1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2016-present, Facebook, Inc. 4 * All rights reserved. 5 * 6 */ 7 8 #include <linux/bio.h> 9 #include <linux/bitmap.h> 10 #include <linux/err.h> 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/mm.h> 14 #include <linux/sched/mm.h> 15 #include <linux/pagemap.h> 16 #include <linux/refcount.h> 17 #include <linux/sched.h> 18 #include <linux/slab.h> 19 #include <linux/zstd.h> 20 #include "misc.h" 21 #include "fs.h" 22 #include "btrfs_inode.h" 23 #include "compression.h" 24 #include "super.h" 25 26 #define ZSTD_BTRFS_MAX_WINDOWLOG 17 27 #define ZSTD_BTRFS_MAX_INPUT (1U << ZSTD_BTRFS_MAX_WINDOWLOG) 28 #define ZSTD_BTRFS_DEFAULT_LEVEL 3 29 #define ZSTD_BTRFS_MIN_LEVEL -15 30 #define ZSTD_BTRFS_MAX_LEVEL 15 31 /* 307s to avoid pathologically clashing with transaction commit */ 32 #define ZSTD_BTRFS_RECLAIM_JIFFIES (307 * HZ) 33 34 static zstd_parameters zstd_get_btrfs_parameters(int level, 35 size_t src_len) 36 { 37 zstd_parameters params = zstd_get_params(level, src_len); 38 39 if (params.cParams.windowLog > ZSTD_BTRFS_MAX_WINDOWLOG) 40 params.cParams.windowLog = ZSTD_BTRFS_MAX_WINDOWLOG; 41 WARN_ON(src_len > ZSTD_BTRFS_MAX_INPUT); 42 return params; 43 } 44 45 struct workspace { 46 void *mem; 47 size_t size; 48 char *buf; 49 int level; 50 int req_level; 51 unsigned long last_used; /* jiffies */ 52 struct list_head list; 53 struct list_head lru_list; 54 zstd_in_buffer in_buf; 55 zstd_out_buffer out_buf; 56 zstd_parameters params; 57 }; 58 59 /* 60 * Zstd Workspace Management 61 * 62 * Zstd workspaces have different memory requirements depending on the level. 63 * The zstd workspaces are managed by having individual lists for each level 64 * and a global lru. Forward progress is maintained by protecting a max level 65 * workspace. 66 * 67 * Getting a workspace is done by using the bitmap to identify the levels that 68 * have available workspaces and scans up. This lets us recycle higher level 69 * workspaces because of the monotonic memory guarantee. A workspace's 70 * last_used is only updated if it is being used by the corresponding memory 71 * level. Putting a workspace involves adding it back to the appropriate places 72 * and adding it back to the lru if necessary. 73 * 74 * A timer is used to reclaim workspaces if they have not been used for 75 * ZSTD_BTRFS_RECLAIM_JIFFIES. This helps keep only active workspaces around. 76 * The upper bound is provided by the workqueue limit which is 2 (percpu limit). 77 */ 78 79 struct zstd_workspace_manager { 80 spinlock_t lock; 81 struct list_head lru_list; 82 struct list_head idle_ws[ZSTD_BTRFS_MAX_LEVEL]; 83 unsigned long active_map; 84 wait_queue_head_t wait; 85 struct timer_list timer; 86 }; 87 88 static size_t zstd_ws_mem_sizes[ZSTD_BTRFS_MAX_LEVEL]; 89 90 static inline struct workspace *list_to_workspace(struct list_head *list) 91 { 92 return container_of(list, struct workspace, list); 93 } 94 95 static inline int clip_level(int level) 96 { 97 return max(0, level - 1); 98 } 99 100 /* 101 * Timer callback to free unused workspaces. 102 * 103 * @t: timer 104 * 105 * This scans the lru_list and attempts to reclaim any workspace that hasn't 106 * been used for ZSTD_BTRFS_RECLAIM_JIFFIES. 107 * 108 * The context is softirq and does not need the _bh locking primitives. 109 */ 110 static void zstd_reclaim_timer_fn(struct timer_list *timer) 111 { 112 struct zstd_workspace_manager *zwsm = 113 container_of(timer, struct zstd_workspace_manager, timer); 114 unsigned long reclaim_threshold = jiffies - ZSTD_BTRFS_RECLAIM_JIFFIES; 115 struct list_head *pos, *next; 116 117 spin_lock(&zwsm->lock); 118 119 if (list_empty(&zwsm->lru_list)) { 120 spin_unlock(&zwsm->lock); 121 return; 122 } 123 124 list_for_each_prev_safe(pos, next, &zwsm->lru_list) { 125 struct workspace *victim = container_of(pos, struct workspace, 126 lru_list); 127 int level; 128 129 if (time_after(victim->last_used, reclaim_threshold)) 130 break; 131 132 /* workspace is in use */ 133 if (victim->req_level) 134 continue; 135 136 level = victim->level; 137 list_del(&victim->lru_list); 138 list_del(&victim->list); 139 zstd_free_workspace(&victim->list); 140 141 if (list_empty(&zwsm->idle_ws[level])) 142 clear_bit(level, &zwsm->active_map); 143 144 } 145 146 if (!list_empty(&zwsm->lru_list)) 147 mod_timer(&zwsm->timer, jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES); 148 149 spin_unlock(&zwsm->lock); 150 } 151 152 /* 153 * Calculate monotonic memory bounds. 154 * 155 * It is possible based on the level configurations that a higher level 156 * workspace uses less memory than a lower level workspace. In order to reuse 157 * workspaces, this must be made a monotonic relationship. This precomputes 158 * the required memory for each level and enforces the monotonicity between 159 * level and memory required. 160 */ 161 static void zstd_calc_ws_mem_sizes(void) 162 { 163 size_t max_size = 0; 164 int level; 165 166 for (level = ZSTD_BTRFS_MIN_LEVEL; level <= ZSTD_BTRFS_MAX_LEVEL; level++) { 167 if (level == 0) 168 continue; 169 zstd_parameters params = 170 zstd_get_btrfs_parameters(level, ZSTD_BTRFS_MAX_INPUT); 171 size_t level_size = 172 max_t(size_t, 173 zstd_cstream_workspace_bound(¶ms.cParams), 174 zstd_dstream_workspace_bound(ZSTD_BTRFS_MAX_INPUT)); 175 176 max_size = max_t(size_t, max_size, level_size); 177 /* Use level 1 workspace size for all the fast mode negative levels. */ 178 zstd_ws_mem_sizes[clip_level(level)] = max_size; 179 } 180 } 181 182 int zstd_alloc_workspace_manager(struct btrfs_fs_info *fs_info) 183 { 184 struct zstd_workspace_manager *zwsm; 185 struct list_head *ws; 186 187 ASSERT(fs_info->compr_wsm[BTRFS_COMPRESS_ZSTD] == NULL); 188 zwsm = kzalloc(sizeof(*zwsm), GFP_KERNEL); 189 if (!zwsm) 190 return -ENOMEM; 191 zstd_calc_ws_mem_sizes(); 192 spin_lock_init(&zwsm->lock); 193 init_waitqueue_head(&zwsm->wait); 194 timer_setup(&zwsm->timer, zstd_reclaim_timer_fn, 0); 195 196 INIT_LIST_HEAD(&zwsm->lru_list); 197 for (int i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++) 198 INIT_LIST_HEAD(&zwsm->idle_ws[i]); 199 fs_info->compr_wsm[BTRFS_COMPRESS_ZSTD] = zwsm; 200 201 ws = zstd_alloc_workspace(fs_info, ZSTD_BTRFS_MAX_LEVEL); 202 if (IS_ERR(ws)) { 203 btrfs_warn(NULL, "cannot preallocate zstd compression workspace"); 204 } else { 205 set_bit(ZSTD_BTRFS_MAX_LEVEL - 1, &zwsm->active_map); 206 list_add(ws, &zwsm->idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1]); 207 } 208 return 0; 209 } 210 211 void zstd_free_workspace_manager(struct btrfs_fs_info *fs_info) 212 { 213 struct zstd_workspace_manager *zwsm = fs_info->compr_wsm[BTRFS_COMPRESS_ZSTD]; 214 struct workspace *workspace; 215 216 if (!zwsm) 217 return; 218 fs_info->compr_wsm[BTRFS_COMPRESS_ZSTD] = NULL; 219 spin_lock_bh(&zwsm->lock); 220 for (int i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++) { 221 while (!list_empty(&zwsm->idle_ws[i])) { 222 workspace = container_of(zwsm->idle_ws[i].next, 223 struct workspace, list); 224 list_del(&workspace->list); 225 list_del(&workspace->lru_list); 226 zstd_free_workspace(&workspace->list); 227 } 228 } 229 spin_unlock_bh(&zwsm->lock); 230 timer_delete_sync(&zwsm->timer); 231 kfree(zwsm); 232 } 233 234 /* 235 * Find workspace for given level. 236 * 237 * @level: compression level 238 * 239 * This iterates over the set bits in the active_map beginning at the requested 240 * compression level. This lets us utilize already allocated workspaces before 241 * allocating a new one. If the workspace is of a larger size, it is used, but 242 * the place in the lru_list and last_used times are not updated. This is to 243 * offer the opportunity to reclaim the workspace in favor of allocating an 244 * appropriately sized one in the future. 245 */ 246 static struct list_head *zstd_find_workspace(struct btrfs_fs_info *fs_info, int level) 247 { 248 struct zstd_workspace_manager *zwsm = fs_info->compr_wsm[BTRFS_COMPRESS_ZSTD]; 249 struct list_head *ws; 250 struct workspace *workspace; 251 int i = clip_level(level); 252 253 ASSERT(zwsm); 254 spin_lock_bh(&zwsm->lock); 255 for_each_set_bit_from(i, &zwsm->active_map, ZSTD_BTRFS_MAX_LEVEL) { 256 if (!list_empty(&zwsm->idle_ws[i])) { 257 ws = zwsm->idle_ws[i].next; 258 workspace = list_to_workspace(ws); 259 list_del_init(ws); 260 /* keep its place if it's a lower level using this */ 261 workspace->req_level = level; 262 if (clip_level(level) == workspace->level) 263 list_del(&workspace->lru_list); 264 if (list_empty(&zwsm->idle_ws[i])) 265 clear_bit(i, &zwsm->active_map); 266 spin_unlock_bh(&zwsm->lock); 267 return ws; 268 } 269 } 270 spin_unlock_bh(&zwsm->lock); 271 272 return NULL; 273 } 274 275 /* 276 * Zstd get_workspace for level. 277 * 278 * @level: compression level 279 * 280 * If @level is 0, then any compression level can be used. Therefore, we begin 281 * scanning from 1. We first scan through possible workspaces and then after 282 * attempt to allocate a new workspace. If we fail to allocate one due to 283 * memory pressure, go to sleep waiting for the max level workspace to free up. 284 */ 285 struct list_head *zstd_get_workspace(struct btrfs_fs_info *fs_info, int level) 286 { 287 struct zstd_workspace_manager *zwsm = fs_info->compr_wsm[BTRFS_COMPRESS_ZSTD]; 288 struct list_head *ws; 289 unsigned int nofs_flag; 290 291 ASSERT(zwsm); 292 293 /* level == 0 means we can use any workspace */ 294 if (!level) 295 level = 1; 296 297 again: 298 ws = zstd_find_workspace(fs_info, level); 299 if (ws) 300 return ws; 301 302 nofs_flag = memalloc_nofs_save(); 303 ws = zstd_alloc_workspace(fs_info, level); 304 memalloc_nofs_restore(nofs_flag); 305 306 if (IS_ERR(ws)) { 307 DEFINE_WAIT(wait); 308 309 prepare_to_wait(&zwsm->wait, &wait, TASK_UNINTERRUPTIBLE); 310 schedule(); 311 finish_wait(&zwsm->wait, &wait); 312 313 goto again; 314 } 315 316 return ws; 317 } 318 319 /* 320 * Zstd put_workspace. 321 * 322 * @ws: list_head for the workspace 323 * 324 * When putting back a workspace, we only need to update the LRU if we are of 325 * the requested compression level. Here is where we continue to protect the 326 * max level workspace or update last_used accordingly. If the reclaim timer 327 * isn't set, it is also set here. Only the max level workspace tries and wakes 328 * up waiting workspaces. 329 */ 330 void zstd_put_workspace(struct btrfs_fs_info *fs_info, struct list_head *ws) 331 { 332 struct zstd_workspace_manager *zwsm = fs_info->compr_wsm[BTRFS_COMPRESS_ZSTD]; 333 struct workspace *workspace = list_to_workspace(ws); 334 335 ASSERT(zwsm); 336 spin_lock_bh(&zwsm->lock); 337 338 /* A node is only taken off the lru if we are the corresponding level */ 339 if (clip_level(workspace->req_level) == workspace->level) { 340 /* Hide a max level workspace from reclaim */ 341 if (list_empty(&zwsm->idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1])) { 342 INIT_LIST_HEAD(&workspace->lru_list); 343 } else { 344 workspace->last_used = jiffies; 345 list_add(&workspace->lru_list, &zwsm->lru_list); 346 if (!timer_pending(&zwsm->timer)) 347 mod_timer(&zwsm->timer, 348 jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES); 349 } 350 } 351 352 set_bit(workspace->level, &zwsm->active_map); 353 list_add(&workspace->list, &zwsm->idle_ws[workspace->level]); 354 workspace->req_level = 0; 355 356 spin_unlock_bh(&zwsm->lock); 357 358 if (workspace->level == clip_level(ZSTD_BTRFS_MAX_LEVEL)) 359 cond_wake_up(&zwsm->wait); 360 } 361 362 void zstd_free_workspace(struct list_head *ws) 363 { 364 struct workspace *workspace = list_entry(ws, struct workspace, list); 365 366 kvfree(workspace->mem); 367 kfree(workspace->buf); 368 kfree(workspace); 369 } 370 371 struct list_head *zstd_alloc_workspace(struct btrfs_fs_info *fs_info, int level) 372 { 373 const u32 blocksize = fs_info->sectorsize; 374 struct workspace *workspace; 375 376 workspace = kzalloc(sizeof(*workspace), GFP_KERNEL); 377 if (!workspace) 378 return ERR_PTR(-ENOMEM); 379 380 /* Use level 1 workspace size for all the fast mode negative levels. */ 381 workspace->size = zstd_ws_mem_sizes[clip_level(level)]; 382 workspace->level = clip_level(level); 383 workspace->req_level = level; 384 workspace->last_used = jiffies; 385 workspace->mem = kvmalloc(workspace->size, GFP_KERNEL | __GFP_NOWARN); 386 workspace->buf = kmalloc(blocksize, GFP_KERNEL); 387 if (!workspace->mem || !workspace->buf) 388 goto fail; 389 390 INIT_LIST_HEAD(&workspace->list); 391 INIT_LIST_HEAD(&workspace->lru_list); 392 393 return &workspace->list; 394 fail: 395 zstd_free_workspace(&workspace->list); 396 return ERR_PTR(-ENOMEM); 397 } 398 399 int zstd_compress_bio(struct list_head *ws, struct compressed_bio *cb) 400 { 401 struct btrfs_inode *inode = cb->bbio.inode; 402 struct btrfs_fs_info *fs_info = inode->root->fs_info; 403 struct workspace *workspace = list_entry(ws, struct workspace, list); 404 struct address_space *mapping = inode->vfs_inode.i_mapping; 405 struct bio *bio = &cb->bbio.bio; 406 zstd_cstream *stream; 407 int ret = 0; 408 /* The current folio to read. */ 409 struct folio *in_folio = NULL; 410 /* The current folio to write to. */ 411 struct folio *out_folio = NULL; 412 unsigned long tot_in = 0; 413 unsigned long tot_out = 0; 414 const u64 start = cb->start; 415 const u32 len = cb->len; 416 const u64 end = start + len; 417 const u32 blocksize = fs_info->sectorsize; 418 const u32 min_folio_size = btrfs_min_folio_size(fs_info); 419 420 workspace->params = zstd_get_btrfs_parameters(workspace->req_level, len); 421 422 /* Initialize the stream. */ 423 stream = zstd_init_cstream(&workspace->params, len, workspace->mem, workspace->size); 424 if (unlikely(!stream)) { 425 btrfs_err(fs_info, 426 "zstd compression init level %d failed, root %llu inode %llu offset %llu", 427 workspace->req_level, btrfs_root_id(inode->root), 428 btrfs_ino(inode), start); 429 ret = -EIO; 430 goto out; 431 } 432 433 /* Map in the first page of input data. */ 434 ret = btrfs_compress_filemap_get_folio(mapping, start, &in_folio); 435 if (ret < 0) 436 goto out; 437 workspace->in_buf.src = kmap_local_folio(in_folio, offset_in_folio(in_folio, start)); 438 workspace->in_buf.pos = 0; 439 workspace->in_buf.size = btrfs_calc_input_length(in_folio, end, start); 440 441 /* Allocate and map in the output buffer. */ 442 out_folio = btrfs_alloc_compr_folio(fs_info); 443 if (out_folio == NULL) { 444 ret = -ENOMEM; 445 goto out; 446 } 447 workspace->out_buf.dst = folio_address(out_folio); 448 workspace->out_buf.pos = 0; 449 workspace->out_buf.size = min_folio_size; 450 451 while (1) { 452 size_t ret2; 453 454 ret2 = zstd_compress_stream(stream, &workspace->out_buf, &workspace->in_buf); 455 if (unlikely(zstd_is_error(ret2))) { 456 btrfs_warn(fs_info, 457 "zstd compression level %d failed, error %d root %llu inode %llu offset %llu", 458 workspace->req_level, zstd_get_error_code(ret2), 459 btrfs_root_id(inode->root), btrfs_ino(inode), 460 start + tot_in); 461 ret = -EIO; 462 goto out; 463 } 464 465 /* Check to see if we are making it bigger. */ 466 if (tot_in + workspace->in_buf.pos > blocksize * 2 && 467 tot_in + workspace->in_buf.pos < tot_out + workspace->out_buf.pos) { 468 ret = -E2BIG; 469 goto out; 470 } 471 472 /* Check if we need more output space. */ 473 if (workspace->out_buf.pos >= workspace->out_buf.size) { 474 tot_out += min_folio_size; 475 if (tot_out >= len) { 476 ret = -E2BIG; 477 goto out; 478 } 479 /* Queue the current foliot into the bio. */ 480 if (!bio_add_folio(bio, out_folio, folio_size(out_folio), 0)) { 481 ret = -E2BIG; 482 goto out; 483 } 484 485 out_folio = btrfs_alloc_compr_folio(fs_info); 486 if (out_folio == NULL) { 487 ret = -ENOMEM; 488 goto out; 489 } 490 workspace->out_buf.dst = folio_address(out_folio); 491 workspace->out_buf.pos = 0; 492 workspace->out_buf.size = min_folio_size; 493 } 494 495 /* We've reached the end of the input. */ 496 if (tot_in + workspace->in_buf.pos >= len) { 497 tot_in += workspace->in_buf.pos; 498 break; 499 } 500 501 /* Check if we need more input. */ 502 if (workspace->in_buf.pos >= workspace->in_buf.size) { 503 u64 cur; 504 505 tot_in += workspace->in_buf.size; 506 cur = start + tot_in; 507 508 kunmap_local(workspace->in_buf.src); 509 workspace->in_buf.src = NULL; 510 folio_put(in_folio); 511 512 ret = btrfs_compress_filemap_get_folio(mapping, cur, &in_folio); 513 if (ret < 0) 514 goto out; 515 workspace->in_buf.src = kmap_local_folio(in_folio, 516 offset_in_folio(in_folio, cur)); 517 workspace->in_buf.pos = 0; 518 workspace->in_buf.size = btrfs_calc_input_length(in_folio, end, cur); 519 } 520 } 521 522 while (1) { 523 size_t ret2; 524 525 ret2 = zstd_end_stream(stream, &workspace->out_buf); 526 if (unlikely(zstd_is_error(ret2))) { 527 btrfs_err(fs_info, 528 "zstd compression end level %d failed, error %d root %llu inode %llu offset %llu", 529 workspace->req_level, zstd_get_error_code(ret2), 530 btrfs_root_id(inode->root), btrfs_ino(inode), 531 start + tot_in); 532 ret = -EIO; 533 goto out; 534 } 535 /* Queue the remaining part of the output folio into bio. */ 536 if (ret2 == 0) { 537 tot_out += workspace->out_buf.pos; 538 if (tot_out >= len) { 539 ret = -E2BIG; 540 goto out; 541 } 542 if (!bio_add_folio(bio, out_folio, workspace->out_buf.pos, 0)) { 543 ret = -E2BIG; 544 goto out; 545 } 546 out_folio = NULL; 547 break; 548 } 549 tot_out += min_folio_size; 550 if (tot_out >= len) { 551 ret = -E2BIG; 552 goto out; 553 } 554 if (!bio_add_folio(bio, out_folio, folio_size(out_folio), 0)) { 555 ret = -E2BIG; 556 goto out; 557 } 558 out_folio = btrfs_alloc_compr_folio(fs_info); 559 if (out_folio == NULL) { 560 ret = -ENOMEM; 561 goto out; 562 } 563 workspace->out_buf.dst = folio_address(out_folio); 564 workspace->out_buf.pos = 0; 565 workspace->out_buf.size = min_folio_size; 566 } 567 568 if (tot_out >= tot_in) { 569 ret = -E2BIG; 570 goto out; 571 } 572 573 ret = 0; 574 ASSERT(tot_out == bio->bi_iter.bi_size); 575 out: 576 if (out_folio) 577 btrfs_free_compr_folio(out_folio); 578 if (workspace->in_buf.src) { 579 kunmap_local(workspace->in_buf.src); 580 folio_put(in_folio); 581 } 582 return ret; 583 } 584 585 int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb) 586 { 587 struct btrfs_fs_info *fs_info = cb_to_fs_info(cb); 588 struct workspace *workspace = list_entry(ws, struct workspace, list); 589 struct folio_iter fi; 590 size_t srclen = cb->compressed_len; 591 zstd_dstream *stream; 592 int ret = 0; 593 const u32 blocksize = fs_info->sectorsize; 594 const unsigned int min_folio_size = btrfs_min_folio_size(fs_info); 595 unsigned long folio_in_index = 0; 596 unsigned long total_folios_in = DIV_ROUND_UP(srclen, min_folio_size); 597 unsigned long buf_start; 598 unsigned long total_out = 0; 599 600 bio_first_folio(&fi, &cb->bbio.bio, 0); 601 if (unlikely(!fi.folio)) 602 return -EINVAL; 603 ASSERT(folio_size(fi.folio) == blocksize); 604 605 stream = zstd_init_dstream( 606 ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size); 607 if (unlikely(!stream)) { 608 struct btrfs_inode *inode = cb->bbio.inode; 609 610 btrfs_err(inode->root->fs_info, 611 "zstd decompression init failed, root %llu inode %llu offset %llu", 612 btrfs_root_id(inode->root), btrfs_ino(inode), cb->start); 613 ret = -EIO; 614 goto done; 615 } 616 617 workspace->in_buf.src = kmap_local_folio(fi.folio, 0); 618 workspace->in_buf.pos = 0; 619 workspace->in_buf.size = min_t(size_t, srclen, min_folio_size); 620 621 workspace->out_buf.dst = workspace->buf; 622 workspace->out_buf.pos = 0; 623 workspace->out_buf.size = blocksize; 624 625 while (1) { 626 size_t ret2; 627 628 ret2 = zstd_decompress_stream(stream, &workspace->out_buf, 629 &workspace->in_buf); 630 if (unlikely(zstd_is_error(ret2))) { 631 struct btrfs_inode *inode = cb->bbio.inode; 632 633 btrfs_err(inode->root->fs_info, 634 "zstd decompression failed, error %d root %llu inode %llu offset %llu", 635 zstd_get_error_code(ret2), btrfs_root_id(inode->root), 636 btrfs_ino(inode), cb->start); 637 ret = -EIO; 638 goto done; 639 } 640 buf_start = total_out; 641 total_out += workspace->out_buf.pos; 642 workspace->out_buf.pos = 0; 643 644 ret = btrfs_decompress_buf2page(workspace->out_buf.dst, 645 total_out - buf_start, cb, buf_start); 646 if (ret == 0) 647 break; 648 649 if (workspace->in_buf.pos >= srclen) 650 break; 651 652 /* Check if we've hit the end of a frame */ 653 if (ret2 == 0) 654 break; 655 656 if (workspace->in_buf.pos == workspace->in_buf.size) { 657 kunmap_local(workspace->in_buf.src); 658 folio_in_index++; 659 if (unlikely(folio_in_index >= total_folios_in)) { 660 workspace->in_buf.src = NULL; 661 ret = -EIO; 662 goto done; 663 } 664 srclen -= min_folio_size; 665 bio_next_folio(&fi, &cb->bbio.bio); 666 ASSERT(fi.folio); 667 workspace->in_buf.src = kmap_local_folio(fi.folio, 0); 668 workspace->in_buf.pos = 0; 669 workspace->in_buf.size = min_t(size_t, srclen, min_folio_size); 670 } 671 } 672 ret = 0; 673 done: 674 if (workspace->in_buf.src) 675 kunmap_local(workspace->in_buf.src); 676 return ret; 677 } 678 679 int zstd_decompress(struct list_head *ws, const u8 *data_in, 680 struct folio *dest_folio, unsigned long dest_pgoff, size_t srclen, 681 size_t destlen) 682 { 683 struct workspace *workspace = list_entry(ws, struct workspace, list); 684 struct btrfs_fs_info *fs_info = btrfs_sb(folio_inode(dest_folio)->i_sb); 685 const u32 sectorsize = fs_info->sectorsize; 686 zstd_dstream *stream; 687 int ret = 0; 688 unsigned long to_copy = 0; 689 690 stream = zstd_init_dstream( 691 ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size); 692 if (unlikely(!stream)) { 693 struct btrfs_inode *inode = folio_to_inode(dest_folio); 694 695 btrfs_err(inode->root->fs_info, 696 "zstd decompression init failed, root %llu inode %llu offset %llu", 697 btrfs_root_id(inode->root), btrfs_ino(inode), 698 folio_pos(dest_folio)); 699 ret = -EIO; 700 goto finish; 701 } 702 703 workspace->in_buf.src = data_in; 704 workspace->in_buf.pos = 0; 705 workspace->in_buf.size = srclen; 706 707 workspace->out_buf.dst = workspace->buf; 708 workspace->out_buf.pos = 0; 709 workspace->out_buf.size = sectorsize; 710 711 /* 712 * Since both input and output buffers should not exceed one sector, 713 * one call should end the decompression. 714 */ 715 ret = zstd_decompress_stream(stream, &workspace->out_buf, &workspace->in_buf); 716 if (unlikely(zstd_is_error(ret))) { 717 struct btrfs_inode *inode = folio_to_inode(dest_folio); 718 719 btrfs_err(inode->root->fs_info, 720 "zstd decompression failed, error %d root %llu inode %llu offset %llu", 721 zstd_get_error_code(ret), btrfs_root_id(inode->root), 722 btrfs_ino(inode), folio_pos(dest_folio)); 723 goto finish; 724 } 725 to_copy = workspace->out_buf.pos; 726 memcpy_to_folio(dest_folio, dest_pgoff, workspace->out_buf.dst, to_copy); 727 finish: 728 /* Error or early end. */ 729 if (unlikely(to_copy < destlen)) { 730 ret = -EIO; 731 folio_zero_range(dest_folio, dest_pgoff + to_copy, destlen - to_copy); 732 } 733 return ret; 734 } 735 736 const struct btrfs_compress_levels btrfs_zstd_compress = { 737 .min_level = ZSTD_BTRFS_MIN_LEVEL, 738 .max_level = ZSTD_BTRFS_MAX_LEVEL, 739 .default_level = ZSTD_BTRFS_DEFAULT_LEVEL, 740 }; 741