xref: /linux/kernel/rcu/refscale.c (revision f49040c7aaa5532a1f94355ef5073c49e6b32349)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Scalability test comparing RCU vs other mechanisms
4 // for acquiring references on objects.
5 //
6 // Copyright (C) Google, 2020.
7 //
8 // Author: Joel Fernandes <joel@joelfernandes.org>
9 
10 #define pr_fmt(fmt) fmt
11 
12 #include <linux/atomic.h>
13 #include <linux/bitops.h>
14 #include <linux/completion.h>
15 #include <linux/cpu.h>
16 #include <linux/delay.h>
17 #include <linux/err.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/kthread.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/notifier.h>
26 #include <linux/percpu.h>
27 #include <linux/rcupdate.h>
28 #include <linux/rcupdate_trace.h>
29 #include <linux/reboot.h>
30 #include <linux/sched.h>
31 #include <linux/seq_buf.h>
32 #include <linux/spinlock.h>
33 #include <linux/smp.h>
34 #include <linux/stat.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/torture.h>
38 #include <linux/types.h>
39 #include <linux/sched/clock.h>
40 
41 #include "rcu.h"
42 
43 #define SCALE_FLAG "-ref-scale: "
44 
45 #define SCALEOUT(s, x...) \
46 	pr_alert("%s" SCALE_FLAG s, scale_type, ## x)
47 
48 #define VERBOSE_SCALEOUT(s, x...) \
49 	do { \
50 		if (verbose) \
51 			pr_alert("%s" SCALE_FLAG s "\n", scale_type, ## x); \
52 	} while (0)
53 
54 static atomic_t verbose_batch_ctr;
55 
56 #define VERBOSE_SCALEOUT_BATCH(s, x...)							\
57 do {											\
58 	if (verbose &&									\
59 	    (verbose_batched <= 0 ||							\
60 	     !(atomic_inc_return(&verbose_batch_ctr) % verbose_batched))) {		\
61 		schedule_timeout_uninterruptible(1);					\
62 		pr_alert("%s" SCALE_FLAG s "\n", scale_type, ## x);			\
63 	}										\
64 } while (0)
65 
66 #define SCALEOUT_ERRSTRING(s, x...) pr_alert("%s" SCALE_FLAG "!!! " s "\n", scale_type, ## x)
67 
68 MODULE_DESCRIPTION("Scalability test for object reference mechanisms");
69 MODULE_LICENSE("GPL");
70 MODULE_AUTHOR("Joel Fernandes (Google) <joel@joelfernandes.org>");
71 
72 static char *scale_type = "rcu";
73 module_param(scale_type, charp, 0444);
74 MODULE_PARM_DESC(scale_type, "Type of test (rcu, srcu, refcnt, rwsem, rwlock.");
75 
76 torture_param(int, verbose, 0, "Enable verbose debugging printk()s");
77 torture_param(int, verbose_batched, 0, "Batch verbose debugging printk()s");
78 
79 // Number of seconds to extend warm-up and cool-down for multiple guest OSes
80 torture_param(long, guest_os_delay, 0,
81 	      "Number of seconds to extend warm-up/cool-down for multiple guest OSes.");
82 // Wait until there are multiple CPUs before starting test.
83 torture_param(int, holdoff, IS_BUILTIN(CONFIG_RCU_REF_SCALE_TEST) ? 10 : 0,
84 	      "Holdoff time before test start (s)");
85 // Number of typesafe_lookup structures, that is, the degree of concurrency.
86 torture_param(long, lookup_instances, 0, "Number of typesafe_lookup structures.");
87 // Number of loops per experiment, all readers execute operations concurrently.
88 torture_param(long, loops, 10000, "Number of loops per experiment.");
89 // Number of readers, with -1 defaulting to about 75% of the CPUs.
90 torture_param(int, nreaders, -1, "Number of readers, -1 for 75% of CPUs.");
91 // Number of runs.
92 torture_param(int, nruns, 30, "Number of experiments to run.");
93 // Reader delay in nanoseconds, 0 for no delay.
94 torture_param(int, readdelay, 0, "Read-side delay in nanoseconds.");
95 
96 #ifdef MODULE
97 # define REFSCALE_SHUTDOWN 0
98 #else
99 # define REFSCALE_SHUTDOWN 1
100 #endif
101 
102 torture_param(bool, shutdown, REFSCALE_SHUTDOWN,
103 	      "Shutdown at end of scalability tests.");
104 
105 struct reader_task {
106 	struct task_struct *task;
107 	int start_reader;
108 	wait_queue_head_t wq;
109 	u64 last_duration_ns;
110 };
111 
112 static struct task_struct *shutdown_task;
113 static wait_queue_head_t shutdown_wq;
114 
115 static struct task_struct *main_task;
116 static wait_queue_head_t main_wq;
117 static int shutdown_start;
118 
119 static struct reader_task *reader_tasks;
120 
121 // Number of readers that are part of the current experiment.
122 static atomic_t nreaders_exp;
123 
124 // Use to wait for all threads to start.
125 static atomic_t n_init;
126 static atomic_t n_started;
127 static atomic_t n_warmedup;
128 static atomic_t n_cooleddown;
129 
130 // Track which experiment is currently running.
131 static int exp_idx;
132 
133 // Operations vector for selecting different types of tests.
134 struct ref_scale_ops {
135 	bool (*init)(void);
136 	void (*cleanup)(void);
137 	void (*readsection)(const int nloops);
138 	void (*delaysection)(const int nloops, const int udl, const int ndl);
139 	const char *name;
140 };
141 
142 static const struct ref_scale_ops *cur_ops;
143 
un_delay(const int udl,const int ndl)144 static void un_delay(const int udl, const int ndl)
145 {
146 	if (udl)
147 		udelay(udl);
148 	if (ndl)
149 		ndelay(ndl);
150 }
151 
ref_rcu_read_section(const int nloops)152 static void ref_rcu_read_section(const int nloops)
153 {
154 	int i;
155 
156 	for (i = nloops; i >= 0; i--) {
157 		rcu_read_lock();
158 		rcu_read_unlock();
159 	}
160 }
161 
ref_rcu_delay_section(const int nloops,const int udl,const int ndl)162 static void ref_rcu_delay_section(const int nloops, const int udl, const int ndl)
163 {
164 	int i;
165 
166 	for (i = nloops; i >= 0; i--) {
167 		rcu_read_lock();
168 		un_delay(udl, ndl);
169 		rcu_read_unlock();
170 	}
171 }
172 
rcu_sync_scale_init(void)173 static bool rcu_sync_scale_init(void)
174 {
175 	return true;
176 }
177 
178 static const struct ref_scale_ops rcu_ops = {
179 	.init		= rcu_sync_scale_init,
180 	.readsection	= ref_rcu_read_section,
181 	.delaysection	= ref_rcu_delay_section,
182 	.name		= "rcu"
183 };
184 
185 // Definitions for SRCU ref scale testing.
186 DEFINE_STATIC_SRCU(srcu_refctl_scale);
187 static struct srcu_struct *srcu_ctlp = &srcu_refctl_scale;
188 
srcu_ref_scale_read_section(const int nloops)189 static void srcu_ref_scale_read_section(const int nloops)
190 {
191 	int i;
192 	int idx;
193 
194 	for (i = nloops; i >= 0; i--) {
195 		idx = srcu_read_lock(srcu_ctlp);
196 		srcu_read_unlock(srcu_ctlp, idx);
197 	}
198 }
199 
srcu_ref_scale_delay_section(const int nloops,const int udl,const int ndl)200 static void srcu_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
201 {
202 	int i;
203 	int idx;
204 
205 	for (i = nloops; i >= 0; i--) {
206 		idx = srcu_read_lock(srcu_ctlp);
207 		un_delay(udl, ndl);
208 		srcu_read_unlock(srcu_ctlp, idx);
209 	}
210 }
211 
212 static const struct ref_scale_ops srcu_ops = {
213 	.init		= rcu_sync_scale_init,
214 	.readsection	= srcu_ref_scale_read_section,
215 	.delaysection	= srcu_ref_scale_delay_section,
216 	.name		= "srcu"
217 };
218 
srcu_fast_ref_scale_read_section(const int nloops)219 static void srcu_fast_ref_scale_read_section(const int nloops)
220 {
221 	int i;
222 	struct srcu_ctr __percpu *scp;
223 
224 	for (i = nloops; i >= 0; i--) {
225 		scp = srcu_read_lock_fast(srcu_ctlp);
226 		srcu_read_unlock_fast(srcu_ctlp, scp);
227 	}
228 }
229 
srcu_fast_ref_scale_delay_section(const int nloops,const int udl,const int ndl)230 static void srcu_fast_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
231 {
232 	int i;
233 	struct srcu_ctr __percpu *scp;
234 
235 	for (i = nloops; i >= 0; i--) {
236 		scp = srcu_read_lock_fast(srcu_ctlp);
237 		un_delay(udl, ndl);
238 		srcu_read_unlock_fast(srcu_ctlp, scp);
239 	}
240 }
241 
242 static const struct ref_scale_ops srcu_fast_ops = {
243 	.init		= rcu_sync_scale_init,
244 	.readsection	= srcu_fast_ref_scale_read_section,
245 	.delaysection	= srcu_fast_ref_scale_delay_section,
246 	.name		= "srcu-fast"
247 };
248 
srcu_lite_ref_scale_read_section(const int nloops)249 static void srcu_lite_ref_scale_read_section(const int nloops)
250 {
251 	int i;
252 	int idx;
253 
254 	for (i = nloops; i >= 0; i--) {
255 		idx = srcu_read_lock_lite(srcu_ctlp);
256 		srcu_read_unlock_lite(srcu_ctlp, idx);
257 	}
258 }
259 
srcu_lite_ref_scale_delay_section(const int nloops,const int udl,const int ndl)260 static void srcu_lite_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
261 {
262 	int i;
263 	int idx;
264 
265 	for (i = nloops; i >= 0; i--) {
266 		idx = srcu_read_lock_lite(srcu_ctlp);
267 		un_delay(udl, ndl);
268 		srcu_read_unlock_lite(srcu_ctlp, idx);
269 	}
270 }
271 
272 static const struct ref_scale_ops srcu_lite_ops = {
273 	.init		= rcu_sync_scale_init,
274 	.readsection	= srcu_lite_ref_scale_read_section,
275 	.delaysection	= srcu_lite_ref_scale_delay_section,
276 	.name		= "srcu-lite"
277 };
278 
279 #ifdef CONFIG_TASKS_RCU
280 
281 // Definitions for RCU Tasks ref scale testing: Empty read markers.
282 // These definitions also work for RCU Rude readers.
rcu_tasks_ref_scale_read_section(const int nloops)283 static void rcu_tasks_ref_scale_read_section(const int nloops)
284 {
285 	int i;
286 
287 	for (i = nloops; i >= 0; i--)
288 		continue;
289 }
290 
rcu_tasks_ref_scale_delay_section(const int nloops,const int udl,const int ndl)291 static void rcu_tasks_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
292 {
293 	int i;
294 
295 	for (i = nloops; i >= 0; i--)
296 		un_delay(udl, ndl);
297 }
298 
299 static const struct ref_scale_ops rcu_tasks_ops = {
300 	.init		= rcu_sync_scale_init,
301 	.readsection	= rcu_tasks_ref_scale_read_section,
302 	.delaysection	= rcu_tasks_ref_scale_delay_section,
303 	.name		= "rcu-tasks"
304 };
305 
306 #define RCU_TASKS_OPS &rcu_tasks_ops,
307 
308 #else // #ifdef CONFIG_TASKS_RCU
309 
310 #define RCU_TASKS_OPS
311 
312 #endif // #else // #ifdef CONFIG_TASKS_RCU
313 
314 #ifdef CONFIG_TASKS_TRACE_RCU
315 
316 // Definitions for RCU Tasks Trace ref scale testing.
rcu_trace_ref_scale_read_section(const int nloops)317 static void rcu_trace_ref_scale_read_section(const int nloops)
318 {
319 	int i;
320 
321 	for (i = nloops; i >= 0; i--) {
322 		rcu_read_lock_trace();
323 		rcu_read_unlock_trace();
324 	}
325 }
326 
rcu_trace_ref_scale_delay_section(const int nloops,const int udl,const int ndl)327 static void rcu_trace_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
328 {
329 	int i;
330 
331 	for (i = nloops; i >= 0; i--) {
332 		rcu_read_lock_trace();
333 		un_delay(udl, ndl);
334 		rcu_read_unlock_trace();
335 	}
336 }
337 
338 static const struct ref_scale_ops rcu_trace_ops = {
339 	.init		= rcu_sync_scale_init,
340 	.readsection	= rcu_trace_ref_scale_read_section,
341 	.delaysection	= rcu_trace_ref_scale_delay_section,
342 	.name		= "rcu-trace"
343 };
344 
345 #define RCU_TRACE_OPS &rcu_trace_ops,
346 
347 #else // #ifdef CONFIG_TASKS_TRACE_RCU
348 
349 #define RCU_TRACE_OPS
350 
351 #endif // #else // #ifdef CONFIG_TASKS_TRACE_RCU
352 
353 // Definitions for reference count
354 static atomic_t refcnt;
355 
ref_refcnt_section(const int nloops)356 static void ref_refcnt_section(const int nloops)
357 {
358 	int i;
359 
360 	for (i = nloops; i >= 0; i--) {
361 		atomic_inc(&refcnt);
362 		atomic_dec(&refcnt);
363 	}
364 }
365 
ref_refcnt_delay_section(const int nloops,const int udl,const int ndl)366 static void ref_refcnt_delay_section(const int nloops, const int udl, const int ndl)
367 {
368 	int i;
369 
370 	for (i = nloops; i >= 0; i--) {
371 		atomic_inc(&refcnt);
372 		un_delay(udl, ndl);
373 		atomic_dec(&refcnt);
374 	}
375 }
376 
377 static const struct ref_scale_ops refcnt_ops = {
378 	.init		= rcu_sync_scale_init,
379 	.readsection	= ref_refcnt_section,
380 	.delaysection	= ref_refcnt_delay_section,
381 	.name		= "refcnt"
382 };
383 
384 // Definitions for rwlock
385 static rwlock_t test_rwlock;
386 
ref_rwlock_init(void)387 static bool ref_rwlock_init(void)
388 {
389 	rwlock_init(&test_rwlock);
390 	return true;
391 }
392 
ref_rwlock_section(const int nloops)393 static void ref_rwlock_section(const int nloops)
394 {
395 	int i;
396 
397 	for (i = nloops; i >= 0; i--) {
398 		read_lock(&test_rwlock);
399 		read_unlock(&test_rwlock);
400 	}
401 }
402 
ref_rwlock_delay_section(const int nloops,const int udl,const int ndl)403 static void ref_rwlock_delay_section(const int nloops, const int udl, const int ndl)
404 {
405 	int i;
406 
407 	for (i = nloops; i >= 0; i--) {
408 		read_lock(&test_rwlock);
409 		un_delay(udl, ndl);
410 		read_unlock(&test_rwlock);
411 	}
412 }
413 
414 static const struct ref_scale_ops rwlock_ops = {
415 	.init		= ref_rwlock_init,
416 	.readsection	= ref_rwlock_section,
417 	.delaysection	= ref_rwlock_delay_section,
418 	.name		= "rwlock"
419 };
420 
421 // Definitions for rwsem
422 static struct rw_semaphore test_rwsem;
423 
ref_rwsem_init(void)424 static bool ref_rwsem_init(void)
425 {
426 	init_rwsem(&test_rwsem);
427 	return true;
428 }
429 
ref_rwsem_section(const int nloops)430 static void ref_rwsem_section(const int nloops)
431 {
432 	int i;
433 
434 	for (i = nloops; i >= 0; i--) {
435 		down_read(&test_rwsem);
436 		up_read(&test_rwsem);
437 	}
438 }
439 
ref_rwsem_delay_section(const int nloops,const int udl,const int ndl)440 static void ref_rwsem_delay_section(const int nloops, const int udl, const int ndl)
441 {
442 	int i;
443 
444 	for (i = nloops; i >= 0; i--) {
445 		down_read(&test_rwsem);
446 		un_delay(udl, ndl);
447 		up_read(&test_rwsem);
448 	}
449 }
450 
451 static const struct ref_scale_ops rwsem_ops = {
452 	.init		= ref_rwsem_init,
453 	.readsection	= ref_rwsem_section,
454 	.delaysection	= ref_rwsem_delay_section,
455 	.name		= "rwsem"
456 };
457 
458 // Definitions for global spinlock
459 static DEFINE_RAW_SPINLOCK(test_lock);
460 
ref_lock_section(const int nloops)461 static void ref_lock_section(const int nloops)
462 {
463 	int i;
464 
465 	preempt_disable();
466 	for (i = nloops; i >= 0; i--) {
467 		raw_spin_lock(&test_lock);
468 		raw_spin_unlock(&test_lock);
469 	}
470 	preempt_enable();
471 }
472 
ref_lock_delay_section(const int nloops,const int udl,const int ndl)473 static void ref_lock_delay_section(const int nloops, const int udl, const int ndl)
474 {
475 	int i;
476 
477 	preempt_disable();
478 	for (i = nloops; i >= 0; i--) {
479 		raw_spin_lock(&test_lock);
480 		un_delay(udl, ndl);
481 		raw_spin_unlock(&test_lock);
482 	}
483 	preempt_enable();
484 }
485 
486 static const struct ref_scale_ops lock_ops = {
487 	.readsection	= ref_lock_section,
488 	.delaysection	= ref_lock_delay_section,
489 	.name		= "lock"
490 };
491 
492 // Definitions for global irq-save spinlock
493 
ref_lock_irq_section(const int nloops)494 static void ref_lock_irq_section(const int nloops)
495 {
496 	unsigned long flags;
497 	int i;
498 
499 	preempt_disable();
500 	for (i = nloops; i >= 0; i--) {
501 		raw_spin_lock_irqsave(&test_lock, flags);
502 		raw_spin_unlock_irqrestore(&test_lock, flags);
503 	}
504 	preempt_enable();
505 }
506 
ref_lock_irq_delay_section(const int nloops,const int udl,const int ndl)507 static void ref_lock_irq_delay_section(const int nloops, const int udl, const int ndl)
508 {
509 	unsigned long flags;
510 	int i;
511 
512 	preempt_disable();
513 	for (i = nloops; i >= 0; i--) {
514 		raw_spin_lock_irqsave(&test_lock, flags);
515 		un_delay(udl, ndl);
516 		raw_spin_unlock_irqrestore(&test_lock, flags);
517 	}
518 	preempt_enable();
519 }
520 
521 static const struct ref_scale_ops lock_irq_ops = {
522 	.readsection	= ref_lock_irq_section,
523 	.delaysection	= ref_lock_irq_delay_section,
524 	.name		= "lock-irq"
525 };
526 
527 // Definitions acquire-release.
528 static DEFINE_PER_CPU(unsigned long, test_acqrel);
529 
ref_acqrel_section(const int nloops)530 static void ref_acqrel_section(const int nloops)
531 {
532 	unsigned long x;
533 	int i;
534 
535 	preempt_disable();
536 	for (i = nloops; i >= 0; i--) {
537 		x = smp_load_acquire(this_cpu_ptr(&test_acqrel));
538 		smp_store_release(this_cpu_ptr(&test_acqrel), x + 1);
539 	}
540 	preempt_enable();
541 }
542 
ref_acqrel_delay_section(const int nloops,const int udl,const int ndl)543 static void ref_acqrel_delay_section(const int nloops, const int udl, const int ndl)
544 {
545 	unsigned long x;
546 	int i;
547 
548 	preempt_disable();
549 	for (i = nloops; i >= 0; i--) {
550 		x = smp_load_acquire(this_cpu_ptr(&test_acqrel));
551 		un_delay(udl, ndl);
552 		smp_store_release(this_cpu_ptr(&test_acqrel), x + 1);
553 	}
554 	preempt_enable();
555 }
556 
557 static const struct ref_scale_ops acqrel_ops = {
558 	.readsection	= ref_acqrel_section,
559 	.delaysection	= ref_acqrel_delay_section,
560 	.name		= "acqrel"
561 };
562 
563 static volatile u64 stopopts;
564 
ref_sched_clock_section(const int nloops)565 static void ref_sched_clock_section(const int nloops)
566 {
567 	u64 x = 0;
568 	int i;
569 
570 	preempt_disable();
571 	for (i = nloops; i >= 0; i--)
572 		x += sched_clock();
573 	preempt_enable();
574 	stopopts = x;
575 }
576 
ref_sched_clock_delay_section(const int nloops,const int udl,const int ndl)577 static void ref_sched_clock_delay_section(const int nloops, const int udl, const int ndl)
578 {
579 	u64 x = 0;
580 	int i;
581 
582 	preempt_disable();
583 	for (i = nloops; i >= 0; i--) {
584 		x += sched_clock();
585 		un_delay(udl, ndl);
586 	}
587 	preempt_enable();
588 	stopopts = x;
589 }
590 
591 static const struct ref_scale_ops sched_clock_ops = {
592 	.readsection	= ref_sched_clock_section,
593 	.delaysection	= ref_sched_clock_delay_section,
594 	.name		= "sched-clock"
595 };
596 
597 
ref_clock_section(const int nloops)598 static void ref_clock_section(const int nloops)
599 {
600 	u64 x = 0;
601 	int i;
602 
603 	preempt_disable();
604 	for (i = nloops; i >= 0; i--)
605 		x += ktime_get_real_fast_ns();
606 	preempt_enable();
607 	stopopts = x;
608 }
609 
ref_clock_delay_section(const int nloops,const int udl,const int ndl)610 static void ref_clock_delay_section(const int nloops, const int udl, const int ndl)
611 {
612 	u64 x = 0;
613 	int i;
614 
615 	preempt_disable();
616 	for (i = nloops; i >= 0; i--) {
617 		x += ktime_get_real_fast_ns();
618 		un_delay(udl, ndl);
619 	}
620 	preempt_enable();
621 	stopopts = x;
622 }
623 
624 static const struct ref_scale_ops clock_ops = {
625 	.readsection	= ref_clock_section,
626 	.delaysection	= ref_clock_delay_section,
627 	.name		= "clock"
628 };
629 
ref_jiffies_section(const int nloops)630 static void ref_jiffies_section(const int nloops)
631 {
632 	u64 x = 0;
633 	int i;
634 
635 	preempt_disable();
636 	for (i = nloops; i >= 0; i--)
637 		x += jiffies;
638 	preempt_enable();
639 	stopopts = x;
640 }
641 
ref_jiffies_delay_section(const int nloops,const int udl,const int ndl)642 static void ref_jiffies_delay_section(const int nloops, const int udl, const int ndl)
643 {
644 	u64 x = 0;
645 	int i;
646 
647 	preempt_disable();
648 	for (i = nloops; i >= 0; i--) {
649 		x += jiffies;
650 		un_delay(udl, ndl);
651 	}
652 	preempt_enable();
653 	stopopts = x;
654 }
655 
656 static const struct ref_scale_ops jiffies_ops = {
657 	.readsection	= ref_jiffies_section,
658 	.delaysection	= ref_jiffies_delay_section,
659 	.name		= "jiffies"
660 };
661 
662 ////////////////////////////////////////////////////////////////////////
663 //
664 // Methods leveraging SLAB_TYPESAFE_BY_RCU.
665 //
666 
667 // Item to look up in a typesafe manner.  Array of pointers to these.
668 struct refscale_typesafe {
669 	atomic_t rts_refctr;  // Used by all flavors
670 	spinlock_t rts_lock;
671 	seqlock_t rts_seqlock;
672 	unsigned int a;
673 	unsigned int b;
674 };
675 
676 static struct kmem_cache *typesafe_kmem_cachep;
677 static struct refscale_typesafe **rtsarray;
678 static long rtsarray_size;
679 static DEFINE_TORTURE_RANDOM_PERCPU(refscale_rand);
680 static bool (*rts_acquire)(struct refscale_typesafe *rtsp, unsigned int *start);
681 static bool (*rts_release)(struct refscale_typesafe *rtsp, unsigned int start);
682 
683 // Conditionally acquire an explicit in-structure reference count.
typesafe_ref_acquire(struct refscale_typesafe * rtsp,unsigned int * start)684 static bool typesafe_ref_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
685 {
686 	return atomic_inc_not_zero(&rtsp->rts_refctr);
687 }
688 
689 // Unconditionally release an explicit in-structure reference count.
typesafe_ref_release(struct refscale_typesafe * rtsp,unsigned int start)690 static bool typesafe_ref_release(struct refscale_typesafe *rtsp, unsigned int start)
691 {
692 	if (!atomic_dec_return(&rtsp->rts_refctr)) {
693 		WRITE_ONCE(rtsp->a, rtsp->a + 1);
694 		kmem_cache_free(typesafe_kmem_cachep, rtsp);
695 	}
696 	return true;
697 }
698 
699 // Unconditionally acquire an explicit in-structure spinlock.
typesafe_lock_acquire(struct refscale_typesafe * rtsp,unsigned int * start)700 static bool typesafe_lock_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
701 {
702 	spin_lock(&rtsp->rts_lock);
703 	return true;
704 }
705 
706 // Unconditionally release an explicit in-structure spinlock.
typesafe_lock_release(struct refscale_typesafe * rtsp,unsigned int start)707 static bool typesafe_lock_release(struct refscale_typesafe *rtsp, unsigned int start)
708 {
709 	spin_unlock(&rtsp->rts_lock);
710 	return true;
711 }
712 
713 // Unconditionally acquire an explicit in-structure sequence lock.
typesafe_seqlock_acquire(struct refscale_typesafe * rtsp,unsigned int * start)714 static bool typesafe_seqlock_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
715 {
716 	*start = read_seqbegin(&rtsp->rts_seqlock);
717 	return true;
718 }
719 
720 // Conditionally release an explicit in-structure sequence lock.  Return
721 // true if this release was successful, that is, if no retry is required.
typesafe_seqlock_release(struct refscale_typesafe * rtsp,unsigned int start)722 static bool typesafe_seqlock_release(struct refscale_typesafe *rtsp, unsigned int start)
723 {
724 	return !read_seqretry(&rtsp->rts_seqlock, start);
725 }
726 
727 // Do a read-side critical section with the specified delay in
728 // microseconds and nanoseconds inserted so as to increase probability
729 // of failure.
typesafe_delay_section(const int nloops,const int udl,const int ndl)730 static void typesafe_delay_section(const int nloops, const int udl, const int ndl)
731 {
732 	unsigned int a;
733 	unsigned int b;
734 	int i;
735 	long idx;
736 	struct refscale_typesafe *rtsp;
737 	unsigned int start;
738 
739 	for (i = nloops; i >= 0; i--) {
740 		preempt_disable();
741 		idx = torture_random(this_cpu_ptr(&refscale_rand)) % rtsarray_size;
742 		preempt_enable();
743 retry:
744 		rcu_read_lock();
745 		rtsp = rcu_dereference(rtsarray[idx]);
746 		a = READ_ONCE(rtsp->a);
747 		if (!rts_acquire(rtsp, &start)) {
748 			rcu_read_unlock();
749 			goto retry;
750 		}
751 		if (a != READ_ONCE(rtsp->a)) {
752 			(void)rts_release(rtsp, start);
753 			rcu_read_unlock();
754 			goto retry;
755 		}
756 		un_delay(udl, ndl);
757 		b = READ_ONCE(rtsp->a);
758 		// Remember, seqlock read-side release can fail.
759 		if (!rts_release(rtsp, start)) {
760 			rcu_read_unlock();
761 			goto retry;
762 		}
763 		WARN_ONCE(a != b, "Re-read of ->a changed from %u to %u.\n", a, b);
764 		b = rtsp->b;
765 		rcu_read_unlock();
766 		WARN_ON_ONCE(a * a != b);
767 	}
768 }
769 
770 // Because the acquisition and release methods are expensive, there
771 // is no point in optimizing away the un_delay() function's two checks.
772 // Thus simply define typesafe_read_section() as a simple wrapper around
773 // typesafe_delay_section().
typesafe_read_section(const int nloops)774 static void typesafe_read_section(const int nloops)
775 {
776 	typesafe_delay_section(nloops, 0, 0);
777 }
778 
779 // Allocate and initialize one refscale_typesafe structure.
typesafe_alloc_one(void)780 static struct refscale_typesafe *typesafe_alloc_one(void)
781 {
782 	struct refscale_typesafe *rtsp;
783 
784 	rtsp = kmem_cache_alloc(typesafe_kmem_cachep, GFP_KERNEL);
785 	if (!rtsp)
786 		return NULL;
787 	atomic_set(&rtsp->rts_refctr, 1);
788 	WRITE_ONCE(rtsp->a, rtsp->a + 1);
789 	WRITE_ONCE(rtsp->b, rtsp->a * rtsp->a);
790 	return rtsp;
791 }
792 
793 // Slab-allocator constructor for refscale_typesafe structures created
794 // out of a new slab of system memory.
refscale_typesafe_ctor(void * rtsp_in)795 static void refscale_typesafe_ctor(void *rtsp_in)
796 {
797 	struct refscale_typesafe *rtsp = rtsp_in;
798 
799 	spin_lock_init(&rtsp->rts_lock);
800 	seqlock_init(&rtsp->rts_seqlock);
801 	preempt_disable();
802 	rtsp->a = torture_random(this_cpu_ptr(&refscale_rand));
803 	preempt_enable();
804 }
805 
806 static const struct ref_scale_ops typesafe_ref_ops;
807 static const struct ref_scale_ops typesafe_lock_ops;
808 static const struct ref_scale_ops typesafe_seqlock_ops;
809 
810 // Initialize for a typesafe test.
typesafe_init(void)811 static bool typesafe_init(void)
812 {
813 	long idx;
814 	long si = lookup_instances;
815 
816 	typesafe_kmem_cachep = kmem_cache_create("refscale_typesafe",
817 						 sizeof(struct refscale_typesafe), sizeof(void *),
818 						 SLAB_TYPESAFE_BY_RCU, refscale_typesafe_ctor);
819 	if (!typesafe_kmem_cachep)
820 		return false;
821 	if (si < 0)
822 		si = -si * nr_cpu_ids;
823 	else if (si == 0)
824 		si = nr_cpu_ids;
825 	rtsarray_size = si;
826 	rtsarray = kcalloc(si, sizeof(*rtsarray), GFP_KERNEL);
827 	if (!rtsarray)
828 		return false;
829 	for (idx = 0; idx < rtsarray_size; idx++) {
830 		rtsarray[idx] = typesafe_alloc_one();
831 		if (!rtsarray[idx])
832 			return false;
833 	}
834 	if (cur_ops == &typesafe_ref_ops) {
835 		rts_acquire = typesafe_ref_acquire;
836 		rts_release = typesafe_ref_release;
837 	} else if (cur_ops == &typesafe_lock_ops) {
838 		rts_acquire = typesafe_lock_acquire;
839 		rts_release = typesafe_lock_release;
840 	} else if (cur_ops == &typesafe_seqlock_ops) {
841 		rts_acquire = typesafe_seqlock_acquire;
842 		rts_release = typesafe_seqlock_release;
843 	} else {
844 		WARN_ON_ONCE(1);
845 		return false;
846 	}
847 	return true;
848 }
849 
850 // Clean up after a typesafe test.
typesafe_cleanup(void)851 static void typesafe_cleanup(void)
852 {
853 	long idx;
854 
855 	if (rtsarray) {
856 		for (idx = 0; idx < rtsarray_size; idx++)
857 			kmem_cache_free(typesafe_kmem_cachep, rtsarray[idx]);
858 		kfree(rtsarray);
859 		rtsarray = NULL;
860 		rtsarray_size = 0;
861 	}
862 	kmem_cache_destroy(typesafe_kmem_cachep);
863 	typesafe_kmem_cachep = NULL;
864 	rts_acquire = NULL;
865 	rts_release = NULL;
866 }
867 
868 // The typesafe_init() function distinguishes these structures by address.
869 static const struct ref_scale_ops typesafe_ref_ops = {
870 	.init		= typesafe_init,
871 	.cleanup	= typesafe_cleanup,
872 	.readsection	= typesafe_read_section,
873 	.delaysection	= typesafe_delay_section,
874 	.name		= "typesafe_ref"
875 };
876 
877 static const struct ref_scale_ops typesafe_lock_ops = {
878 	.init		= typesafe_init,
879 	.cleanup	= typesafe_cleanup,
880 	.readsection	= typesafe_read_section,
881 	.delaysection	= typesafe_delay_section,
882 	.name		= "typesafe_lock"
883 };
884 
885 static const struct ref_scale_ops typesafe_seqlock_ops = {
886 	.init		= typesafe_init,
887 	.cleanup	= typesafe_cleanup,
888 	.readsection	= typesafe_read_section,
889 	.delaysection	= typesafe_delay_section,
890 	.name		= "typesafe_seqlock"
891 };
892 
rcu_scale_one_reader(void)893 static void rcu_scale_one_reader(void)
894 {
895 	if (readdelay <= 0)
896 		cur_ops->readsection(loops);
897 	else
898 		cur_ops->delaysection(loops, readdelay / 1000, readdelay % 1000);
899 }
900 
901 // Warm up cache, or, if needed run a series of rcu_scale_one_reader()
902 // to allow multiple rcuscale guest OSes to collect mutually valid data.
rcu_scale_warm_cool(void)903 static void rcu_scale_warm_cool(void)
904 {
905 	unsigned long jdone = jiffies + (guest_os_delay > 0 ? guest_os_delay * HZ : -1);
906 
907 	do {
908 		rcu_scale_one_reader();
909 		cond_resched();
910 	} while (time_before(jiffies, jdone));
911 }
912 
913 // Reader kthread.  Repeatedly does empty RCU read-side
914 // critical section, minimizing update-side interference.
915 static int
ref_scale_reader(void * arg)916 ref_scale_reader(void *arg)
917 {
918 	unsigned long flags;
919 	long me = (long)arg;
920 	struct reader_task *rt = &(reader_tasks[me]);
921 	u64 start;
922 	s64 duration;
923 
924 	VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: task started", me);
925 	WARN_ON_ONCE(set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids)));
926 	set_user_nice(current, MAX_NICE);
927 	atomic_inc(&n_init);
928 	if (holdoff)
929 		schedule_timeout_interruptible(holdoff * HZ);
930 repeat:
931 	VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: waiting to start next experiment on cpu %d", me, raw_smp_processor_id());
932 
933 	// Wait for signal that this reader can start.
934 	wait_event(rt->wq, (atomic_read(&nreaders_exp) && smp_load_acquire(&rt->start_reader)) ||
935 			   torture_must_stop());
936 
937 	if (torture_must_stop())
938 		goto end;
939 
940 	// Make sure that the CPU is affinitized appropriately during testing.
941 	WARN_ON_ONCE(raw_smp_processor_id() != me % nr_cpu_ids);
942 
943 	WRITE_ONCE(rt->start_reader, 0);
944 	if (!atomic_dec_return(&n_started))
945 		while (atomic_read_acquire(&n_started))
946 			cpu_relax();
947 
948 	VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: experiment %d started", me, exp_idx);
949 
950 
951 	// To reduce noise, do an initial cache-warming invocation, check
952 	// in, and then keep warming until everyone has checked in.
953 	rcu_scale_one_reader();
954 	if (!atomic_dec_return(&n_warmedup))
955 		while (atomic_read_acquire(&n_warmedup))
956 			rcu_scale_one_reader();
957 	// Also keep interrupts disabled.  This also has the effect
958 	// of preventing entries into slow path for rcu_read_unlock().
959 	local_irq_save(flags);
960 	start = ktime_get_mono_fast_ns();
961 
962 	rcu_scale_one_reader();
963 
964 	duration = ktime_get_mono_fast_ns() - start;
965 	local_irq_restore(flags);
966 
967 	rt->last_duration_ns = WARN_ON_ONCE(duration < 0) ? 0 : duration;
968 	// To reduce runtime-skew noise, do maintain-load invocations until
969 	// everyone is done.
970 	if (!atomic_dec_return(&n_cooleddown))
971 		while (atomic_read_acquire(&n_cooleddown))
972 			rcu_scale_one_reader();
973 
974 	if (atomic_dec_and_test(&nreaders_exp))
975 		wake_up(&main_wq);
976 
977 	VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: experiment %d ended, (readers remaining=%d)",
978 				me, exp_idx, atomic_read(&nreaders_exp));
979 
980 	if (!torture_must_stop())
981 		goto repeat;
982 end:
983 	torture_kthread_stopping("ref_scale_reader");
984 	return 0;
985 }
986 
reset_readers(void)987 static void reset_readers(void)
988 {
989 	int i;
990 	struct reader_task *rt;
991 
992 	for (i = 0; i < nreaders; i++) {
993 		rt = &(reader_tasks[i]);
994 
995 		rt->last_duration_ns = 0;
996 	}
997 }
998 
999 // Print the results of each reader and return the sum of all their durations.
process_durations(int n)1000 static u64 process_durations(int n)
1001 {
1002 	int i;
1003 	struct reader_task *rt;
1004 	struct seq_buf s;
1005 	char *buf;
1006 	u64 sum = 0;
1007 
1008 	buf = kmalloc(800 + 64, GFP_KERNEL);
1009 	if (!buf)
1010 		return 0;
1011 	seq_buf_init(&s, buf, 800 + 64);
1012 
1013 	seq_buf_printf(&s, "Experiment #%d (Format: <THREAD-NUM>:<Total loop time in ns>)",
1014 		       exp_idx);
1015 
1016 	for (i = 0; i < n && !torture_must_stop(); i++) {
1017 		rt = &(reader_tasks[i]);
1018 
1019 		if (i % 5 == 0)
1020 			seq_buf_putc(&s, '\n');
1021 
1022 		if (seq_buf_used(&s) >= 800) {
1023 			pr_alert("%s", seq_buf_str(&s));
1024 			seq_buf_clear(&s);
1025 		}
1026 
1027 		seq_buf_printf(&s, "%d: %llu\t", i, rt->last_duration_ns);
1028 
1029 		sum += rt->last_duration_ns;
1030 	}
1031 	pr_alert("%s\n", seq_buf_str(&s));
1032 
1033 	kfree(buf);
1034 	return sum;
1035 }
1036 
1037 // The main_func is the main orchestrator, it performs a bunch of
1038 // experiments.  For every experiment, it orders all the readers
1039 // involved to start and waits for them to finish the experiment. It
1040 // then reads their timestamps and starts the next experiment. Each
1041 // experiment progresses from 1 concurrent reader to N of them at which
1042 // point all the timestamps are printed.
main_func(void * arg)1043 static int main_func(void *arg)
1044 {
1045 	int exp, r;
1046 	char buf1[64];
1047 	char *buf;
1048 	u64 *result_avg;
1049 
1050 	set_cpus_allowed_ptr(current, cpumask_of(nreaders % nr_cpu_ids));
1051 	set_user_nice(current, MAX_NICE);
1052 
1053 	VERBOSE_SCALEOUT("main_func task started");
1054 	result_avg = kzalloc(nruns * sizeof(*result_avg), GFP_KERNEL);
1055 	buf = kzalloc(800 + 64, GFP_KERNEL);
1056 	if (!result_avg || !buf) {
1057 		SCALEOUT_ERRSTRING("out of memory");
1058 		goto oom_exit;
1059 	}
1060 	if (holdoff)
1061 		schedule_timeout_interruptible(holdoff * HZ);
1062 
1063 	// Wait for all threads to start.
1064 	atomic_inc(&n_init);
1065 	while (atomic_read(&n_init) < nreaders + 1)
1066 		schedule_timeout_uninterruptible(1);
1067 
1068 	// Start exp readers up per experiment
1069 	rcu_scale_warm_cool();
1070 	for (exp = 0; exp < nruns && !torture_must_stop(); exp++) {
1071 		if (torture_must_stop())
1072 			goto end;
1073 
1074 		reset_readers();
1075 		atomic_set(&nreaders_exp, nreaders);
1076 		atomic_set(&n_started, nreaders);
1077 		atomic_set(&n_warmedup, nreaders);
1078 		atomic_set(&n_cooleddown, nreaders);
1079 
1080 		exp_idx = exp;
1081 
1082 		for (r = 0; r < nreaders; r++) {
1083 			smp_store_release(&reader_tasks[r].start_reader, 1);
1084 			wake_up(&reader_tasks[r].wq);
1085 		}
1086 
1087 		VERBOSE_SCALEOUT("main_func: experiment started, waiting for %d readers",
1088 				nreaders);
1089 
1090 		wait_event(main_wq,
1091 			   !atomic_read(&nreaders_exp) || torture_must_stop());
1092 
1093 		VERBOSE_SCALEOUT("main_func: experiment ended");
1094 
1095 		if (torture_must_stop())
1096 			goto end;
1097 
1098 		result_avg[exp] = div_u64(1000 * process_durations(nreaders), nreaders * loops);
1099 	}
1100 	rcu_scale_warm_cool();
1101 
1102 	// Print the average of all experiments
1103 	SCALEOUT("END OF TEST. Calculating average duration per loop (nanoseconds)...\n");
1104 
1105 	pr_alert("Runs\tTime(ns)\n");
1106 	for (exp = 0; exp < nruns; exp++) {
1107 		u64 avg;
1108 		u32 rem;
1109 
1110 		avg = div_u64_rem(result_avg[exp], 1000, &rem);
1111 		sprintf(buf1, "%d\t%llu.%03u\n", exp + 1, avg, rem);
1112 		strcat(buf, buf1);
1113 		if (strlen(buf) >= 800) {
1114 			pr_alert("%s", buf);
1115 			buf[0] = 0;
1116 		}
1117 	}
1118 
1119 	pr_alert("%s", buf);
1120 
1121 oom_exit:
1122 	// This will shutdown everything including us.
1123 	if (shutdown) {
1124 		shutdown_start = 1;
1125 		wake_up(&shutdown_wq);
1126 	}
1127 
1128 	// Wait for torture to stop us
1129 	while (!torture_must_stop())
1130 		schedule_timeout_uninterruptible(1);
1131 
1132 end:
1133 	torture_kthread_stopping("main_func");
1134 	kfree(result_avg);
1135 	kfree(buf);
1136 	return 0;
1137 }
1138 
1139 static void
ref_scale_print_module_parms(const struct ref_scale_ops * cur_ops,const char * tag)1140 ref_scale_print_module_parms(const struct ref_scale_ops *cur_ops, const char *tag)
1141 {
1142 	pr_alert("%s" SCALE_FLAG
1143 		 "--- %s:  verbose=%d verbose_batched=%d shutdown=%d holdoff=%d lookup_instances=%ld loops=%ld nreaders=%d nruns=%d readdelay=%d\n", scale_type, tag,
1144 		 verbose, verbose_batched, shutdown, holdoff, lookup_instances, loops, nreaders, nruns, readdelay);
1145 }
1146 
1147 static void
ref_scale_cleanup(void)1148 ref_scale_cleanup(void)
1149 {
1150 	int i;
1151 
1152 	if (torture_cleanup_begin())
1153 		return;
1154 
1155 	if (!cur_ops) {
1156 		torture_cleanup_end();
1157 		return;
1158 	}
1159 
1160 	if (reader_tasks) {
1161 		for (i = 0; i < nreaders; i++)
1162 			torture_stop_kthread("ref_scale_reader",
1163 					     reader_tasks[i].task);
1164 	}
1165 	kfree(reader_tasks);
1166 
1167 	torture_stop_kthread("main_task", main_task);
1168 	kfree(main_task);
1169 
1170 	// Do scale-type-specific cleanup operations.
1171 	if (cur_ops->cleanup != NULL)
1172 		cur_ops->cleanup();
1173 
1174 	torture_cleanup_end();
1175 }
1176 
1177 // Shutdown kthread.  Just waits to be awakened, then shuts down system.
1178 static int
ref_scale_shutdown(void * arg)1179 ref_scale_shutdown(void *arg)
1180 {
1181 	wait_event_idle(shutdown_wq, shutdown_start);
1182 
1183 	smp_mb(); // Wake before output.
1184 	ref_scale_cleanup();
1185 	kernel_power_off();
1186 
1187 	return -EINVAL;
1188 }
1189 
1190 static int __init
ref_scale_init(void)1191 ref_scale_init(void)
1192 {
1193 	long i;
1194 	int firsterr = 0;
1195 	static const struct ref_scale_ops *scale_ops[] = {
1196 		&rcu_ops, &srcu_ops, &srcu_fast_ops, &srcu_lite_ops, RCU_TRACE_OPS RCU_TASKS_OPS
1197 		&refcnt_ops, &rwlock_ops, &rwsem_ops, &lock_ops, &lock_irq_ops,
1198 		&acqrel_ops, &sched_clock_ops, &clock_ops, &jiffies_ops,
1199 		&typesafe_ref_ops, &typesafe_lock_ops, &typesafe_seqlock_ops,
1200 	};
1201 
1202 	if (!torture_init_begin(scale_type, verbose))
1203 		return -EBUSY;
1204 
1205 	for (i = 0; i < ARRAY_SIZE(scale_ops); i++) {
1206 		cur_ops = scale_ops[i];
1207 		if (strcmp(scale_type, cur_ops->name) == 0)
1208 			break;
1209 	}
1210 	if (i == ARRAY_SIZE(scale_ops)) {
1211 		pr_alert("rcu-scale: invalid scale type: \"%s\"\n", scale_type);
1212 		pr_alert("rcu-scale types:");
1213 		for (i = 0; i < ARRAY_SIZE(scale_ops); i++)
1214 			pr_cont(" %s", scale_ops[i]->name);
1215 		pr_cont("\n");
1216 		firsterr = -EINVAL;
1217 		cur_ops = NULL;
1218 		goto unwind;
1219 	}
1220 	if (cur_ops->init)
1221 		if (!cur_ops->init()) {
1222 			firsterr = -EUCLEAN;
1223 			goto unwind;
1224 		}
1225 
1226 	ref_scale_print_module_parms(cur_ops, "Start of test");
1227 
1228 	// Shutdown task
1229 	if (shutdown) {
1230 		init_waitqueue_head(&shutdown_wq);
1231 		firsterr = torture_create_kthread(ref_scale_shutdown, NULL,
1232 						  shutdown_task);
1233 		if (torture_init_error(firsterr))
1234 			goto unwind;
1235 		schedule_timeout_uninterruptible(1);
1236 	}
1237 
1238 	// Reader tasks (default to ~75% of online CPUs).
1239 	if (nreaders < 0)
1240 		nreaders = (num_online_cpus() >> 1) + (num_online_cpus() >> 2);
1241 	if (WARN_ONCE(loops <= 0, "%s: loops = %ld, adjusted to 1\n", __func__, loops))
1242 		loops = 1;
1243 	if (WARN_ONCE(nreaders <= 0, "%s: nreaders = %d, adjusted to 1\n", __func__, nreaders))
1244 		nreaders = 1;
1245 	if (WARN_ONCE(nruns <= 0, "%s: nruns = %d, adjusted to 1\n", __func__, nruns))
1246 		nruns = 1;
1247 	reader_tasks = kcalloc(nreaders, sizeof(reader_tasks[0]),
1248 			       GFP_KERNEL);
1249 	if (!reader_tasks) {
1250 		SCALEOUT_ERRSTRING("out of memory");
1251 		firsterr = -ENOMEM;
1252 		goto unwind;
1253 	}
1254 
1255 	VERBOSE_SCALEOUT("Starting %d reader threads", nreaders);
1256 
1257 	for (i = 0; i < nreaders; i++) {
1258 		init_waitqueue_head(&reader_tasks[i].wq);
1259 		firsterr = torture_create_kthread(ref_scale_reader, (void *)i,
1260 						  reader_tasks[i].task);
1261 		if (torture_init_error(firsterr))
1262 			goto unwind;
1263 	}
1264 
1265 	// Main Task
1266 	init_waitqueue_head(&main_wq);
1267 	firsterr = torture_create_kthread(main_func, NULL, main_task);
1268 	if (torture_init_error(firsterr))
1269 		goto unwind;
1270 
1271 	torture_init_end();
1272 	return 0;
1273 
1274 unwind:
1275 	torture_init_end();
1276 	ref_scale_cleanup();
1277 	if (shutdown) {
1278 		WARN_ON(!IS_MODULE(CONFIG_RCU_REF_SCALE_TEST));
1279 		kernel_power_off();
1280 	}
1281 	return firsterr;
1282 }
1283 
1284 module_init(ref_scale_init);
1285 module_exit(ref_scale_cleanup);
1286