xref: /linux/tools/testing/selftests/mm/protection_keys.c (revision 8804d970fab45726b3c7cd7f240b31122aa94219)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Tests Memory Protection Keys (see Documentation/core-api/protection-keys.rst)
4  *
5  * There are examples in here of:
6  *  * how to set protection keys on memory
7  *  * how to set/clear bits in pkey registers (the rights register)
8  *  * how to handle SEGV_PKUERR signals and extract pkey-relevant
9  *    information from the siginfo
10  *
11  * Things to add:
12  *	make sure KSM and KSM COW breaking works
13  *	prefault pages in at malloc, or not
14  *	protect MPX bounds tables with protection keys?
15  *	make sure VMA splitting/merging is working correctly
16  *	OOMs can destroy mm->mmap (see exit_mmap()), so make sure it is immune to pkeys
17  *	look for pkey "leaks" where it is still set on a VMA but "freed" back to the kernel
18  *	do a plain mprotect() to a mprotect_pkey() area and make sure the pkey sticks
19  *
20  * Compile like this:
21  *	gcc -mxsave      -o protection_keys    -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm
22  *	gcc -mxsave -m32 -o protection_keys_32 -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm
23  */
24 #define _GNU_SOURCE
25 #define __SANE_USERSPACE_TYPES__
26 #include <errno.h>
27 #include <linux/elf.h>
28 #include <linux/futex.h>
29 #include <time.h>
30 #include <sys/time.h>
31 #include <sys/syscall.h>
32 #include <string.h>
33 #include <stdio.h>
34 #include <stdint.h>
35 #include <stdbool.h>
36 #include <signal.h>
37 #include <assert.h>
38 #include <stdlib.h>
39 #include <ucontext.h>
40 #include <sys/mman.h>
41 #include <sys/types.h>
42 #include <sys/wait.h>
43 #include <sys/stat.h>
44 #include <fcntl.h>
45 #include <unistd.h>
46 #include <sys/ptrace.h>
47 #include <setjmp.h>
48 
49 #include "pkey-helpers.h"
50 
51 int iteration_nr = 1;
52 int test_nr;
53 
54 u64 shadow_pkey_reg;
55 int dprint_in_signal;
56 
read_ptr(int * ptr)57 noinline int read_ptr(int *ptr)
58 {
59 	/* Keep GCC from optimizing this away somehow */
60 	barrier();
61 	return *ptr;
62 }
63 
cat_into_file(char * str,char * file)64 static void cat_into_file(char *str, char *file)
65 {
66 	int fd = open(file, O_RDWR);
67 	int ret;
68 
69 	dprintf2("%s(): writing '%s' to '%s'\n", __func__, str, file);
70 	/*
71 	 * these need to be raw because they are called under
72 	 * pkey_assert()
73 	 */
74 	if (fd < 0) {
75 		fprintf(stderr, "error opening '%s'\n", str);
76 		perror("error: ");
77 		exit(__LINE__);
78 	}
79 
80 	ret = write(fd, str, strlen(str));
81 	if (ret != strlen(str)) {
82 		perror("write to file failed");
83 		fprintf(stderr, "filename: '%s' str: '%s'\n", file, str);
84 		exit(__LINE__);
85 	}
86 	close(fd);
87 }
88 
89 #if CONTROL_TRACING > 0
90 static int warned_tracing;
tracing_root_ok(void)91 static int tracing_root_ok(void)
92 {
93 	if (geteuid() != 0) {
94 		if (!warned_tracing)
95 			fprintf(stderr, "WARNING: not run as root, "
96 					"can not do tracing control\n");
97 		warned_tracing = 1;
98 		return 0;
99 	}
100 	return 1;
101 }
102 #endif
103 
tracing_on(void)104 static void tracing_on(void)
105 {
106 #if CONTROL_TRACING > 0
107 #define TRACEDIR "/sys/kernel/tracing"
108 	char pidstr[32];
109 
110 	if (!tracing_root_ok())
111 		return;
112 
113 	sprintf(pidstr, "%d", getpid());
114 	cat_into_file("0", TRACEDIR "/tracing_on");
115 	cat_into_file("\n", TRACEDIR "/trace");
116 	if (1) {
117 		cat_into_file("function_graph", TRACEDIR "/current_tracer");
118 		cat_into_file("1", TRACEDIR "/options/funcgraph-proc");
119 	} else {
120 		cat_into_file("nop", TRACEDIR "/current_tracer");
121 	}
122 	cat_into_file(pidstr, TRACEDIR "/set_ftrace_pid");
123 	cat_into_file("1", TRACEDIR "/tracing_on");
124 	dprintf1("enabled tracing\n");
125 #endif
126 }
127 
tracing_off(void)128 static void tracing_off(void)
129 {
130 #if CONTROL_TRACING > 0
131 	if (!tracing_root_ok())
132 		return;
133 	cat_into_file("0", "/sys/kernel/tracing/tracing_on");
134 #endif
135 }
136 
abort_hooks(void)137 void abort_hooks(void)
138 {
139 	fprintf(stderr, "running %s()...\n", __func__);
140 	tracing_off();
141 #ifdef SLEEP_ON_ABORT
142 	sleep(SLEEP_ON_ABORT);
143 #endif
144 }
145 
146 /*
147  * This attempts to have roughly a page of instructions followed by a few
148  * instructions that do a write, and another page of instructions.  That
149  * way, we are pretty sure that the write is in the second page of
150  * instructions and has at least a page of padding behind it.
151  *
152  * *That* lets us be sure to madvise() away the write instruction, which
153  * will then fault, which makes sure that the fault code handles
154  * execute-only memory properly.
155  */
156 #if defined(__powerpc64__) || defined(__aarch64__)
157 /* This way, both 4K and 64K alignment are maintained */
158 __attribute__((__aligned__(65536)))
159 #else
160 __attribute__((__aligned__(PAGE_SIZE)))
161 #endif
lots_o_noops_around_write(int * write_to_me)162 static void lots_o_noops_around_write(int *write_to_me)
163 {
164 	dprintf3("running %s()\n", __func__);
165 	__page_o_noops();
166 	/* Assume this happens in the second page of instructions: */
167 	*write_to_me = __LINE__;
168 	/* pad out by another page: */
169 	__page_o_noops();
170 	dprintf3("%s() done\n", __func__);
171 }
172 
dump_mem(void * dumpme,int len_bytes)173 static void dump_mem(void *dumpme, int len_bytes)
174 {
175 	char *c = (void *)dumpme;
176 	int i;
177 
178 	for (i = 0; i < len_bytes; i += sizeof(u64)) {
179 		u64 *ptr = (u64 *)(c + i);
180 		dprintf1("dump[%03d][@%p]: %016llx\n", i, ptr, *ptr);
181 	}
182 }
183 
hw_pkey_get(int pkey,unsigned long flags)184 static u32 hw_pkey_get(int pkey, unsigned long flags)
185 {
186 	u64 pkey_reg = __read_pkey_reg();
187 
188 	dprintf1("%s(pkey=%d, flags=%lx) = %x / %d\n",
189 			__func__, pkey, flags, 0, 0);
190 	dprintf2("%s() raw pkey_reg: %016llx\n", __func__, pkey_reg);
191 
192 	return (u32) get_pkey_bits(pkey_reg, pkey);
193 }
194 
hw_pkey_set(int pkey,unsigned long rights,unsigned long flags)195 static int hw_pkey_set(int pkey, unsigned long rights, unsigned long flags)
196 {
197 	u32 mask = (PKEY_DISABLE_ACCESS|PKEY_DISABLE_WRITE);
198 	u64 old_pkey_reg = __read_pkey_reg();
199 	u64 new_pkey_reg;
200 
201 	/* make sure that 'rights' only contains the bits we expect: */
202 	assert(!(rights & ~mask));
203 
204 	/* modify bits accordingly in old pkey_reg and assign it */
205 	new_pkey_reg = set_pkey_bits(old_pkey_reg, pkey, rights);
206 
207 	__write_pkey_reg(new_pkey_reg);
208 
209 	dprintf3("%s(pkey=%d, rights=%lx, flags=%lx) = %x"
210 		" pkey_reg now: %016llx old_pkey_reg: %016llx\n",
211 		__func__, pkey, rights, flags, 0, __read_pkey_reg(),
212 		old_pkey_reg);
213 	return 0;
214 }
215 
pkey_disable_set(int pkey,int flags)216 static void pkey_disable_set(int pkey, int flags)
217 {
218 	unsigned long syscall_flags = 0;
219 	int ret;
220 	int pkey_rights;
221 
222 	dprintf1("START->%s(%d, 0x%x)\n", __func__,
223 		pkey, flags);
224 	pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
225 
226 	pkey_rights = hw_pkey_get(pkey, syscall_flags);
227 
228 	dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
229 			pkey, pkey, pkey_rights);
230 
231 	pkey_assert(pkey_rights >= 0);
232 
233 	pkey_rights |= flags;
234 
235 	ret = hw_pkey_set(pkey, pkey_rights, syscall_flags);
236 	assert(!ret);
237 	/* pkey_reg and flags have the same format */
238 	shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, pkey, pkey_rights);
239 	dprintf1("%s(%d) shadow: 0x%016llx\n",
240 		__func__, pkey, shadow_pkey_reg);
241 
242 	pkey_assert(ret >= 0);
243 
244 	pkey_rights = hw_pkey_get(pkey, syscall_flags);
245 	dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
246 			pkey, pkey, pkey_rights);
247 
248 	dprintf1("%s(%d) pkey_reg: 0x%016llx\n",
249 		__func__, pkey, read_pkey_reg());
250 	dprintf1("END<---%s(%d, 0x%x)\n", __func__,
251 		pkey, flags);
252 }
253 
pkey_disable_clear(int pkey,int flags)254 static void pkey_disable_clear(int pkey, int flags)
255 {
256 	unsigned long syscall_flags = 0;
257 	int ret;
258 	int pkey_rights = hw_pkey_get(pkey, syscall_flags);
259 
260 	pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
261 
262 	dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
263 			pkey, pkey, pkey_rights);
264 	pkey_assert(pkey_rights >= 0);
265 
266 	pkey_rights &= ~flags;
267 
268 	ret = hw_pkey_set(pkey, pkey_rights, 0);
269 	shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, pkey, pkey_rights);
270 	pkey_assert(ret >= 0);
271 
272 	pkey_rights = hw_pkey_get(pkey, syscall_flags);
273 	dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
274 			pkey, pkey, pkey_rights);
275 
276 	dprintf1("%s(%d) pkey_reg: 0x%016llx\n", __func__,
277 			pkey, read_pkey_reg());
278 }
279 
pkey_write_allow(int pkey)280 __maybe_unused static void pkey_write_allow(int pkey)
281 {
282 	pkey_disable_clear(pkey, PKEY_DISABLE_WRITE);
283 }
pkey_write_deny(int pkey)284 __maybe_unused static void pkey_write_deny(int pkey)
285 {
286 	pkey_disable_set(pkey, PKEY_DISABLE_WRITE);
287 }
pkey_access_allow(int pkey)288 __maybe_unused static void pkey_access_allow(int pkey)
289 {
290 	pkey_disable_clear(pkey, PKEY_DISABLE_ACCESS);
291 }
pkey_access_deny(int pkey)292 __maybe_unused static void pkey_access_deny(int pkey)
293 {
294 	pkey_disable_set(pkey, PKEY_DISABLE_ACCESS);
295 }
296 
si_code_str(int si_code)297 static char *si_code_str(int si_code)
298 {
299 	if (si_code == SEGV_MAPERR)
300 		return "SEGV_MAPERR";
301 	if (si_code == SEGV_ACCERR)
302 		return "SEGV_ACCERR";
303 	if (si_code == SEGV_BNDERR)
304 		return "SEGV_BNDERR";
305 	if (si_code == SEGV_PKUERR)
306 		return "SEGV_PKUERR";
307 	return "UNKNOWN";
308 }
309 
310 static int pkey_faults;
311 static int last_si_pkey = -1;
signal_handler(int signum,siginfo_t * si,void * vucontext)312 static void signal_handler(int signum, siginfo_t *si, void *vucontext)
313 {
314 	ucontext_t *uctxt = vucontext;
315 	int trapno;
316 	unsigned long ip;
317 #ifdef MCONTEXT_FPREGS
318 	char *fpregs;
319 #endif
320 #if defined(__i386__) || defined(__x86_64__) /* arch */
321 	u32 *pkey_reg_ptr;
322 	int pkey_reg_offset;
323 #endif /* arch */
324 	u64 siginfo_pkey;
325 	u32 *si_pkey_ptr;
326 
327 	dprint_in_signal = 1;
328 	dprintf1(">>>>===============SIGSEGV============================\n");
329 	dprintf1("%s()::%d, pkey_reg: 0x%016llx shadow: %016llx\n",
330 			__func__, __LINE__,
331 			__read_pkey_reg(), shadow_pkey_reg);
332 
333 	trapno = MCONTEXT_TRAPNO(uctxt->uc_mcontext);
334 	ip = MCONTEXT_IP(uctxt->uc_mcontext);
335 #ifdef MCONTEXT_FPREGS
336 	fpregs = (char *) uctxt->uc_mcontext.fpregs;
337 #endif
338 
339 	dprintf2("%s() trapno: %d ip: 0x%016lx info->si_code: %s/%d\n",
340 			__func__, trapno, ip, si_code_str(si->si_code),
341 			si->si_code);
342 
343 #if defined(__i386__) || defined(__x86_64__) /* arch */
344 #ifdef __i386__
345 	/*
346 	 * 32-bit has some extra padding so that userspace can tell whether
347 	 * the XSTATE header is present in addition to the "legacy" FPU
348 	 * state.  We just assume that it is here.
349 	 */
350 	fpregs += 0x70;
351 #endif /* i386 */
352 	pkey_reg_offset = pkey_reg_xstate_offset();
353 	pkey_reg_ptr = (void *)(&fpregs[pkey_reg_offset]);
354 
355 	/*
356 	 * If we got a PKEY fault, we *HAVE* to have at least one bit set in
357 	 * here.
358 	 */
359 	dprintf1("pkey_reg_xstate_offset: %d\n", pkey_reg_xstate_offset());
360 	if (DEBUG_LEVEL > 4)
361 		dump_mem(pkey_reg_ptr - 128, 256);
362 	pkey_assert(*pkey_reg_ptr);
363 #endif /* arch */
364 
365 	dprintf1("siginfo: %p\n", si);
366 #ifdef MCONTEXT_FPREGS
367 	dprintf1(" fpregs: %p\n", fpregs);
368 #endif
369 
370 	if ((si->si_code == SEGV_MAPERR) ||
371 	    (si->si_code == SEGV_ACCERR) ||
372 	    (si->si_code == SEGV_BNDERR)) {
373 		printf("non-PK si_code, exiting...\n");
374 		exit(4);
375 	}
376 
377 	si_pkey_ptr = siginfo_get_pkey_ptr(si);
378 	dprintf1("si_pkey_ptr: %p\n", si_pkey_ptr);
379 	dump_mem((u8 *)si_pkey_ptr - 8, 24);
380 	siginfo_pkey = *si_pkey_ptr;
381 	pkey_assert(siginfo_pkey < NR_PKEYS);
382 	last_si_pkey = siginfo_pkey;
383 
384 	/*
385 	 * need __read_pkey_reg() version so we do not do shadow_pkey_reg
386 	 * checking
387 	 */
388 	dprintf1("signal pkey_reg from  pkey_reg: %016llx\n",
389 			__read_pkey_reg());
390 	dprintf1("pkey from siginfo: %016llx\n", siginfo_pkey);
391 #if defined(__i386__) || defined(__x86_64__) /* arch */
392 	dprintf1("signal pkey_reg from xsave: %08x\n", *pkey_reg_ptr);
393 	*(u64 *)pkey_reg_ptr = 0x00000000;
394 	dprintf1("WARNING: set PKEY_REG=0 to allow faulting instruction to continue\n");
395 #elif defined(__powerpc64__) /* arch */
396 	/* restore access and let the faulting instruction continue */
397 	pkey_access_allow(siginfo_pkey);
398 #elif defined(__aarch64__)
399 	aarch64_write_signal_pkey(uctxt, PKEY_REG_ALLOW_ALL);
400 #endif /* arch */
401 	pkey_faults++;
402 	dprintf1("<<<<==================================================\n");
403 	dprint_in_signal = 0;
404 }
405 
sig_chld(int x)406 static void sig_chld(int x)
407 {
408 	dprint_in_signal = 1;
409 	dprintf2("[%d] SIGCHLD: %d\n", getpid(), x);
410 	dprint_in_signal = 0;
411 }
412 
setup_sigsegv_handler(void)413 static void setup_sigsegv_handler(void)
414 {
415 	int r, rs;
416 	struct sigaction newact;
417 	struct sigaction oldact;
418 
419 	/* #PF is mapped to sigsegv */
420 	int signum  = SIGSEGV;
421 
422 	newact.sa_handler = 0;
423 	newact.sa_sigaction = signal_handler;
424 
425 	/*sigset_t - signals to block while in the handler */
426 	/* get the old signal mask. */
427 	rs = sigprocmask(SIG_SETMASK, 0, &newact.sa_mask);
428 	pkey_assert(rs == 0);
429 
430 	/* call sa_sigaction, not sa_handler*/
431 	newact.sa_flags = SA_SIGINFO;
432 
433 	newact.sa_restorer = 0;  /* void(*)(), obsolete */
434 	r = sigaction(signum, &newact, &oldact);
435 	r = sigaction(SIGALRM, &newact, &oldact);
436 	pkey_assert(r == 0);
437 }
438 
setup_handlers(void)439 static void setup_handlers(void)
440 {
441 	signal(SIGCHLD, &sig_chld);
442 	setup_sigsegv_handler();
443 }
444 
fork_lazy_child(void)445 static pid_t fork_lazy_child(void)
446 {
447 	pid_t forkret;
448 
449 	forkret = fork();
450 	pkey_assert(forkret >= 0);
451 	dprintf3("[%d] fork() ret: %d\n", getpid(), forkret);
452 
453 	if (!forkret) {
454 		/* in the child */
455 		while (1) {
456 			dprintf1("child sleeping...\n");
457 			sleep(30);
458 		}
459 	}
460 	return forkret;
461 }
462 
alloc_pkey(void)463 static int alloc_pkey(void)
464 {
465 	int ret;
466 	unsigned long init_val = PKEY_UNRESTRICTED;
467 
468 	dprintf1("%s()::%d, pkey_reg: 0x%016llx shadow: %016llx\n",
469 			__func__, __LINE__, __read_pkey_reg(), shadow_pkey_reg);
470 	ret = sys_pkey_alloc(0, init_val);
471 	/*
472 	 * pkey_alloc() sets PKEY register, so we need to reflect it in
473 	 * shadow_pkey_reg:
474 	 */
475 	dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
476 			" shadow: 0x%016llx\n",
477 			__func__, __LINE__, ret, __read_pkey_reg(),
478 			shadow_pkey_reg);
479 	if (ret > 0) {
480 		/* clear both the bits: */
481 		shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, ret,
482 						~PKEY_MASK);
483 		dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
484 				" shadow: 0x%016llx\n",
485 				__func__,
486 				__LINE__, ret, __read_pkey_reg(),
487 				shadow_pkey_reg);
488 		/*
489 		 * move the new state in from init_val
490 		 * (remember, we cheated and init_val == pkey_reg format)
491 		 */
492 		shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, ret,
493 						init_val);
494 	}
495 	dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
496 			" shadow: 0x%016llx\n",
497 			__func__, __LINE__, ret, __read_pkey_reg(),
498 			shadow_pkey_reg);
499 	dprintf1("%s()::%d errno: %d\n", __func__, __LINE__, errno);
500 	/* for shadow checking: */
501 	read_pkey_reg();
502 	dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
503 		 " shadow: 0x%016llx\n",
504 		__func__, __LINE__, ret, __read_pkey_reg(),
505 		shadow_pkey_reg);
506 	return ret;
507 }
508 
509 /*
510  * I had a bug where pkey bits could be set by mprotect() but
511  * not cleared.  This ensures we get lots of random bit sets
512  * and clears on the vma and pte pkey bits.
513  */
alloc_random_pkey(void)514 static int alloc_random_pkey(void)
515 {
516 	int max_nr_pkey_allocs;
517 	int ret;
518 	int i;
519 	int alloced_pkeys[NR_PKEYS];
520 	int nr_alloced = 0;
521 	int random_index;
522 	memset(alloced_pkeys, 0, sizeof(alloced_pkeys));
523 
524 	/* allocate every possible key and make a note of which ones we got */
525 	max_nr_pkey_allocs = NR_PKEYS;
526 	for (i = 0; i < max_nr_pkey_allocs; i++) {
527 		int new_pkey = alloc_pkey();
528 		if (new_pkey < 0)
529 			break;
530 		alloced_pkeys[nr_alloced++] = new_pkey;
531 	}
532 
533 	pkey_assert(nr_alloced > 0);
534 	/* select a random one out of the allocated ones */
535 	random_index = rand() % nr_alloced;
536 	ret = alloced_pkeys[random_index];
537 	/* now zero it out so we don't free it next */
538 	alloced_pkeys[random_index] = 0;
539 
540 	/* go through the allocated ones that we did not want and free them */
541 	for (i = 0; i < nr_alloced; i++) {
542 		int free_ret;
543 		if (!alloced_pkeys[i])
544 			continue;
545 		free_ret = sys_pkey_free(alloced_pkeys[i]);
546 		pkey_assert(!free_ret);
547 	}
548 	dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
549 			 " shadow: 0x%016llx\n", __func__,
550 			__LINE__, ret, __read_pkey_reg(), shadow_pkey_reg);
551 	return ret;
552 }
553 
mprotect_pkey(void * ptr,size_t size,unsigned long orig_prot,unsigned long pkey)554 int mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot,
555 		unsigned long pkey)
556 {
557 	int nr_iterations = random() % 100;
558 	int ret;
559 
560 	while (nr_iterations-- >= 0) {
561 		int rpkey = alloc_random_pkey();
562 		ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey);
563 		dprintf1("sys_mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n",
564 				ptr, size, orig_prot, pkey, ret);
565 
566 		dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
567 			" shadow: 0x%016llx\n",
568 			__func__, __LINE__, ret, __read_pkey_reg(),
569 			shadow_pkey_reg);
570 		sys_pkey_free(rpkey);
571 		dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
572 			" shadow: 0x%016llx\n",
573 			__func__, __LINE__, ret, __read_pkey_reg(),
574 			shadow_pkey_reg);
575 	}
576 	pkey_assert(pkey < NR_PKEYS);
577 
578 	ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey);
579 	dprintf1("mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n",
580 			ptr, size, orig_prot, pkey, ret);
581 	pkey_assert(!ret);
582 	dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
583 			" shadow: 0x%016llx\n", __func__,
584 			__LINE__, ret, __read_pkey_reg(), shadow_pkey_reg);
585 	return ret;
586 }
587 
588 struct pkey_malloc_record {
589 	void *ptr;
590 	long size;
591 	int prot;
592 };
593 struct pkey_malloc_record *pkey_malloc_records;
594 struct pkey_malloc_record *pkey_last_malloc_record;
595 static long nr_pkey_malloc_records;
record_pkey_malloc(void * ptr,long size,int prot)596 void record_pkey_malloc(void *ptr, long size, int prot)
597 {
598 	long i;
599 	struct pkey_malloc_record *rec = NULL;
600 
601 	for (i = 0; i < nr_pkey_malloc_records; i++) {
602 		rec = &pkey_malloc_records[i];
603 		/* find a free record */
604 		if (rec)
605 			break;
606 	}
607 	if (!rec) {
608 		/* every record is full */
609 		size_t old_nr_records = nr_pkey_malloc_records;
610 		size_t new_nr_records = (nr_pkey_malloc_records * 2 + 1);
611 		size_t new_size = new_nr_records * sizeof(struct pkey_malloc_record);
612 		dprintf2("new_nr_records: %zd\n", new_nr_records);
613 		dprintf2("new_size: %zd\n", new_size);
614 		pkey_malloc_records = realloc(pkey_malloc_records, new_size);
615 		pkey_assert(pkey_malloc_records != NULL);
616 		rec = &pkey_malloc_records[nr_pkey_malloc_records];
617 		/*
618 		 * realloc() does not initialize memory, so zero it from
619 		 * the first new record all the way to the end.
620 		 */
621 		for (i = 0; i < new_nr_records - old_nr_records; i++)
622 			memset(rec + i, 0, sizeof(*rec));
623 	}
624 	dprintf3("filling malloc record[%d/%p]: {%p, %ld}\n",
625 		(int)(rec - pkey_malloc_records), rec, ptr, size);
626 	rec->ptr = ptr;
627 	rec->size = size;
628 	rec->prot = prot;
629 	pkey_last_malloc_record = rec;
630 	nr_pkey_malloc_records++;
631 }
632 
free_pkey_malloc(void * ptr)633 static void free_pkey_malloc(void *ptr)
634 {
635 	long i;
636 	int ret;
637 	dprintf3("%s(%p)\n", __func__, ptr);
638 	for (i = 0; i < nr_pkey_malloc_records; i++) {
639 		struct pkey_malloc_record *rec = &pkey_malloc_records[i];
640 		dprintf4("looking for ptr %p at record[%ld/%p]: {%p, %ld}\n",
641 				ptr, i, rec, rec->ptr, rec->size);
642 		if ((ptr <  rec->ptr) ||
643 		    (ptr >= rec->ptr + rec->size))
644 			continue;
645 
646 		dprintf3("found ptr %p at record[%ld/%p]: {%p, %ld}\n",
647 				ptr, i, rec, rec->ptr, rec->size);
648 		nr_pkey_malloc_records--;
649 		ret = munmap(rec->ptr, rec->size);
650 		dprintf3("munmap ret: %d\n", ret);
651 		pkey_assert(!ret);
652 		dprintf3("clearing rec->ptr, rec: %p\n", rec);
653 		rec->ptr = NULL;
654 		dprintf3("done clearing rec->ptr, rec: %p\n", rec);
655 		return;
656 	}
657 	pkey_assert(false);
658 }
659 
malloc_pkey_with_mprotect(long size,int prot,u16 pkey)660 static void *malloc_pkey_with_mprotect(long size, int prot, u16 pkey)
661 {
662 	void *ptr;
663 	int ret;
664 
665 	read_pkey_reg();
666 	dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
667 			size, prot, pkey);
668 	pkey_assert(pkey < NR_PKEYS);
669 	ptr = mmap(NULL, size, prot, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
670 	pkey_assert(ptr != (void *)-1);
671 	ret = mprotect_pkey((void *)ptr, PAGE_SIZE, prot, pkey);
672 	pkey_assert(!ret);
673 	record_pkey_malloc(ptr, size, prot);
674 	read_pkey_reg();
675 
676 	dprintf1("%s() for pkey %d @ %p\n", __func__, pkey, ptr);
677 	return ptr;
678 }
679 
malloc_pkey_anon_huge(long size,int prot,u16 pkey)680 static void *malloc_pkey_anon_huge(long size, int prot, u16 pkey)
681 {
682 	int ret;
683 	void *ptr;
684 
685 	dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
686 			size, prot, pkey);
687 	/*
688 	 * Guarantee we can fit at least one huge page in the resulting
689 	 * allocation by allocating space for 2:
690 	 */
691 	size = ALIGN_UP(size, HPAGE_SIZE * 2);
692 	ptr = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
693 	pkey_assert(ptr != (void *)-1);
694 	record_pkey_malloc(ptr, size, prot);
695 	mprotect_pkey(ptr, size, prot, pkey);
696 
697 	dprintf1("unaligned ptr: %p\n", ptr);
698 	ptr = ALIGN_PTR_UP(ptr, HPAGE_SIZE);
699 	dprintf1("  aligned ptr: %p\n", ptr);
700 	ret = madvise(ptr, HPAGE_SIZE, MADV_HUGEPAGE);
701 	dprintf1("MADV_HUGEPAGE ret: %d\n", ret);
702 	ret = madvise(ptr, HPAGE_SIZE, MADV_WILLNEED);
703 	dprintf1("MADV_WILLNEED ret: %d\n", ret);
704 	memset(ptr, 0, HPAGE_SIZE);
705 
706 	dprintf1("mmap()'d thp for pkey %d @ %p\n", pkey, ptr);
707 	return ptr;
708 }
709 
710 static int hugetlb_setup_ok;
711 #define SYSFS_FMT_NR_HUGE_PAGES "/sys/kernel/mm/hugepages/hugepages-%ldkB/nr_hugepages"
712 #define GET_NR_HUGE_PAGES 10
setup_hugetlbfs(void)713 static void setup_hugetlbfs(void)
714 {
715 	int err;
716 	int fd;
717 	char buf[256];
718 	long hpagesz_kb;
719 	long hpagesz_mb;
720 
721 	if (geteuid() != 0) {
722 		fprintf(stderr, "WARNING: not run as root, can not do hugetlb test\n");
723 		return;
724 	}
725 
726 	cat_into_file(__stringify(GET_NR_HUGE_PAGES), "/proc/sys/vm/nr_hugepages");
727 
728 	/*
729 	 * Now go make sure that we got the pages and that they
730 	 * are PMD-level pages. Someone might have made PUD-level
731 	 * pages the default.
732 	 */
733 	hpagesz_kb = HPAGE_SIZE / 1024;
734 	hpagesz_mb = hpagesz_kb / 1024;
735 	sprintf(buf, SYSFS_FMT_NR_HUGE_PAGES, hpagesz_kb);
736 	fd = open(buf, O_RDONLY);
737 	if (fd < 0) {
738 		fprintf(stderr, "opening sysfs %ldM hugetlb config: %s\n",
739 			hpagesz_mb, strerror(errno));
740 		return;
741 	}
742 
743 	/* -1 to guarantee leaving the trailing \0 */
744 	err = read(fd, buf, sizeof(buf)-1);
745 	close(fd);
746 	if (err <= 0) {
747 		fprintf(stderr, "reading sysfs %ldM hugetlb config: %s\n",
748 			hpagesz_mb, strerror(errno));
749 		return;
750 	}
751 
752 	if (atoi(buf) != GET_NR_HUGE_PAGES) {
753 		fprintf(stderr, "could not confirm %ldM pages, got: '%s' expected %d\n",
754 			hpagesz_mb, buf, GET_NR_HUGE_PAGES);
755 		return;
756 	}
757 
758 	hugetlb_setup_ok = 1;
759 }
760 
malloc_pkey_hugetlb(long size,int prot,u16 pkey)761 static void *malloc_pkey_hugetlb(long size, int prot, u16 pkey)
762 {
763 	void *ptr;
764 	int flags = MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB;
765 
766 	if (!hugetlb_setup_ok)
767 		return PTR_ERR_ENOTSUP;
768 
769 	dprintf1("doing %s(%ld, %x, %x)\n", __func__, size, prot, pkey);
770 	size = ALIGN_UP(size, HPAGE_SIZE * 2);
771 	pkey_assert(pkey < NR_PKEYS);
772 	ptr = mmap(NULL, size, PROT_NONE, flags, -1, 0);
773 	pkey_assert(ptr != (void *)-1);
774 	mprotect_pkey(ptr, size, prot, pkey);
775 
776 	record_pkey_malloc(ptr, size, prot);
777 
778 	dprintf1("mmap()'d hugetlbfs for pkey %d @ %p\n", pkey, ptr);
779 	return ptr;
780 }
781 
782 static void *(*pkey_malloc[])(long size, int prot, u16 pkey) = {
783 
784 	malloc_pkey_with_mprotect,
785 	malloc_pkey_with_mprotect_subpage,
786 	malloc_pkey_anon_huge,
787 	malloc_pkey_hugetlb
788 };
789 
malloc_pkey(long size,int prot,u16 pkey)790 static void *malloc_pkey(long size, int prot, u16 pkey)
791 {
792 	void *ret;
793 	static int malloc_type;
794 	int nr_malloc_types = ARRAY_SIZE(pkey_malloc);
795 
796 	pkey_assert(pkey < NR_PKEYS);
797 
798 	while (1) {
799 		pkey_assert(malloc_type < nr_malloc_types);
800 
801 		ret = pkey_malloc[malloc_type](size, prot, pkey);
802 		pkey_assert(ret != (void *)-1);
803 
804 		malloc_type++;
805 		if (malloc_type >= nr_malloc_types)
806 			malloc_type = (random()%nr_malloc_types);
807 
808 		/* try again if the malloc_type we tried is unsupported */
809 		if (ret == PTR_ERR_ENOTSUP)
810 			continue;
811 
812 		break;
813 	}
814 
815 	dprintf3("%s(%ld, prot=%x, pkey=%x) returning: %p\n", __func__,
816 			size, prot, pkey, ret);
817 	return ret;
818 }
819 
820 static int last_pkey_faults;
821 #define UNKNOWN_PKEY -2
expected_pkey_fault(int pkey)822 void expected_pkey_fault(int pkey)
823 {
824 	dprintf2("%s(): last_pkey_faults: %d pkey_faults: %d\n",
825 			__func__, last_pkey_faults, pkey_faults);
826 	dprintf2("%s(%d): last_si_pkey: %d\n", __func__, pkey, last_si_pkey);
827 	pkey_assert(last_pkey_faults + 1 == pkey_faults);
828 
829        /*
830 	* For exec-only memory, we do not know the pkey in
831 	* advance, so skip this check.
832 	*/
833 	if (pkey != UNKNOWN_PKEY)
834 		pkey_assert(last_si_pkey == pkey);
835 
836 #if defined(__i386__) || defined(__x86_64__) /* arch */
837 	/*
838 	 * The signal handler shold have cleared out PKEY register to let the
839 	 * test program continue.  We now have to restore it.
840 	 */
841 	if (__read_pkey_reg() != 0)
842 #elif defined(__aarch64__)
843 	if (__read_pkey_reg() != PKEY_REG_ALLOW_ALL)
844 #else
845 	if (__read_pkey_reg() != shadow_pkey_reg)
846 #endif /* arch */
847 		pkey_assert(0);
848 
849 	__write_pkey_reg(shadow_pkey_reg);
850 	dprintf1("%s() set pkey_reg=%016llx to restore state after signal "
851 		       "nuked it\n", __func__, shadow_pkey_reg);
852 	last_pkey_faults = pkey_faults;
853 	last_si_pkey = -1;
854 }
855 
856 #define do_not_expect_pkey_fault(msg)	do {			\
857 	if (last_pkey_faults != pkey_faults)			\
858 		dprintf0("unexpected PKey fault: %s\n", msg);	\
859 	pkey_assert(last_pkey_faults == pkey_faults);		\
860 } while (0)
861 
862 static int test_fds[10] = { -1 };
863 static int nr_test_fds;
__save_test_fd(int fd)864 static void __save_test_fd(int fd)
865 {
866 	pkey_assert(fd >= 0);
867 	pkey_assert(nr_test_fds < ARRAY_SIZE(test_fds));
868 	test_fds[nr_test_fds] = fd;
869 	nr_test_fds++;
870 }
871 
get_test_read_fd(void)872 static int get_test_read_fd(void)
873 {
874 	int test_fd = open("/etc/passwd", O_RDONLY);
875 	__save_test_fd(test_fd);
876 	return test_fd;
877 }
878 
close_test_fds(void)879 static void close_test_fds(void)
880 {
881 	int i;
882 
883 	for (i = 0; i < nr_test_fds; i++) {
884 		if (test_fds[i] < 0)
885 			continue;
886 		close(test_fds[i]);
887 		test_fds[i] = -1;
888 	}
889 	nr_test_fds = 0;
890 }
891 
test_pkey_alloc_free_attach_pkey0(int * ptr,u16 pkey)892 static void test_pkey_alloc_free_attach_pkey0(int *ptr, u16 pkey)
893 {
894 	int i, err;
895 	int max_nr_pkey_allocs;
896 	int alloced_pkeys[NR_PKEYS];
897 	int nr_alloced = 0;
898 	long size;
899 
900 	pkey_assert(pkey_last_malloc_record);
901 	size = pkey_last_malloc_record->size;
902 	/*
903 	 * This is a bit of a hack.  But mprotect() requires
904 	 * huge-page-aligned sizes when operating on hugetlbfs.
905 	 * So, make sure that we use something that's a multiple
906 	 * of a huge page when we can.
907 	 */
908 	if (size >= HPAGE_SIZE)
909 		size = HPAGE_SIZE;
910 
911 	/* allocate every possible key and make sure key-0 never got allocated */
912 	max_nr_pkey_allocs = NR_PKEYS;
913 	for (i = 0; i < max_nr_pkey_allocs; i++) {
914 		int new_pkey = alloc_pkey();
915 		pkey_assert(new_pkey != 0);
916 
917 		if (new_pkey < 0)
918 			break;
919 		alloced_pkeys[nr_alloced++] = new_pkey;
920 	}
921 	/* free all the allocated keys */
922 	for (i = 0; i < nr_alloced; i++) {
923 		int free_ret;
924 
925 		if (!alloced_pkeys[i])
926 			continue;
927 		free_ret = sys_pkey_free(alloced_pkeys[i]);
928 		pkey_assert(!free_ret);
929 	}
930 
931 	/* attach key-0 in various modes */
932 	err = sys_mprotect_pkey(ptr, size, PROT_READ, 0);
933 	pkey_assert(!err);
934 	err = sys_mprotect_pkey(ptr, size, PROT_WRITE, 0);
935 	pkey_assert(!err);
936 	err = sys_mprotect_pkey(ptr, size, PROT_EXEC, 0);
937 	pkey_assert(!err);
938 	err = sys_mprotect_pkey(ptr, size, PROT_READ|PROT_WRITE, 0);
939 	pkey_assert(!err);
940 	err = sys_mprotect_pkey(ptr, size, PROT_READ|PROT_WRITE|PROT_EXEC, 0);
941 	pkey_assert(!err);
942 }
943 
test_read_of_write_disabled_region(int * ptr,u16 pkey)944 static void test_read_of_write_disabled_region(int *ptr, u16 pkey)
945 {
946 	int ptr_contents;
947 
948 	dprintf1("disabling write access to PKEY[1], doing read\n");
949 	pkey_write_deny(pkey);
950 	ptr_contents = read_ptr(ptr);
951 	dprintf1("*ptr: %d\n", ptr_contents);
952 	dprintf1("\n");
953 }
test_read_of_access_disabled_region(int * ptr,u16 pkey)954 static void test_read_of_access_disabled_region(int *ptr, u16 pkey)
955 {
956 	int ptr_contents;
957 
958 	dprintf1("disabling access to PKEY[%02d], doing read @ %p\n", pkey, ptr);
959 	read_pkey_reg();
960 	pkey_access_deny(pkey);
961 	ptr_contents = read_ptr(ptr);
962 	dprintf1("*ptr: %d\n", ptr_contents);
963 	expected_pkey_fault(pkey);
964 }
965 
test_read_of_access_disabled_region_with_page_already_mapped(int * ptr,u16 pkey)966 static void test_read_of_access_disabled_region_with_page_already_mapped(int *ptr,
967 		u16 pkey)
968 {
969 	int ptr_contents;
970 
971 	dprintf1("disabling access to PKEY[%02d], doing read @ %p\n",
972 				pkey, ptr);
973 	ptr_contents = read_ptr(ptr);
974 	dprintf1("reading ptr before disabling the read : %d\n",
975 			ptr_contents);
976 	read_pkey_reg();
977 	pkey_access_deny(pkey);
978 	ptr_contents = read_ptr(ptr);
979 	dprintf1("*ptr: %d\n", ptr_contents);
980 	expected_pkey_fault(pkey);
981 }
982 
test_write_of_write_disabled_region_with_page_already_mapped(int * ptr,u16 pkey)983 static void test_write_of_write_disabled_region_with_page_already_mapped(int *ptr,
984 		u16 pkey)
985 {
986 	*ptr = __LINE__;
987 	dprintf1("disabling write access; after accessing the page, "
988 		"to PKEY[%02d], doing write\n", pkey);
989 	pkey_write_deny(pkey);
990 	*ptr = __LINE__;
991 	expected_pkey_fault(pkey);
992 }
993 
test_write_of_write_disabled_region(int * ptr,u16 pkey)994 static void test_write_of_write_disabled_region(int *ptr, u16 pkey)
995 {
996 	dprintf1("disabling write access to PKEY[%02d], doing write\n", pkey);
997 	pkey_write_deny(pkey);
998 	*ptr = __LINE__;
999 	expected_pkey_fault(pkey);
1000 }
test_write_of_access_disabled_region(int * ptr,u16 pkey)1001 static void test_write_of_access_disabled_region(int *ptr, u16 pkey)
1002 {
1003 	dprintf1("disabling access to PKEY[%02d], doing write\n", pkey);
1004 	pkey_access_deny(pkey);
1005 	*ptr = __LINE__;
1006 	expected_pkey_fault(pkey);
1007 }
1008 
test_write_of_access_disabled_region_with_page_already_mapped(int * ptr,u16 pkey)1009 static void test_write_of_access_disabled_region_with_page_already_mapped(int *ptr,
1010 			u16 pkey)
1011 {
1012 	*ptr = __LINE__;
1013 	dprintf1("disabling access; after accessing the page, "
1014 		" to PKEY[%02d], doing write\n", pkey);
1015 	pkey_access_deny(pkey);
1016 	*ptr = __LINE__;
1017 	expected_pkey_fault(pkey);
1018 }
1019 
test_kernel_write_of_access_disabled_region(int * ptr,u16 pkey)1020 static void test_kernel_write_of_access_disabled_region(int *ptr, u16 pkey)
1021 {
1022 	int ret;
1023 	int test_fd = get_test_read_fd();
1024 
1025 	dprintf1("disabling access to PKEY[%02d], "
1026 		 "having kernel read() to buffer\n", pkey);
1027 	pkey_access_deny(pkey);
1028 	ret = read(test_fd, ptr, 1);
1029 	dprintf1("read ret: %d\n", ret);
1030 	pkey_assert(ret);
1031 }
1032 
test_kernel_write_of_write_disabled_region(int * ptr,u16 pkey)1033 static void test_kernel_write_of_write_disabled_region(int *ptr, u16 pkey)
1034 {
1035 	int ret;
1036 	int test_fd = get_test_read_fd();
1037 
1038 	pkey_write_deny(pkey);
1039 	ret = read(test_fd, ptr, 100);
1040 	dprintf1("read ret: %d\n", ret);
1041 	if (ret < 0 && (DEBUG_LEVEL > 0))
1042 		perror("verbose read result (OK for this to be bad)");
1043 	pkey_assert(ret);
1044 }
1045 
test_kernel_gup_of_access_disabled_region(int * ptr,u16 pkey)1046 static void test_kernel_gup_of_access_disabled_region(int *ptr, u16 pkey)
1047 {
1048 	int pipe_ret, vmsplice_ret;
1049 	struct iovec iov;
1050 	int pipe_fds[2];
1051 
1052 	pipe_ret = pipe(pipe_fds);
1053 
1054 	pkey_assert(pipe_ret == 0);
1055 	dprintf1("disabling access to PKEY[%02d], "
1056 		 "having kernel vmsplice from buffer\n", pkey);
1057 	pkey_access_deny(pkey);
1058 	iov.iov_base = ptr;
1059 	iov.iov_len = PAGE_SIZE;
1060 	vmsplice_ret = vmsplice(pipe_fds[1], &iov, 1, SPLICE_F_GIFT);
1061 	dprintf1("vmsplice() ret: %d\n", vmsplice_ret);
1062 	pkey_assert(vmsplice_ret == -1);
1063 
1064 	close(pipe_fds[0]);
1065 	close(pipe_fds[1]);
1066 }
1067 
test_kernel_gup_write_to_write_disabled_region(int * ptr,u16 pkey)1068 static void test_kernel_gup_write_to_write_disabled_region(int *ptr, u16 pkey)
1069 {
1070 	int ignored = 0xdada;
1071 	int futex_ret;
1072 	int some_int = __LINE__;
1073 
1074 	dprintf1("disabling write to PKEY[%02d], "
1075 		 "doing futex gunk in buffer\n", pkey);
1076 	*ptr = some_int;
1077 	pkey_write_deny(pkey);
1078 	futex_ret = syscall(SYS_futex, ptr, FUTEX_WAIT, some_int-1, NULL,
1079 			&ignored, ignored);
1080 	if (DEBUG_LEVEL > 0)
1081 		perror("futex");
1082 	dprintf1("futex() ret: %d\n", futex_ret);
1083 }
1084 
1085 /* Assumes that all pkeys other than 'pkey' are unallocated */
test_pkey_syscalls_on_non_allocated_pkey(int * ptr,u16 pkey)1086 static void test_pkey_syscalls_on_non_allocated_pkey(int *ptr, u16 pkey)
1087 {
1088 	int err;
1089 	int i;
1090 
1091 	/* Note: 0 is the default pkey, so don't mess with it */
1092 	for (i = 1; i < NR_PKEYS; i++) {
1093 		if (pkey == i)
1094 			continue;
1095 
1096 		dprintf1("trying get/set/free to non-allocated pkey: %2d\n", i);
1097 		err = sys_pkey_free(i);
1098 		pkey_assert(err);
1099 
1100 		err = sys_pkey_free(i);
1101 		pkey_assert(err);
1102 
1103 		err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, i);
1104 		pkey_assert(err);
1105 	}
1106 }
1107 
1108 /* Assumes that all pkeys other than 'pkey' are unallocated */
test_pkey_syscalls_bad_args(int * ptr,u16 pkey)1109 static void test_pkey_syscalls_bad_args(int *ptr, u16 pkey)
1110 {
1111 	int err;
1112 	int bad_pkey = NR_PKEYS+99;
1113 
1114 	/* pass a known-invalid pkey in: */
1115 	err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, bad_pkey);
1116 	pkey_assert(err);
1117 }
1118 
become_child(void)1119 static void become_child(void)
1120 {
1121 	pid_t forkret;
1122 
1123 	forkret = fork();
1124 	pkey_assert(forkret >= 0);
1125 	dprintf3("[%d] fork() ret: %d\n", getpid(), forkret);
1126 
1127 	if (!forkret) {
1128 		/* in the child */
1129 		return;
1130 	}
1131 	exit(0);
1132 }
1133 
1134 /* Assumes that all pkeys other than 'pkey' are unallocated */
test_pkey_alloc_exhaust(int * ptr,u16 pkey)1135 static void test_pkey_alloc_exhaust(int *ptr, u16 pkey)
1136 {
1137 	int err;
1138 	int allocated_pkeys[NR_PKEYS] = {0};
1139 	int nr_allocated_pkeys = 0;
1140 	int i;
1141 
1142 	for (i = 0; i < NR_PKEYS*3; i++) {
1143 		int new_pkey;
1144 		dprintf1("%s() alloc loop: %d\n", __func__, i);
1145 		new_pkey = alloc_pkey();
1146 		dprintf4("%s()::%d, err: %d pkey_reg: 0x%016llx"
1147 				" shadow: 0x%016llx\n",
1148 				__func__, __LINE__, err, __read_pkey_reg(),
1149 				shadow_pkey_reg);
1150 		read_pkey_reg(); /* for shadow checking */
1151 		dprintf2("%s() errno: %d ENOSPC: %d\n", __func__, errno, ENOSPC);
1152 		if ((new_pkey == -1) && (errno == ENOSPC)) {
1153 			dprintf2("%s() failed to allocate pkey after %d tries\n",
1154 				__func__, nr_allocated_pkeys);
1155 		} else {
1156 			/*
1157 			 * Ensure the number of successes never
1158 			 * exceeds the number of keys supported
1159 			 * in the hardware.
1160 			 */
1161 			pkey_assert(nr_allocated_pkeys < NR_PKEYS);
1162 			allocated_pkeys[nr_allocated_pkeys++] = new_pkey;
1163 		}
1164 
1165 		/*
1166 		 * Make sure that allocation state is properly
1167 		 * preserved across fork().
1168 		 */
1169 		if (i == NR_PKEYS*2)
1170 			become_child();
1171 	}
1172 
1173 	dprintf3("%s()::%d\n", __func__, __LINE__);
1174 
1175 	/*
1176 	 * On x86:
1177 	 * There are 16 pkeys supported in hardware.  Three are
1178 	 * allocated by the time we get here:
1179 	 *   1. The default key (0)
1180 	 *   2. One possibly consumed by an execute-only mapping.
1181 	 *   3. One allocated by the test code and passed in via
1182 	 *      'pkey' to this function.
1183 	 * Ensure that we can allocate at least another 13 (16-3).
1184 	 *
1185 	 * On powerpc:
1186 	 * There are either 5, 28, 29 or 32 pkeys supported in
1187 	 * hardware depending on the page size (4K or 64K) and
1188 	 * platform (powernv or powervm). Four are allocated by
1189 	 * the time we get here. These include pkey-0, pkey-1,
1190 	 * exec-only pkey and the one allocated by the test code.
1191 	 * Ensure that we can allocate the remaining.
1192 	 */
1193 	pkey_assert(i >= (NR_PKEYS - get_arch_reserved_keys() - 1));
1194 
1195 	for (i = 0; i < nr_allocated_pkeys; i++) {
1196 		err = sys_pkey_free(allocated_pkeys[i]);
1197 		pkey_assert(!err);
1198 		read_pkey_reg(); /* for shadow checking */
1199 	}
1200 }
1201 
arch_force_pkey_reg_init(void)1202 static void arch_force_pkey_reg_init(void)
1203 {
1204 #if defined(__i386__) || defined(__x86_64__) /* arch */
1205 	u64 *buf;
1206 
1207 	/*
1208 	 * All keys should be allocated and set to allow reads and
1209 	 * writes, so the register should be all 0.  If not, just
1210 	 * skip the test.
1211 	 */
1212 	if (read_pkey_reg())
1213 		return;
1214 
1215 	/*
1216 	 * Just allocate an absurd about of memory rather than
1217 	 * doing the XSAVE size enumeration dance.
1218 	 */
1219 	buf = mmap(NULL, 1*MB, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1220 
1221 	/* These __builtins require compiling with -mxsave */
1222 
1223 	/* XSAVE to build a valid buffer: */
1224 	__builtin_ia32_xsave(buf, XSTATE_PKEY);
1225 	/* Clear XSTATE_BV[PKRU]: */
1226 	buf[XSTATE_BV_OFFSET/sizeof(u64)] &= ~XSTATE_PKEY;
1227 	/* XRSTOR will likely get PKRU back to the init state: */
1228 	__builtin_ia32_xrstor(buf, XSTATE_PKEY);
1229 
1230 	munmap(buf, 1*MB);
1231 #endif
1232 }
1233 
1234 
1235 /*
1236  * This is mostly useless on ppc for now.  But it will not
1237  * hurt anything and should give some better coverage as
1238  * a long-running test that continually checks the pkey
1239  * register.
1240  */
test_pkey_init_state(int * ptr,u16 pkey)1241 static void test_pkey_init_state(int *ptr, u16 pkey)
1242 {
1243 	int err;
1244 	int allocated_pkeys[NR_PKEYS] = {0};
1245 	int nr_allocated_pkeys = 0;
1246 	int i;
1247 
1248 	for (i = 0; i < NR_PKEYS; i++) {
1249 		int new_pkey = alloc_pkey();
1250 
1251 		if (new_pkey < 0)
1252 			continue;
1253 		allocated_pkeys[nr_allocated_pkeys++] = new_pkey;
1254 	}
1255 
1256 	dprintf3("%s()::%d\n", __func__, __LINE__);
1257 
1258 	arch_force_pkey_reg_init();
1259 
1260 	/*
1261 	 * Loop for a bit, hoping to get exercise the kernel
1262 	 * context switch code.
1263 	 */
1264 	for (i = 0; i < 1000000; i++)
1265 		read_pkey_reg();
1266 
1267 	for (i = 0; i < nr_allocated_pkeys; i++) {
1268 		err = sys_pkey_free(allocated_pkeys[i]);
1269 		pkey_assert(!err);
1270 		read_pkey_reg(); /* for shadow checking */
1271 	}
1272 }
1273 
1274 /*
1275  * pkey 0 is special.  It is allocated by default, so you do not
1276  * have to call pkey_alloc() to use it first.  Make sure that it
1277  * is usable.
1278  */
test_mprotect_with_pkey_0(int * ptr,u16 pkey)1279 static void test_mprotect_with_pkey_0(int *ptr, u16 pkey)
1280 {
1281 	long size;
1282 	int prot;
1283 
1284 	assert(pkey_last_malloc_record);
1285 	size = pkey_last_malloc_record->size;
1286 	/*
1287 	 * This is a bit of a hack.  But mprotect() requires
1288 	 * huge-page-aligned sizes when operating on hugetlbfs.
1289 	 * So, make sure that we use something that's a multiple
1290 	 * of a huge page when we can.
1291 	 */
1292 	if (size >= HPAGE_SIZE)
1293 		size = HPAGE_SIZE;
1294 	prot = pkey_last_malloc_record->prot;
1295 
1296 	/* Use pkey 0 */
1297 	mprotect_pkey(ptr, size, prot, 0);
1298 
1299 	/* Make sure that we can set it back to the original pkey. */
1300 	mprotect_pkey(ptr, size, prot, pkey);
1301 }
1302 
test_ptrace_of_child(int * ptr,u16 pkey)1303 static void test_ptrace_of_child(int *ptr, u16 pkey)
1304 {
1305 	__always_unused int peek_result;
1306 	pid_t child_pid;
1307 	void *ignored = 0;
1308 	long ret;
1309 	int status;
1310 	/*
1311 	 * This is the "control" for our little expermient.  Make sure
1312 	 * we can always access it when ptracing.
1313 	 */
1314 	int *plain_ptr_unaligned = malloc(HPAGE_SIZE);
1315 	int *plain_ptr = ALIGN_PTR_UP(plain_ptr_unaligned, PAGE_SIZE);
1316 
1317 	/*
1318 	 * Fork a child which is an exact copy of this process, of course.
1319 	 * That means we can do all of our tests via ptrace() and then plain
1320 	 * memory access and ensure they work differently.
1321 	 */
1322 	child_pid = fork_lazy_child();
1323 	dprintf1("[%d] child pid: %d\n", getpid(), child_pid);
1324 
1325 	ret = ptrace(PTRACE_ATTACH, child_pid, ignored, ignored);
1326 	if (ret)
1327 		perror("attach");
1328 	dprintf1("[%d] attach ret: %ld %d\n", getpid(), ret, __LINE__);
1329 	pkey_assert(ret != -1);
1330 	ret = waitpid(child_pid, &status, WUNTRACED);
1331 	if ((ret != child_pid) || !(WIFSTOPPED(status))) {
1332 		fprintf(stderr, "weird waitpid result %ld stat %x\n",
1333 				ret, status);
1334 		pkey_assert(0);
1335 	}
1336 	dprintf2("waitpid ret: %ld\n", ret);
1337 	dprintf2("waitpid status: %d\n", status);
1338 
1339 	pkey_access_deny(pkey);
1340 	pkey_write_deny(pkey);
1341 
1342 	/* Write access, untested for now:
1343 	ret = ptrace(PTRACE_POKEDATA, child_pid, peek_at, data);
1344 	pkey_assert(ret != -1);
1345 	dprintf1("poke at %p: %ld\n", peek_at, ret);
1346 	*/
1347 
1348 	/*
1349 	 * Try to access the pkey-protected "ptr" via ptrace:
1350 	 */
1351 	ret = ptrace(PTRACE_PEEKDATA, child_pid, ptr, ignored);
1352 	/* expect it to work, without an error: */
1353 	pkey_assert(ret != -1);
1354 	/* Now access from the current task, and expect an exception: */
1355 	peek_result = read_ptr(ptr);
1356 	expected_pkey_fault(pkey);
1357 
1358 	/*
1359 	 * Try to access the NON-pkey-protected "plain_ptr" via ptrace:
1360 	 */
1361 	ret = ptrace(PTRACE_PEEKDATA, child_pid, plain_ptr, ignored);
1362 	/* expect it to work, without an error: */
1363 	pkey_assert(ret != -1);
1364 	/* Now access from the current task, and expect NO exception: */
1365 	peek_result = read_ptr(plain_ptr);
1366 	do_not_expect_pkey_fault("read plain pointer after ptrace");
1367 
1368 	ret = ptrace(PTRACE_DETACH, child_pid, ignored, 0);
1369 	pkey_assert(ret != -1);
1370 
1371 	ret = kill(child_pid, SIGKILL);
1372 	pkey_assert(ret != -1);
1373 
1374 	wait(&status);
1375 
1376 	free(plain_ptr_unaligned);
1377 }
1378 
get_pointer_to_instructions(void)1379 static void *get_pointer_to_instructions(void)
1380 {
1381 	void *p1;
1382 
1383 	p1 = ALIGN_PTR_UP(&lots_o_noops_around_write, PAGE_SIZE);
1384 	dprintf3("&lots_o_noops: %p\n", &lots_o_noops_around_write);
1385 	/* lots_o_noops_around_write should be page-aligned already */
1386 	assert(p1 == &lots_o_noops_around_write);
1387 
1388 	/* Point 'p1' at the *second* page of the function: */
1389 	p1 += PAGE_SIZE;
1390 
1391 	/*
1392 	 * Try to ensure we fault this in on next touch to ensure
1393 	 * we get an instruction fault as opposed to a data one
1394 	 */
1395 	madvise(p1, PAGE_SIZE, MADV_DONTNEED);
1396 
1397 	return p1;
1398 }
1399 
test_executing_on_unreadable_memory(int * ptr,u16 pkey)1400 static void test_executing_on_unreadable_memory(int *ptr, u16 pkey)
1401 {
1402 	void *p1;
1403 	int scratch;
1404 	int ptr_contents;
1405 	int ret;
1406 
1407 	p1 = get_pointer_to_instructions();
1408 	lots_o_noops_around_write(&scratch);
1409 	ptr_contents = read_ptr(p1);
1410 	dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents);
1411 
1412 	ret = mprotect_pkey(p1, PAGE_SIZE, PROT_EXEC, (u64)pkey);
1413 	pkey_assert(!ret);
1414 	pkey_access_deny(pkey);
1415 
1416 	dprintf2("pkey_reg: %016llx\n", read_pkey_reg());
1417 
1418 	/*
1419 	 * Make sure this is an *instruction* fault
1420 	 */
1421 	madvise(p1, PAGE_SIZE, MADV_DONTNEED);
1422 	lots_o_noops_around_write(&scratch);
1423 	do_not_expect_pkey_fault("executing on PROT_EXEC memory");
1424 	expect_fault_on_read_execonly_key(p1, pkey);
1425 
1426 	// Reset back to PROT_EXEC | PROT_READ for architectures that support
1427 	// non-PKEY execute-only permissions.
1428 	ret = mprotect_pkey(p1, PAGE_SIZE, PROT_EXEC | PROT_READ, (u64)pkey);
1429 	pkey_assert(!ret);
1430 }
1431 
test_implicit_mprotect_exec_only_memory(int * ptr,u16 pkey)1432 static void test_implicit_mprotect_exec_only_memory(int *ptr, u16 pkey)
1433 {
1434 	void *p1;
1435 	int scratch;
1436 	int ptr_contents;
1437 	int ret;
1438 
1439 	dprintf1("%s() start\n", __func__);
1440 
1441 	p1 = get_pointer_to_instructions();
1442 	lots_o_noops_around_write(&scratch);
1443 	ptr_contents = read_ptr(p1);
1444 	dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents);
1445 
1446 	/* Use a *normal* mprotect(), not mprotect_pkey(): */
1447 	ret = mprotect(p1, PAGE_SIZE, PROT_EXEC);
1448 	pkey_assert(!ret);
1449 
1450 	/*
1451 	 * Reset the shadow, assuming that the above mprotect()
1452 	 * correctly changed PKRU, but to an unknown value since
1453 	 * the actual allocated pkey is unknown.
1454 	 */
1455 	shadow_pkey_reg = __read_pkey_reg();
1456 
1457 	dprintf2("pkey_reg: %016llx\n", read_pkey_reg());
1458 
1459 	/* Make sure this is an *instruction* fault */
1460 	madvise(p1, PAGE_SIZE, MADV_DONTNEED);
1461 	lots_o_noops_around_write(&scratch);
1462 	do_not_expect_pkey_fault("executing on PROT_EXEC memory");
1463 	expect_fault_on_read_execonly_key(p1, UNKNOWN_PKEY);
1464 
1465 	/*
1466 	 * Put the memory back to non-PROT_EXEC.  Should clear the
1467 	 * exec-only pkey off the VMA and allow it to be readable
1468 	 * again.  Go to PROT_NONE first to check for a kernel bug
1469 	 * that did not clear the pkey when doing PROT_NONE.
1470 	 */
1471 	ret = mprotect(p1, PAGE_SIZE, PROT_NONE);
1472 	pkey_assert(!ret);
1473 
1474 	ret = mprotect(p1, PAGE_SIZE, PROT_READ|PROT_EXEC);
1475 	pkey_assert(!ret);
1476 	ptr_contents = read_ptr(p1);
1477 	do_not_expect_pkey_fault("plain read on recently PROT_EXEC area");
1478 }
1479 
1480 #if defined(__i386__) || defined(__x86_64__)
test_ptrace_modifies_pkru(int * ptr,u16 pkey)1481 static void test_ptrace_modifies_pkru(int *ptr, u16 pkey)
1482 {
1483 	u32 new_pkru;
1484 	pid_t child;
1485 	int status, ret;
1486 	int pkey_offset = pkey_reg_xstate_offset();
1487 	size_t xsave_size = cpu_max_xsave_size();
1488 	void *xsave;
1489 	u32 *pkey_register;
1490 	u64 *xstate_bv;
1491 	struct iovec iov;
1492 
1493 	new_pkru = ~read_pkey_reg();
1494 	/* Don't make PROT_EXEC mappings inaccessible */
1495 	new_pkru &= ~3;
1496 
1497 	child = fork();
1498 	pkey_assert(child >= 0);
1499 	dprintf3("[%d] fork() ret: %d\n", getpid(), child);
1500 	if (!child) {
1501 		ptrace(PTRACE_TRACEME, 0, 0, 0);
1502 		/* Stop and allow the tracer to modify PKRU directly */
1503 		raise(SIGSTOP);
1504 
1505 		/*
1506 		 * need __read_pkey_reg() version so we do not do shadow_pkey_reg
1507 		 * checking
1508 		 */
1509 		if (__read_pkey_reg() != new_pkru)
1510 			exit(1);
1511 
1512 		/* Stop and allow the tracer to clear XSTATE_BV for PKRU */
1513 		raise(SIGSTOP);
1514 
1515 		if (__read_pkey_reg() != 0)
1516 			exit(1);
1517 
1518 		/* Stop and allow the tracer to examine PKRU */
1519 		raise(SIGSTOP);
1520 
1521 		exit(0);
1522 	}
1523 
1524 	pkey_assert(child == waitpid(child, &status, 0));
1525 	dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
1526 	pkey_assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);
1527 
1528 	xsave = (void *)malloc(xsave_size);
1529 	pkey_assert(xsave > 0);
1530 
1531 	/* Modify the PKRU register directly */
1532 	iov.iov_base = xsave;
1533 	iov.iov_len = xsave_size;
1534 	ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1535 	pkey_assert(ret == 0);
1536 
1537 	pkey_register = (u32 *)(xsave + pkey_offset);
1538 	pkey_assert(*pkey_register == read_pkey_reg());
1539 
1540 	*pkey_register = new_pkru;
1541 
1542 	ret = ptrace(PTRACE_SETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1543 	pkey_assert(ret == 0);
1544 
1545 	/* Test that the modification is visible in ptrace before any execution */
1546 	memset(xsave, 0xCC, xsave_size);
1547 	ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1548 	pkey_assert(ret == 0);
1549 	pkey_assert(*pkey_register == new_pkru);
1550 
1551 	/* Execute the tracee */
1552 	ret = ptrace(PTRACE_CONT, child, 0, 0);
1553 	pkey_assert(ret == 0);
1554 
1555 	/* Test that the tracee saw the PKRU value change */
1556 	pkey_assert(child == waitpid(child, &status, 0));
1557 	dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
1558 	pkey_assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);
1559 
1560 	/* Test that the modification is visible in ptrace after execution */
1561 	memset(xsave, 0xCC, xsave_size);
1562 	ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1563 	pkey_assert(ret == 0);
1564 	pkey_assert(*pkey_register == new_pkru);
1565 
1566 	/* Clear the PKRU bit from XSTATE_BV */
1567 	xstate_bv = (u64 *)(xsave + 512);
1568 	*xstate_bv &= ~(1 << 9);
1569 
1570 	ret = ptrace(PTRACE_SETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1571 	pkey_assert(ret == 0);
1572 
1573 	/* Test that the modification is visible in ptrace before any execution */
1574 	memset(xsave, 0xCC, xsave_size);
1575 	ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1576 	pkey_assert(ret == 0);
1577 	pkey_assert(*pkey_register == 0);
1578 
1579 	ret = ptrace(PTRACE_CONT, child, 0, 0);
1580 	pkey_assert(ret == 0);
1581 
1582 	/* Test that the tracee saw the PKRU value go to 0 */
1583 	pkey_assert(child == waitpid(child, &status, 0));
1584 	dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
1585 	pkey_assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);
1586 
1587 	/* Test that the modification is visible in ptrace after execution */
1588 	memset(xsave, 0xCC, xsave_size);
1589 	ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1590 	pkey_assert(ret == 0);
1591 	pkey_assert(*pkey_register == 0);
1592 
1593 	ret = ptrace(PTRACE_CONT, child, 0, 0);
1594 	pkey_assert(ret == 0);
1595 	pkey_assert(child == waitpid(child, &status, 0));
1596 	dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
1597 	pkey_assert(WIFEXITED(status));
1598 	pkey_assert(WEXITSTATUS(status) == 0);
1599 	free(xsave);
1600 }
1601 #endif
1602 
1603 #if defined(__aarch64__)
test_ptrace_modifies_pkru(int * ptr,u16 pkey)1604 static void test_ptrace_modifies_pkru(int *ptr, u16 pkey)
1605 {
1606 	pid_t child;
1607 	int status, ret;
1608 	struct iovec iov;
1609 	u64 trace_pkey;
1610 	/* Just a random pkey value.. */
1611 	u64 new_pkey = (POE_X << PKEY_BITS_PER_PKEY * 2) |
1612 			(POE_NONE << PKEY_BITS_PER_PKEY) |
1613 			POE_RWX;
1614 
1615 	child = fork();
1616 	pkey_assert(child >= 0);
1617 	dprintf3("[%d] fork() ret: %d\n", getpid(), child);
1618 	if (!child) {
1619 		ptrace(PTRACE_TRACEME, 0, 0, 0);
1620 
1621 		/* Stop and allow the tracer to modify PKRU directly */
1622 		raise(SIGSTOP);
1623 
1624 		/*
1625 		 * need __read_pkey_reg() version so we do not do shadow_pkey_reg
1626 		 * checking
1627 		 */
1628 		if (__read_pkey_reg() != new_pkey)
1629 			exit(1);
1630 
1631 		raise(SIGSTOP);
1632 
1633 		exit(0);
1634 	}
1635 
1636 	pkey_assert(child == waitpid(child, &status, 0));
1637 	dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
1638 	pkey_assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);
1639 
1640 	iov.iov_base = &trace_pkey;
1641 	iov.iov_len = 8;
1642 	ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_ARM_POE, &iov);
1643 	pkey_assert(ret == 0);
1644 	pkey_assert(trace_pkey == read_pkey_reg());
1645 
1646 	trace_pkey = new_pkey;
1647 
1648 	ret = ptrace(PTRACE_SETREGSET, child, (void *)NT_ARM_POE, &iov);
1649 	pkey_assert(ret == 0);
1650 
1651 	/* Test that the modification is visible in ptrace before any execution */
1652 	memset(&trace_pkey, 0, sizeof(trace_pkey));
1653 	ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_ARM_POE, &iov);
1654 	pkey_assert(ret == 0);
1655 	pkey_assert(trace_pkey == new_pkey);
1656 
1657 	/* Execute the tracee */
1658 	ret = ptrace(PTRACE_CONT, child, 0, 0);
1659 	pkey_assert(ret == 0);
1660 
1661 	/* Test that the tracee saw the PKRU value change */
1662 	pkey_assert(child == waitpid(child, &status, 0));
1663 	dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
1664 	pkey_assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);
1665 
1666 	/* Test that the modification is visible in ptrace after execution */
1667 	memset(&trace_pkey, 0, sizeof(trace_pkey));
1668 	ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_ARM_POE, &iov);
1669 	pkey_assert(ret == 0);
1670 	pkey_assert(trace_pkey == new_pkey);
1671 
1672 	ret = ptrace(PTRACE_CONT, child, 0, 0);
1673 	pkey_assert(ret == 0);
1674 	pkey_assert(child == waitpid(child, &status, 0));
1675 	dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
1676 	pkey_assert(WIFEXITED(status));
1677 	pkey_assert(WEXITSTATUS(status) == 0);
1678 }
1679 #endif
1680 
test_mprotect_pkey_on_unsupported_cpu(int * ptr,u16 pkey)1681 static void test_mprotect_pkey_on_unsupported_cpu(int *ptr, u16 pkey)
1682 {
1683 	int size = PAGE_SIZE;
1684 	int sret;
1685 
1686 	if (cpu_has_pkeys()) {
1687 		dprintf1("SKIP: %s: no CPU support\n", __func__);
1688 		return;
1689 	}
1690 
1691 	sret = syscall(__NR_pkey_mprotect, ptr, size, PROT_READ, pkey);
1692 	pkey_assert(sret < 0);
1693 }
1694 
1695 static void (*pkey_tests[])(int *ptr, u16 pkey) = {
1696 	test_read_of_write_disabled_region,
1697 	test_read_of_access_disabled_region,
1698 	test_read_of_access_disabled_region_with_page_already_mapped,
1699 	test_write_of_write_disabled_region,
1700 	test_write_of_write_disabled_region_with_page_already_mapped,
1701 	test_write_of_access_disabled_region,
1702 	test_write_of_access_disabled_region_with_page_already_mapped,
1703 	test_kernel_write_of_access_disabled_region,
1704 	test_kernel_write_of_write_disabled_region,
1705 	test_kernel_gup_of_access_disabled_region,
1706 	test_kernel_gup_write_to_write_disabled_region,
1707 	test_executing_on_unreadable_memory,
1708 	test_implicit_mprotect_exec_only_memory,
1709 	test_mprotect_with_pkey_0,
1710 	test_ptrace_of_child,
1711 	test_pkey_init_state,
1712 	test_pkey_syscalls_on_non_allocated_pkey,
1713 	test_pkey_syscalls_bad_args,
1714 	test_pkey_alloc_exhaust,
1715 	test_pkey_alloc_free_attach_pkey0,
1716 #if defined(__i386__) || defined(__x86_64__) || defined(__aarch64__)
1717 	test_ptrace_modifies_pkru,
1718 #endif
1719 };
1720 
run_tests_once(void)1721 static void run_tests_once(void)
1722 {
1723 	int *ptr;
1724 	int prot = PROT_READ|PROT_WRITE;
1725 
1726 	for (test_nr = 0; test_nr < ARRAY_SIZE(pkey_tests); test_nr++) {
1727 		int pkey;
1728 		int orig_pkey_faults = pkey_faults;
1729 
1730 		dprintf1("======================\n");
1731 		dprintf1("test %d preparing...\n", test_nr);
1732 
1733 		tracing_on();
1734 		pkey = alloc_random_pkey();
1735 		dprintf1("test %d starting with pkey: %d\n", test_nr, pkey);
1736 		ptr = malloc_pkey(PAGE_SIZE, prot, pkey);
1737 		dprintf1("test %d starting...\n", test_nr);
1738 		pkey_tests[test_nr](ptr, pkey);
1739 		dprintf1("freeing test memory: %p\n", ptr);
1740 		free_pkey_malloc(ptr);
1741 		sys_pkey_free(pkey);
1742 
1743 		dprintf1("pkey_faults: %d\n", pkey_faults);
1744 		dprintf1("orig_pkey_faults: %d\n", orig_pkey_faults);
1745 
1746 		tracing_off();
1747 		close_test_fds();
1748 
1749 		printf("test %2d PASSED (iteration %d)\n", test_nr, iteration_nr);
1750 		dprintf1("======================\n\n");
1751 	}
1752 	iteration_nr++;
1753 }
1754 
pkey_setup_shadow(void)1755 static void pkey_setup_shadow(void)
1756 {
1757 	shadow_pkey_reg = __read_pkey_reg();
1758 }
1759 
main(void)1760 int main(void)
1761 {
1762 	int nr_iterations = 22;
1763 	int pkeys_supported = is_pkeys_supported();
1764 
1765 	srand((unsigned int)time(NULL));
1766 
1767 	setup_handlers();
1768 
1769 	printf("has pkeys: %d\n", pkeys_supported);
1770 
1771 	if (!pkeys_supported) {
1772 		int size = PAGE_SIZE;
1773 		int *ptr;
1774 
1775 		printf("running PKEY tests for unsupported CPU/OS\n");
1776 
1777 		ptr  = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1778 		assert(ptr != (void *)-1);
1779 		test_mprotect_pkey_on_unsupported_cpu(ptr, 1);
1780 		exit(0);
1781 	}
1782 
1783 	pkey_setup_shadow();
1784 	printf("startup pkey_reg: %016llx\n", read_pkey_reg());
1785 	setup_hugetlbfs();
1786 
1787 	while (nr_iterations-- > 0)
1788 		run_tests_once();
1789 
1790 	printf("done (all tests OK)\n");
1791 	return 0;
1792 }
1793