1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/super.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * super.c contains code to handle: - mount structures
8 * - super-block tables
9 * - filesystem drivers list
10 * - mount system call
11 * - umount system call
12 * - ustat system call
13 *
14 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 *
16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18 * Added options to /proc/mounts:
19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22 */
23
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/fscrypt.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include <linux/fs_context.h>
39 #include <uapi/linux/mount.h>
40 #include "internal.h"
41
42 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who,
43 const void *freeze_owner);
44
45 static LIST_HEAD(super_blocks);
46 static DEFINE_SPINLOCK(sb_lock);
47
48 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
49 "sb_writers",
50 "sb_pagefaults",
51 "sb_internal",
52 };
53
__super_lock(struct super_block * sb,bool excl)54 static inline void __super_lock(struct super_block *sb, bool excl)
55 {
56 if (excl)
57 down_write(&sb->s_umount);
58 else
59 down_read(&sb->s_umount);
60 }
61
super_unlock(struct super_block * sb,bool excl)62 static inline void super_unlock(struct super_block *sb, bool excl)
63 {
64 if (excl)
65 up_write(&sb->s_umount);
66 else
67 up_read(&sb->s_umount);
68 }
69
__super_lock_excl(struct super_block * sb)70 static inline void __super_lock_excl(struct super_block *sb)
71 {
72 __super_lock(sb, true);
73 }
74
super_unlock_excl(struct super_block * sb)75 static inline void super_unlock_excl(struct super_block *sb)
76 {
77 super_unlock(sb, true);
78 }
79
super_unlock_shared(struct super_block * sb)80 static inline void super_unlock_shared(struct super_block *sb)
81 {
82 super_unlock(sb, false);
83 }
84
super_flags(const struct super_block * sb,unsigned int flags)85 static bool super_flags(const struct super_block *sb, unsigned int flags)
86 {
87 /*
88 * Pairs with smp_store_release() in super_wake() and ensures
89 * that we see @flags after we're woken.
90 */
91 return smp_load_acquire(&sb->s_flags) & flags;
92 }
93
94 /**
95 * super_lock - wait for superblock to become ready and lock it
96 * @sb: superblock to wait for
97 * @excl: whether exclusive access is required
98 *
99 * If the superblock has neither passed through vfs_get_tree() or
100 * generic_shutdown_super() yet wait for it to happen. Either superblock
101 * creation will succeed and SB_BORN is set by vfs_get_tree() or we're
102 * woken and we'll see SB_DYING.
103 *
104 * The caller must have acquired a temporary reference on @sb->s_count.
105 *
106 * Return: The function returns true if SB_BORN was set and with
107 * s_umount held. The function returns false if SB_DYING was
108 * set and without s_umount held.
109 */
super_lock(struct super_block * sb,bool excl)110 static __must_check bool super_lock(struct super_block *sb, bool excl)
111 {
112 lockdep_assert_not_held(&sb->s_umount);
113
114 /* wait until the superblock is ready or dying */
115 wait_var_event(&sb->s_flags, super_flags(sb, SB_BORN | SB_DYING));
116
117 /* Don't pointlessly acquire s_umount. */
118 if (super_flags(sb, SB_DYING))
119 return false;
120
121 __super_lock(sb, excl);
122
123 /*
124 * Has gone through generic_shutdown_super() in the meantime.
125 * @sb->s_root is NULL and @sb->s_active is 0. No one needs to
126 * grab a reference to this. Tell them so.
127 */
128 if (sb->s_flags & SB_DYING) {
129 super_unlock(sb, excl);
130 return false;
131 }
132
133 WARN_ON_ONCE(!(sb->s_flags & SB_BORN));
134 return true;
135 }
136
137 /* wait and try to acquire read-side of @sb->s_umount */
super_lock_shared(struct super_block * sb)138 static inline bool super_lock_shared(struct super_block *sb)
139 {
140 return super_lock(sb, false);
141 }
142
143 /* wait and try to acquire write-side of @sb->s_umount */
super_lock_excl(struct super_block * sb)144 static inline bool super_lock_excl(struct super_block *sb)
145 {
146 return super_lock(sb, true);
147 }
148
149 /* wake waiters */
150 #define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD)
super_wake(struct super_block * sb,unsigned int flag)151 static void super_wake(struct super_block *sb, unsigned int flag)
152 {
153 WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS));
154 WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1);
155
156 /*
157 * Pairs with smp_load_acquire() in super_lock() to make sure
158 * all initializations in the superblock are seen by the user
159 * seeing SB_BORN sent.
160 */
161 smp_store_release(&sb->s_flags, sb->s_flags | flag);
162 /*
163 * Pairs with the barrier in prepare_to_wait_event() to make sure
164 * ___wait_var_event() either sees SB_BORN set or
165 * waitqueue_active() check in wake_up_var() sees the waiter.
166 */
167 smp_mb();
168 wake_up_var(&sb->s_flags);
169 }
170
171 /*
172 * One thing we have to be careful of with a per-sb shrinker is that we don't
173 * drop the last active reference to the superblock from within the shrinker.
174 * If that happens we could trigger unregistering the shrinker from within the
175 * shrinker path and that leads to deadlock on the shrinker_mutex. Hence we
176 * take a passive reference to the superblock to avoid this from occurring.
177 */
super_cache_scan(struct shrinker * shrink,struct shrink_control * sc)178 static unsigned long super_cache_scan(struct shrinker *shrink,
179 struct shrink_control *sc)
180 {
181 struct super_block *sb;
182 long fs_objects = 0;
183 long total_objects;
184 long freed = 0;
185 long dentries;
186 long inodes;
187
188 sb = shrink->private_data;
189
190 /*
191 * Deadlock avoidance. We may hold various FS locks, and we don't want
192 * to recurse into the FS that called us in clear_inode() and friends..
193 */
194 if (!(sc->gfp_mask & __GFP_FS))
195 return SHRINK_STOP;
196
197 if (!super_trylock_shared(sb))
198 return SHRINK_STOP;
199
200 if (sb->s_op->nr_cached_objects)
201 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
202
203 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
204 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
205 total_objects = dentries + inodes + fs_objects;
206 if (!total_objects)
207 total_objects = 1;
208
209 /* proportion the scan between the caches */
210 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
211 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
212 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
213
214 /*
215 * prune the dcache first as the icache is pinned by it, then
216 * prune the icache, followed by the filesystem specific caches
217 *
218 * Ensure that we always scan at least one object - memcg kmem
219 * accounting uses this to fully empty the caches.
220 */
221 sc->nr_to_scan = dentries + 1;
222 freed = prune_dcache_sb(sb, sc);
223 sc->nr_to_scan = inodes + 1;
224 freed += prune_icache_sb(sb, sc);
225
226 if (fs_objects) {
227 sc->nr_to_scan = fs_objects + 1;
228 freed += sb->s_op->free_cached_objects(sb, sc);
229 }
230
231 super_unlock_shared(sb);
232 return freed;
233 }
234
super_cache_count(struct shrinker * shrink,struct shrink_control * sc)235 static unsigned long super_cache_count(struct shrinker *shrink,
236 struct shrink_control *sc)
237 {
238 struct super_block *sb;
239 long total_objects = 0;
240
241 sb = shrink->private_data;
242
243 /*
244 * We don't call super_trylock_shared() here as it is a scalability
245 * bottleneck, so we're exposed to partial setup state. The shrinker
246 * rwsem does not protect filesystem operations backing
247 * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can
248 * change between super_cache_count and super_cache_scan, so we really
249 * don't need locks here.
250 *
251 * However, if we are currently mounting the superblock, the underlying
252 * filesystem might be in a state of partial construction and hence it
253 * is dangerous to access it. super_trylock_shared() uses a SB_BORN check
254 * to avoid this situation, so do the same here. The memory barrier is
255 * matched with the one in mount_fs() as we don't hold locks here.
256 */
257 if (!(sb->s_flags & SB_BORN))
258 return 0;
259 smp_rmb();
260
261 if (sb->s_op && sb->s_op->nr_cached_objects)
262 total_objects = sb->s_op->nr_cached_objects(sb, sc);
263
264 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
265 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
266
267 if (!total_objects)
268 return SHRINK_EMPTY;
269
270 total_objects = vfs_pressure_ratio(total_objects);
271 return total_objects;
272 }
273
destroy_super_work(struct work_struct * work)274 static void destroy_super_work(struct work_struct *work)
275 {
276 struct super_block *s = container_of(work, struct super_block,
277 destroy_work);
278 fsnotify_sb_free(s);
279 security_sb_free(s);
280 put_user_ns(s->s_user_ns);
281 kfree(s->s_subtype);
282 for (int i = 0; i < SB_FREEZE_LEVELS; i++)
283 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
284 kfree(s);
285 }
286
destroy_super_rcu(struct rcu_head * head)287 static void destroy_super_rcu(struct rcu_head *head)
288 {
289 struct super_block *s = container_of(head, struct super_block, rcu);
290 INIT_WORK(&s->destroy_work, destroy_super_work);
291 schedule_work(&s->destroy_work);
292 }
293
294 /* Free a superblock that has never been seen by anyone */
destroy_unused_super(struct super_block * s)295 static void destroy_unused_super(struct super_block *s)
296 {
297 if (!s)
298 return;
299 super_unlock_excl(s);
300 list_lru_destroy(&s->s_dentry_lru);
301 list_lru_destroy(&s->s_inode_lru);
302 shrinker_free(s->s_shrink);
303 /* no delays needed */
304 destroy_super_work(&s->destroy_work);
305 }
306
307 /**
308 * alloc_super - create new superblock
309 * @type: filesystem type superblock should belong to
310 * @flags: the mount flags
311 * @user_ns: User namespace for the super_block
312 *
313 * Allocates and initializes a new &struct super_block. alloc_super()
314 * returns a pointer new superblock or %NULL if allocation had failed.
315 */
alloc_super(struct file_system_type * type,int flags,struct user_namespace * user_ns)316 static struct super_block *alloc_super(struct file_system_type *type, int flags,
317 struct user_namespace *user_ns)
318 {
319 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_KERNEL);
320 static const struct super_operations default_op;
321 int i;
322
323 if (!s)
324 return NULL;
325
326 s->s_user_ns = get_user_ns(user_ns);
327 init_rwsem(&s->s_umount);
328 lockdep_set_class(&s->s_umount, &type->s_umount_key);
329 /*
330 * sget() can have s_umount recursion.
331 *
332 * When it cannot find a suitable sb, it allocates a new
333 * one (this one), and tries again to find a suitable old
334 * one.
335 *
336 * In case that succeeds, it will acquire the s_umount
337 * lock of the old one. Since these are clearly distrinct
338 * locks, and this object isn't exposed yet, there's no
339 * risk of deadlocks.
340 *
341 * Annotate this by putting this lock in a different
342 * subclass.
343 */
344 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
345
346 if (security_sb_alloc(s))
347 goto fail;
348
349 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
350 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
351 sb_writers_name[i],
352 &type->s_writers_key[i]))
353 goto fail;
354 }
355 s->s_bdi = &noop_backing_dev_info;
356 s->s_flags = flags;
357 if (s->s_user_ns != &init_user_ns)
358 s->s_iflags |= SB_I_NODEV;
359 INIT_HLIST_NODE(&s->s_instances);
360 INIT_HLIST_BL_HEAD(&s->s_roots);
361 mutex_init(&s->s_sync_lock);
362 INIT_LIST_HEAD(&s->s_inodes);
363 spin_lock_init(&s->s_inode_list_lock);
364 INIT_LIST_HEAD(&s->s_inodes_wb);
365 spin_lock_init(&s->s_inode_wblist_lock);
366
367 s->s_count = 1;
368 atomic_set(&s->s_active, 1);
369 mutex_init(&s->s_vfs_rename_mutex);
370 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
371 init_rwsem(&s->s_dquot.dqio_sem);
372 s->s_maxbytes = MAX_NON_LFS;
373 s->s_op = &default_op;
374 s->s_time_gran = 1000000000;
375 s->s_time_min = TIME64_MIN;
376 s->s_time_max = TIME64_MAX;
377
378 s->s_shrink = shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
379 "sb-%s", type->name);
380 if (!s->s_shrink)
381 goto fail;
382
383 s->s_shrink->scan_objects = super_cache_scan;
384 s->s_shrink->count_objects = super_cache_count;
385 s->s_shrink->batch = 1024;
386 s->s_shrink->private_data = s;
387
388 if (list_lru_init_memcg(&s->s_dentry_lru, s->s_shrink))
389 goto fail;
390 if (list_lru_init_memcg(&s->s_inode_lru, s->s_shrink))
391 goto fail;
392 s->s_min_writeback_pages = MIN_WRITEBACK_PAGES;
393 return s;
394
395 fail:
396 destroy_unused_super(s);
397 return NULL;
398 }
399
400 /* Superblock refcounting */
401
402 /*
403 * Drop a superblock's refcount. The caller must hold sb_lock.
404 */
__put_super(struct super_block * s)405 static void __put_super(struct super_block *s)
406 {
407 if (!--s->s_count) {
408 list_del_init(&s->s_list);
409 WARN_ON(s->s_dentry_lru.node);
410 WARN_ON(s->s_inode_lru.node);
411 WARN_ON(s->s_mounts);
412 call_rcu(&s->rcu, destroy_super_rcu);
413 }
414 }
415
416 /**
417 * put_super - drop a temporary reference to superblock
418 * @sb: superblock in question
419 *
420 * Drops a temporary reference, frees superblock if there's no
421 * references left.
422 */
put_super(struct super_block * sb)423 void put_super(struct super_block *sb)
424 {
425 spin_lock(&sb_lock);
426 __put_super(sb);
427 spin_unlock(&sb_lock);
428 }
429
kill_super_notify(struct super_block * sb)430 static void kill_super_notify(struct super_block *sb)
431 {
432 lockdep_assert_not_held(&sb->s_umount);
433
434 /* already notified earlier */
435 if (sb->s_flags & SB_DEAD)
436 return;
437
438 /*
439 * Remove it from @fs_supers so it isn't found by new
440 * sget{_fc}() walkers anymore. Any concurrent mounter still
441 * managing to grab a temporary reference is guaranteed to
442 * already see SB_DYING and will wait until we notify them about
443 * SB_DEAD.
444 */
445 spin_lock(&sb_lock);
446 hlist_del_init(&sb->s_instances);
447 spin_unlock(&sb_lock);
448
449 /*
450 * Let concurrent mounts know that this thing is really dead.
451 * We don't need @sb->s_umount here as every concurrent caller
452 * will see SB_DYING and either discard the superblock or wait
453 * for SB_DEAD.
454 */
455 super_wake(sb, SB_DEAD);
456 }
457
458 /**
459 * deactivate_locked_super - drop an active reference to superblock
460 * @s: superblock to deactivate
461 *
462 * Drops an active reference to superblock, converting it into a temporary
463 * one if there is no other active references left. In that case we
464 * tell fs driver to shut it down and drop the temporary reference we
465 * had just acquired.
466 *
467 * Caller holds exclusive lock on superblock; that lock is released.
468 */
deactivate_locked_super(struct super_block * s)469 void deactivate_locked_super(struct super_block *s)
470 {
471 struct file_system_type *fs = s->s_type;
472 if (atomic_dec_and_test(&s->s_active)) {
473 shrinker_free(s->s_shrink);
474 fs->kill_sb(s);
475
476 kill_super_notify(s);
477
478 /*
479 * Since list_lru_destroy() may sleep, we cannot call it from
480 * put_super(), where we hold the sb_lock. Therefore we destroy
481 * the lru lists right now.
482 */
483 list_lru_destroy(&s->s_dentry_lru);
484 list_lru_destroy(&s->s_inode_lru);
485
486 put_filesystem(fs);
487 put_super(s);
488 } else {
489 super_unlock_excl(s);
490 }
491 }
492
493 EXPORT_SYMBOL(deactivate_locked_super);
494
495 /**
496 * deactivate_super - drop an active reference to superblock
497 * @s: superblock to deactivate
498 *
499 * Variant of deactivate_locked_super(), except that superblock is *not*
500 * locked by caller. If we are going to drop the final active reference,
501 * lock will be acquired prior to that.
502 */
deactivate_super(struct super_block * s)503 void deactivate_super(struct super_block *s)
504 {
505 if (!atomic_add_unless(&s->s_active, -1, 1)) {
506 __super_lock_excl(s);
507 deactivate_locked_super(s);
508 }
509 }
510
511 EXPORT_SYMBOL(deactivate_super);
512
513 /**
514 * grab_super - acquire an active reference to a superblock
515 * @sb: superblock to acquire
516 *
517 * Acquire a temporary reference on a superblock and try to trade it for
518 * an active reference. This is used in sget{_fc}() to wait for a
519 * superblock to either become SB_BORN or for it to pass through
520 * sb->kill() and be marked as SB_DEAD.
521 *
522 * Return: This returns true if an active reference could be acquired,
523 * false if not.
524 */
grab_super(struct super_block * sb)525 static bool grab_super(struct super_block *sb)
526 {
527 bool locked;
528
529 sb->s_count++;
530 spin_unlock(&sb_lock);
531 locked = super_lock_excl(sb);
532 if (locked) {
533 if (atomic_inc_not_zero(&sb->s_active)) {
534 put_super(sb);
535 return true;
536 }
537 super_unlock_excl(sb);
538 }
539 wait_var_event(&sb->s_flags, super_flags(sb, SB_DEAD));
540 put_super(sb);
541 return false;
542 }
543
544 /*
545 * super_trylock_shared - try to grab ->s_umount shared
546 * @sb: reference we are trying to grab
547 *
548 * Try to prevent fs shutdown. This is used in places where we
549 * cannot take an active reference but we need to ensure that the
550 * filesystem is not shut down while we are working on it. It returns
551 * false if we cannot acquire s_umount or if we lose the race and
552 * filesystem already got into shutdown, and returns true with the s_umount
553 * lock held in read mode in case of success. On successful return,
554 * the caller must drop the s_umount lock when done.
555 *
556 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
557 * The reason why it's safe is that we are OK with doing trylock instead
558 * of down_read(). There's a couple of places that are OK with that, but
559 * it's very much not a general-purpose interface.
560 */
super_trylock_shared(struct super_block * sb)561 bool super_trylock_shared(struct super_block *sb)
562 {
563 if (down_read_trylock(&sb->s_umount)) {
564 if (!(sb->s_flags & SB_DYING) && sb->s_root &&
565 (sb->s_flags & SB_BORN))
566 return true;
567 super_unlock_shared(sb);
568 }
569
570 return false;
571 }
572
573 /**
574 * retire_super - prevents superblock from being reused
575 * @sb: superblock to retire
576 *
577 * The function marks superblock to be ignored in superblock test, which
578 * prevents it from being reused for any new mounts. If the superblock has
579 * a private bdi, it also unregisters it, but doesn't reduce the refcount
580 * of the superblock to prevent potential races. The refcount is reduced
581 * by generic_shutdown_super(). The function can not be called
582 * concurrently with generic_shutdown_super(). It is safe to call the
583 * function multiple times, subsequent calls have no effect.
584 *
585 * The marker will affect the re-use only for block-device-based
586 * superblocks. Other superblocks will still get marked if this function
587 * is used, but that will not affect their reusability.
588 */
retire_super(struct super_block * sb)589 void retire_super(struct super_block *sb)
590 {
591 WARN_ON(!sb->s_bdev);
592 __super_lock_excl(sb);
593 if (sb->s_iflags & SB_I_PERSB_BDI) {
594 bdi_unregister(sb->s_bdi);
595 sb->s_iflags &= ~SB_I_PERSB_BDI;
596 }
597 sb->s_iflags |= SB_I_RETIRED;
598 super_unlock_excl(sb);
599 }
600 EXPORT_SYMBOL(retire_super);
601
602 /**
603 * generic_shutdown_super - common helper for ->kill_sb()
604 * @sb: superblock to kill
605 *
606 * generic_shutdown_super() does all fs-independent work on superblock
607 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
608 * that need destruction out of superblock, call generic_shutdown_super()
609 * and release aforementioned objects. Note: dentries and inodes _are_
610 * taken care of and do not need specific handling.
611 *
612 * Upon calling this function, the filesystem may no longer alter or
613 * rearrange the set of dentries belonging to this super_block, nor may it
614 * change the attachments of dentries to inodes.
615 */
generic_shutdown_super(struct super_block * sb)616 void generic_shutdown_super(struct super_block *sb)
617 {
618 const struct super_operations *sop = sb->s_op;
619
620 if (sb->s_root) {
621 shrink_dcache_for_umount(sb);
622 sync_filesystem(sb);
623 sb->s_flags &= ~SB_ACTIVE;
624
625 cgroup_writeback_umount(sb);
626
627 /* Evict all inodes with zero refcount. */
628 evict_inodes(sb);
629
630 /*
631 * Clean up and evict any inodes that still have references due
632 * to fsnotify or the security policy.
633 */
634 fsnotify_sb_delete(sb);
635 security_sb_delete(sb);
636
637 if (sb->s_dio_done_wq) {
638 destroy_workqueue(sb->s_dio_done_wq);
639 sb->s_dio_done_wq = NULL;
640 }
641
642 if (sop->put_super)
643 sop->put_super(sb);
644
645 /*
646 * Now that all potentially-encrypted inodes have been evicted,
647 * the fscrypt keyring can be destroyed.
648 */
649 fscrypt_destroy_keyring(sb);
650
651 if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes), NULL,
652 "VFS: Busy inodes after unmount of %s (%s)",
653 sb->s_id, sb->s_type->name)) {
654 /*
655 * Adding a proper bailout path here would be hard, but
656 * we can at least make it more likely that a later
657 * iput_final() or such crashes cleanly.
658 */
659 struct inode *inode;
660
661 spin_lock(&sb->s_inode_list_lock);
662 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
663 inode->i_op = VFS_PTR_POISON;
664 inode->i_sb = VFS_PTR_POISON;
665 inode->i_mapping = VFS_PTR_POISON;
666 }
667 spin_unlock(&sb->s_inode_list_lock);
668 }
669 }
670 /*
671 * Broadcast to everyone that grabbed a temporary reference to this
672 * superblock before we removed it from @fs_supers that the superblock
673 * is dying. Every walker of @fs_supers outside of sget{_fc}() will now
674 * discard this superblock and treat it as dead.
675 *
676 * We leave the superblock on @fs_supers so it can be found by
677 * sget{_fc}() until we passed sb->kill_sb().
678 */
679 super_wake(sb, SB_DYING);
680 super_unlock_excl(sb);
681 if (sb->s_bdi != &noop_backing_dev_info) {
682 if (sb->s_iflags & SB_I_PERSB_BDI)
683 bdi_unregister(sb->s_bdi);
684 bdi_put(sb->s_bdi);
685 sb->s_bdi = &noop_backing_dev_info;
686 }
687 }
688
689 EXPORT_SYMBOL(generic_shutdown_super);
690
mount_capable(struct fs_context * fc)691 bool mount_capable(struct fs_context *fc)
692 {
693 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
694 return capable(CAP_SYS_ADMIN);
695 else
696 return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
697 }
698
699 /**
700 * sget_fc - Find or create a superblock
701 * @fc: Filesystem context.
702 * @test: Comparison callback
703 * @set: Setup callback
704 *
705 * Create a new superblock or find an existing one.
706 *
707 * The @test callback is used to find a matching existing superblock.
708 * Whether or not the requested parameters in @fc are taken into account
709 * is specific to the @test callback that is used. They may even be
710 * completely ignored.
711 *
712 * If an extant superblock is matched, it will be returned unless:
713 *
714 * (1) the namespace the filesystem context @fc and the extant
715 * superblock's namespace differ
716 *
717 * (2) the filesystem context @fc has requested that reusing an extant
718 * superblock is not allowed
719 *
720 * In both cases EBUSY will be returned.
721 *
722 * If no match is made, a new superblock will be allocated and basic
723 * initialisation will be performed (s_type, s_fs_info and s_id will be
724 * set and the @set callback will be invoked), the superblock will be
725 * published and it will be returned in a partially constructed state
726 * with SB_BORN and SB_ACTIVE as yet unset.
727 *
728 * Return: On success, an extant or newly created superblock is
729 * returned. On failure an error pointer is returned.
730 */
sget_fc(struct fs_context * fc,int (* test)(struct super_block *,struct fs_context *),int (* set)(struct super_block *,struct fs_context *))731 struct super_block *sget_fc(struct fs_context *fc,
732 int (*test)(struct super_block *, struct fs_context *),
733 int (*set)(struct super_block *, struct fs_context *))
734 {
735 struct super_block *s = NULL;
736 struct super_block *old;
737 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
738 int err;
739
740 /*
741 * Never allow s_user_ns != &init_user_ns when FS_USERNS_MOUNT is
742 * not set, as the filesystem is likely unprepared to handle it.
743 * This can happen when fsconfig() is called from init_user_ns with
744 * an fs_fd opened in another user namespace.
745 */
746 if (user_ns != &init_user_ns && !(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) {
747 errorfc(fc, "VFS: Mounting from non-initial user namespace is not allowed");
748 return ERR_PTR(-EPERM);
749 }
750
751 retry:
752 spin_lock(&sb_lock);
753 if (test) {
754 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
755 if (test(old, fc))
756 goto share_extant_sb;
757 }
758 }
759 if (!s) {
760 spin_unlock(&sb_lock);
761 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
762 if (!s)
763 return ERR_PTR(-ENOMEM);
764 goto retry;
765 }
766
767 s->s_fs_info = fc->s_fs_info;
768 err = set(s, fc);
769 if (err) {
770 s->s_fs_info = NULL;
771 spin_unlock(&sb_lock);
772 destroy_unused_super(s);
773 return ERR_PTR(err);
774 }
775 fc->s_fs_info = NULL;
776 s->s_type = fc->fs_type;
777 s->s_iflags |= fc->s_iflags;
778 strscpy(s->s_id, s->s_type->name, sizeof(s->s_id));
779 /*
780 * Make the superblock visible on @super_blocks and @fs_supers.
781 * It's in a nascent state and users should wait on SB_BORN or
782 * SB_DYING to be set.
783 */
784 list_add_tail(&s->s_list, &super_blocks);
785 hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
786 spin_unlock(&sb_lock);
787 get_filesystem(s->s_type);
788 shrinker_register(s->s_shrink);
789 return s;
790
791 share_extant_sb:
792 if (user_ns != old->s_user_ns || fc->exclusive) {
793 spin_unlock(&sb_lock);
794 destroy_unused_super(s);
795 if (fc->exclusive)
796 warnfc(fc, "reusing existing filesystem not allowed");
797 else
798 warnfc(fc, "reusing existing filesystem in another namespace not allowed");
799 return ERR_PTR(-EBUSY);
800 }
801 if (!grab_super(old))
802 goto retry;
803 destroy_unused_super(s);
804 return old;
805 }
806 EXPORT_SYMBOL(sget_fc);
807
808 /**
809 * sget - find or create a superblock
810 * @type: filesystem type superblock should belong to
811 * @test: comparison callback
812 * @set: setup callback
813 * @flags: mount flags
814 * @data: argument to each of them
815 */
sget(struct file_system_type * type,int (* test)(struct super_block *,void *),int (* set)(struct super_block *,void *),int flags,void * data)816 struct super_block *sget(struct file_system_type *type,
817 int (*test)(struct super_block *,void *),
818 int (*set)(struct super_block *,void *),
819 int flags,
820 void *data)
821 {
822 struct user_namespace *user_ns = current_user_ns();
823 struct super_block *s = NULL;
824 struct super_block *old;
825 int err;
826
827 retry:
828 spin_lock(&sb_lock);
829 if (test) {
830 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
831 if (!test(old, data))
832 continue;
833 if (user_ns != old->s_user_ns) {
834 spin_unlock(&sb_lock);
835 destroy_unused_super(s);
836 return ERR_PTR(-EBUSY);
837 }
838 if (!grab_super(old))
839 goto retry;
840 destroy_unused_super(s);
841 return old;
842 }
843 }
844 if (!s) {
845 spin_unlock(&sb_lock);
846 s = alloc_super(type, flags, user_ns);
847 if (!s)
848 return ERR_PTR(-ENOMEM);
849 goto retry;
850 }
851
852 err = set(s, data);
853 if (err) {
854 spin_unlock(&sb_lock);
855 destroy_unused_super(s);
856 return ERR_PTR(err);
857 }
858 s->s_type = type;
859 strscpy(s->s_id, type->name, sizeof(s->s_id));
860 list_add_tail(&s->s_list, &super_blocks);
861 hlist_add_head(&s->s_instances, &type->fs_supers);
862 spin_unlock(&sb_lock);
863 get_filesystem(type);
864 shrinker_register(s->s_shrink);
865 return s;
866 }
867 EXPORT_SYMBOL(sget);
868
drop_super(struct super_block * sb)869 void drop_super(struct super_block *sb)
870 {
871 super_unlock_shared(sb);
872 put_super(sb);
873 }
874
875 EXPORT_SYMBOL(drop_super);
876
drop_super_exclusive(struct super_block * sb)877 void drop_super_exclusive(struct super_block *sb)
878 {
879 super_unlock_excl(sb);
880 put_super(sb);
881 }
882 EXPORT_SYMBOL(drop_super_exclusive);
883
884 enum super_iter_flags_t {
885 SUPER_ITER_EXCL = (1U << 0),
886 SUPER_ITER_UNLOCKED = (1U << 1),
887 SUPER_ITER_REVERSE = (1U << 2),
888 };
889
first_super(enum super_iter_flags_t flags)890 static inline struct super_block *first_super(enum super_iter_flags_t flags)
891 {
892 if (flags & SUPER_ITER_REVERSE)
893 return list_last_entry(&super_blocks, struct super_block, s_list);
894 return list_first_entry(&super_blocks, struct super_block, s_list);
895 }
896
next_super(struct super_block * sb,enum super_iter_flags_t flags)897 static inline struct super_block *next_super(struct super_block *sb,
898 enum super_iter_flags_t flags)
899 {
900 if (flags & SUPER_ITER_REVERSE)
901 return list_prev_entry(sb, s_list);
902 return list_next_entry(sb, s_list);
903 }
904
__iterate_supers(void (* f)(struct super_block *,void *),void * arg,enum super_iter_flags_t flags)905 static void __iterate_supers(void (*f)(struct super_block *, void *), void *arg,
906 enum super_iter_flags_t flags)
907 {
908 struct super_block *sb, *p = NULL;
909 bool excl = flags & SUPER_ITER_EXCL;
910
911 guard(spinlock)(&sb_lock);
912
913 for (sb = first_super(flags);
914 !list_entry_is_head(sb, &super_blocks, s_list);
915 sb = next_super(sb, flags)) {
916 if (super_flags(sb, SB_DYING))
917 continue;
918 sb->s_count++;
919 spin_unlock(&sb_lock);
920
921 if (flags & SUPER_ITER_UNLOCKED) {
922 f(sb, arg);
923 } else if (super_lock(sb, excl)) {
924 f(sb, arg);
925 super_unlock(sb, excl);
926 }
927
928 spin_lock(&sb_lock);
929 if (p)
930 __put_super(p);
931 p = sb;
932 }
933 if (p)
934 __put_super(p);
935 }
936
iterate_supers(void (* f)(struct super_block *,void *),void * arg)937 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
938 {
939 __iterate_supers(f, arg, 0);
940 }
941
942 /**
943 * iterate_supers_type - call function for superblocks of given type
944 * @type: fs type
945 * @f: function to call
946 * @arg: argument to pass to it
947 *
948 * Scans the superblock list and calls given function, passing it
949 * locked superblock and given argument.
950 */
iterate_supers_type(struct file_system_type * type,void (* f)(struct super_block *,void *),void * arg)951 void iterate_supers_type(struct file_system_type *type,
952 void (*f)(struct super_block *, void *), void *arg)
953 {
954 struct super_block *sb, *p = NULL;
955
956 spin_lock(&sb_lock);
957 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
958 bool locked;
959
960 if (super_flags(sb, SB_DYING))
961 continue;
962
963 sb->s_count++;
964 spin_unlock(&sb_lock);
965
966 locked = super_lock_shared(sb);
967 if (locked) {
968 f(sb, arg);
969 super_unlock_shared(sb);
970 }
971
972 spin_lock(&sb_lock);
973 if (p)
974 __put_super(p);
975 p = sb;
976 }
977 if (p)
978 __put_super(p);
979 spin_unlock(&sb_lock);
980 }
981
982 EXPORT_SYMBOL(iterate_supers_type);
983
user_get_super(dev_t dev,bool excl)984 struct super_block *user_get_super(dev_t dev, bool excl)
985 {
986 struct super_block *sb;
987
988 spin_lock(&sb_lock);
989 list_for_each_entry(sb, &super_blocks, s_list) {
990 bool locked;
991
992 if (sb->s_dev != dev)
993 continue;
994
995 sb->s_count++;
996 spin_unlock(&sb_lock);
997
998 locked = super_lock(sb, excl);
999 if (locked)
1000 return sb;
1001
1002 spin_lock(&sb_lock);
1003 __put_super(sb);
1004 break;
1005 }
1006 spin_unlock(&sb_lock);
1007 return NULL;
1008 }
1009
1010 /**
1011 * reconfigure_super - asks filesystem to change superblock parameters
1012 * @fc: The superblock and configuration
1013 *
1014 * Alters the configuration parameters of a live superblock.
1015 */
reconfigure_super(struct fs_context * fc)1016 int reconfigure_super(struct fs_context *fc)
1017 {
1018 struct super_block *sb = fc->root->d_sb;
1019 int retval;
1020 bool remount_ro = false;
1021 bool remount_rw = false;
1022 bool force = fc->sb_flags & SB_FORCE;
1023
1024 if (fc->sb_flags_mask & ~MS_RMT_MASK)
1025 return -EINVAL;
1026 if (sb->s_writers.frozen != SB_UNFROZEN)
1027 return -EBUSY;
1028
1029 retval = security_sb_remount(sb, fc->security);
1030 if (retval)
1031 return retval;
1032
1033 if (fc->sb_flags_mask & SB_RDONLY) {
1034 #ifdef CONFIG_BLOCK
1035 if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
1036 bdev_read_only(sb->s_bdev))
1037 return -EACCES;
1038 #endif
1039 remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
1040 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
1041 }
1042
1043 if (remount_ro) {
1044 if (!hlist_empty(&sb->s_pins)) {
1045 super_unlock_excl(sb);
1046 group_pin_kill(&sb->s_pins);
1047 __super_lock_excl(sb);
1048 if (!sb->s_root)
1049 return 0;
1050 if (sb->s_writers.frozen != SB_UNFROZEN)
1051 return -EBUSY;
1052 remount_ro = !sb_rdonly(sb);
1053 }
1054 }
1055 shrink_dcache_sb(sb);
1056
1057 /* If we are reconfiguring to RDONLY and current sb is read/write,
1058 * make sure there are no files open for writing.
1059 */
1060 if (remount_ro) {
1061 if (force) {
1062 sb_start_ro_state_change(sb);
1063 } else {
1064 retval = sb_prepare_remount_readonly(sb);
1065 if (retval)
1066 return retval;
1067 }
1068 } else if (remount_rw) {
1069 /*
1070 * Protect filesystem's reconfigure code from writes from
1071 * userspace until reconfigure finishes.
1072 */
1073 sb_start_ro_state_change(sb);
1074 }
1075
1076 if (fc->ops->reconfigure) {
1077 retval = fc->ops->reconfigure(fc);
1078 if (retval) {
1079 if (!force)
1080 goto cancel_readonly;
1081 /* If forced remount, go ahead despite any errors */
1082 WARN(1, "forced remount of a %s fs returned %i\n",
1083 sb->s_type->name, retval);
1084 }
1085 }
1086
1087 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
1088 (fc->sb_flags & fc->sb_flags_mask)));
1089 sb_end_ro_state_change(sb);
1090
1091 /*
1092 * Some filesystems modify their metadata via some other path than the
1093 * bdev buffer cache (eg. use a private mapping, or directories in
1094 * pagecache, etc). Also file data modifications go via their own
1095 * mappings. So If we try to mount readonly then copy the filesystem
1096 * from bdev, we could get stale data, so invalidate it to give a best
1097 * effort at coherency.
1098 */
1099 if (remount_ro && sb->s_bdev)
1100 invalidate_bdev(sb->s_bdev);
1101 return 0;
1102
1103 cancel_readonly:
1104 sb_end_ro_state_change(sb);
1105 return retval;
1106 }
1107
do_emergency_remount_callback(struct super_block * sb,void * unused)1108 static void do_emergency_remount_callback(struct super_block *sb, void *unused)
1109 {
1110 if (sb->s_bdev && !sb_rdonly(sb)) {
1111 struct fs_context *fc;
1112
1113 fc = fs_context_for_reconfigure(sb->s_root,
1114 SB_RDONLY | SB_FORCE, SB_RDONLY);
1115 if (!IS_ERR(fc)) {
1116 if (parse_monolithic_mount_data(fc, NULL) == 0)
1117 (void)reconfigure_super(fc);
1118 put_fs_context(fc);
1119 }
1120 }
1121 }
1122
do_emergency_remount(struct work_struct * work)1123 static void do_emergency_remount(struct work_struct *work)
1124 {
1125 __iterate_supers(do_emergency_remount_callback, NULL,
1126 SUPER_ITER_EXCL | SUPER_ITER_REVERSE);
1127 kfree(work);
1128 printk("Emergency Remount complete\n");
1129 }
1130
emergency_remount(void)1131 void emergency_remount(void)
1132 {
1133 struct work_struct *work;
1134
1135 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1136 if (work) {
1137 INIT_WORK(work, do_emergency_remount);
1138 schedule_work(work);
1139 }
1140 }
1141
do_thaw_all_callback(struct super_block * sb,void * unused)1142 static void do_thaw_all_callback(struct super_block *sb, void *unused)
1143 {
1144 if (IS_ENABLED(CONFIG_BLOCK))
1145 while (sb->s_bdev && !bdev_thaw(sb->s_bdev))
1146 pr_warn("Emergency Thaw on %pg\n", sb->s_bdev);
1147 thaw_super_locked(sb, FREEZE_HOLDER_USERSPACE, NULL);
1148 return;
1149 }
1150
do_thaw_all(struct work_struct * work)1151 static void do_thaw_all(struct work_struct *work)
1152 {
1153 __iterate_supers(do_thaw_all_callback, NULL, SUPER_ITER_EXCL);
1154 kfree(work);
1155 printk(KERN_WARNING "Emergency Thaw complete\n");
1156 }
1157
1158 /**
1159 * emergency_thaw_all -- forcibly thaw every frozen filesystem
1160 *
1161 * Used for emergency unfreeze of all filesystems via SysRq
1162 */
emergency_thaw_all(void)1163 void emergency_thaw_all(void)
1164 {
1165 struct work_struct *work;
1166
1167 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1168 if (work) {
1169 INIT_WORK(work, do_thaw_all);
1170 schedule_work(work);
1171 }
1172 }
1173
get_active_super(struct super_block * sb)1174 static inline bool get_active_super(struct super_block *sb)
1175 {
1176 bool active = false;
1177
1178 if (super_lock_excl(sb)) {
1179 active = atomic_inc_not_zero(&sb->s_active);
1180 super_unlock_excl(sb);
1181 }
1182 return active;
1183 }
1184
1185 static const char *filesystems_freeze_ptr = "filesystems_freeze";
1186
filesystems_freeze_callback(struct super_block * sb,void * freeze_all_ptr)1187 static void filesystems_freeze_callback(struct super_block *sb, void *freeze_all_ptr)
1188 {
1189 if (!sb->s_op->freeze_fs && !sb->s_op->freeze_super)
1190 return;
1191
1192 if (!freeze_all_ptr && !(sb->s_type->fs_flags & FS_POWER_FREEZE))
1193 return;
1194
1195 if (!get_active_super(sb))
1196 return;
1197
1198 if (sb->s_op->freeze_super)
1199 sb->s_op->freeze_super(sb, FREEZE_EXCL | FREEZE_HOLDER_KERNEL,
1200 filesystems_freeze_ptr);
1201 else
1202 freeze_super(sb, FREEZE_EXCL | FREEZE_HOLDER_KERNEL,
1203 filesystems_freeze_ptr);
1204
1205 deactivate_super(sb);
1206 }
1207
filesystems_freeze(bool freeze_all)1208 void filesystems_freeze(bool freeze_all)
1209 {
1210 void *freeze_all_ptr = NULL;
1211
1212 if (freeze_all)
1213 freeze_all_ptr = &freeze_all;
1214 __iterate_supers(filesystems_freeze_callback, freeze_all_ptr,
1215 SUPER_ITER_UNLOCKED | SUPER_ITER_REVERSE);
1216 }
1217
filesystems_thaw_callback(struct super_block * sb,void * unused)1218 static void filesystems_thaw_callback(struct super_block *sb, void *unused)
1219 {
1220 if (!sb->s_op->freeze_fs && !sb->s_op->freeze_super)
1221 return;
1222
1223 if (!get_active_super(sb))
1224 return;
1225
1226 if (sb->s_op->thaw_super)
1227 sb->s_op->thaw_super(sb, FREEZE_EXCL | FREEZE_HOLDER_KERNEL,
1228 filesystems_freeze_ptr);
1229 else
1230 thaw_super(sb, FREEZE_EXCL | FREEZE_HOLDER_KERNEL,
1231 filesystems_freeze_ptr);
1232
1233 deactivate_super(sb);
1234 }
1235
filesystems_thaw(void)1236 void filesystems_thaw(void)
1237 {
1238 __iterate_supers(filesystems_thaw_callback, NULL, SUPER_ITER_UNLOCKED);
1239 }
1240
1241 static DEFINE_IDA(unnamed_dev_ida);
1242
1243 /**
1244 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1245 * @p: Pointer to a dev_t.
1246 *
1247 * Filesystems which don't use real block devices can call this function
1248 * to allocate a virtual block device.
1249 *
1250 * Context: Any context. Frequently called while holding sb_lock.
1251 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1252 * or -ENOMEM if memory allocation failed.
1253 */
get_anon_bdev(dev_t * p)1254 int get_anon_bdev(dev_t *p)
1255 {
1256 int dev;
1257
1258 /*
1259 * Many userspace utilities consider an FSID of 0 invalid.
1260 * Always return at least 1 from get_anon_bdev.
1261 */
1262 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1263 GFP_ATOMIC);
1264 if (dev == -ENOSPC)
1265 dev = -EMFILE;
1266 if (dev < 0)
1267 return dev;
1268
1269 *p = MKDEV(0, dev);
1270 return 0;
1271 }
1272 EXPORT_SYMBOL(get_anon_bdev);
1273
free_anon_bdev(dev_t dev)1274 void free_anon_bdev(dev_t dev)
1275 {
1276 ida_free(&unnamed_dev_ida, MINOR(dev));
1277 }
1278 EXPORT_SYMBOL(free_anon_bdev);
1279
set_anon_super(struct super_block * s,void * data)1280 int set_anon_super(struct super_block *s, void *data)
1281 {
1282 return get_anon_bdev(&s->s_dev);
1283 }
1284 EXPORT_SYMBOL(set_anon_super);
1285
kill_anon_super(struct super_block * sb)1286 void kill_anon_super(struct super_block *sb)
1287 {
1288 dev_t dev = sb->s_dev;
1289 generic_shutdown_super(sb);
1290 kill_super_notify(sb);
1291 free_anon_bdev(dev);
1292 }
1293 EXPORT_SYMBOL(kill_anon_super);
1294
set_anon_super_fc(struct super_block * sb,struct fs_context * fc)1295 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1296 {
1297 return set_anon_super(sb, NULL);
1298 }
1299 EXPORT_SYMBOL(set_anon_super_fc);
1300
test_keyed_super(struct super_block * sb,struct fs_context * fc)1301 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1302 {
1303 return sb->s_fs_info == fc->s_fs_info;
1304 }
1305
test_single_super(struct super_block * s,struct fs_context * fc)1306 static int test_single_super(struct super_block *s, struct fs_context *fc)
1307 {
1308 return 1;
1309 }
1310
vfs_get_super(struct fs_context * fc,int (* test)(struct super_block *,struct fs_context *),int (* fill_super)(struct super_block * sb,struct fs_context * fc))1311 static int vfs_get_super(struct fs_context *fc,
1312 int (*test)(struct super_block *, struct fs_context *),
1313 int (*fill_super)(struct super_block *sb,
1314 struct fs_context *fc))
1315 {
1316 struct super_block *sb;
1317 int err;
1318
1319 sb = sget_fc(fc, test, set_anon_super_fc);
1320 if (IS_ERR(sb))
1321 return PTR_ERR(sb);
1322
1323 if (!sb->s_root) {
1324 err = fill_super(sb, fc);
1325 if (err)
1326 goto error;
1327
1328 sb->s_flags |= SB_ACTIVE;
1329 }
1330
1331 fc->root = dget(sb->s_root);
1332 return 0;
1333
1334 error:
1335 deactivate_locked_super(sb);
1336 return err;
1337 }
1338
get_tree_nodev(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1339 int get_tree_nodev(struct fs_context *fc,
1340 int (*fill_super)(struct super_block *sb,
1341 struct fs_context *fc))
1342 {
1343 return vfs_get_super(fc, NULL, fill_super);
1344 }
1345 EXPORT_SYMBOL(get_tree_nodev);
1346
get_tree_single(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1347 int get_tree_single(struct fs_context *fc,
1348 int (*fill_super)(struct super_block *sb,
1349 struct fs_context *fc))
1350 {
1351 return vfs_get_super(fc, test_single_super, fill_super);
1352 }
1353 EXPORT_SYMBOL(get_tree_single);
1354
get_tree_keyed(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc),void * key)1355 int get_tree_keyed(struct fs_context *fc,
1356 int (*fill_super)(struct super_block *sb,
1357 struct fs_context *fc),
1358 void *key)
1359 {
1360 fc->s_fs_info = key;
1361 return vfs_get_super(fc, test_keyed_super, fill_super);
1362 }
1363 EXPORT_SYMBOL(get_tree_keyed);
1364
set_bdev_super(struct super_block * s,void * data)1365 static int set_bdev_super(struct super_block *s, void *data)
1366 {
1367 s->s_dev = *(dev_t *)data;
1368 return 0;
1369 }
1370
super_s_dev_set(struct super_block * s,struct fs_context * fc)1371 static int super_s_dev_set(struct super_block *s, struct fs_context *fc)
1372 {
1373 return set_bdev_super(s, fc->sget_key);
1374 }
1375
super_s_dev_test(struct super_block * s,struct fs_context * fc)1376 static int super_s_dev_test(struct super_block *s, struct fs_context *fc)
1377 {
1378 return !(s->s_iflags & SB_I_RETIRED) &&
1379 s->s_dev == *(dev_t *)fc->sget_key;
1380 }
1381
1382 /**
1383 * sget_dev - Find or create a superblock by device number
1384 * @fc: Filesystem context.
1385 * @dev: device number
1386 *
1387 * Find or create a superblock using the provided device number that
1388 * will be stored in fc->sget_key.
1389 *
1390 * If an extant superblock is matched, then that will be returned with
1391 * an elevated reference count that the caller must transfer or discard.
1392 *
1393 * If no match is made, a new superblock will be allocated and basic
1394 * initialisation will be performed (s_type, s_fs_info, s_id, s_dev will
1395 * be set). The superblock will be published and it will be returned in
1396 * a partially constructed state with SB_BORN and SB_ACTIVE as yet
1397 * unset.
1398 *
1399 * Return: an existing or newly created superblock on success, an error
1400 * pointer on failure.
1401 */
sget_dev(struct fs_context * fc,dev_t dev)1402 struct super_block *sget_dev(struct fs_context *fc, dev_t dev)
1403 {
1404 fc->sget_key = &dev;
1405 return sget_fc(fc, super_s_dev_test, super_s_dev_set);
1406 }
1407 EXPORT_SYMBOL(sget_dev);
1408
1409 #ifdef CONFIG_BLOCK
1410 /*
1411 * Lock the superblock that is holder of the bdev. Returns the superblock
1412 * pointer if we successfully locked the superblock and it is alive. Otherwise
1413 * we return NULL and just unlock bdev->bd_holder_lock.
1414 *
1415 * The function must be called with bdev->bd_holder_lock and releases it.
1416 */
bdev_super_lock(struct block_device * bdev,bool excl)1417 static struct super_block *bdev_super_lock(struct block_device *bdev, bool excl)
1418 __releases(&bdev->bd_holder_lock)
1419 {
1420 struct super_block *sb = bdev->bd_holder;
1421 bool locked;
1422
1423 lockdep_assert_held(&bdev->bd_holder_lock);
1424 lockdep_assert_not_held(&sb->s_umount);
1425 lockdep_assert_not_held(&bdev->bd_disk->open_mutex);
1426
1427 /* Make sure sb doesn't go away from under us */
1428 spin_lock(&sb_lock);
1429 sb->s_count++;
1430 spin_unlock(&sb_lock);
1431
1432 mutex_unlock(&bdev->bd_holder_lock);
1433
1434 locked = super_lock(sb, excl);
1435
1436 /*
1437 * If the superblock wasn't already SB_DYING then we hold
1438 * s_umount and can safely drop our temporary reference.
1439 */
1440 put_super(sb);
1441
1442 if (!locked)
1443 return NULL;
1444
1445 if (!sb->s_root || !(sb->s_flags & SB_ACTIVE)) {
1446 super_unlock(sb, excl);
1447 return NULL;
1448 }
1449
1450 return sb;
1451 }
1452
fs_bdev_mark_dead(struct block_device * bdev,bool surprise)1453 static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise)
1454 {
1455 struct super_block *sb;
1456
1457 sb = bdev_super_lock(bdev, false);
1458 if (!sb)
1459 return;
1460
1461 if (sb->s_op->remove_bdev) {
1462 int ret;
1463
1464 ret = sb->s_op->remove_bdev(sb, bdev);
1465 if (!ret) {
1466 super_unlock_shared(sb);
1467 return;
1468 }
1469 /* Fallback to shutdown. */
1470 }
1471
1472 if (!surprise)
1473 sync_filesystem(sb);
1474 shrink_dcache_sb(sb);
1475 evict_inodes(sb);
1476 if (sb->s_op->shutdown)
1477 sb->s_op->shutdown(sb);
1478
1479 super_unlock_shared(sb);
1480 }
1481
fs_bdev_sync(struct block_device * bdev)1482 static void fs_bdev_sync(struct block_device *bdev)
1483 {
1484 struct super_block *sb;
1485
1486 sb = bdev_super_lock(bdev, false);
1487 if (!sb)
1488 return;
1489
1490 sync_filesystem(sb);
1491 super_unlock_shared(sb);
1492 }
1493
get_bdev_super(struct block_device * bdev)1494 static struct super_block *get_bdev_super(struct block_device *bdev)
1495 {
1496 bool active = false;
1497 struct super_block *sb;
1498
1499 sb = bdev_super_lock(bdev, true);
1500 if (sb) {
1501 active = atomic_inc_not_zero(&sb->s_active);
1502 super_unlock_excl(sb);
1503 }
1504 if (!active)
1505 return NULL;
1506 return sb;
1507 }
1508
1509 /**
1510 * fs_bdev_freeze - freeze owning filesystem of block device
1511 * @bdev: block device
1512 *
1513 * Freeze the filesystem that owns this block device if it is still
1514 * active.
1515 *
1516 * A filesystem that owns multiple block devices may be frozen from each
1517 * block device and won't be unfrozen until all block devices are
1518 * unfrozen. Each block device can only freeze the filesystem once as we
1519 * nest freezes for block devices in the block layer.
1520 *
1521 * Return: If the freeze was successful zero is returned. If the freeze
1522 * failed a negative error code is returned.
1523 */
fs_bdev_freeze(struct block_device * bdev)1524 static int fs_bdev_freeze(struct block_device *bdev)
1525 {
1526 struct super_block *sb;
1527 int error = 0;
1528
1529 lockdep_assert_held(&bdev->bd_fsfreeze_mutex);
1530
1531 sb = get_bdev_super(bdev);
1532 if (!sb)
1533 return -EINVAL;
1534
1535 if (sb->s_op->freeze_super)
1536 error = sb->s_op->freeze_super(sb,
1537 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE, NULL);
1538 else
1539 error = freeze_super(sb,
1540 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE, NULL);
1541 if (!error)
1542 error = sync_blockdev(bdev);
1543 deactivate_super(sb);
1544 return error;
1545 }
1546
1547 /**
1548 * fs_bdev_thaw - thaw owning filesystem of block device
1549 * @bdev: block device
1550 *
1551 * Thaw the filesystem that owns this block device.
1552 *
1553 * A filesystem that owns multiple block devices may be frozen from each
1554 * block device and won't be unfrozen until all block devices are
1555 * unfrozen. Each block device can only freeze the filesystem once as we
1556 * nest freezes for block devices in the block layer.
1557 *
1558 * Return: If the thaw was successful zero is returned. If the thaw
1559 * failed a negative error code is returned. If this function
1560 * returns zero it doesn't mean that the filesystem is unfrozen
1561 * as it may have been frozen multiple times (kernel may hold a
1562 * freeze or might be frozen from other block devices).
1563 */
fs_bdev_thaw(struct block_device * bdev)1564 static int fs_bdev_thaw(struct block_device *bdev)
1565 {
1566 struct super_block *sb;
1567 int error;
1568
1569 lockdep_assert_held(&bdev->bd_fsfreeze_mutex);
1570
1571 /*
1572 * The block device may have been frozen before it was claimed by a
1573 * filesystem. Concurrently another process might try to mount that
1574 * frozen block device and has temporarily claimed the block device for
1575 * that purpose causing a concurrent fs_bdev_thaw() to end up here. The
1576 * mounter is already about to abort mounting because they still saw an
1577 * elevanted bdev->bd_fsfreeze_count so get_bdev_super() will return
1578 * NULL in that case.
1579 */
1580 sb = get_bdev_super(bdev);
1581 if (!sb)
1582 return -EINVAL;
1583
1584 if (sb->s_op->thaw_super)
1585 error = sb->s_op->thaw_super(sb,
1586 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE, NULL);
1587 else
1588 error = thaw_super(sb,
1589 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE, NULL);
1590 deactivate_super(sb);
1591 return error;
1592 }
1593
1594 const struct blk_holder_ops fs_holder_ops = {
1595 .mark_dead = fs_bdev_mark_dead,
1596 .sync = fs_bdev_sync,
1597 .freeze = fs_bdev_freeze,
1598 .thaw = fs_bdev_thaw,
1599 };
1600 EXPORT_SYMBOL_GPL(fs_holder_ops);
1601
setup_bdev_super(struct super_block * sb,int sb_flags,struct fs_context * fc)1602 int setup_bdev_super(struct super_block *sb, int sb_flags,
1603 struct fs_context *fc)
1604 {
1605 blk_mode_t mode = sb_open_mode(sb_flags);
1606 struct file *bdev_file;
1607 struct block_device *bdev;
1608
1609 bdev_file = bdev_file_open_by_dev(sb->s_dev, mode, sb, &fs_holder_ops);
1610 if (IS_ERR(bdev_file)) {
1611 if (fc)
1612 errorf(fc, "%s: Can't open blockdev", fc->source);
1613 return PTR_ERR(bdev_file);
1614 }
1615 bdev = file_bdev(bdev_file);
1616
1617 /*
1618 * This really should be in blkdev_get_by_dev, but right now can't due
1619 * to legacy issues that require us to allow opening a block device node
1620 * writable from userspace even for a read-only block device.
1621 */
1622 if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) {
1623 bdev_fput(bdev_file);
1624 return -EACCES;
1625 }
1626
1627 /*
1628 * It is enough to check bdev was not frozen before we set
1629 * s_bdev as freezing will wait until SB_BORN is set.
1630 */
1631 if (atomic_read(&bdev->bd_fsfreeze_count) > 0) {
1632 if (fc)
1633 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1634 bdev_fput(bdev_file);
1635 return -EBUSY;
1636 }
1637 spin_lock(&sb_lock);
1638 sb->s_bdev_file = bdev_file;
1639 sb->s_bdev = bdev;
1640 sb->s_bdi = bdi_get(bdev->bd_disk->bdi);
1641 if (bdev_stable_writes(bdev))
1642 sb->s_iflags |= SB_I_STABLE_WRITES;
1643 spin_unlock(&sb_lock);
1644
1645 snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1646 shrinker_debugfs_rename(sb->s_shrink, "sb-%s:%s", sb->s_type->name,
1647 sb->s_id);
1648 sb_set_blocksize(sb, block_size(bdev));
1649 return 0;
1650 }
1651 EXPORT_SYMBOL_GPL(setup_bdev_super);
1652
1653 /**
1654 * get_tree_bdev_flags - Get a superblock based on a single block device
1655 * @fc: The filesystem context holding the parameters
1656 * @fill_super: Helper to initialise a new superblock
1657 * @flags: GET_TREE_BDEV_* flags
1658 */
get_tree_bdev_flags(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc),unsigned int flags)1659 int get_tree_bdev_flags(struct fs_context *fc,
1660 int (*fill_super)(struct super_block *sb,
1661 struct fs_context *fc), unsigned int flags)
1662 {
1663 struct super_block *s;
1664 int error = 0;
1665 dev_t dev;
1666
1667 if (!fc->source)
1668 return invalf(fc, "No source specified");
1669
1670 error = lookup_bdev(fc->source, &dev);
1671 if (error) {
1672 if (!(flags & GET_TREE_BDEV_QUIET_LOOKUP))
1673 errorf(fc, "%s: Can't lookup blockdev", fc->source);
1674 return error;
1675 }
1676 fc->sb_flags |= SB_NOSEC;
1677 s = sget_dev(fc, dev);
1678 if (IS_ERR(s))
1679 return PTR_ERR(s);
1680
1681 if (s->s_root) {
1682 /* Don't summarily change the RO/RW state. */
1683 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1684 warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev);
1685 deactivate_locked_super(s);
1686 return -EBUSY;
1687 }
1688 } else {
1689 error = setup_bdev_super(s, fc->sb_flags, fc);
1690 if (!error)
1691 error = fill_super(s, fc);
1692 if (error) {
1693 deactivate_locked_super(s);
1694 return error;
1695 }
1696 s->s_flags |= SB_ACTIVE;
1697 }
1698
1699 BUG_ON(fc->root);
1700 fc->root = dget(s->s_root);
1701 return 0;
1702 }
1703 EXPORT_SYMBOL_GPL(get_tree_bdev_flags);
1704
1705 /**
1706 * get_tree_bdev - Get a superblock based on a single block device
1707 * @fc: The filesystem context holding the parameters
1708 * @fill_super: Helper to initialise a new superblock
1709 */
get_tree_bdev(struct fs_context * fc,int (* fill_super)(struct super_block *,struct fs_context *))1710 int get_tree_bdev(struct fs_context *fc,
1711 int (*fill_super)(struct super_block *,
1712 struct fs_context *))
1713 {
1714 return get_tree_bdev_flags(fc, fill_super, 0);
1715 }
1716 EXPORT_SYMBOL(get_tree_bdev);
1717
kill_block_super(struct super_block * sb)1718 void kill_block_super(struct super_block *sb)
1719 {
1720 struct block_device *bdev = sb->s_bdev;
1721
1722 generic_shutdown_super(sb);
1723 if (bdev) {
1724 sync_blockdev(bdev);
1725 bdev_fput(sb->s_bdev_file);
1726 }
1727 }
1728
1729 EXPORT_SYMBOL(kill_block_super);
1730 #endif
1731
1732 /**
1733 * vfs_get_tree - Get the mountable root
1734 * @fc: The superblock configuration context.
1735 *
1736 * The filesystem is invoked to get or create a superblock which can then later
1737 * be used for mounting. The filesystem places a pointer to the root to be
1738 * used for mounting in @fc->root.
1739 */
vfs_get_tree(struct fs_context * fc)1740 int vfs_get_tree(struct fs_context *fc)
1741 {
1742 struct super_block *sb;
1743 int error;
1744
1745 if (fc->root)
1746 return -EBUSY;
1747
1748 /* Get the mountable root in fc->root, with a ref on the root and a ref
1749 * on the superblock.
1750 */
1751 error = fc->ops->get_tree(fc);
1752 if (error < 0)
1753 return error;
1754
1755 if (!fc->root) {
1756 pr_err("Filesystem %s get_tree() didn't set fc->root, returned %i\n",
1757 fc->fs_type->name, error);
1758 /* We don't know what the locking state of the superblock is -
1759 * if there is a superblock.
1760 */
1761 BUG();
1762 }
1763
1764 sb = fc->root->d_sb;
1765 WARN_ON(!sb->s_bdi);
1766
1767 /*
1768 * super_wake() contains a memory barrier which also care of
1769 * ordering for super_cache_count(). We place it before setting
1770 * SB_BORN as the data dependency between the two functions is
1771 * the superblock structure contents that we just set up, not
1772 * the SB_BORN flag.
1773 */
1774 super_wake(sb, SB_BORN);
1775
1776 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1777 if (unlikely(error)) {
1778 fc_drop_locked(fc);
1779 return error;
1780 }
1781
1782 /*
1783 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1784 * but s_maxbytes was an unsigned long long for many releases. Throw
1785 * this warning for a little while to try and catch filesystems that
1786 * violate this rule.
1787 */
1788 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1789 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1790
1791 return 0;
1792 }
1793 EXPORT_SYMBOL(vfs_get_tree);
1794
1795 /*
1796 * Setup private BDI for given superblock. It gets automatically cleaned up
1797 * in generic_shutdown_super().
1798 */
super_setup_bdi_name(struct super_block * sb,char * fmt,...)1799 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1800 {
1801 struct backing_dev_info *bdi;
1802 int err;
1803 va_list args;
1804
1805 bdi = bdi_alloc(NUMA_NO_NODE);
1806 if (!bdi)
1807 return -ENOMEM;
1808
1809 va_start(args, fmt);
1810 err = bdi_register_va(bdi, fmt, args);
1811 va_end(args);
1812 if (err) {
1813 bdi_put(bdi);
1814 return err;
1815 }
1816 WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1817 sb->s_bdi = bdi;
1818 sb->s_iflags |= SB_I_PERSB_BDI;
1819
1820 return 0;
1821 }
1822 EXPORT_SYMBOL(super_setup_bdi_name);
1823
1824 /*
1825 * Setup private BDI for given superblock. I gets automatically cleaned up
1826 * in generic_shutdown_super().
1827 */
super_setup_bdi(struct super_block * sb)1828 int super_setup_bdi(struct super_block *sb)
1829 {
1830 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1831
1832 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1833 atomic_long_inc_return(&bdi_seq));
1834 }
1835 EXPORT_SYMBOL(super_setup_bdi);
1836
1837 /**
1838 * sb_wait_write - wait until all writers to given file system finish
1839 * @sb: the super for which we wait
1840 * @level: type of writers we wait for (normal vs page fault)
1841 *
1842 * This function waits until there are no writers of given type to given file
1843 * system.
1844 */
sb_wait_write(struct super_block * sb,int level)1845 static void sb_wait_write(struct super_block *sb, int level)
1846 {
1847 percpu_down_write(sb->s_writers.rw_sem + level-1);
1848 }
1849
1850 /*
1851 * We are going to return to userspace and forget about these locks, the
1852 * ownership goes to the caller of thaw_super() which does unlock().
1853 */
lockdep_sb_freeze_release(struct super_block * sb)1854 static void lockdep_sb_freeze_release(struct super_block *sb)
1855 {
1856 int level;
1857
1858 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1859 percpu_rwsem_release(sb->s_writers.rw_sem + level, _THIS_IP_);
1860 }
1861
1862 /*
1863 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1864 */
lockdep_sb_freeze_acquire(struct super_block * sb)1865 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1866 {
1867 int level;
1868
1869 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1870 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1871 }
1872
sb_freeze_unlock(struct super_block * sb,int level)1873 static void sb_freeze_unlock(struct super_block *sb, int level)
1874 {
1875 for (level--; level >= 0; level--)
1876 percpu_up_write(sb->s_writers.rw_sem + level);
1877 }
1878
wait_for_partially_frozen(struct super_block * sb)1879 static int wait_for_partially_frozen(struct super_block *sb)
1880 {
1881 int ret = 0;
1882
1883 do {
1884 unsigned short old = sb->s_writers.frozen;
1885
1886 up_write(&sb->s_umount);
1887 ret = wait_var_event_killable(&sb->s_writers.frozen,
1888 sb->s_writers.frozen != old);
1889 down_write(&sb->s_umount);
1890 } while (ret == 0 &&
1891 sb->s_writers.frozen != SB_UNFROZEN &&
1892 sb->s_writers.frozen != SB_FREEZE_COMPLETE);
1893
1894 return ret;
1895 }
1896
1897 #define FREEZE_HOLDERS (FREEZE_HOLDER_KERNEL | FREEZE_HOLDER_USERSPACE)
1898 #define FREEZE_FLAGS (FREEZE_HOLDERS | FREEZE_MAY_NEST | FREEZE_EXCL)
1899
freeze_inc(struct super_block * sb,enum freeze_holder who)1900 static inline int freeze_inc(struct super_block *sb, enum freeze_holder who)
1901 {
1902 WARN_ON_ONCE((who & ~FREEZE_FLAGS));
1903 WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
1904
1905 if (who & FREEZE_HOLDER_KERNEL)
1906 ++sb->s_writers.freeze_kcount;
1907 if (who & FREEZE_HOLDER_USERSPACE)
1908 ++sb->s_writers.freeze_ucount;
1909 return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount;
1910 }
1911
freeze_dec(struct super_block * sb,enum freeze_holder who)1912 static inline int freeze_dec(struct super_block *sb, enum freeze_holder who)
1913 {
1914 WARN_ON_ONCE((who & ~FREEZE_FLAGS));
1915 WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
1916
1917 if ((who & FREEZE_HOLDER_KERNEL) && sb->s_writers.freeze_kcount)
1918 --sb->s_writers.freeze_kcount;
1919 if ((who & FREEZE_HOLDER_USERSPACE) && sb->s_writers.freeze_ucount)
1920 --sb->s_writers.freeze_ucount;
1921 return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount;
1922 }
1923
may_freeze(struct super_block * sb,enum freeze_holder who,const void * freeze_owner)1924 static inline bool may_freeze(struct super_block *sb, enum freeze_holder who,
1925 const void *freeze_owner)
1926 {
1927 lockdep_assert_held(&sb->s_umount);
1928
1929 WARN_ON_ONCE((who & ~FREEZE_FLAGS));
1930 WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
1931
1932 if (who & FREEZE_EXCL) {
1933 if (WARN_ON_ONCE(!(who & FREEZE_HOLDER_KERNEL)))
1934 return false;
1935 if (WARN_ON_ONCE(who & ~(FREEZE_EXCL | FREEZE_HOLDER_KERNEL)))
1936 return false;
1937 if (WARN_ON_ONCE(!freeze_owner))
1938 return false;
1939 /* This freeze already has a specific owner. */
1940 if (sb->s_writers.freeze_owner)
1941 return false;
1942 /*
1943 * This is already frozen multiple times so we're just
1944 * going to take a reference count and mark the freeze as
1945 * being owned by the caller.
1946 */
1947 if (sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount)
1948 sb->s_writers.freeze_owner = freeze_owner;
1949 return true;
1950 }
1951
1952 if (who & FREEZE_HOLDER_KERNEL)
1953 return (who & FREEZE_MAY_NEST) ||
1954 sb->s_writers.freeze_kcount == 0;
1955 if (who & FREEZE_HOLDER_USERSPACE)
1956 return (who & FREEZE_MAY_NEST) ||
1957 sb->s_writers.freeze_ucount == 0;
1958 return false;
1959 }
1960
may_unfreeze(struct super_block * sb,enum freeze_holder who,const void * freeze_owner)1961 static inline bool may_unfreeze(struct super_block *sb, enum freeze_holder who,
1962 const void *freeze_owner)
1963 {
1964 lockdep_assert_held(&sb->s_umount);
1965
1966 WARN_ON_ONCE((who & ~FREEZE_FLAGS));
1967 WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
1968
1969 if (who & FREEZE_EXCL) {
1970 if (WARN_ON_ONCE(!(who & FREEZE_HOLDER_KERNEL)))
1971 return false;
1972 if (WARN_ON_ONCE(who & ~(FREEZE_EXCL | FREEZE_HOLDER_KERNEL)))
1973 return false;
1974 if (WARN_ON_ONCE(!freeze_owner))
1975 return false;
1976 if (WARN_ON_ONCE(sb->s_writers.freeze_kcount == 0))
1977 return false;
1978 /* This isn't exclusively frozen. */
1979 if (!sb->s_writers.freeze_owner)
1980 return false;
1981 /* This isn't exclusively frozen by us. */
1982 if (sb->s_writers.freeze_owner != freeze_owner)
1983 return false;
1984 /*
1985 * This is still frozen multiple times so we're just
1986 * going to drop our reference count and undo our
1987 * exclusive freeze.
1988 */
1989 if ((sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount) > 1)
1990 sb->s_writers.freeze_owner = NULL;
1991 return true;
1992 }
1993
1994 if (who & FREEZE_HOLDER_KERNEL) {
1995 /*
1996 * Someone's trying to steal the reference belonging to
1997 * @sb->s_writers.freeze_owner.
1998 */
1999 if (sb->s_writers.freeze_kcount == 1 &&
2000 sb->s_writers.freeze_owner)
2001 return false;
2002 return sb->s_writers.freeze_kcount > 0;
2003 }
2004
2005 if (who & FREEZE_HOLDER_USERSPACE)
2006 return sb->s_writers.freeze_ucount > 0;
2007
2008 return false;
2009 }
2010
2011 /**
2012 * freeze_super - lock the filesystem and force it into a consistent state
2013 * @sb: the super to lock
2014 * @who: context that wants to freeze
2015 * @freeze_owner: owner of the freeze
2016 *
2017 * Syncs the super to make sure the filesystem is consistent and calls the fs's
2018 * freeze_fs. Subsequent calls to this without first thawing the fs may return
2019 * -EBUSY.
2020 *
2021 * @who should be:
2022 * * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs;
2023 * * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs.
2024 * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed.
2025 *
2026 * The @who argument distinguishes between the kernel and userspace trying to
2027 * freeze the filesystem. Although there cannot be multiple kernel freezes or
2028 * multiple userspace freezes in effect at any given time, the kernel and
2029 * userspace can both hold a filesystem frozen. The filesystem remains frozen
2030 * until there are no kernel or userspace freezes in effect.
2031 *
2032 * A filesystem may hold multiple devices and thus a filesystems may be
2033 * frozen through the block layer via multiple block devices. In this
2034 * case the request is marked as being allowed to nest by passing
2035 * FREEZE_MAY_NEST. The filesystem remains frozen until all block
2036 * devices are unfrozen. If multiple freezes are attempted without
2037 * FREEZE_MAY_NEST -EBUSY will be returned.
2038 *
2039 * During this function, sb->s_writers.frozen goes through these values:
2040 *
2041 * SB_UNFROZEN: File system is normal, all writes progress as usual.
2042 *
2043 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
2044 * writes should be blocked, though page faults are still allowed. We wait for
2045 * all writes to complete and then proceed to the next stage.
2046 *
2047 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
2048 * but internal fs threads can still modify the filesystem (although they
2049 * should not dirty new pages or inodes), writeback can run etc. After waiting
2050 * for all running page faults we sync the filesystem which will clean all
2051 * dirty pages and inodes (no new dirty pages or inodes can be created when
2052 * sync is running).
2053 *
2054 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
2055 * modification are blocked (e.g. XFS preallocation truncation on inode
2056 * reclaim). This is usually implemented by blocking new transactions for
2057 * filesystems that have them and need this additional guard. After all
2058 * internal writers are finished we call ->freeze_fs() to finish filesystem
2059 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
2060 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
2061 *
2062 * sb->s_writers.frozen is protected by sb->s_umount.
2063 *
2064 * Return: If the freeze was successful zero is returned. If the freeze
2065 * failed a negative error code is returned.
2066 */
freeze_super(struct super_block * sb,enum freeze_holder who,const void * freeze_owner)2067 int freeze_super(struct super_block *sb, enum freeze_holder who, const void *freeze_owner)
2068 {
2069 int ret;
2070
2071 if (!super_lock_excl(sb)) {
2072 WARN_ON_ONCE("Dying superblock while freezing!");
2073 return -EINVAL;
2074 }
2075 atomic_inc(&sb->s_active);
2076
2077 retry:
2078 if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) {
2079 if (may_freeze(sb, who, freeze_owner))
2080 ret = !!WARN_ON_ONCE(freeze_inc(sb, who) == 1);
2081 else
2082 ret = -EBUSY;
2083 /* All freezers share a single active reference. */
2084 deactivate_locked_super(sb);
2085 return ret;
2086 }
2087
2088 if (sb->s_writers.frozen != SB_UNFROZEN) {
2089 ret = wait_for_partially_frozen(sb);
2090 if (ret) {
2091 deactivate_locked_super(sb);
2092 return ret;
2093 }
2094
2095 goto retry;
2096 }
2097
2098 if (sb_rdonly(sb)) {
2099 /* Nothing to do really... */
2100 WARN_ON_ONCE(freeze_inc(sb, who) > 1);
2101 sb->s_writers.freeze_owner = freeze_owner;
2102 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
2103 wake_up_var(&sb->s_writers.frozen);
2104 super_unlock_excl(sb);
2105 return 0;
2106 }
2107
2108 sb->s_writers.frozen = SB_FREEZE_WRITE;
2109 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
2110 super_unlock_excl(sb);
2111 sb_wait_write(sb, SB_FREEZE_WRITE);
2112 __super_lock_excl(sb);
2113
2114 /* Now we go and block page faults... */
2115 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
2116 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
2117
2118 /* All writers are done so after syncing there won't be dirty data */
2119 ret = sync_filesystem(sb);
2120 if (ret) {
2121 sb->s_writers.frozen = SB_UNFROZEN;
2122 sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
2123 wake_up_var(&sb->s_writers.frozen);
2124 deactivate_locked_super(sb);
2125 return ret;
2126 }
2127
2128 /* Now wait for internal filesystem counter */
2129 sb->s_writers.frozen = SB_FREEZE_FS;
2130 sb_wait_write(sb, SB_FREEZE_FS);
2131
2132 if (sb->s_op->freeze_fs) {
2133 ret = sb->s_op->freeze_fs(sb);
2134 if (ret) {
2135 printk(KERN_ERR
2136 "VFS:Filesystem freeze failed\n");
2137 sb->s_writers.frozen = SB_UNFROZEN;
2138 sb_freeze_unlock(sb, SB_FREEZE_FS);
2139 wake_up_var(&sb->s_writers.frozen);
2140 deactivate_locked_super(sb);
2141 return ret;
2142 }
2143 }
2144 /*
2145 * For debugging purposes so that fs can warn if it sees write activity
2146 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
2147 */
2148 WARN_ON_ONCE(freeze_inc(sb, who) > 1);
2149 sb->s_writers.freeze_owner = freeze_owner;
2150 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
2151 wake_up_var(&sb->s_writers.frozen);
2152 lockdep_sb_freeze_release(sb);
2153 super_unlock_excl(sb);
2154 return 0;
2155 }
2156 EXPORT_SYMBOL(freeze_super);
2157
2158 /*
2159 * Undoes the effect of a freeze_super_locked call. If the filesystem is
2160 * frozen both by userspace and the kernel, a thaw call from either source
2161 * removes that state without releasing the other state or unlocking the
2162 * filesystem.
2163 */
thaw_super_locked(struct super_block * sb,enum freeze_holder who,const void * freeze_owner)2164 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who,
2165 const void *freeze_owner)
2166 {
2167 int error = -EINVAL;
2168
2169 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE)
2170 goto out_unlock;
2171
2172 if (!may_unfreeze(sb, who, freeze_owner))
2173 goto out_unlock;
2174
2175 /*
2176 * All freezers share a single active reference.
2177 * So just unlock in case there are any left.
2178 */
2179 if (freeze_dec(sb, who))
2180 goto out_unlock;
2181
2182 if (sb_rdonly(sb)) {
2183 sb->s_writers.frozen = SB_UNFROZEN;
2184 sb->s_writers.freeze_owner = NULL;
2185 wake_up_var(&sb->s_writers.frozen);
2186 goto out_deactivate;
2187 }
2188
2189 lockdep_sb_freeze_acquire(sb);
2190
2191 if (sb->s_op->unfreeze_fs) {
2192 error = sb->s_op->unfreeze_fs(sb);
2193 if (error) {
2194 pr_err("VFS: Filesystem thaw failed\n");
2195 freeze_inc(sb, who);
2196 lockdep_sb_freeze_release(sb);
2197 goto out_unlock;
2198 }
2199 }
2200
2201 sb->s_writers.frozen = SB_UNFROZEN;
2202 sb->s_writers.freeze_owner = NULL;
2203 wake_up_var(&sb->s_writers.frozen);
2204 sb_freeze_unlock(sb, SB_FREEZE_FS);
2205 out_deactivate:
2206 deactivate_locked_super(sb);
2207 return 0;
2208
2209 out_unlock:
2210 super_unlock_excl(sb);
2211 return error;
2212 }
2213
2214 /**
2215 * thaw_super -- unlock filesystem
2216 * @sb: the super to thaw
2217 * @who: context that wants to freeze
2218 * @freeze_owner: owner of the freeze
2219 *
2220 * Unlocks the filesystem and marks it writeable again after freeze_super()
2221 * if there are no remaining freezes on the filesystem.
2222 *
2223 * @who should be:
2224 * * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs;
2225 * * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs.
2226 * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed
2227 *
2228 * A filesystem may hold multiple devices and thus a filesystems may
2229 * have been frozen through the block layer via multiple block devices.
2230 * The filesystem remains frozen until all block devices are unfrozen.
2231 */
thaw_super(struct super_block * sb,enum freeze_holder who,const void * freeze_owner)2232 int thaw_super(struct super_block *sb, enum freeze_holder who,
2233 const void *freeze_owner)
2234 {
2235 if (!super_lock_excl(sb)) {
2236 WARN_ON_ONCE("Dying superblock while thawing!");
2237 return -EINVAL;
2238 }
2239 return thaw_super_locked(sb, who, freeze_owner);
2240 }
2241 EXPORT_SYMBOL(thaw_super);
2242
2243 /*
2244 * Create workqueue for deferred direct IO completions. We allocate the
2245 * workqueue when it's first needed. This avoids creating workqueue for
2246 * filesystems that don't need it and also allows us to create the workqueue
2247 * late enough so the we can include s_id in the name of the workqueue.
2248 */
sb_init_dio_done_wq(struct super_block * sb)2249 int sb_init_dio_done_wq(struct super_block *sb)
2250 {
2251 struct workqueue_struct *old;
2252 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
2253 WQ_MEM_RECLAIM | WQ_PERCPU,
2254 0,
2255 sb->s_id);
2256 if (!wq)
2257 return -ENOMEM;
2258
2259 old = NULL;
2260 /*
2261 * This has to be atomic as more DIOs can race to create the workqueue
2262 */
2263 if (!try_cmpxchg(&sb->s_dio_done_wq, &old, wq)) {
2264 /* Someone created workqueue before us? Free ours... */
2265 destroy_workqueue(wq);
2266 }
2267 return 0;
2268 }
2269 EXPORT_SYMBOL_GPL(sb_init_dio_done_wq);
2270