xref: /linux/include/linux/ieee80211.h (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * IEEE 802.11 defines
4  *
5  * Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
6  * <jkmaline@cc.hut.fi>
7  * Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
8  * Copyright (c) 2005, Devicescape Software, Inc.
9  * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
10  * Copyright (c) 2013 - 2014 Intel Mobile Communications GmbH
11  * Copyright (c) 2016 - 2017 Intel Deutschland GmbH
12  * Copyright (c) 2018 - 2025 Intel Corporation
13  */
14 
15 #ifndef LINUX_IEEE80211_H
16 #define LINUX_IEEE80211_H
17 
18 #include <linux/types.h>
19 #include <linux/if_ether.h>
20 #include <linux/etherdevice.h>
21 #include <linux/bitfield.h>
22 #include <asm/byteorder.h>
23 #include <linux/unaligned.h>
24 
25 /*
26  * DS bit usage
27  *
28  * TA = transmitter address
29  * RA = receiver address
30  * DA = destination address
31  * SA = source address
32  *
33  * ToDS    FromDS  A1(RA)  A2(TA)  A3      A4      Use
34  * -----------------------------------------------------------------
35  *  0       0       DA      SA      BSSID   -       IBSS/DLS
36  *  0       1       DA      BSSID   SA      -       AP -> STA
37  *  1       0       BSSID   SA      DA      -       AP <- STA
38  *  1       1       RA      TA      DA      SA      unspecified (WDS)
39  */
40 
41 #define FCS_LEN 4
42 
43 #define IEEE80211_FCTL_VERS		0x0003
44 #define IEEE80211_FCTL_FTYPE		0x000c
45 #define IEEE80211_FCTL_STYPE		0x00f0
46 #define IEEE80211_FCTL_TODS		0x0100
47 #define IEEE80211_FCTL_FROMDS		0x0200
48 #define IEEE80211_FCTL_MOREFRAGS	0x0400
49 #define IEEE80211_FCTL_RETRY		0x0800
50 #define IEEE80211_FCTL_PM		0x1000
51 #define IEEE80211_FCTL_MOREDATA		0x2000
52 #define IEEE80211_FCTL_PROTECTED	0x4000
53 #define IEEE80211_FCTL_ORDER		0x8000
54 #define IEEE80211_FCTL_CTL_EXT		0x0f00
55 
56 #define IEEE80211_SCTL_FRAG		0x000F
57 #define IEEE80211_SCTL_SEQ		0xFFF0
58 
59 #define IEEE80211_FTYPE_MGMT		0x0000
60 #define IEEE80211_FTYPE_CTL		0x0004
61 #define IEEE80211_FTYPE_DATA		0x0008
62 #define IEEE80211_FTYPE_EXT		0x000c
63 
64 /* management */
65 #define IEEE80211_STYPE_ASSOC_REQ	0x0000
66 #define IEEE80211_STYPE_ASSOC_RESP	0x0010
67 #define IEEE80211_STYPE_REASSOC_REQ	0x0020
68 #define IEEE80211_STYPE_REASSOC_RESP	0x0030
69 #define IEEE80211_STYPE_PROBE_REQ	0x0040
70 #define IEEE80211_STYPE_PROBE_RESP	0x0050
71 #define IEEE80211_STYPE_BEACON		0x0080
72 #define IEEE80211_STYPE_ATIM		0x0090
73 #define IEEE80211_STYPE_DISASSOC	0x00A0
74 #define IEEE80211_STYPE_AUTH		0x00B0
75 #define IEEE80211_STYPE_DEAUTH		0x00C0
76 #define IEEE80211_STYPE_ACTION		0x00D0
77 
78 /* control */
79 #define IEEE80211_STYPE_TRIGGER		0x0020
80 #define IEEE80211_STYPE_CTL_EXT		0x0060
81 #define IEEE80211_STYPE_BACK_REQ	0x0080
82 #define IEEE80211_STYPE_BACK		0x0090
83 #define IEEE80211_STYPE_PSPOLL		0x00A0
84 #define IEEE80211_STYPE_RTS		0x00B0
85 #define IEEE80211_STYPE_CTS		0x00C0
86 #define IEEE80211_STYPE_ACK		0x00D0
87 #define IEEE80211_STYPE_CFEND		0x00E0
88 #define IEEE80211_STYPE_CFENDACK	0x00F0
89 
90 /* data */
91 #define IEEE80211_STYPE_DATA			0x0000
92 #define IEEE80211_STYPE_DATA_CFACK		0x0010
93 #define IEEE80211_STYPE_DATA_CFPOLL		0x0020
94 #define IEEE80211_STYPE_DATA_CFACKPOLL		0x0030
95 #define IEEE80211_STYPE_NULLFUNC		0x0040
96 #define IEEE80211_STYPE_CFACK			0x0050
97 #define IEEE80211_STYPE_CFPOLL			0x0060
98 #define IEEE80211_STYPE_CFACKPOLL		0x0070
99 #define IEEE80211_STYPE_QOS_DATA		0x0080
100 #define IEEE80211_STYPE_QOS_DATA_CFACK		0x0090
101 #define IEEE80211_STYPE_QOS_DATA_CFPOLL		0x00A0
102 #define IEEE80211_STYPE_QOS_DATA_CFACKPOLL	0x00B0
103 #define IEEE80211_STYPE_QOS_NULLFUNC		0x00C0
104 #define IEEE80211_STYPE_QOS_CFACK		0x00D0
105 #define IEEE80211_STYPE_QOS_CFPOLL		0x00E0
106 #define IEEE80211_STYPE_QOS_CFACKPOLL		0x00F0
107 
108 /* extension, added by 802.11ad */
109 #define IEEE80211_STYPE_DMG_BEACON		0x0000
110 #define IEEE80211_STYPE_S1G_BEACON		0x0010
111 
112 /* bits unique to S1G beacon */
113 #define IEEE80211_S1G_BCN_NEXT_TBTT	0x100
114 #define IEEE80211_S1G_BCN_CSSID		0x200
115 #define IEEE80211_S1G_BCN_ANO		0x400
116 
117 /* see 802.11ah-2016 9.9 NDP CMAC frames */
118 #define IEEE80211_S1G_1MHZ_NDP_BITS	25
119 #define IEEE80211_S1G_1MHZ_NDP_BYTES	4
120 #define IEEE80211_S1G_2MHZ_NDP_BITS	37
121 #define IEEE80211_S1G_2MHZ_NDP_BYTES	5
122 
123 #define IEEE80211_NDP_FTYPE_CTS			0
124 #define IEEE80211_NDP_FTYPE_CF_END		0
125 #define IEEE80211_NDP_FTYPE_PS_POLL		1
126 #define IEEE80211_NDP_FTYPE_ACK			2
127 #define IEEE80211_NDP_FTYPE_PS_POLL_ACK		3
128 #define IEEE80211_NDP_FTYPE_BA			4
129 #define IEEE80211_NDP_FTYPE_BF_REPORT_POLL	5
130 #define IEEE80211_NDP_FTYPE_PAGING		6
131 #define IEEE80211_NDP_FTYPE_PREQ		7
132 
133 #define SM64(f, v)	((((u64)v) << f##_S) & f)
134 
135 /* NDP CMAC frame fields */
136 #define IEEE80211_NDP_FTYPE                    0x0000000000000007
137 #define IEEE80211_NDP_FTYPE_S                  0x0000000000000000
138 
139 /* 1M Probe Request 11ah 9.9.3.1.1 */
140 #define IEEE80211_NDP_1M_PREQ_ANO      0x0000000000000008
141 #define IEEE80211_NDP_1M_PREQ_ANO_S                     3
142 #define IEEE80211_NDP_1M_PREQ_CSSID    0x00000000000FFFF0
143 #define IEEE80211_NDP_1M_PREQ_CSSID_S                   4
144 #define IEEE80211_NDP_1M_PREQ_RTYPE    0x0000000000100000
145 #define IEEE80211_NDP_1M_PREQ_RTYPE_S                  20
146 #define IEEE80211_NDP_1M_PREQ_RSV      0x0000000001E00000
147 #define IEEE80211_NDP_1M_PREQ_RSV      0x0000000001E00000
148 /* 2M Probe Request 11ah 9.9.3.1.2 */
149 #define IEEE80211_NDP_2M_PREQ_ANO      0x0000000000000008
150 #define IEEE80211_NDP_2M_PREQ_ANO_S                     3
151 #define IEEE80211_NDP_2M_PREQ_CSSID    0x0000000FFFFFFFF0
152 #define IEEE80211_NDP_2M_PREQ_CSSID_S                   4
153 #define IEEE80211_NDP_2M_PREQ_RTYPE    0x0000001000000000
154 #define IEEE80211_NDP_2M_PREQ_RTYPE_S                  36
155 
156 #define IEEE80211_ANO_NETTYPE_WILD              15
157 
158 /* control extension - for IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTL_EXT */
159 #define IEEE80211_CTL_EXT_POLL		0x2000
160 #define IEEE80211_CTL_EXT_SPR		0x3000
161 #define IEEE80211_CTL_EXT_GRANT	0x4000
162 #define IEEE80211_CTL_EXT_DMG_CTS	0x5000
163 #define IEEE80211_CTL_EXT_DMG_DTS	0x6000
164 #define IEEE80211_CTL_EXT_SSW		0x8000
165 #define IEEE80211_CTL_EXT_SSW_FBACK	0x9000
166 #define IEEE80211_CTL_EXT_SSW_ACK	0xa000
167 
168 
169 #define IEEE80211_SN_MASK		((IEEE80211_SCTL_SEQ) >> 4)
170 #define IEEE80211_MAX_SN		IEEE80211_SN_MASK
171 #define IEEE80211_SN_MODULO		(IEEE80211_MAX_SN + 1)
172 
173 
174 /* PV1 Layout IEEE 802.11-2020 9.8.3.1 */
175 #define IEEE80211_PV1_FCTL_VERS		0x0003
176 #define IEEE80211_PV1_FCTL_FTYPE	0x001c
177 #define IEEE80211_PV1_FCTL_STYPE	0x00e0
178 #define IEEE80211_PV1_FCTL_FROMDS		0x0100
179 #define IEEE80211_PV1_FCTL_MOREFRAGS	0x0200
180 #define IEEE80211_PV1_FCTL_PM		0x0400
181 #define IEEE80211_PV1_FCTL_MOREDATA	0x0800
182 #define IEEE80211_PV1_FCTL_PROTECTED	0x1000
183 #define IEEE80211_PV1_FCTL_END_SP       0x2000
184 #define IEEE80211_PV1_FCTL_RELAYED      0x4000
185 #define IEEE80211_PV1_FCTL_ACK_POLICY   0x8000
186 #define IEEE80211_PV1_FCTL_CTL_EXT	0x0f00
187 
188 static inline bool ieee80211_sn_less(u16 sn1, u16 sn2)
189 {
190 	return ((sn1 - sn2) & IEEE80211_SN_MASK) > (IEEE80211_SN_MODULO >> 1);
191 }
192 
193 static inline bool ieee80211_sn_less_eq(u16 sn1, u16 sn2)
194 {
195 	return ((sn2 - sn1) & IEEE80211_SN_MASK) <= (IEEE80211_SN_MODULO >> 1);
196 }
197 
198 static inline u16 ieee80211_sn_add(u16 sn1, u16 sn2)
199 {
200 	return (sn1 + sn2) & IEEE80211_SN_MASK;
201 }
202 
203 static inline u16 ieee80211_sn_inc(u16 sn)
204 {
205 	return ieee80211_sn_add(sn, 1);
206 }
207 
208 static inline u16 ieee80211_sn_sub(u16 sn1, u16 sn2)
209 {
210 	return (sn1 - sn2) & IEEE80211_SN_MASK;
211 }
212 
213 #define IEEE80211_SEQ_TO_SN(seq)	(((seq) & IEEE80211_SCTL_SEQ) >> 4)
214 #define IEEE80211_SN_TO_SEQ(ssn)	(((ssn) << 4) & IEEE80211_SCTL_SEQ)
215 
216 /* miscellaneous IEEE 802.11 constants */
217 #define IEEE80211_MAX_FRAG_THRESHOLD	2352
218 #define IEEE80211_MAX_RTS_THRESHOLD	2353
219 #define IEEE80211_MAX_AID		2007
220 #define IEEE80211_MAX_AID_S1G		8191
221 #define IEEE80211_MAX_TIM_LEN		251
222 #define IEEE80211_MAX_MESH_PEERINGS	63
223 
224 /* S1G encoding types */
225 #define IEEE80211_S1G_TIM_ENC_MODE_BLOCK	0
226 #define IEEE80211_S1G_TIM_ENC_MODE_SINGLE	1
227 #define IEEE80211_S1G_TIM_ENC_MODE_OLB		2
228 
229 /* Maximum size for the MA-UNITDATA primitive, 802.11 standard section
230    6.2.1.1.2.
231 
232    802.11e clarifies the figure in section 7.1.2. The frame body is
233    up to 2304 octets long (maximum MSDU size) plus any crypt overhead. */
234 #define IEEE80211_MAX_DATA_LEN		2304
235 /* 802.11ad extends maximum MSDU size for DMG (freq > 40Ghz) networks
236  * to 7920 bytes, see 8.2.3 General frame format
237  */
238 #define IEEE80211_MAX_DATA_LEN_DMG	7920
239 /* 30 byte 4 addr hdr, 2 byte QoS, 2304 byte MSDU, 12 byte crypt, 4 byte FCS */
240 #define IEEE80211_MAX_FRAME_LEN		2352
241 
242 /* Maximal size of an A-MSDU that can be transported in a HT BA session */
243 #define IEEE80211_MAX_MPDU_LEN_HT_BA		4095
244 
245 /* Maximal size of an A-MSDU */
246 #define IEEE80211_MAX_MPDU_LEN_HT_3839		3839
247 #define IEEE80211_MAX_MPDU_LEN_HT_7935		7935
248 
249 #define IEEE80211_MAX_MPDU_LEN_VHT_3895		3895
250 #define IEEE80211_MAX_MPDU_LEN_VHT_7991		7991
251 #define IEEE80211_MAX_MPDU_LEN_VHT_11454	11454
252 
253 #define IEEE80211_MAX_SSID_LEN		32
254 
255 #define IEEE80211_MAX_MESH_ID_LEN	32
256 
257 #define IEEE80211_FIRST_TSPEC_TSID	8
258 #define IEEE80211_NUM_TIDS		16
259 
260 /* number of user priorities 802.11 uses */
261 #define IEEE80211_NUM_UPS		8
262 /* number of ACs */
263 #define IEEE80211_NUM_ACS		4
264 
265 #define IEEE80211_QOS_CTL_LEN		2
266 /* 1d tag mask */
267 #define IEEE80211_QOS_CTL_TAG1D_MASK		0x0007
268 /* TID mask */
269 #define IEEE80211_QOS_CTL_TID_MASK		0x000f
270 /* EOSP */
271 #define IEEE80211_QOS_CTL_EOSP			0x0010
272 /* ACK policy */
273 #define IEEE80211_QOS_CTL_ACK_POLICY_NORMAL	0x0000
274 #define IEEE80211_QOS_CTL_ACK_POLICY_NOACK	0x0020
275 #define IEEE80211_QOS_CTL_ACK_POLICY_NO_EXPL	0x0040
276 #define IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK	0x0060
277 #define IEEE80211_QOS_CTL_ACK_POLICY_MASK	0x0060
278 /* A-MSDU 802.11n */
279 #define IEEE80211_QOS_CTL_A_MSDU_PRESENT	0x0080
280 /* Mesh Control 802.11s */
281 #define IEEE80211_QOS_CTL_MESH_CONTROL_PRESENT  0x0100
282 
283 /* Mesh Power Save Level */
284 #define IEEE80211_QOS_CTL_MESH_PS_LEVEL		0x0200
285 /* Mesh Receiver Service Period Initiated */
286 #define IEEE80211_QOS_CTL_RSPI			0x0400
287 
288 /* U-APSD queue for WMM IEs sent by AP */
289 #define IEEE80211_WMM_IE_AP_QOSINFO_UAPSD	(1<<7)
290 #define IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK	0x0f
291 
292 /* U-APSD queues for WMM IEs sent by STA */
293 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VO	(1<<0)
294 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VI	(1<<1)
295 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BK	(1<<2)
296 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BE	(1<<3)
297 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_MASK	0x0f
298 
299 /* U-APSD max SP length for WMM IEs sent by STA */
300 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_ALL	0x00
301 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_2	0x01
302 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_4	0x02
303 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_6	0x03
304 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_MASK	0x03
305 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_SHIFT	5
306 
307 #define IEEE80211_HT_CTL_LEN		4
308 
309 /* trigger type within common_info of trigger frame */
310 #define IEEE80211_TRIGGER_TYPE_MASK		0xf
311 #define IEEE80211_TRIGGER_TYPE_BASIC		0x0
312 #define IEEE80211_TRIGGER_TYPE_BFRP		0x1
313 #define IEEE80211_TRIGGER_TYPE_MU_BAR		0x2
314 #define IEEE80211_TRIGGER_TYPE_MU_RTS		0x3
315 #define IEEE80211_TRIGGER_TYPE_BSRP		0x4
316 #define IEEE80211_TRIGGER_TYPE_GCR_MU_BAR	0x5
317 #define IEEE80211_TRIGGER_TYPE_BQRP		0x6
318 #define IEEE80211_TRIGGER_TYPE_NFRP		0x7
319 
320 /* UL-bandwidth within common_info of trigger frame */
321 #define IEEE80211_TRIGGER_ULBW_MASK		0xc0000
322 #define IEEE80211_TRIGGER_ULBW_20MHZ		0x0
323 #define IEEE80211_TRIGGER_ULBW_40MHZ		0x1
324 #define IEEE80211_TRIGGER_ULBW_80MHZ		0x2
325 #define IEEE80211_TRIGGER_ULBW_160_80P80MHZ	0x3
326 
327 struct ieee80211_hdr {
328 	__le16 frame_control;
329 	__le16 duration_id;
330 	struct_group(addrs,
331 		u8 addr1[ETH_ALEN];
332 		u8 addr2[ETH_ALEN];
333 		u8 addr3[ETH_ALEN];
334 	);
335 	__le16 seq_ctrl;
336 	u8 addr4[ETH_ALEN];
337 } __packed __aligned(2);
338 
339 struct ieee80211_hdr_3addr {
340 	__le16 frame_control;
341 	__le16 duration_id;
342 	u8 addr1[ETH_ALEN];
343 	u8 addr2[ETH_ALEN];
344 	u8 addr3[ETH_ALEN];
345 	__le16 seq_ctrl;
346 } __packed __aligned(2);
347 
348 struct ieee80211_qos_hdr {
349 	__le16 frame_control;
350 	__le16 duration_id;
351 	u8 addr1[ETH_ALEN];
352 	u8 addr2[ETH_ALEN];
353 	u8 addr3[ETH_ALEN];
354 	__le16 seq_ctrl;
355 	__le16 qos_ctrl;
356 } __packed __aligned(2);
357 
358 struct ieee80211_qos_hdr_4addr {
359 	__le16 frame_control;
360 	__le16 duration_id;
361 	u8 addr1[ETH_ALEN];
362 	u8 addr2[ETH_ALEN];
363 	u8 addr3[ETH_ALEN];
364 	__le16 seq_ctrl;
365 	u8 addr4[ETH_ALEN];
366 	__le16 qos_ctrl;
367 } __packed __aligned(2);
368 
369 struct ieee80211_trigger {
370 	__le16 frame_control;
371 	__le16 duration;
372 	u8 ra[ETH_ALEN];
373 	u8 ta[ETH_ALEN];
374 	__le64 common_info;
375 	u8 variable[];
376 } __packed __aligned(2);
377 
378 /**
379  * ieee80211_has_tods - check if IEEE80211_FCTL_TODS is set
380  * @fc: frame control bytes in little-endian byteorder
381  * Return: whether or not the frame has to-DS set
382  */
383 static inline bool ieee80211_has_tods(__le16 fc)
384 {
385 	return (fc & cpu_to_le16(IEEE80211_FCTL_TODS)) != 0;
386 }
387 
388 /**
389  * ieee80211_has_fromds - check if IEEE80211_FCTL_FROMDS is set
390  * @fc: frame control bytes in little-endian byteorder
391  * Return: whether or not the frame has from-DS set
392  */
393 static inline bool ieee80211_has_fromds(__le16 fc)
394 {
395 	return (fc & cpu_to_le16(IEEE80211_FCTL_FROMDS)) != 0;
396 }
397 
398 /**
399  * ieee80211_has_a4 - check if IEEE80211_FCTL_TODS and IEEE80211_FCTL_FROMDS are set
400  * @fc: frame control bytes in little-endian byteorder
401  * Return: whether or not it's a 4-address frame (from-DS and to-DS set)
402  */
403 static inline bool ieee80211_has_a4(__le16 fc)
404 {
405 	__le16 tmp = cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS);
406 	return (fc & tmp) == tmp;
407 }
408 
409 /**
410  * ieee80211_has_morefrags - check if IEEE80211_FCTL_MOREFRAGS is set
411  * @fc: frame control bytes in little-endian byteorder
412  * Return: whether or not the frame has more fragments (more frags bit set)
413  */
414 static inline bool ieee80211_has_morefrags(__le16 fc)
415 {
416 	return (fc & cpu_to_le16(IEEE80211_FCTL_MOREFRAGS)) != 0;
417 }
418 
419 /**
420  * ieee80211_has_retry - check if IEEE80211_FCTL_RETRY is set
421  * @fc: frame control bytes in little-endian byteorder
422  * Return: whether or not the retry flag is set
423  */
424 static inline bool ieee80211_has_retry(__le16 fc)
425 {
426 	return (fc & cpu_to_le16(IEEE80211_FCTL_RETRY)) != 0;
427 }
428 
429 /**
430  * ieee80211_has_pm - check if IEEE80211_FCTL_PM is set
431  * @fc: frame control bytes in little-endian byteorder
432  * Return: whether or not the power management flag is set
433  */
434 static inline bool ieee80211_has_pm(__le16 fc)
435 {
436 	return (fc & cpu_to_le16(IEEE80211_FCTL_PM)) != 0;
437 }
438 
439 /**
440  * ieee80211_has_moredata - check if IEEE80211_FCTL_MOREDATA is set
441  * @fc: frame control bytes in little-endian byteorder
442  * Return: whether or not the more data flag is set
443  */
444 static inline bool ieee80211_has_moredata(__le16 fc)
445 {
446 	return (fc & cpu_to_le16(IEEE80211_FCTL_MOREDATA)) != 0;
447 }
448 
449 /**
450  * ieee80211_has_protected - check if IEEE80211_FCTL_PROTECTED is set
451  * @fc: frame control bytes in little-endian byteorder
452  * Return: whether or not the protected flag is set
453  */
454 static inline bool ieee80211_has_protected(__le16 fc)
455 {
456 	return (fc & cpu_to_le16(IEEE80211_FCTL_PROTECTED)) != 0;
457 }
458 
459 /**
460  * ieee80211_has_order - check if IEEE80211_FCTL_ORDER is set
461  * @fc: frame control bytes in little-endian byteorder
462  * Return: whether or not the order flag is set
463  */
464 static inline bool ieee80211_has_order(__le16 fc)
465 {
466 	return (fc & cpu_to_le16(IEEE80211_FCTL_ORDER)) != 0;
467 }
468 
469 /**
470  * ieee80211_is_mgmt - check if type is IEEE80211_FTYPE_MGMT
471  * @fc: frame control bytes in little-endian byteorder
472  * Return: whether or not the frame type is management
473  */
474 static inline bool ieee80211_is_mgmt(__le16 fc)
475 {
476 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
477 	       cpu_to_le16(IEEE80211_FTYPE_MGMT);
478 }
479 
480 /**
481  * ieee80211_is_ctl - check if type is IEEE80211_FTYPE_CTL
482  * @fc: frame control bytes in little-endian byteorder
483  * Return: whether or not the frame type is control
484  */
485 static inline bool ieee80211_is_ctl(__le16 fc)
486 {
487 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
488 	       cpu_to_le16(IEEE80211_FTYPE_CTL);
489 }
490 
491 /**
492  * ieee80211_is_data - check if type is IEEE80211_FTYPE_DATA
493  * @fc: frame control bytes in little-endian byteorder
494  * Return: whether or not the frame is a data frame
495  */
496 static inline bool ieee80211_is_data(__le16 fc)
497 {
498 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
499 	       cpu_to_le16(IEEE80211_FTYPE_DATA);
500 }
501 
502 /**
503  * ieee80211_is_ext - check if type is IEEE80211_FTYPE_EXT
504  * @fc: frame control bytes in little-endian byteorder
505  * Return: whether or not the frame type is extended
506  */
507 static inline bool ieee80211_is_ext(__le16 fc)
508 {
509 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
510 	       cpu_to_le16(IEEE80211_FTYPE_EXT);
511 }
512 
513 
514 /**
515  * ieee80211_is_data_qos - check if type is IEEE80211_FTYPE_DATA and IEEE80211_STYPE_QOS_DATA is set
516  * @fc: frame control bytes in little-endian byteorder
517  * Return: whether or not the frame is a QoS data frame
518  */
519 static inline bool ieee80211_is_data_qos(__le16 fc)
520 {
521 	/*
522 	 * mask with QOS_DATA rather than IEEE80211_FCTL_STYPE as we just need
523 	 * to check the one bit
524 	 */
525 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_STYPE_QOS_DATA)) ==
526 	       cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA);
527 }
528 
529 /**
530  * ieee80211_is_data_present - check if type is IEEE80211_FTYPE_DATA and has data
531  * @fc: frame control bytes in little-endian byteorder
532  * Return: whether or not the frame is a QoS data frame that has data
533  *	(i.e. is not null data)
534  */
535 static inline bool ieee80211_is_data_present(__le16 fc)
536 {
537 	/*
538 	 * mask with 0x40 and test that that bit is clear to only return true
539 	 * for the data-containing substypes.
540 	 */
541 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | 0x40)) ==
542 	       cpu_to_le16(IEEE80211_FTYPE_DATA);
543 }
544 
545 /**
546  * ieee80211_is_assoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_REQ
547  * @fc: frame control bytes in little-endian byteorder
548  * Return: whether or not the frame is an association request
549  */
550 static inline bool ieee80211_is_assoc_req(__le16 fc)
551 {
552 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
553 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_REQ);
554 }
555 
556 /**
557  * ieee80211_is_assoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_RESP
558  * @fc: frame control bytes in little-endian byteorder
559  * Return: whether or not the frame is an association response
560  */
561 static inline bool ieee80211_is_assoc_resp(__le16 fc)
562 {
563 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
564 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_RESP);
565 }
566 
567 /**
568  * ieee80211_is_reassoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_REQ
569  * @fc: frame control bytes in little-endian byteorder
570  * Return: whether or not the frame is a reassociation request
571  */
572 static inline bool ieee80211_is_reassoc_req(__le16 fc)
573 {
574 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
575 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_REQ);
576 }
577 
578 /**
579  * ieee80211_is_reassoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_RESP
580  * @fc: frame control bytes in little-endian byteorder
581  * Return: whether or not the frame is a reassociation response
582  */
583 static inline bool ieee80211_is_reassoc_resp(__le16 fc)
584 {
585 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
586 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_RESP);
587 }
588 
589 /**
590  * ieee80211_is_probe_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_REQ
591  * @fc: frame control bytes in little-endian byteorder
592  * Return: whether or not the frame is a probe request
593  */
594 static inline bool ieee80211_is_probe_req(__le16 fc)
595 {
596 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
597 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_REQ);
598 }
599 
600 /**
601  * ieee80211_is_probe_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_RESP
602  * @fc: frame control bytes in little-endian byteorder
603  * Return: whether or not the frame is a probe response
604  */
605 static inline bool ieee80211_is_probe_resp(__le16 fc)
606 {
607 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
608 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_RESP);
609 }
610 
611 /**
612  * ieee80211_is_beacon - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_BEACON
613  * @fc: frame control bytes in little-endian byteorder
614  * Return: whether or not the frame is a (regular, not S1G) beacon
615  */
616 static inline bool ieee80211_is_beacon(__le16 fc)
617 {
618 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
619 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
620 }
621 
622 /**
623  * ieee80211_is_s1g_beacon - check if IEEE80211_FTYPE_EXT &&
624  * IEEE80211_STYPE_S1G_BEACON
625  * @fc: frame control bytes in little-endian byteorder
626  * Return: whether or not the frame is an S1G beacon
627  */
628 static inline bool ieee80211_is_s1g_beacon(__le16 fc)
629 {
630 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE |
631 				 IEEE80211_FCTL_STYPE)) ==
632 	       cpu_to_le16(IEEE80211_FTYPE_EXT | IEEE80211_STYPE_S1G_BEACON);
633 }
634 
635 /**
636  * ieee80211_s1g_has_next_tbtt - check if IEEE80211_S1G_BCN_NEXT_TBTT
637  * @fc: frame control bytes in little-endian byteorder
638  * Return: whether or not the frame contains the variable-length
639  *	next TBTT field
640  */
641 static inline bool ieee80211_s1g_has_next_tbtt(__le16 fc)
642 {
643 	return ieee80211_is_s1g_beacon(fc) &&
644 		(fc & cpu_to_le16(IEEE80211_S1G_BCN_NEXT_TBTT));
645 }
646 
647 /**
648  * ieee80211_s1g_has_ano - check if IEEE80211_S1G_BCN_ANO
649  * @fc: frame control bytes in little-endian byteorder
650  * Return: whether or not the frame contains the variable-length
651  *	ANO field
652  */
653 static inline bool ieee80211_s1g_has_ano(__le16 fc)
654 {
655 	return ieee80211_is_s1g_beacon(fc) &&
656 		(fc & cpu_to_le16(IEEE80211_S1G_BCN_ANO));
657 }
658 
659 /**
660  * ieee80211_s1g_has_cssid - check if IEEE80211_S1G_BCN_CSSID
661  * @fc: frame control bytes in little-endian byteorder
662  * Return: whether or not the frame contains the variable-length
663  *	compressed SSID field
664  */
665 static inline bool ieee80211_s1g_has_cssid(__le16 fc)
666 {
667 	return ieee80211_is_s1g_beacon(fc) &&
668 		(fc & cpu_to_le16(IEEE80211_S1G_BCN_CSSID));
669 }
670 
671 /**
672  * ieee80211_is_atim - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ATIM
673  * @fc: frame control bytes in little-endian byteorder
674  * Return: whether or not the frame is an ATIM frame
675  */
676 static inline bool ieee80211_is_atim(__le16 fc)
677 {
678 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
679 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ATIM);
680 }
681 
682 /**
683  * ieee80211_is_disassoc - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DISASSOC
684  * @fc: frame control bytes in little-endian byteorder
685  * Return: whether or not the frame is a disassociation frame
686  */
687 static inline bool ieee80211_is_disassoc(__le16 fc)
688 {
689 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
690 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DISASSOC);
691 }
692 
693 /**
694  * ieee80211_is_auth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_AUTH
695  * @fc: frame control bytes in little-endian byteorder
696  * Return: whether or not the frame is an authentication frame
697  */
698 static inline bool ieee80211_is_auth(__le16 fc)
699 {
700 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
701 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_AUTH);
702 }
703 
704 /**
705  * ieee80211_is_deauth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DEAUTH
706  * @fc: frame control bytes in little-endian byteorder
707  * Return: whether or not the frame is a deauthentication frame
708  */
709 static inline bool ieee80211_is_deauth(__le16 fc)
710 {
711 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
712 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DEAUTH);
713 }
714 
715 /**
716  * ieee80211_is_action - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ACTION
717  * @fc: frame control bytes in little-endian byteorder
718  * Return: whether or not the frame is an action frame
719  */
720 static inline bool ieee80211_is_action(__le16 fc)
721 {
722 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
723 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION);
724 }
725 
726 /**
727  * ieee80211_is_back_req - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK_REQ
728  * @fc: frame control bytes in little-endian byteorder
729  * Return: whether or not the frame is a block-ACK request frame
730  */
731 static inline bool ieee80211_is_back_req(__le16 fc)
732 {
733 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
734 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK_REQ);
735 }
736 
737 /**
738  * ieee80211_is_back - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK
739  * @fc: frame control bytes in little-endian byteorder
740  * Return: whether or not the frame is a block-ACK frame
741  */
742 static inline bool ieee80211_is_back(__le16 fc)
743 {
744 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
745 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK);
746 }
747 
748 /**
749  * ieee80211_is_pspoll - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_PSPOLL
750  * @fc: frame control bytes in little-endian byteorder
751  * Return: whether or not the frame is a PS-poll frame
752  */
753 static inline bool ieee80211_is_pspoll(__le16 fc)
754 {
755 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
756 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_PSPOLL);
757 }
758 
759 /**
760  * ieee80211_is_rts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_RTS
761  * @fc: frame control bytes in little-endian byteorder
762  * Return: whether or not the frame is an RTS frame
763  */
764 static inline bool ieee80211_is_rts(__le16 fc)
765 {
766 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
767 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
768 }
769 
770 /**
771  * ieee80211_is_cts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CTS
772  * @fc: frame control bytes in little-endian byteorder
773  * Return: whether or not the frame is a CTS frame
774  */
775 static inline bool ieee80211_is_cts(__le16 fc)
776 {
777 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
778 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
779 }
780 
781 /**
782  * ieee80211_is_ack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_ACK
783  * @fc: frame control bytes in little-endian byteorder
784  * Return: whether or not the frame is an ACK frame
785  */
786 static inline bool ieee80211_is_ack(__le16 fc)
787 {
788 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
789 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_ACK);
790 }
791 
792 /**
793  * ieee80211_is_cfend - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFEND
794  * @fc: frame control bytes in little-endian byteorder
795  * Return: whether or not the frame is a CF-end frame
796  */
797 static inline bool ieee80211_is_cfend(__le16 fc)
798 {
799 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
800 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFEND);
801 }
802 
803 /**
804  * ieee80211_is_cfendack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFENDACK
805  * @fc: frame control bytes in little-endian byteorder
806  * Return: whether or not the frame is a CF-end-ack frame
807  */
808 static inline bool ieee80211_is_cfendack(__le16 fc)
809 {
810 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
811 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFENDACK);
812 }
813 
814 /**
815  * ieee80211_is_nullfunc - check if frame is a regular (non-QoS) nullfunc frame
816  * @fc: frame control bytes in little-endian byteorder
817  * Return: whether or not the frame is a nullfunc frame
818  */
819 static inline bool ieee80211_is_nullfunc(__le16 fc)
820 {
821 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
822 	       cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC);
823 }
824 
825 /**
826  * ieee80211_is_qos_nullfunc - check if frame is a QoS nullfunc frame
827  * @fc: frame control bytes in little-endian byteorder
828  * Return: whether or not the frame is a QoS nullfunc frame
829  */
830 static inline bool ieee80211_is_qos_nullfunc(__le16 fc)
831 {
832 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
833 	       cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_NULLFUNC);
834 }
835 
836 /**
837  * ieee80211_is_trigger - check if frame is trigger frame
838  * @fc: frame control field in little-endian byteorder
839  * Return: whether or not the frame is a trigger frame
840  */
841 static inline bool ieee80211_is_trigger(__le16 fc)
842 {
843 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
844 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_TRIGGER);
845 }
846 
847 /**
848  * ieee80211_is_any_nullfunc - check if frame is regular or QoS nullfunc frame
849  * @fc: frame control bytes in little-endian byteorder
850  * Return: whether or not the frame is a nullfunc or QoS nullfunc frame
851  */
852 static inline bool ieee80211_is_any_nullfunc(__le16 fc)
853 {
854 	return (ieee80211_is_nullfunc(fc) || ieee80211_is_qos_nullfunc(fc));
855 }
856 
857 /**
858  * ieee80211_is_first_frag - check if IEEE80211_SCTL_FRAG is not set
859  * @seq_ctrl: frame sequence control bytes in little-endian byteorder
860  * Return: whether or not the frame is the first fragment (also true if
861  *	it's not fragmented at all)
862  */
863 static inline bool ieee80211_is_first_frag(__le16 seq_ctrl)
864 {
865 	return (seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG)) == 0;
866 }
867 
868 /**
869  * ieee80211_is_frag - check if a frame is a fragment
870  * @hdr: 802.11 header of the frame
871  * Return: whether or not the frame is a fragment
872  */
873 static inline bool ieee80211_is_frag(struct ieee80211_hdr *hdr)
874 {
875 	return ieee80211_has_morefrags(hdr->frame_control) ||
876 	       hdr->seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG);
877 }
878 
879 static inline u16 ieee80211_get_sn(struct ieee80211_hdr *hdr)
880 {
881 	return le16_get_bits(hdr->seq_ctrl, IEEE80211_SCTL_SEQ);
882 }
883 
884 struct ieee80211s_hdr {
885 	u8 flags;
886 	u8 ttl;
887 	__le32 seqnum;
888 	u8 eaddr1[ETH_ALEN];
889 	u8 eaddr2[ETH_ALEN];
890 } __packed __aligned(2);
891 
892 /* Mesh flags */
893 #define MESH_FLAGS_AE_A4 	0x1
894 #define MESH_FLAGS_AE_A5_A6	0x2
895 #define MESH_FLAGS_AE		0x3
896 #define MESH_FLAGS_PS_DEEP	0x4
897 
898 /**
899  * enum ieee80211_preq_flags - mesh PREQ element flags
900  *
901  * @IEEE80211_PREQ_PROACTIVE_PREP_FLAG: proactive PREP subfield
902  */
903 enum ieee80211_preq_flags {
904 	IEEE80211_PREQ_PROACTIVE_PREP_FLAG	= 1<<2,
905 };
906 
907 /**
908  * enum ieee80211_preq_target_flags - mesh PREQ element per target flags
909  *
910  * @IEEE80211_PREQ_TO_FLAG: target only subfield
911  * @IEEE80211_PREQ_USN_FLAG: unknown target HWMP sequence number subfield
912  */
913 enum ieee80211_preq_target_flags {
914 	IEEE80211_PREQ_TO_FLAG	= 1<<0,
915 	IEEE80211_PREQ_USN_FLAG	= 1<<2,
916 };
917 
918 /**
919  * struct ieee80211_quiet_ie - Quiet element
920  * @count: Quiet Count
921  * @period: Quiet Period
922  * @duration: Quiet Duration
923  * @offset: Quiet Offset
924  *
925  * This structure represents the payload of the "Quiet element" as
926  * described in IEEE Std 802.11-2020 section 9.4.2.22.
927  */
928 struct ieee80211_quiet_ie {
929 	u8 count;
930 	u8 period;
931 	__le16 duration;
932 	__le16 offset;
933 } __packed;
934 
935 /**
936  * struct ieee80211_msrment_ie - Measurement element
937  * @token: Measurement Token
938  * @mode: Measurement Report Mode
939  * @type: Measurement Type
940  * @request: Measurement Request or Measurement Report
941  *
942  * This structure represents the payload of both the "Measurement
943  * Request element" and the "Measurement Report element" as described
944  * in IEEE Std 802.11-2020 sections 9.4.2.20 and 9.4.2.21.
945  */
946 struct ieee80211_msrment_ie {
947 	u8 token;
948 	u8 mode;
949 	u8 type;
950 	u8 request[];
951 } __packed;
952 
953 /**
954  * struct ieee80211_channel_sw_ie - Channel Switch Announcement element
955  * @mode: Channel Switch Mode
956  * @new_ch_num: New Channel Number
957  * @count: Channel Switch Count
958  *
959  * This structure represents the payload of the "Channel Switch
960  * Announcement element" as described in IEEE Std 802.11-2020 section
961  * 9.4.2.18.
962  */
963 struct ieee80211_channel_sw_ie {
964 	u8 mode;
965 	u8 new_ch_num;
966 	u8 count;
967 } __packed;
968 
969 /**
970  * struct ieee80211_ext_chansw_ie - Extended Channel Switch Announcement element
971  * @mode: Channel Switch Mode
972  * @new_operating_class: New Operating Class
973  * @new_ch_num: New Channel Number
974  * @count: Channel Switch Count
975  *
976  * This structure represents the "Extended Channel Switch Announcement
977  * element" as described in IEEE Std 802.11-2020 section 9.4.2.52.
978  */
979 struct ieee80211_ext_chansw_ie {
980 	u8 mode;
981 	u8 new_operating_class;
982 	u8 new_ch_num;
983 	u8 count;
984 } __packed;
985 
986 /**
987  * struct ieee80211_sec_chan_offs_ie - secondary channel offset IE
988  * @sec_chan_offs: secondary channel offset, uses IEEE80211_HT_PARAM_CHA_SEC_*
989  *	values here
990  * This structure represents the "Secondary Channel Offset element"
991  */
992 struct ieee80211_sec_chan_offs_ie {
993 	u8 sec_chan_offs;
994 } __packed;
995 
996 /**
997  * struct ieee80211_mesh_chansw_params_ie - mesh channel switch parameters IE
998  * @mesh_ttl: Time To Live
999  * @mesh_flags: Flags
1000  * @mesh_reason: Reason Code
1001  * @mesh_pre_value: Precedence Value
1002  *
1003  * This structure represents the payload of the "Mesh Channel Switch
1004  * Parameters element" as described in IEEE Std 802.11-2020 section
1005  * 9.4.2.102.
1006  */
1007 struct ieee80211_mesh_chansw_params_ie {
1008 	u8 mesh_ttl;
1009 	u8 mesh_flags;
1010 	__le16 mesh_reason;
1011 	__le16 mesh_pre_value;
1012 } __packed;
1013 
1014 /**
1015  * struct ieee80211_wide_bw_chansw_ie - wide bandwidth channel switch IE
1016  * @new_channel_width: New Channel Width
1017  * @new_center_freq_seg0: New Channel Center Frequency Segment 0
1018  * @new_center_freq_seg1: New Channel Center Frequency Segment 1
1019  *
1020  * This structure represents the payload of the "Wide Bandwidth
1021  * Channel Switch element" as described in IEEE Std 802.11-2020
1022  * section 9.4.2.160.
1023  */
1024 struct ieee80211_wide_bw_chansw_ie {
1025 	u8 new_channel_width;
1026 	u8 new_center_freq_seg0, new_center_freq_seg1;
1027 } __packed;
1028 
1029 /**
1030  * struct ieee80211_tim_ie - Traffic Indication Map information element
1031  * @dtim_count: DTIM Count
1032  * @dtim_period: DTIM Period
1033  * @bitmap_ctrl: Bitmap Control
1034  * @required_octet: "Syntatic sugar" to force the struct size to the
1035  *                  minimum valid size when carried in a non-S1G PPDU
1036  * @virtual_map: Partial Virtual Bitmap
1037  *
1038  * This structure represents the payload of the "TIM element" as
1039  * described in IEEE Std 802.11-2020 section 9.4.2.5. Note that this
1040  * definition is only applicable when the element is carried in a
1041  * non-S1G PPDU. When the TIM is carried in an S1G PPDU, the Bitmap
1042  * Control and Partial Virtual Bitmap may not be present.
1043  */
1044 struct ieee80211_tim_ie {
1045 	u8 dtim_count;
1046 	u8 dtim_period;
1047 	u8 bitmap_ctrl;
1048 	union {
1049 		u8 required_octet;
1050 		DECLARE_FLEX_ARRAY(u8, virtual_map);
1051 	};
1052 } __packed;
1053 
1054 /**
1055  * struct ieee80211_meshconf_ie - Mesh Configuration element
1056  * @meshconf_psel: Active Path Selection Protocol Identifier
1057  * @meshconf_pmetric: Active Path Selection Metric Identifier
1058  * @meshconf_congest: Congestion Control Mode Identifier
1059  * @meshconf_synch: Synchronization Method Identifier
1060  * @meshconf_auth: Authentication Protocol Identifier
1061  * @meshconf_form: Mesh Formation Info
1062  * @meshconf_cap: Mesh Capability (see &enum mesh_config_capab_flags)
1063  *
1064  * This structure represents the payload of the "Mesh Configuration
1065  * element" as described in IEEE Std 802.11-2020 section 9.4.2.97.
1066  */
1067 struct ieee80211_meshconf_ie {
1068 	u8 meshconf_psel;
1069 	u8 meshconf_pmetric;
1070 	u8 meshconf_congest;
1071 	u8 meshconf_synch;
1072 	u8 meshconf_auth;
1073 	u8 meshconf_form;
1074 	u8 meshconf_cap;
1075 } __packed;
1076 
1077 /**
1078  * enum mesh_config_capab_flags - Mesh Configuration IE capability field flags
1079  *
1080  * @IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS: STA is willing to establish
1081  *	additional mesh peerings with other mesh STAs
1082  * @IEEE80211_MESHCONF_CAPAB_FORWARDING: the STA forwards MSDUs
1083  * @IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING: TBTT adjustment procedure
1084  *	is ongoing
1085  * @IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL: STA is in deep sleep mode or has
1086  *	neighbors in deep sleep mode
1087  *
1088  * Enumerates the "Mesh Capability" as described in IEEE Std
1089  * 802.11-2020 section 9.4.2.97.7.
1090  */
1091 enum mesh_config_capab_flags {
1092 	IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS		= 0x01,
1093 	IEEE80211_MESHCONF_CAPAB_FORWARDING		= 0x08,
1094 	IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING		= 0x20,
1095 	IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL	= 0x40,
1096 };
1097 
1098 #define IEEE80211_MESHCONF_FORM_CONNECTED_TO_GATE 0x1
1099 
1100 /*
1101  * mesh channel switch parameters element's flag indicator
1102  *
1103  */
1104 #define WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT BIT(0)
1105 #define WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR BIT(1)
1106 #define WLAN_EID_CHAN_SWITCH_PARAM_REASON BIT(2)
1107 
1108 /**
1109  * struct ieee80211_rann_ie - RANN (root announcement) element
1110  * @rann_flags: Flags
1111  * @rann_hopcount: Hop Count
1112  * @rann_ttl: Element TTL
1113  * @rann_addr: Root Mesh STA Address
1114  * @rann_seq: HWMP Sequence Number
1115  * @rann_interval: Interval
1116  * @rann_metric: Metric
1117  *
1118  * This structure represents the payload of the "RANN element" as
1119  * described in IEEE Std 802.11-2020 section 9.4.2.111.
1120  */
1121 struct ieee80211_rann_ie {
1122 	u8 rann_flags;
1123 	u8 rann_hopcount;
1124 	u8 rann_ttl;
1125 	u8 rann_addr[ETH_ALEN];
1126 	__le32 rann_seq;
1127 	__le32 rann_interval;
1128 	__le32 rann_metric;
1129 } __packed;
1130 
1131 enum ieee80211_rann_flags {
1132 	RANN_FLAG_IS_GATE = 1 << 0,
1133 };
1134 
1135 enum ieee80211_ht_chanwidth_values {
1136 	IEEE80211_HT_CHANWIDTH_20MHZ = 0,
1137 	IEEE80211_HT_CHANWIDTH_ANY = 1,
1138 };
1139 
1140 /**
1141  * enum ieee80211_vht_opmode_bits - VHT operating mode field bits
1142  * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK: channel width mask
1143  * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ: 20 MHz channel width
1144  * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ: 40 MHz channel width
1145  * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ: 80 MHz channel width
1146  * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ: 160 MHz or 80+80 MHz channel width
1147  * @IEEE80211_OPMODE_NOTIF_BW_160_80P80: 160 / 80+80 MHz indicator flag
1148  * @IEEE80211_OPMODE_NOTIF_RX_NSS_MASK: number of spatial streams mask
1149  *	(the NSS value is the value of this field + 1)
1150  * @IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT: number of spatial streams shift
1151  * @IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF: indicates streams in SU-MIMO PPDU
1152  *	using a beamforming steering matrix
1153  */
1154 enum ieee80211_vht_opmode_bits {
1155 	IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK	= 0x03,
1156 	IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ	= 0,
1157 	IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ	= 1,
1158 	IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ	= 2,
1159 	IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ	= 3,
1160 	IEEE80211_OPMODE_NOTIF_BW_160_80P80	= 0x04,
1161 	IEEE80211_OPMODE_NOTIF_RX_NSS_MASK	= 0x70,
1162 	IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT	= 4,
1163 	IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF	= 0x80,
1164 };
1165 
1166 /**
1167  * enum ieee80211_s1g_chanwidth - S1G channel widths
1168  * These are defined in IEEE802.11-2016ah Table 10-20
1169  * as BSS Channel Width
1170  *
1171  * @IEEE80211_S1G_CHANWIDTH_1MHZ: 1MHz operating channel
1172  * @IEEE80211_S1G_CHANWIDTH_2MHZ: 2MHz operating channel
1173  * @IEEE80211_S1G_CHANWIDTH_4MHZ: 4MHz operating channel
1174  * @IEEE80211_S1G_CHANWIDTH_8MHZ: 8MHz operating channel
1175  * @IEEE80211_S1G_CHANWIDTH_16MHZ: 16MHz operating channel
1176  */
1177 enum ieee80211_s1g_chanwidth {
1178 	IEEE80211_S1G_CHANWIDTH_1MHZ = 0,
1179 	IEEE80211_S1G_CHANWIDTH_2MHZ = 1,
1180 	IEEE80211_S1G_CHANWIDTH_4MHZ = 3,
1181 	IEEE80211_S1G_CHANWIDTH_8MHZ = 7,
1182 	IEEE80211_S1G_CHANWIDTH_16MHZ = 15,
1183 };
1184 
1185 /**
1186  * enum ieee80211_s1g_pri_chanwidth - S1G primary channel widths
1187  *	described in IEEE80211-2024 Table 10-39.
1188  *
1189  * @IEEE80211_S1G_PRI_CHANWIDTH_2MHZ: 2MHz primary channel
1190  * @IEEE80211_S1G_PRI_CHANWIDTH_1MHZ: 1MHz primary channel
1191  */
1192 enum ieee80211_s1g_pri_chanwidth {
1193 	IEEE80211_S1G_PRI_CHANWIDTH_2MHZ = 0,
1194 	IEEE80211_S1G_PRI_CHANWIDTH_1MHZ = 1,
1195 };
1196 
1197 #define WLAN_SA_QUERY_TR_ID_LEN 2
1198 #define WLAN_MEMBERSHIP_LEN 8
1199 #define WLAN_USER_POSITION_LEN 16
1200 
1201 /**
1202  * struct ieee80211_tpc_report_ie - TPC Report element
1203  * @tx_power: Transmit Power
1204  * @link_margin: Link Margin
1205  *
1206  * This structure represents the payload of the "TPC Report element" as
1207  * described in IEEE Std 802.11-2020 section 9.4.2.16.
1208  */
1209 struct ieee80211_tpc_report_ie {
1210 	u8 tx_power;
1211 	u8 link_margin;
1212 } __packed;
1213 
1214 #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_MASK	GENMASK(2, 1)
1215 #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_SHIFT	1
1216 #define IEEE80211_ADDBA_EXT_NO_FRAG		BIT(0)
1217 #define IEEE80211_ADDBA_EXT_BUF_SIZE_MASK	GENMASK(7, 5)
1218 #define IEEE80211_ADDBA_EXT_BUF_SIZE_SHIFT	10
1219 
1220 struct ieee80211_addba_ext_ie {
1221 	u8 data;
1222 } __packed;
1223 
1224 /**
1225  * struct ieee80211_s1g_bcn_compat_ie - S1G Beacon Compatibility element
1226  * @compat_info: Compatibility Information
1227  * @beacon_int: Beacon Interval
1228  * @tsf_completion: TSF Completion
1229  *
1230  * This structure represents the payload of the "S1G Beacon
1231  * Compatibility element" as described in IEEE Std 802.11-2020 section
1232  * 9.4.2.196.
1233  */
1234 struct ieee80211_s1g_bcn_compat_ie {
1235 	__le16 compat_info;
1236 	__le16 beacon_int;
1237 	__le32 tsf_completion;
1238 } __packed;
1239 
1240 /**
1241  * struct ieee80211_s1g_oper_ie - S1G Operation element
1242  * @ch_width: S1G Operation Information Channel Width
1243  * @oper_class: S1G Operation Information Operating Class
1244  * @primary_ch: S1G Operation Information Primary Channel Number
1245  * @oper_ch: S1G Operation Information  Channel Center Frequency
1246  * @basic_mcs_nss: Basic S1G-MCS and NSS Set
1247  *
1248  * This structure represents the payload of the "S1G Operation
1249  * element" as described in IEEE Std 802.11-2020 section 9.4.2.212.
1250  */
1251 struct ieee80211_s1g_oper_ie {
1252 	u8 ch_width;
1253 	u8 oper_class;
1254 	u8 primary_ch;
1255 	u8 oper_ch;
1256 	__le16 basic_mcs_nss;
1257 } __packed;
1258 
1259 /**
1260  * struct ieee80211_aid_response_ie - AID Response element
1261  * @aid: AID/Group AID
1262  * @switch_count: AID Switch Count
1263  * @response_int: AID Response Interval
1264  *
1265  * This structure represents the payload of the "AID Response element"
1266  * as described in IEEE Std 802.11-2020 section 9.4.2.194.
1267  */
1268 struct ieee80211_aid_response_ie {
1269 	__le16 aid;
1270 	u8 switch_count;
1271 	__le16 response_int;
1272 } __packed;
1273 
1274 struct ieee80211_s1g_cap {
1275 	u8 capab_info[10];
1276 	u8 supp_mcs_nss[5];
1277 } __packed;
1278 
1279 struct ieee80211_ext {
1280 	__le16 frame_control;
1281 	__le16 duration;
1282 	union {
1283 		struct {
1284 			u8 sa[ETH_ALEN];
1285 			__le32 timestamp;
1286 			u8 change_seq;
1287 			u8 variable[];
1288 		} __packed s1g_beacon;
1289 	} u;
1290 } __packed __aligned(2);
1291 
1292 /**
1293  * ieee80211_s1g_optional_len - determine length of optional S1G beacon fields
1294  * @fc: frame control bytes in little-endian byteorder
1295  * Return: total length in bytes of the optional fixed-length fields
1296  *
1297  * S1G beacons may contain up to three optional fixed-length fields that
1298  * precede the variable-length elements. Whether these fields are present
1299  * is indicated by flags in the frame control field.
1300  *
1301  * From IEEE 802.11-2024 section 9.3.4.3:
1302  *  - Next TBTT field may be 0 or 3 bytes
1303  *  - Short SSID field may be 0 or 4 bytes
1304  *  - Access Network Options (ANO) field may be 0 or 1 byte
1305  */
1306 static inline size_t
1307 ieee80211_s1g_optional_len(__le16 fc)
1308 {
1309 	size_t len = 0;
1310 
1311 	if (ieee80211_s1g_has_next_tbtt(fc))
1312 		len += 3;
1313 
1314 	if (ieee80211_s1g_has_cssid(fc))
1315 		len += 4;
1316 
1317 	if (ieee80211_s1g_has_ano(fc))
1318 		len += 1;
1319 
1320 	return len;
1321 }
1322 
1323 #define IEEE80211_TWT_CONTROL_NDP			BIT(0)
1324 #define IEEE80211_TWT_CONTROL_RESP_MODE			BIT(1)
1325 #define IEEE80211_TWT_CONTROL_NEG_TYPE_BROADCAST	BIT(3)
1326 #define IEEE80211_TWT_CONTROL_RX_DISABLED		BIT(4)
1327 #define IEEE80211_TWT_CONTROL_WAKE_DUR_UNIT		BIT(5)
1328 
1329 #define IEEE80211_TWT_REQTYPE_REQUEST			BIT(0)
1330 #define IEEE80211_TWT_REQTYPE_SETUP_CMD			GENMASK(3, 1)
1331 #define IEEE80211_TWT_REQTYPE_TRIGGER			BIT(4)
1332 #define IEEE80211_TWT_REQTYPE_IMPLICIT			BIT(5)
1333 #define IEEE80211_TWT_REQTYPE_FLOWTYPE			BIT(6)
1334 #define IEEE80211_TWT_REQTYPE_FLOWID			GENMASK(9, 7)
1335 #define IEEE80211_TWT_REQTYPE_WAKE_INT_EXP		GENMASK(14, 10)
1336 #define IEEE80211_TWT_REQTYPE_PROTECTION		BIT(15)
1337 
1338 enum ieee80211_twt_setup_cmd {
1339 	TWT_SETUP_CMD_REQUEST,
1340 	TWT_SETUP_CMD_SUGGEST,
1341 	TWT_SETUP_CMD_DEMAND,
1342 	TWT_SETUP_CMD_GROUPING,
1343 	TWT_SETUP_CMD_ACCEPT,
1344 	TWT_SETUP_CMD_ALTERNATE,
1345 	TWT_SETUP_CMD_DICTATE,
1346 	TWT_SETUP_CMD_REJECT,
1347 };
1348 
1349 struct ieee80211_twt_params {
1350 	__le16 req_type;
1351 	__le64 twt;
1352 	u8 min_twt_dur;
1353 	__le16 mantissa;
1354 	u8 channel;
1355 } __packed;
1356 
1357 struct ieee80211_twt_setup {
1358 	u8 dialog_token;
1359 	u8 element_id;
1360 	u8 length;
1361 	u8 control;
1362 	u8 params[];
1363 } __packed;
1364 
1365 #define IEEE80211_TTLM_MAX_CNT				2
1366 #define IEEE80211_TTLM_CONTROL_DIRECTION		0x03
1367 #define IEEE80211_TTLM_CONTROL_DEF_LINK_MAP		0x04
1368 #define IEEE80211_TTLM_CONTROL_SWITCH_TIME_PRESENT	0x08
1369 #define IEEE80211_TTLM_CONTROL_EXPECTED_DUR_PRESENT	0x10
1370 #define IEEE80211_TTLM_CONTROL_LINK_MAP_SIZE		0x20
1371 
1372 #define IEEE80211_TTLM_DIRECTION_DOWN		0
1373 #define IEEE80211_TTLM_DIRECTION_UP		1
1374 #define IEEE80211_TTLM_DIRECTION_BOTH		2
1375 
1376 /**
1377  * struct ieee80211_ttlm_elem - TID-To-Link Mapping element
1378  *
1379  * Defined in section 9.4.2.314 in P802.11be_D4
1380  *
1381  * @control: the first part of control field
1382  * @optional: the second part of control field
1383  */
1384 struct ieee80211_ttlm_elem {
1385 	u8 control;
1386 	u8 optional[];
1387 } __packed;
1388 
1389 /**
1390  * struct ieee80211_bss_load_elem - BSS Load elemen
1391  *
1392  * Defined in section 9.4.2.26 in IEEE 802.11-REVme D4.1
1393  *
1394  * @sta_count: total number of STAs currently associated with the AP.
1395  * @channel_util: Percentage of time that the access point sensed the channel
1396  *	was busy. This value is in range [0, 255], the highest value means
1397  *	100% busy.
1398  * @avail_admission_capa: remaining amount of medium time used for admission
1399  *	control.
1400  */
1401 struct ieee80211_bss_load_elem {
1402 	__le16 sta_count;
1403 	u8 channel_util;
1404 	__le16 avail_admission_capa;
1405 } __packed;
1406 
1407 struct ieee80211_mgmt {
1408 	__le16 frame_control;
1409 	__le16 duration;
1410 	u8 da[ETH_ALEN];
1411 	u8 sa[ETH_ALEN];
1412 	u8 bssid[ETH_ALEN];
1413 	__le16 seq_ctrl;
1414 	union {
1415 		struct {
1416 			__le16 auth_alg;
1417 			__le16 auth_transaction;
1418 			__le16 status_code;
1419 			/* possibly followed by Challenge text */
1420 			u8 variable[];
1421 		} __packed auth;
1422 		struct {
1423 			__le16 reason_code;
1424 		} __packed deauth;
1425 		struct {
1426 			__le16 capab_info;
1427 			__le16 listen_interval;
1428 			/* followed by SSID and Supported rates */
1429 			u8 variable[];
1430 		} __packed assoc_req;
1431 		struct {
1432 			__le16 capab_info;
1433 			__le16 status_code;
1434 			__le16 aid;
1435 			/* followed by Supported rates */
1436 			u8 variable[];
1437 		} __packed assoc_resp, reassoc_resp;
1438 		struct {
1439 			__le16 capab_info;
1440 			__le16 status_code;
1441 			u8 variable[];
1442 		} __packed s1g_assoc_resp, s1g_reassoc_resp;
1443 		struct {
1444 			__le16 capab_info;
1445 			__le16 listen_interval;
1446 			u8 current_ap[ETH_ALEN];
1447 			/* followed by SSID and Supported rates */
1448 			u8 variable[];
1449 		} __packed reassoc_req;
1450 		struct {
1451 			__le16 reason_code;
1452 		} __packed disassoc;
1453 		struct {
1454 			__le64 timestamp;
1455 			__le16 beacon_int;
1456 			__le16 capab_info;
1457 			/* followed by some of SSID, Supported rates,
1458 			 * FH Params, DS Params, CF Params, IBSS Params, TIM */
1459 			u8 variable[];
1460 		} __packed beacon;
1461 		struct {
1462 			/* only variable items: SSID, Supported rates */
1463 			DECLARE_FLEX_ARRAY(u8, variable);
1464 		} __packed probe_req;
1465 		struct {
1466 			__le64 timestamp;
1467 			__le16 beacon_int;
1468 			__le16 capab_info;
1469 			/* followed by some of SSID, Supported rates,
1470 			 * FH Params, DS Params, CF Params, IBSS Params */
1471 			u8 variable[];
1472 		} __packed probe_resp;
1473 		struct {
1474 			u8 category;
1475 			union {
1476 				struct {
1477 					u8 action_code;
1478 					u8 dialog_token;
1479 					u8 status_code;
1480 					u8 variable[];
1481 				} __packed wme_action;
1482 				struct{
1483 					u8 action_code;
1484 					u8 variable[];
1485 				} __packed chan_switch;
1486 				struct{
1487 					u8 action_code;
1488 					struct ieee80211_ext_chansw_ie data;
1489 					u8 variable[];
1490 				} __packed ext_chan_switch;
1491 				struct{
1492 					u8 action_code;
1493 					u8 dialog_token;
1494 					u8 element_id;
1495 					u8 length;
1496 					struct ieee80211_msrment_ie msr_elem;
1497 				} __packed measurement;
1498 				struct{
1499 					u8 action_code;
1500 					u8 dialog_token;
1501 					__le16 capab;
1502 					__le16 timeout;
1503 					__le16 start_seq_num;
1504 					/* followed by BA Extension */
1505 					u8 variable[];
1506 				} __packed addba_req;
1507 				struct{
1508 					u8 action_code;
1509 					u8 dialog_token;
1510 					__le16 status;
1511 					__le16 capab;
1512 					__le16 timeout;
1513 					/* followed by BA Extension */
1514 					u8 variable[];
1515 				} __packed addba_resp;
1516 				struct{
1517 					u8 action_code;
1518 					__le16 params;
1519 					__le16 reason_code;
1520 				} __packed delba;
1521 				struct {
1522 					u8 action_code;
1523 					u8 variable[];
1524 				} __packed self_prot;
1525 				struct{
1526 					u8 action_code;
1527 					u8 variable[];
1528 				} __packed mesh_action;
1529 				struct {
1530 					u8 action;
1531 					u8 trans_id[WLAN_SA_QUERY_TR_ID_LEN];
1532 				} __packed sa_query;
1533 				struct {
1534 					u8 action;
1535 					u8 smps_control;
1536 				} __packed ht_smps;
1537 				struct {
1538 					u8 action_code;
1539 					u8 chanwidth;
1540 				} __packed ht_notify_cw;
1541 				struct {
1542 					u8 action_code;
1543 					u8 dialog_token;
1544 					__le16 capability;
1545 					u8 variable[];
1546 				} __packed tdls_discover_resp;
1547 				struct {
1548 					u8 action_code;
1549 					u8 operating_mode;
1550 				} __packed vht_opmode_notif;
1551 				struct {
1552 					u8 action_code;
1553 					u8 membership[WLAN_MEMBERSHIP_LEN];
1554 					u8 position[WLAN_USER_POSITION_LEN];
1555 				} __packed vht_group_notif;
1556 				struct {
1557 					u8 action_code;
1558 					u8 dialog_token;
1559 					u8 tpc_elem_id;
1560 					u8 tpc_elem_length;
1561 					struct ieee80211_tpc_report_ie tpc;
1562 				} __packed tpc_report;
1563 				struct {
1564 					u8 action_code;
1565 					u8 dialog_token;
1566 					u8 follow_up;
1567 					u8 tod[6];
1568 					u8 toa[6];
1569 					__le16 tod_error;
1570 					__le16 toa_error;
1571 					u8 variable[];
1572 				} __packed ftm;
1573 				struct {
1574 					u8 action_code;
1575 					u8 variable[];
1576 				} __packed s1g;
1577 				struct {
1578 					u8 action_code;
1579 					u8 dialog_token;
1580 					u8 follow_up;
1581 					u32 tod;
1582 					u32 toa;
1583 					u8 max_tod_error;
1584 					u8 max_toa_error;
1585 				} __packed wnm_timing_msr;
1586 				struct {
1587 					u8 action_code;
1588 					u8 dialog_token;
1589 					u8 variable[];
1590 				} __packed ttlm_req;
1591 				struct {
1592 					u8 action_code;
1593 					u8 dialog_token;
1594 					__le16 status_code;
1595 					u8 variable[];
1596 				} __packed ttlm_res;
1597 				struct {
1598 					u8 action_code;
1599 				} __packed ttlm_tear_down;
1600 				struct {
1601 					u8 action_code;
1602 					u8 dialog_token;
1603 					u8 variable[];
1604 				} __packed ml_reconf_req;
1605 				struct {
1606 					u8 action_code;
1607 					u8 dialog_token;
1608 					u8 count;
1609 					u8 variable[];
1610 				} __packed ml_reconf_resp;
1611 				struct {
1612 					u8 action_code;
1613 					u8 variable[];
1614 				} __packed epcs;
1615 			} u;
1616 		} __packed action;
1617 		DECLARE_FLEX_ARRAY(u8, body); /* Generic frame body */
1618 	} u;
1619 } __packed __aligned(2);
1620 
1621 /* Supported rates membership selectors */
1622 #define BSS_MEMBERSHIP_SELECTOR_HT_PHY	127
1623 #define BSS_MEMBERSHIP_SELECTOR_VHT_PHY	126
1624 #define BSS_MEMBERSHIP_SELECTOR_GLK	125
1625 #define BSS_MEMBERSHIP_SELECTOR_EPD	124
1626 #define BSS_MEMBERSHIP_SELECTOR_SAE_H2E 123
1627 #define BSS_MEMBERSHIP_SELECTOR_HE_PHY	122
1628 #define BSS_MEMBERSHIP_SELECTOR_EHT_PHY	121
1629 
1630 #define BSS_MEMBERSHIP_SELECTOR_MIN	BSS_MEMBERSHIP_SELECTOR_EHT_PHY
1631 
1632 /* mgmt header + 1 byte category code */
1633 #define IEEE80211_MIN_ACTION_SIZE offsetof(struct ieee80211_mgmt, u.action.u)
1634 
1635 
1636 /* Management MIC information element (IEEE 802.11w) */
1637 struct ieee80211_mmie {
1638 	u8 element_id;
1639 	u8 length;
1640 	__le16 key_id;
1641 	u8 sequence_number[6];
1642 	u8 mic[8];
1643 } __packed;
1644 
1645 /* Management MIC information element (IEEE 802.11w) for GMAC and CMAC-256 */
1646 struct ieee80211_mmie_16 {
1647 	u8 element_id;
1648 	u8 length;
1649 	__le16 key_id;
1650 	u8 sequence_number[6];
1651 	u8 mic[16];
1652 } __packed;
1653 
1654 struct ieee80211_vendor_ie {
1655 	u8 element_id;
1656 	u8 len;
1657 	u8 oui[3];
1658 	u8 oui_type;
1659 } __packed;
1660 
1661 struct ieee80211_wmm_ac_param {
1662 	u8 aci_aifsn; /* AIFSN, ACM, ACI */
1663 	u8 cw; /* ECWmin, ECWmax (CW = 2^ECW - 1) */
1664 	__le16 txop_limit;
1665 } __packed;
1666 
1667 struct ieee80211_wmm_param_ie {
1668 	u8 element_id; /* Element ID: 221 (0xdd); */
1669 	u8 len; /* Length: 24 */
1670 	/* required fields for WMM version 1 */
1671 	u8 oui[3]; /* 00:50:f2 */
1672 	u8 oui_type; /* 2 */
1673 	u8 oui_subtype; /* 1 */
1674 	u8 version; /* 1 for WMM version 1.0 */
1675 	u8 qos_info; /* AP/STA specific QoS info */
1676 	u8 reserved; /* 0 */
1677 	/* AC_BE, AC_BK, AC_VI, AC_VO */
1678 	struct ieee80211_wmm_ac_param ac[4];
1679 } __packed;
1680 
1681 /* Control frames */
1682 struct ieee80211_rts {
1683 	__le16 frame_control;
1684 	__le16 duration;
1685 	u8 ra[ETH_ALEN];
1686 	u8 ta[ETH_ALEN];
1687 } __packed __aligned(2);
1688 
1689 struct ieee80211_cts {
1690 	__le16 frame_control;
1691 	__le16 duration;
1692 	u8 ra[ETH_ALEN];
1693 } __packed __aligned(2);
1694 
1695 struct ieee80211_pspoll {
1696 	__le16 frame_control;
1697 	__le16 aid;
1698 	u8 bssid[ETH_ALEN];
1699 	u8 ta[ETH_ALEN];
1700 } __packed __aligned(2);
1701 
1702 /* TDLS */
1703 
1704 /* Channel switch timing */
1705 struct ieee80211_ch_switch_timing {
1706 	__le16 switch_time;
1707 	__le16 switch_timeout;
1708 } __packed;
1709 
1710 /* Link-id information element */
1711 struct ieee80211_tdls_lnkie {
1712 	u8 ie_type; /* Link Identifier IE */
1713 	u8 ie_len;
1714 	u8 bssid[ETH_ALEN];
1715 	u8 init_sta[ETH_ALEN];
1716 	u8 resp_sta[ETH_ALEN];
1717 } __packed;
1718 
1719 struct ieee80211_tdls_data {
1720 	u8 da[ETH_ALEN];
1721 	u8 sa[ETH_ALEN];
1722 	__be16 ether_type;
1723 	u8 payload_type;
1724 	u8 category;
1725 	u8 action_code;
1726 	union {
1727 		struct {
1728 			u8 dialog_token;
1729 			__le16 capability;
1730 			u8 variable[];
1731 		} __packed setup_req;
1732 		struct {
1733 			__le16 status_code;
1734 			u8 dialog_token;
1735 			__le16 capability;
1736 			u8 variable[];
1737 		} __packed setup_resp;
1738 		struct {
1739 			__le16 status_code;
1740 			u8 dialog_token;
1741 			u8 variable[];
1742 		} __packed setup_cfm;
1743 		struct {
1744 			__le16 reason_code;
1745 			u8 variable[];
1746 		} __packed teardown;
1747 		struct {
1748 			u8 dialog_token;
1749 			u8 variable[];
1750 		} __packed discover_req;
1751 		struct {
1752 			u8 target_channel;
1753 			u8 oper_class;
1754 			u8 variable[];
1755 		} __packed chan_switch_req;
1756 		struct {
1757 			__le16 status_code;
1758 			u8 variable[];
1759 		} __packed chan_switch_resp;
1760 	} u;
1761 } __packed;
1762 
1763 /*
1764  * Peer-to-Peer IE attribute related definitions.
1765  */
1766 /*
1767  * enum ieee80211_p2p_attr_id - identifies type of peer-to-peer attribute.
1768  */
1769 enum ieee80211_p2p_attr_id {
1770 	IEEE80211_P2P_ATTR_STATUS = 0,
1771 	IEEE80211_P2P_ATTR_MINOR_REASON,
1772 	IEEE80211_P2P_ATTR_CAPABILITY,
1773 	IEEE80211_P2P_ATTR_DEVICE_ID,
1774 	IEEE80211_P2P_ATTR_GO_INTENT,
1775 	IEEE80211_P2P_ATTR_GO_CONFIG_TIMEOUT,
1776 	IEEE80211_P2P_ATTR_LISTEN_CHANNEL,
1777 	IEEE80211_P2P_ATTR_GROUP_BSSID,
1778 	IEEE80211_P2P_ATTR_EXT_LISTEN_TIMING,
1779 	IEEE80211_P2P_ATTR_INTENDED_IFACE_ADDR,
1780 	IEEE80211_P2P_ATTR_MANAGABILITY,
1781 	IEEE80211_P2P_ATTR_CHANNEL_LIST,
1782 	IEEE80211_P2P_ATTR_ABSENCE_NOTICE,
1783 	IEEE80211_P2P_ATTR_DEVICE_INFO,
1784 	IEEE80211_P2P_ATTR_GROUP_INFO,
1785 	IEEE80211_P2P_ATTR_GROUP_ID,
1786 	IEEE80211_P2P_ATTR_INTERFACE,
1787 	IEEE80211_P2P_ATTR_OPER_CHANNEL,
1788 	IEEE80211_P2P_ATTR_INVITE_FLAGS,
1789 	/* 19 - 220: Reserved */
1790 	IEEE80211_P2P_ATTR_VENDOR_SPECIFIC = 221,
1791 
1792 	IEEE80211_P2P_ATTR_MAX
1793 };
1794 
1795 /* Notice of Absence attribute - described in P2P spec 4.1.14 */
1796 /* Typical max value used here */
1797 #define IEEE80211_P2P_NOA_DESC_MAX	4
1798 
1799 struct ieee80211_p2p_noa_desc {
1800 	u8 count;
1801 	__le32 duration;
1802 	__le32 interval;
1803 	__le32 start_time;
1804 } __packed;
1805 
1806 struct ieee80211_p2p_noa_attr {
1807 	u8 index;
1808 	u8 oppps_ctwindow;
1809 	struct ieee80211_p2p_noa_desc desc[IEEE80211_P2P_NOA_DESC_MAX];
1810 } __packed;
1811 
1812 #define IEEE80211_P2P_OPPPS_ENABLE_BIT		BIT(7)
1813 #define IEEE80211_P2P_OPPPS_CTWINDOW_MASK	0x7F
1814 
1815 /**
1816  * struct ieee80211_bar - Block Ack Request frame format
1817  * @frame_control: Frame Control
1818  * @duration: Duration
1819  * @ra: RA
1820  * @ta: TA
1821  * @control: BAR Control
1822  * @start_seq_num: Starting Sequence Number (see Figure 9-37)
1823  *
1824  * This structure represents the "BlockAckReq frame format"
1825  * as described in IEEE Std 802.11-2020 section 9.3.1.7.
1826 */
1827 struct ieee80211_bar {
1828 	__le16 frame_control;
1829 	__le16 duration;
1830 	__u8 ra[ETH_ALEN];
1831 	__u8 ta[ETH_ALEN];
1832 	__le16 control;
1833 	__le16 start_seq_num;
1834 } __packed;
1835 
1836 /* 802.11 BAR control masks */
1837 #define IEEE80211_BAR_CTRL_ACK_POLICY_NORMAL	0x0000
1838 #define IEEE80211_BAR_CTRL_MULTI_TID		0x0002
1839 #define IEEE80211_BAR_CTRL_CBMTID_COMPRESSED_BA	0x0004
1840 #define IEEE80211_BAR_CTRL_TID_INFO_MASK	0xf000
1841 #define IEEE80211_BAR_CTRL_TID_INFO_SHIFT	12
1842 
1843 #define IEEE80211_HT_MCS_MASK_LEN		10
1844 
1845 /**
1846  * struct ieee80211_mcs_info - Supported MCS Set field
1847  * @rx_mask: RX mask
1848  * @rx_highest: highest supported RX rate. If set represents
1849  *	the highest supported RX data rate in units of 1 Mbps.
1850  *	If this field is 0 this value should not be used to
1851  *	consider the highest RX data rate supported.
1852  * @tx_params: TX parameters
1853  * @reserved: Reserved bits
1854  *
1855  * This structure represents the "Supported MCS Set field" as
1856  * described in IEEE Std 802.11-2020 section 9.4.2.55.4.
1857  */
1858 struct ieee80211_mcs_info {
1859 	u8 rx_mask[IEEE80211_HT_MCS_MASK_LEN];
1860 	__le16 rx_highest;
1861 	u8 tx_params;
1862 	u8 reserved[3];
1863 } __packed;
1864 
1865 /* 802.11n HT capability MSC set */
1866 #define IEEE80211_HT_MCS_RX_HIGHEST_MASK	0x3ff
1867 #define IEEE80211_HT_MCS_TX_DEFINED		0x01
1868 #define IEEE80211_HT_MCS_TX_RX_DIFF		0x02
1869 /* value 0 == 1 stream etc */
1870 #define IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK	0x0C
1871 #define IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT	2
1872 #define		IEEE80211_HT_MCS_TX_MAX_STREAMS	4
1873 #define IEEE80211_HT_MCS_TX_UNEQUAL_MODULATION	0x10
1874 
1875 #define IEEE80211_HT_MCS_CHAINS(mcs) ((mcs) == 32 ? 1 : (1 + ((mcs) >> 3)))
1876 
1877 /*
1878  * 802.11n D5.0 20.3.5 / 20.6 says:
1879  * - indices 0 to 7 and 32 are single spatial stream
1880  * - 8 to 31 are multiple spatial streams using equal modulation
1881  *   [8..15 for two streams, 16..23 for three and 24..31 for four]
1882  * - remainder are multiple spatial streams using unequal modulation
1883  */
1884 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START 33
1885 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START_BYTE \
1886 	(IEEE80211_HT_MCS_UNEQUAL_MODULATION_START / 8)
1887 
1888 /**
1889  * struct ieee80211_ht_cap - HT capabilities element
1890  * @cap_info: HT Capability Information
1891  * @ampdu_params_info: A-MPDU Parameters
1892  * @mcs: Supported MCS Set
1893  * @extended_ht_cap_info: HT Extended Capabilities
1894  * @tx_BF_cap_info: Transmit Beamforming Capabilities
1895  * @antenna_selection_info: ASEL Capability
1896  *
1897  * This structure represents the payload of the "HT Capabilities
1898  * element" as described in IEEE Std 802.11-2020 section 9.4.2.55.
1899  */
1900 struct ieee80211_ht_cap {
1901 	__le16 cap_info;
1902 	u8 ampdu_params_info;
1903 
1904 	/* 16 bytes MCS information */
1905 	struct ieee80211_mcs_info mcs;
1906 
1907 	__le16 extended_ht_cap_info;
1908 	__le32 tx_BF_cap_info;
1909 	u8 antenna_selection_info;
1910 } __packed;
1911 
1912 /* 802.11n HT capabilities masks (for cap_info) */
1913 #define IEEE80211_HT_CAP_LDPC_CODING		0x0001
1914 #define IEEE80211_HT_CAP_SUP_WIDTH_20_40	0x0002
1915 #define IEEE80211_HT_CAP_SM_PS			0x000C
1916 #define		IEEE80211_HT_CAP_SM_PS_SHIFT	2
1917 #define IEEE80211_HT_CAP_GRN_FLD		0x0010
1918 #define IEEE80211_HT_CAP_SGI_20			0x0020
1919 #define IEEE80211_HT_CAP_SGI_40			0x0040
1920 #define IEEE80211_HT_CAP_TX_STBC		0x0080
1921 #define IEEE80211_HT_CAP_RX_STBC		0x0300
1922 #define		IEEE80211_HT_CAP_RX_STBC_SHIFT	8
1923 #define IEEE80211_HT_CAP_DELAY_BA		0x0400
1924 #define IEEE80211_HT_CAP_MAX_AMSDU		0x0800
1925 #define IEEE80211_HT_CAP_DSSSCCK40		0x1000
1926 #define IEEE80211_HT_CAP_RESERVED		0x2000
1927 #define IEEE80211_HT_CAP_40MHZ_INTOLERANT	0x4000
1928 #define IEEE80211_HT_CAP_LSIG_TXOP_PROT		0x8000
1929 
1930 /* 802.11n HT extended capabilities masks (for extended_ht_cap_info) */
1931 #define IEEE80211_HT_EXT_CAP_PCO		0x0001
1932 #define IEEE80211_HT_EXT_CAP_PCO_TIME		0x0006
1933 #define		IEEE80211_HT_EXT_CAP_PCO_TIME_SHIFT	1
1934 #define IEEE80211_HT_EXT_CAP_MCS_FB		0x0300
1935 #define		IEEE80211_HT_EXT_CAP_MCS_FB_SHIFT	8
1936 #define IEEE80211_HT_EXT_CAP_HTC_SUP		0x0400
1937 #define IEEE80211_HT_EXT_CAP_RD_RESPONDER	0x0800
1938 
1939 /* 802.11n HT capability AMPDU settings (for ampdu_params_info) */
1940 #define IEEE80211_HT_AMPDU_PARM_FACTOR		0x03
1941 #define IEEE80211_HT_AMPDU_PARM_DENSITY		0x1C
1942 #define		IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT	2
1943 
1944 /*
1945  * Maximum length of AMPDU that the STA can receive in high-throughput (HT).
1946  * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets)
1947  */
1948 enum ieee80211_max_ampdu_length_exp {
1949 	IEEE80211_HT_MAX_AMPDU_8K = 0,
1950 	IEEE80211_HT_MAX_AMPDU_16K = 1,
1951 	IEEE80211_HT_MAX_AMPDU_32K = 2,
1952 	IEEE80211_HT_MAX_AMPDU_64K = 3
1953 };
1954 
1955 /*
1956  * Maximum length of AMPDU that the STA can receive in VHT.
1957  * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets)
1958  */
1959 enum ieee80211_vht_max_ampdu_length_exp {
1960 	IEEE80211_VHT_MAX_AMPDU_8K = 0,
1961 	IEEE80211_VHT_MAX_AMPDU_16K = 1,
1962 	IEEE80211_VHT_MAX_AMPDU_32K = 2,
1963 	IEEE80211_VHT_MAX_AMPDU_64K = 3,
1964 	IEEE80211_VHT_MAX_AMPDU_128K = 4,
1965 	IEEE80211_VHT_MAX_AMPDU_256K = 5,
1966 	IEEE80211_VHT_MAX_AMPDU_512K = 6,
1967 	IEEE80211_VHT_MAX_AMPDU_1024K = 7
1968 };
1969 
1970 #define IEEE80211_HT_MAX_AMPDU_FACTOR 13
1971 
1972 /* Minimum MPDU start spacing */
1973 enum ieee80211_min_mpdu_spacing {
1974 	IEEE80211_HT_MPDU_DENSITY_NONE = 0,	/* No restriction */
1975 	IEEE80211_HT_MPDU_DENSITY_0_25 = 1,	/* 1/4 usec */
1976 	IEEE80211_HT_MPDU_DENSITY_0_5 = 2,	/* 1/2 usec */
1977 	IEEE80211_HT_MPDU_DENSITY_1 = 3,	/* 1 usec */
1978 	IEEE80211_HT_MPDU_DENSITY_2 = 4,	/* 2 usec */
1979 	IEEE80211_HT_MPDU_DENSITY_4 = 5,	/* 4 usec */
1980 	IEEE80211_HT_MPDU_DENSITY_8 = 6,	/* 8 usec */
1981 	IEEE80211_HT_MPDU_DENSITY_16 = 7	/* 16 usec */
1982 };
1983 
1984 /**
1985  * struct ieee80211_ht_operation - HT operation IE
1986  * @primary_chan: Primary Channel
1987  * @ht_param: HT Operation Information parameters
1988  * @operation_mode: HT Operation Information operation mode
1989  * @stbc_param: HT Operation Information STBC params
1990  * @basic_set: Basic HT-MCS Set
1991  *
1992  * This structure represents the payload of the "HT Operation
1993  * element" as described in IEEE Std 802.11-2020 section 9.4.2.56.
1994  */
1995 struct ieee80211_ht_operation {
1996 	u8 primary_chan;
1997 	u8 ht_param;
1998 	__le16 operation_mode;
1999 	__le16 stbc_param;
2000 	u8 basic_set[16];
2001 } __packed;
2002 
2003 /* for ht_param */
2004 #define IEEE80211_HT_PARAM_CHA_SEC_OFFSET		0x03
2005 #define		IEEE80211_HT_PARAM_CHA_SEC_NONE		0x00
2006 #define		IEEE80211_HT_PARAM_CHA_SEC_ABOVE	0x01
2007 #define		IEEE80211_HT_PARAM_CHA_SEC_BELOW	0x03
2008 #define IEEE80211_HT_PARAM_CHAN_WIDTH_ANY		0x04
2009 #define IEEE80211_HT_PARAM_RIFS_MODE			0x08
2010 
2011 /* for operation_mode */
2012 #define IEEE80211_HT_OP_MODE_PROTECTION			0x0003
2013 #define		IEEE80211_HT_OP_MODE_PROTECTION_NONE		0
2014 #define		IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER	1
2015 #define		IEEE80211_HT_OP_MODE_PROTECTION_20MHZ		2
2016 #define		IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED	3
2017 #define IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT		0x0004
2018 #define IEEE80211_HT_OP_MODE_NON_HT_STA_PRSNT		0x0010
2019 #define IEEE80211_HT_OP_MODE_CCFS2_SHIFT		5
2020 #define IEEE80211_HT_OP_MODE_CCFS2_MASK			0x1fe0
2021 
2022 /* for stbc_param */
2023 #define IEEE80211_HT_STBC_PARAM_DUAL_BEACON		0x0040
2024 #define IEEE80211_HT_STBC_PARAM_DUAL_CTS_PROT		0x0080
2025 #define IEEE80211_HT_STBC_PARAM_STBC_BEACON		0x0100
2026 #define IEEE80211_HT_STBC_PARAM_LSIG_TXOP_FULLPROT	0x0200
2027 #define IEEE80211_HT_STBC_PARAM_PCO_ACTIVE		0x0400
2028 #define IEEE80211_HT_STBC_PARAM_PCO_PHASE		0x0800
2029 
2030 
2031 /* block-ack parameters */
2032 #define IEEE80211_ADDBA_PARAM_AMSDU_MASK 0x0001
2033 #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002
2034 #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C
2035 #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFC0
2036 #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000
2037 #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800
2038 
2039 /*
2040  * A-MPDU buffer sizes
2041  * According to HT size varies from 8 to 64 frames
2042  * HE adds the ability to have up to 256 frames.
2043  * EHT adds the ability to have up to 1K frames.
2044  */
2045 #define IEEE80211_MIN_AMPDU_BUF		0x8
2046 #define IEEE80211_MAX_AMPDU_BUF_HT	0x40
2047 #define IEEE80211_MAX_AMPDU_BUF_HE	0x100
2048 #define IEEE80211_MAX_AMPDU_BUF_EHT	0x400
2049 
2050 
2051 /* Spatial Multiplexing Power Save Modes (for capability) */
2052 #define WLAN_HT_CAP_SM_PS_STATIC	0
2053 #define WLAN_HT_CAP_SM_PS_DYNAMIC	1
2054 #define WLAN_HT_CAP_SM_PS_INVALID	2
2055 #define WLAN_HT_CAP_SM_PS_DISABLED	3
2056 
2057 /* for SM power control field lower two bits */
2058 #define WLAN_HT_SMPS_CONTROL_DISABLED	0
2059 #define WLAN_HT_SMPS_CONTROL_STATIC	1
2060 #define WLAN_HT_SMPS_CONTROL_DYNAMIC	3
2061 
2062 /**
2063  * struct ieee80211_vht_mcs_info - VHT MCS information
2064  * @rx_mcs_map: RX MCS map 2 bits for each stream, total 8 streams
2065  * @rx_highest: Indicates highest long GI VHT PPDU data rate
2066  *	STA can receive. Rate expressed in units of 1 Mbps.
2067  *	If this field is 0 this value should not be used to
2068  *	consider the highest RX data rate supported.
2069  *	The top 3 bits of this field indicate the Maximum NSTS,total
2070  *	(a beamformee capability.)
2071  * @tx_mcs_map: TX MCS map 2 bits for each stream, total 8 streams
2072  * @tx_highest: Indicates highest long GI VHT PPDU data rate
2073  *	STA can transmit. Rate expressed in units of 1 Mbps.
2074  *	If this field is 0 this value should not be used to
2075  *	consider the highest TX data rate supported.
2076  *	The top 2 bits of this field are reserved, the
2077  *	3rd bit from the top indiciates VHT Extended NSS BW
2078  *	Capability.
2079  */
2080 struct ieee80211_vht_mcs_info {
2081 	__le16 rx_mcs_map;
2082 	__le16 rx_highest;
2083 	__le16 tx_mcs_map;
2084 	__le16 tx_highest;
2085 } __packed;
2086 
2087 /* for rx_highest */
2088 #define IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT	13
2089 #define IEEE80211_VHT_MAX_NSTS_TOTAL_MASK	(7 << IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT)
2090 
2091 /* for tx_highest */
2092 #define IEEE80211_VHT_EXT_NSS_BW_CAPABLE	(1 << 13)
2093 
2094 /**
2095  * enum ieee80211_vht_mcs_support - VHT MCS support definitions
2096  * @IEEE80211_VHT_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the
2097  *	number of streams
2098  * @IEEE80211_VHT_MCS_SUPPORT_0_8: MCSes 0-8 are supported
2099  * @IEEE80211_VHT_MCS_SUPPORT_0_9: MCSes 0-9 are supported
2100  * @IEEE80211_VHT_MCS_NOT_SUPPORTED: This number of streams isn't supported
2101  *
2102  * These definitions are used in each 2-bit subfield of the @rx_mcs_map
2103  * and @tx_mcs_map fields of &struct ieee80211_vht_mcs_info, which are
2104  * both split into 8 subfields by number of streams. These values indicate
2105  * which MCSes are supported for the number of streams the value appears
2106  * for.
2107  */
2108 enum ieee80211_vht_mcs_support {
2109 	IEEE80211_VHT_MCS_SUPPORT_0_7	= 0,
2110 	IEEE80211_VHT_MCS_SUPPORT_0_8	= 1,
2111 	IEEE80211_VHT_MCS_SUPPORT_0_9	= 2,
2112 	IEEE80211_VHT_MCS_NOT_SUPPORTED	= 3,
2113 };
2114 
2115 /**
2116  * struct ieee80211_vht_cap - VHT capabilities
2117  *
2118  * This structure is the "VHT capabilities element" as
2119  * described in 802.11ac D3.0 8.4.2.160
2120  * @vht_cap_info: VHT capability info
2121  * @supp_mcs: VHT MCS supported rates
2122  */
2123 struct ieee80211_vht_cap {
2124 	__le32 vht_cap_info;
2125 	struct ieee80211_vht_mcs_info supp_mcs;
2126 } __packed;
2127 
2128 /**
2129  * enum ieee80211_vht_chanwidth - VHT channel width
2130  * @IEEE80211_VHT_CHANWIDTH_USE_HT: use the HT operation IE to
2131  *	determine the channel width (20 or 40 MHz)
2132  * @IEEE80211_VHT_CHANWIDTH_80MHZ: 80 MHz bandwidth
2133  * @IEEE80211_VHT_CHANWIDTH_160MHZ: 160 MHz bandwidth
2134  * @IEEE80211_VHT_CHANWIDTH_80P80MHZ: 80+80 MHz bandwidth
2135  */
2136 enum ieee80211_vht_chanwidth {
2137 	IEEE80211_VHT_CHANWIDTH_USE_HT		= 0,
2138 	IEEE80211_VHT_CHANWIDTH_80MHZ		= 1,
2139 	IEEE80211_VHT_CHANWIDTH_160MHZ		= 2,
2140 	IEEE80211_VHT_CHANWIDTH_80P80MHZ	= 3,
2141 };
2142 
2143 /**
2144  * struct ieee80211_vht_operation - VHT operation IE
2145  *
2146  * This structure is the "VHT operation element" as
2147  * described in 802.11ac D3.0 8.4.2.161
2148  * @chan_width: Operating channel width
2149  * @center_freq_seg0_idx: center freq segment 0 index
2150  * @center_freq_seg1_idx: center freq segment 1 index
2151  * @basic_mcs_set: VHT Basic MCS rate set
2152  */
2153 struct ieee80211_vht_operation {
2154 	u8 chan_width;
2155 	u8 center_freq_seg0_idx;
2156 	u8 center_freq_seg1_idx;
2157 	__le16 basic_mcs_set;
2158 } __packed;
2159 
2160 /**
2161  * struct ieee80211_he_cap_elem - HE capabilities element
2162  * @mac_cap_info: HE MAC Capabilities Information
2163  * @phy_cap_info: HE PHY Capabilities Information
2164  *
2165  * This structure represents the fixed fields of the payload of the
2166  * "HE capabilities element" as described in IEEE Std 802.11ax-2021
2167  * sections 9.4.2.248.2 and 9.4.2.248.3.
2168  */
2169 struct ieee80211_he_cap_elem {
2170 	u8 mac_cap_info[6];
2171 	u8 phy_cap_info[11];
2172 } __packed;
2173 
2174 #define IEEE80211_TX_RX_MCS_NSS_DESC_MAX_LEN	5
2175 
2176 /**
2177  * enum ieee80211_he_mcs_support - HE MCS support definitions
2178  * @IEEE80211_HE_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the
2179  *	number of streams
2180  * @IEEE80211_HE_MCS_SUPPORT_0_9: MCSes 0-9 are supported
2181  * @IEEE80211_HE_MCS_SUPPORT_0_11: MCSes 0-11 are supported
2182  * @IEEE80211_HE_MCS_NOT_SUPPORTED: This number of streams isn't supported
2183  *
2184  * These definitions are used in each 2-bit subfield of the rx_mcs_*
2185  * and tx_mcs_* fields of &struct ieee80211_he_mcs_nss_supp, which are
2186  * both split into 8 subfields by number of streams. These values indicate
2187  * which MCSes are supported for the number of streams the value appears
2188  * for.
2189  */
2190 enum ieee80211_he_mcs_support {
2191 	IEEE80211_HE_MCS_SUPPORT_0_7	= 0,
2192 	IEEE80211_HE_MCS_SUPPORT_0_9	= 1,
2193 	IEEE80211_HE_MCS_SUPPORT_0_11	= 2,
2194 	IEEE80211_HE_MCS_NOT_SUPPORTED	= 3,
2195 };
2196 
2197 /**
2198  * struct ieee80211_he_mcs_nss_supp - HE Tx/Rx HE MCS NSS Support Field
2199  *
2200  * This structure holds the data required for the Tx/Rx HE MCS NSS Support Field
2201  * described in P802.11ax_D2.0 section 9.4.2.237.4
2202  *
2203  * @rx_mcs_80: Rx MCS map 2 bits for each stream, total 8 streams, for channel
2204  *     widths less than 80MHz.
2205  * @tx_mcs_80: Tx MCS map 2 bits for each stream, total 8 streams, for channel
2206  *     widths less than 80MHz.
2207  * @rx_mcs_160: Rx MCS map 2 bits for each stream, total 8 streams, for channel
2208  *     width 160MHz.
2209  * @tx_mcs_160: Tx MCS map 2 bits for each stream, total 8 streams, for channel
2210  *     width 160MHz.
2211  * @rx_mcs_80p80: Rx MCS map 2 bits for each stream, total 8 streams, for
2212  *     channel width 80p80MHz.
2213  * @tx_mcs_80p80: Tx MCS map 2 bits for each stream, total 8 streams, for
2214  *     channel width 80p80MHz.
2215  */
2216 struct ieee80211_he_mcs_nss_supp {
2217 	__le16 rx_mcs_80;
2218 	__le16 tx_mcs_80;
2219 	__le16 rx_mcs_160;
2220 	__le16 tx_mcs_160;
2221 	__le16 rx_mcs_80p80;
2222 	__le16 tx_mcs_80p80;
2223 } __packed;
2224 
2225 /**
2226  * struct ieee80211_he_operation - HE Operation element
2227  * @he_oper_params: HE Operation Parameters + BSS Color Information
2228  * @he_mcs_nss_set: Basic HE-MCS And NSS Set
2229  * @optional: Optional fields VHT Operation Information, Max Co-Hosted
2230  *            BSSID Indicator, and 6 GHz Operation Information
2231  *
2232  * This structure represents the payload of the "HE Operation
2233  * element" as described in IEEE Std 802.11ax-2021 section 9.4.2.249.
2234  */
2235 struct ieee80211_he_operation {
2236 	__le32 he_oper_params;
2237 	__le16 he_mcs_nss_set;
2238 	u8 optional[];
2239 } __packed;
2240 
2241 /**
2242  * struct ieee80211_he_spr - Spatial Reuse Parameter Set element
2243  * @he_sr_control: SR Control
2244  * @optional: Optional fields Non-SRG OBSS PD Max Offset, SRG OBSS PD
2245  *            Min Offset, SRG OBSS PD Max Offset, SRG BSS Color
2246  *            Bitmap, and SRG Partial BSSID Bitmap
2247  *
2248  * This structure represents the payload of the "Spatial Reuse
2249  * Parameter Set element" as described in IEEE Std 802.11ax-2021
2250  * section 9.4.2.252.
2251  */
2252 struct ieee80211_he_spr {
2253 	u8 he_sr_control;
2254 	u8 optional[];
2255 } __packed;
2256 
2257 /**
2258  * struct ieee80211_he_mu_edca_param_ac_rec - MU AC Parameter Record field
2259  * @aifsn: ACI/AIFSN
2260  * @ecw_min_max: ECWmin/ECWmax
2261  * @mu_edca_timer: MU EDCA Timer
2262  *
2263  * This structure represents the "MU AC Parameter Record" as described
2264  * in IEEE Std 802.11ax-2021 section 9.4.2.251, Figure 9-788p.
2265  */
2266 struct ieee80211_he_mu_edca_param_ac_rec {
2267 	u8 aifsn;
2268 	u8 ecw_min_max;
2269 	u8 mu_edca_timer;
2270 } __packed;
2271 
2272 /**
2273  * struct ieee80211_mu_edca_param_set - MU EDCA Parameter Set element
2274  * @mu_qos_info: QoS Info
2275  * @ac_be: MU AC_BE Parameter Record
2276  * @ac_bk: MU AC_BK Parameter Record
2277  * @ac_vi: MU AC_VI Parameter Record
2278  * @ac_vo: MU AC_VO Parameter Record
2279  *
2280  * This structure represents the payload of the "MU EDCA Parameter Set
2281  * element" as described in IEEE Std 802.11ax-2021 section 9.4.2.251.
2282  */
2283 struct ieee80211_mu_edca_param_set {
2284 	u8 mu_qos_info;
2285 	struct ieee80211_he_mu_edca_param_ac_rec ac_be;
2286 	struct ieee80211_he_mu_edca_param_ac_rec ac_bk;
2287 	struct ieee80211_he_mu_edca_param_ac_rec ac_vi;
2288 	struct ieee80211_he_mu_edca_param_ac_rec ac_vo;
2289 } __packed;
2290 
2291 #define IEEE80211_EHT_MCS_NSS_RX 0x0f
2292 #define IEEE80211_EHT_MCS_NSS_TX 0xf0
2293 
2294 /**
2295  * struct ieee80211_eht_mcs_nss_supp_20mhz_only - EHT 20MHz only station max
2296  * supported NSS for per MCS.
2297  *
2298  * For each field below, bits 0 - 3 indicate the maximal number of spatial
2299  * streams for Rx, and bits 4 - 7 indicate the maximal number of spatial streams
2300  * for Tx.
2301  *
2302  * @rx_tx_mcs7_max_nss: indicates the maximum number of spatial streams
2303  *     supported for reception and the maximum number of spatial streams
2304  *     supported for transmission for MCS 0 - 7.
2305  * @rx_tx_mcs9_max_nss: indicates the maximum number of spatial streams
2306  *     supported for reception and the maximum number of spatial streams
2307  *     supported for transmission for MCS 8 - 9.
2308  * @rx_tx_mcs11_max_nss: indicates the maximum number of spatial streams
2309  *     supported for reception and the maximum number of spatial streams
2310  *     supported for transmission for MCS 10 - 11.
2311  * @rx_tx_mcs13_max_nss: indicates the maximum number of spatial streams
2312  *     supported for reception and the maximum number of spatial streams
2313  *     supported for transmission for MCS 12 - 13.
2314  * @rx_tx_max_nss: array of the previous fields for easier loop access
2315  */
2316 struct ieee80211_eht_mcs_nss_supp_20mhz_only {
2317 	union {
2318 		struct {
2319 			u8 rx_tx_mcs7_max_nss;
2320 			u8 rx_tx_mcs9_max_nss;
2321 			u8 rx_tx_mcs11_max_nss;
2322 			u8 rx_tx_mcs13_max_nss;
2323 		};
2324 		u8 rx_tx_max_nss[4];
2325 	};
2326 };
2327 
2328 /**
2329  * struct ieee80211_eht_mcs_nss_supp_bw - EHT max supported NSS per MCS (except
2330  * 20MHz only stations).
2331  *
2332  * For each field below, bits 0 - 3 indicate the maximal number of spatial
2333  * streams for Rx, and bits 4 - 7 indicate the maximal number of spatial streams
2334  * for Tx.
2335  *
2336  * @rx_tx_mcs9_max_nss: indicates the maximum number of spatial streams
2337  *     supported for reception and the maximum number of spatial streams
2338  *     supported for transmission for MCS 0 - 9.
2339  * @rx_tx_mcs11_max_nss: indicates the maximum number of spatial streams
2340  *     supported for reception and the maximum number of spatial streams
2341  *     supported for transmission for MCS 10 - 11.
2342  * @rx_tx_mcs13_max_nss: indicates the maximum number of spatial streams
2343  *     supported for reception and the maximum number of spatial streams
2344  *     supported for transmission for MCS 12 - 13.
2345  * @rx_tx_max_nss: array of the previous fields for easier loop access
2346  */
2347 struct ieee80211_eht_mcs_nss_supp_bw {
2348 	union {
2349 		struct {
2350 			u8 rx_tx_mcs9_max_nss;
2351 			u8 rx_tx_mcs11_max_nss;
2352 			u8 rx_tx_mcs13_max_nss;
2353 		};
2354 		u8 rx_tx_max_nss[3];
2355 	};
2356 };
2357 
2358 /**
2359  * struct ieee80211_eht_cap_elem_fixed - EHT capabilities fixed data
2360  *
2361  * This structure is the "EHT Capabilities element" fixed fields as
2362  * described in P802.11be_D2.0 section 9.4.2.313.
2363  *
2364  * @mac_cap_info: MAC capabilities, see IEEE80211_EHT_MAC_CAP*
2365  * @phy_cap_info: PHY capabilities, see IEEE80211_EHT_PHY_CAP*
2366  */
2367 struct ieee80211_eht_cap_elem_fixed {
2368 	u8 mac_cap_info[2];
2369 	u8 phy_cap_info[9];
2370 } __packed;
2371 
2372 /**
2373  * struct ieee80211_eht_cap_elem - EHT capabilities element
2374  * @fixed: fixed parts, see &ieee80211_eht_cap_elem_fixed
2375  * @optional: optional parts
2376  */
2377 struct ieee80211_eht_cap_elem {
2378 	struct ieee80211_eht_cap_elem_fixed fixed;
2379 
2380 	/*
2381 	 * Followed by:
2382 	 * Supported EHT-MCS And NSS Set field: 4, 3, 6 or 9 octets.
2383 	 * EHT PPE Thresholds field: variable length.
2384 	 */
2385 	u8 optional[];
2386 } __packed;
2387 
2388 #define IEEE80211_EHT_OPER_INFO_PRESENT	                        0x01
2389 #define IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT	0x02
2390 #define IEEE80211_EHT_OPER_EHT_DEF_PE_DURATION	                0x04
2391 #define IEEE80211_EHT_OPER_GROUP_ADDRESSED_BU_IND_LIMIT         0x08
2392 #define IEEE80211_EHT_OPER_GROUP_ADDRESSED_BU_IND_EXP_MASK      0x30
2393 #define IEEE80211_EHT_OPER_MCS15_DISABLE                        0x40
2394 
2395 /**
2396  * struct ieee80211_eht_operation - eht operation element
2397  *
2398  * This structure is the "EHT Operation Element" fields as
2399  * described in P802.11be_D2.0 section 9.4.2.311
2400  *
2401  * @params: EHT operation element parameters. See &IEEE80211_EHT_OPER_*
2402  * @basic_mcs_nss: indicates the EHT-MCSs for each number of spatial streams in
2403  *     EHT PPDUs that are supported by all EHT STAs in the BSS in transmit and
2404  *     receive.
2405  * @optional: optional parts
2406  */
2407 struct ieee80211_eht_operation {
2408 	u8 params;
2409 	struct ieee80211_eht_mcs_nss_supp_20mhz_only basic_mcs_nss;
2410 	u8 optional[];
2411 } __packed;
2412 
2413 /**
2414  * struct ieee80211_eht_operation_info - eht operation information
2415  *
2416  * @control: EHT operation information control.
2417  * @ccfs0: defines a channel center frequency for a 20, 40, 80, 160, or 320 MHz
2418  *     EHT BSS.
2419  * @ccfs1: defines a channel center frequency for a 160 or 320 MHz EHT BSS.
2420  * @optional: optional parts
2421  */
2422 struct ieee80211_eht_operation_info {
2423 	u8 control;
2424 	u8 ccfs0;
2425 	u8 ccfs1;
2426 	u8 optional[];
2427 } __packed;
2428 
2429 /* 802.11ac VHT Capabilities */
2430 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895			0x00000000
2431 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991			0x00000001
2432 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454			0x00000002
2433 #define IEEE80211_VHT_CAP_MAX_MPDU_MASK				0x00000003
2434 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ		0x00000004
2435 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ	0x00000008
2436 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK			0x0000000C
2437 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_SHIFT			2
2438 #define IEEE80211_VHT_CAP_RXLDPC				0x00000010
2439 #define IEEE80211_VHT_CAP_SHORT_GI_80				0x00000020
2440 #define IEEE80211_VHT_CAP_SHORT_GI_160				0x00000040
2441 #define IEEE80211_VHT_CAP_TXSTBC				0x00000080
2442 #define IEEE80211_VHT_CAP_RXSTBC_1				0x00000100
2443 #define IEEE80211_VHT_CAP_RXSTBC_2				0x00000200
2444 #define IEEE80211_VHT_CAP_RXSTBC_3				0x00000300
2445 #define IEEE80211_VHT_CAP_RXSTBC_4				0x00000400
2446 #define IEEE80211_VHT_CAP_RXSTBC_MASK				0x00000700
2447 #define IEEE80211_VHT_CAP_RXSTBC_SHIFT				8
2448 #define IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE			0x00000800
2449 #define IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE			0x00001000
2450 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT                  13
2451 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK			\
2452 		(7 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT)
2453 #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT		16
2454 #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK		\
2455 		(7 << IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT)
2456 #define IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE			0x00080000
2457 #define IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE			0x00100000
2458 #define IEEE80211_VHT_CAP_VHT_TXOP_PS				0x00200000
2459 #define IEEE80211_VHT_CAP_HTC_VHT				0x00400000
2460 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT	23
2461 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK	\
2462 		(7 << IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT)
2463 #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_UNSOL_MFB	0x08000000
2464 #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_MRQ_MFB	0x0c000000
2465 #define IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN			0x10000000
2466 #define IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN			0x20000000
2467 #define IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT			30
2468 #define IEEE80211_VHT_CAP_EXT_NSS_BW_MASK			0xc0000000
2469 
2470 /**
2471  * ieee80211_get_vht_max_nss - return max NSS for a given bandwidth/MCS
2472  * @cap: VHT capabilities of the peer
2473  * @bw: bandwidth to use
2474  * @mcs: MCS index to use
2475  * @ext_nss_bw_capable: indicates whether or not the local transmitter
2476  *	(rate scaling algorithm) can deal with the new logic
2477  *	(dot11VHTExtendedNSSBWCapable)
2478  * @max_vht_nss: current maximum NSS as advertised by the STA in
2479  *	operating mode notification, can be 0 in which case the
2480  *	capability data will be used to derive this (from MCS support)
2481  * Return: The maximum NSS that can be used for the given bandwidth/MCS
2482  *	combination
2483  *
2484  * Due to the VHT Extended NSS Bandwidth Support, the maximum NSS can
2485  * vary for a given BW/MCS. This function parses the data.
2486  *
2487  * Note: This function is exported by cfg80211.
2488  */
2489 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2490 			      enum ieee80211_vht_chanwidth bw,
2491 			      int mcs, bool ext_nss_bw_capable,
2492 			      unsigned int max_vht_nss);
2493 
2494 /* 802.11ax HE MAC capabilities */
2495 #define IEEE80211_HE_MAC_CAP0_HTC_HE				0x01
2496 #define IEEE80211_HE_MAC_CAP0_TWT_REQ				0x02
2497 #define IEEE80211_HE_MAC_CAP0_TWT_RES				0x04
2498 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_NOT_SUPP		0x00
2499 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_1		0x08
2500 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_2		0x10
2501 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_3		0x18
2502 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_MASK			0x18
2503 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_1		0x00
2504 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_2		0x20
2505 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_4		0x40
2506 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_8		0x60
2507 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_16		0x80
2508 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_32		0xa0
2509 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_64		0xc0
2510 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_UNLIMITED	0xe0
2511 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_MASK		0xe0
2512 
2513 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_UNLIMITED		0x00
2514 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_128			0x01
2515 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_256			0x02
2516 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_512			0x03
2517 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_MASK		0x03
2518 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_0US		0x00
2519 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_8US		0x04
2520 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US		0x08
2521 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_MASK		0x0c
2522 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_1		0x00
2523 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_2		0x10
2524 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_3		0x20
2525 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_4		0x30
2526 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_5		0x40
2527 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_6		0x50
2528 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_7		0x60
2529 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8		0x70
2530 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_MASK		0x70
2531 
2532 /* Link adaptation is split between byte HE_MAC_CAP1 and
2533  * HE_MAC_CAP2. It should be set only if IEEE80211_HE_MAC_CAP0_HTC_HE
2534  * in which case the following values apply:
2535  * 0 = No feedback.
2536  * 1 = reserved.
2537  * 2 = Unsolicited feedback.
2538  * 3 = both
2539  */
2540 #define IEEE80211_HE_MAC_CAP1_LINK_ADAPTATION			0x80
2541 
2542 #define IEEE80211_HE_MAC_CAP2_LINK_ADAPTATION			0x01
2543 #define IEEE80211_HE_MAC_CAP2_ALL_ACK				0x02
2544 #define IEEE80211_HE_MAC_CAP2_TRS				0x04
2545 #define IEEE80211_HE_MAC_CAP2_BSR				0x08
2546 #define IEEE80211_HE_MAC_CAP2_BCAST_TWT				0x10
2547 #define IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP			0x20
2548 #define IEEE80211_HE_MAC_CAP2_MU_CASCADING			0x40
2549 #define IEEE80211_HE_MAC_CAP2_ACK_EN				0x80
2550 
2551 #define IEEE80211_HE_MAC_CAP3_OMI_CONTROL			0x02
2552 #define IEEE80211_HE_MAC_CAP3_OFDMA_RA				0x04
2553 
2554 /* The maximum length of an A-MDPU is defined by the combination of the Maximum
2555  * A-MDPU Length Exponent field in the HT capabilities, VHT capabilities and the
2556  * same field in the HE capabilities.
2557  */
2558 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_0		0x00
2559 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1		0x08
2560 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2		0x10
2561 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3		0x18
2562 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK		0x18
2563 #define IEEE80211_HE_MAC_CAP3_AMSDU_FRAG			0x20
2564 #define IEEE80211_HE_MAC_CAP3_FLEX_TWT_SCHED			0x40
2565 #define IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS		0x80
2566 
2567 #define IEEE80211_HE_MAC_CAP4_BSRP_BQRP_A_MPDU_AGG		0x01
2568 #define IEEE80211_HE_MAC_CAP4_QTP				0x02
2569 #define IEEE80211_HE_MAC_CAP4_BQR				0x04
2570 #define IEEE80211_HE_MAC_CAP4_PSR_RESP				0x08
2571 #define IEEE80211_HE_MAC_CAP4_NDP_FB_REP			0x10
2572 #define IEEE80211_HE_MAC_CAP4_OPS				0x20
2573 #define IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU			0x40
2574 /* Multi TID agg TX is split between byte #4 and #5
2575  * The value is a combination of B39,B40,B41
2576  */
2577 #define IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39		0x80
2578 
2579 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40		0x01
2580 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41		0x02
2581 #define IEEE80211_HE_MAC_CAP5_SUBCHAN_SELECTIVE_TRANSMISSION	0x04
2582 #define IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU			0x08
2583 #define IEEE80211_HE_MAC_CAP5_OM_CTRL_UL_MU_DATA_DIS_RX		0x10
2584 #define IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS			0x20
2585 #define IEEE80211_HE_MAC_CAP5_PUNCTURED_SOUNDING		0x40
2586 #define IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX		0x80
2587 
2588 #define IEEE80211_HE_VHT_MAX_AMPDU_FACTOR	20
2589 #define IEEE80211_HE_HT_MAX_AMPDU_FACTOR	16
2590 #define IEEE80211_HE_6GHZ_MAX_AMPDU_FACTOR	13
2591 
2592 /* 802.11ax HE PHY capabilities */
2593 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G		0x02
2594 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G	0x04
2595 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G		0x08
2596 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G	0x10
2597 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK_ALL		0x1e
2598 
2599 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G	0x20
2600 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G	0x40
2601 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK			0xfe
2602 
2603 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_20MHZ	0x01
2604 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_40MHZ	0x02
2605 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_20MHZ	0x04
2606 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_40MHZ	0x08
2607 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK			0x0f
2608 #define IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A				0x10
2609 #define IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD			0x20
2610 #define IEEE80211_HE_PHY_CAP1_HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US		0x40
2611 /* Midamble RX/TX Max NSTS is split between byte #2 and byte #3 */
2612 #define IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS			0x80
2613 
2614 #define IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS			0x01
2615 #define IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US			0x02
2616 #define IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ			0x04
2617 #define IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ			0x08
2618 #define IEEE80211_HE_PHY_CAP2_DOPPLER_TX				0x10
2619 #define IEEE80211_HE_PHY_CAP2_DOPPLER_RX				0x20
2620 
2621 /* Note that the meaning of UL MU below is different between an AP and a non-AP
2622  * sta, where in the AP case it indicates support for Rx and in the non-AP sta
2623  * case it indicates support for Tx.
2624  */
2625 #define IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO			0x40
2626 #define IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO			0x80
2627 
2628 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM			0x00
2629 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK			0x01
2630 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK			0x02
2631 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_16_QAM			0x03
2632 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK			0x03
2633 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1				0x00
2634 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_2				0x04
2635 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM			0x00
2636 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK			0x08
2637 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK			0x10
2638 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_16_QAM			0x18
2639 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_MASK			0x18
2640 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1				0x00
2641 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_2				0x20
2642 #define IEEE80211_HE_PHY_CAP3_RX_PARTIAL_BW_SU_IN_20MHZ_MU		0x40
2643 #define IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER				0x80
2644 
2645 #define IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE				0x01
2646 #define IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER				0x02
2647 
2648 /* Minimal allowed value of Max STS under 80MHz is 3 */
2649 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_4		0x0c
2650 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_5		0x10
2651 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_6		0x14
2652 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_7		0x18
2653 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8		0x1c
2654 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_MASK	0x1c
2655 
2656 /* Minimal allowed value of Max STS above 80MHz is 3 */
2657 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_4		0x60
2658 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_5		0x80
2659 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_6		0xa0
2660 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_7		0xc0
2661 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8		0xe0
2662 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_MASK	0xe0
2663 
2664 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_1	0x00
2665 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2	0x01
2666 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_3	0x02
2667 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_4	0x03
2668 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_5	0x04
2669 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_6	0x05
2670 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_7	0x06
2671 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_8	0x07
2672 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK	0x07
2673 
2674 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_1	0x00
2675 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2	0x08
2676 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_3	0x10
2677 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_4	0x18
2678 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_5	0x20
2679 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_6	0x28
2680 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_7	0x30
2681 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_8	0x38
2682 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK	0x38
2683 
2684 #define IEEE80211_HE_PHY_CAP5_NG16_SU_FEEDBACK				0x40
2685 #define IEEE80211_HE_PHY_CAP5_NG16_MU_FEEDBACK				0x80
2686 
2687 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU			0x01
2688 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU			0x02
2689 #define IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB			0x04
2690 #define IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB		0x08
2691 #define IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB				0x10
2692 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE			0x20
2693 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO		0x40
2694 #define IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT			0x80
2695 
2696 #define IEEE80211_HE_PHY_CAP7_PSR_BASED_SR				0x01
2697 #define IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP			0x02
2698 #define IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI		0x04
2699 #define IEEE80211_HE_PHY_CAP7_MAX_NC_1					0x08
2700 #define IEEE80211_HE_PHY_CAP7_MAX_NC_2					0x10
2701 #define IEEE80211_HE_PHY_CAP7_MAX_NC_3					0x18
2702 #define IEEE80211_HE_PHY_CAP7_MAX_NC_4					0x20
2703 #define IEEE80211_HE_PHY_CAP7_MAX_NC_5					0x28
2704 #define IEEE80211_HE_PHY_CAP7_MAX_NC_6					0x30
2705 #define IEEE80211_HE_PHY_CAP7_MAX_NC_7					0x38
2706 #define IEEE80211_HE_PHY_CAP7_MAX_NC_MASK				0x38
2707 #define IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ			0x40
2708 #define IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ			0x80
2709 
2710 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI		0x01
2711 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G		0x02
2712 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU			0x04
2713 #define IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU			0x08
2714 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_1XLTF_AND_08_US_GI		0x10
2715 #define IEEE80211_HE_PHY_CAP8_MIDAMBLE_RX_TX_2X_AND_1XLTF		0x20
2716 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242				0x00
2717 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484				0x40
2718 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996				0x80
2719 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996				0xc0
2720 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK				0xc0
2721 
2722 #define IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM		0x01
2723 #define IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK		0x02
2724 #define IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU		0x04
2725 #define IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU		0x08
2726 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB	0x10
2727 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB	0x20
2728 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_0US			0x0
2729 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_8US			0x1
2730 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_16US			0x2
2731 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED		0x3
2732 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS			6
2733 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_MASK			0xc0
2734 
2735 #define IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF			0x01
2736 
2737 /* 802.11ax HE TX/RX MCS NSS Support  */
2738 #define IEEE80211_TX_RX_MCS_NSS_SUPP_HIGHEST_MCS_POS			(3)
2739 #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_POS			(6)
2740 #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_POS			(11)
2741 #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_MASK			0x07c0
2742 #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_MASK			0xf800
2743 
2744 /* TX/RX HE MCS Support field Highest MCS subfield encoding */
2745 enum ieee80211_he_highest_mcs_supported_subfield_enc {
2746 	HIGHEST_MCS_SUPPORTED_MCS7 = 0,
2747 	HIGHEST_MCS_SUPPORTED_MCS8,
2748 	HIGHEST_MCS_SUPPORTED_MCS9,
2749 	HIGHEST_MCS_SUPPORTED_MCS10,
2750 	HIGHEST_MCS_SUPPORTED_MCS11,
2751 };
2752 
2753 /* Calculate 802.11ax HE capabilities IE Tx/Rx HE MCS NSS Support Field size */
2754 static inline u8
2755 ieee80211_he_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap)
2756 {
2757 	u8 count = 4;
2758 
2759 	if (he_cap->phy_cap_info[0] &
2760 	    IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G)
2761 		count += 4;
2762 
2763 	if (he_cap->phy_cap_info[0] &
2764 	    IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G)
2765 		count += 4;
2766 
2767 	return count;
2768 }
2769 
2770 /* 802.11ax HE PPE Thresholds */
2771 #define IEEE80211_PPE_THRES_NSS_SUPPORT_2NSS			(1)
2772 #define IEEE80211_PPE_THRES_NSS_POS				(0)
2773 #define IEEE80211_PPE_THRES_NSS_MASK				(7)
2774 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_2x966_AND_966_RU	\
2775 	(BIT(5) | BIT(6))
2776 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK		0x78
2777 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_POS		(3)
2778 #define IEEE80211_PPE_THRES_INFO_PPET_SIZE			(3)
2779 #define IEEE80211_HE_PPE_THRES_INFO_HEADER_SIZE			(7)
2780 
2781 /*
2782  * Calculate 802.11ax HE capabilities IE PPE field size
2783  * Input: Header byte of ppe_thres (first byte), and HE capa IE's PHY cap u8*
2784  */
2785 static inline u8
2786 ieee80211_he_ppe_size(u8 ppe_thres_hdr, const u8 *phy_cap_info)
2787 {
2788 	u8 n;
2789 
2790 	if ((phy_cap_info[6] &
2791 	     IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0)
2792 		return 0;
2793 
2794 	n = hweight8(ppe_thres_hdr &
2795 		     IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK);
2796 	n *= (1 + ((ppe_thres_hdr & IEEE80211_PPE_THRES_NSS_MASK) >>
2797 		   IEEE80211_PPE_THRES_NSS_POS));
2798 
2799 	/*
2800 	 * Each pair is 6 bits, and we need to add the 7 "header" bits to the
2801 	 * total size.
2802 	 */
2803 	n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7;
2804 	n = DIV_ROUND_UP(n, 8);
2805 
2806 	return n;
2807 }
2808 
2809 static inline bool ieee80211_he_capa_size_ok(const u8 *data, u8 len)
2810 {
2811 	const struct ieee80211_he_cap_elem *he_cap_ie_elem = (const void *)data;
2812 	u8 needed = sizeof(*he_cap_ie_elem);
2813 
2814 	if (len < needed)
2815 		return false;
2816 
2817 	needed += ieee80211_he_mcs_nss_size(he_cap_ie_elem);
2818 	if (len < needed)
2819 		return false;
2820 
2821 	if (he_cap_ie_elem->phy_cap_info[6] &
2822 			IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) {
2823 		if (len < needed + 1)
2824 			return false;
2825 		needed += ieee80211_he_ppe_size(data[needed],
2826 						he_cap_ie_elem->phy_cap_info);
2827 	}
2828 
2829 	return len >= needed;
2830 }
2831 
2832 /* HE Operation defines */
2833 #define IEEE80211_HE_OPERATION_DFLT_PE_DURATION_MASK		0x00000007
2834 #define IEEE80211_HE_OPERATION_TWT_REQUIRED			0x00000008
2835 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK		0x00003ff0
2836 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_OFFSET		4
2837 #define IEEE80211_HE_OPERATION_VHT_OPER_INFO			0x00004000
2838 #define IEEE80211_HE_OPERATION_CO_HOSTED_BSS			0x00008000
2839 #define IEEE80211_HE_OPERATION_ER_SU_DISABLE			0x00010000
2840 #define IEEE80211_HE_OPERATION_6GHZ_OP_INFO			0x00020000
2841 #define IEEE80211_HE_OPERATION_BSS_COLOR_MASK			0x3f000000
2842 #define IEEE80211_HE_OPERATION_BSS_COLOR_OFFSET			24
2843 #define IEEE80211_HE_OPERATION_PARTIAL_BSS_COLOR		0x40000000
2844 #define IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED		0x80000000
2845 
2846 #define IEEE80211_6GHZ_CTRL_REG_LPI_AP			0
2847 #define IEEE80211_6GHZ_CTRL_REG_SP_AP			1
2848 #define IEEE80211_6GHZ_CTRL_REG_VLP_AP			2
2849 #define IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP		3
2850 #define IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP_OLD	4
2851 #define IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP		8
2852 
2853 /**
2854  * struct ieee80211_he_6ghz_oper - HE 6 GHz operation Information field
2855  * @primary: primary channel
2856  * @control: control flags
2857  * @ccfs0: channel center frequency segment 0
2858  * @ccfs1: channel center frequency segment 1
2859  * @minrate: minimum rate (in 1 Mbps units)
2860  */
2861 struct ieee80211_he_6ghz_oper {
2862 	u8 primary;
2863 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH	0x3
2864 #define		IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ	0
2865 #define		IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ	1
2866 #define		IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ	2
2867 #define		IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ	3
2868 #define IEEE80211_HE_6GHZ_OPER_CTRL_DUP_BEACON	0x4
2869 #define IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO	0x78
2870 	u8 control;
2871 	u8 ccfs0;
2872 	u8 ccfs1;
2873 	u8 minrate;
2874 } __packed;
2875 
2876 /**
2877  * enum ieee80211_reg_conn_bits - represents Regulatory connectivity field bits.
2878  *
2879  * This enumeration defines bit flags used to represent regulatory connectivity
2880  * field bits.
2881  *
2882  * @IEEE80211_REG_CONN_LPI_VALID: Indicates whether the LPI bit is valid.
2883  * @IEEE80211_REG_CONN_LPI_VALUE: Represents the value of the LPI bit.
2884  * @IEEE80211_REG_CONN_SP_VALID: Indicates whether the SP bit is valid.
2885  * @IEEE80211_REG_CONN_SP_VALUE: Represents the value of the SP bit.
2886  */
2887 enum ieee80211_reg_conn_bits {
2888 	IEEE80211_REG_CONN_LPI_VALID = BIT(0),
2889 	IEEE80211_REG_CONN_LPI_VALUE = BIT(1),
2890 	IEEE80211_REG_CONN_SP_VALID = BIT(2),
2891 	IEEE80211_REG_CONN_SP_VALUE = BIT(3),
2892 };
2893 
2894 /* transmit power interpretation type of transmit power envelope element */
2895 enum ieee80211_tx_power_intrpt_type {
2896 	IEEE80211_TPE_LOCAL_EIRP,
2897 	IEEE80211_TPE_LOCAL_EIRP_PSD,
2898 	IEEE80211_TPE_REG_CLIENT_EIRP,
2899 	IEEE80211_TPE_REG_CLIENT_EIRP_PSD,
2900 };
2901 
2902 /* category type of transmit power envelope element */
2903 enum ieee80211_tx_power_category_6ghz {
2904 	IEEE80211_TPE_CAT_6GHZ_DEFAULT = 0,
2905 	IEEE80211_TPE_CAT_6GHZ_SUBORDINATE = 1,
2906 };
2907 
2908 /*
2909  * For IEEE80211_TPE_LOCAL_EIRP / IEEE80211_TPE_REG_CLIENT_EIRP,
2910  * setting to 63.5 dBm means no constraint.
2911  */
2912 #define IEEE80211_TPE_MAX_TX_PWR_NO_CONSTRAINT	127
2913 
2914 /*
2915  * For IEEE80211_TPE_LOCAL_EIRP_PSD / IEEE80211_TPE_REG_CLIENT_EIRP_PSD,
2916  * setting to 127 indicates no PSD limit for the 20 MHz channel.
2917  */
2918 #define IEEE80211_TPE_PSD_NO_LIMIT		127
2919 
2920 /**
2921  * struct ieee80211_tx_pwr_env - Transmit Power Envelope
2922  * @info: Transmit Power Information field
2923  * @variable: Maximum Transmit Power field
2924  *
2925  * This structure represents the payload of the "Transmit Power
2926  * Envelope element" as described in IEEE Std 802.11ax-2021 section
2927  * 9.4.2.161
2928  */
2929 struct ieee80211_tx_pwr_env {
2930 	u8 info;
2931 	u8 variable[];
2932 } __packed;
2933 
2934 #define IEEE80211_TX_PWR_ENV_INFO_COUNT 0x7
2935 #define IEEE80211_TX_PWR_ENV_INFO_INTERPRET 0x38
2936 #define IEEE80211_TX_PWR_ENV_INFO_CATEGORY 0xC0
2937 
2938 #define IEEE80211_TX_PWR_ENV_EXT_COUNT	0xF
2939 
2940 static inline bool ieee80211_valid_tpe_element(const u8 *data, u8 len)
2941 {
2942 	const struct ieee80211_tx_pwr_env *env = (const void *)data;
2943 	u8 count, interpret, category;
2944 	u8 needed = sizeof(*env);
2945 	u8 N; /* also called N in the spec */
2946 
2947 	if (len < needed)
2948 		return false;
2949 
2950 	count = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_COUNT);
2951 	interpret = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_INTERPRET);
2952 	category = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_CATEGORY);
2953 
2954 	switch (category) {
2955 	case IEEE80211_TPE_CAT_6GHZ_DEFAULT:
2956 	case IEEE80211_TPE_CAT_6GHZ_SUBORDINATE:
2957 		break;
2958 	default:
2959 		return false;
2960 	}
2961 
2962 	switch (interpret) {
2963 	case IEEE80211_TPE_LOCAL_EIRP:
2964 	case IEEE80211_TPE_REG_CLIENT_EIRP:
2965 		if (count > 3)
2966 			return false;
2967 
2968 		/* count == 0 encodes 1 value for 20 MHz, etc. */
2969 		needed += count + 1;
2970 
2971 		if (len < needed)
2972 			return false;
2973 
2974 		/* there can be extension fields not accounted for in 'count' */
2975 
2976 		return true;
2977 	case IEEE80211_TPE_LOCAL_EIRP_PSD:
2978 	case IEEE80211_TPE_REG_CLIENT_EIRP_PSD:
2979 		if (count > 4)
2980 			return false;
2981 
2982 		N = count ? 1 << (count - 1) : 1;
2983 		needed += N;
2984 
2985 		if (len < needed)
2986 			return false;
2987 
2988 		if (len > needed) {
2989 			u8 K = u8_get_bits(env->variable[N],
2990 					   IEEE80211_TX_PWR_ENV_EXT_COUNT);
2991 
2992 			needed += 1 + K;
2993 			if (len < needed)
2994 				return false;
2995 		}
2996 
2997 		return true;
2998 	}
2999 
3000 	return false;
3001 }
3002 
3003 /*
3004  * ieee80211_he_oper_size - calculate 802.11ax HE Operations IE size
3005  * @he_oper_ie: byte data of the He Operations IE, stating from the byte
3006  *	after the ext ID byte. It is assumed that he_oper_ie has at least
3007  *	sizeof(struct ieee80211_he_operation) bytes, the caller must have
3008  *	validated this.
3009  * @return the actual size of the IE data (not including header), or 0 on error
3010  */
3011 static inline u8
3012 ieee80211_he_oper_size(const u8 *he_oper_ie)
3013 {
3014 	const struct ieee80211_he_operation *he_oper = (const void *)he_oper_ie;
3015 	u8 oper_len = sizeof(struct ieee80211_he_operation);
3016 	u32 he_oper_params;
3017 
3018 	/* Make sure the input is not NULL */
3019 	if (!he_oper_ie)
3020 		return 0;
3021 
3022 	/* Calc required length */
3023 	he_oper_params = le32_to_cpu(he_oper->he_oper_params);
3024 	if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO)
3025 		oper_len += 3;
3026 	if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS)
3027 		oper_len++;
3028 	if (he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO)
3029 		oper_len += sizeof(struct ieee80211_he_6ghz_oper);
3030 
3031 	/* Add the first byte (extension ID) to the total length */
3032 	oper_len++;
3033 
3034 	return oper_len;
3035 }
3036 
3037 /**
3038  * ieee80211_he_6ghz_oper - obtain 6 GHz operation field
3039  * @he_oper: HE operation element (must be pre-validated for size)
3040  *	but may be %NULL
3041  *
3042  * Return: a pointer to the 6 GHz operation field, or %NULL
3043  */
3044 static inline const struct ieee80211_he_6ghz_oper *
3045 ieee80211_he_6ghz_oper(const struct ieee80211_he_operation *he_oper)
3046 {
3047 	const u8 *ret;
3048 	u32 he_oper_params;
3049 
3050 	if (!he_oper)
3051 		return NULL;
3052 
3053 	ret = (const void *)&he_oper->optional;
3054 
3055 	he_oper_params = le32_to_cpu(he_oper->he_oper_params);
3056 
3057 	if (!(he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO))
3058 		return NULL;
3059 	if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO)
3060 		ret += 3;
3061 	if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS)
3062 		ret++;
3063 
3064 	return (const void *)ret;
3065 }
3066 
3067 /* HE Spatial Reuse defines */
3068 #define IEEE80211_HE_SPR_PSR_DISALLOWED				BIT(0)
3069 #define IEEE80211_HE_SPR_NON_SRG_OBSS_PD_SR_DISALLOWED		BIT(1)
3070 #define IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT			BIT(2)
3071 #define IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT		BIT(3)
3072 #define IEEE80211_HE_SPR_HESIGA_SR_VAL15_ALLOWED		BIT(4)
3073 
3074 /*
3075  * ieee80211_he_spr_size - calculate 802.11ax HE Spatial Reuse IE size
3076  * @he_spr_ie: byte data of the He Spatial Reuse IE, stating from the byte
3077  *	after the ext ID byte. It is assumed that he_spr_ie has at least
3078  *	sizeof(struct ieee80211_he_spr) bytes, the caller must have validated
3079  *	this
3080  * @return the actual size of the IE data (not including header), or 0 on error
3081  */
3082 static inline u8
3083 ieee80211_he_spr_size(const u8 *he_spr_ie)
3084 {
3085 	const struct ieee80211_he_spr *he_spr = (const void *)he_spr_ie;
3086 	u8 spr_len = sizeof(struct ieee80211_he_spr);
3087 	u8 he_spr_params;
3088 
3089 	/* Make sure the input is not NULL */
3090 	if (!he_spr_ie)
3091 		return 0;
3092 
3093 	/* Calc required length */
3094 	he_spr_params = he_spr->he_sr_control;
3095 	if (he_spr_params & IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT)
3096 		spr_len++;
3097 	if (he_spr_params & IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT)
3098 		spr_len += 18;
3099 
3100 	/* Add the first byte (extension ID) to the total length */
3101 	spr_len++;
3102 
3103 	return spr_len;
3104 }
3105 
3106 /* S1G Capabilities Information field */
3107 #define IEEE80211_S1G_CAPABILITY_LEN	15
3108 
3109 #define S1G_CAP0_S1G_LONG	BIT(0)
3110 #define S1G_CAP0_SGI_1MHZ	BIT(1)
3111 #define S1G_CAP0_SGI_2MHZ	BIT(2)
3112 #define S1G_CAP0_SGI_4MHZ	BIT(3)
3113 #define S1G_CAP0_SGI_8MHZ	BIT(4)
3114 #define S1G_CAP0_SGI_16MHZ	BIT(5)
3115 #define S1G_CAP0_SUPP_CH_WIDTH	GENMASK(7, 6)
3116 
3117 #define S1G_SUPP_CH_WIDTH_2	0
3118 #define S1G_SUPP_CH_WIDTH_4	1
3119 #define S1G_SUPP_CH_WIDTH_8	2
3120 #define S1G_SUPP_CH_WIDTH_16	3
3121 #define S1G_SUPP_CH_WIDTH_MAX(cap) ((1 << FIELD_GET(S1G_CAP0_SUPP_CH_WIDTH, \
3122 						    cap[0])) << 1)
3123 
3124 #define S1G_CAP1_RX_LDPC	BIT(0)
3125 #define S1G_CAP1_TX_STBC	BIT(1)
3126 #define S1G_CAP1_RX_STBC	BIT(2)
3127 #define S1G_CAP1_SU_BFER	BIT(3)
3128 #define S1G_CAP1_SU_BFEE	BIT(4)
3129 #define S1G_CAP1_BFEE_STS	GENMASK(7, 5)
3130 
3131 #define S1G_CAP2_SOUNDING_DIMENSIONS	GENMASK(2, 0)
3132 #define S1G_CAP2_MU_BFER		BIT(3)
3133 #define S1G_CAP2_MU_BFEE		BIT(4)
3134 #define S1G_CAP2_PLUS_HTC_VHT		BIT(5)
3135 #define S1G_CAP2_TRAVELING_PILOT	GENMASK(7, 6)
3136 
3137 #define S1G_CAP3_RD_RESPONDER		BIT(0)
3138 #define S1G_CAP3_HT_DELAYED_BA		BIT(1)
3139 #define S1G_CAP3_MAX_MPDU_LEN		BIT(2)
3140 #define S1G_CAP3_MAX_AMPDU_LEN_EXP	GENMASK(4, 3)
3141 #define S1G_CAP3_MIN_MPDU_START		GENMASK(7, 5)
3142 
3143 #define S1G_CAP4_UPLINK_SYNC	BIT(0)
3144 #define S1G_CAP4_DYNAMIC_AID	BIT(1)
3145 #define S1G_CAP4_BAT		BIT(2)
3146 #define S1G_CAP4_TIME_ADE	BIT(3)
3147 #define S1G_CAP4_NON_TIM	BIT(4)
3148 #define S1G_CAP4_GROUP_AID	BIT(5)
3149 #define S1G_CAP4_STA_TYPE	GENMASK(7, 6)
3150 
3151 #define S1G_CAP5_CENT_AUTH_CONTROL	BIT(0)
3152 #define S1G_CAP5_DIST_AUTH_CONTROL	BIT(1)
3153 #define S1G_CAP5_AMSDU			BIT(2)
3154 #define S1G_CAP5_AMPDU			BIT(3)
3155 #define S1G_CAP5_ASYMMETRIC_BA		BIT(4)
3156 #define S1G_CAP5_FLOW_CONTROL		BIT(5)
3157 #define S1G_CAP5_SECTORIZED_BEAM	GENMASK(7, 6)
3158 
3159 #define S1G_CAP6_OBSS_MITIGATION	BIT(0)
3160 #define S1G_CAP6_FRAGMENT_BA		BIT(1)
3161 #define S1G_CAP6_NDP_PS_POLL		BIT(2)
3162 #define S1G_CAP6_RAW_OPERATION		BIT(3)
3163 #define S1G_CAP6_PAGE_SLICING		BIT(4)
3164 #define S1G_CAP6_TXOP_SHARING_IMP_ACK	BIT(5)
3165 #define S1G_CAP6_VHT_LINK_ADAPT		GENMASK(7, 6)
3166 
3167 #define S1G_CAP7_TACK_AS_PS_POLL		BIT(0)
3168 #define S1G_CAP7_DUP_1MHZ			BIT(1)
3169 #define S1G_CAP7_MCS_NEGOTIATION		BIT(2)
3170 #define S1G_CAP7_1MHZ_CTL_RESPONSE_PREAMBLE	BIT(3)
3171 #define S1G_CAP7_NDP_BFING_REPORT_POLL		BIT(4)
3172 #define S1G_CAP7_UNSOLICITED_DYN_AID		BIT(5)
3173 #define S1G_CAP7_SECTOR_TRAINING_OPERATION	BIT(6)
3174 #define S1G_CAP7_TEMP_PS_MODE_SWITCH		BIT(7)
3175 
3176 #define S1G_CAP8_TWT_GROUPING	BIT(0)
3177 #define S1G_CAP8_BDT		BIT(1)
3178 #define S1G_CAP8_COLOR		GENMASK(4, 2)
3179 #define S1G_CAP8_TWT_REQUEST	BIT(5)
3180 #define S1G_CAP8_TWT_RESPOND	BIT(6)
3181 #define S1G_CAP8_PV1_FRAME	BIT(7)
3182 
3183 #define S1G_CAP9_LINK_ADAPT_PER_CONTROL_RESPONSE BIT(0)
3184 
3185 #define S1G_OPER_CH_WIDTH_PRIMARY	BIT(0)
3186 #define S1G_OPER_CH_WIDTH_OPER		GENMASK(4, 1)
3187 #define S1G_OPER_CH_PRIMARY_LOCATION	BIT(5)
3188 
3189 #define S1G_2M_PRIMARY_LOCATION_LOWER	0
3190 #define S1G_2M_PRIMARY_LOCATION_UPPER	1
3191 
3192 /* EHT MAC capabilities as defined in P802.11be_D2.0 section 9.4.2.313.2 */
3193 #define IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS			0x01
3194 #define IEEE80211_EHT_MAC_CAP0_OM_CONTROL			0x02
3195 #define IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1		0x04
3196 #define IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2		0x08
3197 #define IEEE80211_EHT_MAC_CAP0_RESTRICTED_TWT			0x10
3198 #define IEEE80211_EHT_MAC_CAP0_SCS_TRAFFIC_DESC			0x20
3199 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK		0xc0
3200 #define	IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_3895	        0
3201 #define	IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_7991	        1
3202 #define	IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454	        2
3203 
3204 #define IEEE80211_EHT_MAC_CAP1_MAX_AMPDU_LEN_MASK		0x01
3205 #define IEEE80211_EHT_MAC_CAP1_EHT_TRS				0x02
3206 #define IEEE80211_EHT_MAC_CAP1_TXOP_RET				0x04
3207 #define IEEE80211_EHT_MAC_CAP1_TWO_BQRS				0x08
3208 #define IEEE80211_EHT_MAC_CAP1_EHT_LINK_ADAPT_MASK		0x30
3209 #define IEEE80211_EHT_MAC_CAP1_UNSOL_EPCS_PRIO_ACCESS		0x40
3210 
3211 /* EHT PHY capabilities as defined in P802.11be_D2.0 section 9.4.2.313.3 */
3212 #define IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ			0x02
3213 #define IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ		0x04
3214 #define IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI		0x08
3215 #define IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO		0x10
3216 #define IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMER			0x20
3217 #define IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE			0x40
3218 
3219 /* EHT beamformee number of spatial streams <= 80MHz is split */
3220 #define IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK		0x80
3221 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK		0x03
3222 
3223 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK	0x1c
3224 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK	0xe0
3225 
3226 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_80MHZ_MASK		0x07
3227 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK		0x38
3228 
3229 /* EHT number of sounding dimensions for 320MHz is split */
3230 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK		0xc0
3231 #define IEEE80211_EHT_PHY_CAP3_SOUNDING_DIM_320MHZ_MASK		0x01
3232 #define IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK		0x02
3233 #define IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK		0x04
3234 #define IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK		0x08
3235 #define IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK		0x10
3236 #define IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK			0x20
3237 #define IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK		0x40
3238 #define IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK			0x80
3239 
3240 #define IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO		0x01
3241 #define IEEE80211_EHT_PHY_CAP4_PSR_SR_SUPP			0x02
3242 #define IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP		0x04
3243 #define IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI	0x08
3244 #define IEEE80211_EHT_PHY_CAP4_MAX_NC_MASK			0xf0
3245 
3246 #define IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK		0x01
3247 #define IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP		0x02
3248 #define IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP		0x04
3249 #define IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT		0x08
3250 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK	0x30
3251 #define   IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_0US	0
3252 #define   IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_8US	1
3253 #define   IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US	2
3254 #define   IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_20US	3
3255 
3256 /* Maximum number of supported EHT LTF is split */
3257 #define IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK	0xc0
3258 #define IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF		0x40
3259 #define IEEE80211_EHT_PHY_CAP6_MAX_NUM_SUPP_EHT_LTF_MASK	0x07
3260 
3261 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_80MHZ			0x08
3262 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_160MHZ		0x30
3263 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_320MHZ		0x40
3264 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK			0x78
3265 #define IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP		0x80
3266 
3267 #define IEEE80211_EHT_PHY_CAP7_20MHZ_STA_RX_NDP_WIDER_BW	0x01
3268 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ	0x02
3269 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ	0x04
3270 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_320MHZ	0x08
3271 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ		0x10
3272 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ		0x20
3273 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_320MHZ		0x40
3274 #define IEEE80211_EHT_PHY_CAP7_TB_SOUNDING_FDBK_RATE_LIMIT	0x80
3275 
3276 #define IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA	0x01
3277 #define IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA	0x02
3278 
3279 /*
3280  * EHT operation channel width as defined in P802.11be_D2.0 section 9.4.2.311
3281  */
3282 #define IEEE80211_EHT_OPER_CHAN_WIDTH		0x7
3283 #define IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ	0
3284 #define IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ	1
3285 #define IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ	2
3286 #define IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ	3
3287 #define IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ	4
3288 
3289 /* Calculate 802.11be EHT capabilities IE Tx/Rx EHT MCS NSS Support Field size */
3290 static inline u8
3291 ieee80211_eht_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap,
3292 			   const struct ieee80211_eht_cap_elem_fixed *eht_cap,
3293 			   bool from_ap)
3294 {
3295 	u8 count = 0;
3296 
3297 	/* on 2.4 GHz, if it supports 40 MHz, the result is 3 */
3298 	if (he_cap->phy_cap_info[0] &
3299 	    IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G)
3300 		return 3;
3301 
3302 	/* on 2.4 GHz, these three bits are reserved, so should be 0 */
3303 	if (he_cap->phy_cap_info[0] &
3304 	    IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G)
3305 		count += 3;
3306 
3307 	if (he_cap->phy_cap_info[0] &
3308 	    IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G)
3309 		count += 3;
3310 
3311 	if (eht_cap->phy_cap_info[0] & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ)
3312 		count += 3;
3313 
3314 	if (count)
3315 		return count;
3316 
3317 	return from_ap ? 3 : 4;
3318 }
3319 
3320 /* 802.11be EHT PPE Thresholds */
3321 #define IEEE80211_EHT_PPE_THRES_NSS_POS			0
3322 #define IEEE80211_EHT_PPE_THRES_NSS_MASK		0xf
3323 #define IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK	0x1f0
3324 #define IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE		3
3325 #define IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE	9
3326 
3327 /*
3328  * Calculate 802.11be EHT capabilities IE EHT field size
3329  */
3330 static inline u8
3331 ieee80211_eht_ppe_size(u16 ppe_thres_hdr, const u8 *phy_cap_info)
3332 {
3333 	u32 n;
3334 
3335 	if (!(phy_cap_info[5] &
3336 	      IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT))
3337 		return 0;
3338 
3339 	n = hweight16(ppe_thres_hdr &
3340 		      IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK);
3341 	n *= 1 + u16_get_bits(ppe_thres_hdr, IEEE80211_EHT_PPE_THRES_NSS_MASK);
3342 
3343 	/*
3344 	 * Each pair is 6 bits, and we need to add the 9 "header" bits to the
3345 	 * total size.
3346 	 */
3347 	n = n * IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE * 2 +
3348 	    IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE;
3349 	return DIV_ROUND_UP(n, 8);
3350 }
3351 
3352 static inline bool
3353 ieee80211_eht_capa_size_ok(const u8 *he_capa, const u8 *data, u8 len,
3354 			   bool from_ap)
3355 {
3356 	const struct ieee80211_eht_cap_elem_fixed *elem = (const void *)data;
3357 	u8 needed = sizeof(struct ieee80211_eht_cap_elem_fixed);
3358 
3359 	if (len < needed || !he_capa)
3360 		return false;
3361 
3362 	needed += ieee80211_eht_mcs_nss_size((const void *)he_capa,
3363 					     (const void *)data,
3364 					     from_ap);
3365 	if (len < needed)
3366 		return false;
3367 
3368 	if (elem->phy_cap_info[5] &
3369 			IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT) {
3370 		u16 ppe_thres_hdr;
3371 
3372 		if (len < needed + sizeof(ppe_thres_hdr))
3373 			return false;
3374 
3375 		ppe_thres_hdr = get_unaligned_le16(data + needed);
3376 		needed += ieee80211_eht_ppe_size(ppe_thres_hdr,
3377 						 elem->phy_cap_info);
3378 	}
3379 
3380 	return len >= needed;
3381 }
3382 
3383 static inline bool
3384 ieee80211_eht_oper_size_ok(const u8 *data, u8 len)
3385 {
3386 	const struct ieee80211_eht_operation *elem = (const void *)data;
3387 	u8 needed = sizeof(*elem);
3388 
3389 	if (len < needed)
3390 		return false;
3391 
3392 	if (elem->params & IEEE80211_EHT_OPER_INFO_PRESENT) {
3393 		needed += 3;
3394 
3395 		if (elem->params &
3396 		    IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT)
3397 			needed += 2;
3398 	}
3399 
3400 	return len >= needed;
3401 }
3402 
3403 /* must validate ieee80211_eht_oper_size_ok() first */
3404 static inline u16
3405 ieee80211_eht_oper_dis_subchan_bitmap(const struct ieee80211_eht_operation *eht_oper)
3406 {
3407 	const struct ieee80211_eht_operation_info *info =
3408 		(const void *)eht_oper->optional;
3409 
3410 	if (!(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT))
3411 		return 0;
3412 
3413 	if (!(eht_oper->params & IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT))
3414 		return 0;
3415 
3416 	return get_unaligned_le16(info->optional);
3417 }
3418 
3419 #define IEEE80211_BW_IND_DIS_SUBCH_PRESENT	BIT(1)
3420 
3421 struct ieee80211_bandwidth_indication {
3422 	u8 params;
3423 	struct ieee80211_eht_operation_info info;
3424 } __packed;
3425 
3426 static inline bool
3427 ieee80211_bandwidth_indication_size_ok(const u8 *data, u8 len)
3428 {
3429 	const struct ieee80211_bandwidth_indication *bwi = (const void *)data;
3430 
3431 	if (len < sizeof(*bwi))
3432 		return false;
3433 
3434 	if (bwi->params & IEEE80211_BW_IND_DIS_SUBCH_PRESENT &&
3435 	    len < sizeof(*bwi) + 2)
3436 		return false;
3437 
3438 	return true;
3439 }
3440 
3441 #define LISTEN_INT_USF	GENMASK(15, 14)
3442 #define LISTEN_INT_UI	GENMASK(13, 0)
3443 
3444 #define IEEE80211_MAX_USF	FIELD_MAX(LISTEN_INT_USF)
3445 #define IEEE80211_MAX_UI	FIELD_MAX(LISTEN_INT_UI)
3446 
3447 /* Authentication algorithms */
3448 #define WLAN_AUTH_OPEN 0
3449 #define WLAN_AUTH_SHARED_KEY 1
3450 #define WLAN_AUTH_FT 2
3451 #define WLAN_AUTH_SAE 3
3452 #define WLAN_AUTH_FILS_SK 4
3453 #define WLAN_AUTH_FILS_SK_PFS 5
3454 #define WLAN_AUTH_FILS_PK 6
3455 #define WLAN_AUTH_LEAP 128
3456 
3457 #define WLAN_AUTH_CHALLENGE_LEN 128
3458 
3459 #define WLAN_CAPABILITY_ESS		(1<<0)
3460 #define WLAN_CAPABILITY_IBSS		(1<<1)
3461 
3462 /*
3463  * A mesh STA sets the ESS and IBSS capability bits to zero.
3464  * however, this holds true for p2p probe responses (in the p2p_find
3465  * phase) as well.
3466  */
3467 #define WLAN_CAPABILITY_IS_STA_BSS(cap)	\
3468 	(!((cap) & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS)))
3469 
3470 #define WLAN_CAPABILITY_CF_POLLABLE	(1<<2)
3471 #define WLAN_CAPABILITY_CF_POLL_REQUEST	(1<<3)
3472 #define WLAN_CAPABILITY_PRIVACY		(1<<4)
3473 #define WLAN_CAPABILITY_SHORT_PREAMBLE	(1<<5)
3474 #define WLAN_CAPABILITY_PBCC		(1<<6)
3475 #define WLAN_CAPABILITY_CHANNEL_AGILITY	(1<<7)
3476 
3477 /* 802.11h */
3478 #define WLAN_CAPABILITY_SPECTRUM_MGMT	(1<<8)
3479 #define WLAN_CAPABILITY_QOS		(1<<9)
3480 #define WLAN_CAPABILITY_SHORT_SLOT_TIME	(1<<10)
3481 #define WLAN_CAPABILITY_APSD		(1<<11)
3482 #define WLAN_CAPABILITY_RADIO_MEASURE	(1<<12)
3483 #define WLAN_CAPABILITY_DSSS_OFDM	(1<<13)
3484 #define WLAN_CAPABILITY_DEL_BACK	(1<<14)
3485 #define WLAN_CAPABILITY_IMM_BACK	(1<<15)
3486 
3487 /* DMG (60gHz) 802.11ad */
3488 /* type - bits 0..1 */
3489 #define WLAN_CAPABILITY_DMG_TYPE_MASK		(3<<0)
3490 #define WLAN_CAPABILITY_DMG_TYPE_IBSS		(1<<0) /* Tx by: STA */
3491 #define WLAN_CAPABILITY_DMG_TYPE_PBSS		(2<<0) /* Tx by: PCP */
3492 #define WLAN_CAPABILITY_DMG_TYPE_AP		(3<<0) /* Tx by: AP */
3493 
3494 #define WLAN_CAPABILITY_DMG_CBAP_ONLY		(1<<2)
3495 #define WLAN_CAPABILITY_DMG_CBAP_SOURCE		(1<<3)
3496 #define WLAN_CAPABILITY_DMG_PRIVACY		(1<<4)
3497 #define WLAN_CAPABILITY_DMG_ECPAC		(1<<5)
3498 
3499 #define WLAN_CAPABILITY_DMG_SPECTRUM_MGMT	(1<<8)
3500 #define WLAN_CAPABILITY_DMG_RADIO_MEASURE	(1<<12)
3501 
3502 /* measurement */
3503 #define IEEE80211_SPCT_MSR_RPRT_MODE_LATE	(1<<0)
3504 #define IEEE80211_SPCT_MSR_RPRT_MODE_INCAPABLE	(1<<1)
3505 #define IEEE80211_SPCT_MSR_RPRT_MODE_REFUSED	(1<<2)
3506 
3507 #define IEEE80211_SPCT_MSR_RPRT_TYPE_BASIC	0
3508 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CCA	1
3509 #define IEEE80211_SPCT_MSR_RPRT_TYPE_RPI	2
3510 #define IEEE80211_SPCT_MSR_RPRT_TYPE_LCI	8
3511 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CIVIC	11
3512 
3513 /* 802.11g ERP information element */
3514 #define WLAN_ERP_NON_ERP_PRESENT (1<<0)
3515 #define WLAN_ERP_USE_PROTECTION (1<<1)
3516 #define WLAN_ERP_BARKER_PREAMBLE (1<<2)
3517 
3518 /* WLAN_ERP_BARKER_PREAMBLE values */
3519 enum {
3520 	WLAN_ERP_PREAMBLE_SHORT = 0,
3521 	WLAN_ERP_PREAMBLE_LONG = 1,
3522 };
3523 
3524 /* Band ID, 802.11ad #8.4.1.45 */
3525 enum {
3526 	IEEE80211_BANDID_TV_WS = 0, /* TV white spaces */
3527 	IEEE80211_BANDID_SUB1  = 1, /* Sub-1 GHz (excluding TV white spaces) */
3528 	IEEE80211_BANDID_2G    = 2, /* 2.4 GHz */
3529 	IEEE80211_BANDID_3G    = 3, /* 3.6 GHz */
3530 	IEEE80211_BANDID_5G    = 4, /* 4.9 and 5 GHz */
3531 	IEEE80211_BANDID_60G   = 5, /* 60 GHz */
3532 };
3533 
3534 /* Status codes */
3535 enum ieee80211_statuscode {
3536 	WLAN_STATUS_SUCCESS = 0,
3537 	WLAN_STATUS_UNSPECIFIED_FAILURE = 1,
3538 	WLAN_STATUS_CAPS_UNSUPPORTED = 10,
3539 	WLAN_STATUS_REASSOC_NO_ASSOC = 11,
3540 	WLAN_STATUS_ASSOC_DENIED_UNSPEC = 12,
3541 	WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG = 13,
3542 	WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION = 14,
3543 	WLAN_STATUS_CHALLENGE_FAIL = 15,
3544 	WLAN_STATUS_AUTH_TIMEOUT = 16,
3545 	WLAN_STATUS_AP_UNABLE_TO_HANDLE_NEW_STA = 17,
3546 	WLAN_STATUS_ASSOC_DENIED_RATES = 18,
3547 	/* 802.11b */
3548 	WLAN_STATUS_ASSOC_DENIED_NOSHORTPREAMBLE = 19,
3549 	WLAN_STATUS_ASSOC_DENIED_NOPBCC = 20,
3550 	WLAN_STATUS_ASSOC_DENIED_NOAGILITY = 21,
3551 	/* 802.11h */
3552 	WLAN_STATUS_ASSOC_DENIED_NOSPECTRUM = 22,
3553 	WLAN_STATUS_ASSOC_REJECTED_BAD_POWER = 23,
3554 	WLAN_STATUS_ASSOC_REJECTED_BAD_SUPP_CHAN = 24,
3555 	/* 802.11g */
3556 	WLAN_STATUS_ASSOC_DENIED_NOSHORTTIME = 25,
3557 	WLAN_STATUS_ASSOC_DENIED_NODSSSOFDM = 26,
3558 	/* 802.11w */
3559 	WLAN_STATUS_ASSOC_REJECTED_TEMPORARILY = 30,
3560 	WLAN_STATUS_ROBUST_MGMT_FRAME_POLICY_VIOLATION = 31,
3561 	/* 802.11i */
3562 	WLAN_STATUS_INVALID_IE = 40,
3563 	WLAN_STATUS_INVALID_GROUP_CIPHER = 41,
3564 	WLAN_STATUS_INVALID_PAIRWISE_CIPHER = 42,
3565 	WLAN_STATUS_INVALID_AKMP = 43,
3566 	WLAN_STATUS_UNSUPP_RSN_VERSION = 44,
3567 	WLAN_STATUS_INVALID_RSN_IE_CAP = 45,
3568 	WLAN_STATUS_CIPHER_SUITE_REJECTED = 46,
3569 	/* 802.11e */
3570 	WLAN_STATUS_UNSPECIFIED_QOS = 32,
3571 	WLAN_STATUS_ASSOC_DENIED_NOBANDWIDTH = 33,
3572 	WLAN_STATUS_ASSOC_DENIED_LOWACK = 34,
3573 	WLAN_STATUS_ASSOC_DENIED_UNSUPP_QOS = 35,
3574 	WLAN_STATUS_REQUEST_DECLINED = 37,
3575 	WLAN_STATUS_INVALID_QOS_PARAM = 38,
3576 	WLAN_STATUS_CHANGE_TSPEC = 39,
3577 	WLAN_STATUS_WAIT_TS_DELAY = 47,
3578 	WLAN_STATUS_NO_DIRECT_LINK = 48,
3579 	WLAN_STATUS_STA_NOT_PRESENT = 49,
3580 	WLAN_STATUS_STA_NOT_QSTA = 50,
3581 	/* 802.11s */
3582 	WLAN_STATUS_ANTI_CLOG_REQUIRED = 76,
3583 	WLAN_STATUS_FCG_NOT_SUPP = 78,
3584 	WLAN_STATUS_STA_NO_TBTT = 78,
3585 	/* 802.11ad */
3586 	WLAN_STATUS_REJECTED_WITH_SUGGESTED_CHANGES = 39,
3587 	WLAN_STATUS_REJECTED_FOR_DELAY_PERIOD = 47,
3588 	WLAN_STATUS_REJECT_WITH_SCHEDULE = 83,
3589 	WLAN_STATUS_PENDING_ADMITTING_FST_SESSION = 86,
3590 	WLAN_STATUS_PERFORMING_FST_NOW = 87,
3591 	WLAN_STATUS_PENDING_GAP_IN_BA_WINDOW = 88,
3592 	WLAN_STATUS_REJECT_U_PID_SETTING = 89,
3593 	WLAN_STATUS_REJECT_DSE_BAND = 96,
3594 	WLAN_STATUS_DENIED_WITH_SUGGESTED_BAND_AND_CHANNEL = 99,
3595 	WLAN_STATUS_DENIED_DUE_TO_SPECTRUM_MANAGEMENT = 103,
3596 	/* 802.11ai */
3597 	WLAN_STATUS_FILS_AUTHENTICATION_FAILURE = 108,
3598 	WLAN_STATUS_UNKNOWN_AUTHENTICATION_SERVER = 109,
3599 	WLAN_STATUS_SAE_HASH_TO_ELEMENT = 126,
3600 	WLAN_STATUS_SAE_PK = 127,
3601 	WLAN_STATUS_DENIED_TID_TO_LINK_MAPPING = 133,
3602 	WLAN_STATUS_PREF_TID_TO_LINK_MAPPING_SUGGESTED = 134,
3603 };
3604 
3605 
3606 /* Reason codes */
3607 enum ieee80211_reasoncode {
3608 	WLAN_REASON_UNSPECIFIED = 1,
3609 	WLAN_REASON_PREV_AUTH_NOT_VALID = 2,
3610 	WLAN_REASON_DEAUTH_LEAVING = 3,
3611 	WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY = 4,
3612 	WLAN_REASON_DISASSOC_AP_BUSY = 5,
3613 	WLAN_REASON_CLASS2_FRAME_FROM_NONAUTH_STA = 6,
3614 	WLAN_REASON_CLASS3_FRAME_FROM_NONASSOC_STA = 7,
3615 	WLAN_REASON_DISASSOC_STA_HAS_LEFT = 8,
3616 	WLAN_REASON_STA_REQ_ASSOC_WITHOUT_AUTH = 9,
3617 	/* 802.11h */
3618 	WLAN_REASON_DISASSOC_BAD_POWER = 10,
3619 	WLAN_REASON_DISASSOC_BAD_SUPP_CHAN = 11,
3620 	/* 802.11i */
3621 	WLAN_REASON_INVALID_IE = 13,
3622 	WLAN_REASON_MIC_FAILURE = 14,
3623 	WLAN_REASON_4WAY_HANDSHAKE_TIMEOUT = 15,
3624 	WLAN_REASON_GROUP_KEY_HANDSHAKE_TIMEOUT = 16,
3625 	WLAN_REASON_IE_DIFFERENT = 17,
3626 	WLAN_REASON_INVALID_GROUP_CIPHER = 18,
3627 	WLAN_REASON_INVALID_PAIRWISE_CIPHER = 19,
3628 	WLAN_REASON_INVALID_AKMP = 20,
3629 	WLAN_REASON_UNSUPP_RSN_VERSION = 21,
3630 	WLAN_REASON_INVALID_RSN_IE_CAP = 22,
3631 	WLAN_REASON_IEEE8021X_FAILED = 23,
3632 	WLAN_REASON_CIPHER_SUITE_REJECTED = 24,
3633 	/* TDLS (802.11z) */
3634 	WLAN_REASON_TDLS_TEARDOWN_UNREACHABLE = 25,
3635 	WLAN_REASON_TDLS_TEARDOWN_UNSPECIFIED = 26,
3636 	/* 802.11e */
3637 	WLAN_REASON_DISASSOC_UNSPECIFIED_QOS = 32,
3638 	WLAN_REASON_DISASSOC_QAP_NO_BANDWIDTH = 33,
3639 	WLAN_REASON_DISASSOC_LOW_ACK = 34,
3640 	WLAN_REASON_DISASSOC_QAP_EXCEED_TXOP = 35,
3641 	WLAN_REASON_QSTA_LEAVE_QBSS = 36,
3642 	WLAN_REASON_QSTA_NOT_USE = 37,
3643 	WLAN_REASON_QSTA_REQUIRE_SETUP = 38,
3644 	WLAN_REASON_QSTA_TIMEOUT = 39,
3645 	WLAN_REASON_QSTA_CIPHER_NOT_SUPP = 45,
3646 	/* 802.11s */
3647 	WLAN_REASON_MESH_PEER_CANCELED = 52,
3648 	WLAN_REASON_MESH_MAX_PEERS = 53,
3649 	WLAN_REASON_MESH_CONFIG = 54,
3650 	WLAN_REASON_MESH_CLOSE = 55,
3651 	WLAN_REASON_MESH_MAX_RETRIES = 56,
3652 	WLAN_REASON_MESH_CONFIRM_TIMEOUT = 57,
3653 	WLAN_REASON_MESH_INVALID_GTK = 58,
3654 	WLAN_REASON_MESH_INCONSISTENT_PARAM = 59,
3655 	WLAN_REASON_MESH_INVALID_SECURITY = 60,
3656 	WLAN_REASON_MESH_PATH_ERROR = 61,
3657 	WLAN_REASON_MESH_PATH_NOFORWARD = 62,
3658 	WLAN_REASON_MESH_PATH_DEST_UNREACHABLE = 63,
3659 	WLAN_REASON_MAC_EXISTS_IN_MBSS = 64,
3660 	WLAN_REASON_MESH_CHAN_REGULATORY = 65,
3661 	WLAN_REASON_MESH_CHAN = 66,
3662 };
3663 
3664 
3665 /* Information Element IDs */
3666 enum ieee80211_eid {
3667 	WLAN_EID_SSID = 0,
3668 	WLAN_EID_SUPP_RATES = 1,
3669 	WLAN_EID_FH_PARAMS = 2, /* reserved now */
3670 	WLAN_EID_DS_PARAMS = 3,
3671 	WLAN_EID_CF_PARAMS = 4,
3672 	WLAN_EID_TIM = 5,
3673 	WLAN_EID_IBSS_PARAMS = 6,
3674 	WLAN_EID_COUNTRY = 7,
3675 	/* 8, 9 reserved */
3676 	WLAN_EID_REQUEST = 10,
3677 	WLAN_EID_QBSS_LOAD = 11,
3678 	WLAN_EID_EDCA_PARAM_SET = 12,
3679 	WLAN_EID_TSPEC = 13,
3680 	WLAN_EID_TCLAS = 14,
3681 	WLAN_EID_SCHEDULE = 15,
3682 	WLAN_EID_CHALLENGE = 16,
3683 	/* 17-31 reserved for challenge text extension */
3684 	WLAN_EID_PWR_CONSTRAINT = 32,
3685 	WLAN_EID_PWR_CAPABILITY = 33,
3686 	WLAN_EID_TPC_REQUEST = 34,
3687 	WLAN_EID_TPC_REPORT = 35,
3688 	WLAN_EID_SUPPORTED_CHANNELS = 36,
3689 	WLAN_EID_CHANNEL_SWITCH = 37,
3690 	WLAN_EID_MEASURE_REQUEST = 38,
3691 	WLAN_EID_MEASURE_REPORT = 39,
3692 	WLAN_EID_QUIET = 40,
3693 	WLAN_EID_IBSS_DFS = 41,
3694 	WLAN_EID_ERP_INFO = 42,
3695 	WLAN_EID_TS_DELAY = 43,
3696 	WLAN_EID_TCLAS_PROCESSING = 44,
3697 	WLAN_EID_HT_CAPABILITY = 45,
3698 	WLAN_EID_QOS_CAPA = 46,
3699 	/* 47 reserved for Broadcom */
3700 	WLAN_EID_RSN = 48,
3701 	WLAN_EID_802_15_COEX = 49,
3702 	WLAN_EID_EXT_SUPP_RATES = 50,
3703 	WLAN_EID_AP_CHAN_REPORT = 51,
3704 	WLAN_EID_NEIGHBOR_REPORT = 52,
3705 	WLAN_EID_RCPI = 53,
3706 	WLAN_EID_MOBILITY_DOMAIN = 54,
3707 	WLAN_EID_FAST_BSS_TRANSITION = 55,
3708 	WLAN_EID_TIMEOUT_INTERVAL = 56,
3709 	WLAN_EID_RIC_DATA = 57,
3710 	WLAN_EID_DSE_REGISTERED_LOCATION = 58,
3711 	WLAN_EID_SUPPORTED_REGULATORY_CLASSES = 59,
3712 	WLAN_EID_EXT_CHANSWITCH_ANN = 60,
3713 	WLAN_EID_HT_OPERATION = 61,
3714 	WLAN_EID_SECONDARY_CHANNEL_OFFSET = 62,
3715 	WLAN_EID_BSS_AVG_ACCESS_DELAY = 63,
3716 	WLAN_EID_ANTENNA_INFO = 64,
3717 	WLAN_EID_RSNI = 65,
3718 	WLAN_EID_MEASUREMENT_PILOT_TX_INFO = 66,
3719 	WLAN_EID_BSS_AVAILABLE_CAPACITY = 67,
3720 	WLAN_EID_BSS_AC_ACCESS_DELAY = 68,
3721 	WLAN_EID_TIME_ADVERTISEMENT = 69,
3722 	WLAN_EID_RRM_ENABLED_CAPABILITIES = 70,
3723 	WLAN_EID_MULTIPLE_BSSID = 71,
3724 	WLAN_EID_BSS_COEX_2040 = 72,
3725 	WLAN_EID_BSS_INTOLERANT_CHL_REPORT = 73,
3726 	WLAN_EID_OVERLAP_BSS_SCAN_PARAM = 74,
3727 	WLAN_EID_RIC_DESCRIPTOR = 75,
3728 	WLAN_EID_MMIE = 76,
3729 	WLAN_EID_ASSOC_COMEBACK_TIME = 77,
3730 	WLAN_EID_EVENT_REQUEST = 78,
3731 	WLAN_EID_EVENT_REPORT = 79,
3732 	WLAN_EID_DIAGNOSTIC_REQUEST = 80,
3733 	WLAN_EID_DIAGNOSTIC_REPORT = 81,
3734 	WLAN_EID_LOCATION_PARAMS = 82,
3735 	WLAN_EID_NON_TX_BSSID_CAP =  83,
3736 	WLAN_EID_SSID_LIST = 84,
3737 	WLAN_EID_MULTI_BSSID_IDX = 85,
3738 	WLAN_EID_FMS_DESCRIPTOR = 86,
3739 	WLAN_EID_FMS_REQUEST = 87,
3740 	WLAN_EID_FMS_RESPONSE = 88,
3741 	WLAN_EID_QOS_TRAFFIC_CAPA = 89,
3742 	WLAN_EID_BSS_MAX_IDLE_PERIOD = 90,
3743 	WLAN_EID_TSF_REQUEST = 91,
3744 	WLAN_EID_TSF_RESPOSNE = 92,
3745 	WLAN_EID_WNM_SLEEP_MODE = 93,
3746 	WLAN_EID_TIM_BCAST_REQ = 94,
3747 	WLAN_EID_TIM_BCAST_RESP = 95,
3748 	WLAN_EID_COLL_IF_REPORT = 96,
3749 	WLAN_EID_CHANNEL_USAGE = 97,
3750 	WLAN_EID_TIME_ZONE = 98,
3751 	WLAN_EID_DMS_REQUEST = 99,
3752 	WLAN_EID_DMS_RESPONSE = 100,
3753 	WLAN_EID_LINK_ID = 101,
3754 	WLAN_EID_WAKEUP_SCHEDUL = 102,
3755 	/* 103 reserved */
3756 	WLAN_EID_CHAN_SWITCH_TIMING = 104,
3757 	WLAN_EID_PTI_CONTROL = 105,
3758 	WLAN_EID_PU_BUFFER_STATUS = 106,
3759 	WLAN_EID_INTERWORKING = 107,
3760 	WLAN_EID_ADVERTISEMENT_PROTOCOL = 108,
3761 	WLAN_EID_EXPEDITED_BW_REQ = 109,
3762 	WLAN_EID_QOS_MAP_SET = 110,
3763 	WLAN_EID_ROAMING_CONSORTIUM = 111,
3764 	WLAN_EID_EMERGENCY_ALERT = 112,
3765 	WLAN_EID_MESH_CONFIG = 113,
3766 	WLAN_EID_MESH_ID = 114,
3767 	WLAN_EID_LINK_METRIC_REPORT = 115,
3768 	WLAN_EID_CONGESTION_NOTIFICATION = 116,
3769 	WLAN_EID_PEER_MGMT = 117,
3770 	WLAN_EID_CHAN_SWITCH_PARAM = 118,
3771 	WLAN_EID_MESH_AWAKE_WINDOW = 119,
3772 	WLAN_EID_BEACON_TIMING = 120,
3773 	WLAN_EID_MCCAOP_SETUP_REQ = 121,
3774 	WLAN_EID_MCCAOP_SETUP_RESP = 122,
3775 	WLAN_EID_MCCAOP_ADVERT = 123,
3776 	WLAN_EID_MCCAOP_TEARDOWN = 124,
3777 	WLAN_EID_GANN = 125,
3778 	WLAN_EID_RANN = 126,
3779 	WLAN_EID_EXT_CAPABILITY = 127,
3780 	/* 128, 129 reserved for Agere */
3781 	WLAN_EID_PREQ = 130,
3782 	WLAN_EID_PREP = 131,
3783 	WLAN_EID_PERR = 132,
3784 	/* 133-136 reserved for Cisco */
3785 	WLAN_EID_PXU = 137,
3786 	WLAN_EID_PXUC = 138,
3787 	WLAN_EID_AUTH_MESH_PEER_EXCH = 139,
3788 	WLAN_EID_MIC = 140,
3789 	WLAN_EID_DESTINATION_URI = 141,
3790 	WLAN_EID_UAPSD_COEX = 142,
3791 	WLAN_EID_WAKEUP_SCHEDULE = 143,
3792 	WLAN_EID_EXT_SCHEDULE = 144,
3793 	WLAN_EID_STA_AVAILABILITY = 145,
3794 	WLAN_EID_DMG_TSPEC = 146,
3795 	WLAN_EID_DMG_AT = 147,
3796 	WLAN_EID_DMG_CAP = 148,
3797 	/* 149 reserved for Cisco */
3798 	WLAN_EID_CISCO_VENDOR_SPECIFIC = 150,
3799 	WLAN_EID_DMG_OPERATION = 151,
3800 	WLAN_EID_DMG_BSS_PARAM_CHANGE = 152,
3801 	WLAN_EID_DMG_BEAM_REFINEMENT = 153,
3802 	WLAN_EID_CHANNEL_MEASURE_FEEDBACK = 154,
3803 	/* 155-156 reserved for Cisco */
3804 	WLAN_EID_AWAKE_WINDOW = 157,
3805 	WLAN_EID_MULTI_BAND = 158,
3806 	WLAN_EID_ADDBA_EXT = 159,
3807 	WLAN_EID_NEXT_PCP_LIST = 160,
3808 	WLAN_EID_PCP_HANDOVER = 161,
3809 	WLAN_EID_DMG_LINK_MARGIN = 162,
3810 	WLAN_EID_SWITCHING_STREAM = 163,
3811 	WLAN_EID_SESSION_TRANSITION = 164,
3812 	WLAN_EID_DYN_TONE_PAIRING_REPORT = 165,
3813 	WLAN_EID_CLUSTER_REPORT = 166,
3814 	WLAN_EID_RELAY_CAP = 167,
3815 	WLAN_EID_RELAY_XFER_PARAM_SET = 168,
3816 	WLAN_EID_BEAM_LINK_MAINT = 169,
3817 	WLAN_EID_MULTIPLE_MAC_ADDR = 170,
3818 	WLAN_EID_U_PID = 171,
3819 	WLAN_EID_DMG_LINK_ADAPT_ACK = 172,
3820 	/* 173 reserved for Symbol */
3821 	WLAN_EID_MCCAOP_ADV_OVERVIEW = 174,
3822 	WLAN_EID_QUIET_PERIOD_REQ = 175,
3823 	/* 176 reserved for Symbol */
3824 	WLAN_EID_QUIET_PERIOD_RESP = 177,
3825 	/* 178-179 reserved for Symbol */
3826 	/* 180 reserved for ISO/IEC 20011 */
3827 	WLAN_EID_EPAC_POLICY = 182,
3828 	WLAN_EID_CLISTER_TIME_OFF = 183,
3829 	WLAN_EID_INTER_AC_PRIO = 184,
3830 	WLAN_EID_SCS_DESCRIPTOR = 185,
3831 	WLAN_EID_QLOAD_REPORT = 186,
3832 	WLAN_EID_HCCA_TXOP_UPDATE_COUNT = 187,
3833 	WLAN_EID_HL_STREAM_ID = 188,
3834 	WLAN_EID_GCR_GROUP_ADDR = 189,
3835 	WLAN_EID_ANTENNA_SECTOR_ID_PATTERN = 190,
3836 	WLAN_EID_VHT_CAPABILITY = 191,
3837 	WLAN_EID_VHT_OPERATION = 192,
3838 	WLAN_EID_EXTENDED_BSS_LOAD = 193,
3839 	WLAN_EID_WIDE_BW_CHANNEL_SWITCH = 194,
3840 	WLAN_EID_TX_POWER_ENVELOPE = 195,
3841 	WLAN_EID_CHANNEL_SWITCH_WRAPPER = 196,
3842 	WLAN_EID_AID = 197,
3843 	WLAN_EID_QUIET_CHANNEL = 198,
3844 	WLAN_EID_OPMODE_NOTIF = 199,
3845 
3846 	WLAN_EID_REDUCED_NEIGHBOR_REPORT = 201,
3847 
3848 	WLAN_EID_AID_REQUEST = 210,
3849 	WLAN_EID_AID_RESPONSE = 211,
3850 	WLAN_EID_S1G_BCN_COMPAT = 213,
3851 	WLAN_EID_S1G_SHORT_BCN_INTERVAL = 214,
3852 	WLAN_EID_S1G_TWT = 216,
3853 	WLAN_EID_S1G_CAPABILITIES = 217,
3854 	WLAN_EID_VENDOR_SPECIFIC = 221,
3855 	WLAN_EID_QOS_PARAMETER = 222,
3856 	WLAN_EID_S1G_OPERATION = 232,
3857 	WLAN_EID_CAG_NUMBER = 237,
3858 	WLAN_EID_AP_CSN = 239,
3859 	WLAN_EID_FILS_INDICATION = 240,
3860 	WLAN_EID_DILS = 241,
3861 	WLAN_EID_FRAGMENT = 242,
3862 	WLAN_EID_RSNX = 244,
3863 	WLAN_EID_EXTENSION = 255
3864 };
3865 
3866 /* Element ID Extensions for Element ID 255 */
3867 enum ieee80211_eid_ext {
3868 	WLAN_EID_EXT_ASSOC_DELAY_INFO = 1,
3869 	WLAN_EID_EXT_FILS_REQ_PARAMS = 2,
3870 	WLAN_EID_EXT_FILS_KEY_CONFIRM = 3,
3871 	WLAN_EID_EXT_FILS_SESSION = 4,
3872 	WLAN_EID_EXT_FILS_HLP_CONTAINER = 5,
3873 	WLAN_EID_EXT_FILS_IP_ADDR_ASSIGN = 6,
3874 	WLAN_EID_EXT_KEY_DELIVERY = 7,
3875 	WLAN_EID_EXT_FILS_WRAPPED_DATA = 8,
3876 	WLAN_EID_EXT_FILS_PUBLIC_KEY = 12,
3877 	WLAN_EID_EXT_FILS_NONCE = 13,
3878 	WLAN_EID_EXT_FUTURE_CHAN_GUIDANCE = 14,
3879 	WLAN_EID_EXT_DH_PARAMETER = 32,
3880 	WLAN_EID_EXT_HE_CAPABILITY = 35,
3881 	WLAN_EID_EXT_HE_OPERATION = 36,
3882 	WLAN_EID_EXT_UORA = 37,
3883 	WLAN_EID_EXT_HE_MU_EDCA = 38,
3884 	WLAN_EID_EXT_HE_SPR = 39,
3885 	WLAN_EID_EXT_NDP_FEEDBACK_REPORT_PARAMSET = 41,
3886 	WLAN_EID_EXT_BSS_COLOR_CHG_ANN = 42,
3887 	WLAN_EID_EXT_QUIET_TIME_PERIOD_SETUP = 43,
3888 	WLAN_EID_EXT_ESS_REPORT = 45,
3889 	WLAN_EID_EXT_OPS = 46,
3890 	WLAN_EID_EXT_HE_BSS_LOAD = 47,
3891 	WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME = 52,
3892 	WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION = 55,
3893 	WLAN_EID_EXT_NON_INHERITANCE = 56,
3894 	WLAN_EID_EXT_KNOWN_BSSID = 57,
3895 	WLAN_EID_EXT_SHORT_SSID_LIST = 58,
3896 	WLAN_EID_EXT_HE_6GHZ_CAPA = 59,
3897 	WLAN_EID_EXT_UL_MU_POWER_CAPA = 60,
3898 	WLAN_EID_EXT_EHT_OPERATION = 106,
3899 	WLAN_EID_EXT_EHT_MULTI_LINK = 107,
3900 	WLAN_EID_EXT_EHT_CAPABILITY = 108,
3901 	WLAN_EID_EXT_TID_TO_LINK_MAPPING = 109,
3902 	WLAN_EID_EXT_BANDWIDTH_INDICATION = 135,
3903 	WLAN_EID_EXT_KNOWN_STA_IDENTIFCATION = 136,
3904 	WLAN_EID_EXT_NON_AP_STA_REG_CON = 137,
3905 };
3906 
3907 /* Action category code */
3908 enum ieee80211_category {
3909 	WLAN_CATEGORY_SPECTRUM_MGMT = 0,
3910 	WLAN_CATEGORY_QOS = 1,
3911 	WLAN_CATEGORY_DLS = 2,
3912 	WLAN_CATEGORY_BACK = 3,
3913 	WLAN_CATEGORY_PUBLIC = 4,
3914 	WLAN_CATEGORY_RADIO_MEASUREMENT = 5,
3915 	WLAN_CATEGORY_FAST_BBS_TRANSITION = 6,
3916 	WLAN_CATEGORY_HT = 7,
3917 	WLAN_CATEGORY_SA_QUERY = 8,
3918 	WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION = 9,
3919 	WLAN_CATEGORY_WNM = 10,
3920 	WLAN_CATEGORY_WNM_UNPROTECTED = 11,
3921 	WLAN_CATEGORY_TDLS = 12,
3922 	WLAN_CATEGORY_MESH_ACTION = 13,
3923 	WLAN_CATEGORY_MULTIHOP_ACTION = 14,
3924 	WLAN_CATEGORY_SELF_PROTECTED = 15,
3925 	WLAN_CATEGORY_DMG = 16,
3926 	WLAN_CATEGORY_WMM = 17,
3927 	WLAN_CATEGORY_FST = 18,
3928 	WLAN_CATEGORY_UNPROT_DMG = 20,
3929 	WLAN_CATEGORY_VHT = 21,
3930 	WLAN_CATEGORY_S1G = 22,
3931 	WLAN_CATEGORY_PROTECTED_EHT = 37,
3932 	WLAN_CATEGORY_VENDOR_SPECIFIC_PROTECTED = 126,
3933 	WLAN_CATEGORY_VENDOR_SPECIFIC = 127,
3934 };
3935 
3936 /* SPECTRUM_MGMT action code */
3937 enum ieee80211_spectrum_mgmt_actioncode {
3938 	WLAN_ACTION_SPCT_MSR_REQ = 0,
3939 	WLAN_ACTION_SPCT_MSR_RPRT = 1,
3940 	WLAN_ACTION_SPCT_TPC_REQ = 2,
3941 	WLAN_ACTION_SPCT_TPC_RPRT = 3,
3942 	WLAN_ACTION_SPCT_CHL_SWITCH = 4,
3943 };
3944 
3945 /* HT action codes */
3946 enum ieee80211_ht_actioncode {
3947 	WLAN_HT_ACTION_NOTIFY_CHANWIDTH = 0,
3948 	WLAN_HT_ACTION_SMPS = 1,
3949 	WLAN_HT_ACTION_PSMP = 2,
3950 	WLAN_HT_ACTION_PCO_PHASE = 3,
3951 	WLAN_HT_ACTION_CSI = 4,
3952 	WLAN_HT_ACTION_NONCOMPRESSED_BF = 5,
3953 	WLAN_HT_ACTION_COMPRESSED_BF = 6,
3954 	WLAN_HT_ACTION_ASEL_IDX_FEEDBACK = 7,
3955 };
3956 
3957 /* VHT action codes */
3958 enum ieee80211_vht_actioncode {
3959 	WLAN_VHT_ACTION_COMPRESSED_BF = 0,
3960 	WLAN_VHT_ACTION_GROUPID_MGMT = 1,
3961 	WLAN_VHT_ACTION_OPMODE_NOTIF = 2,
3962 };
3963 
3964 /* Self Protected Action codes */
3965 enum ieee80211_self_protected_actioncode {
3966 	WLAN_SP_RESERVED = 0,
3967 	WLAN_SP_MESH_PEERING_OPEN = 1,
3968 	WLAN_SP_MESH_PEERING_CONFIRM = 2,
3969 	WLAN_SP_MESH_PEERING_CLOSE = 3,
3970 	WLAN_SP_MGK_INFORM = 4,
3971 	WLAN_SP_MGK_ACK = 5,
3972 };
3973 
3974 /* Mesh action codes */
3975 enum ieee80211_mesh_actioncode {
3976 	WLAN_MESH_ACTION_LINK_METRIC_REPORT,
3977 	WLAN_MESH_ACTION_HWMP_PATH_SELECTION,
3978 	WLAN_MESH_ACTION_GATE_ANNOUNCEMENT,
3979 	WLAN_MESH_ACTION_CONGESTION_CONTROL_NOTIFICATION,
3980 	WLAN_MESH_ACTION_MCCA_SETUP_REQUEST,
3981 	WLAN_MESH_ACTION_MCCA_SETUP_REPLY,
3982 	WLAN_MESH_ACTION_MCCA_ADVERTISEMENT_REQUEST,
3983 	WLAN_MESH_ACTION_MCCA_ADVERTISEMENT,
3984 	WLAN_MESH_ACTION_MCCA_TEARDOWN,
3985 	WLAN_MESH_ACTION_TBTT_ADJUSTMENT_REQUEST,
3986 	WLAN_MESH_ACTION_TBTT_ADJUSTMENT_RESPONSE,
3987 };
3988 
3989 /* Unprotected WNM action codes */
3990 enum ieee80211_unprotected_wnm_actioncode {
3991 	WLAN_UNPROTECTED_WNM_ACTION_TIM = 0,
3992 	WLAN_UNPROTECTED_WNM_ACTION_TIMING_MEASUREMENT_RESPONSE = 1,
3993 };
3994 
3995 /* Protected EHT action codes */
3996 enum ieee80211_protected_eht_actioncode {
3997 	WLAN_PROTECTED_EHT_ACTION_TTLM_REQ = 0,
3998 	WLAN_PROTECTED_EHT_ACTION_TTLM_RES = 1,
3999 	WLAN_PROTECTED_EHT_ACTION_TTLM_TEARDOWN = 2,
4000 	WLAN_PROTECTED_EHT_ACTION_EPCS_ENABLE_REQ = 3,
4001 	WLAN_PROTECTED_EHT_ACTION_EPCS_ENABLE_RESP = 4,
4002 	WLAN_PROTECTED_EHT_ACTION_EPCS_ENABLE_TEARDOWN = 5,
4003 	WLAN_PROTECTED_EHT_ACTION_EML_OP_MODE_NOTIF = 6,
4004 	WLAN_PROTECTED_EHT_ACTION_LINK_RECOMMEND = 7,
4005 	WLAN_PROTECTED_EHT_ACTION_ML_OP_UPDATE_REQ = 8,
4006 	WLAN_PROTECTED_EHT_ACTION_ML_OP_UPDATE_RESP = 9,
4007 	WLAN_PROTECTED_EHT_ACTION_LINK_RECONFIG_NOTIF = 10,
4008 	WLAN_PROTECTED_EHT_ACTION_LINK_RECONFIG_REQ = 11,
4009 	WLAN_PROTECTED_EHT_ACTION_LINK_RECONFIG_RESP = 12,
4010 };
4011 
4012 /* Security key length */
4013 enum ieee80211_key_len {
4014 	WLAN_KEY_LEN_WEP40 = 5,
4015 	WLAN_KEY_LEN_WEP104 = 13,
4016 	WLAN_KEY_LEN_CCMP = 16,
4017 	WLAN_KEY_LEN_CCMP_256 = 32,
4018 	WLAN_KEY_LEN_TKIP = 32,
4019 	WLAN_KEY_LEN_AES_CMAC = 16,
4020 	WLAN_KEY_LEN_SMS4 = 32,
4021 	WLAN_KEY_LEN_GCMP = 16,
4022 	WLAN_KEY_LEN_GCMP_256 = 32,
4023 	WLAN_KEY_LEN_BIP_CMAC_256 = 32,
4024 	WLAN_KEY_LEN_BIP_GMAC_128 = 16,
4025 	WLAN_KEY_LEN_BIP_GMAC_256 = 32,
4026 };
4027 
4028 enum ieee80211_s1g_actioncode {
4029 	WLAN_S1G_AID_SWITCH_REQUEST,
4030 	WLAN_S1G_AID_SWITCH_RESPONSE,
4031 	WLAN_S1G_SYNC_CONTROL,
4032 	WLAN_S1G_STA_INFO_ANNOUNCE,
4033 	WLAN_S1G_EDCA_PARAM_SET,
4034 	WLAN_S1G_EL_OPERATION,
4035 	WLAN_S1G_TWT_SETUP,
4036 	WLAN_S1G_TWT_TEARDOWN,
4037 	WLAN_S1G_SECT_GROUP_ID_LIST,
4038 	WLAN_S1G_SECT_ID_FEEDBACK,
4039 	WLAN_S1G_TWT_INFORMATION = 11,
4040 };
4041 
4042 /* Radio measurement action codes as defined in IEEE 802.11-2024 - Table 9-470 */
4043 enum ieee80211_radio_measurement_actioncode {
4044 	WLAN_RM_ACTION_RADIO_MEASUREMENT_REQUEST = 0,
4045 	WLAN_RM_ACTION_RADIO_MEASUREMENT_REPORT  = 1,
4046 	WLAN_RM_ACTION_LINK_MEASUREMENT_REQUEST  = 2,
4047 	WLAN_RM_ACTION_LINK_MEASUREMENT_REPORT   = 3,
4048 	WLAN_RM_ACTION_NEIGHBOR_REPORT_REQUEST   = 4,
4049 	WLAN_RM_ACTION_NEIGHBOR_REPORT_RESPONSE  = 5,
4050 };
4051 
4052 #define IEEE80211_WEP_IV_LEN		4
4053 #define IEEE80211_WEP_ICV_LEN		4
4054 #define IEEE80211_CCMP_HDR_LEN		8
4055 #define IEEE80211_CCMP_MIC_LEN		8
4056 #define IEEE80211_CCMP_PN_LEN		6
4057 #define IEEE80211_CCMP_256_HDR_LEN	8
4058 #define IEEE80211_CCMP_256_MIC_LEN	16
4059 #define IEEE80211_CCMP_256_PN_LEN	6
4060 #define IEEE80211_TKIP_IV_LEN		8
4061 #define IEEE80211_TKIP_ICV_LEN		4
4062 #define IEEE80211_CMAC_PN_LEN		6
4063 #define IEEE80211_GMAC_PN_LEN		6
4064 #define IEEE80211_GCMP_HDR_LEN		8
4065 #define IEEE80211_GCMP_MIC_LEN		16
4066 #define IEEE80211_GCMP_PN_LEN		6
4067 
4068 #define FILS_NONCE_LEN			16
4069 #define FILS_MAX_KEK_LEN		64
4070 
4071 #define FILS_ERP_MAX_USERNAME_LEN	16
4072 #define FILS_ERP_MAX_REALM_LEN		253
4073 #define FILS_ERP_MAX_RRK_LEN		64
4074 
4075 #define PMK_MAX_LEN			64
4076 #define SAE_PASSWORD_MAX_LEN		128
4077 
4078 /* Public action codes (IEEE Std 802.11-2016, 9.6.8.1, Table 9-307) */
4079 enum ieee80211_pub_actioncode {
4080 	WLAN_PUB_ACTION_20_40_BSS_COEX = 0,
4081 	WLAN_PUB_ACTION_DSE_ENABLEMENT = 1,
4082 	WLAN_PUB_ACTION_DSE_DEENABLEMENT = 2,
4083 	WLAN_PUB_ACTION_DSE_REG_LOC_ANN = 3,
4084 	WLAN_PUB_ACTION_EXT_CHANSW_ANN = 4,
4085 	WLAN_PUB_ACTION_DSE_MSMT_REQ = 5,
4086 	WLAN_PUB_ACTION_DSE_MSMT_RESP = 6,
4087 	WLAN_PUB_ACTION_MSMT_PILOT = 7,
4088 	WLAN_PUB_ACTION_DSE_PC = 8,
4089 	WLAN_PUB_ACTION_VENDOR_SPECIFIC = 9,
4090 	WLAN_PUB_ACTION_GAS_INITIAL_REQ = 10,
4091 	WLAN_PUB_ACTION_GAS_INITIAL_RESP = 11,
4092 	WLAN_PUB_ACTION_GAS_COMEBACK_REQ = 12,
4093 	WLAN_PUB_ACTION_GAS_COMEBACK_RESP = 13,
4094 	WLAN_PUB_ACTION_TDLS_DISCOVER_RES = 14,
4095 	WLAN_PUB_ACTION_LOC_TRACK_NOTI = 15,
4096 	WLAN_PUB_ACTION_QAB_REQUEST_FRAME = 16,
4097 	WLAN_PUB_ACTION_QAB_RESPONSE_FRAME = 17,
4098 	WLAN_PUB_ACTION_QMF_POLICY = 18,
4099 	WLAN_PUB_ACTION_QMF_POLICY_CHANGE = 19,
4100 	WLAN_PUB_ACTION_QLOAD_REQUEST = 20,
4101 	WLAN_PUB_ACTION_QLOAD_REPORT = 21,
4102 	WLAN_PUB_ACTION_HCCA_TXOP_ADVERT = 22,
4103 	WLAN_PUB_ACTION_HCCA_TXOP_RESPONSE = 23,
4104 	WLAN_PUB_ACTION_PUBLIC_KEY = 24,
4105 	WLAN_PUB_ACTION_CHANNEL_AVAIL_QUERY = 25,
4106 	WLAN_PUB_ACTION_CHANNEL_SCHEDULE_MGMT = 26,
4107 	WLAN_PUB_ACTION_CONTACT_VERI_SIGNAL = 27,
4108 	WLAN_PUB_ACTION_GDD_ENABLEMENT_REQ = 28,
4109 	WLAN_PUB_ACTION_GDD_ENABLEMENT_RESP = 29,
4110 	WLAN_PUB_ACTION_NETWORK_CHANNEL_CONTROL = 30,
4111 	WLAN_PUB_ACTION_WHITE_SPACE_MAP_ANN = 31,
4112 	WLAN_PUB_ACTION_FTM_REQUEST = 32,
4113 	WLAN_PUB_ACTION_FTM_RESPONSE = 33,
4114 	WLAN_PUB_ACTION_FILS_DISCOVERY = 34,
4115 };
4116 
4117 /* TDLS action codes */
4118 enum ieee80211_tdls_actioncode {
4119 	WLAN_TDLS_SETUP_REQUEST = 0,
4120 	WLAN_TDLS_SETUP_RESPONSE = 1,
4121 	WLAN_TDLS_SETUP_CONFIRM = 2,
4122 	WLAN_TDLS_TEARDOWN = 3,
4123 	WLAN_TDLS_PEER_TRAFFIC_INDICATION = 4,
4124 	WLAN_TDLS_CHANNEL_SWITCH_REQUEST = 5,
4125 	WLAN_TDLS_CHANNEL_SWITCH_RESPONSE = 6,
4126 	WLAN_TDLS_PEER_PSM_REQUEST = 7,
4127 	WLAN_TDLS_PEER_PSM_RESPONSE = 8,
4128 	WLAN_TDLS_PEER_TRAFFIC_RESPONSE = 9,
4129 	WLAN_TDLS_DISCOVERY_REQUEST = 10,
4130 };
4131 
4132 /* Extended Channel Switching capability to be set in the 1st byte of
4133  * the @WLAN_EID_EXT_CAPABILITY information element
4134  */
4135 #define WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING	BIT(2)
4136 
4137 /* Multiple BSSID capability is set in the 6th bit of 3rd byte of the
4138  * @WLAN_EID_EXT_CAPABILITY information element
4139  */
4140 #define WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT	BIT(6)
4141 
4142 /* Timing Measurement protocol for time sync is set in the 7th bit of 3rd byte
4143  * of the @WLAN_EID_EXT_CAPABILITY information element
4144  */
4145 #define WLAN_EXT_CAPA3_TIMING_MEASUREMENT_SUPPORT	BIT(7)
4146 
4147 /* TDLS capabilities in the 4th byte of @WLAN_EID_EXT_CAPABILITY */
4148 #define WLAN_EXT_CAPA4_TDLS_BUFFER_STA		BIT(4)
4149 #define WLAN_EXT_CAPA4_TDLS_PEER_PSM		BIT(5)
4150 #define WLAN_EXT_CAPA4_TDLS_CHAN_SWITCH		BIT(6)
4151 
4152 /* Interworking capabilities are set in 7th bit of 4th byte of the
4153  * @WLAN_EID_EXT_CAPABILITY information element
4154  */
4155 #define WLAN_EXT_CAPA4_INTERWORKING_ENABLED	BIT(7)
4156 
4157 /*
4158  * TDLS capabililites to be enabled in the 5th byte of the
4159  * @WLAN_EID_EXT_CAPABILITY information element
4160  */
4161 #define WLAN_EXT_CAPA5_TDLS_ENABLED	BIT(5)
4162 #define WLAN_EXT_CAPA5_TDLS_PROHIBITED	BIT(6)
4163 #define WLAN_EXT_CAPA5_TDLS_CH_SW_PROHIBITED	BIT(7)
4164 
4165 #define WLAN_EXT_CAPA8_TDLS_WIDE_BW_ENABLED	BIT(5)
4166 #define WLAN_EXT_CAPA8_OPMODE_NOTIF	BIT(6)
4167 
4168 /* Defines the maximal number of MSDUs in an A-MSDU. */
4169 #define WLAN_EXT_CAPA8_MAX_MSDU_IN_AMSDU_LSB	BIT(7)
4170 #define WLAN_EXT_CAPA9_MAX_MSDU_IN_AMSDU_MSB	BIT(0)
4171 
4172 /*
4173  * Fine Timing Measurement Initiator - bit 71 of @WLAN_EID_EXT_CAPABILITY
4174  * information element
4175  */
4176 #define WLAN_EXT_CAPA9_FTM_INITIATOR	BIT(7)
4177 
4178 /* Defines support for TWT Requester and TWT Responder */
4179 #define WLAN_EXT_CAPA10_TWT_REQUESTER_SUPPORT	BIT(5)
4180 #define WLAN_EXT_CAPA10_TWT_RESPONDER_SUPPORT	BIT(6)
4181 
4182 /*
4183  * When set, indicates that the AP is able to tolerate 26-tone RU UL
4184  * OFDMA transmissions using HE TB PPDU from OBSS (not falsely classify the
4185  * 26-tone RU UL OFDMA transmissions as radar pulses).
4186  */
4187 #define WLAN_EXT_CAPA10_OBSS_NARROW_BW_RU_TOLERANCE_SUPPORT BIT(7)
4188 
4189 /* Defines support for enhanced multi-bssid advertisement*/
4190 #define WLAN_EXT_CAPA11_EMA_SUPPORT	BIT(3)
4191 
4192 /* Enable Beacon Protection */
4193 #define WLAN_EXT_CAPA11_BCN_PROTECT	BIT(4)
4194 
4195 /* TDLS specific payload type in the LLC/SNAP header */
4196 #define WLAN_TDLS_SNAP_RFTYPE	0x2
4197 
4198 /* BSS Coex IE information field bits */
4199 #define WLAN_BSS_COEX_INFORMATION_REQUEST	BIT(0)
4200 
4201 /**
4202  * enum ieee80211_mesh_sync_method - mesh synchronization method identifier
4203  *
4204  * @IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET: the default synchronization method
4205  * @IEEE80211_SYNC_METHOD_VENDOR: a vendor specific synchronization method
4206  *	that will be specified in a vendor specific information element
4207  */
4208 enum ieee80211_mesh_sync_method {
4209 	IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET = 1,
4210 	IEEE80211_SYNC_METHOD_VENDOR = 255,
4211 };
4212 
4213 /**
4214  * enum ieee80211_mesh_path_protocol - mesh path selection protocol identifier
4215  *
4216  * @IEEE80211_PATH_PROTOCOL_HWMP: the default path selection protocol
4217  * @IEEE80211_PATH_PROTOCOL_VENDOR: a vendor specific protocol that will
4218  *	be specified in a vendor specific information element
4219  */
4220 enum ieee80211_mesh_path_protocol {
4221 	IEEE80211_PATH_PROTOCOL_HWMP = 1,
4222 	IEEE80211_PATH_PROTOCOL_VENDOR = 255,
4223 };
4224 
4225 /**
4226  * enum ieee80211_mesh_path_metric - mesh path selection metric identifier
4227  *
4228  * @IEEE80211_PATH_METRIC_AIRTIME: the default path selection metric
4229  * @IEEE80211_PATH_METRIC_VENDOR: a vendor specific metric that will be
4230  *	specified in a vendor specific information element
4231  */
4232 enum ieee80211_mesh_path_metric {
4233 	IEEE80211_PATH_METRIC_AIRTIME = 1,
4234 	IEEE80211_PATH_METRIC_VENDOR = 255,
4235 };
4236 
4237 /**
4238  * enum ieee80211_root_mode_identifier - root mesh STA mode identifier
4239  *
4240  * These attribute are used by dot11MeshHWMPRootMode to set root mesh STA mode
4241  *
4242  * @IEEE80211_ROOTMODE_NO_ROOT: the mesh STA is not a root mesh STA (default)
4243  * @IEEE80211_ROOTMODE_ROOT: the mesh STA is a root mesh STA if greater than
4244  *	this value
4245  * @IEEE80211_PROACTIVE_PREQ_NO_PREP: the mesh STA is a root mesh STA supports
4246  *	the proactive PREQ with proactive PREP subfield set to 0
4247  * @IEEE80211_PROACTIVE_PREQ_WITH_PREP: the mesh STA is a root mesh STA
4248  *	supports the proactive PREQ with proactive PREP subfield set to 1
4249  * @IEEE80211_PROACTIVE_RANN: the mesh STA is a root mesh STA supports
4250  *	the proactive RANN
4251  */
4252 enum ieee80211_root_mode_identifier {
4253 	IEEE80211_ROOTMODE_NO_ROOT = 0,
4254 	IEEE80211_ROOTMODE_ROOT = 1,
4255 	IEEE80211_PROACTIVE_PREQ_NO_PREP = 2,
4256 	IEEE80211_PROACTIVE_PREQ_WITH_PREP = 3,
4257 	IEEE80211_PROACTIVE_RANN = 4,
4258 };
4259 
4260 /*
4261  * IEEE 802.11-2007 7.3.2.9 Country information element
4262  *
4263  * Minimum length is 8 octets, ie len must be evenly
4264  * divisible by 2
4265  */
4266 
4267 /* Although the spec says 8 I'm seeing 6 in practice */
4268 #define IEEE80211_COUNTRY_IE_MIN_LEN	6
4269 
4270 /* The Country String field of the element shall be 3 octets in length */
4271 #define IEEE80211_COUNTRY_STRING_LEN	3
4272 
4273 /*
4274  * For regulatory extension stuff see IEEE 802.11-2007
4275  * Annex I (page 1141) and Annex J (page 1147). Also
4276  * review 7.3.2.9.
4277  *
4278  * When dot11RegulatoryClassesRequired is true and the
4279  * first_channel/reg_extension_id is >= 201 then the IE
4280  * compromises of the 'ext' struct represented below:
4281  *
4282  *  - Regulatory extension ID - when generating IE this just needs
4283  *    to be monotonically increasing for each triplet passed in
4284  *    the IE
4285  *  - Regulatory class - index into set of rules
4286  *  - Coverage class - index into air propagation time (Table 7-27),
4287  *    in microseconds, you can compute the air propagation time from
4288  *    the index by multiplying by 3, so index 10 yields a propagation
4289  *    of 10 us. Valid values are 0-31, values 32-255 are not defined
4290  *    yet. A value of 0 inicates air propagation of <= 1 us.
4291  *
4292  *  See also Table I.2 for Emission limit sets and table
4293  *  I.3 for Behavior limit sets. Table J.1 indicates how to map
4294  *  a reg_class to an emission limit set and behavior limit set.
4295  */
4296 #define IEEE80211_COUNTRY_EXTENSION_ID 201
4297 
4298 /*
4299  *  Channels numbers in the IE must be monotonically increasing
4300  *  if dot11RegulatoryClassesRequired is not true.
4301  *
4302  *  If dot11RegulatoryClassesRequired is true consecutive
4303  *  subband triplets following a regulatory triplet shall
4304  *  have monotonically increasing first_channel number fields.
4305  *
4306  *  Channel numbers shall not overlap.
4307  *
4308  *  Note that max_power is signed.
4309  */
4310 struct ieee80211_country_ie_triplet {
4311 	union {
4312 		struct {
4313 			u8 first_channel;
4314 			u8 num_channels;
4315 			s8 max_power;
4316 		} __packed chans;
4317 		struct {
4318 			u8 reg_extension_id;
4319 			u8 reg_class;
4320 			u8 coverage_class;
4321 		} __packed ext;
4322 	};
4323 } __packed;
4324 
4325 enum ieee80211_timeout_interval_type {
4326 	WLAN_TIMEOUT_REASSOC_DEADLINE = 1 /* 802.11r */,
4327 	WLAN_TIMEOUT_KEY_LIFETIME = 2 /* 802.11r */,
4328 	WLAN_TIMEOUT_ASSOC_COMEBACK = 3 /* 802.11w */,
4329 };
4330 
4331 /**
4332  * struct ieee80211_timeout_interval_ie - Timeout Interval element
4333  * @type: type, see &enum ieee80211_timeout_interval_type
4334  * @value: timeout interval value
4335  */
4336 struct ieee80211_timeout_interval_ie {
4337 	u8 type;
4338 	__le32 value;
4339 } __packed;
4340 
4341 /**
4342  * enum ieee80211_idle_options - BSS idle options
4343  * @WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE: the station should send an RSN
4344  *	protected frame to the AP to reset the idle timer at the AP for
4345  *	the station.
4346  */
4347 enum ieee80211_idle_options {
4348 	WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE = BIT(0),
4349 };
4350 
4351 /**
4352  * struct ieee80211_bss_max_idle_period_ie - BSS max idle period element struct
4353  *
4354  * This structure refers to "BSS Max idle period element"
4355  *
4356  * @max_idle_period: indicates the time period during which a station can
4357  *	refrain from transmitting frames to its associated AP without being
4358  *	disassociated. In units of 1000 TUs.
4359  * @idle_options: indicates the options associated with the BSS idle capability
4360  *	as specified in &enum ieee80211_idle_options.
4361  */
4362 struct ieee80211_bss_max_idle_period_ie {
4363 	__le16 max_idle_period;
4364 	u8 idle_options;
4365 } __packed;
4366 
4367 /* BACK action code */
4368 enum ieee80211_back_actioncode {
4369 	WLAN_ACTION_ADDBA_REQ = 0,
4370 	WLAN_ACTION_ADDBA_RESP = 1,
4371 	WLAN_ACTION_DELBA = 2,
4372 };
4373 
4374 /* BACK (block-ack) parties */
4375 enum ieee80211_back_parties {
4376 	WLAN_BACK_RECIPIENT = 0,
4377 	WLAN_BACK_INITIATOR = 1,
4378 };
4379 
4380 /* SA Query action */
4381 enum ieee80211_sa_query_action {
4382 	WLAN_ACTION_SA_QUERY_REQUEST = 0,
4383 	WLAN_ACTION_SA_QUERY_RESPONSE = 1,
4384 };
4385 
4386 /**
4387  * struct ieee80211_bssid_index - multiple BSSID index element structure
4388  *
4389  * This structure refers to "Multiple BSSID-index element"
4390  *
4391  * @bssid_index: BSSID index
4392  * @dtim_period: optional, overrides transmitted BSS dtim period
4393  * @dtim_count: optional, overrides transmitted BSS dtim count
4394  */
4395 struct ieee80211_bssid_index {
4396 	u8 bssid_index;
4397 	u8 dtim_period;
4398 	u8 dtim_count;
4399 };
4400 
4401 /**
4402  * struct ieee80211_multiple_bssid_configuration - multiple BSSID configuration
4403  *	element structure
4404  *
4405  * This structure refers to "Multiple BSSID Configuration element"
4406  *
4407  * @bssid_count: total number of active BSSIDs in the set
4408  * @profile_periodicity: the least number of beacon frames need to be received
4409  *	in order to discover all the nontransmitted BSSIDs in the set.
4410  */
4411 struct ieee80211_multiple_bssid_configuration {
4412 	u8 bssid_count;
4413 	u8 profile_periodicity;
4414 };
4415 
4416 #define SUITE(oui, id)	(((oui) << 8) | (id))
4417 
4418 /* cipher suite selectors */
4419 #define WLAN_CIPHER_SUITE_USE_GROUP	SUITE(0x000FAC, 0)
4420 #define WLAN_CIPHER_SUITE_WEP40		SUITE(0x000FAC, 1)
4421 #define WLAN_CIPHER_SUITE_TKIP		SUITE(0x000FAC, 2)
4422 /* reserved: 				SUITE(0x000FAC, 3) */
4423 #define WLAN_CIPHER_SUITE_CCMP		SUITE(0x000FAC, 4)
4424 #define WLAN_CIPHER_SUITE_WEP104	SUITE(0x000FAC, 5)
4425 #define WLAN_CIPHER_SUITE_AES_CMAC	SUITE(0x000FAC, 6)
4426 #define WLAN_CIPHER_SUITE_GCMP		SUITE(0x000FAC, 8)
4427 #define WLAN_CIPHER_SUITE_GCMP_256	SUITE(0x000FAC, 9)
4428 #define WLAN_CIPHER_SUITE_CCMP_256	SUITE(0x000FAC, 10)
4429 #define WLAN_CIPHER_SUITE_BIP_GMAC_128	SUITE(0x000FAC, 11)
4430 #define WLAN_CIPHER_SUITE_BIP_GMAC_256	SUITE(0x000FAC, 12)
4431 #define WLAN_CIPHER_SUITE_BIP_CMAC_256	SUITE(0x000FAC, 13)
4432 
4433 #define WLAN_CIPHER_SUITE_SMS4		SUITE(0x001472, 1)
4434 
4435 /* AKM suite selectors */
4436 #define WLAN_AKM_SUITE_8021X			SUITE(0x000FAC, 1)
4437 #define WLAN_AKM_SUITE_PSK			SUITE(0x000FAC, 2)
4438 #define WLAN_AKM_SUITE_FT_8021X			SUITE(0x000FAC, 3)
4439 #define WLAN_AKM_SUITE_FT_PSK			SUITE(0x000FAC, 4)
4440 #define WLAN_AKM_SUITE_8021X_SHA256		SUITE(0x000FAC, 5)
4441 #define WLAN_AKM_SUITE_PSK_SHA256		SUITE(0x000FAC, 6)
4442 #define WLAN_AKM_SUITE_TDLS			SUITE(0x000FAC, 7)
4443 #define WLAN_AKM_SUITE_SAE			SUITE(0x000FAC, 8)
4444 #define WLAN_AKM_SUITE_FT_OVER_SAE		SUITE(0x000FAC, 9)
4445 #define WLAN_AKM_SUITE_AP_PEER_KEY		SUITE(0x000FAC, 10)
4446 #define WLAN_AKM_SUITE_8021X_SUITE_B		SUITE(0x000FAC, 11)
4447 #define WLAN_AKM_SUITE_8021X_SUITE_B_192	SUITE(0x000FAC, 12)
4448 #define WLAN_AKM_SUITE_FT_8021X_SHA384		SUITE(0x000FAC, 13)
4449 #define WLAN_AKM_SUITE_FILS_SHA256		SUITE(0x000FAC, 14)
4450 #define WLAN_AKM_SUITE_FILS_SHA384		SUITE(0x000FAC, 15)
4451 #define WLAN_AKM_SUITE_FT_FILS_SHA256		SUITE(0x000FAC, 16)
4452 #define WLAN_AKM_SUITE_FT_FILS_SHA384		SUITE(0x000FAC, 17)
4453 #define WLAN_AKM_SUITE_OWE			SUITE(0x000FAC, 18)
4454 #define WLAN_AKM_SUITE_FT_PSK_SHA384		SUITE(0x000FAC, 19)
4455 #define WLAN_AKM_SUITE_PSK_SHA384		SUITE(0x000FAC, 20)
4456 
4457 #define WLAN_AKM_SUITE_WFA_DPP			SUITE(WLAN_OUI_WFA, 2)
4458 
4459 #define WLAN_MAX_KEY_LEN		32
4460 
4461 #define WLAN_PMK_NAME_LEN		16
4462 #define WLAN_PMKID_LEN			16
4463 #define WLAN_PMK_LEN_EAP_LEAP		16
4464 #define WLAN_PMK_LEN			32
4465 #define WLAN_PMK_LEN_SUITE_B_192	48
4466 
4467 #define WLAN_OUI_WFA			0x506f9a
4468 #define WLAN_OUI_TYPE_WFA_P2P		9
4469 #define WLAN_OUI_TYPE_WFA_DPP		0x1A
4470 #define WLAN_OUI_MICROSOFT		0x0050f2
4471 #define WLAN_OUI_TYPE_MICROSOFT_WPA	1
4472 #define WLAN_OUI_TYPE_MICROSOFT_WMM	2
4473 #define WLAN_OUI_TYPE_MICROSOFT_WPS	4
4474 #define WLAN_OUI_TYPE_MICROSOFT_TPC	8
4475 
4476 /*
4477  * WMM/802.11e Tspec Element
4478  */
4479 #define IEEE80211_WMM_IE_TSPEC_TID_MASK		0x0F
4480 #define IEEE80211_WMM_IE_TSPEC_TID_SHIFT	1
4481 
4482 enum ieee80211_tspec_status_code {
4483 	IEEE80211_TSPEC_STATUS_ADMISS_ACCEPTED = 0,
4484 	IEEE80211_TSPEC_STATUS_ADDTS_INVAL_PARAMS = 0x1,
4485 };
4486 
4487 struct ieee80211_tspec_ie {
4488 	u8 element_id;
4489 	u8 len;
4490 	u8 oui[3];
4491 	u8 oui_type;
4492 	u8 oui_subtype;
4493 	u8 version;
4494 	__le16 tsinfo;
4495 	u8 tsinfo_resvd;
4496 	__le16 nominal_msdu;
4497 	__le16 max_msdu;
4498 	__le32 min_service_int;
4499 	__le32 max_service_int;
4500 	__le32 inactivity_int;
4501 	__le32 suspension_int;
4502 	__le32 service_start_time;
4503 	__le32 min_data_rate;
4504 	__le32 mean_data_rate;
4505 	__le32 peak_data_rate;
4506 	__le32 max_burst_size;
4507 	__le32 delay_bound;
4508 	__le32 min_phy_rate;
4509 	__le16 sba;
4510 	__le16 medium_time;
4511 } __packed;
4512 
4513 struct ieee80211_he_6ghz_capa {
4514 	/* uses IEEE80211_HE_6GHZ_CAP_* below */
4515 	__le16 capa;
4516 } __packed;
4517 
4518 /* HE 6 GHz band capabilities */
4519 /* uses enum ieee80211_min_mpdu_spacing values */
4520 #define IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START	0x0007
4521 /* uses enum ieee80211_vht_max_ampdu_length_exp values */
4522 #define IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP	0x0038
4523 /* uses IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_* values */
4524 #define IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN	0x00c0
4525 /* WLAN_HT_CAP_SM_PS_* values */
4526 #define IEEE80211_HE_6GHZ_CAP_SM_PS		0x0600
4527 #define IEEE80211_HE_6GHZ_CAP_RD_RESPONDER	0x0800
4528 #define IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS	0x1000
4529 #define IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS	0x2000
4530 
4531 /**
4532  * ieee80211_get_qos_ctl - get pointer to qos control bytes
4533  * @hdr: the frame
4534  * Return: a pointer to the QoS control field in the frame header
4535  *
4536  * The qos ctrl bytes come after the frame_control, duration, seq_num
4537  * and 3 or 4 addresses of length ETH_ALEN. Checks frame_control to choose
4538  * between struct ieee80211_qos_hdr_4addr and struct ieee80211_qos_hdr.
4539  */
4540 static inline u8 *ieee80211_get_qos_ctl(struct ieee80211_hdr *hdr)
4541 {
4542 	union {
4543 		struct ieee80211_qos_hdr	addr3;
4544 		struct ieee80211_qos_hdr_4addr	addr4;
4545 	} *qos;
4546 
4547 	qos = (void *)hdr;
4548 	if (ieee80211_has_a4(qos->addr3.frame_control))
4549 		return (u8 *)&qos->addr4.qos_ctrl;
4550 	else
4551 		return (u8 *)&qos->addr3.qos_ctrl;
4552 }
4553 
4554 /**
4555  * ieee80211_get_tid - get qos TID
4556  * @hdr: the frame
4557  * Return: the TID from the QoS control field
4558  */
4559 static inline u8 ieee80211_get_tid(struct ieee80211_hdr *hdr)
4560 {
4561 	u8 *qc = ieee80211_get_qos_ctl(hdr);
4562 
4563 	return qc[0] & IEEE80211_QOS_CTL_TID_MASK;
4564 }
4565 
4566 /**
4567  * ieee80211_get_SA - get pointer to SA
4568  * @hdr: the frame
4569  * Return: a pointer to the source address (SA)
4570  *
4571  * Given an 802.11 frame, this function returns the offset
4572  * to the source address (SA). It does not verify that the
4573  * header is long enough to contain the address, and the
4574  * header must be long enough to contain the frame control
4575  * field.
4576  */
4577 static inline u8 *ieee80211_get_SA(struct ieee80211_hdr *hdr)
4578 {
4579 	if (ieee80211_has_a4(hdr->frame_control))
4580 		return hdr->addr4;
4581 	if (ieee80211_has_fromds(hdr->frame_control))
4582 		return hdr->addr3;
4583 	return hdr->addr2;
4584 }
4585 
4586 /**
4587  * ieee80211_get_DA - get pointer to DA
4588  * @hdr: the frame
4589  * Return: a pointer to the destination address (DA)
4590  *
4591  * Given an 802.11 frame, this function returns the offset
4592  * to the destination address (DA). It does not verify that
4593  * the header is long enough to contain the address, and the
4594  * header must be long enough to contain the frame control
4595  * field.
4596  */
4597 static inline u8 *ieee80211_get_DA(struct ieee80211_hdr *hdr)
4598 {
4599 	if (ieee80211_has_tods(hdr->frame_control))
4600 		return hdr->addr3;
4601 	else
4602 		return hdr->addr1;
4603 }
4604 
4605 /**
4606  * ieee80211_is_bufferable_mmpdu - check if frame is bufferable MMPDU
4607  * @skb: the skb to check, starting with the 802.11 header
4608  * Return: whether or not the MMPDU is bufferable
4609  */
4610 static inline bool ieee80211_is_bufferable_mmpdu(struct sk_buff *skb)
4611 {
4612 	struct ieee80211_mgmt *mgmt = (void *)skb->data;
4613 	__le16 fc = mgmt->frame_control;
4614 
4615 	/*
4616 	 * IEEE 802.11 REVme D2.0 definition of bufferable MMPDU;
4617 	 * note that this ignores the IBSS special case.
4618 	 */
4619 	if (!ieee80211_is_mgmt(fc))
4620 		return false;
4621 
4622 	if (ieee80211_is_disassoc(fc) || ieee80211_is_deauth(fc))
4623 		return true;
4624 
4625 	if (!ieee80211_is_action(fc))
4626 		return false;
4627 
4628 	if (skb->len < offsetofend(typeof(*mgmt), u.action.u.ftm.action_code))
4629 		return true;
4630 
4631 	/* action frame - additionally check for non-bufferable FTM */
4632 
4633 	if (mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
4634 	    mgmt->u.action.category != WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION)
4635 		return true;
4636 
4637 	if (mgmt->u.action.u.ftm.action_code == WLAN_PUB_ACTION_FTM_REQUEST ||
4638 	    mgmt->u.action.u.ftm.action_code == WLAN_PUB_ACTION_FTM_RESPONSE)
4639 		return false;
4640 
4641 	return true;
4642 }
4643 
4644 /**
4645  * _ieee80211_is_robust_mgmt_frame - check if frame is a robust management frame
4646  * @hdr: the frame (buffer must include at least the first octet of payload)
4647  * Return: whether or not the frame is a robust management frame
4648  */
4649 static inline bool _ieee80211_is_robust_mgmt_frame(struct ieee80211_hdr *hdr)
4650 {
4651 	if (ieee80211_is_disassoc(hdr->frame_control) ||
4652 	    ieee80211_is_deauth(hdr->frame_control))
4653 		return true;
4654 
4655 	if (ieee80211_is_action(hdr->frame_control)) {
4656 		u8 *category;
4657 
4658 		/*
4659 		 * Action frames, excluding Public Action frames, are Robust
4660 		 * Management Frames. However, if we are looking at a Protected
4661 		 * frame, skip the check since the data may be encrypted and
4662 		 * the frame has already been found to be a Robust Management
4663 		 * Frame (by the other end).
4664 		 */
4665 		if (ieee80211_has_protected(hdr->frame_control))
4666 			return true;
4667 		category = ((u8 *) hdr) + 24;
4668 		return *category != WLAN_CATEGORY_PUBLIC &&
4669 			*category != WLAN_CATEGORY_HT &&
4670 			*category != WLAN_CATEGORY_WNM_UNPROTECTED &&
4671 			*category != WLAN_CATEGORY_SELF_PROTECTED &&
4672 			*category != WLAN_CATEGORY_UNPROT_DMG &&
4673 			*category != WLAN_CATEGORY_VHT &&
4674 			*category != WLAN_CATEGORY_S1G &&
4675 			*category != WLAN_CATEGORY_VENDOR_SPECIFIC;
4676 	}
4677 
4678 	return false;
4679 }
4680 
4681 /**
4682  * ieee80211_is_robust_mgmt_frame - check if skb contains a robust mgmt frame
4683  * @skb: the skb containing the frame, length will be checked
4684  * Return: whether or not the frame is a robust management frame
4685  */
4686 static inline bool ieee80211_is_robust_mgmt_frame(struct sk_buff *skb)
4687 {
4688 	if (skb->len < IEEE80211_MIN_ACTION_SIZE)
4689 		return false;
4690 	return _ieee80211_is_robust_mgmt_frame((void *)skb->data);
4691 }
4692 
4693 /**
4694  * ieee80211_is_public_action - check if frame is a public action frame
4695  * @hdr: the frame
4696  * @len: length of the frame
4697  * Return: whether or not the frame is a public action frame
4698  */
4699 static inline bool ieee80211_is_public_action(struct ieee80211_hdr *hdr,
4700 					      size_t len)
4701 {
4702 	struct ieee80211_mgmt *mgmt = (void *)hdr;
4703 
4704 	if (len < IEEE80211_MIN_ACTION_SIZE)
4705 		return false;
4706 	if (!ieee80211_is_action(hdr->frame_control))
4707 		return false;
4708 	return mgmt->u.action.category == WLAN_CATEGORY_PUBLIC;
4709 }
4710 
4711 /**
4712  * ieee80211_is_protected_dual_of_public_action - check if skb contains a
4713  * protected dual of public action management frame
4714  * @skb: the skb containing the frame, length will be checked
4715  *
4716  * Return: true if the skb contains a protected dual of public action
4717  * management frame, false otherwise.
4718  */
4719 static inline bool
4720 ieee80211_is_protected_dual_of_public_action(struct sk_buff *skb)
4721 {
4722 	u8 action;
4723 
4724 	if (!ieee80211_is_public_action((void *)skb->data, skb->len) ||
4725 	    skb->len < IEEE80211_MIN_ACTION_SIZE + 1)
4726 		return false;
4727 
4728 	action = *(u8 *)(skb->data + IEEE80211_MIN_ACTION_SIZE);
4729 
4730 	return action != WLAN_PUB_ACTION_20_40_BSS_COEX &&
4731 		action != WLAN_PUB_ACTION_DSE_REG_LOC_ANN &&
4732 		action != WLAN_PUB_ACTION_MSMT_PILOT &&
4733 		action != WLAN_PUB_ACTION_TDLS_DISCOVER_RES &&
4734 		action != WLAN_PUB_ACTION_LOC_TRACK_NOTI &&
4735 		action != WLAN_PUB_ACTION_FTM_REQUEST &&
4736 		action != WLAN_PUB_ACTION_FTM_RESPONSE &&
4737 		action != WLAN_PUB_ACTION_FILS_DISCOVERY &&
4738 		action != WLAN_PUB_ACTION_VENDOR_SPECIFIC;
4739 }
4740 
4741 /**
4742  * _ieee80211_is_group_privacy_action - check if frame is a group addressed
4743  *	privacy action frame
4744  * @hdr: the frame
4745  * Return: whether or not the frame is a group addressed privacy action frame
4746  */
4747 static inline bool _ieee80211_is_group_privacy_action(struct ieee80211_hdr *hdr)
4748 {
4749 	struct ieee80211_mgmt *mgmt = (void *)hdr;
4750 
4751 	if (!ieee80211_is_action(hdr->frame_control) ||
4752 	    !is_multicast_ether_addr(hdr->addr1))
4753 		return false;
4754 
4755 	return mgmt->u.action.category == WLAN_CATEGORY_MESH_ACTION ||
4756 	       mgmt->u.action.category == WLAN_CATEGORY_MULTIHOP_ACTION;
4757 }
4758 
4759 /**
4760  * ieee80211_is_group_privacy_action - check if frame is a group addressed
4761  *	privacy action frame
4762  * @skb: the skb containing the frame, length will be checked
4763  * Return: whether or not the frame is a group addressed privacy action frame
4764  */
4765 static inline bool ieee80211_is_group_privacy_action(struct sk_buff *skb)
4766 {
4767 	if (skb->len < IEEE80211_MIN_ACTION_SIZE)
4768 		return false;
4769 	return _ieee80211_is_group_privacy_action((void *)skb->data);
4770 }
4771 
4772 /**
4773  * ieee80211_tu_to_usec - convert time units (TU) to microseconds
4774  * @tu: the TUs
4775  * Return: the time value converted to microseconds
4776  */
4777 static inline unsigned long ieee80211_tu_to_usec(unsigned long tu)
4778 {
4779 	return 1024 * tu;
4780 }
4781 
4782 static inline bool __ieee80211_check_tim(const struct ieee80211_tim_ie *tim,
4783 					 u8 tim_len, u16 aid)
4784 {
4785 	u8 mask;
4786 	u8 index, indexn1, indexn2;
4787 
4788 	if (unlikely(!tim || tim_len < sizeof(*tim)))
4789 		return false;
4790 
4791 	aid &= 0x3fff;
4792 	index = aid / 8;
4793 	mask  = 1 << (aid & 7);
4794 
4795 	indexn1 = tim->bitmap_ctrl & 0xfe;
4796 	indexn2 = tim_len + indexn1 - 4;
4797 
4798 	if (index < indexn1 || index > indexn2)
4799 		return false;
4800 
4801 	index -= indexn1;
4802 
4803 	return !!(tim->virtual_map[index] & mask);
4804 }
4805 
4806 struct s1g_tim_aid {
4807 	u16 aid;
4808 	u8 target_blk; /* Target block index */
4809 	u8 target_subblk; /* Target subblock index */
4810 	u8 target_subblk_bit; /* Target subblock bit */
4811 };
4812 
4813 struct s1g_tim_enc_block {
4814 	u8 enc_mode;
4815 	bool inverse;
4816 	const u8 *ptr;
4817 	u8 len;
4818 
4819 	/*
4820 	 * For an OLB encoded block that spans multiple blocks, this
4821 	 * is the offset into the span described by that encoded block.
4822 	 */
4823 	u8 olb_blk_offset;
4824 };
4825 
4826 /*
4827  * Helper routines to quickly extract the length of an encoded block. Validation
4828  * is also performed to ensure the length extracted lies within the TIM.
4829  */
4830 
4831 static inline int ieee80211_s1g_len_bitmap(const u8 *ptr, const u8 *end)
4832 {
4833 	u8 blkmap;
4834 	u8 n_subblks;
4835 
4836 	if (ptr >= end)
4837 		return -EINVAL;
4838 
4839 	blkmap = *ptr;
4840 	n_subblks = hweight8(blkmap);
4841 
4842 	if (ptr + 1 + n_subblks > end)
4843 		return -EINVAL;
4844 
4845 	return 1 + n_subblks;
4846 }
4847 
4848 static inline int ieee80211_s1g_len_single(const u8 *ptr, const u8 *end)
4849 {
4850 	return (ptr + 1 > end) ? -EINVAL : 1;
4851 }
4852 
4853 static inline int ieee80211_s1g_len_olb(const u8 *ptr, const u8 *end)
4854 {
4855 	if (ptr >= end)
4856 		return -EINVAL;
4857 
4858 	return (ptr + 1 + *ptr > end) ? -EINVAL : 1 + *ptr;
4859 }
4860 
4861 /*
4862  * Enumerate all encoded blocks until we find the encoded block that describes
4863  * our target AID. OLB is a special case as a single encoded block can describe
4864  * multiple blocks as a single encoded block.
4865  */
4866 static inline int ieee80211_s1g_find_target_block(struct s1g_tim_enc_block *enc,
4867 						  const struct s1g_tim_aid *aid,
4868 						  const u8 *ptr, const u8 *end)
4869 {
4870 	/* need at least block-control octet */
4871 	while (ptr + 1 <= end) {
4872 		u8 ctrl = *ptr++;
4873 		u8 mode = ctrl & 0x03;
4874 		bool contains, inverse = ctrl & BIT(2);
4875 		u8 span, blk_off = ctrl >> 3;
4876 		int len;
4877 
4878 		switch (mode) {
4879 		case IEEE80211_S1G_TIM_ENC_MODE_BLOCK:
4880 			len = ieee80211_s1g_len_bitmap(ptr, end);
4881 			contains = blk_off == aid->target_blk;
4882 			break;
4883 		case IEEE80211_S1G_TIM_ENC_MODE_SINGLE:
4884 			len = ieee80211_s1g_len_single(ptr, end);
4885 			contains = blk_off == aid->target_blk;
4886 			break;
4887 		case IEEE80211_S1G_TIM_ENC_MODE_OLB:
4888 			len = ieee80211_s1g_len_olb(ptr, end);
4889 			/*
4890 			 * An OLB encoded block can describe more then one
4891 			 * block, meaning an encoded OLB block can span more
4892 			 * then a single block.
4893 			 */
4894 			if (len > 0) {
4895 				/* Minus one for the length octet */
4896 				span = DIV_ROUND_UP(len - 1, 8);
4897 				/*
4898 				 * Check if our target block lies within the
4899 				 * block span described by this encoded block.
4900 				 */
4901 				contains = (aid->target_blk >= blk_off) &&
4902 					   (aid->target_blk < blk_off + span);
4903 			}
4904 			break;
4905 		default:
4906 			return -EOPNOTSUPP;
4907 		}
4908 
4909 		if (len < 0)
4910 			return len;
4911 
4912 		if (contains) {
4913 			enc->enc_mode = mode;
4914 			enc->inverse = inverse;
4915 			enc->ptr = ptr;
4916 			enc->len = (u8)len;
4917 			enc->olb_blk_offset = blk_off;
4918 			return 0;
4919 		}
4920 
4921 		ptr += len;
4922 	}
4923 
4924 	return -ENOENT;
4925 }
4926 
4927 static inline bool ieee80211_s1g_parse_bitmap(struct s1g_tim_enc_block *enc,
4928 					      struct s1g_tim_aid *aid)
4929 {
4930 	const u8 *ptr = enc->ptr;
4931 	u8 blkmap = *ptr++;
4932 
4933 	/*
4934 	 * If our block bitmap does not contain a set bit that corresponds
4935 	 * to our AID, it could mean a variety of things depending on if
4936 	 * the encoding mode is inverted or not.
4937 	 *
4938 	 * 1. If inverted, it means the entire subblock is present and hence
4939 	 *    our AID has been set.
4940 	 * 2. If not inverted, it means our subblock is not present and hence
4941 	 *    it is all zero meaning our AID is not set.
4942 	 */
4943 	if (!(blkmap & BIT(aid->target_subblk)))
4944 		return enc->inverse;
4945 
4946 	/*
4947 	 * Increment ptr by the number of set subblocks that appear before our
4948 	 * target subblock. If our target subblock is 0, do nothing as ptr
4949 	 * already points to our target subblock.
4950 	 */
4951 	if (aid->target_subblk)
4952 		ptr += hweight8(blkmap & GENMASK(aid->target_subblk - 1, 0));
4953 
4954 	return !!(*ptr & BIT(aid->target_subblk_bit)) ^ enc->inverse;
4955 }
4956 
4957 static inline bool ieee80211_s1g_parse_single(struct s1g_tim_enc_block *enc,
4958 					      struct s1g_tim_aid *aid)
4959 {
4960 	/*
4961 	 * Single AID mode describes, as the name suggests, a single AID
4962 	 * within the block described by the encoded block. The octet
4963 	 * contains the 6 LSBs of the AID described in the block. The other
4964 	 * 2 bits are reserved. When inversed, every single AID described
4965 	 * by the current block have buffered traffic except for the AID
4966 	 * described in the single AID octet.
4967 	 */
4968 	return ((*enc->ptr & 0x3f) == (aid->aid & 0x3f)) ^ enc->inverse;
4969 }
4970 
4971 static inline bool ieee80211_s1g_parse_olb(struct s1g_tim_enc_block *enc,
4972 					   struct s1g_tim_aid *aid)
4973 {
4974 	const u8 *ptr = enc->ptr;
4975 	u8 blk_len = *ptr++;
4976 	/*
4977 	 * Given an OLB encoded block that describes multiple blocks,
4978 	 * calculate the offset into the span. Then calculate the
4979 	 * subblock location normally.
4980 	 */
4981 	u16 span_offset = aid->target_blk - enc->olb_blk_offset;
4982 	u16 subblk_idx = span_offset * 8 + aid->target_subblk;
4983 
4984 	if (subblk_idx >= blk_len)
4985 		return enc->inverse;
4986 
4987 	return !!(ptr[subblk_idx] & BIT(aid->target_subblk_bit)) ^ enc->inverse;
4988 }
4989 
4990 /*
4991  * An S1G PVB has 3 non optional encoding types, each that can be inverted.
4992  * An S1G PVB is constructed with zero or more encoded block subfields. Each
4993  * encoded block represents a single "block" of AIDs (64), and each encoded
4994  * block can contain one of the 3 encoding types alongside a single bit for
4995  * whether the bits should be inverted.
4996  *
4997  * As the standard makes no guarantee about the ordering of encoded blocks,
4998  * we must parse every encoded block in the worst case scenario given an
4999  * AID that lies within the last block.
5000  */
5001 static inline bool ieee80211_s1g_check_tim(const struct ieee80211_tim_ie *tim,
5002 					   u8 tim_len, u16 aid)
5003 {
5004 	int err;
5005 	struct s1g_tim_aid target_aid;
5006 	struct s1g_tim_enc_block enc_blk;
5007 
5008 	if (tim_len < 3)
5009 		return false;
5010 
5011 	target_aid.aid = aid;
5012 	target_aid.target_blk = (aid >> 6) & 0x1f;
5013 	target_aid.target_subblk = (aid >> 3) & 0x7;
5014 	target_aid.target_subblk_bit = aid & 0x7;
5015 
5016 	/*
5017 	 * Find our AIDs target encoded block and fill &enc_blk with the
5018 	 * encoded blocks information. If no entry is found or an error
5019 	 * occurs return false.
5020 	 */
5021 	err = ieee80211_s1g_find_target_block(&enc_blk, &target_aid,
5022 					      tim->virtual_map,
5023 					      (const u8 *)tim + tim_len + 2);
5024 	if (err)
5025 		return false;
5026 
5027 	switch (enc_blk.enc_mode) {
5028 	case IEEE80211_S1G_TIM_ENC_MODE_BLOCK:
5029 		return ieee80211_s1g_parse_bitmap(&enc_blk, &target_aid);
5030 	case IEEE80211_S1G_TIM_ENC_MODE_SINGLE:
5031 		return ieee80211_s1g_parse_single(&enc_blk, &target_aid);
5032 	case IEEE80211_S1G_TIM_ENC_MODE_OLB:
5033 		return ieee80211_s1g_parse_olb(&enc_blk, &target_aid);
5034 	default:
5035 		return false;
5036 	}
5037 }
5038 
5039 /**
5040  * ieee80211_check_tim - check if AID bit is set in TIM
5041  * @tim: the TIM IE
5042  * @tim_len: length of the TIM IE
5043  * @aid: the AID to look for
5044  * @s1g: whether the TIM is from an S1G PPDU
5045  * Return: whether or not traffic is indicated in the TIM for the given AID
5046  */
5047 static inline bool ieee80211_check_tim(const struct ieee80211_tim_ie *tim,
5048 				       u8 tim_len, u16 aid, bool s1g)
5049 {
5050 	return s1g ? ieee80211_s1g_check_tim(tim, tim_len, aid) :
5051 		     __ieee80211_check_tim(tim, tim_len, aid);
5052 }
5053 
5054 /**
5055  * ieee80211_get_tdls_action - get TDLS action code
5056  * @skb: the skb containing the frame, length will not be checked
5057  * Return: the TDLS action code, or -1 if it's not an encapsulated TDLS action
5058  *	frame
5059  *
5060  * This function assumes the frame is a data frame, and that the network header
5061  * is in the correct place.
5062  */
5063 static inline int ieee80211_get_tdls_action(struct sk_buff *skb)
5064 {
5065 	if (!skb_is_nonlinear(skb) &&
5066 	    skb->len > (skb_network_offset(skb) + 2)) {
5067 		/* Point to where the indication of TDLS should start */
5068 		const u8 *tdls_data = skb_network_header(skb) - 2;
5069 
5070 		if (get_unaligned_be16(tdls_data) == ETH_P_TDLS &&
5071 		    tdls_data[2] == WLAN_TDLS_SNAP_RFTYPE &&
5072 		    tdls_data[3] == WLAN_CATEGORY_TDLS)
5073 			return tdls_data[4];
5074 	}
5075 
5076 	return -1;
5077 }
5078 
5079 /* convert time units */
5080 #define TU_TO_JIFFIES(x)	(usecs_to_jiffies((x) * 1024))
5081 #define TU_TO_EXP_TIME(x)	(jiffies + TU_TO_JIFFIES(x))
5082 
5083 /* convert frequencies */
5084 #define MHZ_TO_KHZ(freq) ((freq) * 1000)
5085 #define KHZ_TO_MHZ(freq) ((freq) / 1000)
5086 #define PR_KHZ(f) KHZ_TO_MHZ(f), f % 1000
5087 #define KHZ_F "%d.%03d"
5088 
5089 /* convert powers */
5090 #define DBI_TO_MBI(gain) ((gain) * 100)
5091 #define MBI_TO_DBI(gain) ((gain) / 100)
5092 #define DBM_TO_MBM(gain) ((gain) * 100)
5093 #define MBM_TO_DBM(gain) ((gain) / 100)
5094 
5095 /**
5096  * ieee80211_action_contains_tpc - checks if the frame contains TPC element
5097  * @skb: the skb containing the frame, length will be checked
5098  * Return: %true if the frame contains a TPC element, %false otherwise
5099  *
5100  * This function checks if it's either TPC report action frame or Link
5101  * Measurement report action frame as defined in IEEE Std. 802.11-2012 8.5.2.5
5102  * and 8.5.7.5 accordingly.
5103  */
5104 static inline bool ieee80211_action_contains_tpc(struct sk_buff *skb)
5105 {
5106 	struct ieee80211_mgmt *mgmt = (void *)skb->data;
5107 
5108 	if (!ieee80211_is_action(mgmt->frame_control))
5109 		return false;
5110 
5111 	if (skb->len < IEEE80211_MIN_ACTION_SIZE +
5112 		       sizeof(mgmt->u.action.u.tpc_report))
5113 		return false;
5114 
5115 	/*
5116 	 * TPC report - check that:
5117 	 * category = 0 (Spectrum Management) or 5 (Radio Measurement)
5118 	 * spectrum management action = 3 (TPC/Link Measurement report)
5119 	 * TPC report EID = 35
5120 	 * TPC report element length = 2
5121 	 *
5122 	 * The spectrum management's tpc_report struct is used here both for
5123 	 * parsing tpc_report and radio measurement's link measurement report
5124 	 * frame, since the relevant part is identical in both frames.
5125 	 */
5126 	if (mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT &&
5127 	    mgmt->u.action.category != WLAN_CATEGORY_RADIO_MEASUREMENT)
5128 		return false;
5129 
5130 	/* both spectrum mgmt and link measurement have same action code */
5131 	if (mgmt->u.action.u.tpc_report.action_code !=
5132 	    WLAN_ACTION_SPCT_TPC_RPRT)
5133 		return false;
5134 
5135 	if (mgmt->u.action.u.tpc_report.tpc_elem_id != WLAN_EID_TPC_REPORT ||
5136 	    mgmt->u.action.u.tpc_report.tpc_elem_length !=
5137 	    sizeof(struct ieee80211_tpc_report_ie))
5138 		return false;
5139 
5140 	return true;
5141 }
5142 
5143 /**
5144  * ieee80211_is_timing_measurement - check if frame is timing measurement response
5145  * @skb: the SKB to check
5146  * Return: whether or not the frame is a valid timing measurement response
5147  */
5148 static inline bool ieee80211_is_timing_measurement(struct sk_buff *skb)
5149 {
5150 	struct ieee80211_mgmt *mgmt = (void *)skb->data;
5151 
5152 	if (skb->len < IEEE80211_MIN_ACTION_SIZE)
5153 		return false;
5154 
5155 	if (!ieee80211_is_action(mgmt->frame_control))
5156 		return false;
5157 
5158 	if (mgmt->u.action.category == WLAN_CATEGORY_WNM_UNPROTECTED &&
5159 	    mgmt->u.action.u.wnm_timing_msr.action_code ==
5160 		WLAN_UNPROTECTED_WNM_ACTION_TIMING_MEASUREMENT_RESPONSE &&
5161 	    skb->len >= offsetofend(typeof(*mgmt), u.action.u.wnm_timing_msr))
5162 		return true;
5163 
5164 	return false;
5165 }
5166 
5167 /**
5168  * ieee80211_is_ftm - check if frame is FTM response
5169  * @skb: the SKB to check
5170  * Return: whether or not the frame is a valid FTM response action frame
5171  */
5172 static inline bool ieee80211_is_ftm(struct sk_buff *skb)
5173 {
5174 	struct ieee80211_mgmt *mgmt = (void *)skb->data;
5175 
5176 	if (!ieee80211_is_public_action((void *)mgmt, skb->len))
5177 		return false;
5178 
5179 	if (mgmt->u.action.u.ftm.action_code ==
5180 		WLAN_PUB_ACTION_FTM_RESPONSE &&
5181 	    skb->len >= offsetofend(typeof(*mgmt), u.action.u.ftm))
5182 		return true;
5183 
5184 	return false;
5185 }
5186 
5187 /**
5188  * ieee80211_is_s1g_short_beacon - check if frame is an S1G short beacon
5189  * @fc: frame control bytes in little-endian byteorder
5190  * @variable: pointer to the beacon frame elements
5191  * @variable_len: length of the frame elements
5192  * Return: whether or not the frame is an S1G short beacon. As per
5193  *	IEEE80211-2024 11.1.3.10.1, The S1G beacon compatibility element shall
5194  *	always be present as the first element in beacon frames generated at a
5195  *	TBTT (Target Beacon Transmission Time), so any frame not containing
5196  *	this element must have been generated at a TSBTT (Target Short Beacon
5197  *	Transmission Time) that is not a TBTT. Additionally, short beacons are
5198  *	prohibited from containing the S1G beacon compatibility element as per
5199  *	IEEE80211-2024 9.3.4.3 Table 9-76, so if we have an S1G beacon with
5200  *	either no elements or the first element is not the beacon compatibility
5201  *	element, we have a short beacon.
5202  */
5203 static inline bool ieee80211_is_s1g_short_beacon(__le16 fc, const u8 *variable,
5204 						 size_t variable_len)
5205 {
5206 	if (!ieee80211_is_s1g_beacon(fc))
5207 		return false;
5208 
5209 	/*
5210 	 * If the frame does not contain at least 1 element (this is perfectly
5211 	 * valid in a short beacon) and is an S1G beacon, we have a short
5212 	 * beacon.
5213 	 */
5214 	if (variable_len < 2)
5215 		return true;
5216 
5217 	return variable[0] != WLAN_EID_S1G_BCN_COMPAT;
5218 }
5219 
5220 struct element {
5221 	u8 id;
5222 	u8 datalen;
5223 	u8 data[];
5224 } __packed;
5225 
5226 /* element iteration helpers */
5227 #define for_each_element(_elem, _data, _datalen)			\
5228 	for (_elem = (const struct element *)(_data);			\
5229 	     (const u8 *)(_data) + (_datalen) - (const u8 *)_elem >=	\
5230 		(int)sizeof(*_elem) &&					\
5231 	     (const u8 *)(_data) + (_datalen) - (const u8 *)_elem >=	\
5232 		(int)sizeof(*_elem) + _elem->datalen;			\
5233 	     _elem = (const struct element *)(_elem->data + _elem->datalen))
5234 
5235 #define for_each_element_id(element, _id, data, datalen)		\
5236 	for_each_element(element, data, datalen)			\
5237 		if (element->id == (_id))
5238 
5239 #define for_each_element_extid(element, extid, _data, _datalen)		\
5240 	for_each_element(element, _data, _datalen)			\
5241 		if (element->id == WLAN_EID_EXTENSION &&		\
5242 		    element->datalen > 0 &&				\
5243 		    element->data[0] == (extid))
5244 
5245 #define for_each_subelement(sub, element)				\
5246 	for_each_element(sub, (element)->data, (element)->datalen)
5247 
5248 #define for_each_subelement_id(sub, id, element)			\
5249 	for_each_element_id(sub, id, (element)->data, (element)->datalen)
5250 
5251 #define for_each_subelement_extid(sub, extid, element)			\
5252 	for_each_element_extid(sub, extid, (element)->data, (element)->datalen)
5253 
5254 /**
5255  * for_each_element_completed - determine if element parsing consumed all data
5256  * @element: element pointer after for_each_element() or friends
5257  * @data: same data pointer as passed to for_each_element() or friends
5258  * @datalen: same data length as passed to for_each_element() or friends
5259  * Return: %true if all elements were iterated, %false otherwise; see notes
5260  *
5261  * This function returns %true if all the data was parsed or considered
5262  * while walking the elements. Only use this if your for_each_element()
5263  * loop cannot be broken out of, otherwise it always returns %false.
5264  *
5265  * If some data was malformed, this returns %false since the last parsed
5266  * element will not fill the whole remaining data.
5267  */
5268 static inline bool for_each_element_completed(const struct element *element,
5269 					      const void *data, size_t datalen)
5270 {
5271 	return (const u8 *)element == (const u8 *)data + datalen;
5272 }
5273 
5274 /*
5275  * RSNX Capabilities:
5276  * bits 0-3: Field length (n-1)
5277  */
5278 #define WLAN_RSNX_CAPA_PROTECTED_TWT BIT(4)
5279 #define WLAN_RSNX_CAPA_SAE_H2E BIT(5)
5280 
5281 /*
5282  * reduced neighbor report, based on Draft P802.11ax_D6.1,
5283  * section 9.4.2.170 and accepted contributions.
5284  */
5285 #define IEEE80211_AP_INFO_TBTT_HDR_TYPE				0x03
5286 #define IEEE80211_AP_INFO_TBTT_HDR_FILTERED			0x04
5287 #define IEEE80211_AP_INFO_TBTT_HDR_COLOC			0x08
5288 #define IEEE80211_AP_INFO_TBTT_HDR_COUNT			0xF0
5289 #define IEEE80211_TBTT_INFO_TYPE_TBTT				0
5290 #define IEEE80211_TBTT_INFO_TYPE_MLD				1
5291 
5292 #define IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED		0x01
5293 #define IEEE80211_RNR_TBTT_PARAMS_SAME_SSID			0x02
5294 #define IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID			0x04
5295 #define IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID		0x08
5296 #define IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS			0x10
5297 #define IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE			0x20
5298 #define IEEE80211_RNR_TBTT_PARAMS_COLOC_AP			0x40
5299 
5300 #define IEEE80211_RNR_TBTT_PARAMS_PSD_NO_LIMIT			127
5301 #define IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED			-128
5302 
5303 struct ieee80211_neighbor_ap_info {
5304 	u8 tbtt_info_hdr;
5305 	u8 tbtt_info_len;
5306 	u8 op_class;
5307 	u8 channel;
5308 } __packed;
5309 
5310 enum ieee80211_range_params_max_total_ltf {
5311 	IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_4 = 0,
5312 	IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_8,
5313 	IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_16,
5314 	IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_UNSPECIFIED,
5315 };
5316 
5317 /*
5318  * reduced neighbor report, based on Draft P802.11be_D3.0,
5319  * section 9.4.2.170.2.
5320  */
5321 struct ieee80211_rnr_mld_params {
5322 	u8 mld_id;
5323 	__le16 params;
5324 } __packed;
5325 
5326 #define IEEE80211_RNR_MLD_PARAMS_LINK_ID			0x000F
5327 #define IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT		0x0FF0
5328 #define IEEE80211_RNR_MLD_PARAMS_UPDATES_INCLUDED		0x1000
5329 #define IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK			0x2000
5330 
5331 /* Format of the TBTT information element if it has 7, 8 or 9 bytes */
5332 struct ieee80211_tbtt_info_7_8_9 {
5333 	u8 tbtt_offset;
5334 	u8 bssid[ETH_ALEN];
5335 
5336 	/* The following element is optional, structure may not grow */
5337 	u8 bss_params;
5338 	s8 psd_20;
5339 } __packed;
5340 
5341 /* Format of the TBTT information element if it has >= 11 bytes */
5342 struct ieee80211_tbtt_info_ge_11 {
5343 	u8 tbtt_offset;
5344 	u8 bssid[ETH_ALEN];
5345 	__le32 short_ssid;
5346 
5347 	/* The following elements are optional, structure may grow */
5348 	u8 bss_params;
5349 	s8 psd_20;
5350 	struct ieee80211_rnr_mld_params mld_params;
5351 } __packed;
5352 
5353 /* multi-link device */
5354 #define IEEE80211_MLD_MAX_NUM_LINKS	15
5355 
5356 #define IEEE80211_ML_CONTROL_TYPE			0x0007
5357 #define IEEE80211_ML_CONTROL_TYPE_BASIC			0
5358 #define IEEE80211_ML_CONTROL_TYPE_PREQ			1
5359 #define IEEE80211_ML_CONTROL_TYPE_RECONF		2
5360 #define IEEE80211_ML_CONTROL_TYPE_TDLS			3
5361 #define IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS		4
5362 #define IEEE80211_ML_CONTROL_PRESENCE_MASK		0xfff0
5363 
5364 struct ieee80211_multi_link_elem {
5365 	__le16 control;
5366 	u8 variable[];
5367 } __packed;
5368 
5369 #define IEEE80211_MLC_BASIC_PRES_LINK_ID		0x0010
5370 #define IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT	0x0020
5371 #define IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY		0x0040
5372 #define IEEE80211_MLC_BASIC_PRES_EML_CAPA		0x0080
5373 #define IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP		0x0100
5374 #define IEEE80211_MLC_BASIC_PRES_MLD_ID			0x0200
5375 #define IEEE80211_MLC_BASIC_PRES_EXT_MLD_CAPA_OP	0x0400
5376 
5377 #define IEEE80211_MED_SYNC_DELAY_DURATION		0x00ff
5378 #define IEEE80211_MED_SYNC_DELAY_SYNC_OFDM_ED_THRESH	0x0f00
5379 #define IEEE80211_MED_SYNC_DELAY_SYNC_MAX_NUM_TXOPS	0xf000
5380 
5381 /*
5382  * Described in P802.11be_D3.0
5383  * dot11MSDTimerDuration should default to 5484 (i.e. 171.375)
5384  * dot11MSDOFDMEDthreshold defaults to -72 (i.e. 0)
5385  * dot11MSDTXOPMAX defaults to 1
5386  */
5387 #define IEEE80211_MED_SYNC_DELAY_DEFAULT		0x10ac
5388 
5389 #define IEEE80211_EML_CAP_EMLSR_SUPP			0x0001
5390 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY		0x000e
5391 #define  IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_0US		0
5392 #define  IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_32US		1
5393 #define  IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_64US		2
5394 #define  IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_128US		3
5395 #define  IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_256US		4
5396 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY	0x0070
5397 #define  IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_0US		0
5398 #define  IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_16US		1
5399 #define  IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_32US		2
5400 #define  IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_64US		3
5401 #define  IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_128US		4
5402 #define  IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_256US		5
5403 #define IEEE80211_EML_CAP_EMLMR_SUPPORT			0x0080
5404 #define IEEE80211_EML_CAP_EMLMR_DELAY			0x0700
5405 #define  IEEE80211_EML_CAP_EMLMR_DELAY_0US			0
5406 #define  IEEE80211_EML_CAP_EMLMR_DELAY_32US			1
5407 #define  IEEE80211_EML_CAP_EMLMR_DELAY_64US			2
5408 #define  IEEE80211_EML_CAP_EMLMR_DELAY_128US			3
5409 #define  IEEE80211_EML_CAP_EMLMR_DELAY_256US			4
5410 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT		0x7800
5411 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_0			0
5412 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128US		1
5413 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_256US		2
5414 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_512US		3
5415 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_1TU		4
5416 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_2TU		5
5417 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_4TU		6
5418 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_8TU		7
5419 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_16TU		8
5420 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_32TU		9
5421 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_64TU		10
5422 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128TU		11
5423 
5424 #define IEEE80211_MLD_CAP_OP_MAX_SIMUL_LINKS		0x000f
5425 #define IEEE80211_MLD_CAP_OP_SRS_SUPPORT		0x0010
5426 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP	0x0060
5427 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_NO_SUPP	0
5428 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP_SAME	1
5429 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_RESERVED	2
5430 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP_DIFF	3
5431 #define IEEE80211_MLD_CAP_OP_FREQ_SEP_TYPE_IND		0x0f80
5432 #define IEEE80211_MLD_CAP_OP_AAR_SUPPORT		0x1000
5433 #define IEEE80211_MLD_CAP_OP_LINK_RECONF_SUPPORT	0x2000
5434 #define IEEE80211_MLD_CAP_OP_ALIGNED_TWT_SUPPORT	0x4000
5435 
5436 struct ieee80211_mle_basic_common_info {
5437 	u8 len;
5438 	u8 mld_mac_addr[ETH_ALEN];
5439 	u8 variable[];
5440 } __packed;
5441 
5442 #define IEEE80211_MLC_PREQ_PRES_MLD_ID			0x0010
5443 
5444 struct ieee80211_mle_preq_common_info {
5445 	u8 len;
5446 	u8 variable[];
5447 } __packed;
5448 
5449 #define IEEE80211_MLC_RECONF_PRES_MLD_MAC_ADDR		0x0010
5450 #define IEEE80211_MLC_RECONF_PRES_EML_CAPA		0x0020
5451 #define IEEE80211_MLC_RECONF_PRES_MLD_CAPA_OP		0x0040
5452 #define IEEE80211_MLC_RECONF_PRES_EXT_MLD_CAPA_OP	0x0080
5453 
5454 /* no fixed fields in RECONF */
5455 
5456 struct ieee80211_mle_tdls_common_info {
5457 	u8 len;
5458 	u8 ap_mld_mac_addr[ETH_ALEN];
5459 } __packed;
5460 
5461 #define IEEE80211_MLC_PRIO_ACCESS_PRES_AP_MLD_MAC_ADDR	0x0010
5462 
5463 /* no fixed fields in PRIO_ACCESS */
5464 
5465 /**
5466  * ieee80211_mle_common_size - check multi-link element common size
5467  * @data: multi-link element, must already be checked for size using
5468  *	ieee80211_mle_size_ok()
5469  * Return: the size of the multi-link element's "common" subfield
5470  */
5471 static inline u8 ieee80211_mle_common_size(const u8 *data)
5472 {
5473 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5474 	u16 control = le16_to_cpu(mle->control);
5475 
5476 	switch (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE)) {
5477 	case IEEE80211_ML_CONTROL_TYPE_BASIC:
5478 	case IEEE80211_ML_CONTROL_TYPE_PREQ:
5479 	case IEEE80211_ML_CONTROL_TYPE_TDLS:
5480 	case IEEE80211_ML_CONTROL_TYPE_RECONF:
5481 	case IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS:
5482 		/*
5483 		 * The length is the first octet pointed by mle->variable so no
5484 		 * need to add anything
5485 		 */
5486 		break;
5487 	default:
5488 		WARN_ON(1);
5489 		return 0;
5490 	}
5491 
5492 	return sizeof(*mle) + mle->variable[0];
5493 }
5494 
5495 /**
5496  * ieee80211_mle_get_link_id - returns the link ID
5497  * @data: the basic multi link element
5498  * Return: the link ID, or -1 if not present
5499  *
5500  * The element is assumed to be of the correct type (BASIC) and big enough,
5501  * this must be checked using ieee80211_mle_type_ok().
5502  */
5503 static inline int ieee80211_mle_get_link_id(const u8 *data)
5504 {
5505 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5506 	u16 control = le16_to_cpu(mle->control);
5507 	const u8 *common = mle->variable;
5508 
5509 	/* common points now at the beginning of ieee80211_mle_basic_common_info */
5510 	common += sizeof(struct ieee80211_mle_basic_common_info);
5511 
5512 	if (!(control & IEEE80211_MLC_BASIC_PRES_LINK_ID))
5513 		return -1;
5514 
5515 	return *common;
5516 }
5517 
5518 /**
5519  * ieee80211_mle_get_bss_param_ch_cnt - returns the BSS parameter change count
5520  * @data: pointer to the basic multi link element
5521  * Return: the BSS Parameter Change Count field value, or -1 if not present
5522  *
5523  * The element is assumed to be of the correct type (BASIC) and big enough,
5524  * this must be checked using ieee80211_mle_type_ok().
5525  */
5526 static inline int
5527 ieee80211_mle_get_bss_param_ch_cnt(const u8 *data)
5528 {
5529 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5530 	u16 control = le16_to_cpu(mle->control);
5531 	const u8 *common = mle->variable;
5532 
5533 	/* common points now at the beginning of ieee80211_mle_basic_common_info */
5534 	common += sizeof(struct ieee80211_mle_basic_common_info);
5535 
5536 	if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT))
5537 		return -1;
5538 
5539 	if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5540 		common += 1;
5541 
5542 	return *common;
5543 }
5544 
5545 /**
5546  * ieee80211_mle_get_eml_med_sync_delay - returns the medium sync delay
5547  * @data: pointer to the multi-link element
5548  * Return: the medium synchronization delay field value from the multi-link
5549  *	element, or the default value (%IEEE80211_MED_SYNC_DELAY_DEFAULT)
5550  *	if not present
5551  *
5552  * The element is assumed to be of the correct type (BASIC) and big enough,
5553  * this must be checked using ieee80211_mle_type_ok().
5554  */
5555 static inline u16 ieee80211_mle_get_eml_med_sync_delay(const u8 *data)
5556 {
5557 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5558 	u16 control = le16_to_cpu(mle->control);
5559 	const u8 *common = mle->variable;
5560 
5561 	/* common points now at the beginning of ieee80211_mle_basic_common_info */
5562 	common += sizeof(struct ieee80211_mle_basic_common_info);
5563 
5564 	if (!(control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY))
5565 		return IEEE80211_MED_SYNC_DELAY_DEFAULT;
5566 
5567 	if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5568 		common += 1;
5569 	if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5570 		common += 1;
5571 
5572 	return get_unaligned_le16(common);
5573 }
5574 
5575 /**
5576  * ieee80211_mle_get_eml_cap - returns the EML capability
5577  * @data: pointer to the multi-link element
5578  * Return: the EML capability field value from the multi-link element,
5579  *	or 0 if not present
5580  *
5581  * The element is assumed to be of the correct type (BASIC) and big enough,
5582  * this must be checked using ieee80211_mle_type_ok().
5583  */
5584 static inline u16 ieee80211_mle_get_eml_cap(const u8 *data)
5585 {
5586 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5587 	u16 control = le16_to_cpu(mle->control);
5588 	const u8 *common = mle->variable;
5589 
5590 	/* common points now at the beginning of ieee80211_mle_basic_common_info */
5591 	common += sizeof(struct ieee80211_mle_basic_common_info);
5592 
5593 	if (!(control & IEEE80211_MLC_BASIC_PRES_EML_CAPA))
5594 		return 0;
5595 
5596 	if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5597 		common += 1;
5598 	if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5599 		common += 1;
5600 	if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5601 		common += 2;
5602 
5603 	return get_unaligned_le16(common);
5604 }
5605 
5606 /**
5607  * ieee80211_mle_get_mld_capa_op - returns the MLD capabilities and operations.
5608  * @data: pointer to the multi-link element
5609  * Return: the MLD capabilities and operations field value from the multi-link
5610  *	element, or 0 if not present
5611  *
5612  * The element is assumed to be of the correct type (BASIC) and big enough,
5613  * this must be checked using ieee80211_mle_type_ok().
5614  */
5615 static inline u16 ieee80211_mle_get_mld_capa_op(const u8 *data)
5616 {
5617 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5618 	u16 control = le16_to_cpu(mle->control);
5619 	const u8 *common = mle->variable;
5620 
5621 	/*
5622 	 * common points now at the beginning of
5623 	 * ieee80211_mle_basic_common_info
5624 	 */
5625 	common += sizeof(struct ieee80211_mle_basic_common_info);
5626 
5627 	if (!(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
5628 		return 0;
5629 
5630 	if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5631 		common += 1;
5632 	if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5633 		common += 1;
5634 	if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5635 		common += 2;
5636 	if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
5637 		common += 2;
5638 
5639 	return get_unaligned_le16(common);
5640 }
5641 
5642 /* Defined in Figure 9-1074t in P802.11be_D7.0 */
5643 #define IEEE80211_EHT_ML_EXT_MLD_CAPA_OP_PARAM_UPDATE           0x0001
5644 #define IEEE80211_EHT_ML_EXT_MLD_CAPA_OP_RECO_MAX_LINKS_MASK    0x001e
5645 #define IEEE80211_EHT_ML_EXT_MLD_CAPA_NSTR_UPDATE               0x0020
5646 #define IEEE80211_EHT_ML_EXT_MLD_CAPA_EMLSR_ENA_ON_ONE_LINK     0x0040
5647 #define IEEE80211_EHT_ML_EXT_MLD_CAPA_BTM_MLD_RECO_MULTI_AP     0x0080
5648 
5649 /**
5650  * ieee80211_mle_get_ext_mld_capa_op - returns the extended MLD capabilities
5651  *	and operations.
5652  * @data: pointer to the multi-link element
5653  * Return: the extended MLD capabilities and operations field value from
5654  *	the multi-link element, or 0 if not present
5655  *
5656  * The element is assumed to be of the correct type (BASIC) and big enough,
5657  * this must be checked using ieee80211_mle_type_ok().
5658  */
5659 static inline u16 ieee80211_mle_get_ext_mld_capa_op(const u8 *data)
5660 {
5661 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5662 	u16 control = le16_to_cpu(mle->control);
5663 	const u8 *common = mle->variable;
5664 
5665 	/*
5666 	 * common points now at the beginning of
5667 	 * ieee80211_mle_basic_common_info
5668 	 */
5669 	common += sizeof(struct ieee80211_mle_basic_common_info);
5670 
5671 	if (!(control & IEEE80211_MLC_BASIC_PRES_EXT_MLD_CAPA_OP))
5672 		return 0;
5673 
5674 	if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5675 		common += 1;
5676 	if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5677 		common += 1;
5678 	if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5679 		common += 2;
5680 	if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
5681 		common += 2;
5682 	if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)
5683 		common += 2;
5684 	if (control & IEEE80211_MLC_BASIC_PRES_MLD_ID)
5685 		common += 1;
5686 
5687 	return get_unaligned_le16(common);
5688 }
5689 
5690 /**
5691  * ieee80211_mle_get_mld_id - returns the MLD ID
5692  * @data: pointer to the multi-link element
5693  * Return: The MLD ID in the given multi-link element, or 0 if not present
5694  *
5695  * The element is assumed to be of the correct type (BASIC) and big enough,
5696  * this must be checked using ieee80211_mle_type_ok().
5697  */
5698 static inline u8 ieee80211_mle_get_mld_id(const u8 *data)
5699 {
5700 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5701 	u16 control = le16_to_cpu(mle->control);
5702 	const u8 *common = mle->variable;
5703 
5704 	/*
5705 	 * common points now at the beginning of
5706 	 * ieee80211_mle_basic_common_info
5707 	 */
5708 	common += sizeof(struct ieee80211_mle_basic_common_info);
5709 
5710 	if (!(control & IEEE80211_MLC_BASIC_PRES_MLD_ID))
5711 		return 0;
5712 
5713 	if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5714 		common += 1;
5715 	if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5716 		common += 1;
5717 	if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5718 		common += 2;
5719 	if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
5720 		common += 2;
5721 	if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)
5722 		common += 2;
5723 
5724 	return *common;
5725 }
5726 
5727 /**
5728  * ieee80211_mle_size_ok - validate multi-link element size
5729  * @data: pointer to the element data
5730  * @len: length of the containing element
5731  * Return: whether or not the multi-link element size is OK
5732  */
5733 static inline bool ieee80211_mle_size_ok(const u8 *data, size_t len)
5734 {
5735 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5736 	u8 fixed = sizeof(*mle);
5737 	u8 common = 0;
5738 	bool check_common_len = false;
5739 	u16 control;
5740 
5741 	if (!data || len < fixed)
5742 		return false;
5743 
5744 	control = le16_to_cpu(mle->control);
5745 
5746 	switch (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE)) {
5747 	case IEEE80211_ML_CONTROL_TYPE_BASIC:
5748 		common += sizeof(struct ieee80211_mle_basic_common_info);
5749 		check_common_len = true;
5750 		if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5751 			common += 1;
5752 		if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5753 			common += 1;
5754 		if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5755 			common += 2;
5756 		if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
5757 			common += 2;
5758 		if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)
5759 			common += 2;
5760 		if (control & IEEE80211_MLC_BASIC_PRES_MLD_ID)
5761 			common += 1;
5762 		if (control & IEEE80211_MLC_BASIC_PRES_EXT_MLD_CAPA_OP)
5763 			common += 2;
5764 		break;
5765 	case IEEE80211_ML_CONTROL_TYPE_PREQ:
5766 		common += sizeof(struct ieee80211_mle_preq_common_info);
5767 		if (control & IEEE80211_MLC_PREQ_PRES_MLD_ID)
5768 			common += 1;
5769 		check_common_len = true;
5770 		break;
5771 	case IEEE80211_ML_CONTROL_TYPE_RECONF:
5772 		if (control & IEEE80211_MLC_RECONF_PRES_MLD_MAC_ADDR)
5773 			common += ETH_ALEN;
5774 		if (control & IEEE80211_MLC_RECONF_PRES_EML_CAPA)
5775 			common += 2;
5776 		if (control & IEEE80211_MLC_RECONF_PRES_MLD_CAPA_OP)
5777 			common += 2;
5778 		if (control & IEEE80211_MLC_RECONF_PRES_EXT_MLD_CAPA_OP)
5779 			common += 2;
5780 		break;
5781 	case IEEE80211_ML_CONTROL_TYPE_TDLS:
5782 		common += sizeof(struct ieee80211_mle_tdls_common_info);
5783 		check_common_len = true;
5784 		break;
5785 	case IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS:
5786 		common = ETH_ALEN + 1;
5787 		break;
5788 	default:
5789 		/* we don't know this type */
5790 		return true;
5791 	}
5792 
5793 	if (len < fixed + common)
5794 		return false;
5795 
5796 	if (!check_common_len)
5797 		return true;
5798 
5799 	/* if present, common length is the first octet there */
5800 	return mle->variable[0] >= common;
5801 }
5802 
5803 /**
5804  * ieee80211_mle_type_ok - validate multi-link element type and size
5805  * @data: pointer to the element data
5806  * @type: expected type of the element
5807  * @len: length of the containing element
5808  * Return: whether or not the multi-link element type matches and size is OK
5809  */
5810 static inline bool ieee80211_mle_type_ok(const u8 *data, u8 type, size_t len)
5811 {
5812 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5813 	u16 control;
5814 
5815 	if (!ieee80211_mle_size_ok(data, len))
5816 		return false;
5817 
5818 	control = le16_to_cpu(mle->control);
5819 
5820 	if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) == type)
5821 		return true;
5822 
5823 	return false;
5824 }
5825 
5826 enum ieee80211_mle_subelems {
5827 	IEEE80211_MLE_SUBELEM_PER_STA_PROFILE		= 0,
5828 	IEEE80211_MLE_SUBELEM_FRAGMENT		        = 254,
5829 };
5830 
5831 #define IEEE80211_MLE_STA_CONTROL_LINK_ID			0x000f
5832 #define IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE		0x0010
5833 #define IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT		0x0020
5834 #define IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT		0x0040
5835 #define IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT		0x0080
5836 #define IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT		0x0100
5837 #define IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT	0x0200
5838 #define IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE		0x0400
5839 #define IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT	0x0800
5840 
5841 struct ieee80211_mle_per_sta_profile {
5842 	__le16 control;
5843 	u8 sta_info_len;
5844 	u8 variable[];
5845 } __packed;
5846 
5847 /**
5848  * ieee80211_mle_basic_sta_prof_size_ok - validate basic multi-link element sta
5849  *	profile size
5850  * @data: pointer to the sub element data
5851  * @len: length of the containing sub element
5852  * Return: %true if the STA profile is large enough, %false otherwise
5853  */
5854 static inline bool ieee80211_mle_basic_sta_prof_size_ok(const u8 *data,
5855 							size_t len)
5856 {
5857 	const struct ieee80211_mle_per_sta_profile *prof = (const void *)data;
5858 	u16 control;
5859 	u8 fixed = sizeof(*prof);
5860 	u8 info_len = 1;
5861 
5862 	if (len < fixed)
5863 		return false;
5864 
5865 	control = le16_to_cpu(prof->control);
5866 
5867 	if (control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)
5868 		info_len += 6;
5869 	if (control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT)
5870 		info_len += 2;
5871 	if (control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT)
5872 		info_len += 8;
5873 	if (control & IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT)
5874 		info_len += 2;
5875 	if (control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE &&
5876 	    control & IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT) {
5877 		if (control & IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE)
5878 			info_len += 2;
5879 		else
5880 			info_len += 1;
5881 	}
5882 	if (control & IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT)
5883 		info_len += 1;
5884 
5885 	return prof->sta_info_len >= info_len &&
5886 	       fixed + prof->sta_info_len - 1 <= len;
5887 }
5888 
5889 /**
5890  * ieee80211_mle_basic_sta_prof_bss_param_ch_cnt - get per-STA profile BSS
5891  *	parameter change count
5892  * @prof: the per-STA profile, having been checked with
5893  *	ieee80211_mle_basic_sta_prof_size_ok() for the correct length
5894  *
5895  * Return: The BSS parameter change count value if present, 0 otherwise.
5896  */
5897 static inline u8
5898 ieee80211_mle_basic_sta_prof_bss_param_ch_cnt(const struct ieee80211_mle_per_sta_profile *prof)
5899 {
5900 	u16 control = le16_to_cpu(prof->control);
5901 	const u8 *pos = prof->variable;
5902 
5903 	if (!(control & IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT))
5904 		return 0;
5905 
5906 	if (control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)
5907 		pos += 6;
5908 	if (control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT)
5909 		pos += 2;
5910 	if (control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT)
5911 		pos += 8;
5912 	if (control & IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT)
5913 		pos += 2;
5914 	if (control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE &&
5915 	    control & IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT) {
5916 		if (control & IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE)
5917 			pos += 2;
5918 		else
5919 			pos += 1;
5920 	}
5921 
5922 	return *pos;
5923 }
5924 
5925 #define IEEE80211_MLE_STA_RECONF_CONTROL_LINK_ID			0x000f
5926 #define IEEE80211_MLE_STA_RECONF_CONTROL_COMPLETE_PROFILE		0x0010
5927 #define IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT		0x0020
5928 #define IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT		0x0040
5929 #define	IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE                 0x0780
5930 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_AP_REM          0
5931 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_OP_PARAM_UPDATE 1
5932 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_ADD_LINK        2
5933 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_DEL_LINK        3
5934 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_NSTR_STATUS     4
5935 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_PARAMS_PRESENT       0x0800
5936 
5937 /**
5938  * ieee80211_mle_reconf_sta_prof_size_ok - validate reconfiguration multi-link
5939  *	element sta profile size.
5940  * @data: pointer to the sub element data
5941  * @len: length of the containing sub element
5942  * Return: %true if the STA profile is large enough, %false otherwise
5943  */
5944 static inline bool ieee80211_mle_reconf_sta_prof_size_ok(const u8 *data,
5945 							 size_t len)
5946 {
5947 	const struct ieee80211_mle_per_sta_profile *prof = (const void *)data;
5948 	u16 control;
5949 	u8 fixed = sizeof(*prof);
5950 	u8 info_len = 1;
5951 
5952 	if (len < fixed)
5953 		return false;
5954 
5955 	control = le16_to_cpu(prof->control);
5956 
5957 	if (control & IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT)
5958 		info_len += ETH_ALEN;
5959 	if (control & IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT)
5960 		info_len += 2;
5961 	if (control & IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_PARAMS_PRESENT)
5962 		info_len += 2;
5963 
5964 	return prof->sta_info_len >= info_len &&
5965 	       fixed + prof->sta_info_len - 1 <= len;
5966 }
5967 
5968 #define IEEE80211_MLE_STA_EPCS_CONTROL_LINK_ID			0x000f
5969 #define IEEE80211_EPCS_ENA_RESP_BODY_LEN                        3
5970 
5971 static inline bool ieee80211_tid_to_link_map_size_ok(const u8 *data, size_t len)
5972 {
5973 	const struct ieee80211_ttlm_elem *t2l = (const void *)data;
5974 	u8 control, fixed = sizeof(*t2l), elem_len = 0;
5975 
5976 	if (len < fixed)
5977 		return false;
5978 
5979 	control = t2l->control;
5980 
5981 	if (control & IEEE80211_TTLM_CONTROL_SWITCH_TIME_PRESENT)
5982 		elem_len += 2;
5983 	if (control & IEEE80211_TTLM_CONTROL_EXPECTED_DUR_PRESENT)
5984 		elem_len += 3;
5985 
5986 	if (!(control & IEEE80211_TTLM_CONTROL_DEF_LINK_MAP)) {
5987 		u8 bm_size;
5988 
5989 		elem_len += 1;
5990 		if (len < fixed + elem_len)
5991 			return false;
5992 
5993 		if (control & IEEE80211_TTLM_CONTROL_LINK_MAP_SIZE)
5994 			bm_size = 1;
5995 		else
5996 			bm_size = 2;
5997 
5998 		elem_len += hweight8(t2l->optional[0]) * bm_size;
5999 	}
6000 
6001 	return len >= fixed + elem_len;
6002 }
6003 
6004 /**
6005  * ieee80211_emlsr_pad_delay_in_us - Fetch the EMLSR Padding delay
6006  *	in microseconds
6007  * @eml_cap: EML capabilities field value from common info field of
6008  *	the Multi-link element
6009  * Return: the EMLSR Padding delay (in microseconds) encoded in the
6010  *	EML Capabilities field
6011  */
6012 
6013 static inline u32 ieee80211_emlsr_pad_delay_in_us(u16 eml_cap)
6014 {
6015 	/* IEEE Std 802.11be-2024 Table 9-417i—Encoding of the EMLSR
6016 	 * Padding Delay subfield.
6017 	 */
6018 	u32 pad_delay = u16_get_bits(eml_cap,
6019 				     IEEE80211_EML_CAP_EMLSR_PADDING_DELAY);
6020 
6021 	if (!pad_delay ||
6022 	    pad_delay > IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_256US)
6023 		return 0;
6024 
6025 	return 32 * (1 << (pad_delay - 1));
6026 }
6027 
6028 /**
6029  * ieee80211_emlsr_trans_delay_in_us - Fetch the EMLSR Transition
6030  *	delay in microseconds
6031  * @eml_cap: EML capabilities field value from common info field of
6032  *	the Multi-link element
6033  * Return: the EMLSR Transition delay (in microseconds) encoded in the
6034  *	EML Capabilities field
6035  */
6036 
6037 static inline u32 ieee80211_emlsr_trans_delay_in_us(u16 eml_cap)
6038 {
6039 	/* IEEE Std 802.11be-2024 Table 9-417j—Encoding of the EMLSR
6040 	 * Transition Delay subfield.
6041 	 */
6042 	u32 trans_delay =
6043 		u16_get_bits(eml_cap,
6044 			     IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY);
6045 
6046 	/* invalid values also just use 0 */
6047 	if (!trans_delay ||
6048 	    trans_delay > IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_256US)
6049 		return 0;
6050 
6051 	return 16 * (1 << (trans_delay - 1));
6052 }
6053 
6054 /**
6055  * ieee80211_eml_trans_timeout_in_us - Fetch the EMLSR Transition
6056  *	timeout value in microseconds
6057  * @eml_cap: EML capabilities field value from common info field of
6058  *	the Multi-link element
6059  * Return: the EMLSR Transition timeout (in microseconds) encoded in
6060  *	the EML Capabilities field
6061  */
6062 
6063 static inline u32 ieee80211_eml_trans_timeout_in_us(u16 eml_cap)
6064 {
6065 	/* IEEE Std 802.11be-2024 Table 9-417m—Encoding of the
6066 	 * Transition Timeout subfield.
6067 	 */
6068 	u8 timeout = u16_get_bits(eml_cap,
6069 				  IEEE80211_EML_CAP_TRANSITION_TIMEOUT);
6070 
6071 	/* invalid values also just use 0 */
6072 	if (!timeout || timeout > IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128TU)
6073 		return 0;
6074 
6075 	return 128 * (1 << (timeout - 1));
6076 }
6077 
6078 #define for_each_mle_subelement(_elem, _data, _len)			\
6079 	if (ieee80211_mle_size_ok(_data, _len))				\
6080 		for_each_element(_elem,					\
6081 				 _data + ieee80211_mle_common_size(_data),\
6082 				 _len - ieee80211_mle_common_size(_data))
6083 
6084 /* NAN operation mode, as defined in Wi-Fi Aware (TM) specification Table 81 */
6085 #define NAN_OP_MODE_PHY_MODE_VHT	0x01
6086 #define NAN_OP_MODE_PHY_MODE_HE		0x10
6087 #define NAN_OP_MODE_PHY_MODE_MASK	0x11
6088 #define NAN_OP_MODE_80P80MHZ		0x02
6089 #define NAN_OP_MODE_160MHZ		0x04
6090 #define NAN_OP_MODE_PNDL_SUPPRTED	0x08
6091 
6092 /* NAN Device capabilities, as defined in Wi-Fi Aware (TM) specification
6093  * Table 79
6094  */
6095 #define NAN_DEV_CAPA_DFS_OWNER			0x01
6096 #define NAN_DEV_CAPA_EXT_KEY_ID_SUPPORTED	0x02
6097 #define NAN_DEV_CAPA_SIM_NDP_RX_SUPPORTED	0x04
6098 #define NAN_DEV_CAPA_NDPE_SUPPORTED		0x08
6099 #define NAN_DEV_CAPA_S3_SUPPORTED		0x10
6100 
6101 #endif /* LINUX_IEEE80211_H */
6102