xref: /linux/net/sunrpc/svcsock.c (revision b0319c4642638bad4b36974055b1c0894b2c7aa9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/svcsock.c
4  *
5  * These are the RPC server socket internals.
6  *
7  * The server scheduling algorithm does not always distribute the load
8  * evenly when servicing a single client. May need to modify the
9  * svc_xprt_enqueue procedure...
10  *
11  * TCP support is largely untested and may be a little slow. The problem
12  * is that we currently do two separate recvfrom's, one for the 4-byte
13  * record length, and the second for the actual record. This could possibly
14  * be improved by always reading a minimum size of around 100 bytes and
15  * tucking any superfluous bytes away in a temporary store. Still, that
16  * leaves write requests out in the rain. An alternative may be to peek at
17  * the first skb in the queue, and if it matches the next TCP sequence
18  * number, to extract the record marker. Yuck.
19  *
20  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/module.h>
26 #include <linux/errno.h>
27 #include <linux/fcntl.h>
28 #include <linux/net.h>
29 #include <linux/in.h>
30 #include <linux/inet.h>
31 #include <linux/udp.h>
32 #include <linux/tcp.h>
33 #include <linux/unistd.h>
34 #include <linux/slab.h>
35 #include <linux/netdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/file.h>
38 #include <linux/freezer.h>
39 #include <linux/bvec.h>
40 
41 #include <net/sock.h>
42 #include <net/checksum.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/udp.h>
46 #include <net/tcp.h>
47 #include <net/tcp_states.h>
48 #include <net/tls_prot.h>
49 #include <net/handshake.h>
50 #include <linux/uaccess.h>
51 #include <linux/highmem.h>
52 #include <asm/ioctls.h>
53 #include <linux/key.h>
54 
55 #include <linux/sunrpc/types.h>
56 #include <linux/sunrpc/clnt.h>
57 #include <linux/sunrpc/xdr.h>
58 #include <linux/sunrpc/msg_prot.h>
59 #include <linux/sunrpc/svcsock.h>
60 #include <linux/sunrpc/stats.h>
61 #include <linux/sunrpc/xprt.h>
62 
63 #include <trace/events/sock.h>
64 #include <trace/events/sunrpc.h>
65 
66 #include "socklib.h"
67 #include "sunrpc.h"
68 
69 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
70 
71 /*
72  * For UDP:
73  * 1 for header page
74  * enough pages for RPCSVC_MAXPAYLOAD_UDP
75  * 1 in case payload is not aligned
76  * 1 for tail page
77  */
78 enum {
79 	SUNRPC_MAX_UDP_SENDPAGES = 1 + RPCSVC_MAXPAYLOAD_UDP / PAGE_SIZE + 1 + 1
80 };
81 
82 /* To-do: to avoid tying up an nfsd thread while waiting for a
83  * handshake request, the request could instead be deferred.
84  */
85 enum {
86 	SVC_HANDSHAKE_TO	= 5U * HZ
87 };
88 
89 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
90 					 int flags);
91 static int		svc_udp_recvfrom(struct svc_rqst *);
92 static int		svc_udp_sendto(struct svc_rqst *);
93 static void		svc_sock_detach(struct svc_xprt *);
94 static void		svc_tcp_sock_detach(struct svc_xprt *);
95 static void		svc_sock_free(struct svc_xprt *);
96 
97 static struct svc_xprt *svc_create_socket(struct svc_serv *, int,
98 					  struct net *, struct sockaddr *,
99 					  int, int);
100 #ifdef CONFIG_DEBUG_LOCK_ALLOC
101 static struct lock_class_key svc_key[2];
102 static struct lock_class_key svc_slock_key[2];
103 
svc_reclassify_socket(struct socket * sock)104 static void svc_reclassify_socket(struct socket *sock)
105 {
106 	struct sock *sk = sock->sk;
107 
108 	if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
109 		return;
110 
111 	switch (sk->sk_family) {
112 	case AF_INET:
113 		sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
114 					      &svc_slock_key[0],
115 					      "sk_xprt.xpt_lock-AF_INET-NFSD",
116 					      &svc_key[0]);
117 		break;
118 
119 	case AF_INET6:
120 		sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
121 					      &svc_slock_key[1],
122 					      "sk_xprt.xpt_lock-AF_INET6-NFSD",
123 					      &svc_key[1]);
124 		break;
125 
126 	default:
127 		BUG();
128 	}
129 }
130 #else
svc_reclassify_socket(struct socket * sock)131 static void svc_reclassify_socket(struct socket *sock)
132 {
133 }
134 #endif
135 
136 /**
137  * svc_tcp_release_ctxt - Release transport-related resources
138  * @xprt: the transport which owned the context
139  * @ctxt: the context from rqstp->rq_xprt_ctxt or dr->xprt_ctxt
140  *
141  */
svc_tcp_release_ctxt(struct svc_xprt * xprt,void * ctxt)142 static void svc_tcp_release_ctxt(struct svc_xprt *xprt, void *ctxt)
143 {
144 }
145 
146 /**
147  * svc_udp_release_ctxt - Release transport-related resources
148  * @xprt: the transport which owned the context
149  * @ctxt: the context from rqstp->rq_xprt_ctxt or dr->xprt_ctxt
150  *
151  */
svc_udp_release_ctxt(struct svc_xprt * xprt,void * ctxt)152 static void svc_udp_release_ctxt(struct svc_xprt *xprt, void *ctxt)
153 {
154 	struct sk_buff *skb = ctxt;
155 
156 	if (skb)
157 		consume_skb(skb);
158 }
159 
160 union svc_pktinfo_u {
161 	struct in_pktinfo pkti;
162 	struct in6_pktinfo pkti6;
163 };
164 #define SVC_PKTINFO_SPACE \
165 	CMSG_SPACE(sizeof(union svc_pktinfo_u))
166 
svc_set_cmsg_data(struct svc_rqst * rqstp,struct cmsghdr * cmh)167 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
168 {
169 	struct svc_sock *svsk =
170 		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
171 	switch (svsk->sk_sk->sk_family) {
172 	case AF_INET: {
173 			struct in_pktinfo *pki = CMSG_DATA(cmh);
174 
175 			cmh->cmsg_level = SOL_IP;
176 			cmh->cmsg_type = IP_PKTINFO;
177 			pki->ipi_ifindex = 0;
178 			pki->ipi_spec_dst.s_addr =
179 				 svc_daddr_in(rqstp)->sin_addr.s_addr;
180 			cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
181 		}
182 		break;
183 
184 	case AF_INET6: {
185 			struct in6_pktinfo *pki = CMSG_DATA(cmh);
186 			struct sockaddr_in6 *daddr = svc_daddr_in6(rqstp);
187 
188 			cmh->cmsg_level = SOL_IPV6;
189 			cmh->cmsg_type = IPV6_PKTINFO;
190 			pki->ipi6_ifindex = daddr->sin6_scope_id;
191 			pki->ipi6_addr = daddr->sin6_addr;
192 			cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
193 		}
194 		break;
195 	}
196 }
197 
svc_sock_result_payload(struct svc_rqst * rqstp,unsigned int offset,unsigned int length)198 static int svc_sock_result_payload(struct svc_rqst *rqstp, unsigned int offset,
199 				   unsigned int length)
200 {
201 	return 0;
202 }
203 
204 /*
205  * Report socket names for nfsdfs
206  */
svc_one_sock_name(struct svc_sock * svsk,char * buf,int remaining)207 static int svc_one_sock_name(struct svc_sock *svsk, char *buf, int remaining)
208 {
209 	const struct sock *sk = svsk->sk_sk;
210 	const char *proto_name = sk->sk_protocol == IPPROTO_UDP ?
211 							"udp" : "tcp";
212 	int len;
213 
214 	switch (sk->sk_family) {
215 	case PF_INET:
216 		len = snprintf(buf, remaining, "ipv4 %s %pI4 %d\n",
217 				proto_name,
218 				&inet_sk(sk)->inet_rcv_saddr,
219 				inet_sk(sk)->inet_num);
220 		break;
221 #if IS_ENABLED(CONFIG_IPV6)
222 	case PF_INET6:
223 		len = snprintf(buf, remaining, "ipv6 %s %pI6 %d\n",
224 				proto_name,
225 				&sk->sk_v6_rcv_saddr,
226 				inet_sk(sk)->inet_num);
227 		break;
228 #endif
229 	default:
230 		len = snprintf(buf, remaining, "*unknown-%d*\n",
231 				sk->sk_family);
232 	}
233 
234 	if (len >= remaining) {
235 		*buf = '\0';
236 		return -ENAMETOOLONG;
237 	}
238 	return len;
239 }
240 
241 static int
svc_tcp_sock_process_cmsg(struct socket * sock,struct msghdr * msg,struct cmsghdr * cmsg,int ret)242 svc_tcp_sock_process_cmsg(struct socket *sock, struct msghdr *msg,
243 			  struct cmsghdr *cmsg, int ret)
244 {
245 	u8 content_type = tls_get_record_type(sock->sk, cmsg);
246 	u8 level, description;
247 
248 	switch (content_type) {
249 	case 0:
250 		break;
251 	case TLS_RECORD_TYPE_DATA:
252 		/* TLS sets EOR at the end of each application data
253 		 * record, even though there might be more frames
254 		 * waiting to be decrypted.
255 		 */
256 		msg->msg_flags &= ~MSG_EOR;
257 		break;
258 	case TLS_RECORD_TYPE_ALERT:
259 		tls_alert_recv(sock->sk, msg, &level, &description);
260 		ret = (level == TLS_ALERT_LEVEL_FATAL) ?
261 			-ENOTCONN : -EAGAIN;
262 		break;
263 	default:
264 		/* discard this record type */
265 		ret = -EAGAIN;
266 	}
267 	return ret;
268 }
269 
270 static int
svc_tcp_sock_recv_cmsg(struct socket * sock,unsigned int * msg_flags)271 svc_tcp_sock_recv_cmsg(struct socket *sock, unsigned int *msg_flags)
272 {
273 	union {
274 		struct cmsghdr	cmsg;
275 		u8		buf[CMSG_SPACE(sizeof(u8))];
276 	} u;
277 	u8 alert[2];
278 	struct kvec alert_kvec = {
279 		.iov_base = alert,
280 		.iov_len = sizeof(alert),
281 	};
282 	struct msghdr msg = {
283 		.msg_flags = *msg_flags,
284 		.msg_control = &u,
285 		.msg_controllen = sizeof(u),
286 	};
287 	int ret;
288 
289 	iov_iter_kvec(&msg.msg_iter, ITER_DEST, &alert_kvec, 1,
290 		      alert_kvec.iov_len);
291 	ret = sock_recvmsg(sock, &msg, MSG_DONTWAIT);
292 	if (ret > 0 &&
293 	    tls_get_record_type(sock->sk, &u.cmsg) == TLS_RECORD_TYPE_ALERT) {
294 		iov_iter_revert(&msg.msg_iter, ret);
295 		ret = svc_tcp_sock_process_cmsg(sock, &msg, &u.cmsg, -EAGAIN);
296 	}
297 	return ret;
298 }
299 
300 static int
svc_tcp_sock_recvmsg(struct svc_sock * svsk,struct msghdr * msg)301 svc_tcp_sock_recvmsg(struct svc_sock *svsk, struct msghdr *msg)
302 {
303 	int ret;
304 	struct socket *sock = svsk->sk_sock;
305 
306 	ret = sock_recvmsg(sock, msg, MSG_DONTWAIT);
307 	if (msg->msg_flags & MSG_CTRUNC) {
308 		msg->msg_flags &= ~(MSG_CTRUNC | MSG_EOR);
309 		if (ret == 0 || ret == -EIO)
310 			ret = svc_tcp_sock_recv_cmsg(sock, &msg->msg_flags);
311 	}
312 	return ret;
313 }
314 
315 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
svc_flush_bvec(const struct bio_vec * bvec,size_t size,size_t seek)316 static void svc_flush_bvec(const struct bio_vec *bvec, size_t size, size_t seek)
317 {
318 	struct bvec_iter bi = {
319 		.bi_size	= size + seek,
320 	};
321 	struct bio_vec bv;
322 
323 	bvec_iter_advance(bvec, &bi, seek & PAGE_MASK);
324 	for_each_bvec(bv, bvec, bi, bi)
325 		flush_dcache_page(bv.bv_page);
326 }
327 #else
svc_flush_bvec(const struct bio_vec * bvec,size_t size,size_t seek)328 static inline void svc_flush_bvec(const struct bio_vec *bvec, size_t size,
329 				  size_t seek)
330 {
331 }
332 #endif
333 
334 /*
335  * Read from @rqstp's transport socket. The incoming message fills whole
336  * pages in @rqstp's rq_pages array until the last page of the message
337  * has been received into a partial page.
338  */
svc_tcp_read_msg(struct svc_rqst * rqstp,size_t buflen,size_t seek)339 static ssize_t svc_tcp_read_msg(struct svc_rqst *rqstp, size_t buflen,
340 				size_t seek)
341 {
342 	struct svc_sock *svsk =
343 		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
344 	struct bio_vec *bvec = rqstp->rq_bvec;
345 	struct msghdr msg = { NULL };
346 	unsigned int i;
347 	ssize_t len;
348 	size_t t;
349 
350 	clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
351 
352 	for (i = 0, t = 0; t < buflen; i++, t += PAGE_SIZE)
353 		bvec_set_page(&bvec[i], rqstp->rq_pages[i], PAGE_SIZE, 0);
354 	rqstp->rq_respages = &rqstp->rq_pages[i];
355 	rqstp->rq_next_page = rqstp->rq_respages + 1;
356 
357 	iov_iter_bvec(&msg.msg_iter, ITER_DEST, bvec, i, buflen);
358 	if (seek) {
359 		iov_iter_advance(&msg.msg_iter, seek);
360 		buflen -= seek;
361 	}
362 	len = svc_tcp_sock_recvmsg(svsk, &msg);
363 	if (len > 0)
364 		svc_flush_bvec(bvec, len, seek);
365 
366 	/* If we read a full record, then assume there may be more
367 	 * data to read (stream based sockets only!)
368 	 */
369 	if (len == buflen)
370 		set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
371 
372 	return len;
373 }
374 
375 /*
376  * Set socket snd and rcv buffer lengths
377  */
svc_sock_setbufsize(struct svc_sock * svsk,unsigned int nreqs)378 static void svc_sock_setbufsize(struct svc_sock *svsk, unsigned int nreqs)
379 {
380 	unsigned int max_mesg = svsk->sk_xprt.xpt_server->sv_max_mesg;
381 	struct socket *sock = svsk->sk_sock;
382 
383 	nreqs = min(nreqs, INT_MAX / 2 / max_mesg);
384 
385 	lock_sock(sock->sk);
386 	sock->sk->sk_sndbuf = nreqs * max_mesg * 2;
387 	sock->sk->sk_rcvbuf = nreqs * max_mesg * 2;
388 	sock->sk->sk_write_space(sock->sk);
389 	release_sock(sock->sk);
390 }
391 
svc_sock_secure_port(struct svc_rqst * rqstp)392 static void svc_sock_secure_port(struct svc_rqst *rqstp)
393 {
394 	if (svc_port_is_privileged(svc_addr(rqstp)))
395 		set_bit(RQ_SECURE, &rqstp->rq_flags);
396 	else
397 		clear_bit(RQ_SECURE, &rqstp->rq_flags);
398 }
399 
400 /*
401  * INET callback when data has been received on the socket.
402  */
svc_data_ready(struct sock * sk)403 static void svc_data_ready(struct sock *sk)
404 {
405 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
406 
407 	trace_sk_data_ready(sk);
408 
409 	if (svsk) {
410 		/* Refer to svc_setup_socket() for details. */
411 		rmb();
412 		svsk->sk_odata(sk);
413 		trace_svcsock_data_ready(&svsk->sk_xprt, 0);
414 		if (test_bit(XPT_HANDSHAKE, &svsk->sk_xprt.xpt_flags))
415 			return;
416 		if (!test_and_set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags))
417 			svc_xprt_enqueue(&svsk->sk_xprt);
418 	}
419 }
420 
421 /*
422  * INET callback when space is newly available on the socket.
423  */
svc_write_space(struct sock * sk)424 static void svc_write_space(struct sock *sk)
425 {
426 	struct svc_sock	*svsk = (struct svc_sock *)(sk->sk_user_data);
427 
428 	if (svsk) {
429 		/* Refer to svc_setup_socket() for details. */
430 		rmb();
431 		trace_svcsock_write_space(&svsk->sk_xprt, 0);
432 		svsk->sk_owspace(sk);
433 		svc_xprt_enqueue(&svsk->sk_xprt);
434 	}
435 }
436 
svc_tcp_has_wspace(struct svc_xprt * xprt)437 static int svc_tcp_has_wspace(struct svc_xprt *xprt)
438 {
439 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
440 
441 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags))
442 		return 1;
443 	return !test_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
444 }
445 
svc_tcp_kill_temp_xprt(struct svc_xprt * xprt)446 static void svc_tcp_kill_temp_xprt(struct svc_xprt *xprt)
447 {
448 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
449 
450 	sock_no_linger(svsk->sk_sock->sk);
451 }
452 
453 /**
454  * svc_tcp_handshake_done - Handshake completion handler
455  * @data: address of xprt to wake
456  * @status: status of handshake
457  * @peerid: serial number of key containing the remote peer's identity
458  *
459  * If a security policy is specified as an export option, we don't
460  * have a specific export here to check. So we set a "TLS session
461  * is present" flag on the xprt and let an upper layer enforce local
462  * security policy.
463  */
svc_tcp_handshake_done(void * data,int status,key_serial_t peerid)464 static void svc_tcp_handshake_done(void *data, int status, key_serial_t peerid)
465 {
466 	struct svc_xprt *xprt = data;
467 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
468 
469 	if (!status) {
470 		if (peerid != TLS_NO_PEERID)
471 			set_bit(XPT_PEER_AUTH, &xprt->xpt_flags);
472 		set_bit(XPT_TLS_SESSION, &xprt->xpt_flags);
473 	}
474 	clear_bit(XPT_HANDSHAKE, &xprt->xpt_flags);
475 	complete_all(&svsk->sk_handshake_done);
476 }
477 
478 /**
479  * svc_tcp_handshake - Perform a transport-layer security handshake
480  * @xprt: connected transport endpoint
481  *
482  */
svc_tcp_handshake(struct svc_xprt * xprt)483 static void svc_tcp_handshake(struct svc_xprt *xprt)
484 {
485 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
486 	struct sock *sk = svsk->sk_sock->sk;
487 	struct tls_handshake_args args = {
488 		.ta_sock	= svsk->sk_sock,
489 		.ta_done	= svc_tcp_handshake_done,
490 		.ta_data	= xprt,
491 	};
492 	int ret;
493 
494 	trace_svc_tls_upcall(xprt);
495 
496 	clear_bit(XPT_TLS_SESSION, &xprt->xpt_flags);
497 	init_completion(&svsk->sk_handshake_done);
498 
499 	ret = tls_server_hello_x509(&args, GFP_KERNEL);
500 	if (ret) {
501 		trace_svc_tls_not_started(xprt);
502 		goto out_failed;
503 	}
504 
505 	ret = wait_for_completion_interruptible_timeout(&svsk->sk_handshake_done,
506 							SVC_HANDSHAKE_TO);
507 	if (ret <= 0) {
508 		if (tls_handshake_cancel(sk)) {
509 			trace_svc_tls_timed_out(xprt);
510 			goto out_close;
511 		}
512 	}
513 
514 	if (!test_bit(XPT_TLS_SESSION, &xprt->xpt_flags)) {
515 		trace_svc_tls_unavailable(xprt);
516 		goto out_close;
517 	}
518 
519 	/* Mark the transport ready in case the remote sent RPC
520 	 * traffic before the kernel received the handshake
521 	 * completion downcall.
522 	 */
523 	set_bit(XPT_DATA, &xprt->xpt_flags);
524 	svc_xprt_enqueue(xprt);
525 	return;
526 
527 out_close:
528 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
529 out_failed:
530 	clear_bit(XPT_HANDSHAKE, &xprt->xpt_flags);
531 	set_bit(XPT_DATA, &xprt->xpt_flags);
532 	svc_xprt_enqueue(xprt);
533 }
534 
535 /*
536  * See net/ipv6/ip_sockglue.c : ip_cmsg_recv_pktinfo
537  */
svc_udp_get_dest_address4(struct svc_rqst * rqstp,struct cmsghdr * cmh)538 static int svc_udp_get_dest_address4(struct svc_rqst *rqstp,
539 				     struct cmsghdr *cmh)
540 {
541 	struct in_pktinfo *pki = CMSG_DATA(cmh);
542 	struct sockaddr_in *daddr = svc_daddr_in(rqstp);
543 
544 	if (cmh->cmsg_type != IP_PKTINFO)
545 		return 0;
546 
547 	daddr->sin_family = AF_INET;
548 	daddr->sin_addr.s_addr = pki->ipi_spec_dst.s_addr;
549 	return 1;
550 }
551 
552 /*
553  * See net/ipv6/datagram.c : ip6_datagram_recv_ctl
554  */
svc_udp_get_dest_address6(struct svc_rqst * rqstp,struct cmsghdr * cmh)555 static int svc_udp_get_dest_address6(struct svc_rqst *rqstp,
556 				     struct cmsghdr *cmh)
557 {
558 	struct in6_pktinfo *pki = CMSG_DATA(cmh);
559 	struct sockaddr_in6 *daddr = svc_daddr_in6(rqstp);
560 
561 	if (cmh->cmsg_type != IPV6_PKTINFO)
562 		return 0;
563 
564 	daddr->sin6_family = AF_INET6;
565 	daddr->sin6_addr = pki->ipi6_addr;
566 	daddr->sin6_scope_id = pki->ipi6_ifindex;
567 	return 1;
568 }
569 
570 /*
571  * Copy the UDP datagram's destination address to the rqstp structure.
572  * The 'destination' address in this case is the address to which the
573  * peer sent the datagram, i.e. our local address. For multihomed
574  * hosts, this can change from msg to msg. Note that only the IP
575  * address changes, the port number should remain the same.
576  */
svc_udp_get_dest_address(struct svc_rqst * rqstp,struct cmsghdr * cmh)577 static int svc_udp_get_dest_address(struct svc_rqst *rqstp,
578 				    struct cmsghdr *cmh)
579 {
580 	switch (cmh->cmsg_level) {
581 	case SOL_IP:
582 		return svc_udp_get_dest_address4(rqstp, cmh);
583 	case SOL_IPV6:
584 		return svc_udp_get_dest_address6(rqstp, cmh);
585 	}
586 
587 	return 0;
588 }
589 
590 /**
591  * svc_udp_recvfrom - Receive a datagram from a UDP socket.
592  * @rqstp: request structure into which to receive an RPC Call
593  *
594  * Called in a loop when XPT_DATA has been set.
595  *
596  * Returns:
597  *   On success, the number of bytes in a received RPC Call, or
598  *   %0 if a complete RPC Call message was not ready to return
599  */
svc_udp_recvfrom(struct svc_rqst * rqstp)600 static int svc_udp_recvfrom(struct svc_rqst *rqstp)
601 {
602 	struct svc_sock	*svsk =
603 		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
604 	struct svc_serv	*serv = svsk->sk_xprt.xpt_server;
605 	struct sk_buff	*skb;
606 	union {
607 		struct cmsghdr	hdr;
608 		long		all[SVC_PKTINFO_SPACE / sizeof(long)];
609 	} buffer;
610 	struct cmsghdr *cmh = &buffer.hdr;
611 	struct msghdr msg = {
612 		.msg_name = svc_addr(rqstp),
613 		.msg_control = cmh,
614 		.msg_controllen = sizeof(buffer),
615 		.msg_flags = MSG_DONTWAIT,
616 	};
617 	size_t len;
618 	int err;
619 
620 	if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
621 	    /* udp sockets need large rcvbuf as all pending
622 	     * requests are still in that buffer.  sndbuf must
623 	     * also be large enough that there is enough space
624 	     * for one reply per thread.  We count all threads
625 	     * rather than threads in a particular pool, which
626 	     * provides an upper bound on the number of threads
627 	     * which will access the socket.
628 	     */
629 	    svc_sock_setbufsize(svsk, serv->sv_nrthreads + 3);
630 
631 	clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
632 	err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
633 			     0, 0, MSG_PEEK | MSG_DONTWAIT);
634 	if (err < 0)
635 		goto out_recv_err;
636 	skb = skb_recv_udp(svsk->sk_sk, MSG_DONTWAIT, &err);
637 	if (!skb)
638 		goto out_recv_err;
639 
640 	len = svc_addr_len(svc_addr(rqstp));
641 	rqstp->rq_addrlen = len;
642 	if (skb->tstamp == 0) {
643 		skb->tstamp = ktime_get_real();
644 		/* Don't enable netstamp, sunrpc doesn't
645 		   need that much accuracy */
646 	}
647 	sock_write_timestamp(svsk->sk_sk, skb->tstamp);
648 	set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */
649 
650 	len = skb->len;
651 	rqstp->rq_arg.len = len;
652 	trace_svcsock_udp_recv(&svsk->sk_xprt, len);
653 
654 	rqstp->rq_prot = IPPROTO_UDP;
655 
656 	if (!svc_udp_get_dest_address(rqstp, cmh))
657 		goto out_cmsg_err;
658 	rqstp->rq_daddrlen = svc_addr_len(svc_daddr(rqstp));
659 
660 	if (skb_is_nonlinear(skb)) {
661 		/* we have to copy */
662 		local_bh_disable();
663 		if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb))
664 			goto out_bh_enable;
665 		local_bh_enable();
666 		consume_skb(skb);
667 	} else {
668 		/* we can use it in-place */
669 		rqstp->rq_arg.head[0].iov_base = skb->data;
670 		rqstp->rq_arg.head[0].iov_len = len;
671 		if (skb_checksum_complete(skb))
672 			goto out_free;
673 		rqstp->rq_xprt_ctxt = skb;
674 	}
675 
676 	rqstp->rq_arg.page_base = 0;
677 	if (len <= rqstp->rq_arg.head[0].iov_len) {
678 		rqstp->rq_arg.head[0].iov_len = len;
679 		rqstp->rq_arg.page_len = 0;
680 		rqstp->rq_respages = rqstp->rq_pages+1;
681 	} else {
682 		rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
683 		rqstp->rq_respages = rqstp->rq_pages + 1 +
684 			DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE);
685 	}
686 	rqstp->rq_next_page = rqstp->rq_respages+1;
687 
688 	if (serv->sv_stats)
689 		serv->sv_stats->netudpcnt++;
690 
691 	svc_sock_secure_port(rqstp);
692 	svc_xprt_received(rqstp->rq_xprt);
693 	return len;
694 
695 out_recv_err:
696 	if (err != -EAGAIN) {
697 		/* possibly an icmp error */
698 		set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
699 	}
700 	trace_svcsock_udp_recv_err(&svsk->sk_xprt, err);
701 	goto out_clear_busy;
702 out_cmsg_err:
703 	net_warn_ratelimited("svc: received unknown control message %d/%d; dropping RPC reply datagram\n",
704 			     cmh->cmsg_level, cmh->cmsg_type);
705 	goto out_free;
706 out_bh_enable:
707 	local_bh_enable();
708 out_free:
709 	kfree_skb(skb);
710 out_clear_busy:
711 	svc_xprt_received(rqstp->rq_xprt);
712 	return 0;
713 }
714 
715 /**
716  * svc_udp_sendto - Send out a reply on a UDP socket
717  * @rqstp: completed svc_rqst
718  *
719  * xpt_mutex ensures @rqstp's whole message is written to the socket
720  * without interruption.
721  *
722  * Returns the number of bytes sent, or a negative errno.
723  */
svc_udp_sendto(struct svc_rqst * rqstp)724 static int svc_udp_sendto(struct svc_rqst *rqstp)
725 {
726 	struct svc_xprt *xprt = rqstp->rq_xprt;
727 	struct svc_sock	*svsk = container_of(xprt, struct svc_sock, sk_xprt);
728 	struct xdr_buf *xdr = &rqstp->rq_res;
729 	union {
730 		struct cmsghdr	hdr;
731 		long		all[SVC_PKTINFO_SPACE / sizeof(long)];
732 	} buffer;
733 	struct cmsghdr *cmh = &buffer.hdr;
734 	struct msghdr msg = {
735 		.msg_name	= &rqstp->rq_addr,
736 		.msg_namelen	= rqstp->rq_addrlen,
737 		.msg_control	= cmh,
738 		.msg_flags	= MSG_SPLICE_PAGES,
739 		.msg_controllen	= sizeof(buffer),
740 	};
741 	unsigned int count;
742 	int err;
743 
744 	svc_udp_release_ctxt(xprt, rqstp->rq_xprt_ctxt);
745 	rqstp->rq_xprt_ctxt = NULL;
746 
747 	svc_set_cmsg_data(rqstp, cmh);
748 
749 	mutex_lock(&xprt->xpt_mutex);
750 
751 	if (svc_xprt_is_dead(xprt))
752 		goto out_notconn;
753 
754 	count = xdr_buf_to_bvec(svsk->sk_bvec, SUNRPC_MAX_UDP_SENDPAGES, xdr);
755 
756 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, svsk->sk_bvec,
757 		      count, rqstp->rq_res.len);
758 	err = sock_sendmsg(svsk->sk_sock, &msg);
759 	if (err == -ECONNREFUSED) {
760 		/* ICMP error on earlier request. */
761 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, svsk->sk_bvec,
762 			      count, rqstp->rq_res.len);
763 		err = sock_sendmsg(svsk->sk_sock, &msg);
764 	}
765 
766 	trace_svcsock_udp_send(xprt, err);
767 
768 	mutex_unlock(&xprt->xpt_mutex);
769 	return err;
770 
771 out_notconn:
772 	mutex_unlock(&xprt->xpt_mutex);
773 	return -ENOTCONN;
774 }
775 
svc_udp_has_wspace(struct svc_xprt * xprt)776 static int svc_udp_has_wspace(struct svc_xprt *xprt)
777 {
778 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
779 	struct svc_serv	*serv = xprt->xpt_server;
780 	unsigned long required;
781 
782 	/*
783 	 * Set the SOCK_NOSPACE flag before checking the available
784 	 * sock space.
785 	 */
786 	set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
787 	required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
788 	if (required*2 > sock_wspace(svsk->sk_sk))
789 		return 0;
790 	clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
791 	return 1;
792 }
793 
svc_udp_accept(struct svc_xprt * xprt)794 static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt)
795 {
796 	BUG();
797 	return NULL;
798 }
799 
svc_udp_kill_temp_xprt(struct svc_xprt * xprt)800 static void svc_udp_kill_temp_xprt(struct svc_xprt *xprt)
801 {
802 }
803 
svc_udp_create(struct svc_serv * serv,struct net * net,struct sockaddr * sa,int salen,int flags)804 static struct svc_xprt *svc_udp_create(struct svc_serv *serv,
805 				       struct net *net,
806 				       struct sockaddr *sa, int salen,
807 				       int flags)
808 {
809 	return svc_create_socket(serv, IPPROTO_UDP, net, sa, salen, flags);
810 }
811 
812 static const struct svc_xprt_ops svc_udp_ops = {
813 	.xpo_create = svc_udp_create,
814 	.xpo_recvfrom = svc_udp_recvfrom,
815 	.xpo_sendto = svc_udp_sendto,
816 	.xpo_result_payload = svc_sock_result_payload,
817 	.xpo_release_ctxt = svc_udp_release_ctxt,
818 	.xpo_detach = svc_sock_detach,
819 	.xpo_free = svc_sock_free,
820 	.xpo_has_wspace = svc_udp_has_wspace,
821 	.xpo_accept = svc_udp_accept,
822 	.xpo_kill_temp_xprt = svc_udp_kill_temp_xprt,
823 };
824 
825 static struct svc_xprt_class svc_udp_class = {
826 	.xcl_name = "udp",
827 	.xcl_owner = THIS_MODULE,
828 	.xcl_ops = &svc_udp_ops,
829 	.xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP,
830 	.xcl_ident = XPRT_TRANSPORT_UDP,
831 };
832 
svc_udp_init(struct svc_sock * svsk,struct svc_serv * serv)833 static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv)
834 {
835 	svc_xprt_init(sock_net(svsk->sk_sock->sk), &svc_udp_class,
836 		      &svsk->sk_xprt, serv);
837 	clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
838 	svsk->sk_sk->sk_data_ready = svc_data_ready;
839 	svsk->sk_sk->sk_write_space = svc_write_space;
840 
841 	/* initialise setting must have enough space to
842 	 * receive and respond to one request.
843 	 * svc_udp_recvfrom will re-adjust if necessary
844 	 */
845 	svc_sock_setbufsize(svsk, 3);
846 
847 	/* data might have come in before data_ready set up */
848 	set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
849 	set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
850 	set_bit(XPT_RPCB_UNREG, &svsk->sk_xprt.xpt_flags);
851 
852 	/* make sure we get destination address info */
853 	switch (svsk->sk_sk->sk_family) {
854 	case AF_INET:
855 		ip_sock_set_pktinfo(svsk->sk_sock->sk);
856 		break;
857 	case AF_INET6:
858 		ip6_sock_set_recvpktinfo(svsk->sk_sock->sk);
859 		break;
860 	default:
861 		BUG();
862 	}
863 }
864 
865 /*
866  * A data_ready event on a listening socket means there's a connection
867  * pending. Do not use state_change as a substitute for it.
868  */
svc_tcp_listen_data_ready(struct sock * sk)869 static void svc_tcp_listen_data_ready(struct sock *sk)
870 {
871 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
872 
873 	trace_sk_data_ready(sk);
874 
875 	/*
876 	 * This callback may called twice when a new connection
877 	 * is established as a child socket inherits everything
878 	 * from a parent LISTEN socket.
879 	 * 1) data_ready method of the parent socket will be called
880 	 *    when one of child sockets become ESTABLISHED.
881 	 * 2) data_ready method of the child socket may be called
882 	 *    when it receives data before the socket is accepted.
883 	 * In case of 2, we should ignore it silently and DO NOT
884 	 * dereference svsk.
885 	 */
886 	if (sk->sk_state != TCP_LISTEN)
887 		return;
888 
889 	if (svsk) {
890 		/* Refer to svc_setup_socket() for details. */
891 		rmb();
892 		svsk->sk_odata(sk);
893 		set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
894 		svc_xprt_enqueue(&svsk->sk_xprt);
895 	}
896 }
897 
898 /*
899  * A state change on a connected socket means it's dying or dead.
900  */
svc_tcp_state_change(struct sock * sk)901 static void svc_tcp_state_change(struct sock *sk)
902 {
903 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
904 
905 	if (svsk) {
906 		/* Refer to svc_setup_socket() for details. */
907 		rmb();
908 		svsk->sk_ostate(sk);
909 		trace_svcsock_tcp_state(&svsk->sk_xprt, svsk->sk_sock);
910 		if (sk->sk_state != TCP_ESTABLISHED)
911 			svc_xprt_deferred_close(&svsk->sk_xprt);
912 	}
913 }
914 
915 /*
916  * Accept a TCP connection
917  */
svc_tcp_accept(struct svc_xprt * xprt)918 static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt)
919 {
920 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
921 	struct sockaddr_storage addr;
922 	struct sockaddr	*sin = (struct sockaddr *) &addr;
923 	struct svc_serv	*serv = svsk->sk_xprt.xpt_server;
924 	struct socket	*sock = svsk->sk_sock;
925 	struct socket	*newsock;
926 	struct svc_sock	*newsvsk;
927 	int		err, slen;
928 
929 	if (!sock)
930 		return NULL;
931 
932 	clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
933 	err = kernel_accept(sock, &newsock, O_NONBLOCK);
934 	if (err < 0) {
935 		if (err != -EAGAIN)
936 			trace_svcsock_accept_err(xprt, serv->sv_name, err);
937 		return NULL;
938 	}
939 	if (IS_ERR(sock_alloc_file(newsock, O_NONBLOCK, NULL)))
940 		return NULL;
941 
942 	set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
943 
944 	err = kernel_getpeername(newsock, sin);
945 	if (err < 0) {
946 		trace_svcsock_getpeername_err(xprt, serv->sv_name, err);
947 		goto failed;		/* aborted connection or whatever */
948 	}
949 	slen = err;
950 
951 	/* Reset the inherited callbacks before calling svc_setup_socket */
952 	newsock->sk->sk_state_change = svsk->sk_ostate;
953 	newsock->sk->sk_data_ready = svsk->sk_odata;
954 	newsock->sk->sk_write_space = svsk->sk_owspace;
955 
956 	/* make sure that a write doesn't block forever when
957 	 * low on memory
958 	 */
959 	newsock->sk->sk_sndtimeo = HZ*30;
960 
961 	newsvsk = svc_setup_socket(serv, newsock,
962 				 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY));
963 	if (IS_ERR(newsvsk))
964 		goto failed;
965 	svc_xprt_set_remote(&newsvsk->sk_xprt, sin, slen);
966 	err = kernel_getsockname(newsock, sin);
967 	slen = err;
968 	if (unlikely(err < 0))
969 		slen = offsetof(struct sockaddr, sa_data);
970 	svc_xprt_set_local(&newsvsk->sk_xprt, sin, slen);
971 
972 	if (sock_is_loopback(newsock->sk))
973 		set_bit(XPT_LOCAL, &newsvsk->sk_xprt.xpt_flags);
974 	else
975 		clear_bit(XPT_LOCAL, &newsvsk->sk_xprt.xpt_flags);
976 	if (serv->sv_stats)
977 		serv->sv_stats->nettcpconn++;
978 
979 	return &newsvsk->sk_xprt;
980 
981 failed:
982 	sockfd_put(newsock);
983 	return NULL;
984 }
985 
svc_tcp_restore_pages(struct svc_sock * svsk,struct svc_rqst * rqstp)986 static size_t svc_tcp_restore_pages(struct svc_sock *svsk,
987 				    struct svc_rqst *rqstp)
988 {
989 	size_t len = svsk->sk_datalen;
990 	unsigned int i, npages;
991 
992 	if (!len)
993 		return 0;
994 	npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
995 	for (i = 0; i < npages; i++) {
996 		if (rqstp->rq_pages[i] != NULL)
997 			put_page(rqstp->rq_pages[i]);
998 		BUG_ON(svsk->sk_pages[i] == NULL);
999 		rqstp->rq_pages[i] = svsk->sk_pages[i];
1000 		svsk->sk_pages[i] = NULL;
1001 	}
1002 	rqstp->rq_arg.head[0].iov_base = page_address(rqstp->rq_pages[0]);
1003 	return len;
1004 }
1005 
svc_tcp_save_pages(struct svc_sock * svsk,struct svc_rqst * rqstp)1006 static void svc_tcp_save_pages(struct svc_sock *svsk, struct svc_rqst *rqstp)
1007 {
1008 	unsigned int i, len, npages;
1009 
1010 	if (svsk->sk_datalen == 0)
1011 		return;
1012 	len = svsk->sk_datalen;
1013 	npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1014 	for (i = 0; i < npages; i++) {
1015 		svsk->sk_pages[i] = rqstp->rq_pages[i];
1016 		rqstp->rq_pages[i] = NULL;
1017 	}
1018 }
1019 
svc_tcp_clear_pages(struct svc_sock * svsk)1020 static void svc_tcp_clear_pages(struct svc_sock *svsk)
1021 {
1022 	unsigned int i, len, npages;
1023 
1024 	if (svsk->sk_datalen == 0)
1025 		goto out;
1026 	len = svsk->sk_datalen;
1027 	npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1028 	for (i = 0; i < npages; i++) {
1029 		if (svsk->sk_pages[i] == NULL) {
1030 			WARN_ON_ONCE(1);
1031 			continue;
1032 		}
1033 		put_page(svsk->sk_pages[i]);
1034 		svsk->sk_pages[i] = NULL;
1035 	}
1036 out:
1037 	svsk->sk_tcplen = 0;
1038 	svsk->sk_datalen = 0;
1039 }
1040 
1041 /*
1042  * Receive fragment record header into sk_marker.
1043  */
svc_tcp_read_marker(struct svc_sock * svsk,struct svc_rqst * rqstp)1044 static ssize_t svc_tcp_read_marker(struct svc_sock *svsk,
1045 				   struct svc_rqst *rqstp)
1046 {
1047 	ssize_t want, len;
1048 
1049 	/* If we haven't gotten the record length yet,
1050 	 * get the next four bytes.
1051 	 */
1052 	if (svsk->sk_tcplen < sizeof(rpc_fraghdr)) {
1053 		struct msghdr	msg = { NULL };
1054 		struct kvec	iov;
1055 
1056 		want = sizeof(rpc_fraghdr) - svsk->sk_tcplen;
1057 		iov.iov_base = ((char *)&svsk->sk_marker) + svsk->sk_tcplen;
1058 		iov.iov_len  = want;
1059 		iov_iter_kvec(&msg.msg_iter, ITER_DEST, &iov, 1, want);
1060 		len = svc_tcp_sock_recvmsg(svsk, &msg);
1061 		if (len < 0)
1062 			return len;
1063 		svsk->sk_tcplen += len;
1064 		if (len < want) {
1065 			/* call again to read the remaining bytes */
1066 			goto err_short;
1067 		}
1068 		trace_svcsock_marker(&svsk->sk_xprt, svsk->sk_marker);
1069 		if (svc_sock_reclen(svsk) + svsk->sk_datalen >
1070 		    svsk->sk_xprt.xpt_server->sv_max_mesg)
1071 			goto err_too_large;
1072 	}
1073 	return svc_sock_reclen(svsk);
1074 
1075 err_too_large:
1076 	net_notice_ratelimited("svc: %s oversized RPC fragment (%u octets) from %pISpc\n",
1077 			       svsk->sk_xprt.xpt_server->sv_name,
1078 			       svc_sock_reclen(svsk),
1079 			       (struct sockaddr *)&svsk->sk_xprt.xpt_remote);
1080 	svc_xprt_deferred_close(&svsk->sk_xprt);
1081 err_short:
1082 	return -EAGAIN;
1083 }
1084 
receive_cb_reply(struct svc_sock * svsk,struct svc_rqst * rqstp)1085 static int receive_cb_reply(struct svc_sock *svsk, struct svc_rqst *rqstp)
1086 {
1087 	struct rpc_xprt *bc_xprt = svsk->sk_xprt.xpt_bc_xprt;
1088 	struct rpc_rqst *req = NULL;
1089 	struct kvec *src, *dst;
1090 	__be32 *p = (__be32 *)rqstp->rq_arg.head[0].iov_base;
1091 	__be32 xid = *p;
1092 
1093 	if (!bc_xprt)
1094 		return -EAGAIN;
1095 	spin_lock(&bc_xprt->queue_lock);
1096 	req = xprt_lookup_rqst(bc_xprt, xid);
1097 	if (!req)
1098 		goto unlock_eagain;
1099 
1100 	memcpy(&req->rq_private_buf, &req->rq_rcv_buf, sizeof(struct xdr_buf));
1101 	/*
1102 	 * XXX!: cheating for now!  Only copying HEAD.
1103 	 * But we know this is good enough for now (in fact, for any
1104 	 * callback reply in the forseeable future).
1105 	 */
1106 	dst = &req->rq_private_buf.head[0];
1107 	src = &rqstp->rq_arg.head[0];
1108 	if (dst->iov_len < src->iov_len)
1109 		goto unlock_eagain; /* whatever; just giving up. */
1110 	memcpy(dst->iov_base, src->iov_base, src->iov_len);
1111 	xprt_complete_rqst(req->rq_task, rqstp->rq_arg.len);
1112 	rqstp->rq_arg.len = 0;
1113 	spin_unlock(&bc_xprt->queue_lock);
1114 	return 0;
1115 unlock_eagain:
1116 	spin_unlock(&bc_xprt->queue_lock);
1117 	return -EAGAIN;
1118 }
1119 
svc_tcp_fragment_received(struct svc_sock * svsk)1120 static void svc_tcp_fragment_received(struct svc_sock *svsk)
1121 {
1122 	/* If we have more data, signal svc_xprt_enqueue() to try again */
1123 	svsk->sk_tcplen = 0;
1124 	svsk->sk_marker = xdr_zero;
1125 }
1126 
1127 /**
1128  * svc_tcp_recvfrom - Receive data from a TCP socket
1129  * @rqstp: request structure into which to receive an RPC Call
1130  *
1131  * Called in a loop when XPT_DATA has been set.
1132  *
1133  * Read the 4-byte stream record marker, then use the record length
1134  * in that marker to set up exactly the resources needed to receive
1135  * the next RPC message into @rqstp.
1136  *
1137  * Returns:
1138  *   On success, the number of bytes in a received RPC Call, or
1139  *   %0 if a complete RPC Call message was not ready to return
1140  *
1141  * The zero return case handles partial receives and callback Replies.
1142  * The state of a partial receive is preserved in the svc_sock for
1143  * the next call to svc_tcp_recvfrom.
1144  */
svc_tcp_recvfrom(struct svc_rqst * rqstp)1145 static int svc_tcp_recvfrom(struct svc_rqst *rqstp)
1146 {
1147 	struct svc_sock	*svsk =
1148 		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
1149 	struct svc_serv	*serv = svsk->sk_xprt.xpt_server;
1150 	size_t want, base;
1151 	ssize_t len;
1152 	__be32 *p;
1153 	__be32 calldir;
1154 
1155 	clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1156 	len = svc_tcp_read_marker(svsk, rqstp);
1157 	if (len < 0)
1158 		goto error;
1159 
1160 	base = svc_tcp_restore_pages(svsk, rqstp);
1161 	want = len - (svsk->sk_tcplen - sizeof(rpc_fraghdr));
1162 	len = svc_tcp_read_msg(rqstp, base + want, base);
1163 	if (len >= 0) {
1164 		trace_svcsock_tcp_recv(&svsk->sk_xprt, len);
1165 		svsk->sk_tcplen += len;
1166 		svsk->sk_datalen += len;
1167 	}
1168 	if (len != want || !svc_sock_final_rec(svsk))
1169 		goto err_incomplete;
1170 	if (svsk->sk_datalen < 8)
1171 		goto err_nuts;
1172 
1173 	rqstp->rq_arg.len = svsk->sk_datalen;
1174 	rqstp->rq_arg.page_base = 0;
1175 	if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) {
1176 		rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len;
1177 		rqstp->rq_arg.page_len = 0;
1178 	} else
1179 		rqstp->rq_arg.page_len = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1180 
1181 	rqstp->rq_xprt_ctxt   = NULL;
1182 	rqstp->rq_prot	      = IPPROTO_TCP;
1183 	if (test_bit(XPT_LOCAL, &svsk->sk_xprt.xpt_flags))
1184 		set_bit(RQ_LOCAL, &rqstp->rq_flags);
1185 	else
1186 		clear_bit(RQ_LOCAL, &rqstp->rq_flags);
1187 
1188 	p = (__be32 *)rqstp->rq_arg.head[0].iov_base;
1189 	calldir = p[1];
1190 	if (calldir)
1191 		len = receive_cb_reply(svsk, rqstp);
1192 
1193 	/* Reset TCP read info */
1194 	svsk->sk_datalen = 0;
1195 	svc_tcp_fragment_received(svsk);
1196 
1197 	if (len < 0)
1198 		goto error;
1199 
1200 	svc_xprt_copy_addrs(rqstp, &svsk->sk_xprt);
1201 	if (serv->sv_stats)
1202 		serv->sv_stats->nettcpcnt++;
1203 
1204 	svc_sock_secure_port(rqstp);
1205 	svc_xprt_received(rqstp->rq_xprt);
1206 	return rqstp->rq_arg.len;
1207 
1208 err_incomplete:
1209 	svc_tcp_save_pages(svsk, rqstp);
1210 	if (len < 0 && len != -EAGAIN)
1211 		goto err_delete;
1212 	if (len == want)
1213 		svc_tcp_fragment_received(svsk);
1214 	else
1215 		trace_svcsock_tcp_recv_short(&svsk->sk_xprt,
1216 				svc_sock_reclen(svsk),
1217 				svsk->sk_tcplen - sizeof(rpc_fraghdr));
1218 	goto err_noclose;
1219 error:
1220 	if (len != -EAGAIN)
1221 		goto err_delete;
1222 	trace_svcsock_tcp_recv_eagain(&svsk->sk_xprt, 0);
1223 	goto err_noclose;
1224 err_nuts:
1225 	svsk->sk_datalen = 0;
1226 err_delete:
1227 	trace_svcsock_tcp_recv_err(&svsk->sk_xprt, len);
1228 	svc_xprt_deferred_close(&svsk->sk_xprt);
1229 err_noclose:
1230 	svc_xprt_received(rqstp->rq_xprt);
1231 	return 0;	/* record not complete */
1232 }
1233 
1234 /*
1235  * MSG_SPLICE_PAGES is used exclusively to reduce the number of
1236  * copy operations in this path. Therefore the caller must ensure
1237  * that the pages backing @xdr are unchanging.
1238  */
svc_tcp_sendmsg(struct svc_sock * svsk,struct svc_rqst * rqstp,rpc_fraghdr marker)1239 static int svc_tcp_sendmsg(struct svc_sock *svsk, struct svc_rqst *rqstp,
1240 			   rpc_fraghdr marker)
1241 {
1242 	struct msghdr msg = {
1243 		.msg_flags	= MSG_SPLICE_PAGES,
1244 	};
1245 	unsigned int count;
1246 	void *buf;
1247 	int ret;
1248 
1249 	/* The stream record marker is copied into a temporary page
1250 	 * fragment buffer so that it can be included in sk_bvec.
1251 	 */
1252 	buf = page_frag_alloc(&svsk->sk_frag_cache, sizeof(marker),
1253 			      GFP_KERNEL);
1254 	if (!buf)
1255 		return -ENOMEM;
1256 	memcpy(buf, &marker, sizeof(marker));
1257 	bvec_set_virt(svsk->sk_bvec, buf, sizeof(marker));
1258 
1259 	count = xdr_buf_to_bvec(svsk->sk_bvec + 1, rqstp->rq_maxpages,
1260 				&rqstp->rq_res);
1261 
1262 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, svsk->sk_bvec,
1263 		      1 + count, sizeof(marker) + rqstp->rq_res.len);
1264 	ret = sock_sendmsg(svsk->sk_sock, &msg);
1265 	page_frag_free(buf);
1266 	return ret;
1267 }
1268 
1269 /**
1270  * svc_tcp_sendto - Send out a reply on a TCP socket
1271  * @rqstp: completed svc_rqst
1272  *
1273  * xpt_mutex ensures @rqstp's whole message is written to the socket
1274  * without interruption.
1275  *
1276  * Returns the number of bytes sent, or a negative errno.
1277  */
svc_tcp_sendto(struct svc_rqst * rqstp)1278 static int svc_tcp_sendto(struct svc_rqst *rqstp)
1279 {
1280 	struct svc_xprt *xprt = rqstp->rq_xprt;
1281 	struct svc_sock	*svsk = container_of(xprt, struct svc_sock, sk_xprt);
1282 	struct xdr_buf *xdr = &rqstp->rq_res;
1283 	rpc_fraghdr marker = cpu_to_be32(RPC_LAST_STREAM_FRAGMENT |
1284 					 (u32)xdr->len);
1285 	int sent;
1286 
1287 	svc_tcp_release_ctxt(xprt, rqstp->rq_xprt_ctxt);
1288 	rqstp->rq_xprt_ctxt = NULL;
1289 
1290 	mutex_lock(&xprt->xpt_mutex);
1291 	if (svc_xprt_is_dead(xprt))
1292 		goto out_notconn;
1293 	sent = svc_tcp_sendmsg(svsk, rqstp, marker);
1294 	trace_svcsock_tcp_send(xprt, sent);
1295 	if (sent < 0 || sent != (xdr->len + sizeof(marker)))
1296 		goto out_close;
1297 	mutex_unlock(&xprt->xpt_mutex);
1298 	return sent;
1299 
1300 out_notconn:
1301 	mutex_unlock(&xprt->xpt_mutex);
1302 	return -ENOTCONN;
1303 out_close:
1304 	pr_notice("rpc-srv/tcp: %s: %s %d when sending %zu bytes - shutting down socket\n",
1305 		  xprt->xpt_server->sv_name,
1306 		  (sent < 0) ? "got error" : "sent",
1307 		  sent, xdr->len + sizeof(marker));
1308 	svc_xprt_deferred_close(xprt);
1309 	mutex_unlock(&xprt->xpt_mutex);
1310 	return -EAGAIN;
1311 }
1312 
svc_tcp_create(struct svc_serv * serv,struct net * net,struct sockaddr * sa,int salen,int flags)1313 static struct svc_xprt *svc_tcp_create(struct svc_serv *serv,
1314 				       struct net *net,
1315 				       struct sockaddr *sa, int salen,
1316 				       int flags)
1317 {
1318 	return svc_create_socket(serv, IPPROTO_TCP, net, sa, salen, flags);
1319 }
1320 
1321 static const struct svc_xprt_ops svc_tcp_ops = {
1322 	.xpo_create = svc_tcp_create,
1323 	.xpo_recvfrom = svc_tcp_recvfrom,
1324 	.xpo_sendto = svc_tcp_sendto,
1325 	.xpo_result_payload = svc_sock_result_payload,
1326 	.xpo_release_ctxt = svc_tcp_release_ctxt,
1327 	.xpo_detach = svc_tcp_sock_detach,
1328 	.xpo_free = svc_sock_free,
1329 	.xpo_has_wspace = svc_tcp_has_wspace,
1330 	.xpo_accept = svc_tcp_accept,
1331 	.xpo_kill_temp_xprt = svc_tcp_kill_temp_xprt,
1332 	.xpo_handshake = svc_tcp_handshake,
1333 };
1334 
1335 static struct svc_xprt_class svc_tcp_class = {
1336 	.xcl_name = "tcp",
1337 	.xcl_owner = THIS_MODULE,
1338 	.xcl_ops = &svc_tcp_ops,
1339 	.xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
1340 	.xcl_ident = XPRT_TRANSPORT_TCP,
1341 };
1342 
svc_init_xprt_sock(void)1343 void svc_init_xprt_sock(void)
1344 {
1345 	svc_reg_xprt_class(&svc_tcp_class);
1346 	svc_reg_xprt_class(&svc_udp_class);
1347 }
1348 
svc_cleanup_xprt_sock(void)1349 void svc_cleanup_xprt_sock(void)
1350 {
1351 	svc_unreg_xprt_class(&svc_tcp_class);
1352 	svc_unreg_xprt_class(&svc_udp_class);
1353 }
1354 
svc_tcp_init(struct svc_sock * svsk,struct svc_serv * serv)1355 static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv)
1356 {
1357 	struct sock	*sk = svsk->sk_sk;
1358 
1359 	svc_xprt_init(sock_net(svsk->sk_sock->sk), &svc_tcp_class,
1360 		      &svsk->sk_xprt, serv);
1361 	set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
1362 	set_bit(XPT_CONG_CTRL, &svsk->sk_xprt.xpt_flags);
1363 	if (sk->sk_state == TCP_LISTEN) {
1364 		strcpy(svsk->sk_xprt.xpt_remotebuf, "listener");
1365 		set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags);
1366 		set_bit(XPT_RPCB_UNREG, &svsk->sk_xprt.xpt_flags);
1367 		sk->sk_data_ready = svc_tcp_listen_data_ready;
1368 		set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
1369 	} else {
1370 		sk->sk_state_change = svc_tcp_state_change;
1371 		sk->sk_data_ready = svc_data_ready;
1372 		sk->sk_write_space = svc_write_space;
1373 
1374 		svsk->sk_marker = xdr_zero;
1375 		svsk->sk_tcplen = 0;
1376 		svsk->sk_datalen = 0;
1377 		memset(&svsk->sk_pages[0], 0,
1378 		       svsk->sk_maxpages * sizeof(struct page *));
1379 
1380 		tcp_sock_set_nodelay(sk);
1381 
1382 		set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1383 		switch (sk->sk_state) {
1384 		case TCP_SYN_RECV:
1385 		case TCP_ESTABLISHED:
1386 			break;
1387 		default:
1388 			svc_xprt_deferred_close(&svsk->sk_xprt);
1389 		}
1390 	}
1391 }
1392 
svc_sock_update_bufs(struct svc_serv * serv)1393 void svc_sock_update_bufs(struct svc_serv *serv)
1394 {
1395 	/*
1396 	 * The number of server threads has changed. Update
1397 	 * rcvbuf and sndbuf accordingly on all sockets
1398 	 */
1399 	struct svc_sock *svsk;
1400 
1401 	spin_lock_bh(&serv->sv_lock);
1402 	list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list)
1403 		set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1404 	spin_unlock_bh(&serv->sv_lock);
1405 }
1406 
svc_sock_sendpages(struct svc_serv * serv,struct socket * sock,int flags)1407 static int svc_sock_sendpages(struct svc_serv *serv, struct socket *sock, int flags)
1408 {
1409 	switch (sock->type) {
1410 	case SOCK_STREAM:
1411 		/* +1 for TCP record marker */
1412 		if (flags & SVC_SOCK_TEMPORARY)
1413 			return svc_serv_maxpages(serv) + 1;
1414 		return 0;
1415 	case SOCK_DGRAM:
1416 		return SUNRPC_MAX_UDP_SENDPAGES;
1417 	}
1418 	return -EINVAL;
1419 }
1420 
1421 /*
1422  * Initialize socket for RPC use and create svc_sock struct
1423  */
svc_setup_socket(struct svc_serv * serv,struct socket * sock,int flags)1424 static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
1425 						struct socket *sock,
1426 						int flags)
1427 {
1428 	struct svc_sock	*svsk;
1429 	struct sock	*inet;
1430 	int		pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
1431 	int		sendpages;
1432 	unsigned long	pages;
1433 
1434 	sendpages = svc_sock_sendpages(serv, sock, flags);
1435 	if (sendpages < 0)
1436 		return ERR_PTR(sendpages);
1437 
1438 	pages = svc_serv_maxpages(serv);
1439 	svsk = kzalloc(struct_size(svsk, sk_pages, pages), GFP_KERNEL);
1440 	if (!svsk)
1441 		return ERR_PTR(-ENOMEM);
1442 
1443 	if (sendpages) {
1444 		svsk->sk_bvec = kcalloc(sendpages, sizeof(*svsk->sk_bvec), GFP_KERNEL);
1445 		if (!svsk->sk_bvec) {
1446 			kfree(svsk);
1447 			return ERR_PTR(-ENOMEM);
1448 		}
1449 	}
1450 
1451 	svsk->sk_maxpages = pages;
1452 
1453 	inet = sock->sk;
1454 
1455 	if (pmap_register) {
1456 		int err;
1457 
1458 		err = svc_register(serv, sock_net(sock->sk), inet->sk_family,
1459 				     inet->sk_protocol,
1460 				     ntohs(inet_sk(inet)->inet_sport));
1461 		if (err < 0) {
1462 			kfree(svsk->sk_bvec);
1463 			kfree(svsk);
1464 			return ERR_PTR(err);
1465 		}
1466 	}
1467 
1468 	svsk->sk_sock = sock;
1469 	svsk->sk_sk = inet;
1470 	svsk->sk_ostate = inet->sk_state_change;
1471 	svsk->sk_odata = inet->sk_data_ready;
1472 	svsk->sk_owspace = inet->sk_write_space;
1473 	/*
1474 	 * This barrier is necessary in order to prevent race condition
1475 	 * with svc_data_ready(), svc_tcp_listen_data_ready(), and others
1476 	 * when calling callbacks above.
1477 	 */
1478 	wmb();
1479 	inet->sk_user_data = svsk;
1480 
1481 	/* Initialize the socket */
1482 	if (sock->type == SOCK_DGRAM)
1483 		svc_udp_init(svsk, serv);
1484 	else
1485 		svc_tcp_init(svsk, serv);
1486 
1487 	trace_svcsock_new(svsk, sock);
1488 	return svsk;
1489 }
1490 
1491 /**
1492  * svc_addsock - add a listener socket to an RPC service
1493  * @serv: pointer to RPC service to which to add a new listener
1494  * @net: caller's network namespace
1495  * @fd: file descriptor of the new listener
1496  * @name_return: pointer to buffer to fill in with name of listener
1497  * @len: size of the buffer
1498  * @cred: credential
1499  *
1500  * Fills in socket name and returns positive length of name if successful.
1501  * Name is terminated with '\n'.  On error, returns a negative errno
1502  * value.
1503  */
svc_addsock(struct svc_serv * serv,struct net * net,const int fd,char * name_return,const size_t len,const struct cred * cred)1504 int svc_addsock(struct svc_serv *serv, struct net *net, const int fd,
1505 		char *name_return, const size_t len, const struct cred *cred)
1506 {
1507 	int err = 0;
1508 	struct socket *so = sockfd_lookup(fd, &err);
1509 	struct svc_sock *svsk = NULL;
1510 	struct sockaddr_storage addr;
1511 	struct sockaddr *sin = (struct sockaddr *)&addr;
1512 	int salen;
1513 
1514 	if (!so)
1515 		return err;
1516 	err = -EINVAL;
1517 	if (sock_net(so->sk) != net)
1518 		goto out;
1519 	err = -EAFNOSUPPORT;
1520 	if ((so->sk->sk_family != PF_INET) && (so->sk->sk_family != PF_INET6))
1521 		goto out;
1522 	err =  -EPROTONOSUPPORT;
1523 	if (so->sk->sk_protocol != IPPROTO_TCP &&
1524 	    so->sk->sk_protocol != IPPROTO_UDP)
1525 		goto out;
1526 	err = -EISCONN;
1527 	if (so->state > SS_UNCONNECTED)
1528 		goto out;
1529 	err = -ENOENT;
1530 	if (!try_module_get(THIS_MODULE))
1531 		goto out;
1532 	svsk = svc_setup_socket(serv, so, SVC_SOCK_DEFAULTS);
1533 	if (IS_ERR(svsk)) {
1534 		module_put(THIS_MODULE);
1535 		err = PTR_ERR(svsk);
1536 		goto out;
1537 	}
1538 	salen = kernel_getsockname(svsk->sk_sock, sin);
1539 	if (salen >= 0)
1540 		svc_xprt_set_local(&svsk->sk_xprt, sin, salen);
1541 	svsk->sk_xprt.xpt_cred = get_cred(cred);
1542 	svc_add_new_perm_xprt(serv, &svsk->sk_xprt);
1543 	return svc_one_sock_name(svsk, name_return, len);
1544 out:
1545 	sockfd_put(so);
1546 	return err;
1547 }
1548 EXPORT_SYMBOL_GPL(svc_addsock);
1549 
1550 /*
1551  * Create socket for RPC service.
1552  */
svc_create_socket(struct svc_serv * serv,int protocol,struct net * net,struct sockaddr * sin,int len,int flags)1553 static struct svc_xprt *svc_create_socket(struct svc_serv *serv,
1554 					  int protocol,
1555 					  struct net *net,
1556 					  struct sockaddr *sin, int len,
1557 					  int flags)
1558 {
1559 	struct svc_sock	*svsk;
1560 	struct socket	*sock;
1561 	int		error;
1562 	int		type;
1563 	struct sockaddr_storage addr;
1564 	struct sockaddr *newsin = (struct sockaddr *)&addr;
1565 	int		newlen;
1566 	int		family;
1567 
1568 	if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1569 		printk(KERN_WARNING "svc: only UDP and TCP "
1570 				"sockets supported\n");
1571 		return ERR_PTR(-EINVAL);
1572 	}
1573 
1574 	type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1575 	switch (sin->sa_family) {
1576 	case AF_INET6:
1577 		family = PF_INET6;
1578 		break;
1579 	case AF_INET:
1580 		family = PF_INET;
1581 		break;
1582 	default:
1583 		return ERR_PTR(-EINVAL);
1584 	}
1585 
1586 	error = __sock_create(net, family, type, protocol, &sock, 1);
1587 	if (error < 0)
1588 		return ERR_PTR(error);
1589 
1590 	svc_reclassify_socket(sock);
1591 
1592 	/*
1593 	 * If this is an PF_INET6 listener, we want to avoid
1594 	 * getting requests from IPv4 remotes.  Those should
1595 	 * be shunted to a PF_INET listener via rpcbind.
1596 	 */
1597 	if (family == PF_INET6)
1598 		ip6_sock_set_v6only(sock->sk);
1599 	if (type == SOCK_STREAM)
1600 		sock->sk->sk_reuse = SK_CAN_REUSE; /* allow address reuse */
1601 	error = kernel_bind(sock, (struct sockaddr_unsized *)sin, len);
1602 	if (error < 0)
1603 		goto bummer;
1604 
1605 	error = kernel_getsockname(sock, newsin);
1606 	if (error < 0)
1607 		goto bummer;
1608 	newlen = error;
1609 
1610 	if (protocol == IPPROTO_TCP) {
1611 		sk_net_refcnt_upgrade(sock->sk);
1612 		if ((error = kernel_listen(sock, SOMAXCONN)) < 0)
1613 			goto bummer;
1614 	}
1615 
1616 	svsk = svc_setup_socket(serv, sock, flags);
1617 	if (IS_ERR(svsk)) {
1618 		error = PTR_ERR(svsk);
1619 		goto bummer;
1620 	}
1621 	svc_xprt_set_local(&svsk->sk_xprt, newsin, newlen);
1622 	return (struct svc_xprt *)svsk;
1623 bummer:
1624 	sock_release(sock);
1625 	return ERR_PTR(error);
1626 }
1627 
1628 /*
1629  * Detach the svc_sock from the socket so that no
1630  * more callbacks occur.
1631  */
svc_sock_detach(struct svc_xprt * xprt)1632 static void svc_sock_detach(struct svc_xprt *xprt)
1633 {
1634 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1635 	struct sock *sk = svsk->sk_sk;
1636 
1637 	/* put back the old socket callbacks */
1638 	lock_sock(sk);
1639 	sk->sk_state_change = svsk->sk_ostate;
1640 	sk->sk_data_ready = svsk->sk_odata;
1641 	sk->sk_write_space = svsk->sk_owspace;
1642 	sk->sk_user_data = NULL;
1643 	release_sock(sk);
1644 }
1645 
1646 /*
1647  * Disconnect the socket, and reset the callbacks
1648  */
svc_tcp_sock_detach(struct svc_xprt * xprt)1649 static void svc_tcp_sock_detach(struct svc_xprt *xprt)
1650 {
1651 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1652 
1653 	tls_handshake_close(svsk->sk_sock);
1654 
1655 	svc_sock_detach(xprt);
1656 
1657 	if (!test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
1658 		svc_tcp_clear_pages(svsk);
1659 		kernel_sock_shutdown(svsk->sk_sock, SHUT_RDWR);
1660 	}
1661 }
1662 
1663 /*
1664  * Free the svc_sock's socket resources and the svc_sock itself.
1665  */
svc_sock_free(struct svc_xprt * xprt)1666 static void svc_sock_free(struct svc_xprt *xprt)
1667 {
1668 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1669 	struct socket *sock = svsk->sk_sock;
1670 
1671 	trace_svcsock_free(svsk, sock);
1672 
1673 	tls_handshake_cancel(sock->sk);
1674 	if (sock->file)
1675 		sockfd_put(sock);
1676 	else
1677 		sock_release(sock);
1678 
1679 	page_frag_cache_drain(&svsk->sk_frag_cache);
1680 	kfree(svsk->sk_bvec);
1681 	kfree(svsk);
1682 }
1683