1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/sizes.h>
4 #include <linux/list_sort.h>
5 #include "misc.h"
6 #include "ctree.h"
7 #include "block-group.h"
8 #include "space-info.h"
9 #include "disk-io.h"
10 #include "free-space-cache.h"
11 #include "free-space-tree.h"
12 #include "volumes.h"
13 #include "transaction.h"
14 #include "ref-verify.h"
15 #include "sysfs.h"
16 #include "tree-log.h"
17 #include "delalloc-space.h"
18 #include "discard.h"
19 #include "raid56.h"
20 #include "zoned.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24
25 #ifdef CONFIG_BTRFS_DEBUG
btrfs_should_fragment_free_space(const struct btrfs_block_group * block_group)26 int btrfs_should_fragment_free_space(const struct btrfs_block_group *block_group)
27 {
28 struct btrfs_fs_info *fs_info = block_group->fs_info;
29
30 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
31 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
32 (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
33 block_group->flags & BTRFS_BLOCK_GROUP_DATA);
34 }
35 #endif
36
has_unwritten_metadata(struct btrfs_block_group * block_group)37 static inline bool has_unwritten_metadata(struct btrfs_block_group *block_group)
38 {
39 /* The meta_write_pointer is available only on the zoned setup. */
40 if (!btrfs_is_zoned(block_group->fs_info))
41 return false;
42
43 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
44 return false;
45
46 return block_group->start + block_group->alloc_offset >
47 block_group->meta_write_pointer;
48 }
49
50 /*
51 * Return target flags in extended format or 0 if restripe for this chunk_type
52 * is not in progress
53 *
54 * Should be called with balance_lock held
55 */
get_restripe_target(const struct btrfs_fs_info * fs_info,u64 flags)56 static u64 get_restripe_target(const struct btrfs_fs_info *fs_info, u64 flags)
57 {
58 const struct btrfs_balance_control *bctl = fs_info->balance_ctl;
59 u64 target = 0;
60
61 if (!bctl)
62 return 0;
63
64 if (flags & BTRFS_BLOCK_GROUP_DATA &&
65 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
66 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
67 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
68 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
69 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
70 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
71 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
72 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
73 }
74
75 return target;
76 }
77
78 /*
79 * @flags: available profiles in extended format (see ctree.h)
80 *
81 * Return reduced profile in chunk format. If profile changing is in progress
82 * (either running or paused) picks the target profile (if it's already
83 * available), otherwise falls back to plain reducing.
84 */
btrfs_reduce_alloc_profile(struct btrfs_fs_info * fs_info,u64 flags)85 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
86 {
87 u64 num_devices = fs_info->fs_devices->rw_devices;
88 u64 target;
89 u64 raid_type;
90 u64 allowed = 0;
91
92 /*
93 * See if restripe for this chunk_type is in progress, if so try to
94 * reduce to the target profile
95 */
96 spin_lock(&fs_info->balance_lock);
97 target = get_restripe_target(fs_info, flags);
98 if (target) {
99 spin_unlock(&fs_info->balance_lock);
100 return extended_to_chunk(target);
101 }
102 spin_unlock(&fs_info->balance_lock);
103
104 /* First, mask out the RAID levels which aren't possible */
105 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
106 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
107 allowed |= btrfs_raid_array[raid_type].bg_flag;
108 }
109 allowed &= flags;
110
111 /* Select the highest-redundancy RAID level. */
112 if (allowed & BTRFS_BLOCK_GROUP_RAID1C4)
113 allowed = BTRFS_BLOCK_GROUP_RAID1C4;
114 else if (allowed & BTRFS_BLOCK_GROUP_RAID6)
115 allowed = BTRFS_BLOCK_GROUP_RAID6;
116 else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3)
117 allowed = BTRFS_BLOCK_GROUP_RAID1C3;
118 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
119 allowed = BTRFS_BLOCK_GROUP_RAID5;
120 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
121 allowed = BTRFS_BLOCK_GROUP_RAID10;
122 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
123 allowed = BTRFS_BLOCK_GROUP_RAID1;
124 else if (allowed & BTRFS_BLOCK_GROUP_DUP)
125 allowed = BTRFS_BLOCK_GROUP_DUP;
126 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
127 allowed = BTRFS_BLOCK_GROUP_RAID0;
128
129 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
130
131 return extended_to_chunk(flags | allowed);
132 }
133
btrfs_get_alloc_profile(struct btrfs_fs_info * fs_info,u64 orig_flags)134 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
135 {
136 unsigned seq;
137 u64 flags;
138
139 do {
140 flags = orig_flags;
141 seq = read_seqbegin(&fs_info->profiles_lock);
142
143 if (flags & BTRFS_BLOCK_GROUP_DATA)
144 flags |= fs_info->avail_data_alloc_bits;
145 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
146 flags |= fs_info->avail_system_alloc_bits;
147 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
148 flags |= fs_info->avail_metadata_alloc_bits;
149 } while (read_seqretry(&fs_info->profiles_lock, seq));
150
151 return btrfs_reduce_alloc_profile(fs_info, flags);
152 }
153
btrfs_get_block_group(struct btrfs_block_group * cache)154 void btrfs_get_block_group(struct btrfs_block_group *cache)
155 {
156 refcount_inc(&cache->refs);
157 }
158
btrfs_put_block_group(struct btrfs_block_group * cache)159 void btrfs_put_block_group(struct btrfs_block_group *cache)
160 {
161 if (refcount_dec_and_test(&cache->refs)) {
162 WARN_ON(cache->pinned > 0);
163 /*
164 * If there was a failure to cleanup a log tree, very likely due
165 * to an IO failure on a writeback attempt of one or more of its
166 * extent buffers, we could not do proper (and cheap) unaccounting
167 * of their reserved space, so don't warn on reserved > 0 in that
168 * case.
169 */
170 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
171 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
172 WARN_ON(cache->reserved > 0);
173
174 /*
175 * A block_group shouldn't be on the discard_list anymore.
176 * Remove the block_group from the discard_list to prevent us
177 * from causing a panic due to NULL pointer dereference.
178 */
179 if (WARN_ON(!list_empty(&cache->discard_list)))
180 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
181 cache);
182
183 kfree(cache->free_space_ctl);
184 btrfs_free_chunk_map(cache->physical_map);
185 kfree(cache);
186 }
187 }
188
btrfs_bg_start_cmp(const struct rb_node * new,const struct rb_node * exist)189 static int btrfs_bg_start_cmp(const struct rb_node *new,
190 const struct rb_node *exist)
191 {
192 const struct btrfs_block_group *new_bg =
193 rb_entry(new, struct btrfs_block_group, cache_node);
194 const struct btrfs_block_group *exist_bg =
195 rb_entry(exist, struct btrfs_block_group, cache_node);
196
197 if (new_bg->start < exist_bg->start)
198 return -1;
199 if (new_bg->start > exist_bg->start)
200 return 1;
201 return 0;
202 }
203
204 /*
205 * This adds the block group to the fs_info rb tree for the block group cache
206 */
btrfs_add_block_group_cache(struct btrfs_block_group * block_group)207 static int btrfs_add_block_group_cache(struct btrfs_block_group *block_group)
208 {
209 struct btrfs_fs_info *fs_info = block_group->fs_info;
210 struct rb_node *exist;
211 int ret = 0;
212
213 ASSERT(block_group->length != 0);
214
215 write_lock(&fs_info->block_group_cache_lock);
216
217 exist = rb_find_add_cached(&block_group->cache_node,
218 &fs_info->block_group_cache_tree, btrfs_bg_start_cmp);
219 if (exist)
220 ret = -EEXIST;
221 write_unlock(&fs_info->block_group_cache_lock);
222
223 return ret;
224 }
225
226 /*
227 * This will return the block group at or after bytenr if contains is 0, else
228 * it will return the block group that contains the bytenr
229 */
block_group_cache_tree_search(struct btrfs_fs_info * info,u64 bytenr,int contains)230 static struct btrfs_block_group *block_group_cache_tree_search(
231 struct btrfs_fs_info *info, u64 bytenr, int contains)
232 {
233 struct btrfs_block_group *cache, *ret = NULL;
234 struct rb_node *n;
235 u64 end, start;
236
237 read_lock(&info->block_group_cache_lock);
238 n = info->block_group_cache_tree.rb_root.rb_node;
239
240 while (n) {
241 cache = rb_entry(n, struct btrfs_block_group, cache_node);
242 end = cache->start + cache->length - 1;
243 start = cache->start;
244
245 if (bytenr < start) {
246 if (!contains && (!ret || start < ret->start))
247 ret = cache;
248 n = n->rb_left;
249 } else if (bytenr > start) {
250 if (contains && bytenr <= end) {
251 ret = cache;
252 break;
253 }
254 n = n->rb_right;
255 } else {
256 ret = cache;
257 break;
258 }
259 }
260 if (ret)
261 btrfs_get_block_group(ret);
262 read_unlock(&info->block_group_cache_lock);
263
264 return ret;
265 }
266
267 /*
268 * Return the block group that starts at or after bytenr
269 */
btrfs_lookup_first_block_group(struct btrfs_fs_info * info,u64 bytenr)270 struct btrfs_block_group *btrfs_lookup_first_block_group(
271 struct btrfs_fs_info *info, u64 bytenr)
272 {
273 return block_group_cache_tree_search(info, bytenr, 0);
274 }
275
276 /*
277 * Return the block group that contains the given bytenr
278 */
btrfs_lookup_block_group(struct btrfs_fs_info * info,u64 bytenr)279 struct btrfs_block_group *btrfs_lookup_block_group(
280 struct btrfs_fs_info *info, u64 bytenr)
281 {
282 return block_group_cache_tree_search(info, bytenr, 1);
283 }
284
btrfs_next_block_group(struct btrfs_block_group * cache)285 struct btrfs_block_group *btrfs_next_block_group(
286 struct btrfs_block_group *cache)
287 {
288 struct btrfs_fs_info *fs_info = cache->fs_info;
289 struct rb_node *node;
290
291 read_lock(&fs_info->block_group_cache_lock);
292
293 /* If our block group was removed, we need a full search. */
294 if (RB_EMPTY_NODE(&cache->cache_node)) {
295 const u64 next_bytenr = cache->start + cache->length;
296
297 read_unlock(&fs_info->block_group_cache_lock);
298 btrfs_put_block_group(cache);
299 return btrfs_lookup_first_block_group(fs_info, next_bytenr);
300 }
301 node = rb_next(&cache->cache_node);
302 btrfs_put_block_group(cache);
303 if (node) {
304 cache = rb_entry(node, struct btrfs_block_group, cache_node);
305 btrfs_get_block_group(cache);
306 } else
307 cache = NULL;
308 read_unlock(&fs_info->block_group_cache_lock);
309 return cache;
310 }
311
312 /*
313 * Check if we can do a NOCOW write for a given extent.
314 *
315 * @fs_info: The filesystem information object.
316 * @bytenr: Logical start address of the extent.
317 *
318 * Check if we can do a NOCOW write for the given extent, and increments the
319 * number of NOCOW writers in the block group that contains the extent, as long
320 * as the block group exists and it's currently not in read-only mode.
321 *
322 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
323 * is responsible for calling btrfs_dec_nocow_writers() later.
324 *
325 * Or NULL if we can not do a NOCOW write
326 */
btrfs_inc_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)327 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
328 u64 bytenr)
329 {
330 struct btrfs_block_group *bg;
331 bool can_nocow = true;
332
333 bg = btrfs_lookup_block_group(fs_info, bytenr);
334 if (!bg)
335 return NULL;
336
337 spin_lock(&bg->lock);
338 if (bg->ro)
339 can_nocow = false;
340 else
341 atomic_inc(&bg->nocow_writers);
342 spin_unlock(&bg->lock);
343
344 if (!can_nocow) {
345 btrfs_put_block_group(bg);
346 return NULL;
347 }
348
349 /* No put on block group, done by btrfs_dec_nocow_writers(). */
350 return bg;
351 }
352
353 /*
354 * Decrement the number of NOCOW writers in a block group.
355 *
356 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
357 * and on the block group returned by that call. Typically this is called after
358 * creating an ordered extent for a NOCOW write, to prevent races with scrub and
359 * relocation.
360 *
361 * After this call, the caller should not use the block group anymore. It it wants
362 * to use it, then it should get a reference on it before calling this function.
363 */
btrfs_dec_nocow_writers(struct btrfs_block_group * bg)364 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
365 {
366 if (atomic_dec_and_test(&bg->nocow_writers))
367 wake_up_var(&bg->nocow_writers);
368
369 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
370 btrfs_put_block_group(bg);
371 }
372
btrfs_wait_nocow_writers(struct btrfs_block_group * bg)373 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
374 {
375 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
376 }
377
btrfs_dec_block_group_reservations(struct btrfs_fs_info * fs_info,const u64 start)378 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
379 const u64 start)
380 {
381 struct btrfs_block_group *bg;
382
383 bg = btrfs_lookup_block_group(fs_info, start);
384 ASSERT(bg);
385 if (atomic_dec_and_test(&bg->reservations))
386 wake_up_var(&bg->reservations);
387 btrfs_put_block_group(bg);
388 }
389
btrfs_wait_block_group_reservations(struct btrfs_block_group * bg)390 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
391 {
392 struct btrfs_space_info *space_info = bg->space_info;
393
394 ASSERT(bg->ro);
395
396 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
397 return;
398
399 /*
400 * Our block group is read only but before we set it to read only,
401 * some task might have had allocated an extent from it already, but it
402 * has not yet created a respective ordered extent (and added it to a
403 * root's list of ordered extents).
404 * Therefore wait for any task currently allocating extents, since the
405 * block group's reservations counter is incremented while a read lock
406 * on the groups' semaphore is held and decremented after releasing
407 * the read access on that semaphore and creating the ordered extent.
408 */
409 down_write(&space_info->groups_sem);
410 up_write(&space_info->groups_sem);
411
412 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
413 }
414
btrfs_get_caching_control(struct btrfs_block_group * cache)415 struct btrfs_caching_control *btrfs_get_caching_control(
416 struct btrfs_block_group *cache)
417 {
418 struct btrfs_caching_control *ctl;
419
420 spin_lock(&cache->lock);
421 if (!cache->caching_ctl) {
422 spin_unlock(&cache->lock);
423 return NULL;
424 }
425
426 ctl = cache->caching_ctl;
427 refcount_inc(&ctl->count);
428 spin_unlock(&cache->lock);
429 return ctl;
430 }
431
btrfs_put_caching_control(struct btrfs_caching_control * ctl)432 static void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
433 {
434 if (refcount_dec_and_test(&ctl->count))
435 kfree(ctl);
436 }
437
438 /*
439 * When we wait for progress in the block group caching, its because our
440 * allocation attempt failed at least once. So, we must sleep and let some
441 * progress happen before we try again.
442 *
443 * This function will sleep at least once waiting for new free space to show
444 * up, and then it will check the block group free space numbers for our min
445 * num_bytes. Another option is to have it go ahead and look in the rbtree for
446 * a free extent of a given size, but this is a good start.
447 *
448 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
449 * any of the information in this block group.
450 */
btrfs_wait_block_group_cache_progress(struct btrfs_block_group * cache,u64 num_bytes)451 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
452 u64 num_bytes)
453 {
454 struct btrfs_caching_control *caching_ctl;
455 int progress;
456
457 caching_ctl = btrfs_get_caching_control(cache);
458 if (!caching_ctl)
459 return;
460
461 /*
462 * We've already failed to allocate from this block group, so even if
463 * there's enough space in the block group it isn't contiguous enough to
464 * allow for an allocation, so wait for at least the next wakeup tick,
465 * or for the thing to be done.
466 */
467 progress = atomic_read(&caching_ctl->progress);
468
469 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
470 (progress != atomic_read(&caching_ctl->progress) &&
471 (cache->free_space_ctl->free_space >= num_bytes)));
472
473 btrfs_put_caching_control(caching_ctl);
474 }
475
btrfs_caching_ctl_wait_done(struct btrfs_block_group * cache,struct btrfs_caching_control * caching_ctl)476 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
477 struct btrfs_caching_control *caching_ctl)
478 {
479 wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
480 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
481 }
482
btrfs_wait_block_group_cache_done(struct btrfs_block_group * cache)483 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
484 {
485 struct btrfs_caching_control *caching_ctl;
486 int ret;
487
488 caching_ctl = btrfs_get_caching_control(cache);
489 if (!caching_ctl)
490 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
491 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
492 btrfs_put_caching_control(caching_ctl);
493 return ret;
494 }
495
496 #ifdef CONFIG_BTRFS_DEBUG
fragment_free_space(struct btrfs_block_group * block_group)497 static void fragment_free_space(struct btrfs_block_group *block_group)
498 {
499 struct btrfs_fs_info *fs_info = block_group->fs_info;
500 u64 start = block_group->start;
501 u64 len = block_group->length;
502 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
503 fs_info->nodesize : fs_info->sectorsize;
504 u64 step = chunk << 1;
505
506 while (len > chunk) {
507 btrfs_remove_free_space(block_group, start, chunk);
508 start += step;
509 if (len < step)
510 len = 0;
511 else
512 len -= step;
513 }
514 }
515 #endif
516
517 /*
518 * Add a free space range to the in memory free space cache of a block group.
519 * This checks if the range contains super block locations and any such
520 * locations are not added to the free space cache.
521 *
522 * @block_group: The target block group.
523 * @start: Start offset of the range.
524 * @end: End offset of the range (exclusive).
525 * @total_added_ret: Optional pointer to return the total amount of space
526 * added to the block group's free space cache.
527 *
528 * Returns 0 on success or < 0 on error.
529 */
btrfs_add_new_free_space(struct btrfs_block_group * block_group,u64 start,u64 end,u64 * total_added_ret)530 int btrfs_add_new_free_space(struct btrfs_block_group *block_group, u64 start,
531 u64 end, u64 *total_added_ret)
532 {
533 struct btrfs_fs_info *info = block_group->fs_info;
534 u64 extent_start, extent_end, size;
535 int ret;
536
537 if (total_added_ret)
538 *total_added_ret = 0;
539
540 while (start < end) {
541 if (!btrfs_find_first_extent_bit(&info->excluded_extents, start,
542 &extent_start, &extent_end,
543 EXTENT_DIRTY, NULL))
544 break;
545
546 if (extent_start <= start) {
547 start = extent_end + 1;
548 } else if (extent_start > start && extent_start < end) {
549 size = extent_start - start;
550 ret = btrfs_add_free_space_async_trimmed(block_group,
551 start, size);
552 if (ret)
553 return ret;
554 if (total_added_ret)
555 *total_added_ret += size;
556 start = extent_end + 1;
557 } else {
558 break;
559 }
560 }
561
562 if (start < end) {
563 size = end - start;
564 ret = btrfs_add_free_space_async_trimmed(block_group, start,
565 size);
566 if (ret)
567 return ret;
568 if (total_added_ret)
569 *total_added_ret += size;
570 }
571
572 return 0;
573 }
574
575 /*
576 * Get an arbitrary extent item index / max_index through the block group
577 *
578 * @block_group the block group to sample from
579 * @index: the integral step through the block group to grab from
580 * @max_index: the granularity of the sampling
581 * @key: return value parameter for the item we find
582 *
583 * Pre-conditions on indices:
584 * 0 <= index <= max_index
585 * 0 < max_index
586 *
587 * Returns: 0 on success, 1 if the search didn't yield a useful item, negative
588 * error code on error.
589 */
sample_block_group_extent_item(struct btrfs_caching_control * caching_ctl,struct btrfs_block_group * block_group,int index,int max_index,struct btrfs_key * found_key)590 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl,
591 struct btrfs_block_group *block_group,
592 int index, int max_index,
593 struct btrfs_key *found_key)
594 {
595 struct btrfs_fs_info *fs_info = block_group->fs_info;
596 struct btrfs_root *extent_root;
597 u64 search_offset;
598 u64 search_end = block_group->start + block_group->length;
599 BTRFS_PATH_AUTO_FREE(path);
600 struct btrfs_key search_key;
601 int ret = 0;
602
603 ASSERT(index >= 0);
604 ASSERT(index <= max_index);
605 ASSERT(max_index > 0);
606 lockdep_assert_held(&caching_ctl->mutex);
607 lockdep_assert_held_read(&fs_info->commit_root_sem);
608
609 path = btrfs_alloc_path();
610 if (!path)
611 return -ENOMEM;
612
613 extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start,
614 BTRFS_SUPER_INFO_OFFSET));
615
616 path->skip_locking = 1;
617 path->search_commit_root = 1;
618 path->reada = READA_FORWARD;
619
620 search_offset = index * div_u64(block_group->length, max_index);
621 search_key.objectid = block_group->start + search_offset;
622 search_key.type = BTRFS_EXTENT_ITEM_KEY;
623 search_key.offset = 0;
624
625 btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) {
626 /* Success; sampled an extent item in the block group */
627 if (found_key->type == BTRFS_EXTENT_ITEM_KEY &&
628 found_key->objectid >= block_group->start &&
629 found_key->objectid + found_key->offset <= search_end)
630 break;
631
632 /* We can't possibly find a valid extent item anymore */
633 if (found_key->objectid >= search_end) {
634 ret = 1;
635 break;
636 }
637 }
638
639 lockdep_assert_held(&caching_ctl->mutex);
640 lockdep_assert_held_read(&fs_info->commit_root_sem);
641 return ret;
642 }
643
644 /*
645 * Best effort attempt to compute a block group's size class while caching it.
646 *
647 * @block_group: the block group we are caching
648 *
649 * We cannot infer the size class while adding free space extents, because that
650 * logic doesn't care about contiguous file extents (it doesn't differentiate
651 * between a 100M extent and 100 contiguous 1M extents). So we need to read the
652 * file extent items. Reading all of them is quite wasteful, because usually
653 * only a handful are enough to give a good answer. Therefore, we just grab 5 of
654 * them at even steps through the block group and pick the smallest size class
655 * we see. Since size class is best effort, and not guaranteed in general,
656 * inaccuracy is acceptable.
657 *
658 * To be more explicit about why this algorithm makes sense:
659 *
660 * If we are caching in a block group from disk, then there are three major cases
661 * to consider:
662 * 1. the block group is well behaved and all extents in it are the same size
663 * class.
664 * 2. the block group is mostly one size class with rare exceptions for last
665 * ditch allocations
666 * 3. the block group was populated before size classes and can have a totally
667 * arbitrary mix of size classes.
668 *
669 * In case 1, looking at any extent in the block group will yield the correct
670 * result. For the mixed cases, taking the minimum size class seems like a good
671 * approximation, since gaps from frees will be usable to the size class. For
672 * 2., a small handful of file extents is likely to yield the right answer. For
673 * 3, we can either read every file extent, or admit that this is best effort
674 * anyway and try to stay fast.
675 *
676 * Returns: 0 on success, negative error code on error.
677 */
load_block_group_size_class(struct btrfs_caching_control * caching_ctl,struct btrfs_block_group * block_group)678 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl,
679 struct btrfs_block_group *block_group)
680 {
681 struct btrfs_fs_info *fs_info = block_group->fs_info;
682 struct btrfs_key key;
683 int i;
684 u64 min_size = block_group->length;
685 enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE;
686 int ret;
687
688 if (!btrfs_block_group_should_use_size_class(block_group))
689 return 0;
690
691 lockdep_assert_held(&caching_ctl->mutex);
692 lockdep_assert_held_read(&fs_info->commit_root_sem);
693 for (i = 0; i < 5; ++i) {
694 ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key);
695 if (ret < 0)
696 goto out;
697 if (ret > 0)
698 continue;
699 min_size = min_t(u64, min_size, key.offset);
700 size_class = btrfs_calc_block_group_size_class(min_size);
701 }
702 if (size_class != BTRFS_BG_SZ_NONE) {
703 spin_lock(&block_group->lock);
704 block_group->size_class = size_class;
705 spin_unlock(&block_group->lock);
706 }
707 out:
708 return ret;
709 }
710
load_extent_tree_free(struct btrfs_caching_control * caching_ctl)711 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
712 {
713 struct btrfs_block_group *block_group = caching_ctl->block_group;
714 struct btrfs_fs_info *fs_info = block_group->fs_info;
715 struct btrfs_root *extent_root;
716 BTRFS_PATH_AUTO_FREE(path);
717 struct extent_buffer *leaf;
718 struct btrfs_key key;
719 u64 total_found = 0;
720 u64 last = 0;
721 u32 nritems;
722 int ret;
723 bool wakeup = true;
724
725 path = btrfs_alloc_path();
726 if (!path)
727 return -ENOMEM;
728
729 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
730 extent_root = btrfs_extent_root(fs_info, last);
731
732 #ifdef CONFIG_BTRFS_DEBUG
733 /*
734 * If we're fragmenting we don't want to make anybody think we can
735 * allocate from this block group until we've had a chance to fragment
736 * the free space.
737 */
738 if (btrfs_should_fragment_free_space(block_group))
739 wakeup = false;
740 #endif
741 /*
742 * We don't want to deadlock with somebody trying to allocate a new
743 * extent for the extent root while also trying to search the extent
744 * root to add free space. So we skip locking and search the commit
745 * root, since its read-only
746 */
747 path->skip_locking = 1;
748 path->search_commit_root = 1;
749 path->reada = READA_FORWARD;
750
751 key.objectid = last;
752 key.type = BTRFS_EXTENT_ITEM_KEY;
753 key.offset = 0;
754
755 next:
756 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
757 if (ret < 0)
758 goto out;
759
760 leaf = path->nodes[0];
761 nritems = btrfs_header_nritems(leaf);
762
763 while (1) {
764 if (btrfs_fs_closing(fs_info) > 1) {
765 last = (u64)-1;
766 break;
767 }
768
769 if (path->slots[0] < nritems) {
770 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
771 } else {
772 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
773 if (ret)
774 break;
775
776 if (need_resched() ||
777 rwsem_is_contended(&fs_info->commit_root_sem)) {
778 btrfs_release_path(path);
779 up_read(&fs_info->commit_root_sem);
780 mutex_unlock(&caching_ctl->mutex);
781 cond_resched();
782 mutex_lock(&caching_ctl->mutex);
783 down_read(&fs_info->commit_root_sem);
784 goto next;
785 }
786
787 ret = btrfs_next_leaf(extent_root, path);
788 if (ret < 0)
789 goto out;
790 if (ret)
791 break;
792 leaf = path->nodes[0];
793 nritems = btrfs_header_nritems(leaf);
794 continue;
795 }
796
797 if (key.objectid < last) {
798 key.objectid = last;
799 key.type = BTRFS_EXTENT_ITEM_KEY;
800 key.offset = 0;
801 btrfs_release_path(path);
802 goto next;
803 }
804
805 if (key.objectid < block_group->start) {
806 path->slots[0]++;
807 continue;
808 }
809
810 if (key.objectid >= block_group->start + block_group->length)
811 break;
812
813 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
814 key.type == BTRFS_METADATA_ITEM_KEY) {
815 u64 space_added;
816
817 ret = btrfs_add_new_free_space(block_group, last,
818 key.objectid, &space_added);
819 if (ret)
820 goto out;
821 total_found += space_added;
822 if (key.type == BTRFS_METADATA_ITEM_KEY)
823 last = key.objectid +
824 fs_info->nodesize;
825 else
826 last = key.objectid + key.offset;
827
828 if (total_found > CACHING_CTL_WAKE_UP) {
829 total_found = 0;
830 if (wakeup) {
831 atomic_inc(&caching_ctl->progress);
832 wake_up(&caching_ctl->wait);
833 }
834 }
835 }
836 path->slots[0]++;
837 }
838
839 ret = btrfs_add_new_free_space(block_group, last,
840 block_group->start + block_group->length,
841 NULL);
842 out:
843 return ret;
844 }
845
btrfs_free_excluded_extents(const struct btrfs_block_group * bg)846 static inline void btrfs_free_excluded_extents(const struct btrfs_block_group *bg)
847 {
848 btrfs_clear_extent_bit(&bg->fs_info->excluded_extents, bg->start,
849 bg->start + bg->length - 1, EXTENT_DIRTY, NULL);
850 }
851
caching_thread(struct btrfs_work * work)852 static noinline void caching_thread(struct btrfs_work *work)
853 {
854 struct btrfs_block_group *block_group;
855 struct btrfs_fs_info *fs_info;
856 struct btrfs_caching_control *caching_ctl;
857 int ret;
858
859 caching_ctl = container_of(work, struct btrfs_caching_control, work);
860 block_group = caching_ctl->block_group;
861 fs_info = block_group->fs_info;
862
863 mutex_lock(&caching_ctl->mutex);
864 down_read(&fs_info->commit_root_sem);
865
866 load_block_group_size_class(caching_ctl, block_group);
867 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
868 ret = load_free_space_cache(block_group);
869 if (ret == 1) {
870 ret = 0;
871 goto done;
872 }
873
874 /*
875 * We failed to load the space cache, set ourselves to
876 * CACHE_STARTED and carry on.
877 */
878 spin_lock(&block_group->lock);
879 block_group->cached = BTRFS_CACHE_STARTED;
880 spin_unlock(&block_group->lock);
881 wake_up(&caching_ctl->wait);
882 }
883
884 /*
885 * If we are in the transaction that populated the free space tree we
886 * can't actually cache from the free space tree as our commit root and
887 * real root are the same, so we could change the contents of the blocks
888 * while caching. Instead do the slow caching in this case, and after
889 * the transaction has committed we will be safe.
890 */
891 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
892 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
893 ret = btrfs_load_free_space_tree(caching_ctl);
894 else
895 ret = load_extent_tree_free(caching_ctl);
896 done:
897 spin_lock(&block_group->lock);
898 block_group->caching_ctl = NULL;
899 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
900 spin_unlock(&block_group->lock);
901
902 #ifdef CONFIG_BTRFS_DEBUG
903 if (btrfs_should_fragment_free_space(block_group)) {
904 u64 bytes_used;
905
906 spin_lock(&block_group->space_info->lock);
907 spin_lock(&block_group->lock);
908 bytes_used = block_group->length - block_group->used;
909 block_group->space_info->bytes_used += bytes_used >> 1;
910 spin_unlock(&block_group->lock);
911 spin_unlock(&block_group->space_info->lock);
912 fragment_free_space(block_group);
913 }
914 #endif
915
916 up_read(&fs_info->commit_root_sem);
917 btrfs_free_excluded_extents(block_group);
918 mutex_unlock(&caching_ctl->mutex);
919
920 wake_up(&caching_ctl->wait);
921
922 btrfs_put_caching_control(caching_ctl);
923 btrfs_put_block_group(block_group);
924 }
925
btrfs_cache_block_group(struct btrfs_block_group * cache,bool wait)926 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
927 {
928 struct btrfs_fs_info *fs_info = cache->fs_info;
929 struct btrfs_caching_control *caching_ctl = NULL;
930 int ret = 0;
931
932 /* Allocator for zoned filesystems does not use the cache at all */
933 if (btrfs_is_zoned(fs_info))
934 return 0;
935
936 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
937 if (!caching_ctl)
938 return -ENOMEM;
939
940 INIT_LIST_HEAD(&caching_ctl->list);
941 mutex_init(&caching_ctl->mutex);
942 init_waitqueue_head(&caching_ctl->wait);
943 caching_ctl->block_group = cache;
944 refcount_set(&caching_ctl->count, 2);
945 atomic_set(&caching_ctl->progress, 0);
946 btrfs_init_work(&caching_ctl->work, caching_thread, NULL);
947
948 spin_lock(&cache->lock);
949 if (cache->cached != BTRFS_CACHE_NO) {
950 kfree(caching_ctl);
951
952 caching_ctl = cache->caching_ctl;
953 if (caching_ctl)
954 refcount_inc(&caching_ctl->count);
955 spin_unlock(&cache->lock);
956 goto out;
957 }
958 WARN_ON(cache->caching_ctl);
959 cache->caching_ctl = caching_ctl;
960 cache->cached = BTRFS_CACHE_STARTED;
961 spin_unlock(&cache->lock);
962
963 write_lock(&fs_info->block_group_cache_lock);
964 refcount_inc(&caching_ctl->count);
965 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
966 write_unlock(&fs_info->block_group_cache_lock);
967
968 btrfs_get_block_group(cache);
969
970 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
971 out:
972 if (wait && caching_ctl)
973 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
974 if (caching_ctl)
975 btrfs_put_caching_control(caching_ctl);
976
977 return ret;
978 }
979
clear_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)980 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
981 {
982 u64 extra_flags = chunk_to_extended(flags) &
983 BTRFS_EXTENDED_PROFILE_MASK;
984
985 write_seqlock(&fs_info->profiles_lock);
986 if (flags & BTRFS_BLOCK_GROUP_DATA)
987 fs_info->avail_data_alloc_bits &= ~extra_flags;
988 if (flags & BTRFS_BLOCK_GROUP_METADATA)
989 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
990 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
991 fs_info->avail_system_alloc_bits &= ~extra_flags;
992 write_sequnlock(&fs_info->profiles_lock);
993 }
994
995 /*
996 * Clear incompat bits for the following feature(s):
997 *
998 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
999 * in the whole filesystem
1000 *
1001 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
1002 */
clear_incompat_bg_bits(struct btrfs_fs_info * fs_info,u64 flags)1003 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
1004 {
1005 bool found_raid56 = false;
1006 bool found_raid1c34 = false;
1007
1008 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
1009 (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
1010 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
1011 struct list_head *head = &fs_info->space_info;
1012 struct btrfs_space_info *sinfo;
1013
1014 list_for_each_entry_rcu(sinfo, head, list) {
1015 down_read(&sinfo->groups_sem);
1016 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
1017 found_raid56 = true;
1018 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
1019 found_raid56 = true;
1020 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
1021 found_raid1c34 = true;
1022 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
1023 found_raid1c34 = true;
1024 up_read(&sinfo->groups_sem);
1025 }
1026 if (!found_raid56)
1027 btrfs_clear_fs_incompat(fs_info, RAID56);
1028 if (!found_raid1c34)
1029 btrfs_clear_fs_incompat(fs_info, RAID1C34);
1030 }
1031 }
1032
btrfs_block_group_root(struct btrfs_fs_info * fs_info)1033 static struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
1034 {
1035 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
1036 return fs_info->block_group_root;
1037 return btrfs_extent_root(fs_info, 0);
1038 }
1039
remove_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group * block_group)1040 static int remove_block_group_item(struct btrfs_trans_handle *trans,
1041 struct btrfs_path *path,
1042 struct btrfs_block_group *block_group)
1043 {
1044 struct btrfs_fs_info *fs_info = trans->fs_info;
1045 struct btrfs_root *root;
1046 struct btrfs_key key;
1047 int ret;
1048
1049 root = btrfs_block_group_root(fs_info);
1050 key.objectid = block_group->start;
1051 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1052 key.offset = block_group->length;
1053
1054 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1055 if (ret > 0)
1056 ret = -ENOENT;
1057 if (ret < 0)
1058 return ret;
1059
1060 ret = btrfs_del_item(trans, root, path);
1061 return ret;
1062 }
1063
btrfs_remove_block_group(struct btrfs_trans_handle * trans,struct btrfs_chunk_map * map)1064 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
1065 struct btrfs_chunk_map *map)
1066 {
1067 struct btrfs_fs_info *fs_info = trans->fs_info;
1068 struct btrfs_path *path;
1069 struct btrfs_block_group *block_group;
1070 struct btrfs_free_cluster *cluster;
1071 struct inode *inode;
1072 struct kobject *kobj = NULL;
1073 int ret;
1074 int index;
1075 int factor;
1076 struct btrfs_caching_control *caching_ctl = NULL;
1077 bool remove_map;
1078 bool remove_rsv = false;
1079
1080 block_group = btrfs_lookup_block_group(fs_info, map->start);
1081 if (!block_group)
1082 return -ENOENT;
1083
1084 BUG_ON(!block_group->ro);
1085
1086 trace_btrfs_remove_block_group(block_group);
1087 /*
1088 * Free the reserved super bytes from this block group before
1089 * remove it.
1090 */
1091 btrfs_free_excluded_extents(block_group);
1092 btrfs_free_ref_tree_range(fs_info, block_group->start,
1093 block_group->length);
1094
1095 index = btrfs_bg_flags_to_raid_index(block_group->flags);
1096 factor = btrfs_bg_type_to_factor(block_group->flags);
1097
1098 /* make sure this block group isn't part of an allocation cluster */
1099 cluster = &fs_info->data_alloc_cluster;
1100 spin_lock(&cluster->refill_lock);
1101 btrfs_return_cluster_to_free_space(block_group, cluster);
1102 spin_unlock(&cluster->refill_lock);
1103
1104 /*
1105 * make sure this block group isn't part of a metadata
1106 * allocation cluster
1107 */
1108 cluster = &fs_info->meta_alloc_cluster;
1109 spin_lock(&cluster->refill_lock);
1110 btrfs_return_cluster_to_free_space(block_group, cluster);
1111 spin_unlock(&cluster->refill_lock);
1112
1113 btrfs_clear_treelog_bg(block_group);
1114 btrfs_clear_data_reloc_bg(block_group);
1115
1116 path = btrfs_alloc_path();
1117 if (!path) {
1118 ret = -ENOMEM;
1119 goto out;
1120 }
1121
1122 /*
1123 * get the inode first so any iput calls done for the io_list
1124 * aren't the final iput (no unlinks allowed now)
1125 */
1126 inode = lookup_free_space_inode(block_group, path);
1127
1128 mutex_lock(&trans->transaction->cache_write_mutex);
1129 /*
1130 * Make sure our free space cache IO is done before removing the
1131 * free space inode
1132 */
1133 spin_lock(&trans->transaction->dirty_bgs_lock);
1134 if (!list_empty(&block_group->io_list)) {
1135 list_del_init(&block_group->io_list);
1136
1137 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
1138
1139 spin_unlock(&trans->transaction->dirty_bgs_lock);
1140 btrfs_wait_cache_io(trans, block_group, path);
1141 btrfs_put_block_group(block_group);
1142 spin_lock(&trans->transaction->dirty_bgs_lock);
1143 }
1144
1145 if (!list_empty(&block_group->dirty_list)) {
1146 list_del_init(&block_group->dirty_list);
1147 remove_rsv = true;
1148 btrfs_put_block_group(block_group);
1149 }
1150 spin_unlock(&trans->transaction->dirty_bgs_lock);
1151 mutex_unlock(&trans->transaction->cache_write_mutex);
1152
1153 ret = btrfs_remove_free_space_inode(trans, inode, block_group);
1154 if (ret)
1155 goto out;
1156
1157 write_lock(&fs_info->block_group_cache_lock);
1158 rb_erase_cached(&block_group->cache_node,
1159 &fs_info->block_group_cache_tree);
1160 RB_CLEAR_NODE(&block_group->cache_node);
1161
1162 /* Once for the block groups rbtree */
1163 btrfs_put_block_group(block_group);
1164
1165 write_unlock(&fs_info->block_group_cache_lock);
1166
1167 down_write(&block_group->space_info->groups_sem);
1168 /*
1169 * we must use list_del_init so people can check to see if they
1170 * are still on the list after taking the semaphore
1171 */
1172 list_del_init(&block_group->list);
1173 if (list_empty(&block_group->space_info->block_groups[index])) {
1174 kobj = block_group->space_info->block_group_kobjs[index];
1175 block_group->space_info->block_group_kobjs[index] = NULL;
1176 clear_avail_alloc_bits(fs_info, block_group->flags);
1177 }
1178 up_write(&block_group->space_info->groups_sem);
1179 clear_incompat_bg_bits(fs_info, block_group->flags);
1180 if (kobj) {
1181 kobject_del(kobj);
1182 kobject_put(kobj);
1183 }
1184
1185 if (block_group->cached == BTRFS_CACHE_STARTED)
1186 btrfs_wait_block_group_cache_done(block_group);
1187
1188 write_lock(&fs_info->block_group_cache_lock);
1189 caching_ctl = btrfs_get_caching_control(block_group);
1190 if (!caching_ctl) {
1191 struct btrfs_caching_control *ctl;
1192
1193 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
1194 if (ctl->block_group == block_group) {
1195 caching_ctl = ctl;
1196 refcount_inc(&caching_ctl->count);
1197 break;
1198 }
1199 }
1200 }
1201 if (caching_ctl)
1202 list_del_init(&caching_ctl->list);
1203 write_unlock(&fs_info->block_group_cache_lock);
1204
1205 if (caching_ctl) {
1206 /* Once for the caching bgs list and once for us. */
1207 btrfs_put_caching_control(caching_ctl);
1208 btrfs_put_caching_control(caching_ctl);
1209 }
1210
1211 spin_lock(&trans->transaction->dirty_bgs_lock);
1212 WARN_ON(!list_empty(&block_group->dirty_list));
1213 WARN_ON(!list_empty(&block_group->io_list));
1214 spin_unlock(&trans->transaction->dirty_bgs_lock);
1215
1216 btrfs_remove_free_space_cache(block_group);
1217
1218 spin_lock(&block_group->space_info->lock);
1219 list_del_init(&block_group->ro_list);
1220
1221 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1222 WARN_ON(block_group->space_info->total_bytes
1223 < block_group->length);
1224 WARN_ON(block_group->space_info->bytes_readonly
1225 < block_group->length - block_group->zone_unusable);
1226 WARN_ON(block_group->space_info->bytes_zone_unusable
1227 < block_group->zone_unusable);
1228 WARN_ON(block_group->space_info->disk_total
1229 < block_group->length * factor);
1230 }
1231 block_group->space_info->total_bytes -= block_group->length;
1232 block_group->space_info->bytes_readonly -=
1233 (block_group->length - block_group->zone_unusable);
1234 btrfs_space_info_update_bytes_zone_unusable(block_group->space_info,
1235 -block_group->zone_unusable);
1236 block_group->space_info->disk_total -= block_group->length * factor;
1237
1238 spin_unlock(&block_group->space_info->lock);
1239
1240 /*
1241 * Remove the free space for the block group from the free space tree
1242 * and the block group's item from the extent tree before marking the
1243 * block group as removed. This is to prevent races with tasks that
1244 * freeze and unfreeze a block group, this task and another task
1245 * allocating a new block group - the unfreeze task ends up removing
1246 * the block group's extent map before the task calling this function
1247 * deletes the block group item from the extent tree, allowing for
1248 * another task to attempt to create another block group with the same
1249 * item key (and failing with -EEXIST and a transaction abort).
1250 */
1251 ret = btrfs_remove_block_group_free_space(trans, block_group);
1252 if (ret)
1253 goto out;
1254
1255 ret = remove_block_group_item(trans, path, block_group);
1256 if (ret < 0)
1257 goto out;
1258
1259 spin_lock(&block_group->lock);
1260 /*
1261 * Hitting this WARN means we removed a block group with an unwritten
1262 * region. It will cause "unable to find chunk map for logical" errors.
1263 */
1264 if (WARN_ON(has_unwritten_metadata(block_group)))
1265 btrfs_warn(fs_info,
1266 "block group %llu is removed before metadata write out",
1267 block_group->start);
1268
1269 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1270
1271 /*
1272 * At this point trimming or scrub can't start on this block group,
1273 * because we removed the block group from the rbtree
1274 * fs_info->block_group_cache_tree so no one can't find it anymore and
1275 * even if someone already got this block group before we removed it
1276 * from the rbtree, they have already incremented block_group->frozen -
1277 * if they didn't, for the trimming case they won't find any free space
1278 * entries because we already removed them all when we called
1279 * btrfs_remove_free_space_cache().
1280 *
1281 * And we must not remove the chunk map from the fs_info->mapping_tree
1282 * to prevent the same logical address range and physical device space
1283 * ranges from being reused for a new block group. This is needed to
1284 * avoid races with trimming and scrub.
1285 *
1286 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1287 * completely transactionless, so while it is trimming a range the
1288 * currently running transaction might finish and a new one start,
1289 * allowing for new block groups to be created that can reuse the same
1290 * physical device locations unless we take this special care.
1291 *
1292 * There may also be an implicit trim operation if the file system
1293 * is mounted with -odiscard. The same protections must remain
1294 * in place until the extents have been discarded completely when
1295 * the transaction commit has completed.
1296 */
1297 remove_map = (atomic_read(&block_group->frozen) == 0);
1298 spin_unlock(&block_group->lock);
1299
1300 if (remove_map)
1301 btrfs_remove_chunk_map(fs_info, map);
1302
1303 out:
1304 /* Once for the lookup reference */
1305 btrfs_put_block_group(block_group);
1306 if (remove_rsv)
1307 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
1308 btrfs_free_path(path);
1309 return ret;
1310 }
1311
btrfs_start_trans_remove_block_group(struct btrfs_fs_info * fs_info,const u64 chunk_offset)1312 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1313 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1314 {
1315 struct btrfs_root *root = btrfs_block_group_root(fs_info);
1316 struct btrfs_chunk_map *map;
1317 unsigned int num_items;
1318
1319 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
1320 ASSERT(map != NULL);
1321 ASSERT(map->start == chunk_offset);
1322
1323 /*
1324 * We need to reserve 3 + N units from the metadata space info in order
1325 * to remove a block group (done at btrfs_remove_chunk() and at
1326 * btrfs_remove_block_group()), which are used for:
1327 *
1328 * 1 unit for adding the free space inode's orphan (located in the tree
1329 * of tree roots).
1330 * 1 unit for deleting the block group item (located in the extent
1331 * tree).
1332 * 1 unit for deleting the free space item (located in tree of tree
1333 * roots).
1334 * N units for deleting N device extent items corresponding to each
1335 * stripe (located in the device tree).
1336 *
1337 * In order to remove a block group we also need to reserve units in the
1338 * system space info in order to update the chunk tree (update one or
1339 * more device items and remove one chunk item), but this is done at
1340 * btrfs_remove_chunk() through a call to check_system_chunk().
1341 */
1342 num_items = 3 + map->num_stripes;
1343 btrfs_free_chunk_map(map);
1344
1345 return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1346 }
1347
1348 /*
1349 * Mark block group @cache read-only, so later write won't happen to block
1350 * group @cache.
1351 *
1352 * If @force is not set, this function will only mark the block group readonly
1353 * if we have enough free space (1M) in other metadata/system block groups.
1354 * If @force is not set, this function will mark the block group readonly
1355 * without checking free space.
1356 *
1357 * NOTE: This function doesn't care if other block groups can contain all the
1358 * data in this block group. That check should be done by relocation routine,
1359 * not this function.
1360 */
inc_block_group_ro(struct btrfs_block_group * cache,bool force)1361 static int inc_block_group_ro(struct btrfs_block_group *cache, bool force)
1362 {
1363 struct btrfs_space_info *sinfo = cache->space_info;
1364 u64 num_bytes;
1365 int ret = -ENOSPC;
1366
1367 spin_lock(&sinfo->lock);
1368 spin_lock(&cache->lock);
1369
1370 if (cache->swap_extents) {
1371 ret = -ETXTBSY;
1372 goto out;
1373 }
1374
1375 if (cache->ro) {
1376 cache->ro++;
1377 ret = 0;
1378 goto out;
1379 }
1380
1381 num_bytes = cache->length - cache->reserved - cache->pinned -
1382 cache->bytes_super - cache->zone_unusable - cache->used;
1383
1384 /*
1385 * Data never overcommits, even in mixed mode, so do just the straight
1386 * check of left over space in how much we have allocated.
1387 */
1388 if (force) {
1389 ret = 0;
1390 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1391 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1392
1393 /*
1394 * Here we make sure if we mark this bg RO, we still have enough
1395 * free space as buffer.
1396 */
1397 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1398 ret = 0;
1399 } else {
1400 /*
1401 * We overcommit metadata, so we need to do the
1402 * btrfs_can_overcommit check here, and we need to pass in
1403 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1404 * leeway to allow us to mark this block group as read only.
1405 */
1406 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1407 BTRFS_RESERVE_NO_FLUSH))
1408 ret = 0;
1409 }
1410
1411 if (!ret) {
1412 sinfo->bytes_readonly += num_bytes;
1413 if (btrfs_is_zoned(cache->fs_info)) {
1414 /* Migrate zone_unusable bytes to readonly */
1415 sinfo->bytes_readonly += cache->zone_unusable;
1416 btrfs_space_info_update_bytes_zone_unusable(sinfo, -cache->zone_unusable);
1417 cache->zone_unusable = 0;
1418 }
1419 cache->ro++;
1420 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1421 }
1422 out:
1423 spin_unlock(&cache->lock);
1424 spin_unlock(&sinfo->lock);
1425 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1426 btrfs_info(cache->fs_info,
1427 "unable to make block group %llu ro", cache->start);
1428 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, false);
1429 }
1430 return ret;
1431 }
1432
clean_pinned_extents(struct btrfs_trans_handle * trans,const struct btrfs_block_group * bg)1433 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1434 const struct btrfs_block_group *bg)
1435 {
1436 struct btrfs_fs_info *fs_info = trans->fs_info;
1437 struct btrfs_transaction *prev_trans = NULL;
1438 const u64 start = bg->start;
1439 const u64 end = start + bg->length - 1;
1440 int ret;
1441
1442 spin_lock(&fs_info->trans_lock);
1443 if (!list_is_first(&trans->transaction->list, &fs_info->trans_list)) {
1444 prev_trans = list_prev_entry(trans->transaction, list);
1445 refcount_inc(&prev_trans->use_count);
1446 }
1447 spin_unlock(&fs_info->trans_lock);
1448
1449 /*
1450 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1451 * btrfs_finish_extent_commit(). If we are at transaction N, another
1452 * task might be running finish_extent_commit() for the previous
1453 * transaction N - 1, and have seen a range belonging to the block
1454 * group in pinned_extents before we were able to clear the whole block
1455 * group range from pinned_extents. This means that task can lookup for
1456 * the block group after we unpinned it from pinned_extents and removed
1457 * it, leading to an error at unpin_extent_range().
1458 */
1459 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1460 if (prev_trans) {
1461 ret = btrfs_clear_extent_bit(&prev_trans->pinned_extents, start, end,
1462 EXTENT_DIRTY, NULL);
1463 if (ret)
1464 goto out;
1465 }
1466
1467 ret = btrfs_clear_extent_bit(&trans->transaction->pinned_extents, start, end,
1468 EXTENT_DIRTY, NULL);
1469 out:
1470 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1471 if (prev_trans)
1472 btrfs_put_transaction(prev_trans);
1473
1474 return ret == 0;
1475 }
1476
1477 /*
1478 * Link the block_group to a list via bg_list.
1479 *
1480 * @bg: The block_group to link to the list.
1481 * @list: The list to link it to.
1482 *
1483 * Use this rather than list_add_tail() directly to ensure proper respect
1484 * to locking and refcounting.
1485 *
1486 * Returns: true if the bg was linked with a refcount bump and false otherwise.
1487 */
btrfs_link_bg_list(struct btrfs_block_group * bg,struct list_head * list)1488 static bool btrfs_link_bg_list(struct btrfs_block_group *bg, struct list_head *list)
1489 {
1490 struct btrfs_fs_info *fs_info = bg->fs_info;
1491 bool added = false;
1492
1493 spin_lock(&fs_info->unused_bgs_lock);
1494 if (list_empty(&bg->bg_list)) {
1495 btrfs_get_block_group(bg);
1496 list_add_tail(&bg->bg_list, list);
1497 added = true;
1498 }
1499 spin_unlock(&fs_info->unused_bgs_lock);
1500 return added;
1501 }
1502
1503 /*
1504 * Process the unused_bgs list and remove any that don't have any allocated
1505 * space inside of them.
1506 */
btrfs_delete_unused_bgs(struct btrfs_fs_info * fs_info)1507 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1508 {
1509 LIST_HEAD(retry_list);
1510 struct btrfs_block_group *block_group;
1511 struct btrfs_space_info *space_info;
1512 struct btrfs_trans_handle *trans;
1513 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1514 int ret = 0;
1515
1516 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1517 return;
1518
1519 if (btrfs_fs_closing(fs_info))
1520 return;
1521
1522 /*
1523 * Long running balances can keep us blocked here for eternity, so
1524 * simply skip deletion if we're unable to get the mutex.
1525 */
1526 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1527 return;
1528
1529 spin_lock(&fs_info->unused_bgs_lock);
1530 while (!list_empty(&fs_info->unused_bgs)) {
1531 u64 used;
1532 int trimming;
1533
1534 block_group = list_first_entry(&fs_info->unused_bgs,
1535 struct btrfs_block_group,
1536 bg_list);
1537 list_del_init(&block_group->bg_list);
1538
1539 space_info = block_group->space_info;
1540
1541 if (ret || btrfs_mixed_space_info(space_info)) {
1542 btrfs_put_block_group(block_group);
1543 continue;
1544 }
1545 spin_unlock(&fs_info->unused_bgs_lock);
1546
1547 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1548
1549 /* Don't want to race with allocators so take the groups_sem */
1550 down_write(&space_info->groups_sem);
1551
1552 /*
1553 * Async discard moves the final block group discard to be prior
1554 * to the unused_bgs code path. Therefore, if it's not fully
1555 * trimmed, punt it back to the async discard lists.
1556 */
1557 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1558 !btrfs_is_free_space_trimmed(block_group)) {
1559 trace_btrfs_skip_unused_block_group(block_group);
1560 up_write(&space_info->groups_sem);
1561 /* Requeue if we failed because of async discard */
1562 btrfs_discard_queue_work(&fs_info->discard_ctl,
1563 block_group);
1564 goto next;
1565 }
1566
1567 spin_lock(&space_info->lock);
1568 spin_lock(&block_group->lock);
1569 if (btrfs_is_block_group_used(block_group) || block_group->ro ||
1570 list_is_singular(&block_group->list)) {
1571 /*
1572 * We want to bail if we made new allocations or have
1573 * outstanding allocations in this block group. We do
1574 * the ro check in case balance is currently acting on
1575 * this block group.
1576 *
1577 * Also bail out if this is the only block group for its
1578 * type, because otherwise we would lose profile
1579 * information from fs_info->avail_*_alloc_bits and the
1580 * next block group of this type would be created with a
1581 * "single" profile (even if we're in a raid fs) because
1582 * fs_info->avail_*_alloc_bits would be 0.
1583 */
1584 trace_btrfs_skip_unused_block_group(block_group);
1585 spin_unlock(&block_group->lock);
1586 spin_unlock(&space_info->lock);
1587 up_write(&space_info->groups_sem);
1588 goto next;
1589 }
1590
1591 /*
1592 * The block group may be unused but there may be space reserved
1593 * accounting with the existence of that block group, that is,
1594 * space_info->bytes_may_use was incremented by a task but no
1595 * space was yet allocated from the block group by the task.
1596 * That space may or may not be allocated, as we are generally
1597 * pessimistic about space reservation for metadata as well as
1598 * for data when using compression (as we reserve space based on
1599 * the worst case, when data can't be compressed, and before
1600 * actually attempting compression, before starting writeback).
1601 *
1602 * So check if the total space of the space_info minus the size
1603 * of this block group is less than the used space of the
1604 * space_info - if that's the case, then it means we have tasks
1605 * that might be relying on the block group in order to allocate
1606 * extents, and add back the block group to the unused list when
1607 * we finish, so that we retry later in case no tasks ended up
1608 * needing to allocate extents from the block group.
1609 */
1610 used = btrfs_space_info_used(space_info, true);
1611 if ((space_info->total_bytes - block_group->length < used &&
1612 block_group->zone_unusable < block_group->length) ||
1613 has_unwritten_metadata(block_group)) {
1614 /*
1615 * Add a reference for the list, compensate for the ref
1616 * drop under the "next" label for the
1617 * fs_info->unused_bgs list.
1618 */
1619 btrfs_link_bg_list(block_group, &retry_list);
1620
1621 trace_btrfs_skip_unused_block_group(block_group);
1622 spin_unlock(&block_group->lock);
1623 spin_unlock(&space_info->lock);
1624 up_write(&space_info->groups_sem);
1625 goto next;
1626 }
1627
1628 spin_unlock(&block_group->lock);
1629 spin_unlock(&space_info->lock);
1630
1631 /* We don't want to force the issue, only flip if it's ok. */
1632 ret = inc_block_group_ro(block_group, 0);
1633 up_write(&space_info->groups_sem);
1634 if (ret < 0) {
1635 ret = 0;
1636 goto next;
1637 }
1638
1639 ret = btrfs_zone_finish(block_group);
1640 if (ret < 0) {
1641 btrfs_dec_block_group_ro(block_group);
1642 if (ret == -EAGAIN) {
1643 btrfs_link_bg_list(block_group, &retry_list);
1644 ret = 0;
1645 }
1646 goto next;
1647 }
1648
1649 /*
1650 * Want to do this before we do anything else so we can recover
1651 * properly if we fail to join the transaction.
1652 */
1653 trans = btrfs_start_trans_remove_block_group(fs_info,
1654 block_group->start);
1655 if (IS_ERR(trans)) {
1656 btrfs_dec_block_group_ro(block_group);
1657 ret = PTR_ERR(trans);
1658 goto next;
1659 }
1660
1661 /*
1662 * We could have pending pinned extents for this block group,
1663 * just delete them, we don't care about them anymore.
1664 */
1665 if (!clean_pinned_extents(trans, block_group)) {
1666 btrfs_dec_block_group_ro(block_group);
1667 goto end_trans;
1668 }
1669
1670 /*
1671 * At this point, the block_group is read only and should fail
1672 * new allocations. However, btrfs_finish_extent_commit() can
1673 * cause this block_group to be placed back on the discard
1674 * lists because now the block_group isn't fully discarded.
1675 * Bail here and try again later after discarding everything.
1676 */
1677 spin_lock(&fs_info->discard_ctl.lock);
1678 if (!list_empty(&block_group->discard_list)) {
1679 spin_unlock(&fs_info->discard_ctl.lock);
1680 btrfs_dec_block_group_ro(block_group);
1681 btrfs_discard_queue_work(&fs_info->discard_ctl,
1682 block_group);
1683 goto end_trans;
1684 }
1685 spin_unlock(&fs_info->discard_ctl.lock);
1686
1687 /* Reset pinned so btrfs_put_block_group doesn't complain */
1688 spin_lock(&space_info->lock);
1689 spin_lock(&block_group->lock);
1690
1691 btrfs_space_info_update_bytes_pinned(space_info, -block_group->pinned);
1692 space_info->bytes_readonly += block_group->pinned;
1693 block_group->pinned = 0;
1694
1695 spin_unlock(&block_group->lock);
1696 spin_unlock(&space_info->lock);
1697
1698 /*
1699 * The normal path here is an unused block group is passed here,
1700 * then trimming is handled in the transaction commit path.
1701 * Async discard interposes before this to do the trimming
1702 * before coming down the unused block group path as trimming
1703 * will no longer be done later in the transaction commit path.
1704 */
1705 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1706 goto flip_async;
1707
1708 /*
1709 * DISCARD can flip during remount. On zoned filesystems, we
1710 * need to reset sequential-required zones.
1711 */
1712 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1713 btrfs_is_zoned(fs_info);
1714
1715 /* Implicit trim during transaction commit. */
1716 if (trimming)
1717 btrfs_freeze_block_group(block_group);
1718
1719 /*
1720 * Btrfs_remove_chunk will abort the transaction if things go
1721 * horribly wrong.
1722 */
1723 ret = btrfs_remove_chunk(trans, block_group->start);
1724
1725 if (ret) {
1726 if (trimming)
1727 btrfs_unfreeze_block_group(block_group);
1728 goto end_trans;
1729 }
1730
1731 /*
1732 * If we're not mounted with -odiscard, we can just forget
1733 * about this block group. Otherwise we'll need to wait
1734 * until transaction commit to do the actual discard.
1735 */
1736 if (trimming) {
1737 spin_lock(&fs_info->unused_bgs_lock);
1738 /*
1739 * A concurrent scrub might have added us to the list
1740 * fs_info->unused_bgs, so use a list_move operation
1741 * to add the block group to the deleted_bgs list.
1742 */
1743 list_move(&block_group->bg_list,
1744 &trans->transaction->deleted_bgs);
1745 spin_unlock(&fs_info->unused_bgs_lock);
1746 btrfs_get_block_group(block_group);
1747 }
1748 end_trans:
1749 btrfs_end_transaction(trans);
1750 next:
1751 btrfs_put_block_group(block_group);
1752 spin_lock(&fs_info->unused_bgs_lock);
1753 }
1754 list_splice_tail(&retry_list, &fs_info->unused_bgs);
1755 spin_unlock(&fs_info->unused_bgs_lock);
1756 mutex_unlock(&fs_info->reclaim_bgs_lock);
1757 return;
1758
1759 flip_async:
1760 btrfs_end_transaction(trans);
1761 spin_lock(&fs_info->unused_bgs_lock);
1762 list_splice_tail(&retry_list, &fs_info->unused_bgs);
1763 spin_unlock(&fs_info->unused_bgs_lock);
1764 mutex_unlock(&fs_info->reclaim_bgs_lock);
1765 btrfs_put_block_group(block_group);
1766 btrfs_discard_punt_unused_bgs_list(fs_info);
1767 }
1768
btrfs_mark_bg_unused(struct btrfs_block_group * bg)1769 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1770 {
1771 struct btrfs_fs_info *fs_info = bg->fs_info;
1772
1773 spin_lock(&fs_info->unused_bgs_lock);
1774 if (list_empty(&bg->bg_list)) {
1775 btrfs_get_block_group(bg);
1776 trace_btrfs_add_unused_block_group(bg);
1777 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1778 } else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) {
1779 /* Pull out the block group from the reclaim_bgs list. */
1780 trace_btrfs_add_unused_block_group(bg);
1781 list_move_tail(&bg->bg_list, &fs_info->unused_bgs);
1782 }
1783 spin_unlock(&fs_info->unused_bgs_lock);
1784 }
1785
1786 /*
1787 * We want block groups with a low number of used bytes to be in the beginning
1788 * of the list, so they will get reclaimed first.
1789 */
reclaim_bgs_cmp(void * unused,const struct list_head * a,const struct list_head * b)1790 static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1791 const struct list_head *b)
1792 {
1793 const struct btrfs_block_group *bg1, *bg2;
1794
1795 bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1796 bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1797
1798 /*
1799 * Some other task may be updating the ->used field concurrently, but it
1800 * is not serious if we get a stale value or load/store tearing issues,
1801 * as sorting the list of block groups to reclaim is not critical and an
1802 * occasional imperfect order is ok. So silence KCSAN and avoid the
1803 * overhead of locking or any other synchronization.
1804 */
1805 return data_race(bg1->used > bg2->used);
1806 }
1807
btrfs_should_reclaim(const struct btrfs_fs_info * fs_info)1808 static inline bool btrfs_should_reclaim(const struct btrfs_fs_info *fs_info)
1809 {
1810 if (btrfs_is_zoned(fs_info))
1811 return btrfs_zoned_should_reclaim(fs_info);
1812 return true;
1813 }
1814
should_reclaim_block_group(const struct btrfs_block_group * bg,u64 bytes_freed)1815 static bool should_reclaim_block_group(const struct btrfs_block_group *bg, u64 bytes_freed)
1816 {
1817 const int thresh_pct = btrfs_calc_reclaim_threshold(bg->space_info);
1818 u64 thresh_bytes = mult_perc(bg->length, thresh_pct);
1819 const u64 new_val = bg->used;
1820 const u64 old_val = new_val + bytes_freed;
1821
1822 if (thresh_bytes == 0)
1823 return false;
1824
1825 /*
1826 * If we were below the threshold before don't reclaim, we are likely a
1827 * brand new block group and we don't want to relocate new block groups.
1828 */
1829 if (old_val < thresh_bytes)
1830 return false;
1831 if (new_val >= thresh_bytes)
1832 return false;
1833 return true;
1834 }
1835
btrfs_reclaim_bgs_work(struct work_struct * work)1836 void btrfs_reclaim_bgs_work(struct work_struct *work)
1837 {
1838 struct btrfs_fs_info *fs_info =
1839 container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1840 struct btrfs_block_group *bg;
1841 struct btrfs_space_info *space_info;
1842 LIST_HEAD(retry_list);
1843
1844 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1845 return;
1846
1847 if (btrfs_fs_closing(fs_info))
1848 return;
1849
1850 if (!btrfs_should_reclaim(fs_info))
1851 return;
1852
1853 guard(super_write)(fs_info->sb);
1854
1855 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
1856 return;
1857
1858 /*
1859 * Long running balances can keep us blocked here for eternity, so
1860 * simply skip reclaim if we're unable to get the mutex.
1861 */
1862 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1863 btrfs_exclop_finish(fs_info);
1864 return;
1865 }
1866
1867 spin_lock(&fs_info->unused_bgs_lock);
1868 /*
1869 * Sort happens under lock because we can't simply splice it and sort.
1870 * The block groups might still be in use and reachable via bg_list,
1871 * and their presence in the reclaim_bgs list must be preserved.
1872 */
1873 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1874 while (!list_empty(&fs_info->reclaim_bgs)) {
1875 u64 used;
1876 u64 reserved;
1877 int ret = 0;
1878
1879 bg = list_first_entry(&fs_info->reclaim_bgs,
1880 struct btrfs_block_group,
1881 bg_list);
1882 list_del_init(&bg->bg_list);
1883
1884 space_info = bg->space_info;
1885 spin_unlock(&fs_info->unused_bgs_lock);
1886
1887 /* Don't race with allocators so take the groups_sem */
1888 down_write(&space_info->groups_sem);
1889
1890 spin_lock(&space_info->lock);
1891 spin_lock(&bg->lock);
1892 if (bg->reserved || bg->pinned || bg->ro) {
1893 /*
1894 * We want to bail if we made new allocations or have
1895 * outstanding allocations in this block group. We do
1896 * the ro check in case balance is currently acting on
1897 * this block group.
1898 */
1899 spin_unlock(&bg->lock);
1900 spin_unlock(&space_info->lock);
1901 up_write(&space_info->groups_sem);
1902 goto next;
1903 }
1904 if (bg->used == 0) {
1905 /*
1906 * It is possible that we trigger relocation on a block
1907 * group as its extents are deleted and it first goes
1908 * below the threshold, then shortly after goes empty.
1909 *
1910 * In this case, relocating it does delete it, but has
1911 * some overhead in relocation specific metadata, looking
1912 * for the non-existent extents and running some extra
1913 * transactions, which we can avoid by using one of the
1914 * other mechanisms for dealing with empty block groups.
1915 */
1916 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC))
1917 btrfs_mark_bg_unused(bg);
1918 spin_unlock(&bg->lock);
1919 spin_unlock(&space_info->lock);
1920 up_write(&space_info->groups_sem);
1921 goto next;
1922
1923 }
1924 /*
1925 * The block group might no longer meet the reclaim condition by
1926 * the time we get around to reclaiming it, so to avoid
1927 * reclaiming overly full block_groups, skip reclaiming them.
1928 *
1929 * Since the decision making process also depends on the amount
1930 * being freed, pass in a fake giant value to skip that extra
1931 * check, which is more meaningful when adding to the list in
1932 * the first place.
1933 */
1934 if (!should_reclaim_block_group(bg, bg->length)) {
1935 spin_unlock(&bg->lock);
1936 spin_unlock(&space_info->lock);
1937 up_write(&space_info->groups_sem);
1938 goto next;
1939 }
1940
1941 spin_unlock(&bg->lock);
1942 spin_unlock(&space_info->lock);
1943
1944 /*
1945 * Get out fast, in case we're read-only or unmounting the
1946 * filesystem. It is OK to drop block groups from the list even
1947 * for the read-only case. As we did take the super write lock,
1948 * "mount -o remount,ro" won't happen and read-only filesystem
1949 * means it is forced read-only due to a fatal error. So, it
1950 * never gets back to read-write to let us reclaim again.
1951 */
1952 if (btrfs_need_cleaner_sleep(fs_info)) {
1953 up_write(&space_info->groups_sem);
1954 goto next;
1955 }
1956
1957 ret = inc_block_group_ro(bg, 0);
1958 up_write(&space_info->groups_sem);
1959 if (ret < 0)
1960 goto next;
1961
1962 /*
1963 * The amount of bytes reclaimed corresponds to the sum of the
1964 * "used" and "reserved" counters. We have set the block group
1965 * to RO above, which prevents reservations from happening but
1966 * we may have existing reservations for which allocation has
1967 * not yet been done - btrfs_update_block_group() was not yet
1968 * called, which is where we will transfer a reserved extent's
1969 * size from the "reserved" counter to the "used" counter - this
1970 * happens when running delayed references. When we relocate the
1971 * chunk below, relocation first flushes delalloc, waits for
1972 * ordered extent completion (which is where we create delayed
1973 * references for data extents) and commits the current
1974 * transaction (which runs delayed references), and only after
1975 * it does the actual work to move extents out of the block
1976 * group. So the reported amount of reclaimed bytes is
1977 * effectively the sum of the 'used' and 'reserved' counters.
1978 */
1979 spin_lock(&bg->lock);
1980 used = bg->used;
1981 reserved = bg->reserved;
1982 spin_unlock(&bg->lock);
1983
1984 trace_btrfs_reclaim_block_group(bg);
1985 ret = btrfs_relocate_chunk(fs_info, bg->start, false);
1986 if (ret) {
1987 btrfs_dec_block_group_ro(bg);
1988 btrfs_err(fs_info, "error relocating chunk %llu",
1989 bg->start);
1990 used = 0;
1991 reserved = 0;
1992 spin_lock(&space_info->lock);
1993 space_info->reclaim_errors++;
1994 if (READ_ONCE(space_info->periodic_reclaim))
1995 space_info->periodic_reclaim_ready = false;
1996 spin_unlock(&space_info->lock);
1997 }
1998 spin_lock(&space_info->lock);
1999 space_info->reclaim_count++;
2000 space_info->reclaim_bytes += used;
2001 space_info->reclaim_bytes += reserved;
2002 spin_unlock(&space_info->lock);
2003
2004 next:
2005 if (ret && !READ_ONCE(space_info->periodic_reclaim))
2006 btrfs_link_bg_list(bg, &retry_list);
2007 btrfs_put_block_group(bg);
2008
2009 mutex_unlock(&fs_info->reclaim_bgs_lock);
2010 /*
2011 * Reclaiming all the block groups in the list can take really
2012 * long. Prioritize cleaning up unused block groups.
2013 */
2014 btrfs_delete_unused_bgs(fs_info);
2015 /*
2016 * If we are interrupted by a balance, we can just bail out. The
2017 * cleaner thread restart again if necessary.
2018 */
2019 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
2020 goto end;
2021 spin_lock(&fs_info->unused_bgs_lock);
2022 }
2023 spin_unlock(&fs_info->unused_bgs_lock);
2024 mutex_unlock(&fs_info->reclaim_bgs_lock);
2025 end:
2026 spin_lock(&fs_info->unused_bgs_lock);
2027 list_splice_tail(&retry_list, &fs_info->reclaim_bgs);
2028 spin_unlock(&fs_info->unused_bgs_lock);
2029 btrfs_exclop_finish(fs_info);
2030 }
2031
btrfs_reclaim_bgs(struct btrfs_fs_info * fs_info)2032 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
2033 {
2034 btrfs_reclaim_sweep(fs_info);
2035 spin_lock(&fs_info->unused_bgs_lock);
2036 if (!list_empty(&fs_info->reclaim_bgs))
2037 queue_work(system_dfl_wq, &fs_info->reclaim_bgs_work);
2038 spin_unlock(&fs_info->unused_bgs_lock);
2039 }
2040
btrfs_mark_bg_to_reclaim(struct btrfs_block_group * bg)2041 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
2042 {
2043 struct btrfs_fs_info *fs_info = bg->fs_info;
2044
2045 if (btrfs_link_bg_list(bg, &fs_info->reclaim_bgs))
2046 trace_btrfs_add_reclaim_block_group(bg);
2047 }
2048
read_bg_from_eb(struct btrfs_fs_info * fs_info,const struct btrfs_key * key,const struct btrfs_path * path)2049 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, const struct btrfs_key *key,
2050 const struct btrfs_path *path)
2051 {
2052 struct btrfs_chunk_map *map;
2053 struct btrfs_block_group_item bg;
2054 struct extent_buffer *leaf;
2055 int slot;
2056 u64 flags;
2057 int ret = 0;
2058
2059 slot = path->slots[0];
2060 leaf = path->nodes[0];
2061
2062 map = btrfs_find_chunk_map(fs_info, key->objectid, key->offset);
2063 if (!map) {
2064 btrfs_err(fs_info,
2065 "logical %llu len %llu found bg but no related chunk",
2066 key->objectid, key->offset);
2067 return -ENOENT;
2068 }
2069
2070 if (unlikely(map->start != key->objectid || map->chunk_len != key->offset)) {
2071 btrfs_err(fs_info,
2072 "block group %llu len %llu mismatch with chunk %llu len %llu",
2073 key->objectid, key->offset, map->start, map->chunk_len);
2074 ret = -EUCLEAN;
2075 goto out_free_map;
2076 }
2077
2078 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
2079 sizeof(bg));
2080 flags = btrfs_stack_block_group_flags(&bg) &
2081 BTRFS_BLOCK_GROUP_TYPE_MASK;
2082
2083 if (unlikely(flags != (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK))) {
2084 btrfs_err(fs_info,
2085 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
2086 key->objectid, key->offset, flags,
2087 (BTRFS_BLOCK_GROUP_TYPE_MASK & map->type));
2088 ret = -EUCLEAN;
2089 }
2090
2091 out_free_map:
2092 btrfs_free_chunk_map(map);
2093 return ret;
2094 }
2095
find_first_block_group(struct btrfs_fs_info * fs_info,struct btrfs_path * path,const struct btrfs_key * key)2096 static int find_first_block_group(struct btrfs_fs_info *fs_info,
2097 struct btrfs_path *path,
2098 const struct btrfs_key *key)
2099 {
2100 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2101 int ret;
2102 struct btrfs_key found_key;
2103
2104 btrfs_for_each_slot(root, key, &found_key, path, ret) {
2105 if (found_key.objectid >= key->objectid &&
2106 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
2107 return read_bg_from_eb(fs_info, &found_key, path);
2108 }
2109 }
2110 return ret;
2111 }
2112
set_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)2113 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2114 {
2115 u64 extra_flags = chunk_to_extended(flags) &
2116 BTRFS_EXTENDED_PROFILE_MASK;
2117
2118 write_seqlock(&fs_info->profiles_lock);
2119 if (flags & BTRFS_BLOCK_GROUP_DATA)
2120 fs_info->avail_data_alloc_bits |= extra_flags;
2121 if (flags & BTRFS_BLOCK_GROUP_METADATA)
2122 fs_info->avail_metadata_alloc_bits |= extra_flags;
2123 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2124 fs_info->avail_system_alloc_bits |= extra_flags;
2125 write_sequnlock(&fs_info->profiles_lock);
2126 }
2127
2128 /*
2129 * Map a physical disk address to a list of logical addresses.
2130 *
2131 * @fs_info: the filesystem
2132 * @chunk_start: logical address of block group
2133 * @physical: physical address to map to logical addresses
2134 * @logical: return array of logical addresses which map to @physical
2135 * @naddrs: length of @logical
2136 * @stripe_len: size of IO stripe for the given block group
2137 *
2138 * Maps a particular @physical disk address to a list of @logical addresses.
2139 * Used primarily to exclude those portions of a block group that contain super
2140 * block copies.
2141 */
btrfs_rmap_block(struct btrfs_fs_info * fs_info,u64 chunk_start,u64 physical,u64 ** logical,int * naddrs,int * stripe_len)2142 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
2143 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
2144 {
2145 struct btrfs_chunk_map *map;
2146 u64 *buf;
2147 u64 bytenr;
2148 u64 data_stripe_length;
2149 u64 io_stripe_size;
2150 int i, nr = 0;
2151 int ret = 0;
2152
2153 map = btrfs_get_chunk_map(fs_info, chunk_start, 1);
2154 if (IS_ERR(map))
2155 return -EIO;
2156
2157 data_stripe_length = map->stripe_size;
2158 io_stripe_size = BTRFS_STRIPE_LEN;
2159 chunk_start = map->start;
2160
2161 /* For RAID5/6 adjust to a full IO stripe length */
2162 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2163 io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2164
2165 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
2166 if (!buf) {
2167 ret = -ENOMEM;
2168 goto out;
2169 }
2170
2171 for (i = 0; i < map->num_stripes; i++) {
2172 bool already_inserted = false;
2173 u32 stripe_nr;
2174 u32 offset;
2175 int j;
2176
2177 if (!in_range(physical, map->stripes[i].physical,
2178 data_stripe_length))
2179 continue;
2180
2181 stripe_nr = (physical - map->stripes[i].physical) >>
2182 BTRFS_STRIPE_LEN_SHIFT;
2183 offset = (physical - map->stripes[i].physical) &
2184 BTRFS_STRIPE_LEN_MASK;
2185
2186 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2187 BTRFS_BLOCK_GROUP_RAID10))
2188 stripe_nr = div_u64(stripe_nr * map->num_stripes + i,
2189 map->sub_stripes);
2190 /*
2191 * The remaining case would be for RAID56, multiply by
2192 * nr_data_stripes(). Alternatively, just use rmap_len below
2193 * instead of map->stripe_len
2194 */
2195 bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
2196
2197 /* Ensure we don't add duplicate addresses */
2198 for (j = 0; j < nr; j++) {
2199 if (buf[j] == bytenr) {
2200 already_inserted = true;
2201 break;
2202 }
2203 }
2204
2205 if (!already_inserted)
2206 buf[nr++] = bytenr;
2207 }
2208
2209 *logical = buf;
2210 *naddrs = nr;
2211 *stripe_len = io_stripe_size;
2212 out:
2213 btrfs_free_chunk_map(map);
2214 return ret;
2215 }
2216
exclude_super_stripes(struct btrfs_block_group * cache)2217 static int exclude_super_stripes(struct btrfs_block_group *cache)
2218 {
2219 struct btrfs_fs_info *fs_info = cache->fs_info;
2220 const bool zoned = btrfs_is_zoned(fs_info);
2221 u64 bytenr;
2222 u64 *logical;
2223 int stripe_len;
2224 int i, nr, ret;
2225
2226 if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
2227 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
2228 cache->bytes_super += stripe_len;
2229 ret = btrfs_set_extent_bit(&fs_info->excluded_extents, cache->start,
2230 cache->start + stripe_len - 1,
2231 EXTENT_DIRTY, NULL);
2232 if (ret)
2233 return ret;
2234 }
2235
2236 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2237 bytenr = btrfs_sb_offset(i);
2238 ret = btrfs_rmap_block(fs_info, cache->start,
2239 bytenr, &logical, &nr, &stripe_len);
2240 if (ret)
2241 return ret;
2242
2243 /* Shouldn't have super stripes in sequential zones */
2244 if (unlikely(zoned && nr)) {
2245 kfree(logical);
2246 btrfs_err(fs_info,
2247 "zoned: block group %llu must not contain super block",
2248 cache->start);
2249 return -EUCLEAN;
2250 }
2251
2252 while (nr--) {
2253 u64 len = min_t(u64, stripe_len,
2254 cache->start + cache->length - logical[nr]);
2255
2256 cache->bytes_super += len;
2257 ret = btrfs_set_extent_bit(&fs_info->excluded_extents,
2258 logical[nr], logical[nr] + len - 1,
2259 EXTENT_DIRTY, NULL);
2260 if (ret) {
2261 kfree(logical);
2262 return ret;
2263 }
2264 }
2265
2266 kfree(logical);
2267 }
2268 return 0;
2269 }
2270
btrfs_create_block_group_cache(struct btrfs_fs_info * fs_info,u64 start)2271 static struct btrfs_block_group *btrfs_create_block_group_cache(
2272 struct btrfs_fs_info *fs_info, u64 start)
2273 {
2274 struct btrfs_block_group *cache;
2275
2276 cache = kzalloc(sizeof(*cache), GFP_NOFS);
2277 if (!cache)
2278 return NULL;
2279
2280 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
2281 GFP_NOFS);
2282 if (!cache->free_space_ctl) {
2283 kfree(cache);
2284 return NULL;
2285 }
2286
2287 cache->start = start;
2288
2289 cache->fs_info = fs_info;
2290 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
2291
2292 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
2293
2294 refcount_set(&cache->refs, 1);
2295 spin_lock_init(&cache->lock);
2296 init_rwsem(&cache->data_rwsem);
2297 INIT_LIST_HEAD(&cache->list);
2298 INIT_LIST_HEAD(&cache->cluster_list);
2299 INIT_LIST_HEAD(&cache->bg_list);
2300 INIT_LIST_HEAD(&cache->ro_list);
2301 INIT_LIST_HEAD(&cache->discard_list);
2302 INIT_LIST_HEAD(&cache->dirty_list);
2303 INIT_LIST_HEAD(&cache->io_list);
2304 INIT_LIST_HEAD(&cache->active_bg_list);
2305 btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
2306 atomic_set(&cache->frozen, 0);
2307 mutex_init(&cache->free_space_lock);
2308
2309 return cache;
2310 }
2311
2312 /*
2313 * Iterate all chunks and verify that each of them has the corresponding block
2314 * group
2315 */
check_chunk_block_group_mappings(struct btrfs_fs_info * fs_info)2316 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
2317 {
2318 u64 start = 0;
2319 int ret = 0;
2320
2321 while (1) {
2322 struct btrfs_chunk_map *map;
2323 struct btrfs_block_group *bg;
2324
2325 /*
2326 * btrfs_find_chunk_map() will return the first chunk map
2327 * intersecting the range, so setting @length to 1 is enough to
2328 * get the first chunk.
2329 */
2330 map = btrfs_find_chunk_map(fs_info, start, 1);
2331 if (!map)
2332 break;
2333
2334 bg = btrfs_lookup_block_group(fs_info, map->start);
2335 if (unlikely(!bg)) {
2336 btrfs_err(fs_info,
2337 "chunk start=%llu len=%llu doesn't have corresponding block group",
2338 map->start, map->chunk_len);
2339 ret = -EUCLEAN;
2340 btrfs_free_chunk_map(map);
2341 break;
2342 }
2343 if (unlikely(bg->start != map->start || bg->length != map->chunk_len ||
2344 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
2345 (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK))) {
2346 btrfs_err(fs_info,
2347 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
2348 map->start, map->chunk_len,
2349 map->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
2350 bg->start, bg->length,
2351 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
2352 ret = -EUCLEAN;
2353 btrfs_free_chunk_map(map);
2354 btrfs_put_block_group(bg);
2355 break;
2356 }
2357 start = map->start + map->chunk_len;
2358 btrfs_free_chunk_map(map);
2359 btrfs_put_block_group(bg);
2360 }
2361 return ret;
2362 }
2363
read_one_block_group(struct btrfs_fs_info * info,struct btrfs_block_group_item * bgi,const struct btrfs_key * key,int need_clear)2364 static int read_one_block_group(struct btrfs_fs_info *info,
2365 struct btrfs_block_group_item *bgi,
2366 const struct btrfs_key *key,
2367 int need_clear)
2368 {
2369 struct btrfs_block_group *cache;
2370 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2371 int ret;
2372
2373 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2374
2375 cache = btrfs_create_block_group_cache(info, key->objectid);
2376 if (!cache)
2377 return -ENOMEM;
2378
2379 cache->length = key->offset;
2380 cache->used = btrfs_stack_block_group_used(bgi);
2381 cache->commit_used = cache->used;
2382 cache->flags = btrfs_stack_block_group_flags(bgi);
2383 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2384 cache->space_info = btrfs_find_space_info(info, cache->flags);
2385
2386 btrfs_set_free_space_tree_thresholds(cache);
2387
2388 if (need_clear) {
2389 /*
2390 * When we mount with old space cache, we need to
2391 * set BTRFS_DC_CLEAR and set dirty flag.
2392 *
2393 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2394 * truncate the old free space cache inode and
2395 * setup a new one.
2396 * b) Setting 'dirty flag' makes sure that we flush
2397 * the new space cache info onto disk.
2398 */
2399 if (btrfs_test_opt(info, SPACE_CACHE))
2400 cache->disk_cache_state = BTRFS_DC_CLEAR;
2401 }
2402 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2403 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2404 btrfs_err(info,
2405 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2406 cache->start);
2407 ret = -EINVAL;
2408 goto error;
2409 }
2410
2411 ret = btrfs_load_block_group_zone_info(cache, false);
2412 if (ret) {
2413 btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2414 cache->start);
2415 goto error;
2416 }
2417
2418 /*
2419 * We need to exclude the super stripes now so that the space info has
2420 * super bytes accounted for, otherwise we'll think we have more space
2421 * than we actually do.
2422 */
2423 ret = exclude_super_stripes(cache);
2424 if (ret) {
2425 /* We may have excluded something, so call this just in case. */
2426 btrfs_free_excluded_extents(cache);
2427 goto error;
2428 }
2429
2430 /*
2431 * For zoned filesystem, space after the allocation offset is the only
2432 * free space for a block group. So, we don't need any caching work.
2433 * btrfs_calc_zone_unusable() will set the amount of free space and
2434 * zone_unusable space.
2435 *
2436 * For regular filesystem, check for two cases, either we are full, and
2437 * therefore don't need to bother with the caching work since we won't
2438 * find any space, or we are empty, and we can just add all the space
2439 * in and be done with it. This saves us _a_lot_ of time, particularly
2440 * in the full case.
2441 */
2442 if (btrfs_is_zoned(info)) {
2443 btrfs_calc_zone_unusable(cache);
2444 /* Should not have any excluded extents. Just in case, though. */
2445 btrfs_free_excluded_extents(cache);
2446 } else if (cache->length == cache->used) {
2447 cache->cached = BTRFS_CACHE_FINISHED;
2448 btrfs_free_excluded_extents(cache);
2449 } else if (cache->used == 0) {
2450 cache->cached = BTRFS_CACHE_FINISHED;
2451 ret = btrfs_add_new_free_space(cache, cache->start,
2452 cache->start + cache->length, NULL);
2453 btrfs_free_excluded_extents(cache);
2454 if (ret)
2455 goto error;
2456 }
2457
2458 ret = btrfs_add_block_group_cache(cache);
2459 if (ret) {
2460 btrfs_remove_free_space_cache(cache);
2461 goto error;
2462 }
2463
2464 trace_btrfs_add_block_group(info, cache, 0);
2465 btrfs_add_bg_to_space_info(info, cache);
2466
2467 set_avail_alloc_bits(info, cache->flags);
2468 if (btrfs_chunk_writeable(info, cache->start)) {
2469 if (cache->used == 0) {
2470 ASSERT(list_empty(&cache->bg_list));
2471 if (btrfs_test_opt(info, DISCARD_ASYNC))
2472 btrfs_discard_queue_work(&info->discard_ctl, cache);
2473 else
2474 btrfs_mark_bg_unused(cache);
2475 }
2476 } else {
2477 inc_block_group_ro(cache, 1);
2478 }
2479
2480 return 0;
2481 error:
2482 btrfs_put_block_group(cache);
2483 return ret;
2484 }
2485
fill_dummy_bgs(struct btrfs_fs_info * fs_info)2486 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2487 {
2488 struct rb_node *node;
2489 int ret = 0;
2490
2491 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
2492 struct btrfs_chunk_map *map;
2493 struct btrfs_block_group *bg;
2494
2495 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
2496 bg = btrfs_create_block_group_cache(fs_info, map->start);
2497 if (!bg) {
2498 ret = -ENOMEM;
2499 break;
2500 }
2501
2502 /* Fill dummy cache as FULL */
2503 bg->length = map->chunk_len;
2504 bg->flags = map->type;
2505 bg->cached = BTRFS_CACHE_FINISHED;
2506 bg->used = map->chunk_len;
2507 bg->flags = map->type;
2508 bg->space_info = btrfs_find_space_info(fs_info, bg->flags);
2509 ret = btrfs_add_block_group_cache(bg);
2510 /*
2511 * We may have some valid block group cache added already, in
2512 * that case we skip to the next one.
2513 */
2514 if (ret == -EEXIST) {
2515 ret = 0;
2516 btrfs_put_block_group(bg);
2517 continue;
2518 }
2519
2520 if (ret) {
2521 btrfs_remove_free_space_cache(bg);
2522 btrfs_put_block_group(bg);
2523 break;
2524 }
2525
2526 btrfs_add_bg_to_space_info(fs_info, bg);
2527
2528 set_avail_alloc_bits(fs_info, bg->flags);
2529 }
2530 if (!ret)
2531 btrfs_init_global_block_rsv(fs_info);
2532 return ret;
2533 }
2534
btrfs_read_block_groups(struct btrfs_fs_info * info)2535 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2536 {
2537 struct btrfs_root *root = btrfs_block_group_root(info);
2538 struct btrfs_path *path;
2539 int ret;
2540 struct btrfs_block_group *cache;
2541 struct btrfs_space_info *space_info;
2542 struct btrfs_key key;
2543 int need_clear = 0;
2544 u64 cache_gen;
2545
2546 /*
2547 * Either no extent root (with ibadroots rescue option) or we have
2548 * unsupported RO options. The fs can never be mounted read-write, so no
2549 * need to waste time searching block group items.
2550 *
2551 * This also allows new extent tree related changes to be RO compat,
2552 * no need for a full incompat flag.
2553 */
2554 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2555 ~BTRFS_FEATURE_COMPAT_RO_SUPP))
2556 return fill_dummy_bgs(info);
2557
2558 key.objectid = 0;
2559 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2560 key.offset = 0;
2561 path = btrfs_alloc_path();
2562 if (!path)
2563 return -ENOMEM;
2564
2565 cache_gen = btrfs_super_cache_generation(info->super_copy);
2566 if (btrfs_test_opt(info, SPACE_CACHE) &&
2567 btrfs_super_generation(info->super_copy) != cache_gen)
2568 need_clear = 1;
2569 if (btrfs_test_opt(info, CLEAR_CACHE))
2570 need_clear = 1;
2571
2572 while (1) {
2573 struct btrfs_block_group_item bgi;
2574 struct extent_buffer *leaf;
2575 int slot;
2576
2577 ret = find_first_block_group(info, path, &key);
2578 if (ret > 0)
2579 break;
2580 if (ret != 0)
2581 goto error;
2582
2583 leaf = path->nodes[0];
2584 slot = path->slots[0];
2585
2586 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2587 sizeof(bgi));
2588
2589 btrfs_item_key_to_cpu(leaf, &key, slot);
2590 btrfs_release_path(path);
2591 ret = read_one_block_group(info, &bgi, &key, need_clear);
2592 if (ret < 0)
2593 goto error;
2594 key.objectid += key.offset;
2595 key.offset = 0;
2596 }
2597 btrfs_release_path(path);
2598
2599 list_for_each_entry(space_info, &info->space_info, list) {
2600 int i;
2601
2602 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2603 if (list_empty(&space_info->block_groups[i]))
2604 continue;
2605 cache = list_first_entry(&space_info->block_groups[i],
2606 struct btrfs_block_group,
2607 list);
2608 btrfs_sysfs_add_block_group_type(cache);
2609 }
2610
2611 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2612 (BTRFS_BLOCK_GROUP_RAID10 |
2613 BTRFS_BLOCK_GROUP_RAID1_MASK |
2614 BTRFS_BLOCK_GROUP_RAID56_MASK |
2615 BTRFS_BLOCK_GROUP_DUP)))
2616 continue;
2617 /*
2618 * Avoid allocating from un-mirrored block group if there are
2619 * mirrored block groups.
2620 */
2621 list_for_each_entry(cache,
2622 &space_info->block_groups[BTRFS_RAID_RAID0],
2623 list)
2624 inc_block_group_ro(cache, 1);
2625 list_for_each_entry(cache,
2626 &space_info->block_groups[BTRFS_RAID_SINGLE],
2627 list)
2628 inc_block_group_ro(cache, 1);
2629 }
2630
2631 btrfs_init_global_block_rsv(info);
2632 ret = check_chunk_block_group_mappings(info);
2633 error:
2634 btrfs_free_path(path);
2635 /*
2636 * We've hit some error while reading the extent tree, and have
2637 * rescue=ibadroots mount option.
2638 * Try to fill the tree using dummy block groups so that the user can
2639 * continue to mount and grab their data.
2640 */
2641 if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2642 ret = fill_dummy_bgs(info);
2643 return ret;
2644 }
2645
2646 /*
2647 * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2648 * allocation.
2649 *
2650 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2651 * phases.
2652 */
insert_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group)2653 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2654 struct btrfs_block_group *block_group)
2655 {
2656 struct btrfs_fs_info *fs_info = trans->fs_info;
2657 struct btrfs_block_group_item bgi;
2658 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2659 struct btrfs_key key;
2660 u64 old_commit_used;
2661 int ret;
2662
2663 spin_lock(&block_group->lock);
2664 btrfs_set_stack_block_group_used(&bgi, block_group->used);
2665 btrfs_set_stack_block_group_chunk_objectid(&bgi,
2666 block_group->global_root_id);
2667 btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2668 old_commit_used = block_group->commit_used;
2669 block_group->commit_used = block_group->used;
2670 key.objectid = block_group->start;
2671 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2672 key.offset = block_group->length;
2673 spin_unlock(&block_group->lock);
2674
2675 ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2676 if (ret < 0) {
2677 spin_lock(&block_group->lock);
2678 block_group->commit_used = old_commit_used;
2679 spin_unlock(&block_group->lock);
2680 }
2681
2682 return ret;
2683 }
2684
insert_dev_extent(struct btrfs_trans_handle * trans,const struct btrfs_device * device,u64 chunk_offset,u64 start,u64 num_bytes)2685 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2686 const struct btrfs_device *device, u64 chunk_offset,
2687 u64 start, u64 num_bytes)
2688 {
2689 struct btrfs_fs_info *fs_info = device->fs_info;
2690 struct btrfs_root *root = fs_info->dev_root;
2691 BTRFS_PATH_AUTO_FREE(path);
2692 struct btrfs_dev_extent *extent;
2693 struct extent_buffer *leaf;
2694 struct btrfs_key key;
2695 int ret;
2696
2697 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2698 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2699 path = btrfs_alloc_path();
2700 if (!path)
2701 return -ENOMEM;
2702
2703 key.objectid = device->devid;
2704 key.type = BTRFS_DEV_EXTENT_KEY;
2705 key.offset = start;
2706 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2707 if (ret)
2708 return ret;
2709
2710 leaf = path->nodes[0];
2711 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2712 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2713 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2714 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2715 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2716 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2717
2718 return ret;
2719 }
2720
2721 /*
2722 * This function belongs to phase 2.
2723 *
2724 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2725 * phases.
2726 */
insert_dev_extents(struct btrfs_trans_handle * trans,u64 chunk_offset,u64 chunk_size)2727 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2728 u64 chunk_offset, u64 chunk_size)
2729 {
2730 struct btrfs_fs_info *fs_info = trans->fs_info;
2731 struct btrfs_device *device;
2732 struct btrfs_chunk_map *map;
2733 u64 dev_offset;
2734 int i;
2735 int ret = 0;
2736
2737 map = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2738 if (IS_ERR(map))
2739 return PTR_ERR(map);
2740
2741 /*
2742 * Take the device list mutex to prevent races with the final phase of
2743 * a device replace operation that replaces the device object associated
2744 * with the map's stripes, because the device object's id can change
2745 * at any time during that final phase of the device replace operation
2746 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2747 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2748 * resulting in persisting a device extent item with such ID.
2749 */
2750 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2751 for (i = 0; i < map->num_stripes; i++) {
2752 device = map->stripes[i].dev;
2753 dev_offset = map->stripes[i].physical;
2754
2755 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2756 map->stripe_size);
2757 if (ret)
2758 break;
2759 }
2760 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2761
2762 btrfs_free_chunk_map(map);
2763 return ret;
2764 }
2765
2766 /*
2767 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2768 * chunk allocation.
2769 *
2770 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2771 * phases.
2772 */
btrfs_create_pending_block_groups(struct btrfs_trans_handle * trans)2773 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2774 {
2775 struct btrfs_fs_info *fs_info = trans->fs_info;
2776 struct btrfs_block_group *block_group;
2777 int ret = 0;
2778
2779 while (!list_empty(&trans->new_bgs)) {
2780 int index;
2781
2782 block_group = list_first_entry(&trans->new_bgs,
2783 struct btrfs_block_group,
2784 bg_list);
2785 if (ret)
2786 goto next;
2787
2788 index = btrfs_bg_flags_to_raid_index(block_group->flags);
2789
2790 ret = insert_block_group_item(trans, block_group);
2791 if (ret)
2792 btrfs_abort_transaction(trans, ret);
2793 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2794 &block_group->runtime_flags)) {
2795 mutex_lock(&fs_info->chunk_mutex);
2796 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2797 mutex_unlock(&fs_info->chunk_mutex);
2798 if (ret)
2799 btrfs_abort_transaction(trans, ret);
2800 }
2801 ret = insert_dev_extents(trans, block_group->start,
2802 block_group->length);
2803 if (ret)
2804 btrfs_abort_transaction(trans, ret);
2805 btrfs_add_block_group_free_space(trans, block_group);
2806
2807 /*
2808 * If we restriped during balance, we may have added a new raid
2809 * type, so now add the sysfs entries when it is safe to do so.
2810 * We don't have to worry about locking here as it's handled in
2811 * btrfs_sysfs_add_block_group_type.
2812 */
2813 if (block_group->space_info->block_group_kobjs[index] == NULL)
2814 btrfs_sysfs_add_block_group_type(block_group);
2815
2816 /* Already aborted the transaction if it failed. */
2817 next:
2818 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2819
2820 spin_lock(&fs_info->unused_bgs_lock);
2821 list_del_init(&block_group->bg_list);
2822 clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags);
2823 btrfs_put_block_group(block_group);
2824 spin_unlock(&fs_info->unused_bgs_lock);
2825
2826 /*
2827 * If the block group is still unused, add it to the list of
2828 * unused block groups. The block group may have been created in
2829 * order to satisfy a space reservation, in which case the
2830 * extent allocation only happens later. But often we don't
2831 * actually need to allocate space that we previously reserved,
2832 * so the block group may become unused for a long time. For
2833 * example for metadata we generally reserve space for a worst
2834 * possible scenario, but then don't end up allocating all that
2835 * space or none at all (due to no need to COW, extent buffers
2836 * were already COWed in the current transaction and still
2837 * unwritten, tree heights lower than the maximum possible
2838 * height, etc). For data we generally reserve the exact amount
2839 * of space we are going to allocate later, the exception is
2840 * when using compression, as we must reserve space based on the
2841 * uncompressed data size, because the compression is only done
2842 * when writeback triggered and we don't know how much space we
2843 * are actually going to need, so we reserve the uncompressed
2844 * size because the data may be incompressible in the worst case.
2845 */
2846 if (ret == 0) {
2847 bool used;
2848
2849 spin_lock(&block_group->lock);
2850 used = btrfs_is_block_group_used(block_group);
2851 spin_unlock(&block_group->lock);
2852
2853 if (!used)
2854 btrfs_mark_bg_unused(block_group);
2855 }
2856 }
2857 btrfs_trans_release_chunk_metadata(trans);
2858 }
2859
2860 /*
2861 * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2862 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2863 */
calculate_global_root_id(const struct btrfs_fs_info * fs_info,u64 offset)2864 static u64 calculate_global_root_id(const struct btrfs_fs_info *fs_info, u64 offset)
2865 {
2866 u64 div = SZ_1G;
2867 u64 index;
2868
2869 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2870 return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2871
2872 /* If we have a smaller fs index based on 128MiB. */
2873 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2874 div = SZ_128M;
2875
2876 offset = div64_u64(offset, div);
2877 div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2878 return index;
2879 }
2880
btrfs_make_block_group(struct btrfs_trans_handle * trans,struct btrfs_space_info * space_info,u64 type,u64 chunk_offset,u64 size)2881 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2882 struct btrfs_space_info *space_info,
2883 u64 type, u64 chunk_offset, u64 size)
2884 {
2885 struct btrfs_fs_info *fs_info = trans->fs_info;
2886 struct btrfs_block_group *cache;
2887 int ret;
2888
2889 btrfs_set_log_full_commit(trans);
2890
2891 cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2892 if (!cache)
2893 return ERR_PTR(-ENOMEM);
2894
2895 /*
2896 * Mark it as new before adding it to the rbtree of block groups or any
2897 * list, so that no other task finds it and calls btrfs_mark_bg_unused()
2898 * before the new flag is set.
2899 */
2900 set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags);
2901
2902 cache->length = size;
2903 btrfs_set_free_space_tree_thresholds(cache);
2904 cache->flags = type;
2905 cache->cached = BTRFS_CACHE_FINISHED;
2906 cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2907
2908 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2909 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags);
2910
2911 ret = btrfs_load_block_group_zone_info(cache, true);
2912 if (ret) {
2913 btrfs_put_block_group(cache);
2914 return ERR_PTR(ret);
2915 }
2916
2917 ret = exclude_super_stripes(cache);
2918 if (ret) {
2919 /* We may have excluded something, so call this just in case */
2920 btrfs_free_excluded_extents(cache);
2921 btrfs_put_block_group(cache);
2922 return ERR_PTR(ret);
2923 }
2924
2925 ret = btrfs_add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL);
2926 btrfs_free_excluded_extents(cache);
2927 if (ret) {
2928 btrfs_put_block_group(cache);
2929 return ERR_PTR(ret);
2930 }
2931
2932 /*
2933 * Ensure the corresponding space_info object is created and
2934 * assigned to our block group. We want our bg to be added to the rbtree
2935 * with its ->space_info set.
2936 */
2937 cache->space_info = space_info;
2938 ASSERT(cache->space_info);
2939
2940 ret = btrfs_add_block_group_cache(cache);
2941 if (ret) {
2942 btrfs_remove_free_space_cache(cache);
2943 btrfs_put_block_group(cache);
2944 return ERR_PTR(ret);
2945 }
2946
2947 /*
2948 * Now that our block group has its ->space_info set and is inserted in
2949 * the rbtree, update the space info's counters.
2950 */
2951 trace_btrfs_add_block_group(fs_info, cache, 1);
2952 btrfs_add_bg_to_space_info(fs_info, cache);
2953 btrfs_update_global_block_rsv(fs_info);
2954
2955 #ifdef CONFIG_BTRFS_DEBUG
2956 if (btrfs_should_fragment_free_space(cache)) {
2957 cache->space_info->bytes_used += size >> 1;
2958 fragment_free_space(cache);
2959 }
2960 #endif
2961
2962 btrfs_link_bg_list(cache, &trans->new_bgs);
2963 btrfs_inc_delayed_refs_rsv_bg_inserts(fs_info);
2964
2965 set_avail_alloc_bits(fs_info, type);
2966 return cache;
2967 }
2968
2969 /*
2970 * Mark one block group RO, can be called several times for the same block
2971 * group.
2972 *
2973 * @cache: the destination block group
2974 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
2975 * ensure we still have some free space after marking this
2976 * block group RO.
2977 */
btrfs_inc_block_group_ro(struct btrfs_block_group * cache,bool do_chunk_alloc)2978 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2979 bool do_chunk_alloc)
2980 {
2981 struct btrfs_fs_info *fs_info = cache->fs_info;
2982 struct btrfs_space_info *space_info = cache->space_info;
2983 struct btrfs_trans_handle *trans;
2984 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2985 u64 alloc_flags;
2986 int ret;
2987 bool dirty_bg_running;
2988
2989 /*
2990 * This can only happen when we are doing read-only scrub on read-only
2991 * mount.
2992 * In that case we should not start a new transaction on read-only fs.
2993 * Thus here we skip all chunk allocations.
2994 */
2995 if (sb_rdonly(fs_info->sb)) {
2996 mutex_lock(&fs_info->ro_block_group_mutex);
2997 ret = inc_block_group_ro(cache, 0);
2998 mutex_unlock(&fs_info->ro_block_group_mutex);
2999 return ret;
3000 }
3001
3002 do {
3003 trans = btrfs_join_transaction(root);
3004 if (IS_ERR(trans))
3005 return PTR_ERR(trans);
3006
3007 dirty_bg_running = false;
3008
3009 /*
3010 * We're not allowed to set block groups readonly after the dirty
3011 * block group cache has started writing. If it already started,
3012 * back off and let this transaction commit.
3013 */
3014 mutex_lock(&fs_info->ro_block_group_mutex);
3015 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
3016 u64 transid = trans->transid;
3017
3018 mutex_unlock(&fs_info->ro_block_group_mutex);
3019 btrfs_end_transaction(trans);
3020
3021 ret = btrfs_wait_for_commit(fs_info, transid);
3022 if (ret)
3023 return ret;
3024 dirty_bg_running = true;
3025 }
3026 } while (dirty_bg_running);
3027
3028 if (do_chunk_alloc) {
3029 /*
3030 * If we are changing raid levels, try to allocate a
3031 * corresponding block group with the new raid level.
3032 */
3033 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
3034 if (alloc_flags != cache->flags) {
3035 ret = btrfs_chunk_alloc(trans, space_info, alloc_flags,
3036 CHUNK_ALLOC_FORCE);
3037 /*
3038 * ENOSPC is allowed here, we may have enough space
3039 * already allocated at the new raid level to carry on
3040 */
3041 if (ret == -ENOSPC)
3042 ret = 0;
3043 if (ret < 0)
3044 goto out;
3045 }
3046 }
3047
3048 ret = inc_block_group_ro(cache, 0);
3049 if (!ret)
3050 goto out;
3051 if (ret == -ETXTBSY)
3052 goto unlock_out;
3053
3054 /*
3055 * Skip chunk allocation if the bg is SYSTEM, this is to avoid system
3056 * chunk allocation storm to exhaust the system chunk array. Otherwise
3057 * we still want to try our best to mark the block group read-only.
3058 */
3059 if (!do_chunk_alloc && ret == -ENOSPC &&
3060 (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM))
3061 goto unlock_out;
3062
3063 alloc_flags = btrfs_get_alloc_profile(fs_info, space_info->flags);
3064 ret = btrfs_chunk_alloc(trans, space_info, alloc_flags, CHUNK_ALLOC_FORCE);
3065 if (ret < 0)
3066 goto out;
3067 /*
3068 * We have allocated a new chunk. We also need to activate that chunk to
3069 * grant metadata tickets for zoned filesystem.
3070 */
3071 ret = btrfs_zoned_activate_one_bg(fs_info, space_info, true);
3072 if (ret < 0)
3073 goto out;
3074
3075 ret = inc_block_group_ro(cache, 0);
3076 if (ret == -ETXTBSY)
3077 goto unlock_out;
3078 out:
3079 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
3080 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
3081 mutex_lock(&fs_info->chunk_mutex);
3082 check_system_chunk(trans, alloc_flags);
3083 mutex_unlock(&fs_info->chunk_mutex);
3084 }
3085 unlock_out:
3086 mutex_unlock(&fs_info->ro_block_group_mutex);
3087
3088 btrfs_end_transaction(trans);
3089 return ret;
3090 }
3091
btrfs_dec_block_group_ro(struct btrfs_block_group * cache)3092 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
3093 {
3094 struct btrfs_space_info *sinfo = cache->space_info;
3095 u64 num_bytes;
3096
3097 BUG_ON(!cache->ro);
3098
3099 spin_lock(&sinfo->lock);
3100 spin_lock(&cache->lock);
3101 if (!--cache->ro) {
3102 if (btrfs_is_zoned(cache->fs_info)) {
3103 /* Migrate zone_unusable bytes back */
3104 cache->zone_unusable =
3105 (cache->alloc_offset - cache->used - cache->pinned -
3106 cache->reserved) +
3107 (cache->length - cache->zone_capacity);
3108 btrfs_space_info_update_bytes_zone_unusable(sinfo, cache->zone_unusable);
3109 sinfo->bytes_readonly -= cache->zone_unusable;
3110 }
3111 num_bytes = cache->length - cache->reserved -
3112 cache->pinned - cache->bytes_super -
3113 cache->zone_unusable - cache->used;
3114 sinfo->bytes_readonly -= num_bytes;
3115 list_del_init(&cache->ro_list);
3116 }
3117 spin_unlock(&cache->lock);
3118 spin_unlock(&sinfo->lock);
3119 }
3120
update_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group * cache)3121 static int update_block_group_item(struct btrfs_trans_handle *trans,
3122 struct btrfs_path *path,
3123 struct btrfs_block_group *cache)
3124 {
3125 struct btrfs_fs_info *fs_info = trans->fs_info;
3126 int ret;
3127 struct btrfs_root *root = btrfs_block_group_root(fs_info);
3128 unsigned long bi;
3129 struct extent_buffer *leaf;
3130 struct btrfs_block_group_item bgi;
3131 struct btrfs_key key;
3132 u64 old_commit_used;
3133 u64 used;
3134
3135 /*
3136 * Block group items update can be triggered out of commit transaction
3137 * critical section, thus we need a consistent view of used bytes.
3138 * We cannot use cache->used directly outside of the spin lock, as it
3139 * may be changed.
3140 */
3141 spin_lock(&cache->lock);
3142 old_commit_used = cache->commit_used;
3143 used = cache->used;
3144 /* No change in used bytes, can safely skip it. */
3145 if (cache->commit_used == used) {
3146 spin_unlock(&cache->lock);
3147 return 0;
3148 }
3149 cache->commit_used = used;
3150 spin_unlock(&cache->lock);
3151
3152 key.objectid = cache->start;
3153 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
3154 key.offset = cache->length;
3155
3156 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3157 if (ret) {
3158 if (ret > 0)
3159 ret = -ENOENT;
3160 goto fail;
3161 }
3162
3163 leaf = path->nodes[0];
3164 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3165 btrfs_set_stack_block_group_used(&bgi, used);
3166 btrfs_set_stack_block_group_chunk_objectid(&bgi,
3167 cache->global_root_id);
3168 btrfs_set_stack_block_group_flags(&bgi, cache->flags);
3169 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
3170 fail:
3171 btrfs_release_path(path);
3172 /*
3173 * We didn't update the block group item, need to revert commit_used
3174 * unless the block group item didn't exist yet - this is to prevent a
3175 * race with a concurrent insertion of the block group item, with
3176 * insert_block_group_item(), that happened just after we attempted to
3177 * update. In that case we would reset commit_used to 0 just after the
3178 * insertion set it to a value greater than 0 - if the block group later
3179 * becomes with 0 used bytes, we would incorrectly skip its update.
3180 */
3181 if (ret < 0 && ret != -ENOENT) {
3182 spin_lock(&cache->lock);
3183 cache->commit_used = old_commit_used;
3184 spin_unlock(&cache->lock);
3185 }
3186 return ret;
3187
3188 }
3189
cache_save_setup(struct btrfs_block_group * block_group,struct btrfs_trans_handle * trans,struct btrfs_path * path)3190 static int cache_save_setup(struct btrfs_block_group *block_group,
3191 struct btrfs_trans_handle *trans,
3192 struct btrfs_path *path)
3193 {
3194 struct btrfs_fs_info *fs_info = block_group->fs_info;
3195 struct inode *inode = NULL;
3196 struct extent_changeset *data_reserved = NULL;
3197 u64 alloc_hint = 0;
3198 int dcs = BTRFS_DC_ERROR;
3199 u64 cache_size = 0;
3200 int retries = 0;
3201 int ret = 0;
3202
3203 if (!btrfs_test_opt(fs_info, SPACE_CACHE))
3204 return 0;
3205
3206 /*
3207 * If this block group is smaller than 100 megs don't bother caching the
3208 * block group.
3209 */
3210 if (block_group->length < (100 * SZ_1M)) {
3211 spin_lock(&block_group->lock);
3212 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3213 spin_unlock(&block_group->lock);
3214 return 0;
3215 }
3216
3217 if (TRANS_ABORTED(trans))
3218 return 0;
3219 again:
3220 inode = lookup_free_space_inode(block_group, path);
3221 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3222 ret = PTR_ERR(inode);
3223 btrfs_release_path(path);
3224 goto out;
3225 }
3226
3227 if (IS_ERR(inode)) {
3228 BUG_ON(retries);
3229 retries++;
3230
3231 if (block_group->ro)
3232 goto out_free;
3233
3234 ret = create_free_space_inode(trans, block_group, path);
3235 if (ret)
3236 goto out_free;
3237 goto again;
3238 }
3239
3240 /*
3241 * We want to set the generation to 0, that way if anything goes wrong
3242 * from here on out we know not to trust this cache when we load up next
3243 * time.
3244 */
3245 BTRFS_I(inode)->generation = 0;
3246 ret = btrfs_update_inode(trans, BTRFS_I(inode));
3247 if (unlikely(ret)) {
3248 /*
3249 * So theoretically we could recover from this, simply set the
3250 * super cache generation to 0 so we know to invalidate the
3251 * cache, but then we'd have to keep track of the block groups
3252 * that fail this way so we know we _have_ to reset this cache
3253 * before the next commit or risk reading stale cache. So to
3254 * limit our exposure to horrible edge cases lets just abort the
3255 * transaction, this only happens in really bad situations
3256 * anyway.
3257 */
3258 btrfs_abort_transaction(trans, ret);
3259 goto out_put;
3260 }
3261 WARN_ON(ret);
3262
3263 /* We've already setup this transaction, go ahead and exit */
3264 if (block_group->cache_generation == trans->transid &&
3265 i_size_read(inode)) {
3266 dcs = BTRFS_DC_SETUP;
3267 goto out_put;
3268 }
3269
3270 if (i_size_read(inode) > 0) {
3271 ret = btrfs_check_trunc_cache_free_space(fs_info,
3272 &fs_info->global_block_rsv);
3273 if (ret)
3274 goto out_put;
3275
3276 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3277 if (ret)
3278 goto out_put;
3279 }
3280
3281 spin_lock(&block_group->lock);
3282 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3283 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3284 /*
3285 * don't bother trying to write stuff out _if_
3286 * a) we're not cached,
3287 * b) we're with nospace_cache mount option,
3288 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3289 */
3290 dcs = BTRFS_DC_WRITTEN;
3291 spin_unlock(&block_group->lock);
3292 goto out_put;
3293 }
3294 spin_unlock(&block_group->lock);
3295
3296 /*
3297 * We hit an ENOSPC when setting up the cache in this transaction, just
3298 * skip doing the setup, we've already cleared the cache so we're safe.
3299 */
3300 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3301 ret = -ENOSPC;
3302 goto out_put;
3303 }
3304
3305 /*
3306 * Try to preallocate enough space based on how big the block group is.
3307 * Keep in mind this has to include any pinned space which could end up
3308 * taking up quite a bit since it's not folded into the other space
3309 * cache.
3310 */
3311 cache_size = div_u64(block_group->length, SZ_256M);
3312 if (!cache_size)
3313 cache_size = 1;
3314
3315 cache_size *= 16;
3316 cache_size *= fs_info->sectorsize;
3317
3318 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
3319 cache_size, false);
3320 if (ret)
3321 goto out_put;
3322
3323 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
3324 cache_size, cache_size,
3325 &alloc_hint);
3326 /*
3327 * Our cache requires contiguous chunks so that we don't modify a bunch
3328 * of metadata or split extents when writing the cache out, which means
3329 * we can enospc if we are heavily fragmented in addition to just normal
3330 * out of space conditions. So if we hit this just skip setting up any
3331 * other block groups for this transaction, maybe we'll unpin enough
3332 * space the next time around.
3333 */
3334 if (!ret)
3335 dcs = BTRFS_DC_SETUP;
3336 else if (ret == -ENOSPC)
3337 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3338
3339 out_put:
3340 iput(inode);
3341 out_free:
3342 btrfs_release_path(path);
3343 out:
3344 spin_lock(&block_group->lock);
3345 if (!ret && dcs == BTRFS_DC_SETUP)
3346 block_group->cache_generation = trans->transid;
3347 block_group->disk_cache_state = dcs;
3348 spin_unlock(&block_group->lock);
3349
3350 extent_changeset_free(data_reserved);
3351 return ret;
3352 }
3353
btrfs_setup_space_cache(struct btrfs_trans_handle * trans)3354 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3355 {
3356 struct btrfs_fs_info *fs_info = trans->fs_info;
3357 struct btrfs_block_group *cache, *tmp;
3358 struct btrfs_transaction *cur_trans = trans->transaction;
3359 BTRFS_PATH_AUTO_FREE(path);
3360
3361 if (list_empty(&cur_trans->dirty_bgs) ||
3362 !btrfs_test_opt(fs_info, SPACE_CACHE))
3363 return 0;
3364
3365 path = btrfs_alloc_path();
3366 if (!path)
3367 return -ENOMEM;
3368
3369 /* Could add new block groups, use _safe just in case */
3370 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3371 dirty_list) {
3372 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3373 cache_save_setup(cache, trans, path);
3374 }
3375
3376 return 0;
3377 }
3378
3379 /*
3380 * Transaction commit does final block group cache writeback during a critical
3381 * section where nothing is allowed to change the FS. This is required in
3382 * order for the cache to actually match the block group, but can introduce a
3383 * lot of latency into the commit.
3384 *
3385 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
3386 * There's a chance we'll have to redo some of it if the block group changes
3387 * again during the commit, but it greatly reduces the commit latency by
3388 * getting rid of the easy block groups while we're still allowing others to
3389 * join the commit.
3390 */
btrfs_start_dirty_block_groups(struct btrfs_trans_handle * trans)3391 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3392 {
3393 struct btrfs_fs_info *fs_info = trans->fs_info;
3394 struct btrfs_block_group *cache;
3395 struct btrfs_transaction *cur_trans = trans->transaction;
3396 int ret = 0;
3397 int should_put;
3398 BTRFS_PATH_AUTO_FREE(path);
3399 LIST_HEAD(dirty);
3400 struct list_head *io = &cur_trans->io_bgs;
3401 int loops = 0;
3402
3403 spin_lock(&cur_trans->dirty_bgs_lock);
3404 if (list_empty(&cur_trans->dirty_bgs)) {
3405 spin_unlock(&cur_trans->dirty_bgs_lock);
3406 return 0;
3407 }
3408 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3409 spin_unlock(&cur_trans->dirty_bgs_lock);
3410
3411 again:
3412 /* Make sure all the block groups on our dirty list actually exist */
3413 btrfs_create_pending_block_groups(trans);
3414
3415 if (!path) {
3416 path = btrfs_alloc_path();
3417 if (!path) {
3418 ret = -ENOMEM;
3419 goto out;
3420 }
3421 }
3422
3423 /*
3424 * cache_write_mutex is here only to save us from balance or automatic
3425 * removal of empty block groups deleting this block group while we are
3426 * writing out the cache
3427 */
3428 mutex_lock(&trans->transaction->cache_write_mutex);
3429 while (!list_empty(&dirty)) {
3430 bool drop_reserve = true;
3431
3432 cache = list_first_entry(&dirty, struct btrfs_block_group,
3433 dirty_list);
3434 /*
3435 * This can happen if something re-dirties a block group that
3436 * is already under IO. Just wait for it to finish and then do
3437 * it all again
3438 */
3439 if (!list_empty(&cache->io_list)) {
3440 list_del_init(&cache->io_list);
3441 btrfs_wait_cache_io(trans, cache, path);
3442 btrfs_put_block_group(cache);
3443 }
3444
3445
3446 /*
3447 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3448 * it should update the cache_state. Don't delete until after
3449 * we wait.
3450 *
3451 * Since we're not running in the commit critical section
3452 * we need the dirty_bgs_lock to protect from update_block_group
3453 */
3454 spin_lock(&cur_trans->dirty_bgs_lock);
3455 list_del_init(&cache->dirty_list);
3456 spin_unlock(&cur_trans->dirty_bgs_lock);
3457
3458 should_put = 1;
3459
3460 cache_save_setup(cache, trans, path);
3461
3462 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3463 cache->io_ctl.inode = NULL;
3464 ret = btrfs_write_out_cache(trans, cache, path);
3465 if (ret == 0 && cache->io_ctl.inode) {
3466 should_put = 0;
3467
3468 /*
3469 * The cache_write_mutex is protecting the
3470 * io_list, also refer to the definition of
3471 * btrfs_transaction::io_bgs for more details
3472 */
3473 list_add_tail(&cache->io_list, io);
3474 } else {
3475 /*
3476 * If we failed to write the cache, the
3477 * generation will be bad and life goes on
3478 */
3479 ret = 0;
3480 }
3481 }
3482 if (!ret) {
3483 ret = update_block_group_item(trans, path, cache);
3484 /*
3485 * Our block group might still be attached to the list
3486 * of new block groups in the transaction handle of some
3487 * other task (struct btrfs_trans_handle->new_bgs). This
3488 * means its block group item isn't yet in the extent
3489 * tree. If this happens ignore the error, as we will
3490 * try again later in the critical section of the
3491 * transaction commit.
3492 */
3493 if (ret == -ENOENT) {
3494 ret = 0;
3495 spin_lock(&cur_trans->dirty_bgs_lock);
3496 if (list_empty(&cache->dirty_list)) {
3497 list_add_tail(&cache->dirty_list,
3498 &cur_trans->dirty_bgs);
3499 btrfs_get_block_group(cache);
3500 drop_reserve = false;
3501 }
3502 spin_unlock(&cur_trans->dirty_bgs_lock);
3503 } else if (ret) {
3504 btrfs_abort_transaction(trans, ret);
3505 }
3506 }
3507
3508 /* If it's not on the io list, we need to put the block group */
3509 if (should_put)
3510 btrfs_put_block_group(cache);
3511 if (drop_reserve)
3512 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
3513 /*
3514 * Avoid blocking other tasks for too long. It might even save
3515 * us from writing caches for block groups that are going to be
3516 * removed.
3517 */
3518 mutex_unlock(&trans->transaction->cache_write_mutex);
3519 if (ret)
3520 goto out;
3521 mutex_lock(&trans->transaction->cache_write_mutex);
3522 }
3523 mutex_unlock(&trans->transaction->cache_write_mutex);
3524
3525 /*
3526 * Go through delayed refs for all the stuff we've just kicked off
3527 * and then loop back (just once)
3528 */
3529 if (!ret)
3530 ret = btrfs_run_delayed_refs(trans, 0);
3531 if (!ret && loops == 0) {
3532 loops++;
3533 spin_lock(&cur_trans->dirty_bgs_lock);
3534 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3535 /*
3536 * dirty_bgs_lock protects us from concurrent block group
3537 * deletes too (not just cache_write_mutex).
3538 */
3539 if (!list_empty(&dirty)) {
3540 spin_unlock(&cur_trans->dirty_bgs_lock);
3541 goto again;
3542 }
3543 spin_unlock(&cur_trans->dirty_bgs_lock);
3544 }
3545 out:
3546 if (ret < 0) {
3547 spin_lock(&cur_trans->dirty_bgs_lock);
3548 list_splice_init(&dirty, &cur_trans->dirty_bgs);
3549 spin_unlock(&cur_trans->dirty_bgs_lock);
3550 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3551 }
3552
3553 return ret;
3554 }
3555
btrfs_write_dirty_block_groups(struct btrfs_trans_handle * trans)3556 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3557 {
3558 struct btrfs_fs_info *fs_info = trans->fs_info;
3559 struct btrfs_block_group *cache;
3560 struct btrfs_transaction *cur_trans = trans->transaction;
3561 int ret = 0;
3562 int should_put;
3563 BTRFS_PATH_AUTO_FREE(path);
3564 struct list_head *io = &cur_trans->io_bgs;
3565
3566 path = btrfs_alloc_path();
3567 if (!path)
3568 return -ENOMEM;
3569
3570 /*
3571 * Even though we are in the critical section of the transaction commit,
3572 * we can still have concurrent tasks adding elements to this
3573 * transaction's list of dirty block groups. These tasks correspond to
3574 * endio free space workers started when writeback finishes for a
3575 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3576 * allocate new block groups as a result of COWing nodes of the root
3577 * tree when updating the free space inode. The writeback for the space
3578 * caches is triggered by an earlier call to
3579 * btrfs_start_dirty_block_groups() and iterations of the following
3580 * loop.
3581 * Also we want to do the cache_save_setup first and then run the
3582 * delayed refs to make sure we have the best chance at doing this all
3583 * in one shot.
3584 */
3585 spin_lock(&cur_trans->dirty_bgs_lock);
3586 while (!list_empty(&cur_trans->dirty_bgs)) {
3587 cache = list_first_entry(&cur_trans->dirty_bgs,
3588 struct btrfs_block_group,
3589 dirty_list);
3590
3591 /*
3592 * This can happen if cache_save_setup re-dirties a block group
3593 * that is already under IO. Just wait for it to finish and
3594 * then do it all again
3595 */
3596 if (!list_empty(&cache->io_list)) {
3597 spin_unlock(&cur_trans->dirty_bgs_lock);
3598 list_del_init(&cache->io_list);
3599 btrfs_wait_cache_io(trans, cache, path);
3600 btrfs_put_block_group(cache);
3601 spin_lock(&cur_trans->dirty_bgs_lock);
3602 }
3603
3604 /*
3605 * Don't remove from the dirty list until after we've waited on
3606 * any pending IO
3607 */
3608 list_del_init(&cache->dirty_list);
3609 spin_unlock(&cur_trans->dirty_bgs_lock);
3610 should_put = 1;
3611
3612 cache_save_setup(cache, trans, path);
3613
3614 if (!ret)
3615 ret = btrfs_run_delayed_refs(trans, U64_MAX);
3616
3617 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3618 cache->io_ctl.inode = NULL;
3619 ret = btrfs_write_out_cache(trans, cache, path);
3620 if (ret == 0 && cache->io_ctl.inode) {
3621 should_put = 0;
3622 list_add_tail(&cache->io_list, io);
3623 } else {
3624 /*
3625 * If we failed to write the cache, the
3626 * generation will be bad and life goes on
3627 */
3628 ret = 0;
3629 }
3630 }
3631 if (!ret) {
3632 ret = update_block_group_item(trans, path, cache);
3633 /*
3634 * One of the free space endio workers might have
3635 * created a new block group while updating a free space
3636 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3637 * and hasn't released its transaction handle yet, in
3638 * which case the new block group is still attached to
3639 * its transaction handle and its creation has not
3640 * finished yet (no block group item in the extent tree
3641 * yet, etc). If this is the case, wait for all free
3642 * space endio workers to finish and retry. This is a
3643 * very rare case so no need for a more efficient and
3644 * complex approach.
3645 */
3646 if (ret == -ENOENT) {
3647 wait_event(cur_trans->writer_wait,
3648 atomic_read(&cur_trans->num_writers) == 1);
3649 ret = update_block_group_item(trans, path, cache);
3650 if (ret)
3651 btrfs_abort_transaction(trans, ret);
3652 } else if (ret) {
3653 btrfs_abort_transaction(trans, ret);
3654 }
3655 }
3656
3657 /* If its not on the io list, we need to put the block group */
3658 if (should_put)
3659 btrfs_put_block_group(cache);
3660 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
3661 spin_lock(&cur_trans->dirty_bgs_lock);
3662 }
3663 spin_unlock(&cur_trans->dirty_bgs_lock);
3664
3665 /*
3666 * Refer to the definition of io_bgs member for details why it's safe
3667 * to use it without any locking
3668 */
3669 while (!list_empty(io)) {
3670 cache = list_first_entry(io, struct btrfs_block_group,
3671 io_list);
3672 list_del_init(&cache->io_list);
3673 btrfs_wait_cache_io(trans, cache, path);
3674 btrfs_put_block_group(cache);
3675 }
3676
3677 return ret;
3678 }
3679
btrfs_update_block_group(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,bool alloc)3680 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3681 u64 bytenr, u64 num_bytes, bool alloc)
3682 {
3683 struct btrfs_fs_info *info = trans->fs_info;
3684 struct btrfs_space_info *space_info;
3685 struct btrfs_block_group *cache;
3686 u64 old_val;
3687 bool reclaim = false;
3688 bool bg_already_dirty = true;
3689 int factor;
3690
3691 /* Block accounting for super block */
3692 spin_lock(&info->delalloc_root_lock);
3693 old_val = btrfs_super_bytes_used(info->super_copy);
3694 if (alloc)
3695 old_val += num_bytes;
3696 else
3697 old_val -= num_bytes;
3698 btrfs_set_super_bytes_used(info->super_copy, old_val);
3699 spin_unlock(&info->delalloc_root_lock);
3700
3701 cache = btrfs_lookup_block_group(info, bytenr);
3702 if (!cache)
3703 return -ENOENT;
3704
3705 /* An extent can not span multiple block groups. */
3706 ASSERT(bytenr + num_bytes <= cache->start + cache->length);
3707
3708 space_info = cache->space_info;
3709 factor = btrfs_bg_type_to_factor(cache->flags);
3710
3711 /*
3712 * If this block group has free space cache written out, we need to make
3713 * sure to load it if we are removing space. This is because we need
3714 * the unpinning stage to actually add the space back to the block group,
3715 * otherwise we will leak space.
3716 */
3717 if (!alloc && !btrfs_block_group_done(cache))
3718 btrfs_cache_block_group(cache, true);
3719
3720 spin_lock(&space_info->lock);
3721 spin_lock(&cache->lock);
3722
3723 if (btrfs_test_opt(info, SPACE_CACHE) &&
3724 cache->disk_cache_state < BTRFS_DC_CLEAR)
3725 cache->disk_cache_state = BTRFS_DC_CLEAR;
3726
3727 old_val = cache->used;
3728 if (alloc) {
3729 old_val += num_bytes;
3730 cache->used = old_val;
3731 cache->reserved -= num_bytes;
3732 cache->reclaim_mark = 0;
3733 space_info->bytes_reserved -= num_bytes;
3734 space_info->bytes_used += num_bytes;
3735 space_info->disk_used += num_bytes * factor;
3736 if (READ_ONCE(space_info->periodic_reclaim))
3737 btrfs_space_info_update_reclaimable(space_info, -num_bytes);
3738 spin_unlock(&cache->lock);
3739 spin_unlock(&space_info->lock);
3740 } else {
3741 old_val -= num_bytes;
3742 cache->used = old_val;
3743 cache->pinned += num_bytes;
3744 btrfs_space_info_update_bytes_pinned(space_info, num_bytes);
3745 space_info->bytes_used -= num_bytes;
3746 space_info->disk_used -= num_bytes * factor;
3747 if (READ_ONCE(space_info->periodic_reclaim))
3748 btrfs_space_info_update_reclaimable(space_info, num_bytes);
3749 else
3750 reclaim = should_reclaim_block_group(cache, num_bytes);
3751
3752 spin_unlock(&cache->lock);
3753 spin_unlock(&space_info->lock);
3754
3755 btrfs_set_extent_bit(&trans->transaction->pinned_extents, bytenr,
3756 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
3757 }
3758
3759 spin_lock(&trans->transaction->dirty_bgs_lock);
3760 if (list_empty(&cache->dirty_list)) {
3761 list_add_tail(&cache->dirty_list, &trans->transaction->dirty_bgs);
3762 bg_already_dirty = false;
3763 btrfs_get_block_group(cache);
3764 }
3765 spin_unlock(&trans->transaction->dirty_bgs_lock);
3766
3767 /*
3768 * No longer have used bytes in this block group, queue it for deletion.
3769 * We do this after adding the block group to the dirty list to avoid
3770 * races between cleaner kthread and space cache writeout.
3771 */
3772 if (!alloc && old_val == 0) {
3773 if (!btrfs_test_opt(info, DISCARD_ASYNC))
3774 btrfs_mark_bg_unused(cache);
3775 } else if (!alloc && reclaim) {
3776 btrfs_mark_bg_to_reclaim(cache);
3777 }
3778
3779 btrfs_put_block_group(cache);
3780
3781 /* Modified block groups are accounted for in the delayed_refs_rsv. */
3782 if (!bg_already_dirty)
3783 btrfs_inc_delayed_refs_rsv_bg_updates(info);
3784
3785 return 0;
3786 }
3787
3788 /*
3789 * Update the block_group and space info counters.
3790 *
3791 * @cache: The cache we are manipulating
3792 * @ram_bytes: The number of bytes of file content, and will be same to
3793 * @num_bytes except for the compress path.
3794 * @num_bytes: The number of bytes in question
3795 * @delalloc: The blocks are allocated for the delalloc write
3796 *
3797 * This is called by the allocator when it reserves space. If this is a
3798 * reservation and the block group has become read only we cannot make the
3799 * reservation and return -EAGAIN, otherwise this function always succeeds.
3800 */
btrfs_add_reserved_bytes(struct btrfs_block_group * cache,u64 ram_bytes,u64 num_bytes,int delalloc,bool force_wrong_size_class)3801 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3802 u64 ram_bytes, u64 num_bytes, int delalloc,
3803 bool force_wrong_size_class)
3804 {
3805 struct btrfs_space_info *space_info = cache->space_info;
3806 enum btrfs_block_group_size_class size_class;
3807 int ret = 0;
3808
3809 spin_lock(&space_info->lock);
3810 spin_lock(&cache->lock);
3811 if (cache->ro) {
3812 ret = -EAGAIN;
3813 goto out;
3814 }
3815
3816 if (btrfs_block_group_should_use_size_class(cache)) {
3817 size_class = btrfs_calc_block_group_size_class(num_bytes);
3818 ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class);
3819 if (ret)
3820 goto out;
3821 }
3822 cache->reserved += num_bytes;
3823 space_info->bytes_reserved += num_bytes;
3824 trace_btrfs_space_reservation(cache->fs_info, "space_info",
3825 space_info->flags, num_bytes, 1);
3826 btrfs_space_info_update_bytes_may_use(space_info, -ram_bytes);
3827 if (delalloc)
3828 cache->delalloc_bytes += num_bytes;
3829
3830 /*
3831 * Compression can use less space than we reserved, so wake tickets if
3832 * that happens.
3833 */
3834 if (num_bytes < ram_bytes)
3835 btrfs_try_granting_tickets(cache->fs_info, space_info);
3836 out:
3837 spin_unlock(&cache->lock);
3838 spin_unlock(&space_info->lock);
3839 return ret;
3840 }
3841
3842 /*
3843 * Update the block_group and space info counters.
3844 *
3845 * @cache: The cache we are manipulating.
3846 * @num_bytes: The number of bytes in question.
3847 * @is_delalloc: Whether the blocks are allocated for a delalloc write.
3848 *
3849 * This is called by somebody who is freeing space that was never actually used
3850 * on disk. For example if you reserve some space for a new leaf in transaction
3851 * A and before transaction A commits you free that leaf, you call this with
3852 * reserve set to 0 in order to clear the reservation.
3853 */
btrfs_free_reserved_bytes(struct btrfs_block_group * cache,u64 num_bytes,bool is_delalloc)3854 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, u64 num_bytes,
3855 bool is_delalloc)
3856 {
3857 struct btrfs_space_info *space_info = cache->space_info;
3858
3859 spin_lock(&space_info->lock);
3860 spin_lock(&cache->lock);
3861 if (cache->ro)
3862 space_info->bytes_readonly += num_bytes;
3863 else if (btrfs_is_zoned(cache->fs_info))
3864 space_info->bytes_zone_unusable += num_bytes;
3865 cache->reserved -= num_bytes;
3866 space_info->bytes_reserved -= num_bytes;
3867 space_info->max_extent_size = 0;
3868
3869 if (is_delalloc)
3870 cache->delalloc_bytes -= num_bytes;
3871 spin_unlock(&cache->lock);
3872
3873 btrfs_try_granting_tickets(cache->fs_info, space_info);
3874 spin_unlock(&space_info->lock);
3875 }
3876
force_metadata_allocation(struct btrfs_fs_info * info)3877 static void force_metadata_allocation(struct btrfs_fs_info *info)
3878 {
3879 struct list_head *head = &info->space_info;
3880 struct btrfs_space_info *found;
3881
3882 list_for_each_entry(found, head, list) {
3883 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3884 found->force_alloc = CHUNK_ALLOC_FORCE;
3885 }
3886 }
3887
should_alloc_chunk(const struct btrfs_fs_info * fs_info,const struct btrfs_space_info * sinfo,int force)3888 static bool should_alloc_chunk(const struct btrfs_fs_info *fs_info,
3889 const struct btrfs_space_info *sinfo, int force)
3890 {
3891 u64 bytes_used = btrfs_space_info_used(sinfo, false);
3892 u64 thresh;
3893
3894 if (force == CHUNK_ALLOC_FORCE)
3895 return true;
3896
3897 /*
3898 * in limited mode, we want to have some free space up to
3899 * about 1% of the FS size.
3900 */
3901 if (force == CHUNK_ALLOC_LIMITED) {
3902 thresh = btrfs_super_total_bytes(fs_info->super_copy);
3903 thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1));
3904
3905 if (sinfo->total_bytes - bytes_used < thresh)
3906 return true;
3907 }
3908
3909 if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80))
3910 return false;
3911 return true;
3912 }
3913
btrfs_force_chunk_alloc(struct btrfs_trans_handle * trans,u64 type)3914 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3915 {
3916 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3917 struct btrfs_space_info *space_info;
3918
3919 space_info = btrfs_find_space_info(trans->fs_info, type);
3920 if (!space_info) {
3921 DEBUG_WARN();
3922 return -EINVAL;
3923 }
3924
3925 return btrfs_chunk_alloc(trans, space_info, alloc_flags, CHUNK_ALLOC_FORCE);
3926 }
3927
do_chunk_alloc(struct btrfs_trans_handle * trans,struct btrfs_space_info * space_info,u64 flags)3928 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans,
3929 struct btrfs_space_info *space_info,
3930 u64 flags)
3931 {
3932 struct btrfs_block_group *bg;
3933 int ret;
3934
3935 /*
3936 * Check if we have enough space in the system space info because we
3937 * will need to update device items in the chunk btree and insert a new
3938 * chunk item in the chunk btree as well. This will allocate a new
3939 * system block group if needed.
3940 */
3941 check_system_chunk(trans, flags);
3942
3943 bg = btrfs_create_chunk(trans, space_info, flags);
3944 if (IS_ERR(bg)) {
3945 ret = PTR_ERR(bg);
3946 goto out;
3947 }
3948
3949 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3950 /*
3951 * Normally we are not expected to fail with -ENOSPC here, since we have
3952 * previously reserved space in the system space_info and allocated one
3953 * new system chunk if necessary. However there are three exceptions:
3954 *
3955 * 1) We may have enough free space in the system space_info but all the
3956 * existing system block groups have a profile which can not be used
3957 * for extent allocation.
3958 *
3959 * This happens when mounting in degraded mode. For example we have a
3960 * RAID1 filesystem with 2 devices, lose one device and mount the fs
3961 * using the other device in degraded mode. If we then allocate a chunk,
3962 * we may have enough free space in the existing system space_info, but
3963 * none of the block groups can be used for extent allocation since they
3964 * have a RAID1 profile, and because we are in degraded mode with a
3965 * single device, we are forced to allocate a new system chunk with a
3966 * SINGLE profile. Making check_system_chunk() iterate over all system
3967 * block groups and check if they have a usable profile and enough space
3968 * can be slow on very large filesystems, so we tolerate the -ENOSPC and
3969 * try again after forcing allocation of a new system chunk. Like this
3970 * we avoid paying the cost of that search in normal circumstances, when
3971 * we were not mounted in degraded mode;
3972 *
3973 * 2) We had enough free space info the system space_info, and one suitable
3974 * block group to allocate from when we called check_system_chunk()
3975 * above. However right after we called it, the only system block group
3976 * with enough free space got turned into RO mode by a running scrub,
3977 * and in this case we have to allocate a new one and retry. We only
3978 * need do this allocate and retry once, since we have a transaction
3979 * handle and scrub uses the commit root to search for block groups;
3980 *
3981 * 3) We had one system block group with enough free space when we called
3982 * check_system_chunk(), but after that, right before we tried to
3983 * allocate the last extent buffer we needed, a discard operation came
3984 * in and it temporarily removed the last free space entry from the
3985 * block group (discard removes a free space entry, discards it, and
3986 * then adds back the entry to the block group cache).
3987 */
3988 if (ret == -ENOSPC) {
3989 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3990 struct btrfs_block_group *sys_bg;
3991 struct btrfs_space_info *sys_space_info;
3992
3993 sys_space_info = btrfs_find_space_info(trans->fs_info, sys_flags);
3994 if (unlikely(!sys_space_info)) {
3995 ret = -EINVAL;
3996 btrfs_abort_transaction(trans, ret);
3997 goto out;
3998 }
3999
4000 sys_bg = btrfs_create_chunk(trans, sys_space_info, sys_flags);
4001 if (IS_ERR(sys_bg)) {
4002 ret = PTR_ERR(sys_bg);
4003 btrfs_abort_transaction(trans, ret);
4004 goto out;
4005 }
4006
4007 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
4008 if (unlikely(ret)) {
4009 btrfs_abort_transaction(trans, ret);
4010 goto out;
4011 }
4012
4013 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
4014 if (unlikely(ret)) {
4015 btrfs_abort_transaction(trans, ret);
4016 goto out;
4017 }
4018 } else if (unlikely(ret)) {
4019 btrfs_abort_transaction(trans, ret);
4020 goto out;
4021 }
4022 out:
4023 btrfs_trans_release_chunk_metadata(trans);
4024
4025 if (ret)
4026 return ERR_PTR(ret);
4027
4028 btrfs_get_block_group(bg);
4029 return bg;
4030 }
4031
4032 /*
4033 * Chunk allocation is done in 2 phases:
4034 *
4035 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
4036 * the chunk, the chunk mapping, create its block group and add the items
4037 * that belong in the chunk btree to it - more specifically, we need to
4038 * update device items in the chunk btree and add a new chunk item to it.
4039 *
4040 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
4041 * group item to the extent btree and the device extent items to the devices
4042 * btree.
4043 *
4044 * This is done to prevent deadlocks. For example when COWing a node from the
4045 * extent btree we are holding a write lock on the node's parent and if we
4046 * trigger chunk allocation and attempted to insert the new block group item
4047 * in the extent btree right way, we could deadlock because the path for the
4048 * insertion can include that parent node. At first glance it seems impossible
4049 * to trigger chunk allocation after starting a transaction since tasks should
4050 * reserve enough transaction units (metadata space), however while that is true
4051 * most of the time, chunk allocation may still be triggered for several reasons:
4052 *
4053 * 1) When reserving metadata, we check if there is enough free space in the
4054 * metadata space_info and therefore don't trigger allocation of a new chunk.
4055 * However later when the task actually tries to COW an extent buffer from
4056 * the extent btree or from the device btree for example, it is forced to
4057 * allocate a new block group (chunk) because the only one that had enough
4058 * free space was just turned to RO mode by a running scrub for example (or
4059 * device replace, block group reclaim thread, etc), so we can not use it
4060 * for allocating an extent and end up being forced to allocate a new one;
4061 *
4062 * 2) Because we only check that the metadata space_info has enough free bytes,
4063 * we end up not allocating a new metadata chunk in that case. However if
4064 * the filesystem was mounted in degraded mode, none of the existing block
4065 * groups might be suitable for extent allocation due to their incompatible
4066 * profile (for e.g. mounting a 2 devices filesystem, where all block groups
4067 * use a RAID1 profile, in degraded mode using a single device). In this case
4068 * when the task attempts to COW some extent buffer of the extent btree for
4069 * example, it will trigger allocation of a new metadata block group with a
4070 * suitable profile (SINGLE profile in the example of the degraded mount of
4071 * the RAID1 filesystem);
4072 *
4073 * 3) The task has reserved enough transaction units / metadata space, but when
4074 * it attempts to COW an extent buffer from the extent or device btree for
4075 * example, it does not find any free extent in any metadata block group,
4076 * therefore forced to try to allocate a new metadata block group.
4077 * This is because some other task allocated all available extents in the
4078 * meanwhile - this typically happens with tasks that don't reserve space
4079 * properly, either intentionally or as a bug. One example where this is
4080 * done intentionally is fsync, as it does not reserve any transaction units
4081 * and ends up allocating a variable number of metadata extents for log
4082 * tree extent buffers;
4083 *
4084 * 4) The task has reserved enough transaction units / metadata space, but right
4085 * before it tries to allocate the last extent buffer it needs, a discard
4086 * operation comes in and, temporarily, removes the last free space entry from
4087 * the only metadata block group that had free space (discard starts by
4088 * removing a free space entry from a block group, then does the discard
4089 * operation and, once it's done, it adds back the free space entry to the
4090 * block group).
4091 *
4092 * We also need this 2 phases setup when adding a device to a filesystem with
4093 * a seed device - we must create new metadata and system chunks without adding
4094 * any of the block group items to the chunk, extent and device btrees. If we
4095 * did not do it this way, we would get ENOSPC when attempting to update those
4096 * btrees, since all the chunks from the seed device are read-only.
4097 *
4098 * Phase 1 does the updates and insertions to the chunk btree because if we had
4099 * it done in phase 2 and have a thundering herd of tasks allocating chunks in
4100 * parallel, we risk having too many system chunks allocated by many tasks if
4101 * many tasks reach phase 1 without the previous ones completing phase 2. In the
4102 * extreme case this leads to exhaustion of the system chunk array in the
4103 * superblock. This is easier to trigger if using a btree node/leaf size of 64K
4104 * and with RAID filesystems (so we have more device items in the chunk btree).
4105 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
4106 * the system chunk array due to concurrent allocations") provides more details.
4107 *
4108 * Allocation of system chunks does not happen through this function. A task that
4109 * needs to update the chunk btree (the only btree that uses system chunks), must
4110 * preallocate chunk space by calling either check_system_chunk() or
4111 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
4112 * metadata chunk or when removing a chunk, while the later is used before doing
4113 * a modification to the chunk btree - use cases for the later are adding,
4114 * removing and resizing a device as well as relocation of a system chunk.
4115 * See the comment below for more details.
4116 *
4117 * The reservation of system space, done through check_system_chunk(), as well
4118 * as all the updates and insertions into the chunk btree must be done while
4119 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
4120 * an extent buffer from the chunks btree we never trigger allocation of a new
4121 * system chunk, which would result in a deadlock (trying to lock twice an
4122 * extent buffer of the chunk btree, first time before triggering the chunk
4123 * allocation and the second time during chunk allocation while attempting to
4124 * update the chunks btree). The system chunk array is also updated while holding
4125 * that mutex. The same logic applies to removing chunks - we must reserve system
4126 * space, update the chunk btree and the system chunk array in the superblock
4127 * while holding fs_info->chunk_mutex.
4128 *
4129 * This function, btrfs_chunk_alloc(), belongs to phase 1.
4130 *
4131 * @space_info: specify which space_info the new chunk should belong to.
4132 *
4133 * If @force is CHUNK_ALLOC_FORCE:
4134 * - return 1 if it successfully allocates a chunk,
4135 * - return errors including -ENOSPC otherwise.
4136 * If @force is NOT CHUNK_ALLOC_FORCE:
4137 * - return 0 if it doesn't need to allocate a new chunk,
4138 * - return 1 if it successfully allocates a chunk,
4139 * - return errors including -ENOSPC otherwise.
4140 */
btrfs_chunk_alloc(struct btrfs_trans_handle * trans,struct btrfs_space_info * space_info,u64 flags,enum btrfs_chunk_alloc_enum force)4141 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans,
4142 struct btrfs_space_info *space_info, u64 flags,
4143 enum btrfs_chunk_alloc_enum force)
4144 {
4145 struct btrfs_fs_info *fs_info = trans->fs_info;
4146 struct btrfs_block_group *ret_bg;
4147 bool wait_for_alloc = false;
4148 bool should_alloc = false;
4149 bool from_extent_allocation = false;
4150 int ret = 0;
4151
4152 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
4153 from_extent_allocation = true;
4154 force = CHUNK_ALLOC_FORCE;
4155 }
4156
4157 /* Don't re-enter if we're already allocating a chunk */
4158 if (trans->allocating_chunk)
4159 return -ENOSPC;
4160 /*
4161 * Allocation of system chunks can not happen through this path, as we
4162 * could end up in a deadlock if we are allocating a data or metadata
4163 * chunk and there is another task modifying the chunk btree.
4164 *
4165 * This is because while we are holding the chunk mutex, we will attempt
4166 * to add the new chunk item to the chunk btree or update an existing
4167 * device item in the chunk btree, while the other task that is modifying
4168 * the chunk btree is attempting to COW an extent buffer while holding a
4169 * lock on it and on its parent - if the COW operation triggers a system
4170 * chunk allocation, then we can deadlock because we are holding the
4171 * chunk mutex and we may need to access that extent buffer or its parent
4172 * in order to add the chunk item or update a device item.
4173 *
4174 * Tasks that want to modify the chunk tree should reserve system space
4175 * before updating the chunk btree, by calling either
4176 * btrfs_reserve_chunk_metadata() or check_system_chunk().
4177 * It's possible that after a task reserves the space, it still ends up
4178 * here - this happens in the cases described above at do_chunk_alloc().
4179 * The task will have to either retry or fail.
4180 */
4181 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4182 return -ENOSPC;
4183
4184 do {
4185 spin_lock(&space_info->lock);
4186 if (force < space_info->force_alloc)
4187 force = space_info->force_alloc;
4188 should_alloc = should_alloc_chunk(fs_info, space_info, force);
4189 if (space_info->full) {
4190 /* No more free physical space */
4191 if (should_alloc)
4192 ret = -ENOSPC;
4193 else
4194 ret = 0;
4195 spin_unlock(&space_info->lock);
4196 return ret;
4197 } else if (!should_alloc) {
4198 spin_unlock(&space_info->lock);
4199 return 0;
4200 } else if (space_info->chunk_alloc) {
4201 /*
4202 * Someone is already allocating, so we need to block
4203 * until this someone is finished and then loop to
4204 * recheck if we should continue with our allocation
4205 * attempt.
4206 */
4207 wait_for_alloc = true;
4208 force = CHUNK_ALLOC_NO_FORCE;
4209 spin_unlock(&space_info->lock);
4210 mutex_lock(&fs_info->chunk_mutex);
4211 mutex_unlock(&fs_info->chunk_mutex);
4212 } else {
4213 /* Proceed with allocation */
4214 space_info->chunk_alloc = 1;
4215 wait_for_alloc = false;
4216 spin_unlock(&space_info->lock);
4217 }
4218
4219 cond_resched();
4220 } while (wait_for_alloc);
4221
4222 mutex_lock(&fs_info->chunk_mutex);
4223 trans->allocating_chunk = true;
4224
4225 /*
4226 * If we have mixed data/metadata chunks we want to make sure we keep
4227 * allocating mixed chunks instead of individual chunks.
4228 */
4229 if (btrfs_mixed_space_info(space_info))
4230 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4231
4232 /*
4233 * if we're doing a data chunk, go ahead and make sure that
4234 * we keep a reasonable number of metadata chunks allocated in the
4235 * FS as well.
4236 */
4237 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4238 fs_info->data_chunk_allocations++;
4239 if (!(fs_info->data_chunk_allocations %
4240 fs_info->metadata_ratio))
4241 force_metadata_allocation(fs_info);
4242 }
4243
4244 ret_bg = do_chunk_alloc(trans, space_info, flags);
4245 trans->allocating_chunk = false;
4246
4247 if (IS_ERR(ret_bg)) {
4248 ret = PTR_ERR(ret_bg);
4249 } else if (from_extent_allocation && (flags & BTRFS_BLOCK_GROUP_DATA)) {
4250 /*
4251 * New block group is likely to be used soon. Try to activate
4252 * it now. Failure is OK for now.
4253 */
4254 btrfs_zone_activate(ret_bg);
4255 }
4256
4257 if (!ret)
4258 btrfs_put_block_group(ret_bg);
4259
4260 spin_lock(&space_info->lock);
4261 if (ret < 0) {
4262 if (ret == -ENOSPC)
4263 space_info->full = 1;
4264 else
4265 goto out;
4266 } else {
4267 ret = 1;
4268 space_info->max_extent_size = 0;
4269 }
4270
4271 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4272 out:
4273 space_info->chunk_alloc = 0;
4274 spin_unlock(&space_info->lock);
4275 mutex_unlock(&fs_info->chunk_mutex);
4276
4277 return ret;
4278 }
4279
get_profile_num_devs(const struct btrfs_fs_info * fs_info,u64 type)4280 static u64 get_profile_num_devs(const struct btrfs_fs_info *fs_info, u64 type)
4281 {
4282 u64 num_dev;
4283
4284 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
4285 if (!num_dev)
4286 num_dev = fs_info->fs_devices->rw_devices;
4287
4288 return num_dev;
4289 }
4290
reserve_chunk_space(struct btrfs_trans_handle * trans,u64 bytes,u64 type)4291 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
4292 u64 bytes,
4293 u64 type)
4294 {
4295 struct btrfs_fs_info *fs_info = trans->fs_info;
4296 struct btrfs_space_info *info;
4297 u64 left;
4298 int ret = 0;
4299
4300 /*
4301 * Needed because we can end up allocating a system chunk and for an
4302 * atomic and race free space reservation in the chunk block reserve.
4303 */
4304 lockdep_assert_held(&fs_info->chunk_mutex);
4305
4306 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4307 spin_lock(&info->lock);
4308 left = info->total_bytes - btrfs_space_info_used(info, true);
4309 spin_unlock(&info->lock);
4310
4311 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4312 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4313 left, bytes, type);
4314 btrfs_dump_space_info(fs_info, info, 0, false);
4315 }
4316
4317 if (left < bytes) {
4318 u64 flags = btrfs_system_alloc_profile(fs_info);
4319 struct btrfs_block_group *bg;
4320 struct btrfs_space_info *space_info;
4321
4322 space_info = btrfs_find_space_info(fs_info, flags);
4323 ASSERT(space_info);
4324
4325 /*
4326 * Ignore failure to create system chunk. We might end up not
4327 * needing it, as we might not need to COW all nodes/leafs from
4328 * the paths we visit in the chunk tree (they were already COWed
4329 * or created in the current transaction for example).
4330 */
4331 bg = btrfs_create_chunk(trans, space_info, flags);
4332 if (IS_ERR(bg)) {
4333 ret = PTR_ERR(bg);
4334 } else {
4335 /*
4336 * We have a new chunk. We also need to activate it for
4337 * zoned filesystem.
4338 */
4339 ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
4340 if (ret < 0)
4341 return;
4342
4343 /*
4344 * If we fail to add the chunk item here, we end up
4345 * trying again at phase 2 of chunk allocation, at
4346 * btrfs_create_pending_block_groups(). So ignore
4347 * any error here. An ENOSPC here could happen, due to
4348 * the cases described at do_chunk_alloc() - the system
4349 * block group we just created was just turned into RO
4350 * mode by a scrub for example, or a running discard
4351 * temporarily removed its free space entries, etc.
4352 */
4353 btrfs_chunk_alloc_add_chunk_item(trans, bg);
4354 }
4355 }
4356
4357 if (!ret) {
4358 ret = btrfs_block_rsv_add(fs_info,
4359 &fs_info->chunk_block_rsv,
4360 bytes, BTRFS_RESERVE_NO_FLUSH);
4361 if (!ret)
4362 trans->chunk_bytes_reserved += bytes;
4363 }
4364 }
4365
4366 /*
4367 * Reserve space in the system space for allocating or removing a chunk.
4368 * The caller must be holding fs_info->chunk_mutex.
4369 */
check_system_chunk(struct btrfs_trans_handle * trans,u64 type)4370 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4371 {
4372 struct btrfs_fs_info *fs_info = trans->fs_info;
4373 const u64 num_devs = get_profile_num_devs(fs_info, type);
4374 u64 bytes;
4375
4376 /* num_devs device items to update and 1 chunk item to add or remove. */
4377 bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
4378 btrfs_calc_insert_metadata_size(fs_info, 1);
4379
4380 reserve_chunk_space(trans, bytes, type);
4381 }
4382
4383 /*
4384 * Reserve space in the system space, if needed, for doing a modification to the
4385 * chunk btree.
4386 *
4387 * @trans: A transaction handle.
4388 * @is_item_insertion: Indicate if the modification is for inserting a new item
4389 * in the chunk btree or if it's for the deletion or update
4390 * of an existing item.
4391 *
4392 * This is used in a context where we need to update the chunk btree outside
4393 * block group allocation and removal, to avoid a deadlock with a concurrent
4394 * task that is allocating a metadata or data block group and therefore needs to
4395 * update the chunk btree while holding the chunk mutex. After the update to the
4396 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
4397 *
4398 */
btrfs_reserve_chunk_metadata(struct btrfs_trans_handle * trans,bool is_item_insertion)4399 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
4400 bool is_item_insertion)
4401 {
4402 struct btrfs_fs_info *fs_info = trans->fs_info;
4403 u64 bytes;
4404
4405 if (is_item_insertion)
4406 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
4407 else
4408 bytes = btrfs_calc_metadata_size(fs_info, 1);
4409
4410 mutex_lock(&fs_info->chunk_mutex);
4411 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
4412 mutex_unlock(&fs_info->chunk_mutex);
4413 }
4414
btrfs_put_block_group_cache(struct btrfs_fs_info * info)4415 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
4416 {
4417 struct btrfs_block_group *block_group;
4418
4419 block_group = btrfs_lookup_first_block_group(info, 0);
4420 while (block_group) {
4421 btrfs_wait_block_group_cache_done(block_group);
4422 spin_lock(&block_group->lock);
4423 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
4424 &block_group->runtime_flags)) {
4425 struct btrfs_inode *inode = block_group->inode;
4426
4427 block_group->inode = NULL;
4428 spin_unlock(&block_group->lock);
4429
4430 ASSERT(block_group->io_ctl.inode == NULL);
4431 iput(&inode->vfs_inode);
4432 } else {
4433 spin_unlock(&block_group->lock);
4434 }
4435 block_group = btrfs_next_block_group(block_group);
4436 }
4437 }
4438
check_removing_space_info(struct btrfs_space_info * space_info)4439 static void check_removing_space_info(struct btrfs_space_info *space_info)
4440 {
4441 struct btrfs_fs_info *info = space_info->fs_info;
4442
4443 if (space_info->subgroup_id == BTRFS_SUB_GROUP_PRIMARY) {
4444 /* This is a top space_info, proceed with its children first. */
4445 for (int i = 0; i < BTRFS_SPACE_INFO_SUB_GROUP_MAX; i++) {
4446 if (space_info->sub_group[i]) {
4447 check_removing_space_info(space_info->sub_group[i]);
4448 kfree(space_info->sub_group[i]);
4449 space_info->sub_group[i] = NULL;
4450 }
4451 }
4452 }
4453
4454 /*
4455 * Do not hide this behind enospc_debug, this is actually important and
4456 * indicates a real bug if this happens.
4457 */
4458 if (WARN_ON(space_info->bytes_pinned > 0 || space_info->bytes_may_use > 0))
4459 btrfs_dump_space_info(info, space_info, 0, false);
4460
4461 /*
4462 * If there was a failure to cleanup a log tree, very likely due to an
4463 * IO failure on a writeback attempt of one or more of its extent
4464 * buffers, we could not do proper (and cheap) unaccounting of their
4465 * reserved space, so don't warn on bytes_reserved > 0 in that case.
4466 */
4467 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4468 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4469 if (WARN_ON(space_info->bytes_reserved > 0))
4470 btrfs_dump_space_info(info, space_info, 0, false);
4471 }
4472
4473 WARN_ON(space_info->reclaim_size > 0);
4474 }
4475
4476 /*
4477 * Must be called only after stopping all workers, since we could have block
4478 * group caching kthreads running, and therefore they could race with us if we
4479 * freed the block groups before stopping them.
4480 */
btrfs_free_block_groups(struct btrfs_fs_info * info)4481 int btrfs_free_block_groups(struct btrfs_fs_info *info)
4482 {
4483 struct btrfs_block_group *block_group;
4484 struct btrfs_space_info *space_info;
4485 struct btrfs_caching_control *caching_ctl;
4486 struct rb_node *n;
4487
4488 if (btrfs_is_zoned(info)) {
4489 if (info->active_meta_bg) {
4490 btrfs_put_block_group(info->active_meta_bg);
4491 info->active_meta_bg = NULL;
4492 }
4493 if (info->active_system_bg) {
4494 btrfs_put_block_group(info->active_system_bg);
4495 info->active_system_bg = NULL;
4496 }
4497 }
4498
4499 write_lock(&info->block_group_cache_lock);
4500 while (!list_empty(&info->caching_block_groups)) {
4501 caching_ctl = list_first_entry(&info->caching_block_groups,
4502 struct btrfs_caching_control, list);
4503 list_del(&caching_ctl->list);
4504 btrfs_put_caching_control(caching_ctl);
4505 }
4506 write_unlock(&info->block_group_cache_lock);
4507
4508 spin_lock(&info->unused_bgs_lock);
4509 while (!list_empty(&info->unused_bgs)) {
4510 block_group = list_first_entry(&info->unused_bgs,
4511 struct btrfs_block_group,
4512 bg_list);
4513 list_del_init(&block_group->bg_list);
4514 btrfs_put_block_group(block_group);
4515 }
4516
4517 while (!list_empty(&info->reclaim_bgs)) {
4518 block_group = list_first_entry(&info->reclaim_bgs,
4519 struct btrfs_block_group,
4520 bg_list);
4521 list_del_init(&block_group->bg_list);
4522 btrfs_put_block_group(block_group);
4523 }
4524 spin_unlock(&info->unused_bgs_lock);
4525
4526 spin_lock(&info->zone_active_bgs_lock);
4527 while (!list_empty(&info->zone_active_bgs)) {
4528 block_group = list_first_entry(&info->zone_active_bgs,
4529 struct btrfs_block_group,
4530 active_bg_list);
4531 list_del_init(&block_group->active_bg_list);
4532 btrfs_put_block_group(block_group);
4533 }
4534 spin_unlock(&info->zone_active_bgs_lock);
4535
4536 write_lock(&info->block_group_cache_lock);
4537 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4538 block_group = rb_entry(n, struct btrfs_block_group,
4539 cache_node);
4540 rb_erase_cached(&block_group->cache_node,
4541 &info->block_group_cache_tree);
4542 RB_CLEAR_NODE(&block_group->cache_node);
4543 write_unlock(&info->block_group_cache_lock);
4544
4545 down_write(&block_group->space_info->groups_sem);
4546 list_del(&block_group->list);
4547 up_write(&block_group->space_info->groups_sem);
4548
4549 /*
4550 * We haven't cached this block group, which means we could
4551 * possibly have excluded extents on this block group.
4552 */
4553 if (block_group->cached == BTRFS_CACHE_NO ||
4554 block_group->cached == BTRFS_CACHE_ERROR)
4555 btrfs_free_excluded_extents(block_group);
4556
4557 btrfs_remove_free_space_cache(block_group);
4558 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4559 ASSERT(list_empty(&block_group->dirty_list));
4560 ASSERT(list_empty(&block_group->io_list));
4561 ASSERT(list_empty(&block_group->bg_list));
4562 ASSERT(refcount_read(&block_group->refs) == 1);
4563 ASSERT(block_group->swap_extents == 0);
4564 btrfs_put_block_group(block_group);
4565
4566 write_lock(&info->block_group_cache_lock);
4567 }
4568 write_unlock(&info->block_group_cache_lock);
4569
4570 btrfs_release_global_block_rsv(info);
4571
4572 while (!list_empty(&info->space_info)) {
4573 space_info = list_first_entry(&info->space_info,
4574 struct btrfs_space_info, list);
4575
4576 check_removing_space_info(space_info);
4577 list_del(&space_info->list);
4578 btrfs_sysfs_remove_space_info(space_info);
4579 }
4580 return 0;
4581 }
4582
btrfs_freeze_block_group(struct btrfs_block_group * cache)4583 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4584 {
4585 atomic_inc(&cache->frozen);
4586 }
4587
btrfs_unfreeze_block_group(struct btrfs_block_group * block_group)4588 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4589 {
4590 struct btrfs_fs_info *fs_info = block_group->fs_info;
4591 bool cleanup;
4592
4593 spin_lock(&block_group->lock);
4594 cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4595 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4596 spin_unlock(&block_group->lock);
4597
4598 if (cleanup) {
4599 struct btrfs_chunk_map *map;
4600
4601 map = btrfs_find_chunk_map(fs_info, block_group->start, 1);
4602 /* Logic error, can't happen. */
4603 ASSERT(map);
4604
4605 btrfs_remove_chunk_map(fs_info, map);
4606
4607 /* Once for our lookup reference. */
4608 btrfs_free_chunk_map(map);
4609
4610 /*
4611 * We may have left one free space entry and other possible
4612 * tasks trimming this block group have left 1 entry each one.
4613 * Free them if any.
4614 */
4615 btrfs_remove_free_space_cache(block_group);
4616 }
4617 }
4618
btrfs_inc_block_group_swap_extents(struct btrfs_block_group * bg)4619 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4620 {
4621 bool ret = true;
4622
4623 spin_lock(&bg->lock);
4624 if (bg->ro)
4625 ret = false;
4626 else
4627 bg->swap_extents++;
4628 spin_unlock(&bg->lock);
4629
4630 return ret;
4631 }
4632
btrfs_dec_block_group_swap_extents(struct btrfs_block_group * bg,int amount)4633 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4634 {
4635 spin_lock(&bg->lock);
4636 ASSERT(!bg->ro);
4637 ASSERT(bg->swap_extents >= amount);
4638 bg->swap_extents -= amount;
4639 spin_unlock(&bg->lock);
4640 }
4641
btrfs_calc_block_group_size_class(u64 size)4642 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size)
4643 {
4644 if (size <= SZ_128K)
4645 return BTRFS_BG_SZ_SMALL;
4646 if (size <= SZ_8M)
4647 return BTRFS_BG_SZ_MEDIUM;
4648 return BTRFS_BG_SZ_LARGE;
4649 }
4650
4651 /*
4652 * Handle a block group allocating an extent in a size class
4653 *
4654 * @bg: The block group we allocated in.
4655 * @size_class: The size class of the allocation.
4656 * @force_wrong_size_class: Whether we are desperate enough to allow
4657 * mismatched size classes.
4658 *
4659 * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the
4660 * case of a race that leads to the wrong size class without
4661 * force_wrong_size_class set.
4662 *
4663 * find_free_extent will skip block groups with a mismatched size class until
4664 * it really needs to avoid ENOSPC. In that case it will set
4665 * force_wrong_size_class. However, if a block group is newly allocated and
4666 * doesn't yet have a size class, then it is possible for two allocations of
4667 * different sizes to race and both try to use it. The loser is caught here and
4668 * has to retry.
4669 */
btrfs_use_block_group_size_class(struct btrfs_block_group * bg,enum btrfs_block_group_size_class size_class,bool force_wrong_size_class)4670 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
4671 enum btrfs_block_group_size_class size_class,
4672 bool force_wrong_size_class)
4673 {
4674 ASSERT(size_class != BTRFS_BG_SZ_NONE);
4675
4676 /* The new allocation is in the right size class, do nothing */
4677 if (bg->size_class == size_class)
4678 return 0;
4679 /*
4680 * The new allocation is in a mismatched size class.
4681 * This means one of two things:
4682 *
4683 * 1. Two tasks in find_free_extent for different size_classes raced
4684 * and hit the same empty block_group. Make the loser try again.
4685 * 2. A call to find_free_extent got desperate enough to set
4686 * 'force_wrong_slab'. Don't change the size_class, but allow the
4687 * allocation.
4688 */
4689 if (bg->size_class != BTRFS_BG_SZ_NONE) {
4690 if (force_wrong_size_class)
4691 return 0;
4692 return -EAGAIN;
4693 }
4694 /*
4695 * The happy new block group case: the new allocation is the first
4696 * one in the block_group so we set size_class.
4697 */
4698 bg->size_class = size_class;
4699
4700 return 0;
4701 }
4702
btrfs_block_group_should_use_size_class(const struct btrfs_block_group * bg)4703 bool btrfs_block_group_should_use_size_class(const struct btrfs_block_group *bg)
4704 {
4705 if (btrfs_is_zoned(bg->fs_info))
4706 return false;
4707 if (!btrfs_is_block_group_data_only(bg))
4708 return false;
4709 return true;
4710 }
4711