1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28 #include <linux/cgroup-defs.h>
29 #include <linux/page_counter.h>
30 #include <linux/memcontrol.h>
31 #include <linux/cgroup.h>
32 #include <linux/cpuset.h>
33 #include <linux/sched/mm.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/hugetlb.h>
36 #include <linux/pagemap.h>
37 #include <linux/pagevec.h>
38 #include <linux/vm_event_item.h>
39 #include <linux/smp.h>
40 #include <linux/page-flags.h>
41 #include <linux/backing-dev.h>
42 #include <linux/bit_spinlock.h>
43 #include <linux/rcupdate.h>
44 #include <linux/limits.h>
45 #include <linux/export.h>
46 #include <linux/list.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swapops.h>
51 #include <linux/spinlock.h>
52 #include <linux/fs.h>
53 #include <linux/seq_file.h>
54 #include <linux/vmpressure.h>
55 #include <linux/memremap.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/resume_user_mode.h>
62 #include <linux/psi.h>
63 #include <linux/seq_buf.h>
64 #include <linux/sched/isolation.h>
65 #include <linux/kmemleak.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 #include "memcontrol-v1.h"
71
72 #include <linux/uaccess.h>
73
74 #define CREATE_TRACE_POINTS
75 #include <trace/events/memcg.h>
76 #undef CREATE_TRACE_POINTS
77
78 #include <trace/events/vmscan.h>
79
80 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
81 EXPORT_SYMBOL(memory_cgrp_subsys);
82
83 struct mem_cgroup *root_mem_cgroup __read_mostly;
84 EXPORT_SYMBOL(root_mem_cgroup);
85
86 /* Active memory cgroup to use from an interrupt context */
87 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
88 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
89
90 /* Socket memory accounting disabled? */
91 static bool cgroup_memory_nosocket __ro_after_init;
92
93 /* Kernel memory accounting disabled? */
94 static bool cgroup_memory_nokmem __ro_after_init;
95
96 /* BPF memory accounting disabled? */
97 static bool cgroup_memory_nobpf __ro_after_init;
98
99 static struct kmem_cache *memcg_cachep;
100 static struct kmem_cache *memcg_pn_cachep;
101
102 #ifdef CONFIG_CGROUP_WRITEBACK
103 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
104 #endif
105
task_is_dying(void)106 static inline bool task_is_dying(void)
107 {
108 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
109 (current->flags & PF_EXITING);
110 }
111
112 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)113 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
114 {
115 if (!memcg)
116 memcg = root_mem_cgroup;
117 return &memcg->vmpressure;
118 }
119
vmpressure_to_memcg(struct vmpressure * vmpr)120 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
121 {
122 return container_of(vmpr, struct mem_cgroup, vmpressure);
123 }
124
125 #define SEQ_BUF_SIZE SZ_4K
126 #define CURRENT_OBJCG_UPDATE_BIT 0
127 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
128
129 static DEFINE_SPINLOCK(objcg_lock);
130
mem_cgroup_kmem_disabled(void)131 bool mem_cgroup_kmem_disabled(void)
132 {
133 return cgroup_memory_nokmem;
134 }
135
136 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages);
137
obj_cgroup_release(struct percpu_ref * ref)138 static void obj_cgroup_release(struct percpu_ref *ref)
139 {
140 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
141 unsigned int nr_bytes;
142 unsigned int nr_pages;
143 unsigned long flags;
144
145 /*
146 * At this point all allocated objects are freed, and
147 * objcg->nr_charged_bytes can't have an arbitrary byte value.
148 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
149 *
150 * The following sequence can lead to it:
151 * 1) CPU0: objcg == stock->cached_objcg
152 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
153 * PAGE_SIZE bytes are charged
154 * 3) CPU1: a process from another memcg is allocating something,
155 * the stock if flushed,
156 * objcg->nr_charged_bytes = PAGE_SIZE - 92
157 * 5) CPU0: we do release this object,
158 * 92 bytes are added to stock->nr_bytes
159 * 6) CPU0: stock is flushed,
160 * 92 bytes are added to objcg->nr_charged_bytes
161 *
162 * In the result, nr_charged_bytes == PAGE_SIZE.
163 * This page will be uncharged in obj_cgroup_release().
164 */
165 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
166 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
167 nr_pages = nr_bytes >> PAGE_SHIFT;
168
169 if (nr_pages) {
170 struct mem_cgroup *memcg;
171
172 memcg = get_mem_cgroup_from_objcg(objcg);
173 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
174 memcg1_account_kmem(memcg, -nr_pages);
175 if (!mem_cgroup_is_root(memcg))
176 memcg_uncharge(memcg, nr_pages);
177 mem_cgroup_put(memcg);
178 }
179
180 spin_lock_irqsave(&objcg_lock, flags);
181 list_del(&objcg->list);
182 spin_unlock_irqrestore(&objcg_lock, flags);
183
184 percpu_ref_exit(ref);
185 kfree_rcu(objcg, rcu);
186 }
187
obj_cgroup_alloc(void)188 static struct obj_cgroup *obj_cgroup_alloc(void)
189 {
190 struct obj_cgroup *objcg;
191 int ret;
192
193 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
194 if (!objcg)
195 return NULL;
196
197 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
198 GFP_KERNEL);
199 if (ret) {
200 kfree(objcg);
201 return NULL;
202 }
203 INIT_LIST_HEAD(&objcg->list);
204 return objcg;
205 }
206
memcg_reparent_objcgs(struct mem_cgroup * memcg,struct mem_cgroup * parent)207 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
208 struct mem_cgroup *parent)
209 {
210 struct obj_cgroup *objcg, *iter;
211
212 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
213
214 spin_lock_irq(&objcg_lock);
215
216 /* 1) Ready to reparent active objcg. */
217 list_add(&objcg->list, &memcg->objcg_list);
218 /* 2) Reparent active objcg and already reparented objcgs to parent. */
219 list_for_each_entry(iter, &memcg->objcg_list, list)
220 WRITE_ONCE(iter->memcg, parent);
221 /* 3) Move already reparented objcgs to the parent's list */
222 list_splice(&memcg->objcg_list, &parent->objcg_list);
223
224 spin_unlock_irq(&objcg_lock);
225
226 percpu_ref_kill(&objcg->refcnt);
227 }
228
229 /*
230 * A lot of the calls to the cache allocation functions are expected to be
231 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are
232 * conditional to this static branch, we'll have to allow modules that does
233 * kmem_cache_alloc and the such to see this symbol as well
234 */
235 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
236 EXPORT_SYMBOL(memcg_kmem_online_key);
237
238 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
239 EXPORT_SYMBOL(memcg_bpf_enabled_key);
240
241 /**
242 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
243 * @folio: folio of interest
244 *
245 * If memcg is bound to the default hierarchy, css of the memcg associated
246 * with @folio is returned. The returned css remains associated with @folio
247 * until it is released.
248 *
249 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
250 * is returned.
251 */
mem_cgroup_css_from_folio(struct folio * folio)252 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
253 {
254 struct mem_cgroup *memcg = folio_memcg(folio);
255
256 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
257 memcg = root_mem_cgroup;
258
259 return &memcg->css;
260 }
261
262 /**
263 * page_cgroup_ino - return inode number of the memcg a page is charged to
264 * @page: the page
265 *
266 * Look up the closest online ancestor of the memory cgroup @page is charged to
267 * and return its inode number or 0 if @page is not charged to any cgroup. It
268 * is safe to call this function without holding a reference to @page.
269 *
270 * Note, this function is inherently racy, because there is nothing to prevent
271 * the cgroup inode from getting torn down and potentially reallocated a moment
272 * after page_cgroup_ino() returns, so it only should be used by callers that
273 * do not care (such as procfs interfaces).
274 */
page_cgroup_ino(struct page * page)275 ino_t page_cgroup_ino(struct page *page)
276 {
277 struct mem_cgroup *memcg;
278 unsigned long ino = 0;
279
280 rcu_read_lock();
281 /* page_folio() is racy here, but the entire function is racy anyway */
282 memcg = folio_memcg_check(page_folio(page));
283
284 while (memcg && !(memcg->css.flags & CSS_ONLINE))
285 memcg = parent_mem_cgroup(memcg);
286 if (memcg)
287 ino = cgroup_ino(memcg->css.cgroup);
288 rcu_read_unlock();
289 return ino;
290 }
291 EXPORT_SYMBOL_GPL(page_cgroup_ino);
292
293 /* Subset of node_stat_item for memcg stats */
294 static const unsigned int memcg_node_stat_items[] = {
295 NR_INACTIVE_ANON,
296 NR_ACTIVE_ANON,
297 NR_INACTIVE_FILE,
298 NR_ACTIVE_FILE,
299 NR_UNEVICTABLE,
300 NR_SLAB_RECLAIMABLE_B,
301 NR_SLAB_UNRECLAIMABLE_B,
302 WORKINGSET_REFAULT_ANON,
303 WORKINGSET_REFAULT_FILE,
304 WORKINGSET_ACTIVATE_ANON,
305 WORKINGSET_ACTIVATE_FILE,
306 WORKINGSET_RESTORE_ANON,
307 WORKINGSET_RESTORE_FILE,
308 WORKINGSET_NODERECLAIM,
309 NR_ANON_MAPPED,
310 NR_FILE_MAPPED,
311 NR_FILE_PAGES,
312 NR_FILE_DIRTY,
313 NR_WRITEBACK,
314 NR_SHMEM,
315 NR_SHMEM_THPS,
316 NR_FILE_THPS,
317 NR_ANON_THPS,
318 NR_KERNEL_STACK_KB,
319 NR_PAGETABLE,
320 NR_SECONDARY_PAGETABLE,
321 #ifdef CONFIG_SWAP
322 NR_SWAPCACHE,
323 #endif
324 #ifdef CONFIG_NUMA_BALANCING
325 PGPROMOTE_SUCCESS,
326 #endif
327 PGDEMOTE_KSWAPD,
328 PGDEMOTE_DIRECT,
329 PGDEMOTE_KHUGEPAGED,
330 PGDEMOTE_PROACTIVE,
331 #ifdef CONFIG_HUGETLB_PAGE
332 NR_HUGETLB,
333 #endif
334 };
335
336 static const unsigned int memcg_stat_items[] = {
337 MEMCG_SWAP,
338 MEMCG_SOCK,
339 MEMCG_PERCPU_B,
340 MEMCG_VMALLOC,
341 MEMCG_KMEM,
342 MEMCG_ZSWAP_B,
343 MEMCG_ZSWAPPED,
344 };
345
346 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items)
347 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \
348 ARRAY_SIZE(memcg_stat_items))
349 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX)
350 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly;
351
init_memcg_stats(void)352 static void init_memcg_stats(void)
353 {
354 u8 i, j = 0;
355
356 BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX);
357
358 memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index));
359
360 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j)
361 mem_cgroup_stats_index[memcg_node_stat_items[i]] = j;
362
363 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j)
364 mem_cgroup_stats_index[memcg_stat_items[i]] = j;
365 }
366
memcg_stats_index(int idx)367 static inline int memcg_stats_index(int idx)
368 {
369 return mem_cgroup_stats_index[idx];
370 }
371
372 struct lruvec_stats_percpu {
373 /* Local (CPU and cgroup) state */
374 long state[NR_MEMCG_NODE_STAT_ITEMS];
375
376 /* Delta calculation for lockless upward propagation */
377 long state_prev[NR_MEMCG_NODE_STAT_ITEMS];
378 };
379
380 struct lruvec_stats {
381 /* Aggregated (CPU and subtree) state */
382 long state[NR_MEMCG_NODE_STAT_ITEMS];
383
384 /* Non-hierarchical (CPU aggregated) state */
385 long state_local[NR_MEMCG_NODE_STAT_ITEMS];
386
387 /* Pending child counts during tree propagation */
388 long state_pending[NR_MEMCG_NODE_STAT_ITEMS];
389 };
390
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)391 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx)
392 {
393 struct mem_cgroup_per_node *pn;
394 long x;
395 int i;
396
397 if (mem_cgroup_disabled())
398 return node_page_state(lruvec_pgdat(lruvec), idx);
399
400 i = memcg_stats_index(idx);
401 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
402 return 0;
403
404 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
405 x = READ_ONCE(pn->lruvec_stats->state[i]);
406 #ifdef CONFIG_SMP
407 if (x < 0)
408 x = 0;
409 #endif
410 return x;
411 }
412
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)413 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
414 enum node_stat_item idx)
415 {
416 struct mem_cgroup_per_node *pn;
417 long x;
418 int i;
419
420 if (mem_cgroup_disabled())
421 return node_page_state(lruvec_pgdat(lruvec), idx);
422
423 i = memcg_stats_index(idx);
424 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
425 return 0;
426
427 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
428 x = READ_ONCE(pn->lruvec_stats->state_local[i]);
429 #ifdef CONFIG_SMP
430 if (x < 0)
431 x = 0;
432 #endif
433 return x;
434 }
435
436 /* Subset of vm_event_item to report for memcg event stats */
437 static const unsigned int memcg_vm_event_stat[] = {
438 #ifdef CONFIG_MEMCG_V1
439 PGPGIN,
440 PGPGOUT,
441 #endif
442 PSWPIN,
443 PSWPOUT,
444 PGSCAN_KSWAPD,
445 PGSCAN_DIRECT,
446 PGSCAN_KHUGEPAGED,
447 PGSCAN_PROACTIVE,
448 PGSTEAL_KSWAPD,
449 PGSTEAL_DIRECT,
450 PGSTEAL_KHUGEPAGED,
451 PGSTEAL_PROACTIVE,
452 PGFAULT,
453 PGMAJFAULT,
454 PGREFILL,
455 PGACTIVATE,
456 PGDEACTIVATE,
457 PGLAZYFREE,
458 PGLAZYFREED,
459 #ifdef CONFIG_SWAP
460 SWPIN_ZERO,
461 SWPOUT_ZERO,
462 #endif
463 #ifdef CONFIG_ZSWAP
464 ZSWPIN,
465 ZSWPOUT,
466 ZSWPWB,
467 #endif
468 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
469 THP_FAULT_ALLOC,
470 THP_COLLAPSE_ALLOC,
471 THP_SWPOUT,
472 THP_SWPOUT_FALLBACK,
473 #endif
474 #ifdef CONFIG_NUMA_BALANCING
475 NUMA_PAGE_MIGRATE,
476 NUMA_PTE_UPDATES,
477 NUMA_HINT_FAULTS,
478 #endif
479 };
480
481 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
482 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
483
init_memcg_events(void)484 static void init_memcg_events(void)
485 {
486 u8 i;
487
488 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX);
489
490 memset(mem_cgroup_events_index, U8_MAX,
491 sizeof(mem_cgroup_events_index));
492
493 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
494 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i;
495 }
496
memcg_events_index(enum vm_event_item idx)497 static inline int memcg_events_index(enum vm_event_item idx)
498 {
499 return mem_cgroup_events_index[idx];
500 }
501
502 struct memcg_vmstats_percpu {
503 /* Stats updates since the last flush */
504 unsigned int stats_updates;
505
506 /* Cached pointers for fast iteration in memcg_rstat_updated() */
507 struct memcg_vmstats_percpu __percpu *parent_pcpu;
508 struct memcg_vmstats *vmstats;
509
510 /* The above should fit a single cacheline for memcg_rstat_updated() */
511
512 /* Local (CPU and cgroup) page state & events */
513 long state[MEMCG_VMSTAT_SIZE];
514 unsigned long events[NR_MEMCG_EVENTS];
515
516 /* Delta calculation for lockless upward propagation */
517 long state_prev[MEMCG_VMSTAT_SIZE];
518 unsigned long events_prev[NR_MEMCG_EVENTS];
519 } ____cacheline_aligned;
520
521 struct memcg_vmstats {
522 /* Aggregated (CPU and subtree) page state & events */
523 long state[MEMCG_VMSTAT_SIZE];
524 unsigned long events[NR_MEMCG_EVENTS];
525
526 /* Non-hierarchical (CPU aggregated) page state & events */
527 long state_local[MEMCG_VMSTAT_SIZE];
528 unsigned long events_local[NR_MEMCG_EVENTS];
529
530 /* Pending child counts during tree propagation */
531 long state_pending[MEMCG_VMSTAT_SIZE];
532 unsigned long events_pending[NR_MEMCG_EVENTS];
533
534 /* Stats updates since the last flush */
535 atomic_t stats_updates;
536 };
537
538 /*
539 * memcg and lruvec stats flushing
540 *
541 * Many codepaths leading to stats update or read are performance sensitive and
542 * adding stats flushing in such codepaths is not desirable. So, to optimize the
543 * flushing the kernel does:
544 *
545 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
546 * rstat update tree grow unbounded.
547 *
548 * 2) Flush the stats synchronously on reader side only when there are more than
549 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
550 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
551 * only for 2 seconds due to (1).
552 */
553 static void flush_memcg_stats_dwork(struct work_struct *w);
554 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
555 static u64 flush_last_time;
556
557 #define FLUSH_TIME (2UL*HZ)
558
memcg_vmstats_needs_flush(struct memcg_vmstats * vmstats)559 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
560 {
561 return atomic_read(&vmstats->stats_updates) >
562 MEMCG_CHARGE_BATCH * num_online_cpus();
563 }
564
memcg_rstat_updated(struct mem_cgroup * memcg,int val,int cpu)565 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val,
566 int cpu)
567 {
568 struct memcg_vmstats_percpu __percpu *statc_pcpu;
569 struct memcg_vmstats_percpu *statc;
570 unsigned int stats_updates;
571
572 if (!val)
573 return;
574
575 css_rstat_updated(&memcg->css, cpu);
576 statc_pcpu = memcg->vmstats_percpu;
577 for (; statc_pcpu; statc_pcpu = statc->parent_pcpu) {
578 statc = this_cpu_ptr(statc_pcpu);
579 /*
580 * If @memcg is already flushable then all its ancestors are
581 * flushable as well and also there is no need to increase
582 * stats_updates.
583 */
584 if (memcg_vmstats_needs_flush(statc->vmstats))
585 break;
586
587 stats_updates = this_cpu_add_return(statc_pcpu->stats_updates,
588 abs(val));
589 if (stats_updates < MEMCG_CHARGE_BATCH)
590 continue;
591
592 stats_updates = this_cpu_xchg(statc_pcpu->stats_updates, 0);
593 atomic_add(stats_updates, &statc->vmstats->stats_updates);
594 }
595 }
596
__mem_cgroup_flush_stats(struct mem_cgroup * memcg,bool force)597 static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force)
598 {
599 bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats);
600
601 trace_memcg_flush_stats(memcg, atomic_read(&memcg->vmstats->stats_updates),
602 force, needs_flush);
603
604 if (!force && !needs_flush)
605 return;
606
607 if (mem_cgroup_is_root(memcg))
608 WRITE_ONCE(flush_last_time, jiffies_64);
609
610 css_rstat_flush(&memcg->css);
611 }
612
613 /*
614 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
615 * @memcg: root of the subtree to flush
616 *
617 * Flushing is serialized by the underlying global rstat lock. There is also a
618 * minimum amount of work to be done even if there are no stat updates to flush.
619 * Hence, we only flush the stats if the updates delta exceeds a threshold. This
620 * avoids unnecessary work and contention on the underlying lock.
621 */
mem_cgroup_flush_stats(struct mem_cgroup * memcg)622 void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
623 {
624 if (mem_cgroup_disabled())
625 return;
626
627 if (!memcg)
628 memcg = root_mem_cgroup;
629
630 __mem_cgroup_flush_stats(memcg, false);
631 }
632
mem_cgroup_flush_stats_ratelimited(struct mem_cgroup * memcg)633 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
634 {
635 /* Only flush if the periodic flusher is one full cycle late */
636 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
637 mem_cgroup_flush_stats(memcg);
638 }
639
flush_memcg_stats_dwork(struct work_struct * w)640 static void flush_memcg_stats_dwork(struct work_struct *w)
641 {
642 /*
643 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
644 * in latency-sensitive paths is as cheap as possible.
645 */
646 __mem_cgroup_flush_stats(root_mem_cgroup, true);
647 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
648 }
649
memcg_page_state(struct mem_cgroup * memcg,int idx)650 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
651 {
652 long x;
653 int i = memcg_stats_index(idx);
654
655 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
656 return 0;
657
658 x = READ_ONCE(memcg->vmstats->state[i]);
659 #ifdef CONFIG_SMP
660 if (x < 0)
661 x = 0;
662 #endif
663 return x;
664 }
665
666 static int memcg_page_state_unit(int item);
667
668 /*
669 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
670 * up non-zero sub-page updates to 1 page as zero page updates are ignored.
671 */
memcg_state_val_in_pages(int idx,int val)672 static int memcg_state_val_in_pages(int idx, int val)
673 {
674 int unit = memcg_page_state_unit(idx);
675
676 if (!val || unit == PAGE_SIZE)
677 return val;
678 else
679 return max(val * unit / PAGE_SIZE, 1UL);
680 }
681
682 /**
683 * mod_memcg_state - update cgroup memory statistics
684 * @memcg: the memory cgroup
685 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
686 * @val: delta to add to the counter, can be negative
687 */
mod_memcg_state(struct mem_cgroup * memcg,enum memcg_stat_item idx,int val)688 void mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
689 int val)
690 {
691 int i = memcg_stats_index(idx);
692 int cpu;
693
694 if (mem_cgroup_disabled())
695 return;
696
697 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
698 return;
699
700 cpu = get_cpu();
701
702 this_cpu_add(memcg->vmstats_percpu->state[i], val);
703 val = memcg_state_val_in_pages(idx, val);
704 memcg_rstat_updated(memcg, val, cpu);
705 trace_mod_memcg_state(memcg, idx, val);
706
707 put_cpu();
708 }
709
710 #ifdef CONFIG_MEMCG_V1
711 /* idx can be of type enum memcg_stat_item or node_stat_item. */
memcg_page_state_local(struct mem_cgroup * memcg,int idx)712 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
713 {
714 long x;
715 int i = memcg_stats_index(idx);
716
717 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
718 return 0;
719
720 x = READ_ONCE(memcg->vmstats->state_local[i]);
721 #ifdef CONFIG_SMP
722 if (x < 0)
723 x = 0;
724 #endif
725 return x;
726 }
727 #endif
728
mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)729 static void mod_memcg_lruvec_state(struct lruvec *lruvec,
730 enum node_stat_item idx,
731 int val)
732 {
733 struct mem_cgroup_per_node *pn;
734 struct mem_cgroup *memcg;
735 int i = memcg_stats_index(idx);
736 int cpu;
737
738 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
739 return;
740
741 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
742 memcg = pn->memcg;
743
744 cpu = get_cpu();
745
746 /* Update memcg */
747 this_cpu_add(memcg->vmstats_percpu->state[i], val);
748
749 /* Update lruvec */
750 this_cpu_add(pn->lruvec_stats_percpu->state[i], val);
751
752 val = memcg_state_val_in_pages(idx, val);
753 memcg_rstat_updated(memcg, val, cpu);
754 trace_mod_memcg_lruvec_state(memcg, idx, val);
755
756 put_cpu();
757 }
758
759 /**
760 * mod_lruvec_state - update lruvec memory statistics
761 * @lruvec: the lruvec
762 * @idx: the stat item
763 * @val: delta to add to the counter, can be negative
764 *
765 * The lruvec is the intersection of the NUMA node and a cgroup. This
766 * function updates the all three counters that are affected by a
767 * change of state at this level: per-node, per-cgroup, per-lruvec.
768 */
mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)769 void mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
770 int val)
771 {
772 /* Update node */
773 mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
774
775 /* Update memcg and lruvec */
776 if (!mem_cgroup_disabled())
777 mod_memcg_lruvec_state(lruvec, idx, val);
778 }
779
lruvec_stat_mod_folio(struct folio * folio,enum node_stat_item idx,int val)780 void lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
781 int val)
782 {
783 struct mem_cgroup *memcg;
784 pg_data_t *pgdat = folio_pgdat(folio);
785 struct lruvec *lruvec;
786
787 rcu_read_lock();
788 memcg = folio_memcg(folio);
789 /* Untracked pages have no memcg, no lruvec. Update only the node */
790 if (!memcg) {
791 rcu_read_unlock();
792 mod_node_page_state(pgdat, idx, val);
793 return;
794 }
795
796 lruvec = mem_cgroup_lruvec(memcg, pgdat);
797 mod_lruvec_state(lruvec, idx, val);
798 rcu_read_unlock();
799 }
800 EXPORT_SYMBOL(lruvec_stat_mod_folio);
801
mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)802 void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
803 {
804 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
805 struct mem_cgroup *memcg;
806 struct lruvec *lruvec;
807
808 rcu_read_lock();
809 memcg = mem_cgroup_from_slab_obj(p);
810
811 /*
812 * Untracked pages have no memcg, no lruvec. Update only the
813 * node. If we reparent the slab objects to the root memcg,
814 * when we free the slab object, we need to update the per-memcg
815 * vmstats to keep it correct for the root memcg.
816 */
817 if (!memcg) {
818 mod_node_page_state(pgdat, idx, val);
819 } else {
820 lruvec = mem_cgroup_lruvec(memcg, pgdat);
821 mod_lruvec_state(lruvec, idx, val);
822 }
823 rcu_read_unlock();
824 }
825
826 /**
827 * count_memcg_events - account VM events in a cgroup
828 * @memcg: the memory cgroup
829 * @idx: the event item
830 * @count: the number of events that occurred
831 */
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)832 void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
833 unsigned long count)
834 {
835 int i = memcg_events_index(idx);
836 int cpu;
837
838 if (mem_cgroup_disabled())
839 return;
840
841 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
842 return;
843
844 cpu = get_cpu();
845
846 this_cpu_add(memcg->vmstats_percpu->events[i], count);
847 memcg_rstat_updated(memcg, count, cpu);
848 trace_count_memcg_events(memcg, idx, count);
849
850 put_cpu();
851 }
852
memcg_events(struct mem_cgroup * memcg,int event)853 unsigned long memcg_events(struct mem_cgroup *memcg, int event)
854 {
855 int i = memcg_events_index(event);
856
857 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
858 return 0;
859
860 return READ_ONCE(memcg->vmstats->events[i]);
861 }
862
863 #ifdef CONFIG_MEMCG_V1
memcg_events_local(struct mem_cgroup * memcg,int event)864 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
865 {
866 int i = memcg_events_index(event);
867
868 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
869 return 0;
870
871 return READ_ONCE(memcg->vmstats->events_local[i]);
872 }
873 #endif
874
mem_cgroup_from_task(struct task_struct * p)875 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
876 {
877 /*
878 * mm_update_next_owner() may clear mm->owner to NULL
879 * if it races with swapoff, page migration, etc.
880 * So this can be called with p == NULL.
881 */
882 if (unlikely(!p))
883 return NULL;
884
885 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
886 }
887 EXPORT_SYMBOL(mem_cgroup_from_task);
888
active_memcg(void)889 static __always_inline struct mem_cgroup *active_memcg(void)
890 {
891 if (!in_task())
892 return this_cpu_read(int_active_memcg);
893 else
894 return current->active_memcg;
895 }
896
897 /**
898 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
899 * @mm: mm from which memcg should be extracted. It can be NULL.
900 *
901 * Obtain a reference on mm->memcg and returns it if successful. If mm
902 * is NULL, then the memcg is chosen as follows:
903 * 1) The active memcg, if set.
904 * 2) current->mm->memcg, if available
905 * 3) root memcg
906 * If mem_cgroup is disabled, NULL is returned.
907 */
get_mem_cgroup_from_mm(struct mm_struct * mm)908 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
909 {
910 struct mem_cgroup *memcg;
911
912 if (mem_cgroup_disabled())
913 return NULL;
914
915 /*
916 * Page cache insertions can happen without an
917 * actual mm context, e.g. during disk probing
918 * on boot, loopback IO, acct() writes etc.
919 *
920 * No need to css_get on root memcg as the reference
921 * counting is disabled on the root level in the
922 * cgroup core. See CSS_NO_REF.
923 */
924 if (unlikely(!mm)) {
925 memcg = active_memcg();
926 if (unlikely(memcg)) {
927 /* remote memcg must hold a ref */
928 css_get(&memcg->css);
929 return memcg;
930 }
931 mm = current->mm;
932 if (unlikely(!mm))
933 return root_mem_cgroup;
934 }
935
936 rcu_read_lock();
937 do {
938 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
939 if (unlikely(!memcg))
940 memcg = root_mem_cgroup;
941 } while (!css_tryget(&memcg->css));
942 rcu_read_unlock();
943 return memcg;
944 }
945 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
946
947 /**
948 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
949 */
get_mem_cgroup_from_current(void)950 struct mem_cgroup *get_mem_cgroup_from_current(void)
951 {
952 struct mem_cgroup *memcg;
953
954 if (mem_cgroup_disabled())
955 return NULL;
956
957 again:
958 rcu_read_lock();
959 memcg = mem_cgroup_from_task(current);
960 if (!css_tryget(&memcg->css)) {
961 rcu_read_unlock();
962 goto again;
963 }
964 rcu_read_unlock();
965 return memcg;
966 }
967
968 /**
969 * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg.
970 * @folio: folio from which memcg should be extracted.
971 */
get_mem_cgroup_from_folio(struct folio * folio)972 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
973 {
974 struct mem_cgroup *memcg = folio_memcg(folio);
975
976 if (mem_cgroup_disabled())
977 return NULL;
978
979 rcu_read_lock();
980 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
981 memcg = root_mem_cgroup;
982 rcu_read_unlock();
983 return memcg;
984 }
985
986 /**
987 * mem_cgroup_iter - iterate over memory cgroup hierarchy
988 * @root: hierarchy root
989 * @prev: previously returned memcg, NULL on first invocation
990 * @reclaim: cookie for shared reclaim walks, NULL for full walks
991 *
992 * Returns references to children of the hierarchy below @root, or
993 * @root itself, or %NULL after a full round-trip.
994 *
995 * Caller must pass the return value in @prev on subsequent
996 * invocations for reference counting, or use mem_cgroup_iter_break()
997 * to cancel a hierarchy walk before the round-trip is complete.
998 *
999 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1000 * in the hierarchy among all concurrent reclaimers operating on the
1001 * same node.
1002 */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1003 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1004 struct mem_cgroup *prev,
1005 struct mem_cgroup_reclaim_cookie *reclaim)
1006 {
1007 struct mem_cgroup_reclaim_iter *iter;
1008 struct cgroup_subsys_state *css;
1009 struct mem_cgroup *pos;
1010 struct mem_cgroup *next;
1011
1012 if (mem_cgroup_disabled())
1013 return NULL;
1014
1015 if (!root)
1016 root = root_mem_cgroup;
1017
1018 rcu_read_lock();
1019 restart:
1020 next = NULL;
1021
1022 if (reclaim) {
1023 int gen;
1024 int nid = reclaim->pgdat->node_id;
1025
1026 iter = &root->nodeinfo[nid]->iter;
1027 gen = atomic_read(&iter->generation);
1028
1029 /*
1030 * On start, join the current reclaim iteration cycle.
1031 * Exit when a concurrent walker completes it.
1032 */
1033 if (!prev)
1034 reclaim->generation = gen;
1035 else if (reclaim->generation != gen)
1036 goto out_unlock;
1037
1038 pos = READ_ONCE(iter->position);
1039 } else
1040 pos = prev;
1041
1042 css = pos ? &pos->css : NULL;
1043
1044 while ((css = css_next_descendant_pre(css, &root->css))) {
1045 /*
1046 * Verify the css and acquire a reference. The root
1047 * is provided by the caller, so we know it's alive
1048 * and kicking, and don't take an extra reference.
1049 */
1050 if (css == &root->css || css_tryget(css))
1051 break;
1052 }
1053
1054 next = mem_cgroup_from_css(css);
1055
1056 if (reclaim) {
1057 /*
1058 * The position could have already been updated by a competing
1059 * thread, so check that the value hasn't changed since we read
1060 * it to avoid reclaiming from the same cgroup twice.
1061 */
1062 if (cmpxchg(&iter->position, pos, next) != pos) {
1063 if (css && css != &root->css)
1064 css_put(css);
1065 goto restart;
1066 }
1067
1068 if (!next) {
1069 atomic_inc(&iter->generation);
1070
1071 /*
1072 * Reclaimers share the hierarchy walk, and a
1073 * new one might jump in right at the end of
1074 * the hierarchy - make sure they see at least
1075 * one group and restart from the beginning.
1076 */
1077 if (!prev)
1078 goto restart;
1079 }
1080 }
1081
1082 out_unlock:
1083 rcu_read_unlock();
1084 if (prev && prev != root)
1085 css_put(&prev->css);
1086
1087 return next;
1088 }
1089
1090 /**
1091 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1092 * @root: hierarchy root
1093 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1094 */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1095 void mem_cgroup_iter_break(struct mem_cgroup *root,
1096 struct mem_cgroup *prev)
1097 {
1098 if (!root)
1099 root = root_mem_cgroup;
1100 if (prev && prev != root)
1101 css_put(&prev->css);
1102 }
1103
__invalidate_reclaim_iterators(struct mem_cgroup * from,struct mem_cgroup * dead_memcg)1104 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1105 struct mem_cgroup *dead_memcg)
1106 {
1107 struct mem_cgroup_reclaim_iter *iter;
1108 struct mem_cgroup_per_node *mz;
1109 int nid;
1110
1111 for_each_node(nid) {
1112 mz = from->nodeinfo[nid];
1113 iter = &mz->iter;
1114 cmpxchg(&iter->position, dead_memcg, NULL);
1115 }
1116 }
1117
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1118 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1119 {
1120 struct mem_cgroup *memcg = dead_memcg;
1121 struct mem_cgroup *last;
1122
1123 do {
1124 __invalidate_reclaim_iterators(memcg, dead_memcg);
1125 last = memcg;
1126 } while ((memcg = parent_mem_cgroup(memcg)));
1127
1128 /*
1129 * When cgroup1 non-hierarchy mode is used,
1130 * parent_mem_cgroup() does not walk all the way up to the
1131 * cgroup root (root_mem_cgroup). So we have to handle
1132 * dead_memcg from cgroup root separately.
1133 */
1134 if (!mem_cgroup_is_root(last))
1135 __invalidate_reclaim_iterators(root_mem_cgroup,
1136 dead_memcg);
1137 }
1138
1139 /**
1140 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1141 * @memcg: hierarchy root
1142 * @fn: function to call for each task
1143 * @arg: argument passed to @fn
1144 *
1145 * This function iterates over tasks attached to @memcg or to any of its
1146 * descendants and calls @fn for each task. If @fn returns a non-zero
1147 * value, the function breaks the iteration loop. Otherwise, it will iterate
1148 * over all tasks and return 0.
1149 *
1150 * This function must not be called for the root memory cgroup.
1151 */
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1152 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1153 int (*fn)(struct task_struct *, void *), void *arg)
1154 {
1155 struct mem_cgroup *iter;
1156 int ret = 0;
1157
1158 BUG_ON(mem_cgroup_is_root(memcg));
1159
1160 for_each_mem_cgroup_tree(iter, memcg) {
1161 struct css_task_iter it;
1162 struct task_struct *task;
1163
1164 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1165 while (!ret && (task = css_task_iter_next(&it))) {
1166 ret = fn(task, arg);
1167 /* Avoid potential softlockup warning */
1168 cond_resched();
1169 }
1170 css_task_iter_end(&it);
1171 if (ret) {
1172 mem_cgroup_iter_break(memcg, iter);
1173 break;
1174 }
1175 }
1176 }
1177
1178 #ifdef CONFIG_DEBUG_VM
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1179 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1180 {
1181 struct mem_cgroup *memcg;
1182
1183 if (mem_cgroup_disabled())
1184 return;
1185
1186 memcg = folio_memcg(folio);
1187
1188 if (!memcg)
1189 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1190 else
1191 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1192 }
1193 #endif
1194
1195 /**
1196 * folio_lruvec_lock - Lock the lruvec for a folio.
1197 * @folio: Pointer to the folio.
1198 *
1199 * These functions are safe to use under any of the following conditions:
1200 * - folio locked
1201 * - folio_test_lru false
1202 * - folio frozen (refcount of 0)
1203 *
1204 * Return: The lruvec this folio is on with its lock held.
1205 */
folio_lruvec_lock(struct folio * folio)1206 struct lruvec *folio_lruvec_lock(struct folio *folio)
1207 {
1208 struct lruvec *lruvec = folio_lruvec(folio);
1209
1210 spin_lock(&lruvec->lru_lock);
1211 lruvec_memcg_debug(lruvec, folio);
1212
1213 return lruvec;
1214 }
1215
1216 /**
1217 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1218 * @folio: Pointer to the folio.
1219 *
1220 * These functions are safe to use under any of the following conditions:
1221 * - folio locked
1222 * - folio_test_lru false
1223 * - folio frozen (refcount of 0)
1224 *
1225 * Return: The lruvec this folio is on with its lock held and interrupts
1226 * disabled.
1227 */
folio_lruvec_lock_irq(struct folio * folio)1228 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1229 {
1230 struct lruvec *lruvec = folio_lruvec(folio);
1231
1232 spin_lock_irq(&lruvec->lru_lock);
1233 lruvec_memcg_debug(lruvec, folio);
1234
1235 return lruvec;
1236 }
1237
1238 /**
1239 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1240 * @folio: Pointer to the folio.
1241 * @flags: Pointer to irqsave flags.
1242 *
1243 * These functions are safe to use under any of the following conditions:
1244 * - folio locked
1245 * - folio_test_lru false
1246 * - folio frozen (refcount of 0)
1247 *
1248 * Return: The lruvec this folio is on with its lock held and interrupts
1249 * disabled.
1250 */
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flags)1251 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1252 unsigned long *flags)
1253 {
1254 struct lruvec *lruvec = folio_lruvec(folio);
1255
1256 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1257 lruvec_memcg_debug(lruvec, folio);
1258
1259 return lruvec;
1260 }
1261
1262 /**
1263 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1264 * @lruvec: mem_cgroup per zone lru vector
1265 * @lru: index of lru list the page is sitting on
1266 * @zid: zone id of the accounted pages
1267 * @nr_pages: positive when adding or negative when removing
1268 *
1269 * This function must be called under lru_lock, just before a page is added
1270 * to or just after a page is removed from an lru list.
1271 */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int zid,int nr_pages)1272 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1273 int zid, int nr_pages)
1274 {
1275 struct mem_cgroup_per_node *mz;
1276 unsigned long *lru_size;
1277 long size;
1278
1279 if (mem_cgroup_disabled())
1280 return;
1281
1282 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1283 lru_size = &mz->lru_zone_size[zid][lru];
1284
1285 if (nr_pages < 0)
1286 *lru_size += nr_pages;
1287
1288 size = *lru_size;
1289 if (WARN_ONCE(size < 0,
1290 "%s(%p, %d, %d): lru_size %ld\n",
1291 __func__, lruvec, lru, nr_pages, size)) {
1292 VM_BUG_ON(1);
1293 *lru_size = 0;
1294 }
1295
1296 if (nr_pages > 0)
1297 *lru_size += nr_pages;
1298 }
1299
1300 /**
1301 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1302 * @memcg: the memory cgroup
1303 *
1304 * Returns the maximum amount of memory @mem can be charged with, in
1305 * pages.
1306 */
mem_cgroup_margin(struct mem_cgroup * memcg)1307 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1308 {
1309 unsigned long margin = 0;
1310 unsigned long count;
1311 unsigned long limit;
1312
1313 count = page_counter_read(&memcg->memory);
1314 limit = READ_ONCE(memcg->memory.max);
1315 if (count < limit)
1316 margin = limit - count;
1317
1318 if (do_memsw_account()) {
1319 count = page_counter_read(&memcg->memsw);
1320 limit = READ_ONCE(memcg->memsw.max);
1321 if (count < limit)
1322 margin = min(margin, limit - count);
1323 else
1324 margin = 0;
1325 }
1326
1327 return margin;
1328 }
1329
1330 struct memory_stat {
1331 const char *name;
1332 unsigned int idx;
1333 };
1334
1335 static const struct memory_stat memory_stats[] = {
1336 { "anon", NR_ANON_MAPPED },
1337 { "file", NR_FILE_PAGES },
1338 { "kernel", MEMCG_KMEM },
1339 { "kernel_stack", NR_KERNEL_STACK_KB },
1340 { "pagetables", NR_PAGETABLE },
1341 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
1342 { "percpu", MEMCG_PERCPU_B },
1343 { "sock", MEMCG_SOCK },
1344 { "vmalloc", MEMCG_VMALLOC },
1345 { "shmem", NR_SHMEM },
1346 #ifdef CONFIG_ZSWAP
1347 { "zswap", MEMCG_ZSWAP_B },
1348 { "zswapped", MEMCG_ZSWAPPED },
1349 #endif
1350 { "file_mapped", NR_FILE_MAPPED },
1351 { "file_dirty", NR_FILE_DIRTY },
1352 { "file_writeback", NR_WRITEBACK },
1353 #ifdef CONFIG_SWAP
1354 { "swapcached", NR_SWAPCACHE },
1355 #endif
1356 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1357 { "anon_thp", NR_ANON_THPS },
1358 { "file_thp", NR_FILE_THPS },
1359 { "shmem_thp", NR_SHMEM_THPS },
1360 #endif
1361 { "inactive_anon", NR_INACTIVE_ANON },
1362 { "active_anon", NR_ACTIVE_ANON },
1363 { "inactive_file", NR_INACTIVE_FILE },
1364 { "active_file", NR_ACTIVE_FILE },
1365 { "unevictable", NR_UNEVICTABLE },
1366 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1367 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1368 #ifdef CONFIG_HUGETLB_PAGE
1369 { "hugetlb", NR_HUGETLB },
1370 #endif
1371
1372 /* The memory events */
1373 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1374 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1375 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1376 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1377 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1378 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1379 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1380
1381 { "pgdemote_kswapd", PGDEMOTE_KSWAPD },
1382 { "pgdemote_direct", PGDEMOTE_DIRECT },
1383 { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED },
1384 { "pgdemote_proactive", PGDEMOTE_PROACTIVE },
1385 #ifdef CONFIG_NUMA_BALANCING
1386 { "pgpromote_success", PGPROMOTE_SUCCESS },
1387 #endif
1388 };
1389
1390 /* The actual unit of the state item, not the same as the output unit */
memcg_page_state_unit(int item)1391 static int memcg_page_state_unit(int item)
1392 {
1393 switch (item) {
1394 case MEMCG_PERCPU_B:
1395 case MEMCG_ZSWAP_B:
1396 case NR_SLAB_RECLAIMABLE_B:
1397 case NR_SLAB_UNRECLAIMABLE_B:
1398 return 1;
1399 case NR_KERNEL_STACK_KB:
1400 return SZ_1K;
1401 default:
1402 return PAGE_SIZE;
1403 }
1404 }
1405
1406 /* Translate stat items to the correct unit for memory.stat output */
memcg_page_state_output_unit(int item)1407 static int memcg_page_state_output_unit(int item)
1408 {
1409 /*
1410 * Workingset state is actually in pages, but we export it to userspace
1411 * as a scalar count of events, so special case it here.
1412 *
1413 * Demotion and promotion activities are exported in pages, consistent
1414 * with their global counterparts.
1415 */
1416 switch (item) {
1417 case WORKINGSET_REFAULT_ANON:
1418 case WORKINGSET_REFAULT_FILE:
1419 case WORKINGSET_ACTIVATE_ANON:
1420 case WORKINGSET_ACTIVATE_FILE:
1421 case WORKINGSET_RESTORE_ANON:
1422 case WORKINGSET_RESTORE_FILE:
1423 case WORKINGSET_NODERECLAIM:
1424 case PGDEMOTE_KSWAPD:
1425 case PGDEMOTE_DIRECT:
1426 case PGDEMOTE_KHUGEPAGED:
1427 case PGDEMOTE_PROACTIVE:
1428 #ifdef CONFIG_NUMA_BALANCING
1429 case PGPROMOTE_SUCCESS:
1430 #endif
1431 return 1;
1432 default:
1433 return memcg_page_state_unit(item);
1434 }
1435 }
1436
memcg_page_state_output(struct mem_cgroup * memcg,int item)1437 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item)
1438 {
1439 return memcg_page_state(memcg, item) *
1440 memcg_page_state_output_unit(item);
1441 }
1442
1443 #ifdef CONFIG_MEMCG_V1
memcg_page_state_local_output(struct mem_cgroup * memcg,int item)1444 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item)
1445 {
1446 return memcg_page_state_local(memcg, item) *
1447 memcg_page_state_output_unit(item);
1448 }
1449 #endif
1450
1451 #ifdef CONFIG_HUGETLB_PAGE
memcg_accounts_hugetlb(void)1452 static bool memcg_accounts_hugetlb(void)
1453 {
1454 return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1455 }
1456 #else /* CONFIG_HUGETLB_PAGE */
memcg_accounts_hugetlb(void)1457 static bool memcg_accounts_hugetlb(void)
1458 {
1459 return false;
1460 }
1461 #endif /* CONFIG_HUGETLB_PAGE */
1462
memcg_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1463 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1464 {
1465 int i;
1466
1467 /*
1468 * Provide statistics on the state of the memory subsystem as
1469 * well as cumulative event counters that show past behavior.
1470 *
1471 * This list is ordered following a combination of these gradients:
1472 * 1) generic big picture -> specifics and details
1473 * 2) reflecting userspace activity -> reflecting kernel heuristics
1474 *
1475 * Current memory state:
1476 */
1477 mem_cgroup_flush_stats(memcg);
1478
1479 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1480 u64 size;
1481
1482 #ifdef CONFIG_HUGETLB_PAGE
1483 if (unlikely(memory_stats[i].idx == NR_HUGETLB) &&
1484 !memcg_accounts_hugetlb())
1485 continue;
1486 #endif
1487 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1488 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1489
1490 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1491 size += memcg_page_state_output(memcg,
1492 NR_SLAB_RECLAIMABLE_B);
1493 seq_buf_printf(s, "slab %llu\n", size);
1494 }
1495 }
1496
1497 /* Accumulated memory events */
1498 seq_buf_printf(s, "pgscan %lu\n",
1499 memcg_events(memcg, PGSCAN_KSWAPD) +
1500 memcg_events(memcg, PGSCAN_DIRECT) +
1501 memcg_events(memcg, PGSCAN_PROACTIVE) +
1502 memcg_events(memcg, PGSCAN_KHUGEPAGED));
1503 seq_buf_printf(s, "pgsteal %lu\n",
1504 memcg_events(memcg, PGSTEAL_KSWAPD) +
1505 memcg_events(memcg, PGSTEAL_DIRECT) +
1506 memcg_events(memcg, PGSTEAL_PROACTIVE) +
1507 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1508
1509 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1510 #ifdef CONFIG_MEMCG_V1
1511 if (memcg_vm_event_stat[i] == PGPGIN ||
1512 memcg_vm_event_stat[i] == PGPGOUT)
1513 continue;
1514 #endif
1515 seq_buf_printf(s, "%s %lu\n",
1516 vm_event_name(memcg_vm_event_stat[i]),
1517 memcg_events(memcg, memcg_vm_event_stat[i]));
1518 }
1519 }
1520
memory_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1521 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1522 {
1523 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1524 memcg_stat_format(memcg, s);
1525 else
1526 memcg1_stat_format(memcg, s);
1527 if (seq_buf_has_overflowed(s))
1528 pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__);
1529 }
1530
1531 /**
1532 * mem_cgroup_print_oom_context: Print OOM information relevant to
1533 * memory controller.
1534 * @memcg: The memory cgroup that went over limit
1535 * @p: Task that is going to be killed
1536 *
1537 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1538 * enabled
1539 */
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1540 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1541 {
1542 rcu_read_lock();
1543
1544 if (memcg) {
1545 pr_cont(",oom_memcg=");
1546 pr_cont_cgroup_path(memcg->css.cgroup);
1547 } else
1548 pr_cont(",global_oom");
1549 if (p) {
1550 pr_cont(",task_memcg=");
1551 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1552 }
1553 rcu_read_unlock();
1554 }
1555
1556 /**
1557 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1558 * memory controller.
1559 * @memcg: The memory cgroup that went over limit
1560 */
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1561 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1562 {
1563 /* Use static buffer, for the caller is holding oom_lock. */
1564 static char buf[SEQ_BUF_SIZE];
1565 struct seq_buf s;
1566 unsigned long memory_failcnt;
1567
1568 lockdep_assert_held(&oom_lock);
1569
1570 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1571 memory_failcnt = atomic_long_read(&memcg->memory_events[MEMCG_MAX]);
1572 else
1573 memory_failcnt = memcg->memory.failcnt;
1574
1575 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1576 K((u64)page_counter_read(&memcg->memory)),
1577 K((u64)READ_ONCE(memcg->memory.max)), memory_failcnt);
1578 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1579 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1580 K((u64)page_counter_read(&memcg->swap)),
1581 K((u64)READ_ONCE(memcg->swap.max)),
1582 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
1583 #ifdef CONFIG_MEMCG_V1
1584 else {
1585 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1586 K((u64)page_counter_read(&memcg->memsw)),
1587 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1588 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1589 K((u64)page_counter_read(&memcg->kmem)),
1590 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1591 }
1592 #endif
1593
1594 pr_info("Memory cgroup stats for ");
1595 pr_cont_cgroup_path(memcg->css.cgroup);
1596 pr_cont(":");
1597 seq_buf_init(&s, buf, SEQ_BUF_SIZE);
1598 memory_stat_format(memcg, &s);
1599 seq_buf_do_printk(&s, KERN_INFO);
1600 }
1601
1602 /*
1603 * Return the memory (and swap, if configured) limit for a memcg.
1604 */
mem_cgroup_get_max(struct mem_cgroup * memcg)1605 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1606 {
1607 unsigned long max = READ_ONCE(memcg->memory.max);
1608
1609 if (do_memsw_account()) {
1610 if (mem_cgroup_swappiness(memcg)) {
1611 /* Calculate swap excess capacity from memsw limit */
1612 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1613
1614 max += min(swap, (unsigned long)total_swap_pages);
1615 }
1616 } else {
1617 if (mem_cgroup_swappiness(memcg))
1618 max += min(READ_ONCE(memcg->swap.max),
1619 (unsigned long)total_swap_pages);
1620 }
1621 return max;
1622 }
1623
mem_cgroup_size(struct mem_cgroup * memcg)1624 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1625 {
1626 return page_counter_read(&memcg->memory);
1627 }
1628
__memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event,bool allow_spinning)1629 void __memcg_memory_event(struct mem_cgroup *memcg,
1630 enum memcg_memory_event event, bool allow_spinning)
1631 {
1632 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1633 event == MEMCG_SWAP_FAIL;
1634
1635 /* For now only MEMCG_MAX can happen with !allow_spinning context. */
1636 VM_WARN_ON_ONCE(!allow_spinning && event != MEMCG_MAX);
1637
1638 atomic_long_inc(&memcg->memory_events_local[event]);
1639 if (!swap_event && allow_spinning)
1640 cgroup_file_notify(&memcg->events_local_file);
1641
1642 do {
1643 atomic_long_inc(&memcg->memory_events[event]);
1644 if (allow_spinning) {
1645 if (swap_event)
1646 cgroup_file_notify(&memcg->swap_events_file);
1647 else
1648 cgroup_file_notify(&memcg->events_file);
1649 }
1650
1651 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1652 break;
1653 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1654 break;
1655 } while ((memcg = parent_mem_cgroup(memcg)) &&
1656 !mem_cgroup_is_root(memcg));
1657 }
1658 EXPORT_SYMBOL_GPL(__memcg_memory_event);
1659
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1660 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1661 int order)
1662 {
1663 struct oom_control oc = {
1664 .zonelist = NULL,
1665 .nodemask = NULL,
1666 .memcg = memcg,
1667 .gfp_mask = gfp_mask,
1668 .order = order,
1669 };
1670 bool ret = true;
1671
1672 if (mutex_lock_killable(&oom_lock))
1673 return true;
1674
1675 if (mem_cgroup_margin(memcg) >= (1 << order))
1676 goto unlock;
1677
1678 /*
1679 * A few threads which were not waiting at mutex_lock_killable() can
1680 * fail to bail out. Therefore, check again after holding oom_lock.
1681 */
1682 ret = out_of_memory(&oc);
1683
1684 unlock:
1685 mutex_unlock(&oom_lock);
1686 return ret;
1687 }
1688
1689 /*
1690 * Returns true if successfully killed one or more processes. Though in some
1691 * corner cases it can return true even without killing any process.
1692 */
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1693 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1694 {
1695 bool locked, ret;
1696
1697 if (order > PAGE_ALLOC_COSTLY_ORDER)
1698 return false;
1699
1700 memcg_memory_event(memcg, MEMCG_OOM);
1701
1702 if (!memcg1_oom_prepare(memcg, &locked))
1703 return false;
1704
1705 ret = mem_cgroup_out_of_memory(memcg, mask, order);
1706
1707 memcg1_oom_finish(memcg, locked);
1708
1709 return ret;
1710 }
1711
1712 /**
1713 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1714 * @victim: task to be killed by the OOM killer
1715 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1716 *
1717 * Returns a pointer to a memory cgroup, which has to be cleaned up
1718 * by killing all belonging OOM-killable tasks.
1719 *
1720 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1721 */
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1722 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1723 struct mem_cgroup *oom_domain)
1724 {
1725 struct mem_cgroup *oom_group = NULL;
1726 struct mem_cgroup *memcg;
1727
1728 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1729 return NULL;
1730
1731 if (!oom_domain)
1732 oom_domain = root_mem_cgroup;
1733
1734 rcu_read_lock();
1735
1736 memcg = mem_cgroup_from_task(victim);
1737 if (mem_cgroup_is_root(memcg))
1738 goto out;
1739
1740 /*
1741 * If the victim task has been asynchronously moved to a different
1742 * memory cgroup, we might end up killing tasks outside oom_domain.
1743 * In this case it's better to ignore memory.group.oom.
1744 */
1745 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1746 goto out;
1747
1748 /*
1749 * Traverse the memory cgroup hierarchy from the victim task's
1750 * cgroup up to the OOMing cgroup (or root) to find the
1751 * highest-level memory cgroup with oom.group set.
1752 */
1753 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1754 if (READ_ONCE(memcg->oom_group))
1755 oom_group = memcg;
1756
1757 if (memcg == oom_domain)
1758 break;
1759 }
1760
1761 if (oom_group)
1762 css_get(&oom_group->css);
1763 out:
1764 rcu_read_unlock();
1765
1766 return oom_group;
1767 }
1768
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1769 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1770 {
1771 pr_info("Tasks in ");
1772 pr_cont_cgroup_path(memcg->css.cgroup);
1773 pr_cont(" are going to be killed due to memory.oom.group set\n");
1774 }
1775
1776 /*
1777 * The value of NR_MEMCG_STOCK is selected to keep the cached memcgs and their
1778 * nr_pages in a single cacheline. This may change in future.
1779 */
1780 #define NR_MEMCG_STOCK 7
1781 #define FLUSHING_CACHED_CHARGE 0
1782 struct memcg_stock_pcp {
1783 local_trylock_t lock;
1784 uint8_t nr_pages[NR_MEMCG_STOCK];
1785 struct mem_cgroup *cached[NR_MEMCG_STOCK];
1786
1787 struct work_struct work;
1788 unsigned long flags;
1789 };
1790
1791 static DEFINE_PER_CPU_ALIGNED(struct memcg_stock_pcp, memcg_stock) = {
1792 .lock = INIT_LOCAL_TRYLOCK(lock),
1793 };
1794
1795 struct obj_stock_pcp {
1796 local_trylock_t lock;
1797 unsigned int nr_bytes;
1798 struct obj_cgroup *cached_objcg;
1799 struct pglist_data *cached_pgdat;
1800 int nr_slab_reclaimable_b;
1801 int nr_slab_unreclaimable_b;
1802
1803 struct work_struct work;
1804 unsigned long flags;
1805 };
1806
1807 static DEFINE_PER_CPU_ALIGNED(struct obj_stock_pcp, obj_stock) = {
1808 .lock = INIT_LOCAL_TRYLOCK(lock),
1809 };
1810
1811 static DEFINE_MUTEX(percpu_charge_mutex);
1812
1813 static void drain_obj_stock(struct obj_stock_pcp *stock);
1814 static bool obj_stock_flush_required(struct obj_stock_pcp *stock,
1815 struct mem_cgroup *root_memcg);
1816
1817 /**
1818 * consume_stock: Try to consume stocked charge on this cpu.
1819 * @memcg: memcg to consume from.
1820 * @nr_pages: how many pages to charge.
1821 *
1822 * Consume the cached charge if enough nr_pages are present otherwise return
1823 * failure. Also return failure for charge request larger than
1824 * MEMCG_CHARGE_BATCH or if the local lock is already taken.
1825 *
1826 * returns true if successful, false otherwise.
1827 */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1828 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1829 {
1830 struct memcg_stock_pcp *stock;
1831 uint8_t stock_pages;
1832 bool ret = false;
1833 int i;
1834
1835 if (nr_pages > MEMCG_CHARGE_BATCH ||
1836 !local_trylock(&memcg_stock.lock))
1837 return ret;
1838
1839 stock = this_cpu_ptr(&memcg_stock);
1840
1841 for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1842 if (memcg != READ_ONCE(stock->cached[i]))
1843 continue;
1844
1845 stock_pages = READ_ONCE(stock->nr_pages[i]);
1846 if (stock_pages >= nr_pages) {
1847 WRITE_ONCE(stock->nr_pages[i], stock_pages - nr_pages);
1848 ret = true;
1849 }
1850 break;
1851 }
1852
1853 local_unlock(&memcg_stock.lock);
1854
1855 return ret;
1856 }
1857
memcg_uncharge(struct mem_cgroup * memcg,unsigned int nr_pages)1858 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
1859 {
1860 page_counter_uncharge(&memcg->memory, nr_pages);
1861 if (do_memsw_account())
1862 page_counter_uncharge(&memcg->memsw, nr_pages);
1863 }
1864
1865 /*
1866 * Returns stocks cached in percpu and reset cached information.
1867 */
drain_stock(struct memcg_stock_pcp * stock,int i)1868 static void drain_stock(struct memcg_stock_pcp *stock, int i)
1869 {
1870 struct mem_cgroup *old = READ_ONCE(stock->cached[i]);
1871 uint8_t stock_pages;
1872
1873 if (!old)
1874 return;
1875
1876 stock_pages = READ_ONCE(stock->nr_pages[i]);
1877 if (stock_pages) {
1878 memcg_uncharge(old, stock_pages);
1879 WRITE_ONCE(stock->nr_pages[i], 0);
1880 }
1881
1882 css_put(&old->css);
1883 WRITE_ONCE(stock->cached[i], NULL);
1884 }
1885
drain_stock_fully(struct memcg_stock_pcp * stock)1886 static void drain_stock_fully(struct memcg_stock_pcp *stock)
1887 {
1888 int i;
1889
1890 for (i = 0; i < NR_MEMCG_STOCK; ++i)
1891 drain_stock(stock, i);
1892 }
1893
drain_local_memcg_stock(struct work_struct * dummy)1894 static void drain_local_memcg_stock(struct work_struct *dummy)
1895 {
1896 struct memcg_stock_pcp *stock;
1897
1898 if (WARN_ONCE(!in_task(), "drain in non-task context"))
1899 return;
1900
1901 local_lock(&memcg_stock.lock);
1902
1903 stock = this_cpu_ptr(&memcg_stock);
1904 drain_stock_fully(stock);
1905 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1906
1907 local_unlock(&memcg_stock.lock);
1908 }
1909
drain_local_obj_stock(struct work_struct * dummy)1910 static void drain_local_obj_stock(struct work_struct *dummy)
1911 {
1912 struct obj_stock_pcp *stock;
1913
1914 if (WARN_ONCE(!in_task(), "drain in non-task context"))
1915 return;
1916
1917 local_lock(&obj_stock.lock);
1918
1919 stock = this_cpu_ptr(&obj_stock);
1920 drain_obj_stock(stock);
1921 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1922
1923 local_unlock(&obj_stock.lock);
1924 }
1925
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1926 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1927 {
1928 struct memcg_stock_pcp *stock;
1929 struct mem_cgroup *cached;
1930 uint8_t stock_pages;
1931 bool success = false;
1932 int empty_slot = -1;
1933 int i;
1934
1935 /*
1936 * For now limit MEMCG_CHARGE_BATCH to 127 and less. In future if we
1937 * decide to increase it more than 127 then we will need more careful
1938 * handling of nr_pages[] in struct memcg_stock_pcp.
1939 */
1940 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S8_MAX);
1941
1942 VM_WARN_ON_ONCE(mem_cgroup_is_root(memcg));
1943
1944 if (nr_pages > MEMCG_CHARGE_BATCH ||
1945 !local_trylock(&memcg_stock.lock)) {
1946 /*
1947 * In case of larger than batch refill or unlikely failure to
1948 * lock the percpu memcg_stock.lock, uncharge memcg directly.
1949 */
1950 memcg_uncharge(memcg, nr_pages);
1951 return;
1952 }
1953
1954 stock = this_cpu_ptr(&memcg_stock);
1955 for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1956 cached = READ_ONCE(stock->cached[i]);
1957 if (!cached && empty_slot == -1)
1958 empty_slot = i;
1959 if (memcg == READ_ONCE(stock->cached[i])) {
1960 stock_pages = READ_ONCE(stock->nr_pages[i]) + nr_pages;
1961 WRITE_ONCE(stock->nr_pages[i], stock_pages);
1962 if (stock_pages > MEMCG_CHARGE_BATCH)
1963 drain_stock(stock, i);
1964 success = true;
1965 break;
1966 }
1967 }
1968
1969 if (!success) {
1970 i = empty_slot;
1971 if (i == -1) {
1972 i = get_random_u32_below(NR_MEMCG_STOCK);
1973 drain_stock(stock, i);
1974 }
1975 css_get(&memcg->css);
1976 WRITE_ONCE(stock->cached[i], memcg);
1977 WRITE_ONCE(stock->nr_pages[i], nr_pages);
1978 }
1979
1980 local_unlock(&memcg_stock.lock);
1981 }
1982
is_memcg_drain_needed(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)1983 static bool is_memcg_drain_needed(struct memcg_stock_pcp *stock,
1984 struct mem_cgroup *root_memcg)
1985 {
1986 struct mem_cgroup *memcg;
1987 bool flush = false;
1988 int i;
1989
1990 rcu_read_lock();
1991 for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1992 memcg = READ_ONCE(stock->cached[i]);
1993 if (!memcg)
1994 continue;
1995
1996 if (READ_ONCE(stock->nr_pages[i]) &&
1997 mem_cgroup_is_descendant(memcg, root_memcg)) {
1998 flush = true;
1999 break;
2000 }
2001 }
2002 rcu_read_unlock();
2003 return flush;
2004 }
2005
2006 /*
2007 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2008 * of the hierarchy under it.
2009 */
drain_all_stock(struct mem_cgroup * root_memcg)2010 void drain_all_stock(struct mem_cgroup *root_memcg)
2011 {
2012 int cpu, curcpu;
2013
2014 /* If someone's already draining, avoid adding running more workers. */
2015 if (!mutex_trylock(&percpu_charge_mutex))
2016 return;
2017 /*
2018 * Notify other cpus that system-wide "drain" is running
2019 * We do not care about races with the cpu hotplug because cpu down
2020 * as well as workers from this path always operate on the local
2021 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2022 */
2023 migrate_disable();
2024 curcpu = smp_processor_id();
2025 for_each_online_cpu(cpu) {
2026 struct memcg_stock_pcp *memcg_st = &per_cpu(memcg_stock, cpu);
2027 struct obj_stock_pcp *obj_st = &per_cpu(obj_stock, cpu);
2028
2029 if (!test_bit(FLUSHING_CACHED_CHARGE, &memcg_st->flags) &&
2030 is_memcg_drain_needed(memcg_st, root_memcg) &&
2031 !test_and_set_bit(FLUSHING_CACHED_CHARGE,
2032 &memcg_st->flags)) {
2033 if (cpu == curcpu)
2034 drain_local_memcg_stock(&memcg_st->work);
2035 else if (!cpu_is_isolated(cpu))
2036 schedule_work_on(cpu, &memcg_st->work);
2037 }
2038
2039 if (!test_bit(FLUSHING_CACHED_CHARGE, &obj_st->flags) &&
2040 obj_stock_flush_required(obj_st, root_memcg) &&
2041 !test_and_set_bit(FLUSHING_CACHED_CHARGE,
2042 &obj_st->flags)) {
2043 if (cpu == curcpu)
2044 drain_local_obj_stock(&obj_st->work);
2045 else if (!cpu_is_isolated(cpu))
2046 schedule_work_on(cpu, &obj_st->work);
2047 }
2048 }
2049 migrate_enable();
2050 mutex_unlock(&percpu_charge_mutex);
2051 }
2052
memcg_hotplug_cpu_dead(unsigned int cpu)2053 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2054 {
2055 /* no need for the local lock */
2056 drain_obj_stock(&per_cpu(obj_stock, cpu));
2057 drain_stock_fully(&per_cpu(memcg_stock, cpu));
2058
2059 return 0;
2060 }
2061
reclaim_high(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)2062 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2063 unsigned int nr_pages,
2064 gfp_t gfp_mask)
2065 {
2066 unsigned long nr_reclaimed = 0;
2067
2068 do {
2069 unsigned long pflags;
2070
2071 if (page_counter_read(&memcg->memory) <=
2072 READ_ONCE(memcg->memory.high))
2073 continue;
2074
2075 memcg_memory_event(memcg, MEMCG_HIGH);
2076
2077 psi_memstall_enter(&pflags);
2078 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2079 gfp_mask,
2080 MEMCG_RECLAIM_MAY_SWAP,
2081 NULL);
2082 psi_memstall_leave(&pflags);
2083 } while ((memcg = parent_mem_cgroup(memcg)) &&
2084 !mem_cgroup_is_root(memcg));
2085
2086 return nr_reclaimed;
2087 }
2088
high_work_func(struct work_struct * work)2089 static void high_work_func(struct work_struct *work)
2090 {
2091 struct mem_cgroup *memcg;
2092
2093 memcg = container_of(work, struct mem_cgroup, high_work);
2094 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2095 }
2096
2097 /*
2098 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2099 * enough to still cause a significant slowdown in most cases, while still
2100 * allowing diagnostics and tracing to proceed without becoming stuck.
2101 */
2102 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2103
2104 /*
2105 * When calculating the delay, we use these either side of the exponentiation to
2106 * maintain precision and scale to a reasonable number of jiffies (see the table
2107 * below.
2108 *
2109 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2110 * overage ratio to a delay.
2111 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2112 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2113 * to produce a reasonable delay curve.
2114 *
2115 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2116 * reasonable delay curve compared to precision-adjusted overage, not
2117 * penalising heavily at first, but still making sure that growth beyond the
2118 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2119 * example, with a high of 100 megabytes:
2120 *
2121 * +-------+------------------------+
2122 * | usage | time to allocate in ms |
2123 * +-------+------------------------+
2124 * | 100M | 0 |
2125 * | 101M | 6 |
2126 * | 102M | 25 |
2127 * | 103M | 57 |
2128 * | 104M | 102 |
2129 * | 105M | 159 |
2130 * | 106M | 230 |
2131 * | 107M | 313 |
2132 * | 108M | 409 |
2133 * | 109M | 518 |
2134 * | 110M | 639 |
2135 * | 111M | 774 |
2136 * | 112M | 921 |
2137 * | 113M | 1081 |
2138 * | 114M | 1254 |
2139 * | 115M | 1439 |
2140 * | 116M | 1638 |
2141 * | 117M | 1849 |
2142 * | 118M | 2000 |
2143 * | 119M | 2000 |
2144 * | 120M | 2000 |
2145 * +-------+------------------------+
2146 */
2147 #define MEMCG_DELAY_PRECISION_SHIFT 20
2148 #define MEMCG_DELAY_SCALING_SHIFT 14
2149
calculate_overage(unsigned long usage,unsigned long high)2150 static u64 calculate_overage(unsigned long usage, unsigned long high)
2151 {
2152 u64 overage;
2153
2154 if (usage <= high)
2155 return 0;
2156
2157 /*
2158 * Prevent division by 0 in overage calculation by acting as if
2159 * it was a threshold of 1 page
2160 */
2161 high = max(high, 1UL);
2162
2163 overage = usage - high;
2164 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2165 return div64_u64(overage, high);
2166 }
2167
mem_find_max_overage(struct mem_cgroup * memcg)2168 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2169 {
2170 u64 overage, max_overage = 0;
2171
2172 do {
2173 overage = calculate_overage(page_counter_read(&memcg->memory),
2174 READ_ONCE(memcg->memory.high));
2175 max_overage = max(overage, max_overage);
2176 } while ((memcg = parent_mem_cgroup(memcg)) &&
2177 !mem_cgroup_is_root(memcg));
2178
2179 return max_overage;
2180 }
2181
swap_find_max_overage(struct mem_cgroup * memcg)2182 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2183 {
2184 u64 overage, max_overage = 0;
2185
2186 do {
2187 overage = calculate_overage(page_counter_read(&memcg->swap),
2188 READ_ONCE(memcg->swap.high));
2189 if (overage)
2190 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2191 max_overage = max(overage, max_overage);
2192 } while ((memcg = parent_mem_cgroup(memcg)) &&
2193 !mem_cgroup_is_root(memcg));
2194
2195 return max_overage;
2196 }
2197
2198 /*
2199 * Get the number of jiffies that we should penalise a mischievous cgroup which
2200 * is exceeding its memory.high by checking both it and its ancestors.
2201 */
calculate_high_delay(struct mem_cgroup * memcg,unsigned int nr_pages,u64 max_overage)2202 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2203 unsigned int nr_pages,
2204 u64 max_overage)
2205 {
2206 unsigned long penalty_jiffies;
2207
2208 if (!max_overage)
2209 return 0;
2210
2211 /*
2212 * We use overage compared to memory.high to calculate the number of
2213 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2214 * fairly lenient on small overages, and increasingly harsh when the
2215 * memcg in question makes it clear that it has no intention of stopping
2216 * its crazy behaviour, so we exponentially increase the delay based on
2217 * overage amount.
2218 */
2219 penalty_jiffies = max_overage * max_overage * HZ;
2220 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2221 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2222
2223 /*
2224 * Factor in the task's own contribution to the overage, such that four
2225 * N-sized allocations are throttled approximately the same as one
2226 * 4N-sized allocation.
2227 *
2228 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2229 * larger the current charge patch is than that.
2230 */
2231 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2232 }
2233
2234 /*
2235 * Reclaims memory over the high limit. Called directly from
2236 * try_charge() (context permitting), as well as from the userland
2237 * return path where reclaim is always able to block.
2238 */
__mem_cgroup_handle_over_high(gfp_t gfp_mask)2239 void __mem_cgroup_handle_over_high(gfp_t gfp_mask)
2240 {
2241 unsigned long penalty_jiffies;
2242 unsigned long pflags;
2243 unsigned long nr_reclaimed;
2244 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2245 int nr_retries = MAX_RECLAIM_RETRIES;
2246 struct mem_cgroup *memcg;
2247 bool in_retry = false;
2248
2249 memcg = get_mem_cgroup_from_mm(current->mm);
2250 current->memcg_nr_pages_over_high = 0;
2251
2252 retry_reclaim:
2253 /*
2254 * Bail if the task is already exiting. Unlike memory.max,
2255 * memory.high enforcement isn't as strict, and there is no
2256 * OOM killer involved, which means the excess could already
2257 * be much bigger (and still growing) than it could for
2258 * memory.max; the dying task could get stuck in fruitless
2259 * reclaim for a long time, which isn't desirable.
2260 */
2261 if (task_is_dying())
2262 goto out;
2263
2264 /*
2265 * The allocating task should reclaim at least the batch size, but for
2266 * subsequent retries we only want to do what's necessary to prevent oom
2267 * or breaching resource isolation.
2268 *
2269 * This is distinct from memory.max or page allocator behaviour because
2270 * memory.high is currently batched, whereas memory.max and the page
2271 * allocator run every time an allocation is made.
2272 */
2273 nr_reclaimed = reclaim_high(memcg,
2274 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2275 gfp_mask);
2276
2277 /*
2278 * memory.high is breached and reclaim is unable to keep up. Throttle
2279 * allocators proactively to slow down excessive growth.
2280 */
2281 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2282 mem_find_max_overage(memcg));
2283
2284 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2285 swap_find_max_overage(memcg));
2286
2287 /*
2288 * Clamp the max delay per usermode return so as to still keep the
2289 * application moving forwards and also permit diagnostics, albeit
2290 * extremely slowly.
2291 */
2292 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2293
2294 /*
2295 * Don't sleep if the amount of jiffies this memcg owes us is so low
2296 * that it's not even worth doing, in an attempt to be nice to those who
2297 * go only a small amount over their memory.high value and maybe haven't
2298 * been aggressively reclaimed enough yet.
2299 */
2300 if (penalty_jiffies <= HZ / 100)
2301 goto out;
2302
2303 /*
2304 * If reclaim is making forward progress but we're still over
2305 * memory.high, we want to encourage that rather than doing allocator
2306 * throttling.
2307 */
2308 if (nr_reclaimed || nr_retries--) {
2309 in_retry = true;
2310 goto retry_reclaim;
2311 }
2312
2313 /*
2314 * Reclaim didn't manage to push usage below the limit, slow
2315 * this allocating task down.
2316 *
2317 * If we exit early, we're guaranteed to die (since
2318 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2319 * need to account for any ill-begotten jiffies to pay them off later.
2320 */
2321 psi_memstall_enter(&pflags);
2322 schedule_timeout_killable(penalty_jiffies);
2323 psi_memstall_leave(&pflags);
2324
2325 out:
2326 css_put(&memcg->css);
2327 }
2328
try_charge_memcg(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2329 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2330 unsigned int nr_pages)
2331 {
2332 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2333 int nr_retries = MAX_RECLAIM_RETRIES;
2334 struct mem_cgroup *mem_over_limit;
2335 struct page_counter *counter;
2336 unsigned long nr_reclaimed;
2337 bool passed_oom = false;
2338 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2339 bool drained = false;
2340 bool raised_max_event = false;
2341 unsigned long pflags;
2342 bool allow_spinning = gfpflags_allow_spinning(gfp_mask);
2343
2344 retry:
2345 if (consume_stock(memcg, nr_pages))
2346 return 0;
2347
2348 if (!allow_spinning)
2349 /* Avoid the refill and flush of the older stock */
2350 batch = nr_pages;
2351
2352 if (!do_memsw_account() ||
2353 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2354 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2355 goto done_restock;
2356 if (do_memsw_account())
2357 page_counter_uncharge(&memcg->memsw, batch);
2358 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2359 } else {
2360 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2361 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2362 }
2363
2364 if (batch > nr_pages) {
2365 batch = nr_pages;
2366 goto retry;
2367 }
2368
2369 /*
2370 * Prevent unbounded recursion when reclaim operations need to
2371 * allocate memory. This might exceed the limits temporarily,
2372 * but we prefer facilitating memory reclaim and getting back
2373 * under the limit over triggering OOM kills in these cases.
2374 */
2375 if (unlikely(current->flags & PF_MEMALLOC))
2376 goto force;
2377
2378 if (unlikely(task_in_memcg_oom(current)))
2379 goto nomem;
2380
2381 if (!gfpflags_allow_blocking(gfp_mask))
2382 goto nomem;
2383
2384 __memcg_memory_event(mem_over_limit, MEMCG_MAX, allow_spinning);
2385 raised_max_event = true;
2386
2387 psi_memstall_enter(&pflags);
2388 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2389 gfp_mask, reclaim_options, NULL);
2390 psi_memstall_leave(&pflags);
2391
2392 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2393 goto retry;
2394
2395 if (!drained) {
2396 drain_all_stock(mem_over_limit);
2397 drained = true;
2398 goto retry;
2399 }
2400
2401 if (gfp_mask & __GFP_NORETRY)
2402 goto nomem;
2403 /*
2404 * Even though the limit is exceeded at this point, reclaim
2405 * may have been able to free some pages. Retry the charge
2406 * before killing the task.
2407 *
2408 * Only for regular pages, though: huge pages are rather
2409 * unlikely to succeed so close to the limit, and we fall back
2410 * to regular pages anyway in case of failure.
2411 */
2412 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2413 goto retry;
2414
2415 if (nr_retries--)
2416 goto retry;
2417
2418 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2419 goto nomem;
2420
2421 /* Avoid endless loop for tasks bypassed by the oom killer */
2422 if (passed_oom && task_is_dying())
2423 goto nomem;
2424
2425 /*
2426 * keep retrying as long as the memcg oom killer is able to make
2427 * a forward progress or bypass the charge if the oom killer
2428 * couldn't make any progress.
2429 */
2430 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2431 get_order(nr_pages * PAGE_SIZE))) {
2432 passed_oom = true;
2433 nr_retries = MAX_RECLAIM_RETRIES;
2434 goto retry;
2435 }
2436 nomem:
2437 /*
2438 * Memcg doesn't have a dedicated reserve for atomic
2439 * allocations. But like the global atomic pool, we need to
2440 * put the burden of reclaim on regular allocation requests
2441 * and let these go through as privileged allocations.
2442 */
2443 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2444 return -ENOMEM;
2445 force:
2446 /*
2447 * If the allocation has to be enforced, don't forget to raise
2448 * a MEMCG_MAX event.
2449 */
2450 if (!raised_max_event)
2451 __memcg_memory_event(mem_over_limit, MEMCG_MAX, allow_spinning);
2452
2453 /*
2454 * The allocation either can't fail or will lead to more memory
2455 * being freed very soon. Allow memory usage go over the limit
2456 * temporarily by force charging it.
2457 */
2458 page_counter_charge(&memcg->memory, nr_pages);
2459 if (do_memsw_account())
2460 page_counter_charge(&memcg->memsw, nr_pages);
2461
2462 return 0;
2463
2464 done_restock:
2465 if (batch > nr_pages)
2466 refill_stock(memcg, batch - nr_pages);
2467
2468 /*
2469 * If the hierarchy is above the normal consumption range, schedule
2470 * reclaim on returning to userland. We can perform reclaim here
2471 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2472 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2473 * not recorded as it most likely matches current's and won't
2474 * change in the meantime. As high limit is checked again before
2475 * reclaim, the cost of mismatch is negligible.
2476 */
2477 do {
2478 bool mem_high, swap_high;
2479
2480 mem_high = page_counter_read(&memcg->memory) >
2481 READ_ONCE(memcg->memory.high);
2482 swap_high = page_counter_read(&memcg->swap) >
2483 READ_ONCE(memcg->swap.high);
2484
2485 /* Don't bother a random interrupted task */
2486 if (!in_task()) {
2487 if (mem_high) {
2488 schedule_work(&memcg->high_work);
2489 break;
2490 }
2491 continue;
2492 }
2493
2494 if (mem_high || swap_high) {
2495 /*
2496 * The allocating tasks in this cgroup will need to do
2497 * reclaim or be throttled to prevent further growth
2498 * of the memory or swap footprints.
2499 *
2500 * Target some best-effort fairness between the tasks,
2501 * and distribute reclaim work and delay penalties
2502 * based on how much each task is actually allocating.
2503 */
2504 current->memcg_nr_pages_over_high += batch;
2505 set_notify_resume(current);
2506 break;
2507 }
2508 } while ((memcg = parent_mem_cgroup(memcg)));
2509
2510 /*
2511 * Reclaim is set up above to be called from the userland
2512 * return path. But also attempt synchronous reclaim to avoid
2513 * excessive overrun while the task is still inside the
2514 * kernel. If this is successful, the return path will see it
2515 * when it rechecks the overage and simply bail out.
2516 */
2517 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2518 !(current->flags & PF_MEMALLOC) &&
2519 gfpflags_allow_blocking(gfp_mask))
2520 __mem_cgroup_handle_over_high(gfp_mask);
2521 return 0;
2522 }
2523
try_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2524 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2525 unsigned int nr_pages)
2526 {
2527 if (mem_cgroup_is_root(memcg))
2528 return 0;
2529
2530 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2531 }
2532
commit_charge(struct folio * folio,struct mem_cgroup * memcg)2533 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2534 {
2535 VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio);
2536 /*
2537 * Any of the following ensures page's memcg stability:
2538 *
2539 * - the page lock
2540 * - LRU isolation
2541 * - exclusive reference
2542 */
2543 folio->memcg_data = (unsigned long)memcg;
2544 }
2545
2546 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
account_slab_nmi_safe(struct mem_cgroup * memcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2547 static inline void account_slab_nmi_safe(struct mem_cgroup *memcg,
2548 struct pglist_data *pgdat,
2549 enum node_stat_item idx, int nr)
2550 {
2551 struct lruvec *lruvec;
2552
2553 if (likely(!in_nmi())) {
2554 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2555 mod_memcg_lruvec_state(lruvec, idx, nr);
2556 } else {
2557 struct mem_cgroup_per_node *pn = memcg->nodeinfo[pgdat->node_id];
2558
2559 /* preemption is disabled in_nmi(). */
2560 css_rstat_updated(&memcg->css, smp_processor_id());
2561 if (idx == NR_SLAB_RECLAIMABLE_B)
2562 atomic_add(nr, &pn->slab_reclaimable);
2563 else
2564 atomic_add(nr, &pn->slab_unreclaimable);
2565 }
2566 }
2567 #else
account_slab_nmi_safe(struct mem_cgroup * memcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2568 static inline void account_slab_nmi_safe(struct mem_cgroup *memcg,
2569 struct pglist_data *pgdat,
2570 enum node_stat_item idx, int nr)
2571 {
2572 struct lruvec *lruvec;
2573
2574 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2575 mod_memcg_lruvec_state(lruvec, idx, nr);
2576 }
2577 #endif
2578
mod_objcg_mlstate(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2579 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2580 struct pglist_data *pgdat,
2581 enum node_stat_item idx, int nr)
2582 {
2583 struct mem_cgroup *memcg;
2584
2585 rcu_read_lock();
2586 memcg = obj_cgroup_memcg(objcg);
2587 account_slab_nmi_safe(memcg, pgdat, idx, nr);
2588 rcu_read_unlock();
2589 }
2590
2591 static __always_inline
mem_cgroup_from_obj_slab(struct slab * slab,void * p)2592 struct mem_cgroup *mem_cgroup_from_obj_slab(struct slab *slab, void *p)
2593 {
2594 /*
2595 * Slab objects are accounted individually, not per-page.
2596 * Memcg membership data for each individual object is saved in
2597 * slab->obj_exts.
2598 */
2599 struct slabobj_ext *obj_exts;
2600 unsigned int off;
2601
2602 obj_exts = slab_obj_exts(slab);
2603 if (!obj_exts)
2604 return NULL;
2605
2606 off = obj_to_index(slab->slab_cache, slab, p);
2607 if (obj_exts[off].objcg)
2608 return obj_cgroup_memcg(obj_exts[off].objcg);
2609
2610 return NULL;
2611 }
2612
2613 /*
2614 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2615 * It is not suitable for objects allocated using vmalloc().
2616 *
2617 * A passed kernel object must be a slab object or a generic kernel page.
2618 *
2619 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2620 * cgroup_mutex, etc.
2621 */
mem_cgroup_from_slab_obj(void * p)2622 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2623 {
2624 struct slab *slab;
2625
2626 if (mem_cgroup_disabled())
2627 return NULL;
2628
2629 slab = virt_to_slab(p);
2630 if (slab)
2631 return mem_cgroup_from_obj_slab(slab, p);
2632 return folio_memcg_check(virt_to_folio(p));
2633 }
2634
__get_obj_cgroup_from_memcg(struct mem_cgroup * memcg)2635 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2636 {
2637 struct obj_cgroup *objcg = NULL;
2638
2639 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2640 objcg = rcu_dereference(memcg->objcg);
2641 if (likely(objcg && obj_cgroup_tryget(objcg)))
2642 break;
2643 objcg = NULL;
2644 }
2645 return objcg;
2646 }
2647
current_objcg_update(void)2648 static struct obj_cgroup *current_objcg_update(void)
2649 {
2650 struct mem_cgroup *memcg;
2651 struct obj_cgroup *old, *objcg = NULL;
2652
2653 do {
2654 /* Atomically drop the update bit. */
2655 old = xchg(¤t->objcg, NULL);
2656 if (old) {
2657 old = (struct obj_cgroup *)
2658 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
2659 obj_cgroup_put(old);
2660
2661 old = NULL;
2662 }
2663
2664 /* If new objcg is NULL, no reason for the second atomic update. */
2665 if (!current->mm || (current->flags & PF_KTHREAD))
2666 return NULL;
2667
2668 /*
2669 * Release the objcg pointer from the previous iteration,
2670 * if try_cmpxcg() below fails.
2671 */
2672 if (unlikely(objcg)) {
2673 obj_cgroup_put(objcg);
2674 objcg = NULL;
2675 }
2676
2677 /*
2678 * Obtain the new objcg pointer. The current task can be
2679 * asynchronously moved to another memcg and the previous
2680 * memcg can be offlined. So let's get the memcg pointer
2681 * and try get a reference to objcg under a rcu read lock.
2682 */
2683
2684 rcu_read_lock();
2685 memcg = mem_cgroup_from_task(current);
2686 objcg = __get_obj_cgroup_from_memcg(memcg);
2687 rcu_read_unlock();
2688
2689 /*
2690 * Try set up a new objcg pointer atomically. If it
2691 * fails, it means the update flag was set concurrently, so
2692 * the whole procedure should be repeated.
2693 */
2694 } while (!try_cmpxchg(¤t->objcg, &old, objcg));
2695
2696 return objcg;
2697 }
2698
current_obj_cgroup(void)2699 __always_inline struct obj_cgroup *current_obj_cgroup(void)
2700 {
2701 struct mem_cgroup *memcg;
2702 struct obj_cgroup *objcg;
2703
2704 if (IS_ENABLED(CONFIG_MEMCG_NMI_UNSAFE) && in_nmi())
2705 return NULL;
2706
2707 if (in_task()) {
2708 memcg = current->active_memcg;
2709 if (unlikely(memcg))
2710 goto from_memcg;
2711
2712 objcg = READ_ONCE(current->objcg);
2713 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
2714 objcg = current_objcg_update();
2715 /*
2716 * Objcg reference is kept by the task, so it's safe
2717 * to use the objcg by the current task.
2718 */
2719 return objcg;
2720 }
2721
2722 memcg = this_cpu_read(int_active_memcg);
2723 if (unlikely(memcg))
2724 goto from_memcg;
2725
2726 return NULL;
2727
2728 from_memcg:
2729 objcg = NULL;
2730 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2731 /*
2732 * Memcg pointer is protected by scope (see set_active_memcg())
2733 * and is pinning the corresponding objcg, so objcg can't go
2734 * away and can be used within the scope without any additional
2735 * protection.
2736 */
2737 objcg = rcu_dereference_check(memcg->objcg, 1);
2738 if (likely(objcg))
2739 break;
2740 }
2741
2742 return objcg;
2743 }
2744
get_obj_cgroup_from_folio(struct folio * folio)2745 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
2746 {
2747 struct obj_cgroup *objcg;
2748
2749 if (!memcg_kmem_online())
2750 return NULL;
2751
2752 if (folio_memcg_kmem(folio)) {
2753 objcg = __folio_objcg(folio);
2754 obj_cgroup_get(objcg);
2755 } else {
2756 struct mem_cgroup *memcg;
2757
2758 rcu_read_lock();
2759 memcg = __folio_memcg(folio);
2760 if (memcg)
2761 objcg = __get_obj_cgroup_from_memcg(memcg);
2762 else
2763 objcg = NULL;
2764 rcu_read_unlock();
2765 }
2766 return objcg;
2767 }
2768
2769 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
account_kmem_nmi_safe(struct mem_cgroup * memcg,int val)2770 static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val)
2771 {
2772 if (likely(!in_nmi())) {
2773 mod_memcg_state(memcg, MEMCG_KMEM, val);
2774 } else {
2775 /* preemption is disabled in_nmi(). */
2776 css_rstat_updated(&memcg->css, smp_processor_id());
2777 atomic_add(val, &memcg->kmem_stat);
2778 }
2779 }
2780 #else
account_kmem_nmi_safe(struct mem_cgroup * memcg,int val)2781 static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val)
2782 {
2783 mod_memcg_state(memcg, MEMCG_KMEM, val);
2784 }
2785 #endif
2786
2787 /*
2788 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2789 * @objcg: object cgroup to uncharge
2790 * @nr_pages: number of pages to uncharge
2791 */
obj_cgroup_uncharge_pages(struct obj_cgroup * objcg,unsigned int nr_pages)2792 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2793 unsigned int nr_pages)
2794 {
2795 struct mem_cgroup *memcg;
2796
2797 memcg = get_mem_cgroup_from_objcg(objcg);
2798
2799 account_kmem_nmi_safe(memcg, -nr_pages);
2800 memcg1_account_kmem(memcg, -nr_pages);
2801 if (!mem_cgroup_is_root(memcg))
2802 refill_stock(memcg, nr_pages);
2803
2804 css_put(&memcg->css);
2805 }
2806
2807 /*
2808 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2809 * @objcg: object cgroup to charge
2810 * @gfp: reclaim mode
2811 * @nr_pages: number of pages to charge
2812 *
2813 * Returns 0 on success, an error code on failure.
2814 */
obj_cgroup_charge_pages(struct obj_cgroup * objcg,gfp_t gfp,unsigned int nr_pages)2815 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2816 unsigned int nr_pages)
2817 {
2818 struct mem_cgroup *memcg;
2819 int ret;
2820
2821 memcg = get_mem_cgroup_from_objcg(objcg);
2822
2823 ret = try_charge_memcg(memcg, gfp, nr_pages);
2824 if (ret)
2825 goto out;
2826
2827 account_kmem_nmi_safe(memcg, nr_pages);
2828 memcg1_account_kmem(memcg, nr_pages);
2829 out:
2830 css_put(&memcg->css);
2831
2832 return ret;
2833 }
2834
page_objcg(const struct page * page)2835 static struct obj_cgroup *page_objcg(const struct page *page)
2836 {
2837 unsigned long memcg_data = page->memcg_data;
2838
2839 if (mem_cgroup_disabled() || !memcg_data)
2840 return NULL;
2841
2842 VM_BUG_ON_PAGE((memcg_data & OBJEXTS_FLAGS_MASK) != MEMCG_DATA_KMEM,
2843 page);
2844 return (struct obj_cgroup *)(memcg_data - MEMCG_DATA_KMEM);
2845 }
2846
page_set_objcg(struct page * page,const struct obj_cgroup * objcg)2847 static void page_set_objcg(struct page *page, const struct obj_cgroup *objcg)
2848 {
2849 page->memcg_data = (unsigned long)objcg | MEMCG_DATA_KMEM;
2850 }
2851
2852 /**
2853 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2854 * @page: page to charge
2855 * @gfp: reclaim mode
2856 * @order: allocation order
2857 *
2858 * Returns 0 on success, an error code on failure.
2859 */
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)2860 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2861 {
2862 struct obj_cgroup *objcg;
2863 int ret = 0;
2864
2865 objcg = current_obj_cgroup();
2866 if (objcg) {
2867 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2868 if (!ret) {
2869 obj_cgroup_get(objcg);
2870 page_set_objcg(page, objcg);
2871 return 0;
2872 }
2873 }
2874 return ret;
2875 }
2876
2877 /**
2878 * __memcg_kmem_uncharge_page: uncharge a kmem page
2879 * @page: page to uncharge
2880 * @order: allocation order
2881 */
__memcg_kmem_uncharge_page(struct page * page,int order)2882 void __memcg_kmem_uncharge_page(struct page *page, int order)
2883 {
2884 struct obj_cgroup *objcg = page_objcg(page);
2885 unsigned int nr_pages = 1 << order;
2886
2887 if (!objcg)
2888 return;
2889
2890 obj_cgroup_uncharge_pages(objcg, nr_pages);
2891 page->memcg_data = 0;
2892 obj_cgroup_put(objcg);
2893 }
2894
__account_obj_stock(struct obj_cgroup * objcg,struct obj_stock_pcp * stock,int nr,struct pglist_data * pgdat,enum node_stat_item idx)2895 static void __account_obj_stock(struct obj_cgroup *objcg,
2896 struct obj_stock_pcp *stock, int nr,
2897 struct pglist_data *pgdat, enum node_stat_item idx)
2898 {
2899 int *bytes;
2900
2901 /*
2902 * Save vmstat data in stock and skip vmstat array update unless
2903 * accumulating over a page of vmstat data or when pgdat changes.
2904 */
2905 if (stock->cached_pgdat != pgdat) {
2906 /* Flush the existing cached vmstat data */
2907 struct pglist_data *oldpg = stock->cached_pgdat;
2908
2909 if (stock->nr_slab_reclaimable_b) {
2910 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
2911 stock->nr_slab_reclaimable_b);
2912 stock->nr_slab_reclaimable_b = 0;
2913 }
2914 if (stock->nr_slab_unreclaimable_b) {
2915 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
2916 stock->nr_slab_unreclaimable_b);
2917 stock->nr_slab_unreclaimable_b = 0;
2918 }
2919 stock->cached_pgdat = pgdat;
2920 }
2921
2922 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
2923 : &stock->nr_slab_unreclaimable_b;
2924 /*
2925 * Even for large object >= PAGE_SIZE, the vmstat data will still be
2926 * cached locally at least once before pushing it out.
2927 */
2928 if (!*bytes) {
2929 *bytes = nr;
2930 nr = 0;
2931 } else {
2932 *bytes += nr;
2933 if (abs(*bytes) > PAGE_SIZE) {
2934 nr = *bytes;
2935 *bytes = 0;
2936 } else {
2937 nr = 0;
2938 }
2939 }
2940 if (nr)
2941 mod_objcg_mlstate(objcg, pgdat, idx, nr);
2942 }
2943
consume_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes,struct pglist_data * pgdat,enum node_stat_item idx)2944 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
2945 struct pglist_data *pgdat, enum node_stat_item idx)
2946 {
2947 struct obj_stock_pcp *stock;
2948 bool ret = false;
2949
2950 if (!local_trylock(&obj_stock.lock))
2951 return ret;
2952
2953 stock = this_cpu_ptr(&obj_stock);
2954 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
2955 stock->nr_bytes -= nr_bytes;
2956 ret = true;
2957
2958 if (pgdat)
2959 __account_obj_stock(objcg, stock, nr_bytes, pgdat, idx);
2960 }
2961
2962 local_unlock(&obj_stock.lock);
2963
2964 return ret;
2965 }
2966
drain_obj_stock(struct obj_stock_pcp * stock)2967 static void drain_obj_stock(struct obj_stock_pcp *stock)
2968 {
2969 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
2970
2971 if (!old)
2972 return;
2973
2974 if (stock->nr_bytes) {
2975 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2976 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
2977
2978 if (nr_pages) {
2979 struct mem_cgroup *memcg;
2980
2981 memcg = get_mem_cgroup_from_objcg(old);
2982
2983 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2984 memcg1_account_kmem(memcg, -nr_pages);
2985 if (!mem_cgroup_is_root(memcg))
2986 memcg_uncharge(memcg, nr_pages);
2987
2988 css_put(&memcg->css);
2989 }
2990
2991 /*
2992 * The leftover is flushed to the centralized per-memcg value.
2993 * On the next attempt to refill obj stock it will be moved
2994 * to a per-cpu stock (probably, on an other CPU), see
2995 * refill_obj_stock().
2996 *
2997 * How often it's flushed is a trade-off between the memory
2998 * limit enforcement accuracy and potential CPU contention,
2999 * so it might be changed in the future.
3000 */
3001 atomic_add(nr_bytes, &old->nr_charged_bytes);
3002 stock->nr_bytes = 0;
3003 }
3004
3005 /*
3006 * Flush the vmstat data in current stock
3007 */
3008 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3009 if (stock->nr_slab_reclaimable_b) {
3010 mod_objcg_mlstate(old, stock->cached_pgdat,
3011 NR_SLAB_RECLAIMABLE_B,
3012 stock->nr_slab_reclaimable_b);
3013 stock->nr_slab_reclaimable_b = 0;
3014 }
3015 if (stock->nr_slab_unreclaimable_b) {
3016 mod_objcg_mlstate(old, stock->cached_pgdat,
3017 NR_SLAB_UNRECLAIMABLE_B,
3018 stock->nr_slab_unreclaimable_b);
3019 stock->nr_slab_unreclaimable_b = 0;
3020 }
3021 stock->cached_pgdat = NULL;
3022 }
3023
3024 WRITE_ONCE(stock->cached_objcg, NULL);
3025 obj_cgroup_put(old);
3026 }
3027
obj_stock_flush_required(struct obj_stock_pcp * stock,struct mem_cgroup * root_memcg)3028 static bool obj_stock_flush_required(struct obj_stock_pcp *stock,
3029 struct mem_cgroup *root_memcg)
3030 {
3031 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3032 struct mem_cgroup *memcg;
3033 bool flush = false;
3034
3035 rcu_read_lock();
3036 if (objcg) {
3037 memcg = obj_cgroup_memcg(objcg);
3038 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3039 flush = true;
3040 }
3041 rcu_read_unlock();
3042
3043 return flush;
3044 }
3045
refill_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes,bool allow_uncharge,int nr_acct,struct pglist_data * pgdat,enum node_stat_item idx)3046 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3047 bool allow_uncharge, int nr_acct, struct pglist_data *pgdat,
3048 enum node_stat_item idx)
3049 {
3050 struct obj_stock_pcp *stock;
3051 unsigned int nr_pages = 0;
3052
3053 if (!local_trylock(&obj_stock.lock)) {
3054 if (pgdat)
3055 mod_objcg_mlstate(objcg, pgdat, idx, nr_bytes);
3056 nr_pages = nr_bytes >> PAGE_SHIFT;
3057 nr_bytes = nr_bytes & (PAGE_SIZE - 1);
3058 atomic_add(nr_bytes, &objcg->nr_charged_bytes);
3059 goto out;
3060 }
3061
3062 stock = this_cpu_ptr(&obj_stock);
3063 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3064 drain_obj_stock(stock);
3065 obj_cgroup_get(objcg);
3066 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3067 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3068 WRITE_ONCE(stock->cached_objcg, objcg);
3069
3070 allow_uncharge = true; /* Allow uncharge when objcg changes */
3071 }
3072 stock->nr_bytes += nr_bytes;
3073
3074 if (pgdat)
3075 __account_obj_stock(objcg, stock, nr_acct, pgdat, idx);
3076
3077 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3078 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3079 stock->nr_bytes &= (PAGE_SIZE - 1);
3080 }
3081
3082 local_unlock(&obj_stock.lock);
3083 out:
3084 if (nr_pages)
3085 obj_cgroup_uncharge_pages(objcg, nr_pages);
3086 }
3087
obj_cgroup_charge_account(struct obj_cgroup * objcg,gfp_t gfp,size_t size,struct pglist_data * pgdat,enum node_stat_item idx)3088 static int obj_cgroup_charge_account(struct obj_cgroup *objcg, gfp_t gfp, size_t size,
3089 struct pglist_data *pgdat, enum node_stat_item idx)
3090 {
3091 unsigned int nr_pages, nr_bytes;
3092 int ret;
3093
3094 if (likely(consume_obj_stock(objcg, size, pgdat, idx)))
3095 return 0;
3096
3097 /*
3098 * In theory, objcg->nr_charged_bytes can have enough
3099 * pre-charged bytes to satisfy the allocation. However,
3100 * flushing objcg->nr_charged_bytes requires two atomic
3101 * operations, and objcg->nr_charged_bytes can't be big.
3102 * The shared objcg->nr_charged_bytes can also become a
3103 * performance bottleneck if all tasks of the same memcg are
3104 * trying to update it. So it's better to ignore it and try
3105 * grab some new pages. The stock's nr_bytes will be flushed to
3106 * objcg->nr_charged_bytes later on when objcg changes.
3107 *
3108 * The stock's nr_bytes may contain enough pre-charged bytes
3109 * to allow one less page from being charged, but we can't rely
3110 * on the pre-charged bytes not being changed outside of
3111 * consume_obj_stock() or refill_obj_stock(). So ignore those
3112 * pre-charged bytes as well when charging pages. To avoid a
3113 * page uncharge right after a page charge, we set the
3114 * allow_uncharge flag to false when calling refill_obj_stock()
3115 * to temporarily allow the pre-charged bytes to exceed the page
3116 * size limit. The maximum reachable value of the pre-charged
3117 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3118 * race.
3119 */
3120 nr_pages = size >> PAGE_SHIFT;
3121 nr_bytes = size & (PAGE_SIZE - 1);
3122
3123 if (nr_bytes)
3124 nr_pages += 1;
3125
3126 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3127 if (!ret && (nr_bytes || pgdat))
3128 refill_obj_stock(objcg, nr_bytes ? PAGE_SIZE - nr_bytes : 0,
3129 false, size, pgdat, idx);
3130
3131 return ret;
3132 }
3133
obj_cgroup_charge(struct obj_cgroup * objcg,gfp_t gfp,size_t size)3134 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3135 {
3136 return obj_cgroup_charge_account(objcg, gfp, size, NULL, 0);
3137 }
3138
obj_cgroup_uncharge(struct obj_cgroup * objcg,size_t size)3139 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3140 {
3141 refill_obj_stock(objcg, size, true, 0, NULL, 0);
3142 }
3143
obj_full_size(struct kmem_cache * s)3144 static inline size_t obj_full_size(struct kmem_cache *s)
3145 {
3146 /*
3147 * For each accounted object there is an extra space which is used
3148 * to store obj_cgroup membership. Charge it too.
3149 */
3150 return s->size + sizeof(struct obj_cgroup *);
3151 }
3152
__memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)3153 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
3154 gfp_t flags, size_t size, void **p)
3155 {
3156 struct obj_cgroup *objcg;
3157 struct slab *slab;
3158 unsigned long off;
3159 size_t i;
3160
3161 /*
3162 * The obtained objcg pointer is safe to use within the current scope,
3163 * defined by current task or set_active_memcg() pair.
3164 * obj_cgroup_get() is used to get a permanent reference.
3165 */
3166 objcg = current_obj_cgroup();
3167 if (!objcg)
3168 return true;
3169
3170 /*
3171 * slab_alloc_node() avoids the NULL check, so we might be called with a
3172 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill
3173 * the whole requested size.
3174 * return success as there's nothing to free back
3175 */
3176 if (unlikely(*p == NULL))
3177 return true;
3178
3179 flags &= gfp_allowed_mask;
3180
3181 if (lru) {
3182 int ret;
3183 struct mem_cgroup *memcg;
3184
3185 memcg = get_mem_cgroup_from_objcg(objcg);
3186 ret = memcg_list_lru_alloc(memcg, lru, flags);
3187 css_put(&memcg->css);
3188
3189 if (ret)
3190 return false;
3191 }
3192
3193 for (i = 0; i < size; i++) {
3194 slab = virt_to_slab(p[i]);
3195
3196 if (!slab_obj_exts(slab) &&
3197 alloc_slab_obj_exts(slab, s, flags, false)) {
3198 continue;
3199 }
3200
3201 /*
3202 * if we fail and size is 1, memcg_alloc_abort_single() will
3203 * just free the object, which is ok as we have not assigned
3204 * objcg to its obj_ext yet
3205 *
3206 * for larger sizes, kmem_cache_free_bulk() will uncharge
3207 * any objects that were already charged and obj_ext assigned
3208 *
3209 * TODO: we could batch this until slab_pgdat(slab) changes
3210 * between iterations, with a more complicated undo
3211 */
3212 if (obj_cgroup_charge_account(objcg, flags, obj_full_size(s),
3213 slab_pgdat(slab), cache_vmstat_idx(s)))
3214 return false;
3215
3216 off = obj_to_index(s, slab, p[i]);
3217 obj_cgroup_get(objcg);
3218 slab_obj_exts(slab)[off].objcg = objcg;
3219 }
3220
3221 return true;
3222 }
3223
__memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects,struct slabobj_ext * obj_exts)3224 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
3225 void **p, int objects, struct slabobj_ext *obj_exts)
3226 {
3227 size_t obj_size = obj_full_size(s);
3228
3229 for (int i = 0; i < objects; i++) {
3230 struct obj_cgroup *objcg;
3231 unsigned int off;
3232
3233 off = obj_to_index(s, slab, p[i]);
3234 objcg = obj_exts[off].objcg;
3235 if (!objcg)
3236 continue;
3237
3238 obj_exts[off].objcg = NULL;
3239 refill_obj_stock(objcg, obj_size, true, -obj_size,
3240 slab_pgdat(slab), cache_vmstat_idx(s));
3241 obj_cgroup_put(objcg);
3242 }
3243 }
3244
3245 /*
3246 * The objcg is only set on the first page, so transfer it to all the
3247 * other pages.
3248 */
split_page_memcg(struct page * page,unsigned order)3249 void split_page_memcg(struct page *page, unsigned order)
3250 {
3251 struct obj_cgroup *objcg = page_objcg(page);
3252 unsigned int i, nr = 1 << order;
3253
3254 if (!objcg)
3255 return;
3256
3257 for (i = 1; i < nr; i++)
3258 page_set_objcg(&page[i], objcg);
3259
3260 obj_cgroup_get_many(objcg, nr - 1);
3261 }
3262
folio_split_memcg_refs(struct folio * folio,unsigned old_order,unsigned new_order)3263 void folio_split_memcg_refs(struct folio *folio, unsigned old_order,
3264 unsigned new_order)
3265 {
3266 unsigned new_refs;
3267
3268 if (mem_cgroup_disabled() || !folio_memcg_charged(folio))
3269 return;
3270
3271 new_refs = (1 << (old_order - new_order)) - 1;
3272 css_get_many(&__folio_memcg(folio)->css, new_refs);
3273 }
3274
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)3275 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3276 {
3277 unsigned long val;
3278
3279 if (mem_cgroup_is_root(memcg)) {
3280 /*
3281 * Approximate root's usage from global state. This isn't
3282 * perfect, but the root usage was always an approximation.
3283 */
3284 val = global_node_page_state(NR_FILE_PAGES) +
3285 global_node_page_state(NR_ANON_MAPPED);
3286 if (swap)
3287 val += total_swap_pages - get_nr_swap_pages();
3288 } else {
3289 if (!swap)
3290 val = page_counter_read(&memcg->memory);
3291 else
3292 val = page_counter_read(&memcg->memsw);
3293 }
3294 return val;
3295 }
3296
memcg_online_kmem(struct mem_cgroup * memcg)3297 static int memcg_online_kmem(struct mem_cgroup *memcg)
3298 {
3299 struct obj_cgroup *objcg;
3300
3301 if (mem_cgroup_kmem_disabled())
3302 return 0;
3303
3304 if (unlikely(mem_cgroup_is_root(memcg)))
3305 return 0;
3306
3307 objcg = obj_cgroup_alloc();
3308 if (!objcg)
3309 return -ENOMEM;
3310
3311 objcg->memcg = memcg;
3312 rcu_assign_pointer(memcg->objcg, objcg);
3313 obj_cgroup_get(objcg);
3314 memcg->orig_objcg = objcg;
3315
3316 static_branch_enable(&memcg_kmem_online_key);
3317
3318 memcg->kmemcg_id = memcg->id.id;
3319
3320 return 0;
3321 }
3322
memcg_offline_kmem(struct mem_cgroup * memcg)3323 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3324 {
3325 struct mem_cgroup *parent;
3326
3327 if (mem_cgroup_kmem_disabled())
3328 return;
3329
3330 if (unlikely(mem_cgroup_is_root(memcg)))
3331 return;
3332
3333 parent = parent_mem_cgroup(memcg);
3334 if (!parent)
3335 parent = root_mem_cgroup;
3336
3337 memcg_reparent_list_lrus(memcg, parent);
3338
3339 /*
3340 * Objcg's reparenting must be after list_lru's, make sure list_lru
3341 * helpers won't use parent's list_lru until child is drained.
3342 */
3343 memcg_reparent_objcgs(memcg, parent);
3344 }
3345
3346 #ifdef CONFIG_CGROUP_WRITEBACK
3347
3348 #include <trace/events/writeback.h>
3349
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3350 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3351 {
3352 return wb_domain_init(&memcg->cgwb_domain, gfp);
3353 }
3354
memcg_wb_domain_exit(struct mem_cgroup * memcg)3355 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3356 {
3357 wb_domain_exit(&memcg->cgwb_domain);
3358 }
3359
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3360 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3361 {
3362 wb_domain_size_changed(&memcg->cgwb_domain);
3363 }
3364
mem_cgroup_wb_domain(struct bdi_writeback * wb)3365 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3366 {
3367 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3368
3369 if (!memcg->css.parent)
3370 return NULL;
3371
3372 return &memcg->cgwb_domain;
3373 }
3374
3375 /**
3376 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3377 * @wb: bdi_writeback in question
3378 * @pfilepages: out parameter for number of file pages
3379 * @pheadroom: out parameter for number of allocatable pages according to memcg
3380 * @pdirty: out parameter for number of dirty pages
3381 * @pwriteback: out parameter for number of pages under writeback
3382 *
3383 * Determine the numbers of file, headroom, dirty, and writeback pages in
3384 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3385 * is a bit more involved.
3386 *
3387 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3388 * headroom is calculated as the lowest headroom of itself and the
3389 * ancestors. Note that this doesn't consider the actual amount of
3390 * available memory in the system. The caller should further cap
3391 * *@pheadroom accordingly.
3392 */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)3393 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3394 unsigned long *pheadroom, unsigned long *pdirty,
3395 unsigned long *pwriteback)
3396 {
3397 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3398 struct mem_cgroup *parent;
3399
3400 mem_cgroup_flush_stats_ratelimited(memcg);
3401
3402 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3403 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3404 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
3405 memcg_page_state(memcg, NR_ACTIVE_FILE);
3406
3407 *pheadroom = PAGE_COUNTER_MAX;
3408 while ((parent = parent_mem_cgroup(memcg))) {
3409 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
3410 READ_ONCE(memcg->memory.high));
3411 unsigned long used = page_counter_read(&memcg->memory);
3412
3413 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3414 memcg = parent;
3415 }
3416 }
3417
3418 /*
3419 * Foreign dirty flushing
3420 *
3421 * There's an inherent mismatch between memcg and writeback. The former
3422 * tracks ownership per-page while the latter per-inode. This was a
3423 * deliberate design decision because honoring per-page ownership in the
3424 * writeback path is complicated, may lead to higher CPU and IO overheads
3425 * and deemed unnecessary given that write-sharing an inode across
3426 * different cgroups isn't a common use-case.
3427 *
3428 * Combined with inode majority-writer ownership switching, this works well
3429 * enough in most cases but there are some pathological cases. For
3430 * example, let's say there are two cgroups A and B which keep writing to
3431 * different but confined parts of the same inode. B owns the inode and
3432 * A's memory is limited far below B's. A's dirty ratio can rise enough to
3433 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
3434 * triggering background writeback. A will be slowed down without a way to
3435 * make writeback of the dirty pages happen.
3436 *
3437 * Conditions like the above can lead to a cgroup getting repeatedly and
3438 * severely throttled after making some progress after each
3439 * dirty_expire_interval while the underlying IO device is almost
3440 * completely idle.
3441 *
3442 * Solving this problem completely requires matching the ownership tracking
3443 * granularities between memcg and writeback in either direction. However,
3444 * the more egregious behaviors can be avoided by simply remembering the
3445 * most recent foreign dirtying events and initiating remote flushes on
3446 * them when local writeback isn't enough to keep the memory clean enough.
3447 *
3448 * The following two functions implement such mechanism. When a foreign
3449 * page - a page whose memcg and writeback ownerships don't match - is
3450 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
3451 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
3452 * decides that the memcg needs to sleep due to high dirty ratio, it calls
3453 * mem_cgroup_flush_foreign() which queues writeback on the recorded
3454 * foreign bdi_writebacks which haven't expired. Both the numbers of
3455 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
3456 * limited to MEMCG_CGWB_FRN_CNT.
3457 *
3458 * The mechanism only remembers IDs and doesn't hold any object references.
3459 * As being wrong occasionally doesn't matter, updates and accesses to the
3460 * records are lockless and racy.
3461 */
mem_cgroup_track_foreign_dirty_slowpath(struct folio * folio,struct bdi_writeback * wb)3462 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
3463 struct bdi_writeback *wb)
3464 {
3465 struct mem_cgroup *memcg = folio_memcg(folio);
3466 struct memcg_cgwb_frn *frn;
3467 u64 now = get_jiffies_64();
3468 u64 oldest_at = now;
3469 int oldest = -1;
3470 int i;
3471
3472 trace_track_foreign_dirty(folio, wb);
3473
3474 /*
3475 * Pick the slot to use. If there is already a slot for @wb, keep
3476 * using it. If not replace the oldest one which isn't being
3477 * written out.
3478 */
3479 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3480 frn = &memcg->cgwb_frn[i];
3481 if (frn->bdi_id == wb->bdi->id &&
3482 frn->memcg_id == wb->memcg_css->id)
3483 break;
3484 if (time_before64(frn->at, oldest_at) &&
3485 atomic_read(&frn->done.cnt) == 1) {
3486 oldest = i;
3487 oldest_at = frn->at;
3488 }
3489 }
3490
3491 if (i < MEMCG_CGWB_FRN_CNT) {
3492 /*
3493 * Re-using an existing one. Update timestamp lazily to
3494 * avoid making the cacheline hot. We want them to be
3495 * reasonably up-to-date and significantly shorter than
3496 * dirty_expire_interval as that's what expires the record.
3497 * Use the shorter of 1s and dirty_expire_interval / 8.
3498 */
3499 unsigned long update_intv =
3500 min_t(unsigned long, HZ,
3501 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
3502
3503 if (time_before64(frn->at, now - update_intv))
3504 frn->at = now;
3505 } else if (oldest >= 0) {
3506 /* replace the oldest free one */
3507 frn = &memcg->cgwb_frn[oldest];
3508 frn->bdi_id = wb->bdi->id;
3509 frn->memcg_id = wb->memcg_css->id;
3510 frn->at = now;
3511 }
3512 }
3513
3514 /* issue foreign writeback flushes for recorded foreign dirtying events */
mem_cgroup_flush_foreign(struct bdi_writeback * wb)3515 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
3516 {
3517 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3518 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
3519 u64 now = jiffies_64;
3520 int i;
3521
3522 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3523 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
3524
3525 /*
3526 * If the record is older than dirty_expire_interval,
3527 * writeback on it has already started. No need to kick it
3528 * off again. Also, don't start a new one if there's
3529 * already one in flight.
3530 */
3531 if (time_after64(frn->at, now - intv) &&
3532 atomic_read(&frn->done.cnt) == 1) {
3533 frn->at = 0;
3534 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
3535 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
3536 WB_REASON_FOREIGN_FLUSH,
3537 &frn->done);
3538 }
3539 }
3540 }
3541
3542 #else /* CONFIG_CGROUP_WRITEBACK */
3543
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3544 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3545 {
3546 return 0;
3547 }
3548
memcg_wb_domain_exit(struct mem_cgroup * memcg)3549 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3550 {
3551 }
3552
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3553 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3554 {
3555 }
3556
3557 #endif /* CONFIG_CGROUP_WRITEBACK */
3558
3559 /*
3560 * Private memory cgroup IDR
3561 *
3562 * Swap-out records and page cache shadow entries need to store memcg
3563 * references in constrained space, so we maintain an ID space that is
3564 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
3565 * memory-controlled cgroups to 64k.
3566 *
3567 * However, there usually are many references to the offline CSS after
3568 * the cgroup has been destroyed, such as page cache or reclaimable
3569 * slab objects, that don't need to hang on to the ID. We want to keep
3570 * those dead CSS from occupying IDs, or we might quickly exhaust the
3571 * relatively small ID space and prevent the creation of new cgroups
3572 * even when there are much fewer than 64k cgroups - possibly none.
3573 *
3574 * Maintain a private 16-bit ID space for memcg, and allow the ID to
3575 * be freed and recycled when it's no longer needed, which is usually
3576 * when the CSS is offlined.
3577 *
3578 * The only exception to that are records of swapped out tmpfs/shmem
3579 * pages that need to be attributed to live ancestors on swapin. But
3580 * those references are manageable from userspace.
3581 */
3582
3583 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
3584 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids);
3585
mem_cgroup_id_remove(struct mem_cgroup * memcg)3586 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
3587 {
3588 if (memcg->id.id > 0) {
3589 xa_erase(&mem_cgroup_ids, memcg->id.id);
3590 memcg->id.id = 0;
3591 }
3592 }
3593
mem_cgroup_id_get_many(struct mem_cgroup * memcg,unsigned int n)3594 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
3595 unsigned int n)
3596 {
3597 refcount_add(n, &memcg->id.ref);
3598 }
3599
mem_cgroup_id_put_many(struct mem_cgroup * memcg,unsigned int n)3600 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
3601 {
3602 if (refcount_sub_and_test(n, &memcg->id.ref)) {
3603 mem_cgroup_id_remove(memcg);
3604
3605 /* Memcg ID pins CSS */
3606 css_put(&memcg->css);
3607 }
3608 }
3609
mem_cgroup_id_put(struct mem_cgroup * memcg)3610 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
3611 {
3612 mem_cgroup_id_put_many(memcg, 1);
3613 }
3614
mem_cgroup_id_get_online(struct mem_cgroup * memcg)3615 struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
3616 {
3617 while (!refcount_inc_not_zero(&memcg->id.ref)) {
3618 /*
3619 * The root cgroup cannot be destroyed, so it's refcount must
3620 * always be >= 1.
3621 */
3622 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
3623 VM_BUG_ON(1);
3624 break;
3625 }
3626 memcg = parent_mem_cgroup(memcg);
3627 if (!memcg)
3628 memcg = root_mem_cgroup;
3629 }
3630 return memcg;
3631 }
3632
3633 /**
3634 * mem_cgroup_from_id - look up a memcg from a memcg id
3635 * @id: the memcg id to look up
3636 *
3637 * Caller must hold rcu_read_lock().
3638 */
mem_cgroup_from_id(unsigned short id)3639 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
3640 {
3641 WARN_ON_ONCE(!rcu_read_lock_held());
3642 return xa_load(&mem_cgroup_ids, id);
3643 }
3644
3645 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_get_from_ino(unsigned long ino)3646 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
3647 {
3648 struct cgroup *cgrp;
3649 struct cgroup_subsys_state *css;
3650 struct mem_cgroup *memcg;
3651
3652 cgrp = cgroup_get_from_id(ino);
3653 if (IS_ERR(cgrp))
3654 return ERR_CAST(cgrp);
3655
3656 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
3657 if (css)
3658 memcg = container_of(css, struct mem_cgroup, css);
3659 else
3660 memcg = ERR_PTR(-ENOENT);
3661
3662 cgroup_put(cgrp);
3663
3664 return memcg;
3665 }
3666 #endif
3667
free_mem_cgroup_per_node_info(struct mem_cgroup_per_node * pn)3668 static void free_mem_cgroup_per_node_info(struct mem_cgroup_per_node *pn)
3669 {
3670 if (!pn)
3671 return;
3672
3673 free_percpu(pn->lruvec_stats_percpu);
3674 kfree(pn->lruvec_stats);
3675 kfree(pn);
3676 }
3677
alloc_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)3678 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3679 {
3680 struct mem_cgroup_per_node *pn;
3681
3682 pn = kmem_cache_alloc_node(memcg_pn_cachep, GFP_KERNEL | __GFP_ZERO,
3683 node);
3684 if (!pn)
3685 return false;
3686
3687 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats),
3688 GFP_KERNEL_ACCOUNT, node);
3689 if (!pn->lruvec_stats)
3690 goto fail;
3691
3692 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
3693 GFP_KERNEL_ACCOUNT);
3694 if (!pn->lruvec_stats_percpu)
3695 goto fail;
3696
3697 lruvec_init(&pn->lruvec);
3698 pn->memcg = memcg;
3699
3700 memcg->nodeinfo[node] = pn;
3701 return true;
3702 fail:
3703 free_mem_cgroup_per_node_info(pn);
3704 return false;
3705 }
3706
__mem_cgroup_free(struct mem_cgroup * memcg)3707 static void __mem_cgroup_free(struct mem_cgroup *memcg)
3708 {
3709 int node;
3710
3711 obj_cgroup_put(memcg->orig_objcg);
3712
3713 for_each_node(node)
3714 free_mem_cgroup_per_node_info(memcg->nodeinfo[node]);
3715 memcg1_free_events(memcg);
3716 kfree(memcg->vmstats);
3717 free_percpu(memcg->vmstats_percpu);
3718 kfree(memcg);
3719 }
3720
mem_cgroup_free(struct mem_cgroup * memcg)3721 static void mem_cgroup_free(struct mem_cgroup *memcg)
3722 {
3723 lru_gen_exit_memcg(memcg);
3724 memcg_wb_domain_exit(memcg);
3725 __mem_cgroup_free(memcg);
3726 }
3727
mem_cgroup_alloc(struct mem_cgroup * parent)3728 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
3729 {
3730 struct memcg_vmstats_percpu *statc;
3731 struct memcg_vmstats_percpu __percpu *pstatc_pcpu;
3732 struct mem_cgroup *memcg;
3733 int node, cpu;
3734 int __maybe_unused i;
3735 long error;
3736
3737 memcg = kmem_cache_zalloc(memcg_cachep, GFP_KERNEL);
3738 if (!memcg)
3739 return ERR_PTR(-ENOMEM);
3740
3741 error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL,
3742 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL);
3743 if (error)
3744 goto fail;
3745 error = -ENOMEM;
3746
3747 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats),
3748 GFP_KERNEL_ACCOUNT);
3749 if (!memcg->vmstats)
3750 goto fail;
3751
3752 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
3753 GFP_KERNEL_ACCOUNT);
3754 if (!memcg->vmstats_percpu)
3755 goto fail;
3756
3757 if (!memcg1_alloc_events(memcg))
3758 goto fail;
3759
3760 for_each_possible_cpu(cpu) {
3761 if (parent)
3762 pstatc_pcpu = parent->vmstats_percpu;
3763 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3764 statc->parent_pcpu = parent ? pstatc_pcpu : NULL;
3765 statc->vmstats = memcg->vmstats;
3766 }
3767
3768 for_each_node(node)
3769 if (!alloc_mem_cgroup_per_node_info(memcg, node))
3770 goto fail;
3771
3772 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
3773 goto fail;
3774
3775 INIT_WORK(&memcg->high_work, high_work_func);
3776 vmpressure_init(&memcg->vmpressure);
3777 INIT_LIST_HEAD(&memcg->memory_peaks);
3778 INIT_LIST_HEAD(&memcg->swap_peaks);
3779 spin_lock_init(&memcg->peaks_lock);
3780 memcg->socket_pressure = get_jiffies_64();
3781 #if BITS_PER_LONG < 64
3782 seqlock_init(&memcg->socket_pressure_seqlock);
3783 #endif
3784 memcg1_memcg_init(memcg);
3785 memcg->kmemcg_id = -1;
3786 INIT_LIST_HEAD(&memcg->objcg_list);
3787 #ifdef CONFIG_CGROUP_WRITEBACK
3788 INIT_LIST_HEAD(&memcg->cgwb_list);
3789 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3790 memcg->cgwb_frn[i].done =
3791 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
3792 #endif
3793 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3794 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
3795 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
3796 memcg->deferred_split_queue.split_queue_len = 0;
3797 #endif
3798 lru_gen_init_memcg(memcg);
3799 return memcg;
3800 fail:
3801 mem_cgroup_id_remove(memcg);
3802 __mem_cgroup_free(memcg);
3803 return ERR_PTR(error);
3804 }
3805
3806 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)3807 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
3808 {
3809 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
3810 struct mem_cgroup *memcg, *old_memcg;
3811 bool memcg_on_dfl = cgroup_subsys_on_dfl(memory_cgrp_subsys);
3812
3813 old_memcg = set_active_memcg(parent);
3814 memcg = mem_cgroup_alloc(parent);
3815 set_active_memcg(old_memcg);
3816 if (IS_ERR(memcg))
3817 return ERR_CAST(memcg);
3818
3819 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3820 memcg1_soft_limit_reset(memcg);
3821 #ifdef CONFIG_ZSWAP
3822 memcg->zswap_max = PAGE_COUNTER_MAX;
3823 WRITE_ONCE(memcg->zswap_writeback, true);
3824 #endif
3825 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3826 if (parent) {
3827 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
3828
3829 page_counter_init(&memcg->memory, &parent->memory, memcg_on_dfl);
3830 page_counter_init(&memcg->swap, &parent->swap, false);
3831 #ifdef CONFIG_MEMCG_V1
3832 memcg->memory.track_failcnt = !memcg_on_dfl;
3833 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
3834 page_counter_init(&memcg->kmem, &parent->kmem, false);
3835 page_counter_init(&memcg->tcpmem, &parent->tcpmem, false);
3836 #endif
3837 } else {
3838 init_memcg_stats();
3839 init_memcg_events();
3840 page_counter_init(&memcg->memory, NULL, true);
3841 page_counter_init(&memcg->swap, NULL, false);
3842 #ifdef CONFIG_MEMCG_V1
3843 page_counter_init(&memcg->kmem, NULL, false);
3844 page_counter_init(&memcg->tcpmem, NULL, false);
3845 #endif
3846 root_mem_cgroup = memcg;
3847 return &memcg->css;
3848 }
3849
3850 if (memcg_on_dfl && !cgroup_memory_nosocket)
3851 static_branch_inc(&memcg_sockets_enabled_key);
3852
3853 if (!cgroup_memory_nobpf)
3854 static_branch_inc(&memcg_bpf_enabled_key);
3855
3856 return &memcg->css;
3857 }
3858
mem_cgroup_css_online(struct cgroup_subsys_state * css)3859 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
3860 {
3861 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3862
3863 if (memcg_online_kmem(memcg))
3864 goto remove_id;
3865
3866 /*
3867 * A memcg must be visible for expand_shrinker_info()
3868 * by the time the maps are allocated. So, we allocate maps
3869 * here, when for_each_mem_cgroup() can't skip it.
3870 */
3871 if (alloc_shrinker_info(memcg))
3872 goto offline_kmem;
3873
3874 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
3875 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
3876 FLUSH_TIME);
3877 lru_gen_online_memcg(memcg);
3878
3879 /* Online state pins memcg ID, memcg ID pins CSS */
3880 refcount_set(&memcg->id.ref, 1);
3881 css_get(css);
3882
3883 /*
3884 * Ensure mem_cgroup_from_id() works once we're fully online.
3885 *
3886 * We could do this earlier and require callers to filter with
3887 * css_tryget_online(). But right now there are no users that
3888 * need earlier access, and the workingset code relies on the
3889 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
3890 * publish it here at the end of onlining. This matches the
3891 * regular ID destruction during offlining.
3892 */
3893 xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL);
3894
3895 return 0;
3896 offline_kmem:
3897 memcg_offline_kmem(memcg);
3898 remove_id:
3899 mem_cgroup_id_remove(memcg);
3900 return -ENOMEM;
3901 }
3902
mem_cgroup_css_offline(struct cgroup_subsys_state * css)3903 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
3904 {
3905 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3906
3907 memcg1_css_offline(memcg);
3908
3909 page_counter_set_min(&memcg->memory, 0);
3910 page_counter_set_low(&memcg->memory, 0);
3911
3912 zswap_memcg_offline_cleanup(memcg);
3913
3914 memcg_offline_kmem(memcg);
3915 reparent_deferred_split_queue(memcg);
3916 reparent_shrinker_deferred(memcg);
3917 wb_memcg_offline(memcg);
3918 lru_gen_offline_memcg(memcg);
3919
3920 drain_all_stock(memcg);
3921
3922 mem_cgroup_id_put(memcg);
3923 }
3924
mem_cgroup_css_released(struct cgroup_subsys_state * css)3925 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
3926 {
3927 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3928
3929 invalidate_reclaim_iterators(memcg);
3930 lru_gen_release_memcg(memcg);
3931 }
3932
mem_cgroup_css_free(struct cgroup_subsys_state * css)3933 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
3934 {
3935 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3936 int __maybe_unused i;
3937
3938 #ifdef CONFIG_CGROUP_WRITEBACK
3939 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3940 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
3941 #endif
3942 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3943 static_branch_dec(&memcg_sockets_enabled_key);
3944
3945 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg))
3946 static_branch_dec(&memcg_sockets_enabled_key);
3947
3948 if (!cgroup_memory_nobpf)
3949 static_branch_dec(&memcg_bpf_enabled_key);
3950
3951 vmpressure_cleanup(&memcg->vmpressure);
3952 cancel_work_sync(&memcg->high_work);
3953 memcg1_remove_from_trees(memcg);
3954 free_shrinker_info(memcg);
3955 mem_cgroup_free(memcg);
3956 }
3957
3958 /**
3959 * mem_cgroup_css_reset - reset the states of a mem_cgroup
3960 * @css: the target css
3961 *
3962 * Reset the states of the mem_cgroup associated with @css. This is
3963 * invoked when the userland requests disabling on the default hierarchy
3964 * but the memcg is pinned through dependency. The memcg should stop
3965 * applying policies and should revert to the vanilla state as it may be
3966 * made visible again.
3967 *
3968 * The current implementation only resets the essential configurations.
3969 * This needs to be expanded to cover all the visible parts.
3970 */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)3971 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
3972 {
3973 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3974
3975 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
3976 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
3977 #ifdef CONFIG_MEMCG_V1
3978 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
3979 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
3980 #endif
3981 page_counter_set_min(&memcg->memory, 0);
3982 page_counter_set_low(&memcg->memory, 0);
3983 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3984 memcg1_soft_limit_reset(memcg);
3985 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3986 memcg_wb_domain_size_changed(memcg);
3987 }
3988
3989 struct aggregate_control {
3990 /* pointer to the aggregated (CPU and subtree aggregated) counters */
3991 long *aggregate;
3992 /* pointer to the non-hierarchichal (CPU aggregated) counters */
3993 long *local;
3994 /* pointer to the pending child counters during tree propagation */
3995 long *pending;
3996 /* pointer to the parent's pending counters, could be NULL */
3997 long *ppending;
3998 /* pointer to the percpu counters to be aggregated */
3999 long *cstat;
4000 /* pointer to the percpu counters of the last aggregation*/
4001 long *cstat_prev;
4002 /* size of the above counters */
4003 int size;
4004 };
4005
mem_cgroup_stat_aggregate(struct aggregate_control * ac)4006 static void mem_cgroup_stat_aggregate(struct aggregate_control *ac)
4007 {
4008 int i;
4009 long delta, delta_cpu, v;
4010
4011 for (i = 0; i < ac->size; i++) {
4012 /*
4013 * Collect the aggregated propagation counts of groups
4014 * below us. We're in a per-cpu loop here and this is
4015 * a global counter, so the first cycle will get them.
4016 */
4017 delta = ac->pending[i];
4018 if (delta)
4019 ac->pending[i] = 0;
4020
4021 /* Add CPU changes on this level since the last flush */
4022 delta_cpu = 0;
4023 v = READ_ONCE(ac->cstat[i]);
4024 if (v != ac->cstat_prev[i]) {
4025 delta_cpu = v - ac->cstat_prev[i];
4026 delta += delta_cpu;
4027 ac->cstat_prev[i] = v;
4028 }
4029
4030 /* Aggregate counts on this level and propagate upwards */
4031 if (delta_cpu)
4032 ac->local[i] += delta_cpu;
4033
4034 if (delta) {
4035 ac->aggregate[i] += delta;
4036 if (ac->ppending)
4037 ac->ppending[i] += delta;
4038 }
4039 }
4040 }
4041
4042 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
flush_nmi_stats(struct mem_cgroup * memcg,struct mem_cgroup * parent,int cpu)4043 static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent,
4044 int cpu)
4045 {
4046 int nid;
4047
4048 if (atomic_read(&memcg->kmem_stat)) {
4049 int kmem = atomic_xchg(&memcg->kmem_stat, 0);
4050 int index = memcg_stats_index(MEMCG_KMEM);
4051
4052 memcg->vmstats->state[index] += kmem;
4053 if (parent)
4054 parent->vmstats->state_pending[index] += kmem;
4055 }
4056
4057 for_each_node_state(nid, N_MEMORY) {
4058 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
4059 struct lruvec_stats *lstats = pn->lruvec_stats;
4060 struct lruvec_stats *plstats = NULL;
4061
4062 if (parent)
4063 plstats = parent->nodeinfo[nid]->lruvec_stats;
4064
4065 if (atomic_read(&pn->slab_reclaimable)) {
4066 int slab = atomic_xchg(&pn->slab_reclaimable, 0);
4067 int index = memcg_stats_index(NR_SLAB_RECLAIMABLE_B);
4068
4069 lstats->state[index] += slab;
4070 if (plstats)
4071 plstats->state_pending[index] += slab;
4072 }
4073 if (atomic_read(&pn->slab_unreclaimable)) {
4074 int slab = atomic_xchg(&pn->slab_unreclaimable, 0);
4075 int index = memcg_stats_index(NR_SLAB_UNRECLAIMABLE_B);
4076
4077 lstats->state[index] += slab;
4078 if (plstats)
4079 plstats->state_pending[index] += slab;
4080 }
4081 }
4082 }
4083 #else
flush_nmi_stats(struct mem_cgroup * memcg,struct mem_cgroup * parent,int cpu)4084 static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent,
4085 int cpu)
4086 {}
4087 #endif
4088
mem_cgroup_css_rstat_flush(struct cgroup_subsys_state * css,int cpu)4089 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
4090 {
4091 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4092 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4093 struct memcg_vmstats_percpu *statc;
4094 struct aggregate_control ac;
4095 int nid;
4096
4097 flush_nmi_stats(memcg, parent, cpu);
4098
4099 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
4100
4101 ac = (struct aggregate_control) {
4102 .aggregate = memcg->vmstats->state,
4103 .local = memcg->vmstats->state_local,
4104 .pending = memcg->vmstats->state_pending,
4105 .ppending = parent ? parent->vmstats->state_pending : NULL,
4106 .cstat = statc->state,
4107 .cstat_prev = statc->state_prev,
4108 .size = MEMCG_VMSTAT_SIZE,
4109 };
4110 mem_cgroup_stat_aggregate(&ac);
4111
4112 ac = (struct aggregate_control) {
4113 .aggregate = memcg->vmstats->events,
4114 .local = memcg->vmstats->events_local,
4115 .pending = memcg->vmstats->events_pending,
4116 .ppending = parent ? parent->vmstats->events_pending : NULL,
4117 .cstat = statc->events,
4118 .cstat_prev = statc->events_prev,
4119 .size = NR_MEMCG_EVENTS,
4120 };
4121 mem_cgroup_stat_aggregate(&ac);
4122
4123 for_each_node_state(nid, N_MEMORY) {
4124 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
4125 struct lruvec_stats *lstats = pn->lruvec_stats;
4126 struct lruvec_stats *plstats = NULL;
4127 struct lruvec_stats_percpu *lstatc;
4128
4129 if (parent)
4130 plstats = parent->nodeinfo[nid]->lruvec_stats;
4131
4132 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
4133
4134 ac = (struct aggregate_control) {
4135 .aggregate = lstats->state,
4136 .local = lstats->state_local,
4137 .pending = lstats->state_pending,
4138 .ppending = plstats ? plstats->state_pending : NULL,
4139 .cstat = lstatc->state,
4140 .cstat_prev = lstatc->state_prev,
4141 .size = NR_MEMCG_NODE_STAT_ITEMS,
4142 };
4143 mem_cgroup_stat_aggregate(&ac);
4144
4145 }
4146 WRITE_ONCE(statc->stats_updates, 0);
4147 /* We are in a per-cpu loop here, only do the atomic write once */
4148 if (atomic_read(&memcg->vmstats->stats_updates))
4149 atomic_set(&memcg->vmstats->stats_updates, 0);
4150 }
4151
mem_cgroup_fork(struct task_struct * task)4152 static void mem_cgroup_fork(struct task_struct *task)
4153 {
4154 /*
4155 * Set the update flag to cause task->objcg to be initialized lazily
4156 * on the first allocation. It can be done without any synchronization
4157 * because it's always performed on the current task, so does
4158 * current_objcg_update().
4159 */
4160 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
4161 }
4162
mem_cgroup_exit(struct task_struct * task)4163 static void mem_cgroup_exit(struct task_struct *task)
4164 {
4165 struct obj_cgroup *objcg = task->objcg;
4166
4167 objcg = (struct obj_cgroup *)
4168 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
4169 obj_cgroup_put(objcg);
4170
4171 /*
4172 * Some kernel allocations can happen after this point,
4173 * but let's ignore them. It can be done without any synchronization
4174 * because it's always performed on the current task, so does
4175 * current_objcg_update().
4176 */
4177 task->objcg = NULL;
4178 }
4179
4180 #ifdef CONFIG_LRU_GEN
mem_cgroup_lru_gen_attach(struct cgroup_taskset * tset)4181 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
4182 {
4183 struct task_struct *task;
4184 struct cgroup_subsys_state *css;
4185
4186 /* find the first leader if there is any */
4187 cgroup_taskset_for_each_leader(task, css, tset)
4188 break;
4189
4190 if (!task)
4191 return;
4192
4193 task_lock(task);
4194 if (task->mm && READ_ONCE(task->mm->owner) == task)
4195 lru_gen_migrate_mm(task->mm);
4196 task_unlock(task);
4197 }
4198 #else
mem_cgroup_lru_gen_attach(struct cgroup_taskset * tset)4199 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
4200 #endif /* CONFIG_LRU_GEN */
4201
mem_cgroup_kmem_attach(struct cgroup_taskset * tset)4202 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
4203 {
4204 struct task_struct *task;
4205 struct cgroup_subsys_state *css;
4206
4207 cgroup_taskset_for_each(task, css, tset) {
4208 /* atomically set the update bit */
4209 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
4210 }
4211 }
4212
mem_cgroup_attach(struct cgroup_taskset * tset)4213 static void mem_cgroup_attach(struct cgroup_taskset *tset)
4214 {
4215 mem_cgroup_lru_gen_attach(tset);
4216 mem_cgroup_kmem_attach(tset);
4217 }
4218
seq_puts_memcg_tunable(struct seq_file * m,unsigned long value)4219 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
4220 {
4221 if (value == PAGE_COUNTER_MAX)
4222 seq_puts(m, "max\n");
4223 else
4224 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
4225
4226 return 0;
4227 }
4228
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)4229 static u64 memory_current_read(struct cgroup_subsys_state *css,
4230 struct cftype *cft)
4231 {
4232 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4233
4234 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4235 }
4236
4237 #define OFP_PEAK_UNSET (((-1UL)))
4238
peak_show(struct seq_file * sf,void * v,struct page_counter * pc)4239 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc)
4240 {
4241 struct cgroup_of_peak *ofp = of_peak(sf->private);
4242 u64 fd_peak = READ_ONCE(ofp->value), peak;
4243
4244 /* User wants global or local peak? */
4245 if (fd_peak == OFP_PEAK_UNSET)
4246 peak = pc->watermark;
4247 else
4248 peak = max(fd_peak, READ_ONCE(pc->local_watermark));
4249
4250 seq_printf(sf, "%llu\n", peak * PAGE_SIZE);
4251 return 0;
4252 }
4253
memory_peak_show(struct seq_file * sf,void * v)4254 static int memory_peak_show(struct seq_file *sf, void *v)
4255 {
4256 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4257
4258 return peak_show(sf, v, &memcg->memory);
4259 }
4260
peak_open(struct kernfs_open_file * of)4261 static int peak_open(struct kernfs_open_file *of)
4262 {
4263 struct cgroup_of_peak *ofp = of_peak(of);
4264
4265 ofp->value = OFP_PEAK_UNSET;
4266 return 0;
4267 }
4268
peak_release(struct kernfs_open_file * of)4269 static void peak_release(struct kernfs_open_file *of)
4270 {
4271 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4272 struct cgroup_of_peak *ofp = of_peak(of);
4273
4274 if (ofp->value == OFP_PEAK_UNSET) {
4275 /* fast path (no writes on this fd) */
4276 return;
4277 }
4278 spin_lock(&memcg->peaks_lock);
4279 list_del(&ofp->list);
4280 spin_unlock(&memcg->peaks_lock);
4281 }
4282
peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,struct page_counter * pc,struct list_head * watchers)4283 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
4284 loff_t off, struct page_counter *pc,
4285 struct list_head *watchers)
4286 {
4287 unsigned long usage;
4288 struct cgroup_of_peak *peer_ctx;
4289 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4290 struct cgroup_of_peak *ofp = of_peak(of);
4291
4292 spin_lock(&memcg->peaks_lock);
4293
4294 usage = page_counter_read(pc);
4295 WRITE_ONCE(pc->local_watermark, usage);
4296
4297 list_for_each_entry(peer_ctx, watchers, list)
4298 if (usage > peer_ctx->value)
4299 WRITE_ONCE(peer_ctx->value, usage);
4300
4301 /* initial write, register watcher */
4302 if (ofp->value == OFP_PEAK_UNSET)
4303 list_add(&ofp->list, watchers);
4304
4305 WRITE_ONCE(ofp->value, usage);
4306 spin_unlock(&memcg->peaks_lock);
4307
4308 return nbytes;
4309 }
4310
memory_peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4311 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf,
4312 size_t nbytes, loff_t off)
4313 {
4314 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4315
4316 return peak_write(of, buf, nbytes, off, &memcg->memory,
4317 &memcg->memory_peaks);
4318 }
4319
4320 #undef OFP_PEAK_UNSET
4321
memory_min_show(struct seq_file * m,void * v)4322 static int memory_min_show(struct seq_file *m, void *v)
4323 {
4324 return seq_puts_memcg_tunable(m,
4325 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
4326 }
4327
memory_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4328 static ssize_t memory_min_write(struct kernfs_open_file *of,
4329 char *buf, size_t nbytes, loff_t off)
4330 {
4331 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4332 unsigned long min;
4333 int err;
4334
4335 buf = strstrip(buf);
4336 err = page_counter_memparse(buf, "max", &min);
4337 if (err)
4338 return err;
4339
4340 page_counter_set_min(&memcg->memory, min);
4341
4342 return nbytes;
4343 }
4344
memory_low_show(struct seq_file * m,void * v)4345 static int memory_low_show(struct seq_file *m, void *v)
4346 {
4347 return seq_puts_memcg_tunable(m,
4348 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
4349 }
4350
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4351 static ssize_t memory_low_write(struct kernfs_open_file *of,
4352 char *buf, size_t nbytes, loff_t off)
4353 {
4354 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4355 unsigned long low;
4356 int err;
4357
4358 buf = strstrip(buf);
4359 err = page_counter_memparse(buf, "max", &low);
4360 if (err)
4361 return err;
4362
4363 page_counter_set_low(&memcg->memory, low);
4364
4365 return nbytes;
4366 }
4367
memory_high_show(struct seq_file * m,void * v)4368 static int memory_high_show(struct seq_file *m, void *v)
4369 {
4370 return seq_puts_memcg_tunable(m,
4371 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
4372 }
4373
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4374 static ssize_t memory_high_write(struct kernfs_open_file *of,
4375 char *buf, size_t nbytes, loff_t off)
4376 {
4377 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4378 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4379 bool drained = false;
4380 unsigned long high;
4381 int err;
4382
4383 buf = strstrip(buf);
4384 err = page_counter_memparse(buf, "max", &high);
4385 if (err)
4386 return err;
4387
4388 page_counter_set_high(&memcg->memory, high);
4389
4390 if (of->file->f_flags & O_NONBLOCK)
4391 goto out;
4392
4393 for (;;) {
4394 unsigned long nr_pages = page_counter_read(&memcg->memory);
4395 unsigned long reclaimed;
4396
4397 if (nr_pages <= high)
4398 break;
4399
4400 if (signal_pending(current))
4401 break;
4402
4403 if (!drained) {
4404 drain_all_stock(memcg);
4405 drained = true;
4406 continue;
4407 }
4408
4409 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
4410 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL);
4411
4412 if (!reclaimed && !nr_retries--)
4413 break;
4414 }
4415 out:
4416 memcg_wb_domain_size_changed(memcg);
4417 return nbytes;
4418 }
4419
memory_max_show(struct seq_file * m,void * v)4420 static int memory_max_show(struct seq_file *m, void *v)
4421 {
4422 return seq_puts_memcg_tunable(m,
4423 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
4424 }
4425
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4426 static ssize_t memory_max_write(struct kernfs_open_file *of,
4427 char *buf, size_t nbytes, loff_t off)
4428 {
4429 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4430 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
4431 bool drained = false;
4432 unsigned long max;
4433 int err;
4434
4435 buf = strstrip(buf);
4436 err = page_counter_memparse(buf, "max", &max);
4437 if (err)
4438 return err;
4439
4440 xchg(&memcg->memory.max, max);
4441
4442 if (of->file->f_flags & O_NONBLOCK)
4443 goto out;
4444
4445 for (;;) {
4446 unsigned long nr_pages = page_counter_read(&memcg->memory);
4447
4448 if (nr_pages <= max)
4449 break;
4450
4451 if (signal_pending(current))
4452 break;
4453
4454 if (!drained) {
4455 drain_all_stock(memcg);
4456 drained = true;
4457 continue;
4458 }
4459
4460 if (nr_reclaims) {
4461 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
4462 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL))
4463 nr_reclaims--;
4464 continue;
4465 }
4466
4467 memcg_memory_event(memcg, MEMCG_OOM);
4468 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
4469 break;
4470 cond_resched();
4471 }
4472 out:
4473 memcg_wb_domain_size_changed(memcg);
4474 return nbytes;
4475 }
4476
4477 /*
4478 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
4479 * if any new events become available.
4480 */
__memory_events_show(struct seq_file * m,atomic_long_t * events)4481 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
4482 {
4483 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
4484 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
4485 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
4486 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
4487 seq_printf(m, "oom_kill %lu\n",
4488 atomic_long_read(&events[MEMCG_OOM_KILL]));
4489 seq_printf(m, "oom_group_kill %lu\n",
4490 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
4491 seq_printf(m, "sock_throttled %lu\n",
4492 atomic_long_read(&events[MEMCG_SOCK_THROTTLED]));
4493 }
4494
memory_events_show(struct seq_file * m,void * v)4495 static int memory_events_show(struct seq_file *m, void *v)
4496 {
4497 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4498
4499 __memory_events_show(m, memcg->memory_events);
4500 return 0;
4501 }
4502
memory_events_local_show(struct seq_file * m,void * v)4503 static int memory_events_local_show(struct seq_file *m, void *v)
4504 {
4505 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4506
4507 __memory_events_show(m, memcg->memory_events_local);
4508 return 0;
4509 }
4510
memory_stat_show(struct seq_file * m,void * v)4511 int memory_stat_show(struct seq_file *m, void *v)
4512 {
4513 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4514 char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL);
4515 struct seq_buf s;
4516
4517 if (!buf)
4518 return -ENOMEM;
4519 seq_buf_init(&s, buf, SEQ_BUF_SIZE);
4520 memory_stat_format(memcg, &s);
4521 seq_puts(m, buf);
4522 kfree(buf);
4523 return 0;
4524 }
4525
4526 #ifdef CONFIG_NUMA
lruvec_page_state_output(struct lruvec * lruvec,int item)4527 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
4528 int item)
4529 {
4530 return lruvec_page_state(lruvec, item) *
4531 memcg_page_state_output_unit(item);
4532 }
4533
memory_numa_stat_show(struct seq_file * m,void * v)4534 static int memory_numa_stat_show(struct seq_file *m, void *v)
4535 {
4536 int i;
4537 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4538
4539 mem_cgroup_flush_stats(memcg);
4540
4541 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
4542 int nid;
4543
4544 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
4545 continue;
4546
4547 seq_printf(m, "%s", memory_stats[i].name);
4548 for_each_node_state(nid, N_MEMORY) {
4549 u64 size;
4550 struct lruvec *lruvec;
4551
4552 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4553 size = lruvec_page_state_output(lruvec,
4554 memory_stats[i].idx);
4555 seq_printf(m, " N%d=%llu", nid, size);
4556 }
4557 seq_putc(m, '\n');
4558 }
4559
4560 return 0;
4561 }
4562 #endif
4563
memory_oom_group_show(struct seq_file * m,void * v)4564 static int memory_oom_group_show(struct seq_file *m, void *v)
4565 {
4566 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4567
4568 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
4569
4570 return 0;
4571 }
4572
memory_oom_group_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4573 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
4574 char *buf, size_t nbytes, loff_t off)
4575 {
4576 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4577 int ret, oom_group;
4578
4579 buf = strstrip(buf);
4580 if (!buf)
4581 return -EINVAL;
4582
4583 ret = kstrtoint(buf, 0, &oom_group);
4584 if (ret)
4585 return ret;
4586
4587 if (oom_group != 0 && oom_group != 1)
4588 return -EINVAL;
4589
4590 WRITE_ONCE(memcg->oom_group, oom_group);
4591
4592 return nbytes;
4593 }
4594
memory_reclaim(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4595 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
4596 size_t nbytes, loff_t off)
4597 {
4598 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4599 int ret;
4600
4601 ret = user_proactive_reclaim(buf, memcg, NULL);
4602 if (ret)
4603 return ret;
4604
4605 return nbytes;
4606 }
4607
4608 static struct cftype memory_files[] = {
4609 {
4610 .name = "current",
4611 .flags = CFTYPE_NOT_ON_ROOT,
4612 .read_u64 = memory_current_read,
4613 },
4614 {
4615 .name = "peak",
4616 .flags = CFTYPE_NOT_ON_ROOT,
4617 .open = peak_open,
4618 .release = peak_release,
4619 .seq_show = memory_peak_show,
4620 .write = memory_peak_write,
4621 },
4622 {
4623 .name = "min",
4624 .flags = CFTYPE_NOT_ON_ROOT,
4625 .seq_show = memory_min_show,
4626 .write = memory_min_write,
4627 },
4628 {
4629 .name = "low",
4630 .flags = CFTYPE_NOT_ON_ROOT,
4631 .seq_show = memory_low_show,
4632 .write = memory_low_write,
4633 },
4634 {
4635 .name = "high",
4636 .flags = CFTYPE_NOT_ON_ROOT,
4637 .seq_show = memory_high_show,
4638 .write = memory_high_write,
4639 },
4640 {
4641 .name = "max",
4642 .flags = CFTYPE_NOT_ON_ROOT,
4643 .seq_show = memory_max_show,
4644 .write = memory_max_write,
4645 },
4646 {
4647 .name = "events",
4648 .flags = CFTYPE_NOT_ON_ROOT,
4649 .file_offset = offsetof(struct mem_cgroup, events_file),
4650 .seq_show = memory_events_show,
4651 },
4652 {
4653 .name = "events.local",
4654 .flags = CFTYPE_NOT_ON_ROOT,
4655 .file_offset = offsetof(struct mem_cgroup, events_local_file),
4656 .seq_show = memory_events_local_show,
4657 },
4658 {
4659 .name = "stat",
4660 .seq_show = memory_stat_show,
4661 },
4662 #ifdef CONFIG_NUMA
4663 {
4664 .name = "numa_stat",
4665 .seq_show = memory_numa_stat_show,
4666 },
4667 #endif
4668 {
4669 .name = "oom.group",
4670 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
4671 .seq_show = memory_oom_group_show,
4672 .write = memory_oom_group_write,
4673 },
4674 {
4675 .name = "reclaim",
4676 .flags = CFTYPE_NS_DELEGATABLE,
4677 .write = memory_reclaim,
4678 },
4679 { } /* terminate */
4680 };
4681
4682 struct cgroup_subsys memory_cgrp_subsys = {
4683 .css_alloc = mem_cgroup_css_alloc,
4684 .css_online = mem_cgroup_css_online,
4685 .css_offline = mem_cgroup_css_offline,
4686 .css_released = mem_cgroup_css_released,
4687 .css_free = mem_cgroup_css_free,
4688 .css_reset = mem_cgroup_css_reset,
4689 .css_rstat_flush = mem_cgroup_css_rstat_flush,
4690 .attach = mem_cgroup_attach,
4691 .fork = mem_cgroup_fork,
4692 .exit = mem_cgroup_exit,
4693 .dfl_cftypes = memory_files,
4694 #ifdef CONFIG_MEMCG_V1
4695 .legacy_cftypes = mem_cgroup_legacy_files,
4696 #endif
4697 .early_init = 0,
4698 };
4699
4700 /**
4701 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
4702 * @root: the top ancestor of the sub-tree being checked
4703 * @memcg: the memory cgroup to check
4704 *
4705 * WARNING: This function is not stateless! It can only be used as part
4706 * of a top-down tree iteration, not for isolated queries.
4707 */
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)4708 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
4709 struct mem_cgroup *memcg)
4710 {
4711 bool recursive_protection =
4712 cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT;
4713
4714 if (mem_cgroup_disabled())
4715 return;
4716
4717 if (!root)
4718 root = root_mem_cgroup;
4719
4720 page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection);
4721 }
4722
charge_memcg(struct folio * folio,struct mem_cgroup * memcg,gfp_t gfp)4723 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
4724 gfp_t gfp)
4725 {
4726 int ret;
4727
4728 ret = try_charge(memcg, gfp, folio_nr_pages(folio));
4729 if (ret)
4730 goto out;
4731
4732 css_get(&memcg->css);
4733 commit_charge(folio, memcg);
4734 memcg1_commit_charge(folio, memcg);
4735 out:
4736 return ret;
4737 }
4738
__mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)4739 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
4740 {
4741 struct mem_cgroup *memcg;
4742 int ret;
4743
4744 memcg = get_mem_cgroup_from_mm(mm);
4745 ret = charge_memcg(folio, memcg, gfp);
4746 css_put(&memcg->css);
4747
4748 return ret;
4749 }
4750
4751 /**
4752 * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio
4753 * @folio: folio being charged
4754 * @gfp: reclaim mode
4755 *
4756 * This function is called when allocating a huge page folio, after the page has
4757 * already been obtained and charged to the appropriate hugetlb cgroup
4758 * controller (if it is enabled).
4759 *
4760 * Returns ENOMEM if the memcg is already full.
4761 * Returns 0 if either the charge was successful, or if we skip the charging.
4762 */
mem_cgroup_charge_hugetlb(struct folio * folio,gfp_t gfp)4763 int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp)
4764 {
4765 struct mem_cgroup *memcg = get_mem_cgroup_from_current();
4766 int ret = 0;
4767
4768 /*
4769 * Even memcg does not account for hugetlb, we still want to update
4770 * system-level stats via lruvec_stat_mod_folio. Return 0, and skip
4771 * charging the memcg.
4772 */
4773 if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() ||
4774 !memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
4775 goto out;
4776
4777 if (charge_memcg(folio, memcg, gfp))
4778 ret = -ENOMEM;
4779
4780 out:
4781 mem_cgroup_put(memcg);
4782 return ret;
4783 }
4784
4785 /**
4786 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
4787 * @folio: folio to charge.
4788 * @mm: mm context of the victim
4789 * @gfp: reclaim mode
4790 * @entry: swap entry for which the folio is allocated
4791 *
4792 * This function charges a folio allocated for swapin. Please call this before
4793 * adding the folio to the swapcache.
4794 *
4795 * Returns 0 on success. Otherwise, an error code is returned.
4796 */
mem_cgroup_swapin_charge_folio(struct folio * folio,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)4797 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
4798 gfp_t gfp, swp_entry_t entry)
4799 {
4800 struct mem_cgroup *memcg;
4801 unsigned short id;
4802 int ret;
4803
4804 if (mem_cgroup_disabled())
4805 return 0;
4806
4807 id = lookup_swap_cgroup_id(entry);
4808 rcu_read_lock();
4809 memcg = mem_cgroup_from_id(id);
4810 if (!memcg || !css_tryget_online(&memcg->css))
4811 memcg = get_mem_cgroup_from_mm(mm);
4812 rcu_read_unlock();
4813
4814 ret = charge_memcg(folio, memcg, gfp);
4815
4816 css_put(&memcg->css);
4817 return ret;
4818 }
4819
4820 struct uncharge_gather {
4821 struct mem_cgroup *memcg;
4822 unsigned long nr_memory;
4823 unsigned long pgpgout;
4824 unsigned long nr_kmem;
4825 int nid;
4826 };
4827
uncharge_gather_clear(struct uncharge_gather * ug)4828 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
4829 {
4830 memset(ug, 0, sizeof(*ug));
4831 }
4832
uncharge_batch(const struct uncharge_gather * ug)4833 static void uncharge_batch(const struct uncharge_gather *ug)
4834 {
4835 if (ug->nr_memory) {
4836 memcg_uncharge(ug->memcg, ug->nr_memory);
4837 if (ug->nr_kmem) {
4838 mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem);
4839 memcg1_account_kmem(ug->memcg, -ug->nr_kmem);
4840 }
4841 memcg1_oom_recover(ug->memcg);
4842 }
4843
4844 memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid);
4845
4846 /* drop reference from uncharge_folio */
4847 css_put(&ug->memcg->css);
4848 }
4849
uncharge_folio(struct folio * folio,struct uncharge_gather * ug)4850 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
4851 {
4852 long nr_pages;
4853 struct mem_cgroup *memcg;
4854 struct obj_cgroup *objcg;
4855
4856 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4857
4858 /*
4859 * Nobody should be changing or seriously looking at
4860 * folio memcg or objcg at this point, we have fully
4861 * exclusive access to the folio.
4862 */
4863 if (folio_memcg_kmem(folio)) {
4864 objcg = __folio_objcg(folio);
4865 /*
4866 * This get matches the put at the end of the function and
4867 * kmem pages do not hold memcg references anymore.
4868 */
4869 memcg = get_mem_cgroup_from_objcg(objcg);
4870 } else {
4871 memcg = __folio_memcg(folio);
4872 }
4873
4874 if (!memcg)
4875 return;
4876
4877 if (ug->memcg != memcg) {
4878 if (ug->memcg) {
4879 uncharge_batch(ug);
4880 uncharge_gather_clear(ug);
4881 }
4882 ug->memcg = memcg;
4883 ug->nid = folio_nid(folio);
4884
4885 /* pairs with css_put in uncharge_batch */
4886 css_get(&memcg->css);
4887 }
4888
4889 nr_pages = folio_nr_pages(folio);
4890
4891 if (folio_memcg_kmem(folio)) {
4892 ug->nr_memory += nr_pages;
4893 ug->nr_kmem += nr_pages;
4894
4895 folio->memcg_data = 0;
4896 obj_cgroup_put(objcg);
4897 } else {
4898 /* LRU pages aren't accounted at the root level */
4899 if (!mem_cgroup_is_root(memcg))
4900 ug->nr_memory += nr_pages;
4901 ug->pgpgout++;
4902
4903 WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
4904 folio->memcg_data = 0;
4905 }
4906
4907 css_put(&memcg->css);
4908 }
4909
__mem_cgroup_uncharge(struct folio * folio)4910 void __mem_cgroup_uncharge(struct folio *folio)
4911 {
4912 struct uncharge_gather ug;
4913
4914 /* Don't touch folio->lru of any random page, pre-check: */
4915 if (!folio_memcg_charged(folio))
4916 return;
4917
4918 uncharge_gather_clear(&ug);
4919 uncharge_folio(folio, &ug);
4920 uncharge_batch(&ug);
4921 }
4922
__mem_cgroup_uncharge_folios(struct folio_batch * folios)4923 void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
4924 {
4925 struct uncharge_gather ug;
4926 unsigned int i;
4927
4928 uncharge_gather_clear(&ug);
4929 for (i = 0; i < folios->nr; i++)
4930 uncharge_folio(folios->folios[i], &ug);
4931 if (ug.memcg)
4932 uncharge_batch(&ug);
4933 }
4934
4935 /**
4936 * mem_cgroup_replace_folio - Charge a folio's replacement.
4937 * @old: Currently circulating folio.
4938 * @new: Replacement folio.
4939 *
4940 * Charge @new as a replacement folio for @old. @old will
4941 * be uncharged upon free.
4942 *
4943 * Both folios must be locked, @new->mapping must be set up.
4944 */
mem_cgroup_replace_folio(struct folio * old,struct folio * new)4945 void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
4946 {
4947 struct mem_cgroup *memcg;
4948 long nr_pages = folio_nr_pages(new);
4949
4950 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4951 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4952 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4953 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
4954
4955 if (mem_cgroup_disabled())
4956 return;
4957
4958 /* Page cache replacement: new folio already charged? */
4959 if (folio_memcg_charged(new))
4960 return;
4961
4962 memcg = folio_memcg(old);
4963 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
4964 if (!memcg)
4965 return;
4966
4967 /* Force-charge the new page. The old one will be freed soon */
4968 if (!mem_cgroup_is_root(memcg)) {
4969 page_counter_charge(&memcg->memory, nr_pages);
4970 if (do_memsw_account())
4971 page_counter_charge(&memcg->memsw, nr_pages);
4972 }
4973
4974 css_get(&memcg->css);
4975 commit_charge(new, memcg);
4976 memcg1_commit_charge(new, memcg);
4977 }
4978
4979 /**
4980 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
4981 * @old: Currently circulating folio.
4982 * @new: Replacement folio.
4983 *
4984 * Transfer the memcg data from the old folio to the new folio for migration.
4985 * The old folio's data info will be cleared. Note that the memory counters
4986 * will remain unchanged throughout the process.
4987 *
4988 * Both folios must be locked, @new->mapping must be set up.
4989 */
mem_cgroup_migrate(struct folio * old,struct folio * new)4990 void mem_cgroup_migrate(struct folio *old, struct folio *new)
4991 {
4992 struct mem_cgroup *memcg;
4993
4994 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4995 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4996 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4997 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
4998 VM_BUG_ON_FOLIO(folio_test_lru(old), old);
4999
5000 if (mem_cgroup_disabled())
5001 return;
5002
5003 memcg = folio_memcg(old);
5004 /*
5005 * Note that it is normal to see !memcg for a hugetlb folio.
5006 * For e.g, itt could have been allocated when memory_hugetlb_accounting
5007 * was not selected.
5008 */
5009 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
5010 if (!memcg)
5011 return;
5012
5013 /* Transfer the charge and the css ref */
5014 commit_charge(new, memcg);
5015
5016 /* Warning should never happen, so don't worry about refcount non-0 */
5017 WARN_ON_ONCE(folio_unqueue_deferred_split(old));
5018 old->memcg_data = 0;
5019 }
5020
5021 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5022 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5023
mem_cgroup_sk_alloc(struct sock * sk)5024 void mem_cgroup_sk_alloc(struct sock *sk)
5025 {
5026 struct mem_cgroup *memcg;
5027
5028 if (!mem_cgroup_sockets_enabled)
5029 return;
5030
5031 /* Do not associate the sock with unrelated interrupted task's memcg. */
5032 if (!in_task())
5033 return;
5034
5035 rcu_read_lock();
5036 memcg = mem_cgroup_from_task(current);
5037 if (mem_cgroup_is_root(memcg))
5038 goto out;
5039 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg))
5040 goto out;
5041 if (css_tryget(&memcg->css))
5042 sk->sk_memcg = memcg;
5043 out:
5044 rcu_read_unlock();
5045 }
5046
mem_cgroup_sk_free(struct sock * sk)5047 void mem_cgroup_sk_free(struct sock *sk)
5048 {
5049 struct mem_cgroup *memcg = mem_cgroup_from_sk(sk);
5050
5051 if (memcg)
5052 css_put(&memcg->css);
5053 }
5054
mem_cgroup_sk_inherit(const struct sock * sk,struct sock * newsk)5055 void mem_cgroup_sk_inherit(const struct sock *sk, struct sock *newsk)
5056 {
5057 struct mem_cgroup *memcg;
5058
5059 if (sk->sk_memcg == newsk->sk_memcg)
5060 return;
5061
5062 mem_cgroup_sk_free(newsk);
5063
5064 memcg = mem_cgroup_from_sk(sk);
5065 if (memcg)
5066 css_get(&memcg->css);
5067
5068 newsk->sk_memcg = sk->sk_memcg;
5069 }
5070
5071 /**
5072 * mem_cgroup_sk_charge - charge socket memory
5073 * @sk: socket in memcg to charge
5074 * @nr_pages: number of pages to charge
5075 * @gfp_mask: reclaim mode
5076 *
5077 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5078 * @memcg's configured limit, %false if it doesn't.
5079 */
mem_cgroup_sk_charge(const struct sock * sk,unsigned int nr_pages,gfp_t gfp_mask)5080 bool mem_cgroup_sk_charge(const struct sock *sk, unsigned int nr_pages,
5081 gfp_t gfp_mask)
5082 {
5083 struct mem_cgroup *memcg = mem_cgroup_from_sk(sk);
5084
5085 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5086 return memcg1_charge_skmem(memcg, nr_pages, gfp_mask);
5087
5088 if (try_charge_memcg(memcg, gfp_mask, nr_pages) == 0) {
5089 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
5090 return true;
5091 }
5092
5093 return false;
5094 }
5095
5096 /**
5097 * mem_cgroup_sk_uncharge - uncharge socket memory
5098 * @sk: socket in memcg to uncharge
5099 * @nr_pages: number of pages to uncharge
5100 */
mem_cgroup_sk_uncharge(const struct sock * sk,unsigned int nr_pages)5101 void mem_cgroup_sk_uncharge(const struct sock *sk, unsigned int nr_pages)
5102 {
5103 struct mem_cgroup *memcg = mem_cgroup_from_sk(sk);
5104
5105 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5106 memcg1_uncharge_skmem(memcg, nr_pages);
5107 return;
5108 }
5109
5110 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
5111
5112 refill_stock(memcg, nr_pages);
5113 }
5114
cgroup_memory(char * s)5115 static int __init cgroup_memory(char *s)
5116 {
5117 char *token;
5118
5119 while ((token = strsep(&s, ",")) != NULL) {
5120 if (!*token)
5121 continue;
5122 if (!strcmp(token, "nosocket"))
5123 cgroup_memory_nosocket = true;
5124 if (!strcmp(token, "nokmem"))
5125 cgroup_memory_nokmem = true;
5126 if (!strcmp(token, "nobpf"))
5127 cgroup_memory_nobpf = true;
5128 }
5129 return 1;
5130 }
5131 __setup("cgroup.memory=", cgroup_memory);
5132
5133 /*
5134 * Memory controller init before cgroup_init() initialize root_mem_cgroup.
5135 *
5136 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5137 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5138 * basically everything that doesn't depend on a specific mem_cgroup structure
5139 * should be initialized from here.
5140 */
mem_cgroup_init(void)5141 int __init mem_cgroup_init(void)
5142 {
5143 unsigned int memcg_size;
5144 int cpu;
5145
5146 /*
5147 * Currently s32 type (can refer to struct batched_lruvec_stat) is
5148 * used for per-memcg-per-cpu caching of per-node statistics. In order
5149 * to work fine, we should make sure that the overfill threshold can't
5150 * exceed S32_MAX / PAGE_SIZE.
5151 */
5152 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
5153
5154 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5155 memcg_hotplug_cpu_dead);
5156
5157 for_each_possible_cpu(cpu) {
5158 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5159 drain_local_memcg_stock);
5160 INIT_WORK(&per_cpu_ptr(&obj_stock, cpu)->work,
5161 drain_local_obj_stock);
5162 }
5163
5164 memcg_size = struct_size_t(struct mem_cgroup, nodeinfo, nr_node_ids);
5165 memcg_cachep = kmem_cache_create("mem_cgroup", memcg_size, 0,
5166 SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL);
5167
5168 memcg_pn_cachep = KMEM_CACHE(mem_cgroup_per_node,
5169 SLAB_PANIC | SLAB_HWCACHE_ALIGN);
5170
5171 return 0;
5172 }
5173
5174 #ifdef CONFIG_SWAP
5175 /**
5176 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
5177 * @folio: folio being added to swap
5178 * @entry: swap entry to charge
5179 *
5180 * Try to charge @folio's memcg for the swap space at @entry.
5181 *
5182 * Returns 0 on success, -ENOMEM on failure.
5183 */
__mem_cgroup_try_charge_swap(struct folio * folio,swp_entry_t entry)5184 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
5185 {
5186 unsigned int nr_pages = folio_nr_pages(folio);
5187 struct page_counter *counter;
5188 struct mem_cgroup *memcg;
5189
5190 if (do_memsw_account())
5191 return 0;
5192
5193 memcg = folio_memcg(folio);
5194
5195 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
5196 if (!memcg)
5197 return 0;
5198
5199 if (!entry.val) {
5200 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5201 return 0;
5202 }
5203
5204 memcg = mem_cgroup_id_get_online(memcg);
5205
5206 if (!mem_cgroup_is_root(memcg) &&
5207 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
5208 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
5209 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5210 mem_cgroup_id_put(memcg);
5211 return -ENOMEM;
5212 }
5213
5214 /* Get references for the tail pages, too */
5215 if (nr_pages > 1)
5216 mem_cgroup_id_get_many(memcg, nr_pages - 1);
5217 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
5218
5219 swap_cgroup_record(folio, mem_cgroup_id(memcg), entry);
5220
5221 return 0;
5222 }
5223
5224 /**
5225 * __mem_cgroup_uncharge_swap - uncharge swap space
5226 * @entry: swap entry to uncharge
5227 * @nr_pages: the amount of swap space to uncharge
5228 */
__mem_cgroup_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)5229 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
5230 {
5231 struct mem_cgroup *memcg;
5232 unsigned short id;
5233
5234 id = swap_cgroup_clear(entry, nr_pages);
5235 rcu_read_lock();
5236 memcg = mem_cgroup_from_id(id);
5237 if (memcg) {
5238 if (!mem_cgroup_is_root(memcg)) {
5239 if (do_memsw_account())
5240 page_counter_uncharge(&memcg->memsw, nr_pages);
5241 else
5242 page_counter_uncharge(&memcg->swap, nr_pages);
5243 }
5244 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
5245 mem_cgroup_id_put_many(memcg, nr_pages);
5246 }
5247 rcu_read_unlock();
5248 }
5249
mem_cgroup_get_nr_swap_pages(struct mem_cgroup * memcg)5250 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5251 {
5252 long nr_swap_pages = get_nr_swap_pages();
5253
5254 if (mem_cgroup_disabled() || do_memsw_account())
5255 return nr_swap_pages;
5256 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
5257 nr_swap_pages = min_t(long, nr_swap_pages,
5258 READ_ONCE(memcg->swap.max) -
5259 page_counter_read(&memcg->swap));
5260 return nr_swap_pages;
5261 }
5262
mem_cgroup_swap_full(struct folio * folio)5263 bool mem_cgroup_swap_full(struct folio *folio)
5264 {
5265 struct mem_cgroup *memcg;
5266
5267 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5268
5269 if (vm_swap_full())
5270 return true;
5271 if (do_memsw_account())
5272 return false;
5273
5274 memcg = folio_memcg(folio);
5275 if (!memcg)
5276 return false;
5277
5278 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
5279 unsigned long usage = page_counter_read(&memcg->swap);
5280
5281 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
5282 usage * 2 >= READ_ONCE(memcg->swap.max))
5283 return true;
5284 }
5285
5286 return false;
5287 }
5288
setup_swap_account(char * s)5289 static int __init setup_swap_account(char *s)
5290 {
5291 bool res;
5292
5293 if (!kstrtobool(s, &res) && !res)
5294 pr_warn_once("The swapaccount=0 commandline option is deprecated "
5295 "in favor of configuring swap control via cgroupfs. "
5296 "Please report your usecase to linux-mm@kvack.org if you "
5297 "depend on this functionality.\n");
5298 return 1;
5299 }
5300 __setup("swapaccount=", setup_swap_account);
5301
swap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5302 static u64 swap_current_read(struct cgroup_subsys_state *css,
5303 struct cftype *cft)
5304 {
5305 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5306
5307 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5308 }
5309
swap_peak_show(struct seq_file * sf,void * v)5310 static int swap_peak_show(struct seq_file *sf, void *v)
5311 {
5312 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5313
5314 return peak_show(sf, v, &memcg->swap);
5315 }
5316
swap_peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5317 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf,
5318 size_t nbytes, loff_t off)
5319 {
5320 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5321
5322 return peak_write(of, buf, nbytes, off, &memcg->swap,
5323 &memcg->swap_peaks);
5324 }
5325
swap_high_show(struct seq_file * m,void * v)5326 static int swap_high_show(struct seq_file *m, void *v)
5327 {
5328 return seq_puts_memcg_tunable(m,
5329 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
5330 }
5331
swap_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5332 static ssize_t swap_high_write(struct kernfs_open_file *of,
5333 char *buf, size_t nbytes, loff_t off)
5334 {
5335 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5336 unsigned long high;
5337 int err;
5338
5339 buf = strstrip(buf);
5340 err = page_counter_memparse(buf, "max", &high);
5341 if (err)
5342 return err;
5343
5344 page_counter_set_high(&memcg->swap, high);
5345
5346 return nbytes;
5347 }
5348
swap_max_show(struct seq_file * m,void * v)5349 static int swap_max_show(struct seq_file *m, void *v)
5350 {
5351 return seq_puts_memcg_tunable(m,
5352 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
5353 }
5354
swap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5355 static ssize_t swap_max_write(struct kernfs_open_file *of,
5356 char *buf, size_t nbytes, loff_t off)
5357 {
5358 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5359 unsigned long max;
5360 int err;
5361
5362 buf = strstrip(buf);
5363 err = page_counter_memparse(buf, "max", &max);
5364 if (err)
5365 return err;
5366
5367 xchg(&memcg->swap.max, max);
5368
5369 return nbytes;
5370 }
5371
swap_events_show(struct seq_file * m,void * v)5372 static int swap_events_show(struct seq_file *m, void *v)
5373 {
5374 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5375
5376 seq_printf(m, "high %lu\n",
5377 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
5378 seq_printf(m, "max %lu\n",
5379 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
5380 seq_printf(m, "fail %lu\n",
5381 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
5382
5383 return 0;
5384 }
5385
5386 static struct cftype swap_files[] = {
5387 {
5388 .name = "swap.current",
5389 .flags = CFTYPE_NOT_ON_ROOT,
5390 .read_u64 = swap_current_read,
5391 },
5392 {
5393 .name = "swap.high",
5394 .flags = CFTYPE_NOT_ON_ROOT,
5395 .seq_show = swap_high_show,
5396 .write = swap_high_write,
5397 },
5398 {
5399 .name = "swap.max",
5400 .flags = CFTYPE_NOT_ON_ROOT,
5401 .seq_show = swap_max_show,
5402 .write = swap_max_write,
5403 },
5404 {
5405 .name = "swap.peak",
5406 .flags = CFTYPE_NOT_ON_ROOT,
5407 .open = peak_open,
5408 .release = peak_release,
5409 .seq_show = swap_peak_show,
5410 .write = swap_peak_write,
5411 },
5412 {
5413 .name = "swap.events",
5414 .flags = CFTYPE_NOT_ON_ROOT,
5415 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
5416 .seq_show = swap_events_show,
5417 },
5418 { } /* terminate */
5419 };
5420
5421 #ifdef CONFIG_ZSWAP
5422 /**
5423 * obj_cgroup_may_zswap - check if this cgroup can zswap
5424 * @objcg: the object cgroup
5425 *
5426 * Check if the hierarchical zswap limit has been reached.
5427 *
5428 * This doesn't check for specific headroom, and it is not atomic
5429 * either. But with zswap, the size of the allocation is only known
5430 * once compression has occurred, and this optimistic pre-check avoids
5431 * spending cycles on compression when there is already no room left
5432 * or zswap is disabled altogether somewhere in the hierarchy.
5433 */
obj_cgroup_may_zswap(struct obj_cgroup * objcg)5434 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
5435 {
5436 struct mem_cgroup *memcg, *original_memcg;
5437 bool ret = true;
5438
5439 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5440 return true;
5441
5442 original_memcg = get_mem_cgroup_from_objcg(objcg);
5443 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
5444 memcg = parent_mem_cgroup(memcg)) {
5445 unsigned long max = READ_ONCE(memcg->zswap_max);
5446 unsigned long pages;
5447
5448 if (max == PAGE_COUNTER_MAX)
5449 continue;
5450 if (max == 0) {
5451 ret = false;
5452 break;
5453 }
5454
5455 /* Force flush to get accurate stats for charging */
5456 __mem_cgroup_flush_stats(memcg, true);
5457 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
5458 if (pages < max)
5459 continue;
5460 ret = false;
5461 break;
5462 }
5463 mem_cgroup_put(original_memcg);
5464 return ret;
5465 }
5466
5467 /**
5468 * obj_cgroup_charge_zswap - charge compression backend memory
5469 * @objcg: the object cgroup
5470 * @size: size of compressed object
5471 *
5472 * This forces the charge after obj_cgroup_may_zswap() allowed
5473 * compression and storage in zswap for this cgroup to go ahead.
5474 */
obj_cgroup_charge_zswap(struct obj_cgroup * objcg,size_t size)5475 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
5476 {
5477 struct mem_cgroup *memcg;
5478
5479 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5480 return;
5481
5482 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
5483
5484 /* PF_MEMALLOC context, charging must succeed */
5485 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
5486 VM_WARN_ON_ONCE(1);
5487
5488 rcu_read_lock();
5489 memcg = obj_cgroup_memcg(objcg);
5490 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
5491 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
5492 rcu_read_unlock();
5493 }
5494
5495 /**
5496 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
5497 * @objcg: the object cgroup
5498 * @size: size of compressed object
5499 *
5500 * Uncharges zswap memory on page in.
5501 */
obj_cgroup_uncharge_zswap(struct obj_cgroup * objcg,size_t size)5502 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
5503 {
5504 struct mem_cgroup *memcg;
5505
5506 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5507 return;
5508
5509 obj_cgroup_uncharge(objcg, size);
5510
5511 rcu_read_lock();
5512 memcg = obj_cgroup_memcg(objcg);
5513 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
5514 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
5515 rcu_read_unlock();
5516 }
5517
mem_cgroup_zswap_writeback_enabled(struct mem_cgroup * memcg)5518 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
5519 {
5520 /* if zswap is disabled, do not block pages going to the swapping device */
5521 if (!zswap_is_enabled())
5522 return true;
5523
5524 for (; memcg; memcg = parent_mem_cgroup(memcg))
5525 if (!READ_ONCE(memcg->zswap_writeback))
5526 return false;
5527
5528 return true;
5529 }
5530
zswap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5531 static u64 zswap_current_read(struct cgroup_subsys_state *css,
5532 struct cftype *cft)
5533 {
5534 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5535
5536 mem_cgroup_flush_stats(memcg);
5537 return memcg_page_state(memcg, MEMCG_ZSWAP_B);
5538 }
5539
zswap_max_show(struct seq_file * m,void * v)5540 static int zswap_max_show(struct seq_file *m, void *v)
5541 {
5542 return seq_puts_memcg_tunable(m,
5543 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
5544 }
5545
zswap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5546 static ssize_t zswap_max_write(struct kernfs_open_file *of,
5547 char *buf, size_t nbytes, loff_t off)
5548 {
5549 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5550 unsigned long max;
5551 int err;
5552
5553 buf = strstrip(buf);
5554 err = page_counter_memparse(buf, "max", &max);
5555 if (err)
5556 return err;
5557
5558 xchg(&memcg->zswap_max, max);
5559
5560 return nbytes;
5561 }
5562
zswap_writeback_show(struct seq_file * m,void * v)5563 static int zswap_writeback_show(struct seq_file *m, void *v)
5564 {
5565 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5566
5567 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
5568 return 0;
5569 }
5570
zswap_writeback_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5571 static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
5572 char *buf, size_t nbytes, loff_t off)
5573 {
5574 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5575 int zswap_writeback;
5576 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
5577
5578 if (parse_ret)
5579 return parse_ret;
5580
5581 if (zswap_writeback != 0 && zswap_writeback != 1)
5582 return -EINVAL;
5583
5584 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
5585 return nbytes;
5586 }
5587
5588 static struct cftype zswap_files[] = {
5589 {
5590 .name = "zswap.current",
5591 .flags = CFTYPE_NOT_ON_ROOT,
5592 .read_u64 = zswap_current_read,
5593 },
5594 {
5595 .name = "zswap.max",
5596 .flags = CFTYPE_NOT_ON_ROOT,
5597 .seq_show = zswap_max_show,
5598 .write = zswap_max_write,
5599 },
5600 {
5601 .name = "zswap.writeback",
5602 .seq_show = zswap_writeback_show,
5603 .write = zswap_writeback_write,
5604 },
5605 { } /* terminate */
5606 };
5607 #endif /* CONFIG_ZSWAP */
5608
mem_cgroup_swap_init(void)5609 static int __init mem_cgroup_swap_init(void)
5610 {
5611 if (mem_cgroup_disabled())
5612 return 0;
5613
5614 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
5615 #ifdef CONFIG_MEMCG_V1
5616 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
5617 #endif
5618 #ifdef CONFIG_ZSWAP
5619 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
5620 #endif
5621 return 0;
5622 }
5623 subsys_initcall(mem_cgroup_swap_init);
5624
5625 #endif /* CONFIG_SWAP */
5626
mem_cgroup_node_allowed(struct mem_cgroup * memcg,int nid)5627 bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid)
5628 {
5629 return memcg ? cpuset_node_allowed(memcg->css.cgroup, nid) : true;
5630 }
5631
mem_cgroup_show_protected_memory(struct mem_cgroup * memcg)5632 void mem_cgroup_show_protected_memory(struct mem_cgroup *memcg)
5633 {
5634 if (mem_cgroup_disabled() || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5635 return;
5636
5637 if (!memcg)
5638 memcg = root_mem_cgroup;
5639
5640 pr_warn("Memory cgroup min protection %lukB -- low protection %lukB",
5641 K(atomic_long_read(&memcg->memory.children_min_usage)*PAGE_SIZE),
5642 K(atomic_long_read(&memcg->memory.children_low_usage)*PAGE_SIZE));
5643 }
5644