xref: /linux/drivers/net/ethernet/dlink/dl2k.c (revision be54f8c558027a218423134dd9b8c7c46d92204a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
3 /*
4     Copyright (c) 2001, 2002 by D-Link Corporation
5     Written by Edward Peng.<edward_peng@dlink.com.tw>
6     Created 03-May-2001, base on Linux' sundance.c.
7 
8 */
9 
10 #include "dl2k.h"
11 #include <linux/dma-mapping.h>
12 
13 #define dw32(reg, val)	iowrite32(val, ioaddr + (reg))
14 #define dw16(reg, val)	iowrite16(val, ioaddr + (reg))
15 #define dw8(reg, val)	iowrite8(val, ioaddr + (reg))
16 #define dr32(reg)	ioread32(ioaddr + (reg))
17 #define dr16(reg)	ioread16(ioaddr + (reg))
18 #define dr8(reg)	ioread8(ioaddr + (reg))
19 
20 #define MAX_UNITS 8
21 static int mtu[MAX_UNITS];
22 static int vlan[MAX_UNITS];
23 static int jumbo[MAX_UNITS];
24 static char *media[MAX_UNITS];
25 static int tx_flow=-1;
26 static int rx_flow=-1;
27 static int copy_thresh;
28 static int rx_coalesce=10;	/* Rx frame count each interrupt */
29 static int rx_timeout=200;	/* Rx DMA wait time in 640ns increments */
30 static int tx_coalesce=16;	/* HW xmit count each TxDMAComplete */
31 
32 
33 MODULE_AUTHOR ("Edward Peng");
34 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
35 MODULE_LICENSE("GPL");
36 module_param_array(mtu, int, NULL, 0);
37 module_param_array(media, charp, NULL, 0);
38 module_param_array(vlan, int, NULL, 0);
39 module_param_array(jumbo, int, NULL, 0);
40 module_param(tx_flow, int, 0);
41 module_param(rx_flow, int, 0);
42 module_param(copy_thresh, int, 0);
43 module_param(rx_coalesce, int, 0);	/* Rx frame count each interrupt */
44 module_param(rx_timeout, int, 0);	/* Rx DMA wait time in 64ns increments */
45 module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
46 
47 
48 /* Enable the default interrupts */
49 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
50        UpdateStats | LinkEvent)
51 
dl2k_enable_int(struct netdev_private * np)52 static void dl2k_enable_int(struct netdev_private *np)
53 {
54 	void __iomem *ioaddr = np->ioaddr;
55 
56 	dw16(IntEnable, DEFAULT_INTR);
57 }
58 
59 static const int max_intrloop = 50;
60 static const int multicast_filter_limit = 0x40;
61 
62 static int rio_open (struct net_device *dev);
63 static void rio_timer (struct timer_list *t);
64 static void rio_tx_timeout (struct net_device *dev, unsigned int txqueue);
65 static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
66 static irqreturn_t rio_interrupt (int irq, void *dev_instance);
67 static void rio_free_tx (struct net_device *dev, int irq);
68 static void tx_error (struct net_device *dev, int tx_status);
69 static int receive_packet (struct net_device *dev);
70 static void rio_error (struct net_device *dev, int int_status);
71 static void set_multicast (struct net_device *dev);
72 static struct net_device_stats *get_stats (struct net_device *dev);
73 static int clear_stats (struct net_device *dev);
74 static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
75 static int rio_close (struct net_device *dev);
76 static int find_miiphy (struct net_device *dev);
77 static int parse_eeprom (struct net_device *dev);
78 static int read_eeprom (struct netdev_private *, int eep_addr);
79 static int mii_wait_link (struct net_device *dev, int wait);
80 static int mii_set_media (struct net_device *dev);
81 static int mii_get_media (struct net_device *dev);
82 static int mii_set_media_pcs (struct net_device *dev);
83 static int mii_get_media_pcs (struct net_device *dev);
84 static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
85 static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
86 		      u16 data);
87 
88 static const struct ethtool_ops ethtool_ops;
89 
90 static const struct net_device_ops netdev_ops = {
91 	.ndo_open		= rio_open,
92 	.ndo_start_xmit	= start_xmit,
93 	.ndo_stop		= rio_close,
94 	.ndo_get_stats		= get_stats,
95 	.ndo_validate_addr	= eth_validate_addr,
96 	.ndo_set_mac_address 	= eth_mac_addr,
97 	.ndo_set_rx_mode	= set_multicast,
98 	.ndo_eth_ioctl		= rio_ioctl,
99 	.ndo_tx_timeout		= rio_tx_timeout,
100 };
101 
102 static int
rio_probe1(struct pci_dev * pdev,const struct pci_device_id * ent)103 rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
104 {
105 	struct net_device *dev;
106 	struct netdev_private *np;
107 	static int card_idx;
108 	int chip_idx = ent->driver_data;
109 	int err, irq;
110 	void __iomem *ioaddr;
111 	void *ring_space;
112 	dma_addr_t ring_dma;
113 
114 	err = pci_enable_device (pdev);
115 	if (err)
116 		return err;
117 
118 	irq = pdev->irq;
119 	err = pci_request_regions (pdev, "dl2k");
120 	if (err)
121 		goto err_out_disable;
122 
123 	pci_set_master (pdev);
124 
125 	err = -ENOMEM;
126 
127 	dev = alloc_etherdev (sizeof (*np));
128 	if (!dev)
129 		goto err_out_res;
130 	SET_NETDEV_DEV(dev, &pdev->dev);
131 
132 	np = netdev_priv(dev);
133 
134 	/* IO registers range. */
135 	ioaddr = pci_iomap(pdev, 0, 0);
136 	if (!ioaddr)
137 		goto err_out_dev;
138 	np->eeprom_addr = ioaddr;
139 
140 #ifdef MEM_MAPPING
141 	/* MM registers range. */
142 	ioaddr = pci_iomap(pdev, 1, 0);
143 	if (!ioaddr)
144 		goto err_out_iounmap;
145 #endif
146 	np->ioaddr = ioaddr;
147 	np->chip_id = chip_idx;
148 	np->pdev = pdev;
149 
150 	spin_lock_init(&np->stats_lock);
151 	spin_lock_init (&np->tx_lock);
152 	spin_lock_init (&np->rx_lock);
153 
154 	/* Parse manual configuration */
155 	np->an_enable = 1;
156 	np->tx_coalesce = 1;
157 	if (card_idx < MAX_UNITS) {
158 		if (media[card_idx] != NULL) {
159 			np->an_enable = 0;
160 			if (strcmp (media[card_idx], "auto") == 0 ||
161 			    strcmp (media[card_idx], "autosense") == 0 ||
162 			    strcmp (media[card_idx], "0") == 0 ) {
163 				np->an_enable = 2;
164 			} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
165 			    strcmp (media[card_idx], "4") == 0) {
166 				np->speed = 100;
167 				np->full_duplex = 1;
168 			} else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
169 				   strcmp (media[card_idx], "3") == 0) {
170 				np->speed = 100;
171 				np->full_duplex = 0;
172 			} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
173 				   strcmp (media[card_idx], "2") == 0) {
174 				np->speed = 10;
175 				np->full_duplex = 1;
176 			} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
177 				   strcmp (media[card_idx], "1") == 0) {
178 				np->speed = 10;
179 				np->full_duplex = 0;
180 			} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
181 				 strcmp (media[card_idx], "6") == 0) {
182 				np->speed=1000;
183 				np->full_duplex=1;
184 			} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
185 				 strcmp (media[card_idx], "5") == 0) {
186 				np->speed = 1000;
187 				np->full_duplex = 0;
188 			} else {
189 				np->an_enable = 1;
190 			}
191 		}
192 		if (jumbo[card_idx] != 0) {
193 			np->jumbo = 1;
194 			dev->mtu = MAX_JUMBO;
195 		} else {
196 			np->jumbo = 0;
197 			if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
198 				dev->mtu = mtu[card_idx];
199 		}
200 		np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
201 		    vlan[card_idx] : 0;
202 		if (rx_coalesce > 0 && rx_timeout > 0) {
203 			np->rx_coalesce = rx_coalesce;
204 			np->rx_timeout = rx_timeout;
205 			np->coalesce = 1;
206 		}
207 		np->tx_flow = (tx_flow == 0) ? 0 : 1;
208 		np->rx_flow = (rx_flow == 0) ? 0 : 1;
209 
210 		if (tx_coalesce < 1)
211 			tx_coalesce = 1;
212 		else if (tx_coalesce > TX_RING_SIZE-1)
213 			tx_coalesce = TX_RING_SIZE - 1;
214 	}
215 	dev->netdev_ops = &netdev_ops;
216 	dev->watchdog_timeo = TX_TIMEOUT;
217 	dev->ethtool_ops = &ethtool_ops;
218 #if 0
219 	dev->features = NETIF_F_IP_CSUM;
220 #endif
221 	/* MTU range: 68 - 1536 or 8000 */
222 	dev->min_mtu = ETH_MIN_MTU;
223 	dev->max_mtu = np->jumbo ? MAX_JUMBO : PACKET_SIZE;
224 
225 	pci_set_drvdata (pdev, dev);
226 
227 	ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
228 					GFP_KERNEL);
229 	if (!ring_space)
230 		goto err_out_iounmap;
231 	np->tx_ring = ring_space;
232 	np->tx_ring_dma = ring_dma;
233 
234 	ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
235 					GFP_KERNEL);
236 	if (!ring_space)
237 		goto err_out_unmap_tx;
238 	np->rx_ring = ring_space;
239 	np->rx_ring_dma = ring_dma;
240 
241 	/* Parse eeprom data */
242 	parse_eeprom (dev);
243 
244 	/* Find PHY address */
245 	err = find_miiphy (dev);
246 	if (err)
247 		goto err_out_unmap_rx;
248 
249 	/* Fiber device? */
250 	np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
251 	np->link_status = 0;
252 	/* Set media and reset PHY */
253 	if (np->phy_media) {
254 		/* default Auto-Negotiation for fiber deivices */
255 	 	if (np->an_enable == 2) {
256 			np->an_enable = 1;
257 		}
258 	} else {
259 		/* Auto-Negotiation is mandatory for 1000BASE-T,
260 		   IEEE 802.3ab Annex 28D page 14 */
261 		if (np->speed == 1000)
262 			np->an_enable = 1;
263 	}
264 
265 	err = register_netdev (dev);
266 	if (err)
267 		goto err_out_unmap_rx;
268 
269 	card_idx++;
270 
271 	printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
272 		dev->name, np->name, dev->dev_addr, irq);
273 	if (tx_coalesce > 1)
274 		printk(KERN_INFO "tx_coalesce:\t%d packets\n",
275 				tx_coalesce);
276 	if (np->coalesce)
277 		printk(KERN_INFO
278 		       "rx_coalesce:\t%d packets\n"
279 		       "rx_timeout: \t%d ns\n",
280 				np->rx_coalesce, np->rx_timeout*640);
281 	if (np->vlan)
282 		printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
283 	return 0;
284 
285 err_out_unmap_rx:
286 	dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
287 			  np->rx_ring_dma);
288 err_out_unmap_tx:
289 	dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
290 			  np->tx_ring_dma);
291 err_out_iounmap:
292 #ifdef MEM_MAPPING
293 	pci_iounmap(pdev, np->ioaddr);
294 #endif
295 	pci_iounmap(pdev, np->eeprom_addr);
296 err_out_dev:
297 	free_netdev (dev);
298 err_out_res:
299 	pci_release_regions (pdev);
300 err_out_disable:
301 	pci_disable_device (pdev);
302 	return err;
303 }
304 
305 static int
find_miiphy(struct net_device * dev)306 find_miiphy (struct net_device *dev)
307 {
308 	struct netdev_private *np = netdev_priv(dev);
309 	int i, phy_found = 0;
310 
311 	np->phy_addr = 1;
312 
313 	for (i = 31; i >= 0; i--) {
314 		int mii_status = mii_read (dev, i, 1);
315 		if (mii_status != 0xffff && mii_status != 0x0000) {
316 			np->phy_addr = i;
317 			phy_found++;
318 		}
319 	}
320 	if (!phy_found) {
321 		printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
322 		return -ENODEV;
323 	}
324 	return 0;
325 }
326 
327 static int
parse_eeprom(struct net_device * dev)328 parse_eeprom (struct net_device *dev)
329 {
330 	struct netdev_private *np = netdev_priv(dev);
331 	void __iomem *ioaddr = np->ioaddr;
332 	int i, j;
333 	u8 sromdata[256];
334 	u8 *psib;
335 	u32 crc;
336 	PSROM_t psrom = (PSROM_t) sromdata;
337 
338 	int cid, next;
339 
340 	for (i = 0; i < 128; i++)
341 		((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
342 
343 	if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {	/* D-Link Only */
344 		/* Check CRC */
345 		crc = ~ether_crc_le (256 - 4, sromdata);
346 		if (psrom->crc != cpu_to_le32(crc)) {
347 			printk (KERN_ERR "%s: EEPROM data CRC error.\n",
348 					dev->name);
349 			return -1;
350 		}
351 	}
352 
353 	/* Set MAC address */
354 	eth_hw_addr_set(dev, psrom->mac_addr);
355 
356 	if (np->chip_id == CHIP_IP1000A) {
357 		np->led_mode = le16_to_cpu(psrom->led_mode);
358 		return 0;
359 	}
360 
361 	if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
362 		return 0;
363 	}
364 
365 	/* Parse Software Information Block */
366 	i = 0x30;
367 	psib = (u8 *) sromdata;
368 	do {
369 		cid = psib[i++];
370 		next = psib[i++];
371 		if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
372 			printk (KERN_ERR "Cell data error\n");
373 			return -1;
374 		}
375 		switch (cid) {
376 		case 0:	/* Format version */
377 			break;
378 		case 1:	/* End of cell */
379 			return 0;
380 		case 2:	/* Duplex Polarity */
381 			np->duplex_polarity = psib[i];
382 			dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
383 			break;
384 		case 3:	/* Wake Polarity */
385 			np->wake_polarity = psib[i];
386 			break;
387 		case 9:	/* Adapter description */
388 			j = (next - i > 255) ? 255 : next - i;
389 			memcpy (np->name, &(psib[i]), j);
390 			break;
391 		case 4:
392 		case 5:
393 		case 6:
394 		case 7:
395 		case 8:	/* Reversed */
396 			break;
397 		default:	/* Unknown cell */
398 			return -1;
399 		}
400 		i = next;
401 	} while (1);
402 
403 	return 0;
404 }
405 
rio_set_led_mode(struct net_device * dev)406 static void rio_set_led_mode(struct net_device *dev)
407 {
408 	struct netdev_private *np = netdev_priv(dev);
409 	void __iomem *ioaddr = np->ioaddr;
410 	u32 mode;
411 
412 	if (np->chip_id != CHIP_IP1000A)
413 		return;
414 
415 	mode = dr32(ASICCtrl);
416 	mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
417 
418 	if (np->led_mode & 0x01)
419 		mode |= IPG_AC_LED_MODE;
420 	if (np->led_mode & 0x02)
421 		mode |= IPG_AC_LED_MODE_BIT_1;
422 	if (np->led_mode & 0x08)
423 		mode |= IPG_AC_LED_SPEED;
424 
425 	dw32(ASICCtrl, mode);
426 }
427 
desc_to_dma(struct netdev_desc * desc)428 static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
429 {
430 	return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
431 }
432 
free_list(struct net_device * dev)433 static void free_list(struct net_device *dev)
434 {
435 	struct netdev_private *np = netdev_priv(dev);
436 	struct sk_buff *skb;
437 	int i;
438 
439 	/* Free all the skbuffs in the queue. */
440 	for (i = 0; i < RX_RING_SIZE; i++) {
441 		skb = np->rx_skbuff[i];
442 		if (skb) {
443 			dma_unmap_single(&np->pdev->dev,
444 					 desc_to_dma(&np->rx_ring[i]),
445 					 skb->len, DMA_FROM_DEVICE);
446 			dev_kfree_skb(skb);
447 			np->rx_skbuff[i] = NULL;
448 		}
449 		np->rx_ring[i].status = 0;
450 		np->rx_ring[i].fraginfo = 0;
451 	}
452 	for (i = 0; i < TX_RING_SIZE; i++) {
453 		skb = np->tx_skbuff[i];
454 		if (skb) {
455 			dma_unmap_single(&np->pdev->dev,
456 					 desc_to_dma(&np->tx_ring[i]),
457 					 skb->len, DMA_TO_DEVICE);
458 			dev_kfree_skb(skb);
459 			np->tx_skbuff[i] = NULL;
460 		}
461 	}
462 }
463 
rio_reset_ring(struct netdev_private * np)464 static void rio_reset_ring(struct netdev_private *np)
465 {
466 	int i;
467 
468 	np->cur_rx = 0;
469 	np->cur_tx = 0;
470 	np->old_rx = 0;
471 	np->old_tx = 0;
472 
473 	for (i = 0; i < TX_RING_SIZE; i++)
474 		np->tx_ring[i].status = cpu_to_le64(TFDDone);
475 
476 	for (i = 0; i < RX_RING_SIZE; i++)
477 		np->rx_ring[i].status = 0;
478 }
479 
480  /* allocate and initialize Tx and Rx descriptors */
alloc_list(struct net_device * dev)481 static int alloc_list(struct net_device *dev)
482 {
483 	struct netdev_private *np = netdev_priv(dev);
484 	int i;
485 
486 	rio_reset_ring(np);
487 	np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
488 
489 	/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
490 	for (i = 0; i < TX_RING_SIZE; i++) {
491 		np->tx_skbuff[i] = NULL;
492 		np->tx_ring[i].next_desc = cpu_to_le64(np->tx_ring_dma +
493 					      ((i + 1) % TX_RING_SIZE) *
494 					      sizeof(struct netdev_desc));
495 	}
496 
497 	/* Initialize Rx descriptors & allocate buffers */
498 	for (i = 0; i < RX_RING_SIZE; i++) {
499 		/* Allocated fixed size of skbuff */
500 		struct sk_buff *skb;
501 
502 		skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
503 		np->rx_skbuff[i] = skb;
504 		if (!skb) {
505 			free_list(dev);
506 			return -ENOMEM;
507 		}
508 
509 		np->rx_ring[i].next_desc = cpu_to_le64(np->rx_ring_dma +
510 						((i + 1) % RX_RING_SIZE) *
511 						sizeof(struct netdev_desc));
512 		/* Rubicon now supports 40 bits of addressing space. */
513 		np->rx_ring[i].fraginfo =
514 		    cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
515 					       np->rx_buf_sz, DMA_FROM_DEVICE));
516 		np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
517 	}
518 
519 	return 0;
520 }
521 
rio_hw_init(struct net_device * dev)522 static void rio_hw_init(struct net_device *dev)
523 {
524 	struct netdev_private *np = netdev_priv(dev);
525 	void __iomem *ioaddr = np->ioaddr;
526 	int i;
527 	u16 macctrl;
528 
529 	/* Reset all logic functions */
530 	dw16(ASICCtrl + 2,
531 	     GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
532 	mdelay(10);
533 
534 	rio_set_led_mode(dev);
535 
536 	/* DebugCtrl bit 4, 5, 9 must set */
537 	dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
538 
539 	if (np->chip_id == CHIP_IP1000A &&
540 	    (np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) {
541 		/* PHY magic taken from ipg driver, undocumented registers */
542 		mii_write(dev, np->phy_addr, 31, 0x0001);
543 		mii_write(dev, np->phy_addr, 27, 0x01e0);
544 		mii_write(dev, np->phy_addr, 31, 0x0002);
545 		mii_write(dev, np->phy_addr, 27, 0xeb8e);
546 		mii_write(dev, np->phy_addr, 31, 0x0000);
547 		mii_write(dev, np->phy_addr, 30, 0x005e);
548 		/* advertise 1000BASE-T half & full duplex, prefer MASTER */
549 		mii_write(dev, np->phy_addr, MII_CTRL1000, 0x0700);
550 	}
551 
552 	if (np->phy_media)
553 		mii_set_media_pcs(dev);
554 	else
555 		mii_set_media(dev);
556 
557 	/* Jumbo frame */
558 	if (np->jumbo != 0)
559 		dw16(MaxFrameSize, MAX_JUMBO+14);
560 
561 	/* Set RFDListPtr */
562 	dw32(RFDListPtr0, np->rx_ring_dma);
563 	dw32(RFDListPtr1, 0);
564 
565 	/* Set station address */
566 	/* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
567 	 * too. However, it doesn't work on IP1000A so we use 16-bit access.
568 	 */
569 	for (i = 0; i < 3; i++)
570 		dw16(StationAddr0 + 2 * i, get_unaligned_le16(&dev->dev_addr[2 * i]));
571 
572 	set_multicast (dev);
573 	if (np->coalesce) {
574 		dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
575 	}
576 	/* Set RIO to poll every N*320nsec. */
577 	dw8(RxDMAPollPeriod, 0x20);
578 	dw8(TxDMAPollPeriod, 0xff);
579 	dw8(RxDMABurstThresh, 0x30);
580 	dw8(RxDMAUrgentThresh, 0x30);
581 	dw32(RmonStatMask, 0x0007ffff);
582 	/* clear statistics */
583 	clear_stats (dev);
584 
585 	/* VLAN supported */
586 	if (np->vlan) {
587 		/* priority field in RxDMAIntCtrl  */
588 		dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
589 		/* VLANId */
590 		dw16(VLANId, np->vlan);
591 		/* Length/Type should be 0x8100 */
592 		dw32(VLANTag, 0x8100 << 16 | np->vlan);
593 		/* Enable AutoVLANuntagging, but disable AutoVLANtagging.
594 		   VLAN information tagged by TFC' VID, CFI fields. */
595 		dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
596 	}
597 
598 	/* Start Tx/Rx */
599 	dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
600 
601 	macctrl = 0;
602 	macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
603 	macctrl |= (np->full_duplex) ? DuplexSelect : 0;
604 	macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
605 	macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
606 	dw16(MACCtrl, macctrl);
607 }
608 
rio_hw_stop(struct net_device * dev)609 static void rio_hw_stop(struct net_device *dev)
610 {
611 	struct netdev_private *np = netdev_priv(dev);
612 	void __iomem *ioaddr = np->ioaddr;
613 
614 	/* Disable interrupts */
615 	dw16(IntEnable, 0);
616 
617 	/* Stop Tx and Rx logics */
618 	dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
619 }
620 
rio_open(struct net_device * dev)621 static int rio_open(struct net_device *dev)
622 {
623 	struct netdev_private *np = netdev_priv(dev);
624 	const int irq = np->pdev->irq;
625 	int i;
626 
627 	i = alloc_list(dev);
628 	if (i)
629 		return i;
630 
631 	rio_hw_init(dev);
632 
633 	i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
634 	if (i) {
635 		rio_hw_stop(dev);
636 		free_list(dev);
637 		return i;
638 	}
639 
640 	timer_setup(&np->timer, rio_timer, 0);
641 	np->timer.expires = jiffies + 1 * HZ;
642 	add_timer(&np->timer);
643 
644 	netif_start_queue (dev);
645 
646 	dl2k_enable_int(np);
647 	return 0;
648 }
649 
650 static void
rio_timer(struct timer_list * t)651 rio_timer (struct timer_list *t)
652 {
653 	struct netdev_private *np = timer_container_of(np, t, timer);
654 	struct net_device *dev = pci_get_drvdata(np->pdev);
655 	unsigned int entry;
656 	int next_tick = 1*HZ;
657 	unsigned long flags;
658 
659 	spin_lock_irqsave(&np->rx_lock, flags);
660 	/* Recover rx ring exhausted error */
661 	if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
662 		printk(KERN_INFO "Try to recover rx ring exhausted...\n");
663 		/* Re-allocate skbuffs to fill the descriptor ring */
664 		for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
665 			struct sk_buff *skb;
666 			entry = np->old_rx % RX_RING_SIZE;
667 			/* Dropped packets don't need to re-allocate */
668 			if (np->rx_skbuff[entry] == NULL) {
669 				skb = netdev_alloc_skb_ip_align(dev,
670 								np->rx_buf_sz);
671 				if (skb == NULL) {
672 					np->rx_ring[entry].fraginfo = 0;
673 					printk (KERN_INFO
674 						"%s: Still unable to re-allocate Rx skbuff.#%d\n",
675 						dev->name, entry);
676 					break;
677 				}
678 				np->rx_skbuff[entry] = skb;
679 				np->rx_ring[entry].fraginfo =
680 				    cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
681 								np->rx_buf_sz, DMA_FROM_DEVICE));
682 			}
683 			np->rx_ring[entry].fraginfo |=
684 			    cpu_to_le64((u64)np->rx_buf_sz << 48);
685 			np->rx_ring[entry].status = 0;
686 		} /* end for */
687 	} /* end if */
688 	spin_unlock_irqrestore (&np->rx_lock, flags);
689 	np->timer.expires = jiffies + next_tick;
690 	add_timer(&np->timer);
691 }
692 
693 static void
rio_tx_timeout(struct net_device * dev,unsigned int txqueue)694 rio_tx_timeout (struct net_device *dev, unsigned int txqueue)
695 {
696 	struct netdev_private *np = netdev_priv(dev);
697 	void __iomem *ioaddr = np->ioaddr;
698 
699 	printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
700 		dev->name, dr32(TxStatus));
701 	rio_free_tx(dev, 0);
702 	dev->if_port = 0;
703 	netif_trans_update(dev); /* prevent tx timeout */
704 }
705 
706 static netdev_tx_t
start_xmit(struct sk_buff * skb,struct net_device * dev)707 start_xmit (struct sk_buff *skb, struct net_device *dev)
708 {
709 	struct netdev_private *np = netdev_priv(dev);
710 	void __iomem *ioaddr = np->ioaddr;
711 	struct netdev_desc *txdesc;
712 	unsigned entry;
713 	u64 tfc_vlan_tag = 0;
714 
715 	if (np->link_status == 0) {	/* Link Down */
716 		dev_kfree_skb(skb);
717 		return NETDEV_TX_OK;
718 	}
719 	entry = np->cur_tx % TX_RING_SIZE;
720 	np->tx_skbuff[entry] = skb;
721 	txdesc = &np->tx_ring[entry];
722 
723 #if 0
724 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
725 		txdesc->status |=
726 		    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
727 				 IPChecksumEnable);
728 	}
729 #endif
730 	if (np->vlan) {
731 		tfc_vlan_tag = VLANTagInsert |
732 		    ((u64)np->vlan << 32) |
733 		    ((u64)skb->priority << 45);
734 	}
735 	txdesc->fraginfo = cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
736 						       skb->len, DMA_TO_DEVICE));
737 	txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
738 
739 	/* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
740 	 * Work around: Always use 1 descriptor in 10Mbps mode */
741 	if (entry % np->tx_coalesce == 0 || np->speed == 10)
742 		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
743 					      WordAlignDisable |
744 					      TxDMAIndicate |
745 					      (1 << FragCountShift));
746 	else
747 		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
748 					      WordAlignDisable |
749 					      (1 << FragCountShift));
750 
751 	/* TxDMAPollNow */
752 	dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
753 	/* Schedule ISR */
754 	dw32(CountDown, 10000);
755 	np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
756 	if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
757 			< TX_QUEUE_LEN - 1 && np->speed != 10) {
758 		/* do nothing */
759 	} else if (!netif_queue_stopped(dev)) {
760 		netif_stop_queue (dev);
761 	}
762 
763 	/* The first TFDListPtr */
764 	if (!dr32(TFDListPtr0)) {
765 		dw32(TFDListPtr0, np->tx_ring_dma +
766 		     entry * sizeof (struct netdev_desc));
767 		dw32(TFDListPtr1, 0);
768 	}
769 
770 	return NETDEV_TX_OK;
771 }
772 
773 static irqreturn_t
rio_interrupt(int irq,void * dev_instance)774 rio_interrupt (int irq, void *dev_instance)
775 {
776 	struct net_device *dev = dev_instance;
777 	struct netdev_private *np = netdev_priv(dev);
778 	void __iomem *ioaddr = np->ioaddr;
779 	unsigned int_status;
780 	int cnt = max_intrloop;
781 	int handled = 0;
782 
783 	while (1) {
784 		int_status = dr16(IntStatus);
785 		dw16(IntStatus, int_status);
786 		int_status &= DEFAULT_INTR;
787 		if (int_status == 0 || --cnt < 0)
788 			break;
789 		handled = 1;
790 		/* Processing received packets */
791 		if (int_status & RxDMAComplete)
792 			receive_packet (dev);
793 		/* TxDMAComplete interrupt */
794 		if ((int_status & (TxDMAComplete|IntRequested))) {
795 			int tx_status;
796 			tx_status = dr32(TxStatus);
797 			if (tx_status & 0x01)
798 				tx_error (dev, tx_status);
799 			/* Free used tx skbuffs */
800 			rio_free_tx (dev, 1);
801 		}
802 
803 		/* Handle uncommon events */
804 		if (int_status &
805 		    (HostError | LinkEvent | UpdateStats))
806 			rio_error (dev, int_status);
807 	}
808 	if (np->cur_tx != np->old_tx)
809 		dw32(CountDown, 100);
810 	return IRQ_RETVAL(handled);
811 }
812 
813 static void
rio_free_tx(struct net_device * dev,int irq)814 rio_free_tx (struct net_device *dev, int irq)
815 {
816 	struct netdev_private *np = netdev_priv(dev);
817 	int entry = np->old_tx % TX_RING_SIZE;
818 	unsigned long flag = 0;
819 
820 	if (irq)
821 		spin_lock(&np->tx_lock);
822 	else
823 		spin_lock_irqsave(&np->tx_lock, flag);
824 
825 	/* Free used tx skbuffs */
826 	while (entry != np->cur_tx) {
827 		struct sk_buff *skb;
828 
829 		if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
830 			break;
831 		skb = np->tx_skbuff[entry];
832 		dma_unmap_single(&np->pdev->dev,
833 				 desc_to_dma(&np->tx_ring[entry]), skb->len,
834 				 DMA_TO_DEVICE);
835 		if (irq)
836 			dev_consume_skb_irq(skb);
837 		else
838 			dev_kfree_skb(skb);
839 
840 		np->tx_skbuff[entry] = NULL;
841 		entry = (entry + 1) % TX_RING_SIZE;
842 	}
843 	if (irq)
844 		spin_unlock(&np->tx_lock);
845 	else
846 		spin_unlock_irqrestore(&np->tx_lock, flag);
847 	np->old_tx = entry;
848 
849 	/* If the ring is no longer full, clear tx_full and
850 	   call netif_wake_queue() */
851 
852 	if (netif_queue_stopped(dev) &&
853 	    ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
854 	    < TX_QUEUE_LEN - 1 || np->speed == 10)) {
855 		netif_wake_queue (dev);
856 	}
857 }
858 
859 static void
tx_error(struct net_device * dev,int tx_status)860 tx_error (struct net_device *dev, int tx_status)
861 {
862 	struct netdev_private *np = netdev_priv(dev);
863 	void __iomem *ioaddr = np->ioaddr;
864 	int frame_id;
865 	int i;
866 
867 	frame_id = (tx_status & 0xffff0000);
868 	printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
869 		dev->name, tx_status, frame_id);
870 	/* Ttransmit Underrun */
871 	if (tx_status & 0x10) {
872 		dev->stats.tx_fifo_errors++;
873 		dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
874 		/* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
875 		dw16(ASICCtrl + 2,
876 		     TxReset | DMAReset | FIFOReset | NetworkReset);
877 		/* Wait for ResetBusy bit clear */
878 		for (i = 50; i > 0; i--) {
879 			if (!(dr16(ASICCtrl + 2) & ResetBusy))
880 				break;
881 			mdelay (1);
882 		}
883 		rio_set_led_mode(dev);
884 		rio_free_tx (dev, 1);
885 		/* Reset TFDListPtr */
886 		dw32(TFDListPtr0, np->tx_ring_dma +
887 		     np->old_tx * sizeof (struct netdev_desc));
888 		dw32(TFDListPtr1, 0);
889 
890 		/* Let TxStartThresh stay default value */
891 	}
892 	/* Late Collision */
893 	if (tx_status & 0x04) {
894 		dev->stats.tx_fifo_errors++;
895 		/* TxReset and clear FIFO */
896 		dw16(ASICCtrl + 2, TxReset | FIFOReset);
897 		/* Wait reset done */
898 		for (i = 50; i > 0; i--) {
899 			if (!(dr16(ASICCtrl + 2) & ResetBusy))
900 				break;
901 			mdelay (1);
902 		}
903 		rio_set_led_mode(dev);
904 		/* Let TxStartThresh stay default value */
905 	}
906 
907 	spin_lock(&np->stats_lock);
908 	/* Maximum Collisions */
909 	if (tx_status & 0x08)
910 		dev->stats.collisions++;
911 
912 	dev->stats.tx_errors++;
913 	spin_unlock(&np->stats_lock);
914 
915 	/* Restart the Tx */
916 	dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
917 }
918 
919 static int
receive_packet(struct net_device * dev)920 receive_packet (struct net_device *dev)
921 {
922 	struct netdev_private *np = netdev_priv(dev);
923 	int entry = np->cur_rx % RX_RING_SIZE;
924 	int cnt = 30;
925 
926 	/* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
927 	while (1) {
928 		struct netdev_desc *desc = &np->rx_ring[entry];
929 		int pkt_len;
930 		u64 frame_status;
931 
932 		if (!(desc->status & cpu_to_le64(RFDDone)) ||
933 		    !(desc->status & cpu_to_le64(FrameStart)) ||
934 		    !(desc->status & cpu_to_le64(FrameEnd)))
935 			break;
936 
937 		/* Chip omits the CRC. */
938 		frame_status = le64_to_cpu(desc->status);
939 		pkt_len = frame_status & 0xffff;
940 		if (--cnt < 0)
941 			break;
942 		/* Update rx error statistics, drop packet. */
943 		if (frame_status & RFS_Errors) {
944 			dev->stats.rx_errors++;
945 			if (frame_status & (RxRuntFrame | RxLengthError))
946 				dev->stats.rx_length_errors++;
947 			if (frame_status & RxFCSError)
948 				dev->stats.rx_crc_errors++;
949 			if (frame_status & RxAlignmentError && np->speed != 1000)
950 				dev->stats.rx_frame_errors++;
951 			if (frame_status & RxFIFOOverrun)
952 				dev->stats.rx_fifo_errors++;
953 		} else {
954 			struct sk_buff *skb;
955 
956 			/* Small skbuffs for short packets */
957 			if (pkt_len > copy_thresh) {
958 				dma_unmap_single(&np->pdev->dev,
959 						 desc_to_dma(desc),
960 						 np->rx_buf_sz,
961 						 DMA_FROM_DEVICE);
962 				skb_put (skb = np->rx_skbuff[entry], pkt_len);
963 				np->rx_skbuff[entry] = NULL;
964 			} else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
965 				dma_sync_single_for_cpu(&np->pdev->dev,
966 							desc_to_dma(desc),
967 							np->rx_buf_sz,
968 							DMA_FROM_DEVICE);
969 				skb_copy_to_linear_data (skb,
970 						  np->rx_skbuff[entry]->data,
971 						  pkt_len);
972 				skb_put (skb, pkt_len);
973 				dma_sync_single_for_device(&np->pdev->dev,
974 							   desc_to_dma(desc),
975 							   np->rx_buf_sz,
976 							   DMA_FROM_DEVICE);
977 			}
978 			skb->protocol = eth_type_trans (skb, dev);
979 #if 0
980 			/* Checksum done by hw, but csum value unavailable. */
981 			if (np->pdev->pci_rev_id >= 0x0c &&
982 				!(frame_status & (TCPError | UDPError | IPError))) {
983 				skb->ip_summed = CHECKSUM_UNNECESSARY;
984 			}
985 #endif
986 			netif_rx (skb);
987 		}
988 		entry = (entry + 1) % RX_RING_SIZE;
989 	}
990 	spin_lock(&np->rx_lock);
991 	np->cur_rx = entry;
992 	/* Re-allocate skbuffs to fill the descriptor ring */
993 	entry = np->old_rx;
994 	while (entry != np->cur_rx) {
995 		struct sk_buff *skb;
996 		/* Dropped packets don't need to re-allocate */
997 		if (np->rx_skbuff[entry] == NULL) {
998 			skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
999 			if (skb == NULL) {
1000 				np->rx_ring[entry].fraginfo = 0;
1001 				printk (KERN_INFO
1002 					"%s: receive_packet: "
1003 					"Unable to re-allocate Rx skbuff.#%d\n",
1004 					dev->name, entry);
1005 				break;
1006 			}
1007 			np->rx_skbuff[entry] = skb;
1008 			np->rx_ring[entry].fraginfo =
1009 			    cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
1010 						       np->rx_buf_sz, DMA_FROM_DEVICE));
1011 		}
1012 		np->rx_ring[entry].fraginfo |=
1013 		    cpu_to_le64((u64)np->rx_buf_sz << 48);
1014 		np->rx_ring[entry].status = 0;
1015 		entry = (entry + 1) % RX_RING_SIZE;
1016 	}
1017 	np->old_rx = entry;
1018 	spin_unlock(&np->rx_lock);
1019 	return 0;
1020 }
1021 
1022 static void
rio_error(struct net_device * dev,int int_status)1023 rio_error (struct net_device *dev, int int_status)
1024 {
1025 	struct netdev_private *np = netdev_priv(dev);
1026 	void __iomem *ioaddr = np->ioaddr;
1027 	u16 macctrl;
1028 
1029 	/* Link change event */
1030 	if (int_status & LinkEvent) {
1031 		if (mii_wait_link (dev, 10) == 0) {
1032 			printk (KERN_INFO "%s: Link up\n", dev->name);
1033 			if (np->phy_media)
1034 				mii_get_media_pcs (dev);
1035 			else
1036 				mii_get_media (dev);
1037 			if (np->speed == 1000)
1038 				np->tx_coalesce = tx_coalesce;
1039 			else
1040 				np->tx_coalesce = 1;
1041 			macctrl = 0;
1042 			macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
1043 			macctrl |= (np->full_duplex) ? DuplexSelect : 0;
1044 			macctrl |= (np->tx_flow) ?
1045 				TxFlowControlEnable : 0;
1046 			macctrl |= (np->rx_flow) ?
1047 				RxFlowControlEnable : 0;
1048 			dw16(MACCtrl, macctrl);
1049 			np->link_status = 1;
1050 			netif_carrier_on(dev);
1051 		} else {
1052 			printk (KERN_INFO "%s: Link off\n", dev->name);
1053 			np->link_status = 0;
1054 			netif_carrier_off(dev);
1055 		}
1056 	}
1057 
1058 	/* UpdateStats statistics registers */
1059 	if (int_status & UpdateStats) {
1060 		get_stats (dev);
1061 	}
1062 
1063 	/* PCI Error, a catastronphic error related to the bus interface
1064 	   occurs, set GlobalReset and HostReset to reset. */
1065 	if (int_status & HostError) {
1066 		printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
1067 			dev->name, int_status);
1068 		dw16(ASICCtrl + 2, GlobalReset | HostReset);
1069 		mdelay (500);
1070 		rio_set_led_mode(dev);
1071 	}
1072 }
1073 
1074 static struct net_device_stats *
get_stats(struct net_device * dev)1075 get_stats (struct net_device *dev)
1076 {
1077 	struct netdev_private *np = netdev_priv(dev);
1078 	void __iomem *ioaddr = np->ioaddr;
1079 #ifdef MEM_MAPPING
1080 	int i;
1081 #endif
1082 	unsigned int stat_reg;
1083 	unsigned long flags;
1084 
1085 	spin_lock_irqsave(&np->stats_lock, flags);
1086 	/* All statistics registers need to be acknowledged,
1087 	   else statistic overflow could cause problems */
1088 
1089 	dev->stats.rx_packets += dr32(FramesRcvOk);
1090 	dev->stats.tx_packets += dr32(FramesXmtOk);
1091 	dev->stats.rx_bytes += dr32(OctetRcvOk);
1092 	dev->stats.tx_bytes += dr32(OctetXmtOk);
1093 
1094 	dev->stats.multicast = dr32(McstFramesRcvdOk);
1095 	dev->stats.collisions += dr32(SingleColFrames)
1096 			     +  dr32(MultiColFrames);
1097 
1098 	/* detailed tx errors */
1099 	stat_reg = dr16(FramesAbortXSColls);
1100 	dev->stats.tx_aborted_errors += stat_reg;
1101 	dev->stats.tx_errors += stat_reg;
1102 
1103 	stat_reg = dr16(CarrierSenseErrors);
1104 	dev->stats.tx_carrier_errors += stat_reg;
1105 	dev->stats.tx_errors += stat_reg;
1106 
1107 	/* Clear all other statistic register. */
1108 	dr32(McstOctetXmtOk);
1109 	dr16(BcstFramesXmtdOk);
1110 	dr32(McstFramesXmtdOk);
1111 	dr16(BcstFramesRcvdOk);
1112 	dr16(MacControlFramesRcvd);
1113 	dr16(FrameTooLongErrors);
1114 	dr16(InRangeLengthErrors);
1115 	dr16(FramesCheckSeqErrors);
1116 	dr16(FramesLostRxErrors);
1117 	dr32(McstOctetXmtOk);
1118 	dr32(BcstOctetXmtOk);
1119 	dr32(McstFramesXmtdOk);
1120 	dr32(FramesWDeferredXmt);
1121 	dr32(LateCollisions);
1122 	dr16(BcstFramesXmtdOk);
1123 	dr16(MacControlFramesXmtd);
1124 	dr16(FramesWEXDeferal);
1125 
1126 #ifdef MEM_MAPPING
1127 	for (i = 0x100; i <= 0x150; i += 4)
1128 		dr32(i);
1129 #endif
1130 	dr16(TxJumboFrames);
1131 	dr16(RxJumboFrames);
1132 	dr16(TCPCheckSumErrors);
1133 	dr16(UDPCheckSumErrors);
1134 	dr16(IPCheckSumErrors);
1135 
1136 	spin_unlock_irqrestore(&np->stats_lock, flags);
1137 
1138 	return &dev->stats;
1139 }
1140 
1141 static int
clear_stats(struct net_device * dev)1142 clear_stats (struct net_device *dev)
1143 {
1144 	struct netdev_private *np = netdev_priv(dev);
1145 	void __iomem *ioaddr = np->ioaddr;
1146 #ifdef MEM_MAPPING
1147 	int i;
1148 #endif
1149 
1150 	/* All statistics registers need to be acknowledged,
1151 	   else statistic overflow could cause problems */
1152 	dr32(FramesRcvOk);
1153 	dr32(FramesXmtOk);
1154 	dr32(OctetRcvOk);
1155 	dr32(OctetXmtOk);
1156 
1157 	dr32(McstFramesRcvdOk);
1158 	dr32(SingleColFrames);
1159 	dr32(MultiColFrames);
1160 	dr32(LateCollisions);
1161 	/* detailed rx errors */
1162 	dr16(FrameTooLongErrors);
1163 	dr16(InRangeLengthErrors);
1164 	dr16(FramesCheckSeqErrors);
1165 	dr16(FramesLostRxErrors);
1166 
1167 	/* detailed tx errors */
1168 	dr16(FramesAbortXSColls);
1169 	dr16(CarrierSenseErrors);
1170 
1171 	/* Clear all other statistic register. */
1172 	dr32(McstOctetXmtOk);
1173 	dr16(BcstFramesXmtdOk);
1174 	dr32(McstFramesXmtdOk);
1175 	dr16(BcstFramesRcvdOk);
1176 	dr16(MacControlFramesRcvd);
1177 	dr32(McstOctetXmtOk);
1178 	dr32(BcstOctetXmtOk);
1179 	dr32(McstFramesXmtdOk);
1180 	dr32(FramesWDeferredXmt);
1181 	dr16(BcstFramesXmtdOk);
1182 	dr16(MacControlFramesXmtd);
1183 	dr16(FramesWEXDeferal);
1184 #ifdef MEM_MAPPING
1185 	for (i = 0x100; i <= 0x150; i += 4)
1186 		dr32(i);
1187 #endif
1188 	dr16(TxJumboFrames);
1189 	dr16(RxJumboFrames);
1190 	dr16(TCPCheckSumErrors);
1191 	dr16(UDPCheckSumErrors);
1192 	dr16(IPCheckSumErrors);
1193 	return 0;
1194 }
1195 
1196 static void
set_multicast(struct net_device * dev)1197 set_multicast (struct net_device *dev)
1198 {
1199 	struct netdev_private *np = netdev_priv(dev);
1200 	void __iomem *ioaddr = np->ioaddr;
1201 	u32 hash_table[2];
1202 	u16 rx_mode = 0;
1203 
1204 	hash_table[0] = hash_table[1] = 0;
1205 	/* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1206 	hash_table[1] |= 0x02000000;
1207 	if (dev->flags & IFF_PROMISC) {
1208 		/* Receive all frames promiscuously. */
1209 		rx_mode = ReceiveAllFrames;
1210 	} else if ((dev->flags & IFF_ALLMULTI) ||
1211 			(netdev_mc_count(dev) > multicast_filter_limit)) {
1212 		/* Receive broadcast and multicast frames */
1213 		rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1214 	} else if (!netdev_mc_empty(dev)) {
1215 		struct netdev_hw_addr *ha;
1216 		/* Receive broadcast frames and multicast frames filtering
1217 		   by Hashtable */
1218 		rx_mode =
1219 		    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1220 		netdev_for_each_mc_addr(ha, dev) {
1221 			int bit, index = 0;
1222 			int crc = ether_crc_le(ETH_ALEN, ha->addr);
1223 			/* The inverted high significant 6 bits of CRC are
1224 			   used as an index to hashtable */
1225 			for (bit = 0; bit < 6; bit++)
1226 				if (crc & (1 << (31 - bit)))
1227 					index |= (1 << bit);
1228 			hash_table[index / 32] |= (1 << (index % 32));
1229 		}
1230 	} else {
1231 		rx_mode = ReceiveBroadcast | ReceiveUnicast;
1232 	}
1233 	if (np->vlan) {
1234 		/* ReceiveVLANMatch field in ReceiveMode */
1235 		rx_mode |= ReceiveVLANMatch;
1236 	}
1237 
1238 	dw32(HashTable0, hash_table[0]);
1239 	dw32(HashTable1, hash_table[1]);
1240 	dw16(ReceiveMode, rx_mode);
1241 }
1242 
rio_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1243 static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1244 {
1245 	struct netdev_private *np = netdev_priv(dev);
1246 
1247 	strscpy(info->driver, "dl2k", sizeof(info->driver));
1248 	strscpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
1249 }
1250 
rio_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1251 static int rio_get_link_ksettings(struct net_device *dev,
1252 				  struct ethtool_link_ksettings *cmd)
1253 {
1254 	struct netdev_private *np = netdev_priv(dev);
1255 	u32 supported, advertising;
1256 
1257 	if (np->phy_media) {
1258 		/* fiber device */
1259 		supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1260 		advertising = ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1261 		cmd->base.port = PORT_FIBRE;
1262 	} else {
1263 		/* copper device */
1264 		supported = SUPPORTED_10baseT_Half |
1265 			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1266 			| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1267 			SUPPORTED_Autoneg | SUPPORTED_MII;
1268 		advertising = ADVERTISED_10baseT_Half |
1269 			ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1270 			ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full |
1271 			ADVERTISED_Autoneg | ADVERTISED_MII;
1272 		cmd->base.port = PORT_MII;
1273 	}
1274 	if (np->link_status) {
1275 		cmd->base.speed = np->speed;
1276 		cmd->base.duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1277 	} else {
1278 		cmd->base.speed = SPEED_UNKNOWN;
1279 		cmd->base.duplex = DUPLEX_UNKNOWN;
1280 	}
1281 	if (np->an_enable)
1282 		cmd->base.autoneg = AUTONEG_ENABLE;
1283 	else
1284 		cmd->base.autoneg = AUTONEG_DISABLE;
1285 
1286 	cmd->base.phy_address = np->phy_addr;
1287 
1288 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1289 						supported);
1290 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1291 						advertising);
1292 
1293 	return 0;
1294 }
1295 
rio_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1296 static int rio_set_link_ksettings(struct net_device *dev,
1297 				  const struct ethtool_link_ksettings *cmd)
1298 {
1299 	struct netdev_private *np = netdev_priv(dev);
1300 	u32 speed = cmd->base.speed;
1301 	u8 duplex = cmd->base.duplex;
1302 
1303 	netif_carrier_off(dev);
1304 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
1305 		if (np->an_enable) {
1306 			return 0;
1307 		} else {
1308 			np->an_enable = 1;
1309 			mii_set_media(dev);
1310 			return 0;
1311 		}
1312 	} else {
1313 		np->an_enable = 0;
1314 		if (np->speed == 1000) {
1315 			speed = SPEED_100;
1316 			duplex = DUPLEX_FULL;
1317 			printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1318 		}
1319 		switch (speed) {
1320 		case SPEED_10:
1321 			np->speed = 10;
1322 			np->full_duplex = (duplex == DUPLEX_FULL);
1323 			break;
1324 		case SPEED_100:
1325 			np->speed = 100;
1326 			np->full_duplex = (duplex == DUPLEX_FULL);
1327 			break;
1328 		case SPEED_1000: /* not supported */
1329 		default:
1330 			return -EINVAL;
1331 		}
1332 		mii_set_media(dev);
1333 	}
1334 	return 0;
1335 }
1336 
rio_get_link(struct net_device * dev)1337 static u32 rio_get_link(struct net_device *dev)
1338 {
1339 	struct netdev_private *np = netdev_priv(dev);
1340 	return np->link_status;
1341 }
1342 
1343 static const struct ethtool_ops ethtool_ops = {
1344 	.get_drvinfo = rio_get_drvinfo,
1345 	.get_link = rio_get_link,
1346 	.get_link_ksettings = rio_get_link_ksettings,
1347 	.set_link_ksettings = rio_set_link_ksettings,
1348 };
1349 
1350 static int
rio_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1351 rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1352 {
1353 	int phy_addr;
1354 	struct netdev_private *np = netdev_priv(dev);
1355 	struct mii_ioctl_data *miidata = if_mii(rq);
1356 
1357 	phy_addr = np->phy_addr;
1358 	switch (cmd) {
1359 	case SIOCGMIIPHY:
1360 		miidata->phy_id = phy_addr;
1361 		break;
1362 	case SIOCGMIIREG:
1363 		miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
1364 		break;
1365 	case SIOCSMIIREG:
1366 		if (!capable(CAP_NET_ADMIN))
1367 			return -EPERM;
1368 		mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
1369 		break;
1370 	default:
1371 		return -EOPNOTSUPP;
1372 	}
1373 	return 0;
1374 }
1375 
1376 #define EEP_READ 0x0200
1377 #define EEP_BUSY 0x8000
1378 /* Read the EEPROM word */
1379 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
read_eeprom(struct netdev_private * np,int eep_addr)1380 static int read_eeprom(struct netdev_private *np, int eep_addr)
1381 {
1382 	void __iomem *ioaddr = np->eeprom_addr;
1383 	int i = 1000;
1384 
1385 	dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
1386 	while (i-- > 0) {
1387 		if (!(dr16(EepromCtrl) & EEP_BUSY))
1388 			return dr16(EepromData);
1389 	}
1390 	return 0;
1391 }
1392 
1393 enum phy_ctrl_bits {
1394 	MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1395 	MII_DUPLEX = 0x08,
1396 };
1397 
1398 #define mii_delay() dr8(PhyCtrl)
1399 static void
mii_sendbit(struct net_device * dev,u32 data)1400 mii_sendbit (struct net_device *dev, u32 data)
1401 {
1402 	struct netdev_private *np = netdev_priv(dev);
1403 	void __iomem *ioaddr = np->ioaddr;
1404 
1405 	data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
1406 	dw8(PhyCtrl, data);
1407 	mii_delay ();
1408 	dw8(PhyCtrl, data | MII_CLK);
1409 	mii_delay ();
1410 }
1411 
1412 static int
mii_getbit(struct net_device * dev)1413 mii_getbit (struct net_device *dev)
1414 {
1415 	struct netdev_private *np = netdev_priv(dev);
1416 	void __iomem *ioaddr = np->ioaddr;
1417 	u8 data;
1418 
1419 	data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
1420 	dw8(PhyCtrl, data);
1421 	mii_delay ();
1422 	dw8(PhyCtrl, data | MII_CLK);
1423 	mii_delay ();
1424 	return (dr8(PhyCtrl) >> 1) & 1;
1425 }
1426 
1427 static void
mii_send_bits(struct net_device * dev,u32 data,int len)1428 mii_send_bits (struct net_device *dev, u32 data, int len)
1429 {
1430 	int i;
1431 
1432 	for (i = len - 1; i >= 0; i--) {
1433 		mii_sendbit (dev, data & (1 << i));
1434 	}
1435 }
1436 
1437 static int
mii_read(struct net_device * dev,int phy_addr,int reg_num)1438 mii_read (struct net_device *dev, int phy_addr, int reg_num)
1439 {
1440 	u32 cmd;
1441 	int i;
1442 	u32 retval = 0;
1443 
1444 	/* Preamble */
1445 	mii_send_bits (dev, 0xffffffff, 32);
1446 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1447 	/* ST,OP = 0110'b for read operation */
1448 	cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1449 	mii_send_bits (dev, cmd, 14);
1450 	/* Turnaround */
1451 	if (mii_getbit (dev))
1452 		goto err_out;
1453 	/* Read data */
1454 	for (i = 0; i < 16; i++) {
1455 		retval |= mii_getbit (dev);
1456 		retval <<= 1;
1457 	}
1458 	/* End cycle */
1459 	mii_getbit (dev);
1460 	return (retval >> 1) & 0xffff;
1461 
1462       err_out:
1463 	return 0;
1464 }
1465 static int
mii_write(struct net_device * dev,int phy_addr,int reg_num,u16 data)1466 mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1467 {
1468 	u32 cmd;
1469 
1470 	/* Preamble */
1471 	mii_send_bits (dev, 0xffffffff, 32);
1472 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1473 	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1474 	cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1475 	mii_send_bits (dev, cmd, 32);
1476 	/* End cycle */
1477 	mii_getbit (dev);
1478 	return 0;
1479 }
1480 static int
mii_wait_link(struct net_device * dev,int wait)1481 mii_wait_link (struct net_device *dev, int wait)
1482 {
1483 	__u16 bmsr;
1484 	int phy_addr;
1485 	struct netdev_private *np;
1486 
1487 	np = netdev_priv(dev);
1488 	phy_addr = np->phy_addr;
1489 
1490 	do {
1491 		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1492 		if (bmsr & BMSR_LSTATUS)
1493 			return 0;
1494 		mdelay (1);
1495 	} while (--wait > 0);
1496 	return -1;
1497 }
1498 static int
mii_get_media(struct net_device * dev)1499 mii_get_media (struct net_device *dev)
1500 {
1501 	__u16 negotiate;
1502 	__u16 bmsr;
1503 	__u16 mscr;
1504 	__u16 mssr;
1505 	int phy_addr;
1506 	struct netdev_private *np;
1507 
1508 	np = netdev_priv(dev);
1509 	phy_addr = np->phy_addr;
1510 
1511 	bmsr = mii_read (dev, phy_addr, MII_BMSR);
1512 	if (np->an_enable) {
1513 		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1514 			/* Auto-Negotiation not completed */
1515 			return -1;
1516 		}
1517 		negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1518 			mii_read (dev, phy_addr, MII_LPA);
1519 		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1520 		mssr = mii_read (dev, phy_addr, MII_STAT1000);
1521 		if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1522 			np->speed = 1000;
1523 			np->full_duplex = 1;
1524 			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1525 		} else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1526 			np->speed = 1000;
1527 			np->full_duplex = 0;
1528 			printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1529 		} else if (negotiate & ADVERTISE_100FULL) {
1530 			np->speed = 100;
1531 			np->full_duplex = 1;
1532 			printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1533 		} else if (negotiate & ADVERTISE_100HALF) {
1534 			np->speed = 100;
1535 			np->full_duplex = 0;
1536 			printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1537 		} else if (negotiate & ADVERTISE_10FULL) {
1538 			np->speed = 10;
1539 			np->full_duplex = 1;
1540 			printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1541 		} else if (negotiate & ADVERTISE_10HALF) {
1542 			np->speed = 10;
1543 			np->full_duplex = 0;
1544 			printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1545 		}
1546 		if (negotiate & ADVERTISE_PAUSE_CAP) {
1547 			np->tx_flow &= 1;
1548 			np->rx_flow &= 1;
1549 		} else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1550 			np->tx_flow = 0;
1551 			np->rx_flow &= 1;
1552 		}
1553 		/* else tx_flow, rx_flow = user select  */
1554 	} else {
1555 		__u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1556 		switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1557 		case BMCR_SPEED1000:
1558 			printk (KERN_INFO "Operating at 1000 Mbps, ");
1559 			break;
1560 		case BMCR_SPEED100:
1561 			printk (KERN_INFO "Operating at 100 Mbps, ");
1562 			break;
1563 		case 0:
1564 			printk (KERN_INFO "Operating at 10 Mbps, ");
1565 		}
1566 		if (bmcr & BMCR_FULLDPLX) {
1567 			printk (KERN_CONT "Full duplex\n");
1568 		} else {
1569 			printk (KERN_CONT "Half duplex\n");
1570 		}
1571 	}
1572 	if (np->tx_flow)
1573 		printk(KERN_INFO "Enable Tx Flow Control\n");
1574 	else
1575 		printk(KERN_INFO "Disable Tx Flow Control\n");
1576 	if (np->rx_flow)
1577 		printk(KERN_INFO "Enable Rx Flow Control\n");
1578 	else
1579 		printk(KERN_INFO "Disable Rx Flow Control\n");
1580 
1581 	return 0;
1582 }
1583 
1584 static int
mii_set_media(struct net_device * dev)1585 mii_set_media (struct net_device *dev)
1586 {
1587 	__u16 pscr;
1588 	__u16 bmcr;
1589 	__u16 bmsr;
1590 	__u16 anar;
1591 	int phy_addr;
1592 	struct netdev_private *np;
1593 	np = netdev_priv(dev);
1594 	phy_addr = np->phy_addr;
1595 
1596 	/* Does user set speed? */
1597 	if (np->an_enable) {
1598 		/* Advertise capabilities */
1599 		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1600 		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1601 			~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1602 			  ADVERTISE_100HALF | ADVERTISE_10HALF |
1603 			  ADVERTISE_100BASE4);
1604 		if (bmsr & BMSR_100FULL)
1605 			anar |= ADVERTISE_100FULL;
1606 		if (bmsr & BMSR_100HALF)
1607 			anar |= ADVERTISE_100HALF;
1608 		if (bmsr & BMSR_100BASE4)
1609 			anar |= ADVERTISE_100BASE4;
1610 		if (bmsr & BMSR_10FULL)
1611 			anar |= ADVERTISE_10FULL;
1612 		if (bmsr & BMSR_10HALF)
1613 			anar |= ADVERTISE_10HALF;
1614 		anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1615 		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1616 
1617 		/* Enable Auto crossover */
1618 		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1619 		pscr |= 3 << 5;	/* 11'b */
1620 		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1621 
1622 		/* Soft reset PHY */
1623 		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1624 		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1625 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1626 		mdelay(1);
1627 	} else {
1628 		/* Force speed setting */
1629 		/* 1) Disable Auto crossover */
1630 		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1631 		pscr &= ~(3 << 5);
1632 		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1633 
1634 		/* 2) PHY Reset */
1635 		bmcr = mii_read (dev, phy_addr, MII_BMCR);
1636 		bmcr |= BMCR_RESET;
1637 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1638 
1639 		/* 3) Power Down */
1640 		bmcr = 0x1940;	/* must be 0x1940 */
1641 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1642 		mdelay (100);	/* wait a certain time */
1643 
1644 		/* 4) Advertise nothing */
1645 		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1646 
1647 		/* 5) Set media and Power Up */
1648 		bmcr = BMCR_PDOWN;
1649 		if (np->speed == 100) {
1650 			bmcr |= BMCR_SPEED100;
1651 			printk (KERN_INFO "Manual 100 Mbps, ");
1652 		} else if (np->speed == 10) {
1653 			printk (KERN_INFO "Manual 10 Mbps, ");
1654 		}
1655 		if (np->full_duplex) {
1656 			bmcr |= BMCR_FULLDPLX;
1657 			printk (KERN_CONT "Full duplex\n");
1658 		} else {
1659 			printk (KERN_CONT "Half duplex\n");
1660 		}
1661 #if 0
1662 		/* Set 1000BaseT Master/Slave setting */
1663 		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1664 		mscr |= MII_MSCR_CFG_ENABLE;
1665 		mscr &= ~MII_MSCR_CFG_VALUE = 0;
1666 #endif
1667 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1668 		mdelay(10);
1669 	}
1670 	return 0;
1671 }
1672 
1673 static int
mii_get_media_pcs(struct net_device * dev)1674 mii_get_media_pcs (struct net_device *dev)
1675 {
1676 	__u16 negotiate;
1677 	__u16 bmsr;
1678 	int phy_addr;
1679 	struct netdev_private *np;
1680 
1681 	np = netdev_priv(dev);
1682 	phy_addr = np->phy_addr;
1683 
1684 	bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1685 	if (np->an_enable) {
1686 		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1687 			/* Auto-Negotiation not completed */
1688 			return -1;
1689 		}
1690 		negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1691 			mii_read (dev, phy_addr, PCS_ANLPAR);
1692 		np->speed = 1000;
1693 		if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1694 			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1695 			np->full_duplex = 1;
1696 		} else {
1697 			printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1698 			np->full_duplex = 0;
1699 		}
1700 		if (negotiate & PCS_ANAR_PAUSE) {
1701 			np->tx_flow &= 1;
1702 			np->rx_flow &= 1;
1703 		} else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1704 			np->tx_flow = 0;
1705 			np->rx_flow &= 1;
1706 		}
1707 		/* else tx_flow, rx_flow = user select  */
1708 	} else {
1709 		__u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1710 		printk (KERN_INFO "Operating at 1000 Mbps, ");
1711 		if (bmcr & BMCR_FULLDPLX) {
1712 			printk (KERN_CONT "Full duplex\n");
1713 		} else {
1714 			printk (KERN_CONT "Half duplex\n");
1715 		}
1716 	}
1717 	if (np->tx_flow)
1718 		printk(KERN_INFO "Enable Tx Flow Control\n");
1719 	else
1720 		printk(KERN_INFO "Disable Tx Flow Control\n");
1721 	if (np->rx_flow)
1722 		printk(KERN_INFO "Enable Rx Flow Control\n");
1723 	else
1724 		printk(KERN_INFO "Disable Rx Flow Control\n");
1725 
1726 	return 0;
1727 }
1728 
1729 static int
mii_set_media_pcs(struct net_device * dev)1730 mii_set_media_pcs (struct net_device *dev)
1731 {
1732 	__u16 bmcr;
1733 	__u16 esr;
1734 	__u16 anar;
1735 	int phy_addr;
1736 	struct netdev_private *np;
1737 	np = netdev_priv(dev);
1738 	phy_addr = np->phy_addr;
1739 
1740 	/* Auto-Negotiation? */
1741 	if (np->an_enable) {
1742 		/* Advertise capabilities */
1743 		esr = mii_read (dev, phy_addr, PCS_ESR);
1744 		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1745 			~PCS_ANAR_HALF_DUPLEX &
1746 			~PCS_ANAR_FULL_DUPLEX;
1747 		if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1748 			anar |= PCS_ANAR_HALF_DUPLEX;
1749 		if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1750 			anar |= PCS_ANAR_FULL_DUPLEX;
1751 		anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1752 		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1753 
1754 		/* Soft reset PHY */
1755 		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1756 		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1757 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1758 		mdelay(1);
1759 	} else {
1760 		/* Force speed setting */
1761 		/* PHY Reset */
1762 		bmcr = BMCR_RESET;
1763 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1764 		mdelay(10);
1765 		if (np->full_duplex) {
1766 			bmcr = BMCR_FULLDPLX;
1767 			printk (KERN_INFO "Manual full duplex\n");
1768 		} else {
1769 			bmcr = 0;
1770 			printk (KERN_INFO "Manual half duplex\n");
1771 		}
1772 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1773 		mdelay(10);
1774 
1775 		/*  Advertise nothing */
1776 		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1777 	}
1778 	return 0;
1779 }
1780 
1781 
1782 static int
rio_close(struct net_device * dev)1783 rio_close (struct net_device *dev)
1784 {
1785 	struct netdev_private *np = netdev_priv(dev);
1786 	struct pci_dev *pdev = np->pdev;
1787 
1788 	netif_stop_queue (dev);
1789 
1790 	rio_hw_stop(dev);
1791 
1792 	free_irq(pdev->irq, dev);
1793 	timer_delete_sync(&np->timer);
1794 
1795 	free_list(dev);
1796 
1797 	return 0;
1798 }
1799 
1800 static void
rio_remove1(struct pci_dev * pdev)1801 rio_remove1 (struct pci_dev *pdev)
1802 {
1803 	struct net_device *dev = pci_get_drvdata (pdev);
1804 
1805 	if (dev) {
1806 		struct netdev_private *np = netdev_priv(dev);
1807 
1808 		unregister_netdev (dev);
1809 		dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
1810 				  np->rx_ring_dma);
1811 		dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
1812 				  np->tx_ring_dma);
1813 #ifdef MEM_MAPPING
1814 		pci_iounmap(pdev, np->ioaddr);
1815 #endif
1816 		pci_iounmap(pdev, np->eeprom_addr);
1817 		free_netdev (dev);
1818 		pci_release_regions (pdev);
1819 		pci_disable_device (pdev);
1820 	}
1821 }
1822 
1823 #ifdef CONFIG_PM_SLEEP
rio_suspend(struct device * device)1824 static int rio_suspend(struct device *device)
1825 {
1826 	struct net_device *dev = dev_get_drvdata(device);
1827 	struct netdev_private *np = netdev_priv(dev);
1828 
1829 	if (!netif_running(dev))
1830 		return 0;
1831 
1832 	netif_device_detach(dev);
1833 	timer_delete_sync(&np->timer);
1834 	rio_hw_stop(dev);
1835 
1836 	return 0;
1837 }
1838 
rio_resume(struct device * device)1839 static int rio_resume(struct device *device)
1840 {
1841 	struct net_device *dev = dev_get_drvdata(device);
1842 	struct netdev_private *np = netdev_priv(dev);
1843 
1844 	if (!netif_running(dev))
1845 		return 0;
1846 
1847 	rio_reset_ring(np);
1848 	rio_hw_init(dev);
1849 	np->timer.expires = jiffies + 1 * HZ;
1850 	add_timer(&np->timer);
1851 	netif_device_attach(dev);
1852 	dl2k_enable_int(np);
1853 
1854 	return 0;
1855 }
1856 
1857 static DEFINE_SIMPLE_DEV_PM_OPS(rio_pm_ops, rio_suspend, rio_resume);
1858 #define RIO_PM_OPS    (&rio_pm_ops)
1859 
1860 #else
1861 
1862 #define RIO_PM_OPS	NULL
1863 
1864 #endif /* CONFIG_PM_SLEEP */
1865 
1866 static struct pci_driver rio_driver = {
1867 	.name		= "dl2k",
1868 	.id_table	= rio_pci_tbl,
1869 	.probe		= rio_probe1,
1870 	.remove		= rio_remove1,
1871 	.driver.pm	= RIO_PM_OPS,
1872 };
1873 
1874 module_pci_driver(rio_driver);
1875 
1876 /* Read Documentation/networking/device_drivers/ethernet/dlink/dl2k.rst. */
1877