907  *
2908  * Returns: one of the different reg request treatment values.
2909  */
2910 static enum reg_request_treatment
reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2911 reg_process_hint_country_ie(struct wiphy *wiphy,
2912 			    struct regulatory_request *country_ie_request)
2913 {
2914 	enum reg_request_treatment treatment;
2915 
2916 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2917 
2918 	switch (treatment) {
2919 	case REG_REQ_OK:
2920 		break;
2921 	case REG_REQ_IGNORE:
2922 		return REG_REQ_IGNORE;
2923 	case REG_REQ_ALREADY_SET:
2924 		reg_free_request(country_ie_request);
2925 		return REG_REQ_ALREADY_SET;
2926 	case REG_REQ_INTERSECT:
2927 		/*
2928 		 * This doesn't happen yet, not sure we
2929 		 * ever want to support it for this case.
2930 		 */
2931 		WARN_ONCE(1, "Unexpected intersection for country elements");
2932 		return REG_REQ_IGNORE;
2933 	}
2934 
2935 	country_ie_request->intersect = false;
2936 	country_ie_request->processed = false;
2937 
2938 	if (reg_query_database(country_ie_request)) {
2939 		reg_update_last_request(country_ie_request);
2940 		return REG_REQ_OK;
2941 	}
2942 
2943 	return REG_REQ_IGNORE;
2944 }
2945 
reg_dfs_domain_same(struct wiphy * wiphy1,struct wiphy * wiphy2)2946 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2947 {
2948 	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2949 	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2950 	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2951 	bool dfs_domain_same;
2952 
2953 	rcu_read_lock();
2954 
2955 	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2956 	wiphy1_regd = rcu_dereference(wiphy1->regd);
2957 	if (!wiphy1_regd)
2958 		wiphy1_regd = cfg80211_regd;
2959 
2960 	wiphy2_regd = rcu_dereference(wiphy2->regd);
2961 	if (!wiphy2_regd)
2962 		wiphy2_regd = cfg80211_regd;
2963 
2964 	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2965 
2966 	rcu_read_unlock();
2967 
2968 	return dfs_domain_same;
2969 }
2970 
reg_copy_dfs_chan_state(struct ieee80211_channel * dst_chan,struct ieee80211_channel * src_chan)2971 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2972 				    struct ieee80211_channel *src_chan)
2973 {
2974 	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2975 	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2976 		return;
2977 
2978 	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2979 	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2980 		return;
2981 
2982 	if (src_chan->center_freq == dst_chan->center_freq &&
2983 	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2984 		dst_chan->dfs_state = src_chan->dfs_state;
2985 		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2986 	}
2987 }
2988 
wiphy_share_dfs_chan_state(struct wiphy * dst_wiphy,struct wiphy * src_wiphy)2989 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2990 				       struct wiphy *src_wiphy)
2991 {
2992 	struct ieee80211_supported_band *src_sband, *dst_sband;
2993 	struct ieee80211_channel *src_chan, *dst_chan;
2994 	int i, j, band;
2995 
2996 	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2997 		return;
2998 
2999 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3000 		dst_sband = dst_wiphy->bands[band];
3001 		src_sband = src_wiphy->bands[band];
3002 		if (!dst_sband || !src_sband)
3003 			continue;
3004 
3005 		for (i = 0; i < dst_sband->n_channels; i++) {
3006 			dst_chan = &dst_sband->channels[i];
3007 			for (j = 0; j < src_sband->n_channels; j++) {
3008 				src_chan = &src_sband->channels[j];
3009 				reg_copy_dfs_chan_state(dst_chan, src_chan);
3010 			}
3011 		}
3012 	}
3013 }
3014 
wiphy_all_share_dfs_chan_state(struct wiphy * wiphy)3015 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
3016 {
3017 	struct cfg80211_registered_device *rdev;
3018 
3019 	ASSERT_RTNL();
3020 
3021 	for_each_rdev(rdev) {
3022 		if (wiphy == &rdev->wiphy)
3023 			continue;
3024 		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
3025 	}
3026 }
3027 
3028 /* This processes *all* regulatory hints */
reg_process_hint(struct regulatory_request * reg_request)3029 static void reg_process_hint(struct regulatory_request *reg_request)
3030 {
3031 	struct wiphy *wiphy = NULL;
3032 	enum reg_request_treatment treatment;
3033 	enum nl80211_reg_initiator initiator = reg_request->initiator;
3034 
3035 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3036 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3037 
3038 	switch (initiator) {
3039 	case NL80211_REGDOM_SET_BY_CORE:
3040 		treatment = reg_process_hint_core(reg_request);
3041 		break;
3042 	case NL80211_REGDOM_SET_BY_USER:
3043 		treatment = reg_process_hint_user(reg_request);
3044 		break;
3045 	case NL80211_REGDOM_SET_BY_DRIVER:
3046 		if (!wiphy)
3047 			goto out_free;
3048 		treatment = reg_process_hint_driver(wiphy, reg_request);
3049 		break;
3050 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3051 		if (!wiphy)
3052 			goto out_free;
3053 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
3054 		break;
3055 	default:
3056 		WARN(1, "invalid initiator %d\n", initiator);
3057 		goto out_free;
3058 	}
3059 
3060 	if (treatment == REG_REQ_IGNORE)
3061 		goto out_free;
3062 
3063 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3064 	     "unexpected treatment value %d\n", treatment);
3065 
3066 	/* This is required so that the orig_* parameters are saved.
3067 	 * NOTE: treatment must be set for any case that reaches here!
3068 	 */
3069 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3070 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3071 		wiphy_update_regulatory(wiphy, initiator);
3072 		wiphy_all_share_dfs_chan_state(wiphy);
3073 		reg_check_channels();
3074 	}
3075 
3076 	return;
3077 
3078 out_free:
3079 	reg_free_request(reg_request);
3080 }
3081 
notify_self_managed_wiphys(struct regulatory_request * request)3082 static void notify_self_managed_wiphys(struct regulatory_request *request)
3083 {
3084 	struct cfg80211_registered_device *rdev;
3085 	struct wiphy *wiphy;
3086 
3087 	for_each_rdev(rdev) {
3088 		wiphy = &rdev->wiphy;
3089 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3090 		    request->initiator == NL80211_REGDOM_SET_BY_USER)
3091 			reg_call_notifier(wiphy, request);
3092 	}
3093 }
3094 
3095 /*
3096  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3097  * Regulatory hints come on a first come first serve basis and we
3098  * must process each one atomically.
3099  */
reg_process_pending_hints(void)3100 static void reg_process_pending_hints(void)
3101 {
3102 	struct regulatory_request *reg_request, *lr;
3103 
3104 	lr = get_last_request();
3105 
3106 	/* When last_request->processed becomes true this will be rescheduled */
3107 	if (lr && !lr->processed) {
3108 		pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3109 		return;
3110 	}
3111 
3112 	spin_lock(&reg_requests_lock);
3113 
3114 	if (list_empty(&reg_requests_list)) {
3115 		spin_unlock(&reg_requests_lock);
3116 		return;
3117 	}
3118 
3119 	reg_request = list_first_entry(&reg_requests_list,
3120 				       struct regulatory_request,
3121 				       list);
3122 	list_del_init(&reg_request->list);
3123 
3124 	spin_unlock(&reg_requests_lock);
3125 
3126 	notify_self_managed_wiphys(reg_request);
3127 
3128 	reg_process_hint(reg_request);
3129 
3130 	lr = get_last_request();
3131 
3132 	spin_lock(&reg_requests_lock);
3133 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
3134 		schedule_work(&reg_work);
3135 	spin_unlock(&reg_requests_lock);
3136 }
3137 
3138 /* Processes beacon hints -- this has nothing to do with country IEs */
reg_process_pending_beacon_hints(void)3139 static void reg_process_pending_beacon_hints(void)
3140 {
3141 	struct cfg80211_registered_device *rdev;
3142 	struct reg_beacon *pending_beacon, *tmp;
3143 
3144 	/* This goes through the _pending_ beacon list */
3145 	spin_lock_bh(&reg_pending_beacons_lock);
3146 
3147 	list_for_each_entry_safe(pending_beacon, tmp,
3148 				 &reg_pending_beacons, list) {
3149 		list_del_init(&pending_beacon->list);
3150 
3151 		/* Applies the beacon hint to current wiphys */
3152 		for_each_rdev(rdev)
3153 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3154 
3155 		/* Remembers the beacon hint for new wiphys or reg changes */
3156 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
3157 	}
3158 
3159 	spin_unlock_bh(&reg_pending_beacons_lock);
3160 }
3161 
reg_process_self_managed_hint(struct wiphy * wiphy)3162 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3163 {
3164 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3165 	const struct ieee80211_regdomain *tmp;
3166 	const struct ieee80211_regdomain *regd;
3167 	enum nl80211_band band;
3168 	struct regulatory_request request = {};
3169 
3170 	ASSERT_RTNL();
3171 	lockdep_assert_wiphy(wiphy);
3172 
3173 	spin_lock(&reg_requests_lock);
3174 	regd = rdev->requested_regd;
3175 	rdev->requested_regd = NULL;
3176 	spin_unlock(&reg_requests_lock);
3177 
3178 	if (!regd)
3179 		return;
3180 
3181 	tmp = get_wiphy_regdom(wiphy);
3182 	rcu_assign_pointer(wiphy->regd, regd);
3183 	rcu_free_regdom(tmp);
3184 
3185 	for (band = 0; band < NUM_NL80211_BANDS; band++)
3186 		handle_band_custom(wiphy, wiphy->bands[band], regd);
3187 
3188 	reg_process_ht_flags(wiphy);
3189 
3190 	request.wiphy_idx = get_wiphy_idx(wiphy);
3191 	request.alpha2[0] = regd->alpha2[0];
3192 	request.alpha2[1] = regd->alpha2[1];
3193 	request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3194 
3195 	if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3196 		reg_call_notifier(wiphy, &request);
3197 
3198 	nl80211_send_wiphy_reg_change_event(&request);
3199 }
3200 
reg_process_self_managed_hints(void)3201 static void reg_process_self_managed_hints(void)
3202 {
3203 	struct cfg80211_registered_device *rdev;
3204 
3205 	ASSERT_RTNL();
3206 
3207 	for_each_rdev(rdev) {
3208 		wiphy_lock(&rdev->wiphy);
3209 		reg_process_self_managed_hint(&rdev->wiphy);
3210 		wiphy_unlock(&rdev->wiphy);
3211 	}
3212 
3213 	reg_check_channels();
3214 }
3215 
reg_todo(struct work_struct * work)3216 static void reg_todo(struct work_struct *work)
3217 {
3218 	rtnl_lock();
3219 	reg_process_pending_hints();
3220 	reg_process_pending_beacon_hints();
3221 	reg_process_self_managed_hints();
3222 	rtnl_unlock();
3223 }
3224 
queue_regulatory_request(struct regulatory_request * request)3225 static void queue_regulatory_request(struct regulatory_request *request)
3226 {
3227 	request->alpha2[0] = toupper(request->alpha2[0]);
3228 	request->alpha2[1] = toupper(request->alpha2[1]);
3229 
3230 	spin_lock(&reg_requests_lock);
3231 	list_add_tail(&request->list, &reg_requests_list);
3232 	spin_unlock(&reg_requests_lock);
3233 
3234 	schedule_work(&reg_work);
3235 }
3236 
3237 /*
3238  * Core regulatory hint -- happens during cfg80211_init()
3239  * and when we restore regulatory settings.
3240  */
regulatory_hint_core(const char * alpha2)3241 static int regulatory_hint_core(const char *alpha2)
3242 {
3243 	struct regulatory_request *request;
3244 
3245 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3246 	if (!request)
3247 		return -ENOMEM;
3248 
3249 	request->alpha2[0] = alpha2[0];
3250 	request->alpha2[1] = alpha2[1];
3251 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
3252 	request->wiphy_idx = WIPHY_IDX_INVALID;
3253 
3254 	queue_regulatory_request(request);
3255 
3256 	return 0;
3257 }
3258 
3259 /* User hints */
regulatory_hint_user(const char * alpha2,enum nl80211_user_reg_hint_type user_reg_hint_type)3260 int regulatory_hint_user(const char *alpha2,
3261 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
3262 {
3263 	struct regulatory_request *request;
3264 
3265 	if (WARN_ON(!alpha2))
3266 		return -EINVAL;
3267 
3268 	if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3269 		return -EINVAL;
3270 
3271 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3272 	if (!request)
3273 		return -ENOMEM;
3274 
3275 	request->wiphy_idx = WIPHY_IDX_INVALID;
3276 	request->alpha2[0] = alpha2[0];
3277 	request->alpha2[1] = alpha2[1];
3278 	request->initiator = NL80211_REGDOM_SET_BY_USER;
3279 	request->user_reg_hint_type = user_reg_hint_type;
3280 
3281 	/* Allow calling CRDA again */
3282 	reset_crda_timeouts();
3283 
3284 	queue_regulatory_request(request);
3285 
3286 	return 0;
3287 }
3288 
regulatory_hint_indoor(bool is_indoor,u32 portid)3289 void regulatory_hint_indoor(bool is_indoor, u32 portid)
3290 {
3291 	spin_lock(&reg_indoor_lock);
3292 
3293 	/* It is possible that more than one user space process is trying to
3294 	 * configure the indoor setting. To handle such cases, clear the indoor
3295 	 * setting in case that some process does not think that the device
3296 	 * is operating in an indoor environment. In addition, if a user space
3297 	 * process indicates that it is controlling the indoor setting, save its
3298 	 * portid, i.e., make it the owner.
3299 	 */
3300 	reg_is_indoor = is_indoor;
3301 	if (reg_is_indoor) {
3302 		if (!reg_is_indoor_portid)
3303 			reg_is_indoor_portid = portid;
3304 	} else {
3305 		reg_is_indoor_portid = 0;
3306 	}
3307 
3308 	spin_unlock(&reg_indoor_lock);
3309 
3310 	if (!is_indoor)
3311 		reg_check_channels();
3312 }
3313 
regulatory_netlink_notify(u32 portid)3314 void regulatory_netlink_notify(u32 portid)
3315 {
3316 	spin_lock(&reg_indoor_lock);
3317 
3318 	if (reg_is_indoor_portid != portid) {
3319 		spin_unlock(&reg_indoor_lock);
3320 		return;
3321 	}
3322 
3323 	reg_is_indoor = false;
3324 	reg_is_indoor_portid = 0;
3325 
3326 	spin_unlock(&reg_indoor_lock);
3327 
3328 	reg_check_channels();
3329 }
3330 
3331 /* Driver hints */
regulatory_hint(struct wiphy * wiphy,const char * alpha2)3332 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3333 {
3334 	struct regulatory_request *request;
3335 
3336 	if (WARN_ON(!alpha2 || !wiphy))
3337 		return -EINVAL;
3338 
3339 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3340 
3341 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3342 	if (!request)
3343 		return -ENOMEM;
3344 
3345 	request->wiphy_idx = get_wiphy_idx(wiphy);
3346 
3347 	request->alpha2[0] = alpha2[0];
3348 	request->alpha2[1] = alpha2[1];
3349 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3350 
3351 	/* Allow calling CRDA again */
3352 	reset_crda_timeouts();
3353 
3354 	queue_regulatory_request(request);
3355 
3356 	return 0;
3357 }
3358 EXPORT_SYMBOL(regulatory_hint);
3359 
regulatory_hint_country_ie(struct wiphy * wiphy,enum nl80211_band band,const u8 * country_ie,u8 country_ie_len)3360 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3361 				const u8 *country_ie, u8 country_ie_len)
3362 {
3363 	char alpha2[2];
3364 	enum environment_cap env = ENVIRON_ANY;
3365 	struct regulatory_request *request = NULL, *lr;
3366 
3367 	/* IE len must be evenly divisible by 2 */
3368 	if (country_ie_len & 0x01)
3369 		return;
3370 
3371 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3372 		return;
3373 
3374 	request = kzalloc(sizeof(*request), GFP_KERNEL);
3375 	if (!request)
3376 		return;
3377 
3378 	alpha2[0] = country_ie[0];
3379 	alpha2[1] = country_ie[1];
3380 
3381 	if (country_ie[2] == 'I')
3382 		env = ENVIRON_INDOOR;
3383 	else if (country_ie[2] == 'O')
3384 		env = ENVIRON_OUTDOOR;
3385 
3386 	rcu_read_lock();
3387 	lr = get_last_request();
3388 
3389 	if (unlikely(!lr))
3390 		goto out;
3391 
3392 	/*
3393 	 * We will run this only upon a successful connection on cfg80211.
3394 	 * We leave conflict resolution to the workqueue, where can hold
3395 	 * the RTNL.
3396 	 */
3397 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3398 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3399 		goto out;
3400 
3401 	request->wiphy_idx = get_wiphy_idx(wiphy);
3402 	request->alpha2[0] = alpha2[0];
3403 	request->alpha2[1] = alpha2[1];
3404 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3405 	request->country_ie_env = env;
3406 
3407 	/* Allow calling CRDA again */
3408 	reset_crda_timeouts();
3409 
3410 	queue_regulatory_request(request);
3411 	request = NULL;
3412 out:
3413 	kfree(request);
3414 	rcu_read_unlock();
3415 }
3416 
restore_alpha2(char * alpha2,bool reset_user)3417 static void restore_alpha2(char *alpha2, bool reset_user)
3418 {
3419 	/* indicates there is no alpha2 to consider for restoration */
3420 	alpha2[0] = '9';
3421 	alpha2[1] = '7';
3422 
3423 	/* The user setting has precedence over the module parameter */
3424 	if (is_user_regdom_saved()) {
3425 		/* Unless we're asked to ignore it and reset it */
3426 		if (reset_user) {
3427 			pr_debug("Restoring regulatory settings including user preference\n");
3428 			user_alpha2[0] = '9';
3429 			user_alpha2[1] = '7';
3430 
3431 			/*
3432 			 * If we're ignoring user settings, we still need to
3433 			 * check the module parameter to ensure we put things
3434 			 * back as they were for a full restore.
3435 			 */
3436 			if (!is_world_regdom(ieee80211_regdom)) {
3437 				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3438 					 ieee80211_regdom[0], ieee80211_regdom[1]);
3439 				alpha2[0] = ieee80211_regdom[0];
3440 				alpha2[1] = ieee80211_regdom[1];
3441 			}
3442 		} else {
3443 			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3444 				 user_alpha2[0], user_alpha2[1]);
3445 			alpha2[0] = user_alpha2[0];
3446 			alpha2[1] = user_alpha2[1];
3447 		}
3448 	} else if (!is_world_regdom(ieee80211_regdom)) {
3449 		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3450 			 ieee80211_regdom[0], ieee80211_regdom[1]);
3451 		alpha2[0] = ieee80211_regdom[0];
3452 		alpha2[1] = ieee80211_regdom[1];
3453 	} else
3454 		pr_debug("Restoring regulatory settings\n");
3455 }
3456 
restore_custom_reg_settings(struct wiphy * wiphy)3457 static void restore_custom_reg_settings(struct wiphy *wiphy)
3458 {
3459 	struct ieee80211_supported_band *sband;
3460 	enum nl80211_band band;
3461 	struct ieee80211_channel *chan;
3462 	int i;
3463 
3464 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3465 		sband = wiphy->bands[band];
3466 		if (!sband)
3467 			continue;
3468 		for (i = 0; i < sband->n_channels; i++) {
3469 			chan = &sband->channels[i];
3470 			chan->flags = chan->orig_flags;
3471 			chan->max_antenna_gain = chan->orig_mag;
3472 			chan->max_power = chan->orig_mpwr;
3473 			chan->beacon_found = false;
3474 		}
3475 	}
3476 }
3477 
3478 /*
3479  * Restoring regulatory settings involves ignoring any
3480  * possibly stale country IE information and user regulatory
3481  * settings if so desired, this includes any beacon hints
3482  * learned as we could have traveled outside to another country
3483  * after disconnection. To restore regulatory settings we do
3484  * exactly what we did at bootup:
3485  *
3486  *   - send a core regulatory hint
3487  *   - send a user regulatory hint if applicable
3488  *
3489  * Device drivers that send a regulatory hint for a specific country
3490  * keep their own regulatory domain on wiphy->regd so that does
3491  * not need to be remembered.
3492  */
restore_regulatory_settings(bool reset_user,bool cached)3493 static void restore_regulatory_settings(bool reset_user, bool cached)
3494 {
3495 	char alpha2[2];
3496 	char world_alpha2[2];
3497 	struct reg_beacon *reg_beacon, *btmp;
3498 	LIST_HEAD(tmp_reg_req_list);
3499 	struct cfg80211_registered_device *rdev;
3500 
3501 	ASSERT_RTNL();
3502 
3503 	/*
3504 	 * Clear the indoor setting in case that it is not controlled by user
3505 	 * space, as otherwise there is no guarantee that the device is still
3506 	 * operating in an indoor environment.
3507 	 */
3508 	spin_lock(&reg_indoor_lock);
3509 	if (reg_is_indoor && !reg_is_indoor_portid) {
3510 		reg_is_indoor = false;
3511 		reg_check_channels();
3512 	}
3513 	spin_unlock(&reg_indoor_lock);
3514 
3515 	reset_regdomains(true, &world_regdom);
3516 	restore_alpha2(alpha2, reset_user);
3517 
3518 	/*
3519 	 * If there's any pending requests we simply
3520 	 * stash them to a temporary pending queue and
3521 	 * add then after we've restored regulatory
3522 	 * settings.
3523 	 */
3524 	spin_lock(&reg_requests_lock);
3525 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3526 	spin_unlock(&reg_requests_lock);
3527 
3528 	/* Clear beacon hints */
3529 	spin_lock_bh(&reg_pending_beacons_lock);
3530 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3531 		list_del(&reg_beacon->list);
3532 		kfree(reg_beacon);
3533 	}
3534 	spin_unlock_bh(&reg_pending_beacons_lock);
3535 
3536 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3537 		list_del(&reg_beacon->list);
3538 		kfree(reg_beacon);
3539 	}
3540 
3541 	/* First restore to the basic regulatory settings */
3542 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3543 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3544 
3545 	for_each_rdev(rdev) {
3546 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3547 			continue;
3548 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3549 			restore_custom_reg_settings(&rdev->wiphy);
3550 	}
3551 
3552 	if (cached && (!is_an_alpha2(alpha2) ||
3553 		       !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3554 		reset_regdomains(false, cfg80211_world_regdom);
3555 		update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3556 		print_regdomain(get_cfg80211_regdom());
3557 		nl80211_send_reg_change_event(&core_request_world);
3558 		reg_set_request_processed();
3559 
3560 		if (is_an_alpha2(alpha2) &&
3561 		    !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3562 			struct regulatory_request *ureq;
3563 
3564 			spin_lock(&reg_requests_lock);
3565 			ureq = list_last_entry(&reg_requests_list,
3566 					       struct regulatory_request,
3567 					       list);
3568 			list_del(&ureq->list);
3569 			spin_unlock(&reg_requests_lock);
3570 
3571 			notify_self_managed_wiphys(ureq);
3572 			reg_update_last_request(ureq);
3573 			set_regdom(reg_copy_regd(cfg80211_user_regdom),
3574 				   REGD_SOURCE_CACHED);
3575 		}
3576 	} else {
3577 		regulatory_hint_core(world_alpha2);
3578 
3579 		/*
3580 		 * This restores the ieee80211_regdom module parameter
3581 		 * preference or the last user requested regulatory
3582 		 * settings, user regulatory settings takes precedence.
3583 		 */
3584 		if (is_an_alpha2(alpha2))
3585 			regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3586 	}
3587 
3588 	spin_lock(&reg_requests_lock);
3589 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3590 	spin_unlock(&reg_requests_lock);
3591 
3592 	pr_debug("Kicking the queue\n");
3593 
3594 	schedule_work(&reg_work);
3595 }
3596 
is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)3597 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3598 {
3599 	struct cfg80211_registered_device *rdev;
3600 	struct wireless_dev *wdev;
3601 
3602 	for_each_rdev(rdev) {
3603 		wiphy_lock(&rdev->wiphy);
3604 		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3605 			if (!(wdev->wiphy->regulatory_flags & flag)) {
3606 				wiphy_unlock(&rdev->wiphy);
3607 				return false;
3608 			}
3609 		}
3610 		wiphy_unlock(&rdev->wiphy);
3611 	}
3612 
3613 	return true;
3614 }
3615 
regulatory_hint_disconnect(void)3616 void regulatory_hint_disconnect(void)
3617 {
3618 	/* Restore of regulatory settings is not required when wiphy(s)
3619 	 * ignore IE from connected access point but clearance of beacon hints
3620 	 * is required when wiphy(s) supports beacon hints.
3621 	 */
3622 	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3623 		struct reg_beacon *reg_beacon, *btmp;
3624 
3625 		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3626 			return;
3627 
3628 		spin_lock_bh(&reg_pending_beacons_lock);
3629 		list_for_each_entry_safe(reg_beacon, btmp,
3630 					 &reg_pending_beacons, list) {
3631 			list_del(&reg_beacon->list);
3632 			kfree(reg_beacon);
3633 		}
3634 		spin_unlock_bh(&reg_pending_beacons_lock);
3635 
3636 		list_for_each_entry_safe(reg_beacon, btmp,
3637 					 &reg_beacon_list, list) {
3638 			list_del(&reg_beacon->list);
3639 			kfree(reg_beacon);
3640 		}
3641 
3642 		return;
3643 	}
3644 
3645 	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3646 	restore_regulatory_settings(false, true);
3647 }
3648 
freq_is_chan_12_13_14(u32 freq)3649 static bool freq_is_chan_12_13_14(u32 freq)
3650 {
3651 	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3652 	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3653 	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3654 		return true;
3655 	return false;
3656 }
3657 
pending_reg_beacon(struct ieee80211_channel * beacon_chan)3658 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3659 {
3660 	struct reg_beacon *pending_beacon;
3661 
3662 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3663 		if (ieee80211_channel_equal(beacon_chan,
3664 					    &pending_beacon->chan))
3665 			return true;
3666 	return false;
3667 }
3668 
regulatory_hint_found_beacon(struct wiphy * wiphy,struct ieee80211_channel * beacon_chan,gfp_t gfp)3669 void regulatory_hint_found_beacon(struct wiphy *wiphy,
3670 				  struct ieee80211_channel *beacon_chan,
3671 				  gfp_t gfp)
3672 {
3673 	struct reg_beacon *reg_beacon;
3674 	bool processing;
3675 
3676 	if (beacon_chan->beacon_found ||
3677 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3678 	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3679 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3680 		return;
3681 
3682 	spin_lock_bh(&reg_pending_beacons_lock);
3683 	processing = pending_reg_beacon(beacon_chan);
3684 	spin_unlock_bh(&reg_pending_beacons_lock);
3685 
3686 	if (processing)
3687 		return;
3688 
3689 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3690 	if (!reg_beacon)
3691 		return;
3692 
3693 	pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3694 		 beacon_chan->center_freq, beacon_chan->freq_offset,
3695 		 ieee80211_freq_khz_to_channel(
3696 			 ieee80211_channel_to_khz(beacon_chan)),
3697 		 wiphy_name(wiphy));
3698 
3699 	memcpy(&reg_beacon->chan, beacon_chan,
3700 	       sizeof(struct ieee80211_channel));
3701 
3702 	/*
3703 	 * Since we can be called from BH or and non-BH context
3704 	 * we must use spin_lock_bh()
3705 	 */
3706 	spin_lock_bh(&reg_pending_beacons_lock);
3707 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3708 	spin_unlock_bh(&reg_pending_beacons_lock);
3709 
3710 	schedule_work(&reg_work);
3711 }
3712 
print_rd_rules(const struct ieee80211_regdomain * rd)3713 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3714 {
3715 	unsigned int i;
3716 	const struct ieee80211_reg_rule *reg_rule = NULL;
3717 	const struct ieee80211_freq_range *freq_range = NULL;
3718 	const struct ieee80211_power_rule *power_rule = NULL;
3719 	char bw[32], cac_time[32];
3720 
3721 	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3722 
3723 	for (i = 0; i < rd->n_reg_rules; i++) {
3724 		reg_rule = &rd->reg_rules[i];
3725 		freq_range = &reg_rule->freq_range;
3726 		power_rule = &reg_rule->power_rule;
3727 
3728 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3729 			snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3730 				 freq_range->max_bandwidth_khz,
3731 				 reg_get_max_bandwidth(rd, reg_rule));
3732 		else
3733 			snprintf(bw, sizeof(bw), "%d KHz",
3734 				 freq_range->max_bandwidth_khz);
3735 
3736 		if (reg_rule->flags & NL80211_RRF_DFS)
3737 			scnprintf(cac_time, sizeof(cac_time), "%u s",
3738 				  reg_rule->dfs_cac_ms/1000);
3739 		else
3740 			scnprintf(cac_time, sizeof(cac_time), "N/A");
3741 
3742 
3743 		/*
3744 		 * There may not be documentation for max antenna gain
3745 		 * in certain regions
3746 		 */
3747 		if (power_rule->max_antenna_gain)
3748 			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3749 				freq_range->start_freq_khz,
3750 				freq_range->end_freq_khz,
3751 				bw,
3752 				power_rule->max_antenna_gain,
3753 				power_rule->max_eirp,
3754 				cac_time);
3755 		else
3756 			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3757 				freq_range->start_freq_khz,
3758 				freq_range->end_freq_khz,
3759 				bw,
3760 				power_rule->max_eirp,
3761 				cac_time);
3762 	}
3763 }
3764 
reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)3765 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3766 {
3767 	switch (dfs_region) {
3768 	case NL80211_DFS_UNSET:
3769 	case NL80211_DFS_FCC:
3770 	case NL80211_DFS_ETSI:
3771 	case NL80211_DFS_JP:
3772 		return true;
3773 	default:
3774 		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3775 		return false;
3776 	}
3777 }
3778 
print_regdomain(const struct ieee80211_regdomain * rd)3779 static void print_regdomain(const struct ieee80211_regdomain *rd)
3780 {
3781 	struct regulatory_request *lr = get_last_request();
3782 
3783 	if (is_intersected_alpha2(rd->alpha2)) {
3784 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3785 			struct cfg80211_registered_device *rdev;
3786 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3787 			if (rdev) {
3788 				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3789 					rdev->country_ie_alpha2[0],
3790 					rdev->country_ie_alpha2[1]);
3791 			} else
3792 				pr_debug("Current regulatory domain intersected:\n");
3793 		} else
3794 			pr_debug("Current regulatory domain intersected:\n");
3795 	} else if (is_world_regdom(rd->alpha2)) {
3796 		pr_debug("World regulatory domain updated:\n");
3797 	} else {
3798 		if (is_unknown_alpha2(rd->alpha2))
3799 			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3800 		else {
3801 			if (reg_request_cell_base(lr))
3802 				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3803 					rd->alpha2[0], rd->alpha2[1]);
3804 			else
3805 				pr_debug("Regulatory domain changed to country: %c%c\n",
3806 					rd->alpha2[0], rd->alpha2[1]);
3807 		}
3808 	}
3809 
3810 	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3811 	print_rd_rules(rd);
3812 }
3813 
print_regdomain_info(const struct ieee80211_regdomain * rd)3814 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3815 {
3816 	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3817 	print_rd_rules(rd);
3818 }
3819 
reg_set_rd_core(const struct ieee80211_regdomain * rd)3820 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3821 {
3822 	if (!is_world_regdom(rd->alpha2))
3823 		return -EINVAL;
3824 	update_world_regdomain(rd);
3825 	return 0;
3826 }
3827 
reg_set_rd_user(const struct ieee80211_regdomain * rd,struct regulatory_request * user_request)3828 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3829 			   struct regulatory_request *user_request)
3830 {
3831 	const struct ieee80211_regdomain *intersected_rd = NULL;
3832 
3833 	if (!regdom_changes(rd->alpha2))
3834 		return -EALREADY;
3835 
3836 	if (!is_valid_rd(rd)) {
3837 		pr_err("Invalid regulatory domain detected: %c%c\n",
3838 		       rd->alpha2[0], rd->alpha2[1]);
3839 		print_regdomain_info(rd);
3840 		return -EINVAL;
3841 	}
3842 
3843 	if (!user_request->intersect) {
3844 		reset_regdomains(false, rd);
3845 		return 0;
3846 	}
3847 
3848 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3849 	if (!intersected_rd)
3850 		return -EINVAL;
3851 
3852 	kfree(rd);
3853 	rd = NULL;
3854 	reset_regdomains(false, intersected_rd);
3855 
3856 	return 0;
3857 }
3858 
reg_set_rd_driver(const struct ieee80211_regdomain * rd,struct regulatory_request * driver_request)3859 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3860 			     struct regulatory_request *driver_request)
3861 {
3862 	const struct ieee80211_regdomain *regd;
3863 	const struct ieee80211_regdomain *intersected_rd = NULL;
3864 	const struct ieee80211_regdomain *tmp = NULL;
3865 	struct wiphy *request_wiphy;
3866 
3867 	if (is_world_regdom(rd->alpha2))
3868 		return -EINVAL;
3869 
3870 	if (!regdom_changes(rd->alpha2))
3871 		return -EALREADY;
3872 
3873 	if (!is_valid_rd(rd)) {
3874 		pr_err("Invalid regulatory domain detected: %c%c\n",
3875 		       rd->alpha2[0], rd->alpha2[1]);
3876 		print_regdomain_info(rd);
3877 		return -EINVAL;
3878 	}
3879 
3880 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3881 	if (!request_wiphy)
3882 		return -ENODEV;
3883 
3884 	if (!driver_request->intersect) {
3885 		ASSERT_RTNL();
3886 		wiphy_lock(request_wiphy);
3887 		if (request_wiphy->regd)
3888 			tmp = get_wiphy_regdom(request_wiphy);
3889 
3890 		regd = reg_copy_regd(rd);
3891 		if (IS_ERR(regd)) {
3892 			wiphy_unlock(request_wiphy);
3893 			return PTR_ERR(regd);
3894 		}
3895 
3896 		rcu_assign_pointer(request_wiphy->regd, regd);
3897 		rcu_free_regdom(tmp);
3898 		wiphy_unlock(request_wiphy);
3899 		reset_regdomains(false, rd);
3900 		return 0;
3901 	}
3902 
3903 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3904 	if (!intersected_rd)
3905 		return -EINVAL;
3906 
3907 	/*
3908 	 * We can trash what CRDA provided now.
3909 	 * However if a driver requested this specific regulatory
3910 	 * domain we keep it for its private use
3911 	 */
3912 	tmp = get_wiphy_regdom(request_wiphy);
3913 	rcu_assign_pointer(request_wiphy->regd, rd);
3914 	rcu_free_regdom(tmp);
3915 
3916 	rd = NULL;
3917 
3918 	reset_regdomains(false, intersected_rd);
3919 
3920 	return 0;
3921 }
3922 
reg_set_rd_country_ie(const struct ieee80211_regdomain * rd,struct regulatory_request * country_ie_request)3923 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3924 				 struct regulatory_request *country_ie_request)
3925 {
3926 	struct wiphy *request_wiphy;
3927 
3928 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3929 	    !is_unknown_alpha2(rd->alpha2))
3930 		return -EINVAL;
3931 
3932 	/*
3933 	 * Lets only bother proceeding on the same alpha2 if the current
3934 	 * rd is non static (it means CRDA was present and was used last)
3935 	 * and the pending request came in from a country IE
3936 	 */
3937 
3938 	if (!is_valid_rd(rd)) {
3939 		pr_err("Invalid regulatory domain detected: %c%c\n",
3940 		       rd->alpha2[0], rd->alpha2[1]);
3941 		print_regdomain_info(rd);
3942 		return -EINVAL;
3943 	}
3944 
3945 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3946 	if (!request_wiphy)
3947 		return -ENODEV;
3948 
3949 	if (country_ie_request->intersect)
3950 		return -EINVAL;
3951 
3952 	reset_regdomains(false, rd);
3953 	return 0;
3954 }
3955 
3956 /*
3957  * Use this call to set the current regulatory domain. Conflicts with
3958  * multiple drivers can be ironed out later. Caller must've already
3959  * kmalloc'd the rd structure.
3960  */
set_regdom(const struct ieee80211_regdomain * rd,enum ieee80211_regd_source regd_src)3961 int set_regdom(const struct ieee80211_regdomain *rd,
3962 	       enum ieee80211_regd_source regd_src)
3963 {
3964 	struct regulatory_request *lr;
3965 	bool user_reset = false;
3966 	int r;
3967 
3968 	if (IS_ERR_OR_NULL(rd))
3969 		return -ENODATA;
3970 
3971 	if (!reg_is_valid_request(rd->alpha2)) {
3972 		kfree(rd);
3973 		return -EINVAL;
3974 	}
3975 
3976 	if (regd_src == REGD_SOURCE_CRDA)
3977 		reset_crda_timeouts();
3978 
3979 	lr = get_last_request();
3980 
3981 	/* Note that this doesn't update the wiphys, this is done below */
3982 	switch (lr->initiator) {
3983 	case NL80211_REGDOM_SET_BY_CORE:
3984 		r = reg_set_rd_core(rd);
3985 		break;
3986 	case NL80211_REGDOM_SET_BY_USER:
3987 		cfg80211_save_user_regdom(rd);
3988 		r = reg_set_rd_user(rd, lr);
3989 		user_reset = true;
3990 		break;
3991 	case NL80211_REGDOM_SET_BY_DRIVER:
3992 		r = reg_set_rd_driver(rd, lr);
3993 		break;
3994 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3995 		r = reg_set_rd_country_ie(rd, lr);
3996 		break;
3997 	default:
3998 		WARN(1, "invalid initiator %d\n", lr->initiator);
3999 		kfree(rd);
4000 		return -EINVAL;
4001 	}
4002 
4003 	if (r) {
4004 		switch (r) {
4005 		case -EALREADY:
4006 			reg_set_request_processed();
4007 			break;
4008 		default:
4009 			/* Back to world regulatory in case of errors */
4010 			restore_regulatory_settings(user_reset, false);
4011 		}
4012 
4013 		kfree(rd);
4014 		return r;
4015 	}
4016 
4017 	/* This would make this whole thing pointless */
4018 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
4019 		return -EINVAL;
4020 
4021 	/* update all wiphys now with the new established regulatory domain */
4022 	update_all_wiphy_regulatory(lr->initiator);
4023 
4024 	print_regdomain(get_cfg80211_regdom());
4025 
4026 	nl80211_send_reg_change_event(lr);
4027 
4028 	reg_set_request_processed();
4029 
4030 	return 0;
4031 }
4032 
__regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4033 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4034 				       struct ieee80211_regdomain *rd)
4035 {
4036 	const struct ieee80211_regdomain *regd;
4037 	const struct ieee80211_regdomain *prev_regd;
4038 	struct cfg80211_registered_device *rdev;
4039 
4040 	if (WARN_ON(!wiphy || !rd))
4041 		return -EINVAL;
4042 
4043 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4044 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4045 		return -EPERM;
4046 
4047 	if (WARN(!is_valid_rd(rd),
4048 		 "Invalid regulatory domain detected: %c%c\n",
4049 		 rd->alpha2[0], rd->alpha2[1])) {
4050 		print_regdomain_info(rd);
4051 		return -EINVAL;
4052 	}
4053 
4054 	regd = reg_copy_regd(rd);
4055 	if (IS_ERR(regd))
4056 		return PTR_ERR(regd);
4057 
4058 	rdev = wiphy_to_rdev(wiphy);
4059 
4060 	spin_lock(&reg_requests_lock);
4061 	prev_regd = rdev->requested_regd;
4062 	rdev->requested_regd = regd;
4063 	spin_unlock(&reg_requests_lock);
4064 
4065 	kfree(prev_regd);
4066 	return 0;
4067 }
4068 
regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4069 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4070 			      struct ieee80211_regdomain *rd)
4071 {
4072 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4073 
4074 	if (ret)
4075 		return ret;
4076 
4077 	schedule_work(&reg_work);
4078 	return 0;
4079 }
4080 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4081 
regulatory_set_wiphy_regd_sync(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4082 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4083 				   struct ieee80211_regdomain *rd)
4084 {
4085 	int ret;
4086 
4087 	ASSERT_RTNL();
4088 
4089 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
4090 	if (ret)
4091 		return ret;
4092 
4093 	/* process the request immediately */
4094 	reg_process_self_managed_hint(wiphy);
4095 	reg_check_channels();
4096 	return 0;
4097 }
4098 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4099 
wiphy_regulatory_register(struct wiphy * wiphy)4100 void wiphy_regulatory_register(struct wiphy *wiphy)
4101 {
4102 	struct regulatory_request *lr = get_last_request();
4103 
4104 	/* self-managed devices ignore beacon hints and country IE */
4105 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4106 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4107 					   REGULATORY_COUNTRY_IE_IGNORE;
4108 
4109 		/*
4110 		 * The last request may have been received before this
4111 		 * registration call. Call the driver notifier if
4112 		 * initiator is USER.
4113 		 */
4114 		if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4115 			reg_call_notifier(wiphy, lr);
4116 	}
4117 
4118 	if (!reg_dev_ignore_cell_hint(wiphy))
4119 		reg_num_devs_support_basehint++;
4120 
4121 	wiphy_update_regulatory(wiphy, lr->initiator);
4122 	wiphy_all_share_dfs_chan_state(wiphy);
4123 	reg_process_self_managed_hints();
4124 }
4125 
wiphy_regulatory_deregister(struct wiphy * wiphy)4126 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4127 {
4128 	struct wiphy *request_wiphy = NULL;
4129 	struct regulatory_request *lr;
4130 
4131 	lr = get_last_request();
4132 
4133 	if (!reg_dev_ignore_cell_hint(wiphy))
4134 		reg_num_devs_support_basehint--;
4135 
4136 	rcu_free_regdom(get_wiphy_regdom(wiphy));
4137 	RCU_INIT_POINTER(wiphy->regd, NULL);
4138 
4139 	if (lr)
4140 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4141 
4142 	if (!request_wiphy || request_wiphy != wiphy)
4143 		return;
4144 
4145 	lr->wiphy_idx = WIPHY_IDX_INVALID;
4146 	lr->country_ie_env = ENVIRON_ANY;
4147 }
4148 
4149 /*
4150  * See FCC notices for UNII band definitions
4151  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4152  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4153  */
cfg80211_get_unii(int freq)4154 int cfg80211_get_unii(int freq)
4155 {
4156 	/* UNII-1 */
4157 	if (freq >= 5150 && freq <= 5250)
4158 		return 0;
4159 
4160 	/* UNII-2A */
4161 	if (freq > 5250 && freq <= 5350)
4162 		return 1;
4163 
4164 	/* UNII-2B */
4165 	if (freq > 5350 && freq <= 5470)
4166 		return 2;
4167 
4168 	/* UNII-2C */
4169 	if (freq > 5470 && freq <= 5725)
4170 		return 3;
4171 
4172 	/* UNII-3 */
4173 	if (freq > 5725 && freq <= 5825)
4174 		return 4;
4175 
4176 	/* UNII-5 */
4177 	if (freq > 5925 && freq <= 6425)
4178 		return 5;
4179 
4180 	/* UNII-6 */
4181 	if (freq > 6425 && freq <= 6525)
4182 		return 6;
4183 
4184 	/* UNII-7 */
4185 	if (freq > 6525 && freq <= 6875)
4186 		return 7;
4187 
4188 	/* UNII-8 */
4189 	if (freq > 6875 && freq <= 7125)
4190 		return 8;
4191 
4192 	return -EINVAL;
4193 }
4194 
regulatory_indoor_allowed(void)4195 bool regulatory_indoor_allowed(void)
4196 {
4197 	return reg_is_indoor;
4198 }
4199 
regulatory_pre_cac_allowed(struct wiphy * wiphy)4200 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4201 {
4202 	const struct ieee80211_regdomain *regd = NULL;
4203 	const struct ieee80211_regdomain *wiphy_regd = NULL;
4204 	bool pre_cac_allowed = false;
4205 
4206 	rcu_read_lock();
4207 
4208 	regd = rcu_dereference(cfg80211_regdomain);
4209 	wiphy_regd = rcu_dereference(wiphy->regd);
4210 	if (!wiphy_regd) {
4211 		if (regd->dfs_region == NL80211_DFS_ETSI)
4212 			pre_cac_allowed = true;
4213 
4214 		rcu_read_unlock();
4215 
4216 		return pre_cac_allowed;
4217 	}
4218 
4219 	if (regd->dfs_region == wiphy_regd->dfs_region &&
4220 	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4221 		pre_cac_allowed = true;
4222 
4223 	rcu_read_unlock();
4224 
4225 	return pre_cac_allowed;
4226 }
4227 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4228 
cfg80211_check_and_end_cac(struct cfg80211_registered_device * rdev)4229 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4230 {
4231 	struct wireless_dev *wdev;
4232 	unsigned int link_id;
4233 
4234 	/* If we finished CAC or received radar, we should end any
4235 	 * CAC running on the same channels.
4236 	 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4237 	 * either all channels are available - those the CAC_FINISHED
4238 	 * event has effected another wdev state, or there is a channel
4239 	 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4240 	 * event has effected another wdev state.
4241 	 * In both cases we should end the CAC on the wdev.
4242 	 */
4243 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4244 		struct cfg80211_chan_def *chandef;
4245 
4246 		for_each_valid_link(wdev, link_id) {
4247 			if (!wdev->links[link_id].cac_started)
4248 				continue;
4249 
4250 			chandef = wdev_chandef(wdev, link_id);
4251 			if (!chandef)
4252 				continue;
4253 
4254 			if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4255 				rdev_end_cac(rdev, wdev->netdev, link_id);
4256 		}
4257 	}
4258 }
4259 
regulatory_propagate_dfs_state(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,enum nl80211_dfs_state dfs_state,enum nl80211_radar_event event)4260 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4261 				    struct cfg80211_chan_def *chandef,
4262 				    enum nl80211_dfs_state dfs_state,
4263 				    enum nl80211_radar_event event)
4264 {
4265 	struct cfg80211_registered_device *rdev;
4266 
4267 	ASSERT_RTNL();
4268 
4269 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4270 		return;
4271 
4272 	for_each_rdev(rdev) {
4273 		if (wiphy == &rdev->wiphy)
4274 			continue;
4275 
4276 		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4277 			continue;
4278 
4279 		if (!ieee80211_get_channel(&rdev->wiphy,
4280 					   chandef->chan->center_freq))
4281 			continue;
4282 
4283 		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4284 
4285 		if (event == NL80211_RADAR_DETECTED ||
4286 		    event == NL80211_RADAR_CAC_FINISHED) {
4287 			cfg80211_sched_dfs_chan_update(rdev);
4288 			cfg80211_check_and_end_cac(rdev);
4289 		}
4290 
4291 		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4292 	}
4293 }
4294 
regulatory_init_db(void)4295 static int __init regulatory_init_db(void)
4296 {
4297 	int err;
4298 
4299 	/*
4300 	 * It's possible that - due to other bugs/issues - cfg80211
4301 	 * never called regulatory_init() below, or that it failed;
4302 	 * in that case, don't try to do any further work here as
4303 	 * it's doomed to lead to crashes.
4304 	 */
4305 	if (IS_ERR_OR_NULL(reg_pdev))
4306 		return -EINVAL;
4307 
4308 	err = load_builtin_regdb_keys();
4309 	if (err) {
4310 		platform_device_unregister(reg_pdev);
4311 		return err;
4312 	}
4313 
4314 	/* We always try to get an update for the static regdomain */
4315 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4316 	if (err) {
4317 		if (err == -ENOMEM) {
4318 			platform_device_unregister(reg_pdev);
4319 			return err;
4320 		}
4321 		/*
4322 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
4323 		 * memory which is handled and propagated appropriately above
4324 		 * but it can also fail during a netlink_broadcast() or during
4325 		 * early boot for call_usermodehelper(). For now treat these
4326 		 * errors as non-fatal.
4327 		 */
4328 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4329 	}
4330 
4331 	/*
4332 	 * Finally, if the user set the module parameter treat it
4333 	 * as a user hint.
4334 	 */
4335 	if (!is_world_regdom(ieee80211_regdom))
4336 		regulatory_hint_user(ieee80211_regdom,
4337 				     NL80211_USER_REG_HINT_USER);
4338 
4339 	return 0;
4340 }
4341 #ifndef MODULE
4342 late_initcall(regulatory_init_db);
4343 #endif
4344 
regulatory_init(void)4345 int __init regulatory_init(void)
4346 {
4347 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4348 	if (IS_ERR(reg_pdev))
4349 		return PTR_ERR(reg_pdev);
4350 
4351 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4352 
4353 	user_alpha2[0] = '9';
4354 	user_alpha2[1] = '7';
4355 
4356 #ifdef MODULE
4357 	return regulatory_init_db();
4358 #else
4359 	return 0;
4360 #endif
4361 }
4362 
regulatory_exit(void)4363 void regulatory_exit(void)
4364 {
4365 	struct regulatory_request *reg_request, *tmp;
4366 	struct reg_beacon *reg_beacon, *btmp;
4367 
4368 	cancel_work_sync(&reg_work);
4369 	cancel_crda_timeout_sync();
4370 	cancel_delayed_work_sync(&reg_check_chans);
4371 
4372 	/* Lock to suppress warnings */
4373 	rtnl_lock();
4374 	reset_regdomains(true, NULL);
4375 	rtnl_unlock();
4376 
4377 	dev_set_uevent_suppress(&reg_pdev->dev, true);
4378 
4379 	platform_device_unregister(reg_pdev);
4380 
4381 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4382 		list_del(&reg_beacon->list);
4383 		kfree(reg_beacon);
4384 	}
4385 
4386 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4387 		list_del(&reg_beacon->list);
4388 		kfree(reg_beacon);
4389 	}
4390 
4391 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4392 		list_del(&reg_request->list);
4393 		kfree(reg_request);
4394 	}
4395 
4396 	if (!IS_ERR_OR_NULL(regdb))
4397 		kfree(regdb);
4398 	if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4399 		kfree(cfg80211_user_regdom);
4400 
4401 	free_regdb_keyring();
4402 }
4403