xref: /linux/include/linux/pagemap.h (revision 2619a6d413f4c3c4c1eddf63e83ecc345f250d07)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PAGEMAP_H
3 #define _LINUX_PAGEMAP_H
4 
5 /*
6  * Copyright 1995 Linus Torvalds
7  */
8 #include <linux/mm.h>
9 #include <linux/fs.h>
10 #include <linux/list.h>
11 #include <linux/highmem.h>
12 #include <linux/compiler.h>
13 #include <linux/uaccess.h>
14 #include <linux/gfp.h>
15 #include <linux/bitops.h>
16 #include <linux/hardirq.h> /* for in_interrupt() */
17 #include <linux/hugetlb_inline.h>
18 
19 struct folio_batch;
20 
21 unsigned long invalidate_mapping_pages(struct address_space *mapping,
22 					pgoff_t start, pgoff_t end);
23 
24 static inline void invalidate_remote_inode(struct inode *inode)
25 {
26 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
27 	    S_ISLNK(inode->i_mode))
28 		invalidate_mapping_pages(inode->i_mapping, 0, -1);
29 }
30 int invalidate_inode_pages2(struct address_space *mapping);
31 int invalidate_inode_pages2_range(struct address_space *mapping,
32 		pgoff_t start, pgoff_t end);
33 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count);
34 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count);
35 int filemap_invalidate_pages(struct address_space *mapping,
36 			     loff_t pos, loff_t end, bool nowait);
37 
38 int write_inode_now(struct inode *, int sync);
39 int filemap_fdatawrite(struct address_space *);
40 int filemap_flush(struct address_space *);
41 int filemap_fdatawait_keep_errors(struct address_space *mapping);
42 int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend);
43 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
44 		loff_t start_byte, loff_t end_byte);
45 int filemap_invalidate_inode(struct inode *inode, bool flush,
46 			     loff_t start, loff_t end);
47 
48 static inline int filemap_fdatawait(struct address_space *mapping)
49 {
50 	return filemap_fdatawait_range(mapping, 0, LLONG_MAX);
51 }
52 
53 bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend);
54 int filemap_write_and_wait_range(struct address_space *mapping,
55 		loff_t lstart, loff_t lend);
56 int __filemap_fdatawrite_range(struct address_space *mapping,
57 		loff_t start, loff_t end, int sync_mode);
58 int filemap_fdatawrite_range(struct address_space *mapping,
59 		loff_t start, loff_t end);
60 int filemap_check_errors(struct address_space *mapping);
61 void __filemap_set_wb_err(struct address_space *mapping, int err);
62 int filemap_fdatawrite_wbc(struct address_space *mapping,
63 			   struct writeback_control *wbc);
64 int kiocb_write_and_wait(struct kiocb *iocb, size_t count);
65 
66 static inline int filemap_write_and_wait(struct address_space *mapping)
67 {
68 	return filemap_write_and_wait_range(mapping, 0, LLONG_MAX);
69 }
70 
71 /**
72  * filemap_set_wb_err - set a writeback error on an address_space
73  * @mapping: mapping in which to set writeback error
74  * @err: error to be set in mapping
75  *
76  * When writeback fails in some way, we must record that error so that
77  * userspace can be informed when fsync and the like are called.  We endeavor
78  * to report errors on any file that was open at the time of the error.  Some
79  * internal callers also need to know when writeback errors have occurred.
80  *
81  * When a writeback error occurs, most filesystems will want to call
82  * filemap_set_wb_err to record the error in the mapping so that it will be
83  * automatically reported whenever fsync is called on the file.
84  */
85 static inline void filemap_set_wb_err(struct address_space *mapping, int err)
86 {
87 	/* Fastpath for common case of no error */
88 	if (unlikely(err))
89 		__filemap_set_wb_err(mapping, err);
90 }
91 
92 /**
93  * filemap_check_wb_err - has an error occurred since the mark was sampled?
94  * @mapping: mapping to check for writeback errors
95  * @since: previously-sampled errseq_t
96  *
97  * Grab the errseq_t value from the mapping, and see if it has changed "since"
98  * the given value was sampled.
99  *
100  * If it has then report the latest error set, otherwise return 0.
101  */
102 static inline int filemap_check_wb_err(struct address_space *mapping,
103 					errseq_t since)
104 {
105 	return errseq_check(&mapping->wb_err, since);
106 }
107 
108 /**
109  * filemap_sample_wb_err - sample the current errseq_t to test for later errors
110  * @mapping: mapping to be sampled
111  *
112  * Writeback errors are always reported relative to a particular sample point
113  * in the past. This function provides those sample points.
114  */
115 static inline errseq_t filemap_sample_wb_err(struct address_space *mapping)
116 {
117 	return errseq_sample(&mapping->wb_err);
118 }
119 
120 /**
121  * file_sample_sb_err - sample the current errseq_t to test for later errors
122  * @file: file pointer to be sampled
123  *
124  * Grab the most current superblock-level errseq_t value for the given
125  * struct file.
126  */
127 static inline errseq_t file_sample_sb_err(struct file *file)
128 {
129 	return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err);
130 }
131 
132 /*
133  * Flush file data before changing attributes.  Caller must hold any locks
134  * required to prevent further writes to this file until we're done setting
135  * flags.
136  */
137 static inline int inode_drain_writes(struct inode *inode)
138 {
139 	inode_dio_wait(inode);
140 	return filemap_write_and_wait(inode->i_mapping);
141 }
142 
143 static inline bool mapping_empty(struct address_space *mapping)
144 {
145 	return xa_empty(&mapping->i_pages);
146 }
147 
148 /*
149  * mapping_shrinkable - test if page cache state allows inode reclaim
150  * @mapping: the page cache mapping
151  *
152  * This checks the mapping's cache state for the pupose of inode
153  * reclaim and LRU management.
154  *
155  * The caller is expected to hold the i_lock, but is not required to
156  * hold the i_pages lock, which usually protects cache state. That's
157  * because the i_lock and the list_lru lock that protect the inode and
158  * its LRU state don't nest inside the irq-safe i_pages lock.
159  *
160  * Cache deletions are performed under the i_lock, which ensures that
161  * when an inode goes empty, it will reliably get queued on the LRU.
162  *
163  * Cache additions do not acquire the i_lock and may race with this
164  * check, in which case we'll report the inode as shrinkable when it
165  * has cache pages. This is okay: the shrinker also checks the
166  * refcount and the referenced bit, which will be elevated or set in
167  * the process of adding new cache pages to an inode.
168  */
169 static inline bool mapping_shrinkable(struct address_space *mapping)
170 {
171 	void *head;
172 
173 	/*
174 	 * On highmem systems, there could be lowmem pressure from the
175 	 * inodes before there is highmem pressure from the page
176 	 * cache. Make inodes shrinkable regardless of cache state.
177 	 */
178 	if (IS_ENABLED(CONFIG_HIGHMEM))
179 		return true;
180 
181 	/* Cache completely empty? Shrink away. */
182 	head = rcu_access_pointer(mapping->i_pages.xa_head);
183 	if (!head)
184 		return true;
185 
186 	/*
187 	 * The xarray stores single offset-0 entries directly in the
188 	 * head pointer, which allows non-resident page cache entries
189 	 * to escape the shadow shrinker's list of xarray nodes. The
190 	 * inode shrinker needs to pick them up under memory pressure.
191 	 */
192 	if (!xa_is_node(head) && xa_is_value(head))
193 		return true;
194 
195 	return false;
196 }
197 
198 /*
199  * Bits in mapping->flags.
200  */
201 enum mapping_flags {
202 	AS_EIO		= 0,	/* IO error on async write */
203 	AS_ENOSPC	= 1,	/* ENOSPC on async write */
204 	AS_MM_ALL_LOCKS	= 2,	/* under mm_take_all_locks() */
205 	AS_UNEVICTABLE	= 3,	/* e.g., ramdisk, SHM_LOCK */
206 	AS_EXITING	= 4, 	/* final truncate in progress */
207 	/* writeback related tags are not used */
208 	AS_NO_WRITEBACK_TAGS = 5,
209 	AS_RELEASE_ALWAYS = 6,	/* Call ->release_folio(), even if no private data */
210 	AS_STABLE_WRITES = 7,	/* must wait for writeback before modifying
211 				   folio contents */
212 	AS_INACCESSIBLE = 8,	/* Do not attempt direct R/W access to the mapping */
213 	AS_WRITEBACK_MAY_DEADLOCK_ON_RECLAIM = 9,
214 	/* Bits 16-25 are used for FOLIO_ORDER */
215 	AS_FOLIO_ORDER_BITS = 5,
216 	AS_FOLIO_ORDER_MIN = 16,
217 	AS_FOLIO_ORDER_MAX = AS_FOLIO_ORDER_MIN + AS_FOLIO_ORDER_BITS,
218 };
219 
220 #define AS_FOLIO_ORDER_BITS_MASK ((1u << AS_FOLIO_ORDER_BITS) - 1)
221 #define AS_FOLIO_ORDER_MIN_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MIN)
222 #define AS_FOLIO_ORDER_MAX_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MAX)
223 #define AS_FOLIO_ORDER_MASK (AS_FOLIO_ORDER_MIN_MASK | AS_FOLIO_ORDER_MAX_MASK)
224 
225 /**
226  * mapping_set_error - record a writeback error in the address_space
227  * @mapping: the mapping in which an error should be set
228  * @error: the error to set in the mapping
229  *
230  * When writeback fails in some way, we must record that error so that
231  * userspace can be informed when fsync and the like are called.  We endeavor
232  * to report errors on any file that was open at the time of the error.  Some
233  * internal callers also need to know when writeback errors have occurred.
234  *
235  * When a writeback error occurs, most filesystems will want to call
236  * mapping_set_error to record the error in the mapping so that it can be
237  * reported when the application calls fsync(2).
238  */
239 static inline void mapping_set_error(struct address_space *mapping, int error)
240 {
241 	if (likely(!error))
242 		return;
243 
244 	/* Record in wb_err for checkers using errseq_t based tracking */
245 	__filemap_set_wb_err(mapping, error);
246 
247 	/* Record it in superblock */
248 	if (mapping->host)
249 		errseq_set(&mapping->host->i_sb->s_wb_err, error);
250 
251 	/* Record it in flags for now, for legacy callers */
252 	if (error == -ENOSPC)
253 		set_bit(AS_ENOSPC, &mapping->flags);
254 	else
255 		set_bit(AS_EIO, &mapping->flags);
256 }
257 
258 static inline void mapping_set_unevictable(struct address_space *mapping)
259 {
260 	set_bit(AS_UNEVICTABLE, &mapping->flags);
261 }
262 
263 static inline void mapping_clear_unevictable(struct address_space *mapping)
264 {
265 	clear_bit(AS_UNEVICTABLE, &mapping->flags);
266 }
267 
268 static inline bool mapping_unevictable(struct address_space *mapping)
269 {
270 	return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
271 }
272 
273 static inline void mapping_set_exiting(struct address_space *mapping)
274 {
275 	set_bit(AS_EXITING, &mapping->flags);
276 }
277 
278 static inline int mapping_exiting(struct address_space *mapping)
279 {
280 	return test_bit(AS_EXITING, &mapping->flags);
281 }
282 
283 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
284 {
285 	set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
286 }
287 
288 static inline int mapping_use_writeback_tags(struct address_space *mapping)
289 {
290 	return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
291 }
292 
293 static inline bool mapping_release_always(const struct address_space *mapping)
294 {
295 	return test_bit(AS_RELEASE_ALWAYS, &mapping->flags);
296 }
297 
298 static inline void mapping_set_release_always(struct address_space *mapping)
299 {
300 	set_bit(AS_RELEASE_ALWAYS, &mapping->flags);
301 }
302 
303 static inline void mapping_clear_release_always(struct address_space *mapping)
304 {
305 	clear_bit(AS_RELEASE_ALWAYS, &mapping->flags);
306 }
307 
308 static inline bool mapping_stable_writes(const struct address_space *mapping)
309 {
310 	return test_bit(AS_STABLE_WRITES, &mapping->flags);
311 }
312 
313 static inline void mapping_set_stable_writes(struct address_space *mapping)
314 {
315 	set_bit(AS_STABLE_WRITES, &mapping->flags);
316 }
317 
318 static inline void mapping_clear_stable_writes(struct address_space *mapping)
319 {
320 	clear_bit(AS_STABLE_WRITES, &mapping->flags);
321 }
322 
323 static inline void mapping_set_inaccessible(struct address_space *mapping)
324 {
325 	/*
326 	 * It's expected inaccessible mappings are also unevictable. Compaction
327 	 * migrate scanner (isolate_migratepages_block()) relies on this to
328 	 * reduce page locking.
329 	 */
330 	set_bit(AS_UNEVICTABLE, &mapping->flags);
331 	set_bit(AS_INACCESSIBLE, &mapping->flags);
332 }
333 
334 static inline bool mapping_inaccessible(struct address_space *mapping)
335 {
336 	return test_bit(AS_INACCESSIBLE, &mapping->flags);
337 }
338 
339 static inline void mapping_set_writeback_may_deadlock_on_reclaim(struct address_space *mapping)
340 {
341 	set_bit(AS_WRITEBACK_MAY_DEADLOCK_ON_RECLAIM, &mapping->flags);
342 }
343 
344 static inline bool mapping_writeback_may_deadlock_on_reclaim(struct address_space *mapping)
345 {
346 	return test_bit(AS_WRITEBACK_MAY_DEADLOCK_ON_RECLAIM, &mapping->flags);
347 }
348 
349 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
350 {
351 	return mapping->gfp_mask;
352 }
353 
354 /* Restricts the given gfp_mask to what the mapping allows. */
355 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
356 		gfp_t gfp_mask)
357 {
358 	return mapping_gfp_mask(mapping) & gfp_mask;
359 }
360 
361 /*
362  * This is non-atomic.  Only to be used before the mapping is activated.
363  * Probably needs a barrier...
364  */
365 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
366 {
367 	m->gfp_mask = mask;
368 }
369 
370 /*
371  * There are some parts of the kernel which assume that PMD entries
372  * are exactly HPAGE_PMD_ORDER.  Those should be fixed, but until then,
373  * limit the maximum allocation order to PMD size.  I'm not aware of any
374  * assumptions about maximum order if THP are disabled, but 8 seems like
375  * a good order (that's 1MB if you're using 4kB pages)
376  */
377 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
378 #define PREFERRED_MAX_PAGECACHE_ORDER	HPAGE_PMD_ORDER
379 #else
380 #define PREFERRED_MAX_PAGECACHE_ORDER	8
381 #endif
382 
383 /*
384  * xas_split_alloc() does not support arbitrary orders. This implies no
385  * 512MB THP on ARM64 with 64KB base page size.
386  */
387 #define MAX_XAS_ORDER		(XA_CHUNK_SHIFT * 2 - 1)
388 #define MAX_PAGECACHE_ORDER	min(MAX_XAS_ORDER, PREFERRED_MAX_PAGECACHE_ORDER)
389 
390 /*
391  * mapping_max_folio_size_supported() - Check the max folio size supported
392  *
393  * The filesystem should call this function at mount time if there is a
394  * requirement on the folio mapping size in the page cache.
395  */
396 static inline size_t mapping_max_folio_size_supported(void)
397 {
398 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
399 		return 1U << (PAGE_SHIFT + MAX_PAGECACHE_ORDER);
400 	return PAGE_SIZE;
401 }
402 
403 /*
404  * mapping_set_folio_order_range() - Set the orders supported by a file.
405  * @mapping: The address space of the file.
406  * @min: Minimum folio order (between 0-MAX_PAGECACHE_ORDER inclusive).
407  * @max: Maximum folio order (between @min-MAX_PAGECACHE_ORDER inclusive).
408  *
409  * The filesystem should call this function in its inode constructor to
410  * indicate which base size (min) and maximum size (max) of folio the VFS
411  * can use to cache the contents of the file.  This should only be used
412  * if the filesystem needs special handling of folio sizes (ie there is
413  * something the core cannot know).
414  * Do not tune it based on, eg, i_size.
415  *
416  * Context: This should not be called while the inode is active as it
417  * is non-atomic.
418  */
419 static inline void mapping_set_folio_order_range(struct address_space *mapping,
420 						 unsigned int min,
421 						 unsigned int max)
422 {
423 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
424 		return;
425 
426 	if (min > MAX_PAGECACHE_ORDER)
427 		min = MAX_PAGECACHE_ORDER;
428 
429 	if (max > MAX_PAGECACHE_ORDER)
430 		max = MAX_PAGECACHE_ORDER;
431 
432 	if (max < min)
433 		max = min;
434 
435 	mapping->flags = (mapping->flags & ~AS_FOLIO_ORDER_MASK) |
436 		(min << AS_FOLIO_ORDER_MIN) | (max << AS_FOLIO_ORDER_MAX);
437 }
438 
439 static inline void mapping_set_folio_min_order(struct address_space *mapping,
440 					       unsigned int min)
441 {
442 	mapping_set_folio_order_range(mapping, min, MAX_PAGECACHE_ORDER);
443 }
444 
445 /**
446  * mapping_set_large_folios() - Indicate the file supports large folios.
447  * @mapping: The address space of the file.
448  *
449  * The filesystem should call this function in its inode constructor to
450  * indicate that the VFS can use large folios to cache the contents of
451  * the file.
452  *
453  * Context: This should not be called while the inode is active as it
454  * is non-atomic.
455  */
456 static inline void mapping_set_large_folios(struct address_space *mapping)
457 {
458 	mapping_set_folio_order_range(mapping, 0, MAX_PAGECACHE_ORDER);
459 }
460 
461 static inline unsigned int
462 mapping_max_folio_order(const struct address_space *mapping)
463 {
464 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
465 		return 0;
466 	return (mapping->flags & AS_FOLIO_ORDER_MAX_MASK) >> AS_FOLIO_ORDER_MAX;
467 }
468 
469 static inline unsigned int
470 mapping_min_folio_order(const struct address_space *mapping)
471 {
472 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
473 		return 0;
474 	return (mapping->flags & AS_FOLIO_ORDER_MIN_MASK) >> AS_FOLIO_ORDER_MIN;
475 }
476 
477 static inline unsigned long
478 mapping_min_folio_nrpages(struct address_space *mapping)
479 {
480 	return 1UL << mapping_min_folio_order(mapping);
481 }
482 
483 /**
484  * mapping_align_index() - Align index for this mapping.
485  * @mapping: The address_space.
486  * @index: The page index.
487  *
488  * The index of a folio must be naturally aligned.  If you are adding a
489  * new folio to the page cache and need to know what index to give it,
490  * call this function.
491  */
492 static inline pgoff_t mapping_align_index(struct address_space *mapping,
493 					  pgoff_t index)
494 {
495 	return round_down(index, mapping_min_folio_nrpages(mapping));
496 }
497 
498 /*
499  * Large folio support currently depends on THP.  These dependencies are
500  * being worked on but are not yet fixed.
501  */
502 static inline bool mapping_large_folio_support(struct address_space *mapping)
503 {
504 	/* AS_FOLIO_ORDER is only reasonable for pagecache folios */
505 	VM_WARN_ONCE((unsigned long)mapping & PAGE_MAPPING_ANON,
506 			"Anonymous mapping always supports large folio");
507 
508 	return mapping_max_folio_order(mapping) > 0;
509 }
510 
511 /* Return the maximum folio size for this pagecache mapping, in bytes. */
512 static inline size_t mapping_max_folio_size(const struct address_space *mapping)
513 {
514 	return PAGE_SIZE << mapping_max_folio_order(mapping);
515 }
516 
517 static inline int filemap_nr_thps(struct address_space *mapping)
518 {
519 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
520 	return atomic_read(&mapping->nr_thps);
521 #else
522 	return 0;
523 #endif
524 }
525 
526 static inline void filemap_nr_thps_inc(struct address_space *mapping)
527 {
528 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
529 	if (!mapping_large_folio_support(mapping))
530 		atomic_inc(&mapping->nr_thps);
531 #else
532 	WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
533 #endif
534 }
535 
536 static inline void filemap_nr_thps_dec(struct address_space *mapping)
537 {
538 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
539 	if (!mapping_large_folio_support(mapping))
540 		atomic_dec(&mapping->nr_thps);
541 #else
542 	WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
543 #endif
544 }
545 
546 struct address_space *folio_mapping(struct folio *);
547 
548 /**
549  * folio_flush_mapping - Find the file mapping this folio belongs to.
550  * @folio: The folio.
551  *
552  * For folios which are in the page cache, return the mapping that this
553  * page belongs to.  Anonymous folios return NULL, even if they're in
554  * the swap cache.  Other kinds of folio also return NULL.
555  *
556  * This is ONLY used by architecture cache flushing code.  If you aren't
557  * writing cache flushing code, you want either folio_mapping() or
558  * folio_file_mapping().
559  */
560 static inline struct address_space *folio_flush_mapping(struct folio *folio)
561 {
562 	if (unlikely(folio_test_swapcache(folio)))
563 		return NULL;
564 
565 	return folio_mapping(folio);
566 }
567 
568 /**
569  * folio_inode - Get the host inode for this folio.
570  * @folio: The folio.
571  *
572  * For folios which are in the page cache, return the inode that this folio
573  * belongs to.
574  *
575  * Do not call this for folios which aren't in the page cache.
576  */
577 static inline struct inode *folio_inode(struct folio *folio)
578 {
579 	return folio->mapping->host;
580 }
581 
582 /**
583  * folio_attach_private - Attach private data to a folio.
584  * @folio: Folio to attach data to.
585  * @data: Data to attach to folio.
586  *
587  * Attaching private data to a folio increments the page's reference count.
588  * The data must be detached before the folio will be freed.
589  */
590 static inline void folio_attach_private(struct folio *folio, void *data)
591 {
592 	folio_get(folio);
593 	folio->private = data;
594 	folio_set_private(folio);
595 }
596 
597 /**
598  * folio_change_private - Change private data on a folio.
599  * @folio: Folio to change the data on.
600  * @data: Data to set on the folio.
601  *
602  * Change the private data attached to a folio and return the old
603  * data.  The page must previously have had data attached and the data
604  * must be detached before the folio will be freed.
605  *
606  * Return: Data that was previously attached to the folio.
607  */
608 static inline void *folio_change_private(struct folio *folio, void *data)
609 {
610 	void *old = folio_get_private(folio);
611 
612 	folio->private = data;
613 	return old;
614 }
615 
616 /**
617  * folio_detach_private - Detach private data from a folio.
618  * @folio: Folio to detach data from.
619  *
620  * Removes the data that was previously attached to the folio and decrements
621  * the refcount on the page.
622  *
623  * Return: Data that was attached to the folio.
624  */
625 static inline void *folio_detach_private(struct folio *folio)
626 {
627 	void *data = folio_get_private(folio);
628 
629 	if (!folio_test_private(folio))
630 		return NULL;
631 	folio_clear_private(folio);
632 	folio->private = NULL;
633 	folio_put(folio);
634 
635 	return data;
636 }
637 
638 static inline void attach_page_private(struct page *page, void *data)
639 {
640 	folio_attach_private(page_folio(page), data);
641 }
642 
643 static inline void *detach_page_private(struct page *page)
644 {
645 	return folio_detach_private(page_folio(page));
646 }
647 
648 #ifdef CONFIG_NUMA
649 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order);
650 #else
651 static inline struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
652 {
653 	return folio_alloc_noprof(gfp, order);
654 }
655 #endif
656 
657 #define filemap_alloc_folio(...)				\
658 	alloc_hooks(filemap_alloc_folio_noprof(__VA_ARGS__))
659 
660 static inline struct page *__page_cache_alloc(gfp_t gfp)
661 {
662 	return &filemap_alloc_folio(gfp, 0)->page;
663 }
664 
665 static inline gfp_t readahead_gfp_mask(struct address_space *x)
666 {
667 	return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
668 }
669 
670 typedef int filler_t(struct file *, struct folio *);
671 
672 pgoff_t page_cache_next_miss(struct address_space *mapping,
673 			     pgoff_t index, unsigned long max_scan);
674 pgoff_t page_cache_prev_miss(struct address_space *mapping,
675 			     pgoff_t index, unsigned long max_scan);
676 
677 /**
678  * typedef fgf_t - Flags for getting folios from the page cache.
679  *
680  * Most users of the page cache will not need to use these flags;
681  * there are convenience functions such as filemap_get_folio() and
682  * filemap_lock_folio().  For users which need more control over exactly
683  * what is done with the folios, these flags to __filemap_get_folio()
684  * are available.
685  *
686  * * %FGP_ACCESSED - The folio will be marked accessed.
687  * * %FGP_LOCK - The folio is returned locked.
688  * * %FGP_CREAT - If no folio is present then a new folio is allocated,
689  *   added to the page cache and the VM's LRU list.  The folio is
690  *   returned locked.
691  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
692  *   folio is already in cache.  If the folio was allocated, unlock it
693  *   before returning so the caller can do the same dance.
694  * * %FGP_WRITE - The folio will be written to by the caller.
695  * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
696  * * %FGP_NOWAIT - Don't block on the folio lock.
697  * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
698  * * %FGP_DONTCACHE - Uncached buffered IO
699  * * %FGP_WRITEBEGIN - The flags to use in a filesystem write_begin()
700  *   implementation.
701  */
702 typedef unsigned int __bitwise fgf_t;
703 
704 #define FGP_ACCESSED		((__force fgf_t)0x00000001)
705 #define FGP_LOCK		((__force fgf_t)0x00000002)
706 #define FGP_CREAT		((__force fgf_t)0x00000004)
707 #define FGP_WRITE		((__force fgf_t)0x00000008)
708 #define FGP_NOFS		((__force fgf_t)0x00000010)
709 #define FGP_NOWAIT		((__force fgf_t)0x00000020)
710 #define FGP_FOR_MMAP		((__force fgf_t)0x00000040)
711 #define FGP_STABLE		((__force fgf_t)0x00000080)
712 #define FGP_DONTCACHE		((__force fgf_t)0x00000100)
713 #define FGF_GET_ORDER(fgf)	(((__force unsigned)fgf) >> 26)	/* top 6 bits */
714 
715 #define FGP_WRITEBEGIN		(FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE)
716 
717 static inline unsigned int filemap_get_order(size_t size)
718 {
719 	unsigned int shift = ilog2(size);
720 
721 	if (shift <= PAGE_SHIFT)
722 		return 0;
723 
724 	return shift - PAGE_SHIFT;
725 }
726 
727 /**
728  * fgf_set_order - Encode a length in the fgf_t flags.
729  * @size: The suggested size of the folio to create.
730  *
731  * The caller of __filemap_get_folio() can use this to suggest a preferred
732  * size for the folio that is created.  If there is already a folio at
733  * the index, it will be returned, no matter what its size.  If a folio
734  * is freshly created, it may be of a different size than requested
735  * due to alignment constraints, memory pressure, or the presence of
736  * other folios at nearby indices.
737  */
738 static inline fgf_t fgf_set_order(size_t size)
739 {
740 	unsigned int order = filemap_get_order(size);
741 
742 	if (!order)
743 		return 0;
744 	return (__force fgf_t)(order << 26);
745 }
746 
747 void *filemap_get_entry(struct address_space *mapping, pgoff_t index);
748 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
749 		fgf_t fgp_flags, gfp_t gfp);
750 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
751 		fgf_t fgp_flags, gfp_t gfp);
752 
753 /**
754  * filemap_get_folio - Find and get a folio.
755  * @mapping: The address_space to search.
756  * @index: The page index.
757  *
758  * Looks up the page cache entry at @mapping & @index.  If a folio is
759  * present, it is returned with an increased refcount.
760  *
761  * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
762  * this index.  Will not return a shadow, swap or DAX entry.
763  */
764 static inline struct folio *filemap_get_folio(struct address_space *mapping,
765 					pgoff_t index)
766 {
767 	return __filemap_get_folio(mapping, index, 0, 0);
768 }
769 
770 /**
771  * filemap_lock_folio - Find and lock a folio.
772  * @mapping: The address_space to search.
773  * @index: The page index.
774  *
775  * Looks up the page cache entry at @mapping & @index.  If a folio is
776  * present, it is returned locked with an increased refcount.
777  *
778  * Context: May sleep.
779  * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
780  * this index.  Will not return a shadow, swap or DAX entry.
781  */
782 static inline struct folio *filemap_lock_folio(struct address_space *mapping,
783 					pgoff_t index)
784 {
785 	return __filemap_get_folio(mapping, index, FGP_LOCK, 0);
786 }
787 
788 /**
789  * filemap_grab_folio - grab a folio from the page cache
790  * @mapping: The address space to search
791  * @index: The page index
792  *
793  * Looks up the page cache entry at @mapping & @index. If no folio is found,
794  * a new folio is created. The folio is locked, marked as accessed, and
795  * returned.
796  *
797  * Return: A found or created folio. ERR_PTR(-ENOMEM) if no folio is found
798  * and failed to create a folio.
799  */
800 static inline struct folio *filemap_grab_folio(struct address_space *mapping,
801 					pgoff_t index)
802 {
803 	return __filemap_get_folio(mapping, index,
804 			FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
805 			mapping_gfp_mask(mapping));
806 }
807 
808 /**
809  * find_get_page - find and get a page reference
810  * @mapping: the address_space to search
811  * @offset: the page index
812  *
813  * Looks up the page cache slot at @mapping & @offset.  If there is a
814  * page cache page, it is returned with an increased refcount.
815  *
816  * Otherwise, %NULL is returned.
817  */
818 static inline struct page *find_get_page(struct address_space *mapping,
819 					pgoff_t offset)
820 {
821 	return pagecache_get_page(mapping, offset, 0, 0);
822 }
823 
824 static inline struct page *find_get_page_flags(struct address_space *mapping,
825 					pgoff_t offset, fgf_t fgp_flags)
826 {
827 	return pagecache_get_page(mapping, offset, fgp_flags, 0);
828 }
829 
830 /**
831  * find_lock_page - locate, pin and lock a pagecache page
832  * @mapping: the address_space to search
833  * @index: the page index
834  *
835  * Looks up the page cache entry at @mapping & @index.  If there is a
836  * page cache page, it is returned locked and with an increased
837  * refcount.
838  *
839  * Context: May sleep.
840  * Return: A struct page or %NULL if there is no page in the cache for this
841  * index.
842  */
843 static inline struct page *find_lock_page(struct address_space *mapping,
844 					pgoff_t index)
845 {
846 	return pagecache_get_page(mapping, index, FGP_LOCK, 0);
847 }
848 
849 /**
850  * find_or_create_page - locate or add a pagecache page
851  * @mapping: the page's address_space
852  * @index: the page's index into the mapping
853  * @gfp_mask: page allocation mode
854  *
855  * Looks up the page cache slot at @mapping & @offset.  If there is a
856  * page cache page, it is returned locked and with an increased
857  * refcount.
858  *
859  * If the page is not present, a new page is allocated using @gfp_mask
860  * and added to the page cache and the VM's LRU list.  The page is
861  * returned locked and with an increased refcount.
862  *
863  * On memory exhaustion, %NULL is returned.
864  *
865  * find_or_create_page() may sleep, even if @gfp_flags specifies an
866  * atomic allocation!
867  */
868 static inline struct page *find_or_create_page(struct address_space *mapping,
869 					pgoff_t index, gfp_t gfp_mask)
870 {
871 	return pagecache_get_page(mapping, index,
872 					FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
873 					gfp_mask);
874 }
875 
876 /**
877  * grab_cache_page_nowait - returns locked page at given index in given cache
878  * @mapping: target address_space
879  * @index: the page index
880  *
881  * Same as grab_cache_page(), but do not wait if the page is unavailable.
882  * This is intended for speculative data generators, where the data can
883  * be regenerated if the page couldn't be grabbed.  This routine should
884  * be safe to call while holding the lock for another page.
885  *
886  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
887  * and deadlock against the caller's locked page.
888  */
889 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
890 				pgoff_t index)
891 {
892 	return pagecache_get_page(mapping, index,
893 			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
894 			mapping_gfp_mask(mapping));
895 }
896 
897 /**
898  * folio_next_index - Get the index of the next folio.
899  * @folio: The current folio.
900  *
901  * Return: The index of the folio which follows this folio in the file.
902  */
903 static inline pgoff_t folio_next_index(struct folio *folio)
904 {
905 	return folio->index + folio_nr_pages(folio);
906 }
907 
908 /**
909  * folio_file_page - The page for a particular index.
910  * @folio: The folio which contains this index.
911  * @index: The index we want to look up.
912  *
913  * Sometimes after looking up a folio in the page cache, we need to
914  * obtain the specific page for an index (eg a page fault).
915  *
916  * Return: The page containing the file data for this index.
917  */
918 static inline struct page *folio_file_page(struct folio *folio, pgoff_t index)
919 {
920 	return folio_page(folio, index & (folio_nr_pages(folio) - 1));
921 }
922 
923 /**
924  * folio_contains - Does this folio contain this index?
925  * @folio: The folio.
926  * @index: The page index within the file.
927  *
928  * Context: The caller should have the folio locked and ensure
929  * e.g., shmem did not move this folio to the swap cache.
930  * Return: true or false.
931  */
932 static inline bool folio_contains(struct folio *folio, pgoff_t index)
933 {
934 	VM_WARN_ON_ONCE_FOLIO(folio_test_swapcache(folio), folio);
935 	return index - folio->index < folio_nr_pages(folio);
936 }
937 
938 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
939 		pgoff_t end, struct folio_batch *fbatch);
940 unsigned filemap_get_folios_contig(struct address_space *mapping,
941 		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch);
942 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
943 		pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch);
944 
945 /*
946  * Returns locked page at given index in given cache, creating it if needed.
947  */
948 static inline struct page *grab_cache_page(struct address_space *mapping,
949 								pgoff_t index)
950 {
951 	return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
952 }
953 
954 struct folio *read_cache_folio(struct address_space *, pgoff_t index,
955 		filler_t *filler, struct file *file);
956 struct folio *mapping_read_folio_gfp(struct address_space *, pgoff_t index,
957 		gfp_t flags);
958 struct page *read_cache_page(struct address_space *, pgoff_t index,
959 		filler_t *filler, struct file *file);
960 extern struct page * read_cache_page_gfp(struct address_space *mapping,
961 				pgoff_t index, gfp_t gfp_mask);
962 
963 static inline struct page *read_mapping_page(struct address_space *mapping,
964 				pgoff_t index, struct file *file)
965 {
966 	return read_cache_page(mapping, index, NULL, file);
967 }
968 
969 static inline struct folio *read_mapping_folio(struct address_space *mapping,
970 				pgoff_t index, struct file *file)
971 {
972 	return read_cache_folio(mapping, index, NULL, file);
973 }
974 
975 /**
976  * page_pgoff - Calculate the logical page offset of this page.
977  * @folio: The folio containing this page.
978  * @page: The page which we need the offset of.
979  *
980  * For file pages, this is the offset from the beginning of the file
981  * in units of PAGE_SIZE.  For anonymous pages, this is the offset from
982  * the beginning of the anon_vma in units of PAGE_SIZE.  This will
983  * return nonsense for KSM pages.
984  *
985  * Context: Caller must have a reference on the folio or otherwise
986  * prevent it from being split or freed.
987  *
988  * Return: The offset in units of PAGE_SIZE.
989  */
990 static inline pgoff_t page_pgoff(const struct folio *folio,
991 		const struct page *page)
992 {
993 	return folio->index + folio_page_idx(folio, page);
994 }
995 
996 /**
997  * folio_pos - Returns the byte position of this folio in its file.
998  * @folio: The folio.
999  */
1000 static inline loff_t folio_pos(const struct folio *folio)
1001 {
1002 	return ((loff_t)folio->index) * PAGE_SIZE;
1003 }
1004 
1005 /*
1006  * Return byte-offset into filesystem object for page.
1007  */
1008 static inline loff_t page_offset(struct page *page)
1009 {
1010 	struct folio *folio = page_folio(page);
1011 
1012 	return folio_pos(folio) + folio_page_idx(folio, page) * PAGE_SIZE;
1013 }
1014 
1015 /*
1016  * Get the offset in PAGE_SIZE (even for hugetlb folios).
1017  */
1018 static inline pgoff_t folio_pgoff(struct folio *folio)
1019 {
1020 	return folio->index;
1021 }
1022 
1023 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
1024 					unsigned long address)
1025 {
1026 	pgoff_t pgoff;
1027 	pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
1028 	pgoff += vma->vm_pgoff;
1029 	return pgoff;
1030 }
1031 
1032 struct wait_page_key {
1033 	struct folio *folio;
1034 	int bit_nr;
1035 	int page_match;
1036 };
1037 
1038 struct wait_page_queue {
1039 	struct folio *folio;
1040 	int bit_nr;
1041 	wait_queue_entry_t wait;
1042 };
1043 
1044 static inline bool wake_page_match(struct wait_page_queue *wait_page,
1045 				  struct wait_page_key *key)
1046 {
1047 	if (wait_page->folio != key->folio)
1048 	       return false;
1049 	key->page_match = 1;
1050 
1051 	if (wait_page->bit_nr != key->bit_nr)
1052 		return false;
1053 
1054 	return true;
1055 }
1056 
1057 void __folio_lock(struct folio *folio);
1058 int __folio_lock_killable(struct folio *folio);
1059 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf);
1060 void unlock_page(struct page *page);
1061 void folio_unlock(struct folio *folio);
1062 
1063 /**
1064  * folio_trylock() - Attempt to lock a folio.
1065  * @folio: The folio to attempt to lock.
1066  *
1067  * Sometimes it is undesirable to wait for a folio to be unlocked (eg
1068  * when the locks are being taken in the wrong order, or if making
1069  * progress through a batch of folios is more important than processing
1070  * them in order).  Usually folio_lock() is the correct function to call.
1071  *
1072  * Context: Any context.
1073  * Return: Whether the lock was successfully acquired.
1074  */
1075 static inline bool folio_trylock(struct folio *folio)
1076 {
1077 	return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0)));
1078 }
1079 
1080 /*
1081  * Return true if the page was successfully locked
1082  */
1083 static inline bool trylock_page(struct page *page)
1084 {
1085 	return folio_trylock(page_folio(page));
1086 }
1087 
1088 /**
1089  * folio_lock() - Lock this folio.
1090  * @folio: The folio to lock.
1091  *
1092  * The folio lock protects against many things, probably more than it
1093  * should.  It is primarily held while a folio is being brought uptodate,
1094  * either from its backing file or from swap.  It is also held while a
1095  * folio is being truncated from its address_space, so holding the lock
1096  * is sufficient to keep folio->mapping stable.
1097  *
1098  * The folio lock is also held while write() is modifying the page to
1099  * provide POSIX atomicity guarantees (as long as the write does not
1100  * cross a page boundary).  Other modifications to the data in the folio
1101  * do not hold the folio lock and can race with writes, eg DMA and stores
1102  * to mapped pages.
1103  *
1104  * Context: May sleep.  If you need to acquire the locks of two or
1105  * more folios, they must be in order of ascending index, if they are
1106  * in the same address_space.  If they are in different address_spaces,
1107  * acquire the lock of the folio which belongs to the address_space which
1108  * has the lowest address in memory first.
1109  */
1110 static inline void folio_lock(struct folio *folio)
1111 {
1112 	might_sleep();
1113 	if (!folio_trylock(folio))
1114 		__folio_lock(folio);
1115 }
1116 
1117 /**
1118  * lock_page() - Lock the folio containing this page.
1119  * @page: The page to lock.
1120  *
1121  * See folio_lock() for a description of what the lock protects.
1122  * This is a legacy function and new code should probably use folio_lock()
1123  * instead.
1124  *
1125  * Context: May sleep.  Pages in the same folio share a lock, so do not
1126  * attempt to lock two pages which share a folio.
1127  */
1128 static inline void lock_page(struct page *page)
1129 {
1130 	struct folio *folio;
1131 	might_sleep();
1132 
1133 	folio = page_folio(page);
1134 	if (!folio_trylock(folio))
1135 		__folio_lock(folio);
1136 }
1137 
1138 /**
1139  * folio_lock_killable() - Lock this folio, interruptible by a fatal signal.
1140  * @folio: The folio to lock.
1141  *
1142  * Attempts to lock the folio, like folio_lock(), except that the sleep
1143  * to acquire the lock is interruptible by a fatal signal.
1144  *
1145  * Context: May sleep; see folio_lock().
1146  * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received.
1147  */
1148 static inline int folio_lock_killable(struct folio *folio)
1149 {
1150 	might_sleep();
1151 	if (!folio_trylock(folio))
1152 		return __folio_lock_killable(folio);
1153 	return 0;
1154 }
1155 
1156 /*
1157  * folio_lock_or_retry - Lock the folio, unless this would block and the
1158  * caller indicated that it can handle a retry.
1159  *
1160  * Return value and mmap_lock implications depend on flags; see
1161  * __folio_lock_or_retry().
1162  */
1163 static inline vm_fault_t folio_lock_or_retry(struct folio *folio,
1164 					     struct vm_fault *vmf)
1165 {
1166 	might_sleep();
1167 	if (!folio_trylock(folio))
1168 		return __folio_lock_or_retry(folio, vmf);
1169 	return 0;
1170 }
1171 
1172 /*
1173  * This is exported only for folio_wait_locked/folio_wait_writeback, etc.,
1174  * and should not be used directly.
1175  */
1176 void folio_wait_bit(struct folio *folio, int bit_nr);
1177 int folio_wait_bit_killable(struct folio *folio, int bit_nr);
1178 
1179 /*
1180  * Wait for a folio to be unlocked.
1181  *
1182  * This must be called with the caller "holding" the folio,
1183  * ie with increased folio reference count so that the folio won't
1184  * go away during the wait.
1185  */
1186 static inline void folio_wait_locked(struct folio *folio)
1187 {
1188 	if (folio_test_locked(folio))
1189 		folio_wait_bit(folio, PG_locked);
1190 }
1191 
1192 static inline int folio_wait_locked_killable(struct folio *folio)
1193 {
1194 	if (!folio_test_locked(folio))
1195 		return 0;
1196 	return folio_wait_bit_killable(folio, PG_locked);
1197 }
1198 
1199 void folio_end_read(struct folio *folio, bool success);
1200 void wait_on_page_writeback(struct page *page);
1201 void folio_wait_writeback(struct folio *folio);
1202 int folio_wait_writeback_killable(struct folio *folio);
1203 void end_page_writeback(struct page *page);
1204 void folio_end_writeback(struct folio *folio);
1205 void folio_wait_stable(struct folio *folio);
1206 void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn);
1207 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb);
1208 void __folio_cancel_dirty(struct folio *folio);
1209 static inline void folio_cancel_dirty(struct folio *folio)
1210 {
1211 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1212 	if (folio_test_dirty(folio))
1213 		__folio_cancel_dirty(folio);
1214 }
1215 bool folio_clear_dirty_for_io(struct folio *folio);
1216 bool clear_page_dirty_for_io(struct page *page);
1217 void folio_invalidate(struct folio *folio, size_t offset, size_t length);
1218 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio);
1219 
1220 #ifdef CONFIG_MIGRATION
1221 int filemap_migrate_folio(struct address_space *mapping, struct folio *dst,
1222 		struct folio *src, enum migrate_mode mode);
1223 #else
1224 #define filemap_migrate_folio NULL
1225 #endif
1226 void folio_end_private_2(struct folio *folio);
1227 void folio_wait_private_2(struct folio *folio);
1228 int folio_wait_private_2_killable(struct folio *folio);
1229 
1230 /*
1231  * Fault in userspace address range.
1232  */
1233 size_t fault_in_writeable(char __user *uaddr, size_t size);
1234 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size);
1235 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size);
1236 size_t fault_in_readable(const char __user *uaddr, size_t size);
1237 
1238 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
1239 		pgoff_t index, gfp_t gfp);
1240 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
1241 		pgoff_t index, gfp_t gfp);
1242 void filemap_remove_folio(struct folio *folio);
1243 void __filemap_remove_folio(struct folio *folio, void *shadow);
1244 void replace_page_cache_folio(struct folio *old, struct folio *new);
1245 void delete_from_page_cache_batch(struct address_space *mapping,
1246 				  struct folio_batch *fbatch);
1247 bool filemap_release_folio(struct folio *folio, gfp_t gfp);
1248 loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
1249 		int whence);
1250 
1251 /* Must be non-static for BPF error injection */
1252 int __filemap_add_folio(struct address_space *mapping, struct folio *folio,
1253 		pgoff_t index, gfp_t gfp, void **shadowp);
1254 
1255 bool filemap_range_has_writeback(struct address_space *mapping,
1256 				 loff_t start_byte, loff_t end_byte);
1257 
1258 /**
1259  * filemap_range_needs_writeback - check if range potentially needs writeback
1260  * @mapping:           address space within which to check
1261  * @start_byte:        offset in bytes where the range starts
1262  * @end_byte:          offset in bytes where the range ends (inclusive)
1263  *
1264  * Find at least one page in the range supplied, usually used to check if
1265  * direct writing in this range will trigger a writeback. Used by O_DIRECT
1266  * read/write with IOCB_NOWAIT, to see if the caller needs to do
1267  * filemap_write_and_wait_range() before proceeding.
1268  *
1269  * Return: %true if the caller should do filemap_write_and_wait_range() before
1270  * doing O_DIRECT to a page in this range, %false otherwise.
1271  */
1272 static inline bool filemap_range_needs_writeback(struct address_space *mapping,
1273 						 loff_t start_byte,
1274 						 loff_t end_byte)
1275 {
1276 	if (!mapping->nrpages)
1277 		return false;
1278 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
1279 	    !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
1280 		return false;
1281 	return filemap_range_has_writeback(mapping, start_byte, end_byte);
1282 }
1283 
1284 /**
1285  * struct readahead_control - Describes a readahead request.
1286  *
1287  * A readahead request is for consecutive pages.  Filesystems which
1288  * implement the ->readahead method should call readahead_folio() or
1289  * __readahead_batch() in a loop and attempt to start reads into each
1290  * folio in the request.
1291  *
1292  * Most of the fields in this struct are private and should be accessed
1293  * by the functions below.
1294  *
1295  * @file: The file, used primarily by network filesystems for authentication.
1296  *	  May be NULL if invoked internally by the filesystem.
1297  * @mapping: Readahead this filesystem object.
1298  * @ra: File readahead state.  May be NULL.
1299  */
1300 struct readahead_control {
1301 	struct file *file;
1302 	struct address_space *mapping;
1303 	struct file_ra_state *ra;
1304 /* private: use the readahead_* accessors instead */
1305 	pgoff_t _index;
1306 	unsigned int _nr_pages;
1307 	unsigned int _batch_count;
1308 	bool dropbehind;
1309 	bool _workingset;
1310 	unsigned long _pflags;
1311 };
1312 
1313 #define DEFINE_READAHEAD(ractl, f, r, m, i)				\
1314 	struct readahead_control ractl = {				\
1315 		.file = f,						\
1316 		.mapping = m,						\
1317 		.ra = r,						\
1318 		._index = i,						\
1319 	}
1320 
1321 #define VM_READAHEAD_PAGES	(SZ_128K / PAGE_SIZE)
1322 
1323 void page_cache_ra_unbounded(struct readahead_control *,
1324 		unsigned long nr_to_read, unsigned long lookahead_count);
1325 void page_cache_sync_ra(struct readahead_control *, unsigned long req_count);
1326 void page_cache_async_ra(struct readahead_control *, struct folio *,
1327 		unsigned long req_count);
1328 void readahead_expand(struct readahead_control *ractl,
1329 		      loff_t new_start, size_t new_len);
1330 
1331 /**
1332  * page_cache_sync_readahead - generic file readahead
1333  * @mapping: address_space which holds the pagecache and I/O vectors
1334  * @ra: file_ra_state which holds the readahead state
1335  * @file: Used by the filesystem for authentication.
1336  * @index: Index of first page to be read.
1337  * @req_count: Total number of pages being read by the caller.
1338  *
1339  * page_cache_sync_readahead() should be called when a cache miss happened:
1340  * it will submit the read.  The readahead logic may decide to piggyback more
1341  * pages onto the read request if access patterns suggest it will improve
1342  * performance.
1343  */
1344 static inline
1345 void page_cache_sync_readahead(struct address_space *mapping,
1346 		struct file_ra_state *ra, struct file *file, pgoff_t index,
1347 		unsigned long req_count)
1348 {
1349 	DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1350 	page_cache_sync_ra(&ractl, req_count);
1351 }
1352 
1353 /**
1354  * page_cache_async_readahead - file readahead for marked pages
1355  * @mapping: address_space which holds the pagecache and I/O vectors
1356  * @ra: file_ra_state which holds the readahead state
1357  * @file: Used by the filesystem for authentication.
1358  * @folio: The folio which triggered the readahead call.
1359  * @req_count: Total number of pages being read by the caller.
1360  *
1361  * page_cache_async_readahead() should be called when a page is used which
1362  * is marked as PageReadahead; this is a marker to suggest that the application
1363  * has used up enough of the readahead window that we should start pulling in
1364  * more pages.
1365  */
1366 static inline
1367 void page_cache_async_readahead(struct address_space *mapping,
1368 		struct file_ra_state *ra, struct file *file,
1369 		struct folio *folio, unsigned long req_count)
1370 {
1371 	DEFINE_READAHEAD(ractl, file, ra, mapping, folio->index);
1372 	page_cache_async_ra(&ractl, folio, req_count);
1373 }
1374 
1375 static inline struct folio *__readahead_folio(struct readahead_control *ractl)
1376 {
1377 	struct folio *folio;
1378 
1379 	BUG_ON(ractl->_batch_count > ractl->_nr_pages);
1380 	ractl->_nr_pages -= ractl->_batch_count;
1381 	ractl->_index += ractl->_batch_count;
1382 
1383 	if (!ractl->_nr_pages) {
1384 		ractl->_batch_count = 0;
1385 		return NULL;
1386 	}
1387 
1388 	folio = xa_load(&ractl->mapping->i_pages, ractl->_index);
1389 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1390 	ractl->_batch_count = folio_nr_pages(folio);
1391 
1392 	return folio;
1393 }
1394 
1395 /**
1396  * readahead_folio - Get the next folio to read.
1397  * @ractl: The current readahead request.
1398  *
1399  * Context: The folio is locked.  The caller should unlock the folio once
1400  * all I/O to that folio has completed.
1401  * Return: A pointer to the next folio, or %NULL if we are done.
1402  */
1403 static inline struct folio *readahead_folio(struct readahead_control *ractl)
1404 {
1405 	struct folio *folio = __readahead_folio(ractl);
1406 
1407 	if (folio)
1408 		folio_put(folio);
1409 	return folio;
1410 }
1411 
1412 static inline unsigned int __readahead_batch(struct readahead_control *rac,
1413 		struct page **array, unsigned int array_sz)
1414 {
1415 	unsigned int i = 0;
1416 	XA_STATE(xas, &rac->mapping->i_pages, 0);
1417 	struct folio *folio;
1418 
1419 	BUG_ON(rac->_batch_count > rac->_nr_pages);
1420 	rac->_nr_pages -= rac->_batch_count;
1421 	rac->_index += rac->_batch_count;
1422 	rac->_batch_count = 0;
1423 
1424 	xas_set(&xas, rac->_index);
1425 	rcu_read_lock();
1426 	xas_for_each(&xas, folio, rac->_index + rac->_nr_pages - 1) {
1427 		if (xas_retry(&xas, folio))
1428 			continue;
1429 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1430 		array[i++] = folio_page(folio, 0);
1431 		rac->_batch_count += folio_nr_pages(folio);
1432 		if (i == array_sz)
1433 			break;
1434 	}
1435 	rcu_read_unlock();
1436 
1437 	return i;
1438 }
1439 
1440 /**
1441  * readahead_pos - The byte offset into the file of this readahead request.
1442  * @rac: The readahead request.
1443  */
1444 static inline loff_t readahead_pos(struct readahead_control *rac)
1445 {
1446 	return (loff_t)rac->_index * PAGE_SIZE;
1447 }
1448 
1449 /**
1450  * readahead_length - The number of bytes in this readahead request.
1451  * @rac: The readahead request.
1452  */
1453 static inline size_t readahead_length(struct readahead_control *rac)
1454 {
1455 	return rac->_nr_pages * PAGE_SIZE;
1456 }
1457 
1458 /**
1459  * readahead_index - The index of the first page in this readahead request.
1460  * @rac: The readahead request.
1461  */
1462 static inline pgoff_t readahead_index(struct readahead_control *rac)
1463 {
1464 	return rac->_index;
1465 }
1466 
1467 /**
1468  * readahead_count - The number of pages in this readahead request.
1469  * @rac: The readahead request.
1470  */
1471 static inline unsigned int readahead_count(struct readahead_control *rac)
1472 {
1473 	return rac->_nr_pages;
1474 }
1475 
1476 /**
1477  * readahead_batch_length - The number of bytes in the current batch.
1478  * @rac: The readahead request.
1479  */
1480 static inline size_t readahead_batch_length(struct readahead_control *rac)
1481 {
1482 	return rac->_batch_count * PAGE_SIZE;
1483 }
1484 
1485 static inline unsigned long dir_pages(struct inode *inode)
1486 {
1487 	return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
1488 			       PAGE_SHIFT;
1489 }
1490 
1491 /**
1492  * folio_mkwrite_check_truncate - check if folio was truncated
1493  * @folio: the folio to check
1494  * @inode: the inode to check the folio against
1495  *
1496  * Return: the number of bytes in the folio up to EOF,
1497  * or -EFAULT if the folio was truncated.
1498  */
1499 static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio,
1500 					      struct inode *inode)
1501 {
1502 	loff_t size = i_size_read(inode);
1503 	pgoff_t index = size >> PAGE_SHIFT;
1504 	size_t offset = offset_in_folio(folio, size);
1505 
1506 	if (!folio->mapping)
1507 		return -EFAULT;
1508 
1509 	/* folio is wholly inside EOF */
1510 	if (folio_next_index(folio) - 1 < index)
1511 		return folio_size(folio);
1512 	/* folio is wholly past EOF */
1513 	if (folio->index > index || !offset)
1514 		return -EFAULT;
1515 	/* folio is partially inside EOF */
1516 	return offset;
1517 }
1518 
1519 /**
1520  * i_blocks_per_folio - How many blocks fit in this folio.
1521  * @inode: The inode which contains the blocks.
1522  * @folio: The folio.
1523  *
1524  * If the block size is larger than the size of this folio, return zero.
1525  *
1526  * Context: The caller should hold a refcount on the folio to prevent it
1527  * from being split.
1528  * Return: The number of filesystem blocks covered by this folio.
1529  */
1530 static inline
1531 unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio)
1532 {
1533 	return folio_size(folio) >> inode->i_blkbits;
1534 }
1535 #endif /* _LINUX_PAGEMAP_H */
1536