1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/sched/mm.h> 10 #include <linux/spinlock.h> 11 #include <linux/blkdev.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/prefetch.h> 16 #include <linux/fsverity.h> 17 #include "extent_io.h" 18 #include "extent-io-tree.h" 19 #include "extent_map.h" 20 #include "ctree.h" 21 #include "btrfs_inode.h" 22 #include "bio.h" 23 #include "locking.h" 24 #include "backref.h" 25 #include "disk-io.h" 26 #include "subpage.h" 27 #include "zoned.h" 28 #include "block-group.h" 29 #include "compression.h" 30 #include "fs.h" 31 #include "accessors.h" 32 #include "file-item.h" 33 #include "file.h" 34 #include "dev-replace.h" 35 #include "super.h" 36 #include "transaction.h" 37 38 static struct kmem_cache *extent_buffer_cache; 39 40 #ifdef CONFIG_BTRFS_DEBUG 41 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb) 42 { 43 struct btrfs_fs_info *fs_info = eb->fs_info; 44 unsigned long flags; 45 46 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 47 list_add(&eb->leak_list, &fs_info->allocated_ebs); 48 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 49 } 50 51 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb) 52 { 53 struct btrfs_fs_info *fs_info = eb->fs_info; 54 unsigned long flags; 55 56 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 57 list_del(&eb->leak_list); 58 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 59 } 60 61 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 62 { 63 struct extent_buffer *eb; 64 unsigned long flags; 65 66 /* 67 * If we didn't get into open_ctree our allocated_ebs will not be 68 * initialized, so just skip this. 69 */ 70 if (!fs_info->allocated_ebs.next) 71 return; 72 73 WARN_ON(!list_empty(&fs_info->allocated_ebs)); 74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 75 while (!list_empty(&fs_info->allocated_ebs)) { 76 eb = list_first_entry(&fs_info->allocated_ebs, 77 struct extent_buffer, leak_list); 78 btrfs_err(fs_info, 79 "buffer leak start %llu len %u refs %d bflags %lu owner %llu", 80 eb->start, eb->len, refcount_read(&eb->refs), eb->bflags, 81 btrfs_header_owner(eb)); 82 list_del(&eb->leak_list); 83 WARN_ON_ONCE(1); 84 kmem_cache_free(extent_buffer_cache, eb); 85 } 86 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 87 } 88 #else 89 #define btrfs_leak_debug_add_eb(eb) do {} while (0) 90 #define btrfs_leak_debug_del_eb(eb) do {} while (0) 91 #endif 92 93 /* 94 * Structure to record info about the bio being assembled, and other info like 95 * how many bytes are there before stripe/ordered extent boundary. 96 */ 97 struct btrfs_bio_ctrl { 98 struct btrfs_bio *bbio; 99 /* Last byte contained in bbio + 1 . */ 100 loff_t next_file_offset; 101 enum btrfs_compression_type compress_type; 102 u32 len_to_oe_boundary; 103 blk_opf_t opf; 104 /* 105 * For data read bios, we attempt to optimize csum lookups if the extent 106 * generation is older than the current one. To make this possible, we 107 * need to track the maximum generation of an extent in a bio_ctrl to 108 * make the decision when submitting the bio. 109 * 110 * The pattern between do_readpage(), submit_one_bio() and 111 * submit_extent_folio() is quite subtle, so tracking this is tricky. 112 * 113 * As we process extent E, we might submit a bio with existing built up 114 * extents before adding E to a new bio, or we might just add E to the 115 * bio. As a result, E's generation could apply to the current bio or 116 * to the next one, so we need to be careful to update the bio_ctrl's 117 * generation with E's only when we are sure E is added to bio_ctrl->bbio 118 * in submit_extent_folio(). 119 * 120 * See the comment in btrfs_lookup_bio_sums() for more detail on the 121 * need for this optimization. 122 */ 123 u64 generation; 124 btrfs_bio_end_io_t end_io_func; 125 struct writeback_control *wbc; 126 127 /* 128 * The sectors of the page which are going to be submitted by 129 * extent_writepage_io(). 130 * This is to avoid touching ranges covered by compression/inline. 131 */ 132 unsigned long submit_bitmap; 133 struct readahead_control *ractl; 134 135 /* 136 * The start offset of the last used extent map by a read operation. 137 * 138 * This is for proper compressed read merge. 139 * U64_MAX means we are starting the read and have made no progress yet. 140 * 141 * The current btrfs_bio_is_contig() only uses disk_bytenr as 142 * the condition to check if the read can be merged with previous 143 * bio, which is not correct. E.g. two file extents pointing to the 144 * same extent but with different offset. 145 * 146 * So here we need to do extra checks to only merge reads that are 147 * covered by the same extent map. 148 * Just extent_map::start will be enough, as they are unique 149 * inside the same inode. 150 */ 151 u64 last_em_start; 152 }; 153 154 /* 155 * Helper to set the csum search commit root option for a bio_ctrl's bbio 156 * before submitting the bio. 157 * 158 * Only for use by submit_one_bio(). 159 */ 160 static void bio_set_csum_search_commit_root(struct btrfs_bio_ctrl *bio_ctrl) 161 { 162 struct btrfs_bio *bbio = bio_ctrl->bbio; 163 164 ASSERT(bbio); 165 166 if (!(btrfs_op(&bbio->bio) == BTRFS_MAP_READ && is_data_inode(bbio->inode))) 167 return; 168 169 bio_ctrl->bbio->csum_search_commit_root = 170 (bio_ctrl->generation && 171 bio_ctrl->generation < btrfs_get_fs_generation(bbio->inode->root->fs_info)); 172 } 173 174 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl) 175 { 176 struct btrfs_bio *bbio = bio_ctrl->bbio; 177 178 if (!bbio) 179 return; 180 181 /* Caller should ensure the bio has at least some range added */ 182 ASSERT(bbio->bio.bi_iter.bi_size); 183 184 bio_set_csum_search_commit_root(bio_ctrl); 185 186 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ && 187 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) 188 btrfs_submit_compressed_read(bbio); 189 else 190 btrfs_submit_bbio(bbio, 0); 191 192 /* The bbio is owned by the end_io handler now */ 193 bio_ctrl->bbio = NULL; 194 /* 195 * We used the generation to decide whether to lookup csums in the 196 * commit_root or not when we called bio_set_csum_search_commit_root() 197 * above. Now, reset the generation for the next bio. 198 */ 199 bio_ctrl->generation = 0; 200 } 201 202 /* 203 * Submit or fail the current bio in the bio_ctrl structure. 204 */ 205 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret) 206 { 207 struct btrfs_bio *bbio = bio_ctrl->bbio; 208 209 if (!bbio) 210 return; 211 212 if (ret) { 213 ASSERT(ret < 0); 214 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 215 /* The bio is owned by the end_io handler now */ 216 bio_ctrl->bbio = NULL; 217 } else { 218 submit_one_bio(bio_ctrl); 219 } 220 } 221 222 int __init extent_buffer_init_cachep(void) 223 { 224 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 225 sizeof(struct extent_buffer), 0, 0, 226 NULL); 227 if (!extent_buffer_cache) 228 return -ENOMEM; 229 230 return 0; 231 } 232 233 void __cold extent_buffer_free_cachep(void) 234 { 235 /* 236 * Make sure all delayed rcu free are flushed before we 237 * destroy caches. 238 */ 239 rcu_barrier(); 240 kmem_cache_destroy(extent_buffer_cache); 241 } 242 243 static void process_one_folio(struct btrfs_fs_info *fs_info, 244 struct folio *folio, const struct folio *locked_folio, 245 unsigned long page_ops, u64 start, u64 end) 246 { 247 u32 len; 248 249 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 250 len = end + 1 - start; 251 252 if (page_ops & PAGE_SET_ORDERED) 253 btrfs_folio_clamp_set_ordered(fs_info, folio, start, len); 254 if (page_ops & PAGE_START_WRITEBACK) { 255 btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len); 256 btrfs_folio_clamp_set_writeback(fs_info, folio, start, len); 257 } 258 if (page_ops & PAGE_END_WRITEBACK) 259 btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len); 260 261 if (folio != locked_folio && (page_ops & PAGE_UNLOCK)) 262 btrfs_folio_end_lock(fs_info, folio, start, len); 263 } 264 265 static void __process_folios_contig(struct address_space *mapping, 266 const struct folio *locked_folio, u64 start, 267 u64 end, unsigned long page_ops) 268 { 269 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 270 pgoff_t index = start >> PAGE_SHIFT; 271 pgoff_t end_index = end >> PAGE_SHIFT; 272 struct folio_batch fbatch; 273 int i; 274 275 folio_batch_init(&fbatch); 276 while (index <= end_index) { 277 int found_folios; 278 279 found_folios = filemap_get_folios_contig(mapping, &index, 280 end_index, &fbatch); 281 for (i = 0; i < found_folios; i++) { 282 struct folio *folio = fbatch.folios[i]; 283 284 process_one_folio(fs_info, folio, locked_folio, 285 page_ops, start, end); 286 } 287 folio_batch_release(&fbatch); 288 cond_resched(); 289 } 290 } 291 292 static noinline void unlock_delalloc_folio(const struct inode *inode, 293 struct folio *locked_folio, 294 u64 start, u64 end) 295 { 296 ASSERT(locked_folio); 297 298 __process_folios_contig(inode->i_mapping, locked_folio, start, end, 299 PAGE_UNLOCK); 300 } 301 302 static noinline int lock_delalloc_folios(struct inode *inode, 303 struct folio *locked_folio, 304 u64 start, u64 end) 305 { 306 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 307 struct address_space *mapping = inode->i_mapping; 308 pgoff_t index = start >> PAGE_SHIFT; 309 pgoff_t end_index = end >> PAGE_SHIFT; 310 u64 processed_end = start; 311 struct folio_batch fbatch; 312 313 folio_batch_init(&fbatch); 314 while (index <= end_index) { 315 unsigned int found_folios, i; 316 317 found_folios = filemap_get_folios_contig(mapping, &index, 318 end_index, &fbatch); 319 if (found_folios == 0) 320 goto out; 321 322 for (i = 0; i < found_folios; i++) { 323 struct folio *folio = fbatch.folios[i]; 324 u64 range_start; 325 u32 range_len; 326 327 if (folio == locked_folio) 328 continue; 329 330 folio_lock(folio); 331 if (!folio_test_dirty(folio) || folio->mapping != mapping) { 332 folio_unlock(folio); 333 goto out; 334 } 335 range_start = max_t(u64, folio_pos(folio), start); 336 range_len = min_t(u64, folio_next_pos(folio), end + 1) - range_start; 337 btrfs_folio_set_lock(fs_info, folio, range_start, range_len); 338 339 processed_end = range_start + range_len - 1; 340 } 341 folio_batch_release(&fbatch); 342 cond_resched(); 343 } 344 345 return 0; 346 out: 347 folio_batch_release(&fbatch); 348 if (processed_end > start) 349 unlock_delalloc_folio(inode, locked_folio, start, processed_end); 350 return -EAGAIN; 351 } 352 353 /* 354 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 355 * more than @max_bytes. 356 * 357 * @start: The original start bytenr to search. 358 * Will store the extent range start bytenr. 359 * @end: The original end bytenr of the search range 360 * Will store the extent range end bytenr. 361 * 362 * Return true if we find a delalloc range which starts inside the original 363 * range, and @start/@end will store the delalloc range start/end. 364 * 365 * Return false if we can't find any delalloc range which starts inside the 366 * original range, and @start/@end will be the non-delalloc range start/end. 367 */ 368 EXPORT_FOR_TESTS 369 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 370 struct folio *locked_folio, 371 u64 *start, u64 *end) 372 { 373 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 374 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 375 const u64 orig_start = *start; 376 const u64 orig_end = *end; 377 u64 max_bytes = fs_info->max_extent_size; 378 u64 delalloc_start; 379 u64 delalloc_end; 380 bool found; 381 struct extent_state *cached_state = NULL; 382 int ret; 383 int loops = 0; 384 385 /* Caller should pass a valid @end to indicate the search range end */ 386 ASSERT(orig_end > orig_start); 387 388 /* The range should at least cover part of the folio */ 389 ASSERT(!(orig_start >= folio_next_pos(locked_folio) || 390 orig_end <= folio_pos(locked_folio))); 391 again: 392 /* step one, find a bunch of delalloc bytes starting at start */ 393 delalloc_start = *start; 394 delalloc_end = 0; 395 396 /* 397 * If @max_bytes is smaller than a block, btrfs_find_delalloc_range() can 398 * return early without handling any dirty ranges. 399 */ 400 ASSERT(max_bytes >= fs_info->sectorsize); 401 402 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 403 max_bytes, &cached_state); 404 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 405 *start = delalloc_start; 406 407 /* @delalloc_end can be -1, never go beyond @orig_end */ 408 *end = min(delalloc_end, orig_end); 409 btrfs_free_extent_state(cached_state); 410 return false; 411 } 412 413 /* 414 * start comes from the offset of locked_folio. We have to lock 415 * folios in order, so we can't process delalloc bytes before 416 * locked_folio 417 */ 418 if (delalloc_start < *start) 419 delalloc_start = *start; 420 421 /* 422 * make sure to limit the number of folios we try to lock down 423 */ 424 if (delalloc_end + 1 - delalloc_start > max_bytes) 425 delalloc_end = delalloc_start + max_bytes - 1; 426 427 /* step two, lock all the folios after the folios that has start */ 428 ret = lock_delalloc_folios(inode, locked_folio, delalloc_start, 429 delalloc_end); 430 ASSERT(!ret || ret == -EAGAIN); 431 if (ret == -EAGAIN) { 432 /* 433 * Some of the folios are gone, lets avoid looping by 434 * shortening the size of the delalloc range we're searching. 435 */ 436 btrfs_free_extent_state(cached_state); 437 cached_state = NULL; 438 if (!loops) { 439 max_bytes = fs_info->sectorsize; 440 loops = 1; 441 goto again; 442 } else { 443 return false; 444 } 445 } 446 447 /* step three, lock the state bits for the whole range */ 448 btrfs_lock_extent(tree, delalloc_start, delalloc_end, &cached_state); 449 450 /* then test to make sure it is all still delalloc */ 451 ret = btrfs_test_range_bit(tree, delalloc_start, delalloc_end, 452 EXTENT_DELALLOC, cached_state); 453 454 btrfs_unlock_extent(tree, delalloc_start, delalloc_end, &cached_state); 455 if (!ret) { 456 unlock_delalloc_folio(inode, locked_folio, delalloc_start, 457 delalloc_end); 458 cond_resched(); 459 goto again; 460 } 461 *start = delalloc_start; 462 *end = delalloc_end; 463 464 return found; 465 } 466 467 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 468 const struct folio *locked_folio, 469 struct extent_state **cached, 470 u32 clear_bits, unsigned long page_ops) 471 { 472 btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits, cached); 473 474 __process_folios_contig(inode->vfs_inode.i_mapping, locked_folio, start, 475 end, page_ops); 476 } 477 478 static bool btrfs_verify_folio(struct fsverity_info *vi, struct folio *folio, 479 u64 start, u32 len) 480 { 481 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 482 483 if (!vi || btrfs_folio_test_uptodate(fs_info, folio, start, len)) 484 return true; 485 return fsverity_verify_folio(vi, folio); 486 } 487 488 static void end_folio_read(struct fsverity_info *vi, struct folio *folio, 489 bool uptodate, u64 start, u32 len) 490 { 491 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 492 493 ASSERT(folio_pos(folio) <= start && 494 start + len <= folio_next_pos(folio)); 495 496 if (uptodate && btrfs_verify_folio(vi, folio, start, len)) 497 btrfs_folio_set_uptodate(fs_info, folio, start, len); 498 else 499 btrfs_folio_clear_uptodate(fs_info, folio, start, len); 500 501 if (!btrfs_is_subpage(fs_info, folio)) 502 folio_unlock(folio); 503 else 504 btrfs_folio_end_lock(fs_info, folio, start, len); 505 } 506 507 /* 508 * After a write IO is done, we need to: 509 * 510 * - clear the uptodate bits on error 511 * - clear the writeback bits in the extent tree for the range 512 * - filio_end_writeback() if there is no more pending io for the folio 513 * 514 * Scheduling is not allowed, so the extent state tree is expected 515 * to have one and only one object corresponding to this IO. 516 */ 517 static void end_bbio_data_write(struct btrfs_bio *bbio) 518 { 519 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info; 520 struct bio *bio = &bbio->bio; 521 int error = blk_status_to_errno(bio->bi_status); 522 struct folio_iter fi; 523 const u32 sectorsize = fs_info->sectorsize; 524 525 ASSERT(!bio_flagged(bio, BIO_CLONED)); 526 bio_for_each_folio_all(fi, bio) { 527 struct folio *folio = fi.folio; 528 u64 start = folio_pos(folio) + fi.offset; 529 u32 len = fi.length; 530 531 /* Our read/write should always be sector aligned. */ 532 if (!IS_ALIGNED(fi.offset, sectorsize)) 533 btrfs_err(fs_info, 534 "partial page write in btrfs with offset %zu and length %zu", 535 fi.offset, fi.length); 536 else if (!IS_ALIGNED(fi.length, sectorsize)) 537 btrfs_info(fs_info, 538 "incomplete page write with offset %zu and length %zu", 539 fi.offset, fi.length); 540 541 btrfs_finish_ordered_extent(bbio->ordered, folio, start, len, 542 !error); 543 if (error) 544 mapping_set_error(folio->mapping, error); 545 btrfs_folio_clear_writeback(fs_info, folio, start, len); 546 } 547 548 bio_put(bio); 549 } 550 551 static void begin_folio_read(struct btrfs_fs_info *fs_info, struct folio *folio) 552 { 553 ASSERT(folio_test_locked(folio)); 554 if (!btrfs_is_subpage(fs_info, folio)) 555 return; 556 557 ASSERT(folio_test_private(folio)); 558 btrfs_folio_set_lock(fs_info, folio, folio_pos(folio), folio_size(folio)); 559 } 560 561 /* 562 * After a data read IO is done, we need to: 563 * 564 * - clear the uptodate bits on error 565 * - set the uptodate bits if things worked 566 * - set the folio up to date if all extents in the tree are uptodate 567 * - clear the lock bit in the extent tree 568 * - unlock the folio if there are no other extents locked for it 569 * 570 * Scheduling is not allowed, so the extent state tree is expected 571 * to have one and only one object corresponding to this IO. 572 */ 573 static void end_bbio_data_read(struct btrfs_bio *bbio) 574 { 575 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info; 576 struct inode *inode = &bbio->inode->vfs_inode; 577 struct bio *bio = &bbio->bio; 578 struct fsverity_info *vi = NULL; 579 struct folio_iter fi; 580 581 ASSERT(!bio_flagged(bio, BIO_CLONED)); 582 583 if (bbio->file_offset < i_size_read(inode)) 584 vi = fsverity_get_info(inode); 585 586 bio_for_each_folio_all(fi, &bbio->bio) { 587 bool uptodate = !bio->bi_status; 588 struct folio *folio = fi.folio; 589 u64 start = folio_pos(folio) + fi.offset; 590 591 btrfs_debug(fs_info, 592 "%s: bi_sector=%llu, err=%d, mirror=%u", 593 __func__, bio->bi_iter.bi_sector, bio->bi_status, 594 bbio->mirror_num); 595 596 597 if (likely(uptodate)) { 598 u64 end = start + fi.length - 1; 599 loff_t i_size = i_size_read(inode); 600 601 /* 602 * Zero out the remaining part if this range straddles 603 * i_size. 604 * 605 * Here we should only zero the range inside the folio, 606 * not touch anything else. 607 * 608 * NOTE: i_size is exclusive while end is inclusive and 609 * folio_contains() takes PAGE_SIZE units. 610 */ 611 if (folio_contains(folio, i_size >> PAGE_SHIFT) && 612 i_size <= end) { 613 u32 zero_start = max(offset_in_folio(folio, i_size), 614 offset_in_folio(folio, start)); 615 u32 zero_len = offset_in_folio(folio, end) + 1 - 616 zero_start; 617 618 folio_zero_range(folio, zero_start, zero_len); 619 } 620 } 621 622 /* Update page status and unlock. */ 623 end_folio_read(vi, folio, uptodate, start, fi.length); 624 } 625 bio_put(bio); 626 } 627 628 /* 629 * Populate every free slot in a provided array with folios using GFP_NOFS. 630 * 631 * @nr_folios: number of folios to allocate 632 * @order: the order of the folios to be allocated 633 * @folio_array: the array to fill with folios; any existing non-NULL entries in 634 * the array will be skipped 635 * 636 * Return: 0 if all folios were able to be allocated; 637 * -ENOMEM otherwise, the partially allocated folios would be freed and 638 * the array slots zeroed 639 */ 640 int btrfs_alloc_folio_array(unsigned int nr_folios, unsigned int order, 641 struct folio **folio_array) 642 { 643 for (int i = 0; i < nr_folios; i++) { 644 if (folio_array[i]) 645 continue; 646 folio_array[i] = folio_alloc(GFP_NOFS, order); 647 if (!folio_array[i]) 648 goto error; 649 } 650 return 0; 651 error: 652 for (int i = 0; i < nr_folios; i++) { 653 if (folio_array[i]) 654 folio_put(folio_array[i]); 655 folio_array[i] = NULL; 656 } 657 return -ENOMEM; 658 } 659 660 /* 661 * Populate every free slot in a provided array with pages, using GFP_NOFS. 662 * 663 * @nr_pages: number of pages to allocate 664 * @page_array: the array to fill with pages; any existing non-null entries in 665 * the array will be skipped 666 * @nofail: whether using __GFP_NOFAIL flag 667 * 668 * Return: 0 if all pages were able to be allocated; 669 * -ENOMEM otherwise, the partially allocated pages would be freed and 670 * the array slots zeroed 671 */ 672 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array, 673 bool nofail) 674 { 675 const gfp_t gfp = nofail ? (GFP_NOFS | __GFP_NOFAIL) : GFP_NOFS; 676 unsigned int allocated; 677 678 for (allocated = 0; allocated < nr_pages;) { 679 unsigned int last = allocated; 680 681 allocated = alloc_pages_bulk(gfp, nr_pages, page_array); 682 if (unlikely(allocated == last)) { 683 /* No progress, fail and do cleanup. */ 684 for (int i = 0; i < allocated; i++) { 685 __free_page(page_array[i]); 686 page_array[i] = NULL; 687 } 688 return -ENOMEM; 689 } 690 } 691 return 0; 692 } 693 694 /* 695 * Populate needed folios for the extent buffer. 696 * 697 * For now, the folios populated are always in order 0 (aka, single page). 698 */ 699 static int alloc_eb_folio_array(struct extent_buffer *eb, bool nofail) 700 { 701 struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 }; 702 int num_pages = num_extent_pages(eb); 703 int ret; 704 705 ret = btrfs_alloc_page_array(num_pages, page_array, nofail); 706 if (ret < 0) 707 return ret; 708 709 for (int i = 0; i < num_pages; i++) 710 eb->folios[i] = page_folio(page_array[i]); 711 eb->folio_size = PAGE_SIZE; 712 eb->folio_shift = PAGE_SHIFT; 713 return 0; 714 } 715 716 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl, 717 u64 disk_bytenr, loff_t file_offset) 718 { 719 struct bio *bio = &bio_ctrl->bbio->bio; 720 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 721 722 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) { 723 /* 724 * For compression, all IO should have its logical bytenr set 725 * to the starting bytenr of the compressed extent. 726 */ 727 return bio->bi_iter.bi_sector == sector; 728 } 729 730 /* 731 * To merge into a bio both the disk sector and the logical offset in 732 * the file need to be contiguous. 733 */ 734 return bio_ctrl->next_file_offset == file_offset && 735 bio_end_sector(bio) == sector; 736 } 737 738 static void alloc_new_bio(struct btrfs_inode *inode, 739 struct btrfs_bio_ctrl *bio_ctrl, 740 u64 disk_bytenr, u64 file_offset) 741 { 742 struct btrfs_fs_info *fs_info = inode->root->fs_info; 743 struct btrfs_bio *bbio; 744 745 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, inode, 746 file_offset, bio_ctrl->end_io_func, NULL); 747 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 748 bbio->bio.bi_write_hint = inode->vfs_inode.i_write_hint; 749 bio_ctrl->bbio = bbio; 750 bio_ctrl->len_to_oe_boundary = U32_MAX; 751 bio_ctrl->next_file_offset = file_offset; 752 753 /* Limit data write bios to the ordered boundary. */ 754 if (bio_ctrl->wbc) { 755 struct btrfs_ordered_extent *ordered; 756 757 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 758 if (ordered) { 759 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 760 ordered->file_offset + 761 ordered->disk_num_bytes - file_offset); 762 bbio->ordered = ordered; 763 } 764 765 /* 766 * Pick the last added device to support cgroup writeback. For 767 * multi-device file systems this means blk-cgroup policies have 768 * to always be set on the last added/replaced device. 769 * This is a bit odd but has been like that for a long time. 770 */ 771 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 772 wbc_init_bio(bio_ctrl->wbc, &bbio->bio); 773 } 774 } 775 776 /* 777 * @disk_bytenr: logical bytenr where the write will be 778 * @page: page to add to the bio 779 * @size: portion of page that we want to write to 780 * @pg_offset: offset of the new bio or to check whether we are adding 781 * a contiguous page to the previous one 782 * @read_em_generation: generation of the extent_map we are submitting 783 * (only used for read) 784 * 785 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a 786 * new one in @bio_ctrl->bbio. 787 * The mirror number for this IO should already be initialized in 788 * @bio_ctrl->mirror_num. 789 */ 790 static void submit_extent_folio(struct btrfs_bio_ctrl *bio_ctrl, 791 u64 disk_bytenr, struct folio *folio, 792 size_t size, unsigned long pg_offset, 793 u64 read_em_generation) 794 { 795 struct btrfs_inode *inode = folio_to_inode(folio); 796 loff_t file_offset = folio_pos(folio) + pg_offset; 797 798 ASSERT(pg_offset + size <= folio_size(folio)); 799 ASSERT(bio_ctrl->end_io_func); 800 801 if (bio_ctrl->bbio && 802 !btrfs_bio_is_contig(bio_ctrl, disk_bytenr, file_offset)) 803 submit_one_bio(bio_ctrl); 804 805 do { 806 u32 len = size; 807 808 /* Allocate new bio if needed */ 809 if (!bio_ctrl->bbio) 810 alloc_new_bio(inode, bio_ctrl, disk_bytenr, file_offset); 811 812 /* Cap to the current ordered extent boundary if there is one. */ 813 if (len > bio_ctrl->len_to_oe_boundary) { 814 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE); 815 ASSERT(is_data_inode(inode)); 816 len = bio_ctrl->len_to_oe_boundary; 817 } 818 819 if (!bio_add_folio(&bio_ctrl->bbio->bio, folio, len, pg_offset)) { 820 /* bio full: move on to a new one */ 821 submit_one_bio(bio_ctrl); 822 continue; 823 } 824 /* 825 * Now that the folio is definitely added to the bio, include its 826 * generation in the max generation calculation. 827 */ 828 bio_ctrl->generation = max(bio_ctrl->generation, read_em_generation); 829 bio_ctrl->next_file_offset += len; 830 831 if (bio_ctrl->wbc) 832 wbc_account_cgroup_owner(bio_ctrl->wbc, folio, len); 833 834 size -= len; 835 pg_offset += len; 836 disk_bytenr += len; 837 file_offset += len; 838 839 /* 840 * len_to_oe_boundary defaults to U32_MAX, which isn't folio or 841 * sector aligned. alloc_new_bio() then sets it to the end of 842 * our ordered extent for writes into zoned devices. 843 * 844 * When len_to_oe_boundary is tracking an ordered extent, we 845 * trust the ordered extent code to align things properly, and 846 * the check above to cap our write to the ordered extent 847 * boundary is correct. 848 * 849 * When len_to_oe_boundary is U32_MAX, the cap above would 850 * result in a 4095 byte IO for the last folio right before 851 * we hit the bio limit of UINT_MAX. bio_add_folio() has all 852 * the checks required to make sure we don't overflow the bio, 853 * and we should just ignore len_to_oe_boundary completely 854 * unless we're using it to track an ordered extent. 855 * 856 * It's pretty hard to make a bio sized U32_MAX, but it can 857 * happen when the page cache is able to feed us contiguous 858 * folios for large extents. 859 */ 860 if (bio_ctrl->len_to_oe_boundary != U32_MAX) 861 bio_ctrl->len_to_oe_boundary -= len; 862 863 /* Ordered extent boundary: move on to a new bio. */ 864 if (bio_ctrl->len_to_oe_boundary == 0) 865 submit_one_bio(bio_ctrl); 866 } while (size); 867 } 868 869 static int attach_extent_buffer_folio(struct extent_buffer *eb, 870 struct folio *folio, 871 struct btrfs_folio_state *prealloc) 872 { 873 struct btrfs_fs_info *fs_info = eb->fs_info; 874 int ret = 0; 875 876 /* 877 * If the page is mapped to btree inode, we should hold the private 878 * lock to prevent race. 879 * For cloned or dummy extent buffers, their pages are not mapped and 880 * will not race with any other ebs. 881 */ 882 if (folio->mapping) 883 lockdep_assert_held(&folio->mapping->i_private_lock); 884 885 if (!btrfs_meta_is_subpage(fs_info)) { 886 if (!folio_test_private(folio)) 887 folio_attach_private(folio, eb); 888 else 889 WARN_ON(folio_get_private(folio) != eb); 890 return 0; 891 } 892 893 /* Already mapped, just free prealloc */ 894 if (folio_test_private(folio)) { 895 btrfs_free_folio_state(prealloc); 896 return 0; 897 } 898 899 if (prealloc) 900 /* Has preallocated memory for subpage */ 901 folio_attach_private(folio, prealloc); 902 else 903 /* Do new allocation to attach subpage */ 904 ret = btrfs_attach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA); 905 return ret; 906 } 907 908 int set_folio_extent_mapped(struct folio *folio) 909 { 910 struct btrfs_fs_info *fs_info; 911 912 ASSERT(folio->mapping); 913 914 if (folio_test_private(folio)) 915 return 0; 916 917 fs_info = folio_to_fs_info(folio); 918 919 if (btrfs_is_subpage(fs_info, folio)) 920 return btrfs_attach_folio_state(fs_info, folio, BTRFS_SUBPAGE_DATA); 921 922 folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE); 923 return 0; 924 } 925 926 void clear_folio_extent_mapped(struct folio *folio) 927 { 928 struct btrfs_fs_info *fs_info; 929 930 ASSERT(folio->mapping); 931 932 if (!folio_test_private(folio)) 933 return; 934 935 fs_info = folio_to_fs_info(folio); 936 if (btrfs_is_subpage(fs_info, folio)) 937 return btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_DATA); 938 939 folio_detach_private(folio); 940 } 941 942 static struct extent_map *get_extent_map(struct btrfs_inode *inode, 943 struct folio *folio, u64 start, 944 u64 len, struct extent_map **em_cached) 945 { 946 struct extent_map *em; 947 948 ASSERT(em_cached); 949 950 if (*em_cached) { 951 em = *em_cached; 952 if (btrfs_extent_map_in_tree(em) && start >= em->start && 953 start < btrfs_extent_map_end(em)) { 954 refcount_inc(&em->refs); 955 return em; 956 } 957 958 btrfs_free_extent_map(em); 959 *em_cached = NULL; 960 } 961 962 em = btrfs_get_extent(inode, folio, start, len); 963 if (!IS_ERR(em)) { 964 BUG_ON(*em_cached); 965 refcount_inc(&em->refs); 966 *em_cached = em; 967 } 968 969 return em; 970 } 971 972 static void btrfs_readahead_expand(struct readahead_control *ractl, 973 const struct extent_map *em) 974 { 975 const u64 ra_pos = readahead_pos(ractl); 976 const u64 ra_end = ra_pos + readahead_length(ractl); 977 const u64 em_end = btrfs_extent_map_end(em); 978 979 /* No expansion for holes and inline extents. */ 980 if (em->disk_bytenr > EXTENT_MAP_LAST_BYTE) 981 return; 982 983 ASSERT(em_end >= ra_pos, 984 "extent_map %llu %llu ends before current readahead position %llu", 985 em->start, em->len, ra_pos); 986 if (em_end > ra_end) 987 readahead_expand(ractl, ra_pos, em_end - ra_pos); 988 } 989 990 /* 991 * basic readpage implementation. Locked extent state structs are inserted 992 * into the tree that are removed when the IO is done (by the end_io 993 * handlers) 994 * XXX JDM: This needs looking at to ensure proper page locking 995 * return 0 on success, otherwise return error 996 */ 997 static int btrfs_do_readpage(struct folio *folio, struct extent_map **em_cached, 998 struct btrfs_bio_ctrl *bio_ctrl, 999 struct fsverity_info *vi) 1000 { 1001 struct inode *inode = folio->mapping->host; 1002 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1003 u64 start = folio_pos(folio); 1004 const u64 end = start + folio_size(folio) - 1; 1005 u64 extent_offset; 1006 u64 locked_end; 1007 u64 last_byte = i_size_read(inode); 1008 struct extent_map *em; 1009 int ret = 0; 1010 const size_t blocksize = fs_info->sectorsize; 1011 1012 if (bio_ctrl->ractl) 1013 locked_end = readahead_pos(bio_ctrl->ractl) + readahead_length(bio_ctrl->ractl) - 1; 1014 else 1015 locked_end = end; 1016 1017 ret = set_folio_extent_mapped(folio); 1018 if (ret < 0) { 1019 folio_unlock(folio); 1020 return ret; 1021 } 1022 1023 if (folio_contains(folio, last_byte >> PAGE_SHIFT)) { 1024 size_t zero_offset = offset_in_folio(folio, last_byte); 1025 1026 if (zero_offset) 1027 folio_zero_range(folio, zero_offset, 1028 folio_size(folio) - zero_offset); 1029 } 1030 bio_ctrl->end_io_func = end_bbio_data_read; 1031 begin_folio_read(fs_info, folio); 1032 for (u64 cur = start; cur <= end; cur += blocksize) { 1033 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE; 1034 unsigned long pg_offset = offset_in_folio(folio, cur); 1035 bool force_bio_submit = false; 1036 u64 disk_bytenr; 1037 u64 block_start; 1038 u64 em_gen; 1039 1040 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 1041 if (cur >= last_byte) { 1042 folio_zero_range(folio, pg_offset, end - cur + 1); 1043 end_folio_read(vi, folio, true, cur, end - cur + 1); 1044 break; 1045 } 1046 if (btrfs_folio_test_uptodate(fs_info, folio, cur, blocksize)) { 1047 end_folio_read(vi, folio, true, cur, blocksize); 1048 continue; 1049 } 1050 /* 1051 * Search extent map for the whole locked range. 1052 * This will allow btrfs_get_extent() to return a larger hole 1053 * when possible. 1054 * This can reduce duplicated btrfs_get_extent() calls for large 1055 * holes. 1056 */ 1057 em = get_extent_map(BTRFS_I(inode), folio, cur, locked_end - cur + 1, em_cached); 1058 if (IS_ERR(em)) { 1059 end_folio_read(vi, folio, false, cur, end + 1 - cur); 1060 return PTR_ERR(em); 1061 } 1062 extent_offset = cur - em->start; 1063 BUG_ON(btrfs_extent_map_end(em) <= cur); 1064 BUG_ON(end < cur); 1065 1066 compress_type = btrfs_extent_map_compression(em); 1067 1068 /* 1069 * Only expand readahead for extents which are already creating 1070 * the pages anyway in add_ra_bio_pages, which is compressed 1071 * extents in the non subpage case. 1072 */ 1073 if (bio_ctrl->ractl && 1074 !btrfs_is_subpage(fs_info, folio) && 1075 compress_type != BTRFS_COMPRESS_NONE) 1076 btrfs_readahead_expand(bio_ctrl->ractl, em); 1077 1078 if (compress_type != BTRFS_COMPRESS_NONE) 1079 disk_bytenr = em->disk_bytenr; 1080 else 1081 disk_bytenr = btrfs_extent_map_block_start(em) + extent_offset; 1082 1083 if (em->flags & EXTENT_FLAG_PREALLOC) 1084 block_start = EXTENT_MAP_HOLE; 1085 else 1086 block_start = btrfs_extent_map_block_start(em); 1087 1088 /* 1089 * If we have a file range that points to a compressed extent 1090 * and it's followed by a consecutive file range that points 1091 * to the same compressed extent (possibly with a different 1092 * offset and/or length, so it either points to the whole extent 1093 * or only part of it), we must make sure we do not submit a 1094 * single bio to populate the folios for the 2 ranges because 1095 * this makes the compressed extent read zero out the folios 1096 * belonging to the 2nd range. Imagine the following scenario: 1097 * 1098 * File layout 1099 * [0 - 8K] [8K - 24K] 1100 * | | 1101 * | | 1102 * points to extent X, points to extent X, 1103 * offset 4K, length of 8K offset 0, length 16K 1104 * 1105 * [extent X, compressed length = 4K uncompressed length = 16K] 1106 * 1107 * If the bio to read the compressed extent covers both ranges, 1108 * it will decompress extent X into the folios belonging to the 1109 * first range and then it will stop, zeroing out the remaining 1110 * folios that belong to the other range that points to extent X. 1111 * So here we make sure we submit 2 bios, one for the first 1112 * range and another one for the third range. Both will target 1113 * the same physical extent from disk, but we can't currently 1114 * make the compressed bio endio callback populate the folios 1115 * for both ranges because each compressed bio is tightly 1116 * coupled with a single extent map, and each range can have 1117 * an extent map with a different offset value relative to the 1118 * uncompressed data of our extent and different lengths. This 1119 * is a corner case so we prioritize correctness over 1120 * non-optimal behavior (submitting 2 bios for the same extent). 1121 */ 1122 if (compress_type != BTRFS_COMPRESS_NONE && 1123 bio_ctrl->last_em_start != U64_MAX && 1124 bio_ctrl->last_em_start != em->start) 1125 force_bio_submit = true; 1126 1127 bio_ctrl->last_em_start = em->start; 1128 1129 em_gen = em->generation; 1130 btrfs_free_extent_map(em); 1131 em = NULL; 1132 1133 /* we've found a hole, just zero and go on */ 1134 if (block_start == EXTENT_MAP_HOLE) { 1135 folio_zero_range(folio, pg_offset, blocksize); 1136 end_folio_read(vi, folio, true, cur, blocksize); 1137 continue; 1138 } 1139 /* the get_extent function already copied into the folio */ 1140 if (block_start == EXTENT_MAP_INLINE) { 1141 end_folio_read(vi, folio, true, cur, blocksize); 1142 continue; 1143 } 1144 1145 if (bio_ctrl->compress_type != compress_type) { 1146 submit_one_bio(bio_ctrl); 1147 bio_ctrl->compress_type = compress_type; 1148 } 1149 1150 if (force_bio_submit) 1151 submit_one_bio(bio_ctrl); 1152 submit_extent_folio(bio_ctrl, disk_bytenr, folio, blocksize, 1153 pg_offset, em_gen); 1154 } 1155 return 0; 1156 } 1157 1158 /* 1159 * Check if we can skip waiting the @ordered extent covering the block at @fileoff. 1160 * 1161 * @fileoff: Both input and output. 1162 * Input as the file offset where the check should start at. 1163 * Output as where the next check should start at, 1164 * if the function returns true. 1165 * 1166 * Return true if we can skip to @fileoff. The caller needs to check the new 1167 * @fileoff value to make sure it covers the full range, before skipping the 1168 * full OE. 1169 * 1170 * Return false if we must wait for the ordered extent. 1171 */ 1172 static bool can_skip_one_ordered_range(struct btrfs_inode *inode, 1173 struct btrfs_ordered_extent *ordered, 1174 u64 *fileoff) 1175 { 1176 const struct btrfs_fs_info *fs_info = inode->root->fs_info; 1177 struct folio *folio; 1178 const u32 blocksize = fs_info->sectorsize; 1179 u64 cur = *fileoff; 1180 bool ret; 1181 1182 folio = filemap_get_folio(inode->vfs_inode.i_mapping, cur >> PAGE_SHIFT); 1183 1184 /* 1185 * We should have locked the folio(s) for range [start, end], thus 1186 * there must be a folio and it must be locked. 1187 */ 1188 ASSERT(!IS_ERR(folio)); 1189 ASSERT(folio_test_locked(folio)); 1190 1191 /* 1192 * There are several cases for the folio and OE combination: 1193 * 1194 * 1) Folio has no private flag 1195 * The OE has all its IO done but not yet finished, and folio got 1196 * invalidated. 1197 * 1198 * Have we have to wait for the OE to finish, as it may contain the 1199 * to-be-inserted data checksum. 1200 * Without the data checksum inserted into the csum tree, read will 1201 * just fail with missing csum. 1202 */ 1203 if (!folio_test_private(folio)) { 1204 ret = false; 1205 goto out; 1206 } 1207 1208 /* 1209 * 2) The first block is DIRTY. 1210 * 1211 * This means the OE is created by some other folios whose file pos is 1212 * before this one. And since we are holding the folio lock, the writeback 1213 * of this folio cannot start. 1214 * 1215 * We must skip the whole OE, because it will never start until we 1216 * finished our folio read and unlocked the folio. 1217 */ 1218 if (btrfs_folio_test_dirty(fs_info, folio, cur, blocksize)) { 1219 u64 range_len = umin(folio_next_pos(folio), 1220 ordered->file_offset + ordered->num_bytes) - cur; 1221 1222 ret = true; 1223 /* 1224 * At least inside the folio, all the remaining blocks should 1225 * also be dirty. 1226 */ 1227 ASSERT(btrfs_folio_test_dirty(fs_info, folio, cur, range_len)); 1228 *fileoff = ordered->file_offset + ordered->num_bytes; 1229 goto out; 1230 } 1231 1232 /* 1233 * 3) The first block is uptodate. 1234 * 1235 * At least the first block can be skipped, but we are still not fully 1236 * sure. E.g. if the OE has some other folios in the range that cannot 1237 * be skipped. 1238 * So we return true and update @next_ret to the OE/folio boundary. 1239 */ 1240 if (btrfs_folio_test_uptodate(fs_info, folio, cur, blocksize)) { 1241 u64 range_len = umin(folio_next_pos(folio), 1242 ordered->file_offset + ordered->num_bytes) - cur; 1243 1244 /* 1245 * The whole range to the OE end or folio boundary should also 1246 * be uptodate. 1247 */ 1248 ASSERT(btrfs_folio_test_uptodate(fs_info, folio, cur, range_len)); 1249 ret = true; 1250 *fileoff = cur + range_len; 1251 goto out; 1252 } 1253 1254 /* 1255 * 4) The first block is not uptodate. 1256 * 1257 * This means the folio is invalidated after the writeback was finished, 1258 * but by some other operations (e.g. block aligned buffered write) the 1259 * folio is inserted into filemap. 1260 * Very much the same as case 1). 1261 */ 1262 ret = false; 1263 out: 1264 folio_put(folio); 1265 return ret; 1266 } 1267 1268 static bool can_skip_ordered_extent(struct btrfs_inode *inode, 1269 struct btrfs_ordered_extent *ordered, 1270 u64 start, u64 end) 1271 { 1272 const u64 range_end = min(end, ordered->file_offset + ordered->num_bytes - 1); 1273 u64 cur = max(start, ordered->file_offset); 1274 1275 while (cur < range_end) { 1276 bool can_skip; 1277 1278 can_skip = can_skip_one_ordered_range(inode, ordered, &cur); 1279 if (!can_skip) 1280 return false; 1281 } 1282 return true; 1283 } 1284 1285 /* 1286 * Locking helper to make sure we get a stable view of extent maps for the 1287 * involved range. 1288 * 1289 * This is for folio read paths (read and readahead), thus the involved range 1290 * should have all the folios locked. 1291 */ 1292 static void lock_extents_for_read(struct btrfs_inode *inode, u64 start, u64 end, 1293 struct extent_state **cached_state) 1294 { 1295 u64 cur_pos; 1296 1297 /* Caller must provide a valid @cached_state. */ 1298 ASSERT(cached_state); 1299 1300 /* The range must at least be page aligned, as all read paths are folio based. */ 1301 ASSERT(IS_ALIGNED(start, PAGE_SIZE)); 1302 ASSERT(IS_ALIGNED(end + 1, PAGE_SIZE)); 1303 1304 again: 1305 btrfs_lock_extent(&inode->io_tree, start, end, cached_state); 1306 cur_pos = start; 1307 while (cur_pos < end) { 1308 struct btrfs_ordered_extent *ordered; 1309 1310 ordered = btrfs_lookup_ordered_range(inode, cur_pos, 1311 end - cur_pos + 1); 1312 /* 1313 * No ordered extents in the range, and we hold the extent lock, 1314 * no one can modify the extent maps in the range, we're safe to return. 1315 */ 1316 if (!ordered) 1317 break; 1318 1319 /* Check if we can skip waiting for the whole OE. */ 1320 if (can_skip_ordered_extent(inode, ordered, start, end)) { 1321 cur_pos = min(ordered->file_offset + ordered->num_bytes, 1322 end + 1); 1323 btrfs_put_ordered_extent(ordered); 1324 continue; 1325 } 1326 1327 /* Now wait for the OE to finish. */ 1328 btrfs_unlock_extent(&inode->io_tree, start, end, cached_state); 1329 btrfs_start_ordered_extent_nowriteback(ordered, start, end + 1 - start); 1330 btrfs_put_ordered_extent(ordered); 1331 /* We have unlocked the whole range, restart from the beginning. */ 1332 goto again; 1333 } 1334 } 1335 1336 int btrfs_read_folio(struct file *file, struct folio *folio) 1337 { 1338 struct inode *vfs_inode = folio->mapping->host; 1339 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 1340 const u64 start = folio_pos(folio); 1341 const u64 end = start + folio_size(folio) - 1; 1342 struct extent_state *cached_state = NULL; 1343 struct btrfs_bio_ctrl bio_ctrl = { 1344 .opf = REQ_OP_READ, 1345 .last_em_start = U64_MAX, 1346 }; 1347 struct extent_map *em_cached = NULL; 1348 struct fsverity_info *vi = NULL; 1349 int ret; 1350 1351 lock_extents_for_read(inode, start, end, &cached_state); 1352 if (folio_pos(folio) < i_size_read(vfs_inode)) 1353 vi = fsverity_get_info(vfs_inode); 1354 ret = btrfs_do_readpage(folio, &em_cached, &bio_ctrl, vi); 1355 btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state); 1356 1357 btrfs_free_extent_map(em_cached); 1358 1359 /* 1360 * If btrfs_do_readpage() failed we will want to submit the assembled 1361 * bio to do the cleanup. 1362 */ 1363 submit_one_bio(&bio_ctrl); 1364 return ret; 1365 } 1366 1367 static void set_delalloc_bitmap(struct folio *folio, unsigned long *delalloc_bitmap, 1368 u64 start, u32 len) 1369 { 1370 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 1371 const u64 folio_start = folio_pos(folio); 1372 unsigned int start_bit; 1373 unsigned int nbits; 1374 1375 ASSERT(start >= folio_start && start + len <= folio_start + folio_size(folio)); 1376 start_bit = (start - folio_start) >> fs_info->sectorsize_bits; 1377 nbits = len >> fs_info->sectorsize_bits; 1378 ASSERT(bitmap_test_range_all_zero(delalloc_bitmap, start_bit, nbits)); 1379 bitmap_set(delalloc_bitmap, start_bit, nbits); 1380 } 1381 1382 static bool find_next_delalloc_bitmap(struct folio *folio, 1383 unsigned long *delalloc_bitmap, u64 start, 1384 u64 *found_start, u32 *found_len) 1385 { 1386 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 1387 const u64 folio_start = folio_pos(folio); 1388 const unsigned int bitmap_size = btrfs_blocks_per_folio(fs_info, folio); 1389 unsigned int start_bit; 1390 unsigned int first_zero; 1391 unsigned int first_set; 1392 1393 ASSERT(start >= folio_start && start < folio_start + folio_size(folio)); 1394 1395 start_bit = (start - folio_start) >> fs_info->sectorsize_bits; 1396 first_set = find_next_bit(delalloc_bitmap, bitmap_size, start_bit); 1397 if (first_set >= bitmap_size) 1398 return false; 1399 1400 *found_start = folio_start + (first_set << fs_info->sectorsize_bits); 1401 first_zero = find_next_zero_bit(delalloc_bitmap, bitmap_size, first_set); 1402 *found_len = (first_zero - first_set) << fs_info->sectorsize_bits; 1403 return true; 1404 } 1405 1406 /* 1407 * Do all of the delayed allocation setup. 1408 * 1409 * Return >0 if all the dirty blocks are submitted async (compression) or inlined. 1410 * The @folio should no longer be touched (treat it as already unlocked). 1411 * 1412 * Return 0 if there is still dirty block that needs to be submitted through 1413 * extent_writepage_io(). 1414 * bio_ctrl->submit_bitmap will indicate which blocks of the folio should be 1415 * submitted, and @folio is still kept locked. 1416 * 1417 * Return <0 if there is any error hit. 1418 * Any allocated ordered extent range covering this folio will be marked 1419 * finished (IOERR), and @folio is still kept locked. 1420 */ 1421 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 1422 struct folio *folio, 1423 struct btrfs_bio_ctrl *bio_ctrl) 1424 { 1425 struct btrfs_fs_info *fs_info = inode_to_fs_info(&inode->vfs_inode); 1426 struct writeback_control *wbc = bio_ctrl->wbc; 1427 const bool is_subpage = btrfs_is_subpage(fs_info, folio); 1428 const u64 page_start = folio_pos(folio); 1429 const u64 page_end = page_start + folio_size(folio) - 1; 1430 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio); 1431 unsigned long delalloc_bitmap = 0; 1432 /* 1433 * Save the last found delalloc end. As the delalloc end can go beyond 1434 * page boundary, thus we cannot rely on subpage bitmap to locate the 1435 * last delalloc end. 1436 */ 1437 u64 last_delalloc_end = 0; 1438 /* 1439 * The range end (exclusive) of the last successfully finished delalloc 1440 * range. 1441 * Any range covered by ordered extent must either be manually marked 1442 * finished (error handling), or has IO submitted (and finish the 1443 * ordered extent normally). 1444 * 1445 * This records the end of ordered extent cleanup if we hit an error. 1446 */ 1447 u64 last_finished_delalloc_end = page_start; 1448 u64 delalloc_start = page_start; 1449 u64 delalloc_end = page_end; 1450 u64 delalloc_to_write = 0; 1451 unsigned int start_bit; 1452 unsigned int end_bit; 1453 int ret = 0; 1454 1455 /* Save the dirty bitmap as our submission bitmap will be a subset of it. */ 1456 if (btrfs_is_subpage(fs_info, folio)) { 1457 ASSERT(blocks_per_folio > 1); 1458 btrfs_get_subpage_dirty_bitmap(fs_info, folio, &bio_ctrl->submit_bitmap); 1459 } else { 1460 bio_ctrl->submit_bitmap = 1; 1461 } 1462 1463 for_each_set_bitrange(start_bit, end_bit, &bio_ctrl->submit_bitmap, 1464 blocks_per_folio) { 1465 u64 start = page_start + (start_bit << fs_info->sectorsize_bits); 1466 u32 len = (end_bit - start_bit) << fs_info->sectorsize_bits; 1467 1468 btrfs_folio_set_lock(fs_info, folio, start, len); 1469 } 1470 1471 /* Lock all (subpage) delalloc ranges inside the folio first. */ 1472 while (delalloc_start < page_end) { 1473 delalloc_end = page_end; 1474 if (!find_lock_delalloc_range(&inode->vfs_inode, folio, 1475 &delalloc_start, &delalloc_end)) { 1476 delalloc_start = delalloc_end + 1; 1477 continue; 1478 } 1479 set_delalloc_bitmap(folio, &delalloc_bitmap, delalloc_start, 1480 min(delalloc_end, page_end) + 1 - delalloc_start); 1481 last_delalloc_end = delalloc_end; 1482 delalloc_start = delalloc_end + 1; 1483 } 1484 delalloc_start = page_start; 1485 1486 if (!last_delalloc_end) 1487 goto out; 1488 1489 /* Run the delalloc ranges for the above locked ranges. */ 1490 while (delalloc_start < page_end) { 1491 u64 found_start; 1492 u32 found_len; 1493 bool found; 1494 1495 if (!is_subpage) { 1496 /* 1497 * For non-subpage case, the found delalloc range must 1498 * cover this folio and there must be only one locked 1499 * delalloc range. 1500 */ 1501 found_start = page_start; 1502 found_len = last_delalloc_end + 1 - found_start; 1503 found = true; 1504 } else { 1505 found = find_next_delalloc_bitmap(folio, &delalloc_bitmap, 1506 delalloc_start, &found_start, &found_len); 1507 } 1508 if (!found) 1509 break; 1510 /* 1511 * The subpage range covers the last sector, the delalloc range may 1512 * end beyond the folio boundary, use the saved delalloc_end 1513 * instead. 1514 */ 1515 if (found_start + found_len >= page_end) 1516 found_len = last_delalloc_end + 1 - found_start; 1517 1518 if (ret >= 0) { 1519 /* 1520 * Some delalloc range may be created by previous folios. 1521 * Thus we still need to clean up this range during error 1522 * handling. 1523 */ 1524 last_finished_delalloc_end = found_start; 1525 /* No errors hit so far, run the current delalloc range. */ 1526 ret = btrfs_run_delalloc_range(inode, folio, 1527 found_start, 1528 found_start + found_len - 1, 1529 wbc); 1530 if (ret >= 0) 1531 last_finished_delalloc_end = found_start + found_len; 1532 if (unlikely(ret < 0)) 1533 btrfs_err_rl(fs_info, 1534 "failed to run delalloc range, root=%lld ino=%llu folio=%llu submit_bitmap=%*pbl start=%llu len=%u: %d", 1535 btrfs_root_id(inode->root), 1536 btrfs_ino(inode), 1537 folio_pos(folio), 1538 blocks_per_folio, 1539 &bio_ctrl->submit_bitmap, 1540 found_start, found_len, ret); 1541 } else { 1542 /* 1543 * We've hit an error during previous delalloc range, 1544 * have to cleanup the remaining locked ranges. 1545 */ 1546 btrfs_unlock_extent(&inode->io_tree, found_start, 1547 found_start + found_len - 1, NULL); 1548 unlock_delalloc_folio(&inode->vfs_inode, folio, 1549 found_start, 1550 found_start + found_len - 1); 1551 } 1552 1553 /* 1554 * We have some ranges that's going to be submitted asynchronously 1555 * (compression or inline). These range have their own control 1556 * on when to unlock the pages. We should not touch them 1557 * anymore, so clear the range from the submission bitmap. 1558 */ 1559 if (ret > 0) { 1560 unsigned int start_bit = (found_start - page_start) >> 1561 fs_info->sectorsize_bits; 1562 unsigned int end_bit = (min(page_end + 1, found_start + found_len) - 1563 page_start) >> fs_info->sectorsize_bits; 1564 bitmap_clear(&bio_ctrl->submit_bitmap, start_bit, end_bit - start_bit); 1565 } 1566 /* 1567 * Above btrfs_run_delalloc_range() may have unlocked the folio, 1568 * thus for the last range, we cannot touch the folio anymore. 1569 */ 1570 if (found_start + found_len >= last_delalloc_end + 1) 1571 break; 1572 1573 delalloc_start = found_start + found_len; 1574 } 1575 /* 1576 * It's possible we had some ordered extents created before we hit 1577 * an error, cleanup non-async successfully created delalloc ranges. 1578 */ 1579 if (unlikely(ret < 0)) { 1580 unsigned int bitmap_size = min( 1581 (last_finished_delalloc_end - page_start) >> 1582 fs_info->sectorsize_bits, 1583 blocks_per_folio); 1584 1585 for_each_set_bitrange(start_bit, end_bit, &bio_ctrl->submit_bitmap, 1586 bitmap_size) { 1587 u64 start = page_start + (start_bit << fs_info->sectorsize_bits); 1588 u32 len = (end_bit - start_bit) << fs_info->sectorsize_bits; 1589 1590 btrfs_mark_ordered_io_finished(inode, folio, start, len, false); 1591 } 1592 return ret; 1593 } 1594 out: 1595 if (last_delalloc_end) 1596 delalloc_end = last_delalloc_end; 1597 else 1598 delalloc_end = page_end; 1599 /* 1600 * delalloc_end is already one less than the total length, so 1601 * we don't subtract one from PAGE_SIZE. 1602 */ 1603 delalloc_to_write += 1604 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE); 1605 1606 /* 1607 * If all ranges are submitted asynchronously, we just need to account 1608 * for them here. 1609 */ 1610 if (bitmap_empty(&bio_ctrl->submit_bitmap, blocks_per_folio)) { 1611 wbc->nr_to_write -= delalloc_to_write; 1612 return 1; 1613 } 1614 1615 if (wbc->nr_to_write < delalloc_to_write) { 1616 int thresh = 8192; 1617 1618 if (delalloc_to_write < thresh * 2) 1619 thresh = delalloc_to_write; 1620 wbc->nr_to_write = min_t(u64, delalloc_to_write, 1621 thresh); 1622 } 1623 1624 return 0; 1625 } 1626 1627 /* 1628 * Return 0 if we have submitted or queued the sector for submission. 1629 * Return <0 for critical errors, and the involved sector will be cleaned up. 1630 * 1631 * Caller should make sure filepos < i_size and handle filepos >= i_size case. 1632 */ 1633 static int submit_one_sector(struct btrfs_inode *inode, 1634 struct folio *folio, 1635 u64 filepos, struct btrfs_bio_ctrl *bio_ctrl, 1636 loff_t i_size) 1637 { 1638 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1639 struct extent_map *em; 1640 u64 block_start; 1641 u64 disk_bytenr; 1642 u64 extent_offset; 1643 u64 em_end; 1644 const u32 sectorsize = fs_info->sectorsize; 1645 1646 ASSERT(IS_ALIGNED(filepos, sectorsize)); 1647 1648 /* @filepos >= i_size case should be handled by the caller. */ 1649 ASSERT(filepos < i_size); 1650 1651 em = btrfs_get_extent(inode, NULL, filepos, sectorsize); 1652 if (IS_ERR(em)) { 1653 /* 1654 * bio_ctrl may contain a bio crossing several folios. 1655 * Submit it immediately so that the bio has a chance 1656 * to finish normally, other than marked as error. 1657 */ 1658 submit_one_bio(bio_ctrl); 1659 1660 /* 1661 * When submission failed, we should still clear the folio dirty. 1662 * Or the folio will be written back again but without any 1663 * ordered extent. 1664 */ 1665 btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize); 1666 btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize); 1667 btrfs_folio_clear_writeback(fs_info, folio, filepos, sectorsize); 1668 1669 /* 1670 * Since there is no bio submitted to finish the ordered 1671 * extent, we have to manually finish this sector. 1672 */ 1673 btrfs_mark_ordered_io_finished(inode, folio, filepos, 1674 fs_info->sectorsize, false); 1675 return PTR_ERR(em); 1676 } 1677 1678 extent_offset = filepos - em->start; 1679 em_end = btrfs_extent_map_end(em); 1680 ASSERT(filepos <= em_end); 1681 ASSERT(IS_ALIGNED(em->start, sectorsize)); 1682 ASSERT(IS_ALIGNED(em->len, sectorsize)); 1683 1684 block_start = btrfs_extent_map_block_start(em); 1685 disk_bytenr = btrfs_extent_map_block_start(em) + extent_offset; 1686 1687 ASSERT(!btrfs_extent_map_is_compressed(em)); 1688 ASSERT(block_start != EXTENT_MAP_HOLE); 1689 ASSERT(block_start != EXTENT_MAP_INLINE); 1690 1691 btrfs_free_extent_map(em); 1692 em = NULL; 1693 1694 /* 1695 * Although the PageDirty bit is cleared before entering this 1696 * function, subpage dirty bit is not cleared. 1697 * So clear subpage dirty bit here so next time we won't submit 1698 * a folio for a range already written to disk. 1699 */ 1700 btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize); 1701 btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize); 1702 /* 1703 * Above call should set the whole folio with writeback flag, even 1704 * just for a single subpage sector. 1705 * As long as the folio is properly locked and the range is correct, 1706 * we should always get the folio with writeback flag. 1707 */ 1708 ASSERT(folio_test_writeback(folio)); 1709 1710 submit_extent_folio(bio_ctrl, disk_bytenr, folio, 1711 sectorsize, filepos - folio_pos(folio), 0); 1712 return 0; 1713 } 1714 1715 /* 1716 * Helper for extent_writepage(). This calls the writepage start hooks, 1717 * and does the loop to map the page into extents and bios. 1718 * 1719 * We return 1 if the IO is started and the page is unlocked, 1720 * 0 if all went well (page still locked) 1721 * < 0 if there were errors (page still locked) 1722 */ 1723 static noinline_for_stack int extent_writepage_io(struct btrfs_inode *inode, 1724 struct folio *folio, 1725 u64 start, u32 len, 1726 struct btrfs_bio_ctrl *bio_ctrl, 1727 loff_t i_size) 1728 { 1729 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1730 unsigned long range_bitmap = 0; 1731 bool submitted_io = false; 1732 int found_error = 0; 1733 const u64 end = start + len; 1734 const u64 folio_start = folio_pos(folio); 1735 const u64 folio_end = folio_start + folio_size(folio); 1736 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio); 1737 u64 cur; 1738 int bit; 1739 int ret = 0; 1740 1741 ASSERT(start >= folio_start, "start=%llu folio_start=%llu", start, folio_start); 1742 ASSERT(end <= folio_end, "start=%llu len=%u folio_start=%llu folio_size=%zu", 1743 start, len, folio_start, folio_size(folio)); 1744 1745 ret = btrfs_writepage_cow_fixup(folio); 1746 if (ret == -EAGAIN) { 1747 /* Fixup worker will requeue */ 1748 folio_redirty_for_writepage(bio_ctrl->wbc, folio); 1749 folio_unlock(folio); 1750 return 1; 1751 } 1752 if (ret < 0) { 1753 btrfs_folio_clear_dirty(fs_info, folio, start, len); 1754 btrfs_folio_set_writeback(fs_info, folio, start, len); 1755 btrfs_folio_clear_writeback(fs_info, folio, start, len); 1756 return ret; 1757 } 1758 1759 bitmap_set(&range_bitmap, (start - folio_pos(folio)) >> fs_info->sectorsize_bits, 1760 len >> fs_info->sectorsize_bits); 1761 bitmap_and(&bio_ctrl->submit_bitmap, &bio_ctrl->submit_bitmap, &range_bitmap, 1762 blocks_per_folio); 1763 1764 bio_ctrl->end_io_func = end_bbio_data_write; 1765 1766 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, blocks_per_folio) { 1767 cur = folio_pos(folio) + (bit << fs_info->sectorsize_bits); 1768 1769 if (cur >= i_size) { 1770 struct btrfs_ordered_extent *ordered; 1771 1772 ordered = btrfs_lookup_first_ordered_range(inode, cur, 1773 fs_info->sectorsize); 1774 /* 1775 * We have just run delalloc before getting here, so 1776 * there must be an ordered extent. 1777 */ 1778 ASSERT(ordered != NULL); 1779 spin_lock(&inode->ordered_tree_lock); 1780 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 1781 ordered->truncated_len = min(ordered->truncated_len, 1782 cur - ordered->file_offset); 1783 spin_unlock(&inode->ordered_tree_lock); 1784 btrfs_put_ordered_extent(ordered); 1785 1786 btrfs_mark_ordered_io_finished(inode, folio, cur, 1787 fs_info->sectorsize, true); 1788 /* 1789 * This range is beyond i_size, thus we don't need to 1790 * bother writing back. 1791 * But we still need to clear the dirty subpage bit, or 1792 * the next time the folio gets dirtied, we will try to 1793 * writeback the sectors with subpage dirty bits, 1794 * causing writeback without ordered extent. 1795 */ 1796 btrfs_folio_clear_dirty(fs_info, folio, cur, fs_info->sectorsize); 1797 continue; 1798 } 1799 ret = submit_one_sector(inode, folio, cur, bio_ctrl, i_size); 1800 if (unlikely(ret < 0)) { 1801 if (!found_error) 1802 found_error = ret; 1803 continue; 1804 } 1805 submitted_io = true; 1806 } 1807 1808 /* 1809 * If we didn't submitted any sector (>= i_size), folio dirty get 1810 * cleared but PAGECACHE_TAG_DIRTY is not cleared (only cleared 1811 * by folio_start_writeback() if the folio is not dirty). 1812 * 1813 * Here we set writeback and clear for the range. If the full folio 1814 * is no longer dirty then we clear the PAGECACHE_TAG_DIRTY tag. 1815 * 1816 * If we hit any error, the corresponding sector will have its dirty 1817 * flag cleared and writeback finished, thus no need to handle the error case. 1818 */ 1819 if (!submitted_io && !found_error) { 1820 btrfs_folio_set_writeback(fs_info, folio, start, len); 1821 btrfs_folio_clear_writeback(fs_info, folio, start, len); 1822 } 1823 return found_error; 1824 } 1825 1826 /* 1827 * the writepage semantics are similar to regular writepage. extent 1828 * records are inserted to lock ranges in the tree, and as dirty areas 1829 * are found, they are marked writeback. Then the lock bits are removed 1830 * and the end_io handler clears the writeback ranges 1831 * 1832 * Return 0 if everything goes well. 1833 * Return <0 for error. 1834 */ 1835 static int extent_writepage(struct folio *folio, struct btrfs_bio_ctrl *bio_ctrl) 1836 { 1837 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host); 1838 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1839 int ret; 1840 size_t pg_offset; 1841 loff_t i_size = i_size_read(&inode->vfs_inode); 1842 const pgoff_t end_index = i_size >> PAGE_SHIFT; 1843 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio); 1844 1845 trace_extent_writepage(folio, &inode->vfs_inode, bio_ctrl->wbc); 1846 1847 WARN_ON(!folio_test_locked(folio)); 1848 1849 pg_offset = offset_in_folio(folio, i_size); 1850 if (folio->index > end_index || 1851 (folio->index == end_index && !pg_offset)) { 1852 folio_invalidate(folio, 0, folio_size(folio)); 1853 folio_unlock(folio); 1854 return 0; 1855 } 1856 1857 if (folio_contains(folio, end_index)) 1858 folio_zero_range(folio, pg_offset, folio_size(folio) - pg_offset); 1859 1860 /* 1861 * Default to unlock the whole folio. 1862 * The proper bitmap can only be initialized until writepage_delalloc(). 1863 */ 1864 bio_ctrl->submit_bitmap = (unsigned long)-1; 1865 1866 /* 1867 * If the page is dirty but without private set, it's marked dirty 1868 * without informing the fs. 1869 * Nowadays that is a bug, since the introduction of 1870 * pin_user_pages*(). 1871 * 1872 * So here we check if the page has private set to rule out such 1873 * case. 1874 * But we also have a long history of relying on the COW fixup, 1875 * so here we only enable this check for experimental builds until 1876 * we're sure it's safe. 1877 */ 1878 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL) && 1879 unlikely(!folio_test_private(folio))) { 1880 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 1881 btrfs_err_rl(fs_info, 1882 "root %lld ino %llu folio %llu is marked dirty without notifying the fs", 1883 btrfs_root_id(inode->root), 1884 btrfs_ino(inode), folio_pos(folio)); 1885 ret = -EUCLEAN; 1886 goto done; 1887 } 1888 1889 ret = set_folio_extent_mapped(folio); 1890 if (ret < 0) 1891 goto done; 1892 1893 ret = writepage_delalloc(inode, folio, bio_ctrl); 1894 if (ret == 1) 1895 return 0; 1896 if (ret) 1897 goto done; 1898 1899 ret = extent_writepage_io(inode, folio, folio_pos(folio), 1900 folio_size(folio), bio_ctrl, i_size); 1901 if (ret == 1) 1902 return 0; 1903 if (unlikely(ret < 0)) 1904 btrfs_err_rl(fs_info, 1905 "failed to submit blocks, root=%lld inode=%llu folio=%llu submit_bitmap=%*pbl: %d", 1906 btrfs_root_id(inode->root), btrfs_ino(inode), 1907 folio_pos(folio), blocks_per_folio, 1908 &bio_ctrl->submit_bitmap, ret); 1909 1910 bio_ctrl->wbc->nr_to_write--; 1911 1912 done: 1913 if (ret < 0) 1914 mapping_set_error(folio->mapping, ret); 1915 /* 1916 * Only unlock ranges that are submitted. As there can be some async 1917 * submitted ranges inside the folio. 1918 */ 1919 btrfs_folio_end_lock_bitmap(fs_info, folio, bio_ctrl->submit_bitmap); 1920 ASSERT(ret <= 0); 1921 return ret; 1922 } 1923 1924 /* 1925 * Lock extent buffer status and pages for writeback. 1926 * 1927 * Return %false if the extent buffer doesn't need to be submitted (e.g. the 1928 * extent buffer is not dirty) 1929 * Return %true is the extent buffer is submitted to bio. 1930 */ 1931 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb, 1932 struct writeback_control *wbc) 1933 { 1934 struct btrfs_fs_info *fs_info = eb->fs_info; 1935 bool ret = false; 1936 1937 btrfs_tree_lock(eb); 1938 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 1939 btrfs_tree_unlock(eb); 1940 if (wbc->sync_mode != WB_SYNC_ALL) 1941 return false; 1942 wait_on_extent_buffer_writeback(eb); 1943 btrfs_tree_lock(eb); 1944 } 1945 1946 /* 1947 * We need to do this to prevent races in people who check if the eb is 1948 * under IO since we can end up having no IO bits set for a short period 1949 * of time. 1950 */ 1951 spin_lock(&eb->refs_lock); 1952 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 1953 XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits); 1954 unsigned long flags; 1955 1956 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1957 spin_unlock(&eb->refs_lock); 1958 1959 xas_lock_irqsave(&xas, flags); 1960 xas_load(&xas); 1961 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK); 1962 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); 1963 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); 1964 xas_unlock_irqrestore(&xas, flags); 1965 1966 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 1967 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1968 -eb->len, 1969 fs_info->dirty_metadata_batch); 1970 ret = true; 1971 } else { 1972 spin_unlock(&eb->refs_lock); 1973 } 1974 btrfs_tree_unlock(eb); 1975 return ret; 1976 } 1977 1978 static void set_btree_ioerr(struct extent_buffer *eb) 1979 { 1980 struct btrfs_fs_info *fs_info = eb->fs_info; 1981 1982 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1983 1984 /* 1985 * A read may stumble upon this buffer later, make sure that it gets an 1986 * error and knows there was an error. 1987 */ 1988 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 1989 1990 /* 1991 * We need to set the mapping with the io error as well because a write 1992 * error will flip the file system readonly, and then syncfs() will 1993 * return a 0 because we are readonly if we don't modify the err seq for 1994 * the superblock. 1995 */ 1996 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO); 1997 1998 /* 1999 * If writeback for a btree extent that doesn't belong to a log tree 2000 * failed, increment the counter transaction->eb_write_errors. 2001 * We do this because while the transaction is running and before it's 2002 * committing (when we call filemap_fdata[write|wait]_range against 2003 * the btree inode), we might have 2004 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 2005 * returns an error or an error happens during writeback, when we're 2006 * committing the transaction we wouldn't know about it, since the pages 2007 * can be no longer dirty nor marked anymore for writeback (if a 2008 * subsequent modification to the extent buffer didn't happen before the 2009 * transaction commit), which makes filemap_fdata[write|wait]_range not 2010 * able to find the pages which contain errors at transaction 2011 * commit time. So if this happens we must abort the transaction, 2012 * otherwise we commit a super block with btree roots that point to 2013 * btree nodes/leafs whose content on disk is invalid - either garbage 2014 * or the content of some node/leaf from a past generation that got 2015 * cowed or deleted and is no longer valid. 2016 * 2017 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 2018 * not be enough - we need to distinguish between log tree extents vs 2019 * non-log tree extents, and the next filemap_fdatawait_range() call 2020 * will catch and clear such errors in the mapping - and that call might 2021 * be from a log sync and not from a transaction commit. Also, checking 2022 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 2023 * not done and would not be reliable - the eb might have been released 2024 * from memory and reading it back again means that flag would not be 2025 * set (since it's a runtime flag, not persisted on disk). 2026 * 2027 * Using the flags below in the btree inode also makes us achieve the 2028 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 2029 * writeback for all dirty pages and before filemap_fdatawait_range() 2030 * is called, the writeback for all dirty pages had already finished 2031 * with errors - because we were not using AS_EIO/AS_ENOSPC, 2032 * filemap_fdatawait_range() would return success, as it could not know 2033 * that writeback errors happened (the pages were no longer tagged for 2034 * writeback). 2035 */ 2036 switch (eb->log_index) { 2037 case -1: 2038 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 2039 break; 2040 case 0: 2041 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2042 break; 2043 case 1: 2044 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2045 break; 2046 default: 2047 BUG(); /* unexpected, logic error */ 2048 } 2049 } 2050 2051 static void buffer_tree_set_mark(const struct extent_buffer *eb, xa_mark_t mark) 2052 { 2053 struct btrfs_fs_info *fs_info = eb->fs_info; 2054 XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits); 2055 unsigned long flags; 2056 2057 xas_lock_irqsave(&xas, flags); 2058 xas_load(&xas); 2059 xas_set_mark(&xas, mark); 2060 xas_unlock_irqrestore(&xas, flags); 2061 } 2062 2063 static void buffer_tree_clear_mark(const struct extent_buffer *eb, xa_mark_t mark) 2064 { 2065 struct btrfs_fs_info *fs_info = eb->fs_info; 2066 XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits); 2067 unsigned long flags; 2068 2069 xas_lock_irqsave(&xas, flags); 2070 xas_load(&xas); 2071 xas_clear_mark(&xas, mark); 2072 xas_unlock_irqrestore(&xas, flags); 2073 } 2074 2075 static void buffer_tree_tag_for_writeback(struct btrfs_fs_info *fs_info, 2076 unsigned long start, unsigned long end) 2077 { 2078 XA_STATE(xas, &fs_info->buffer_tree, start); 2079 unsigned int tagged = 0; 2080 void *eb; 2081 2082 xas_lock_irq(&xas); 2083 xas_for_each_marked(&xas, eb, end, PAGECACHE_TAG_DIRTY) { 2084 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE); 2085 if (++tagged % XA_CHECK_SCHED) 2086 continue; 2087 xas_pause(&xas); 2088 xas_unlock_irq(&xas); 2089 cond_resched(); 2090 xas_lock_irq(&xas); 2091 } 2092 xas_unlock_irq(&xas); 2093 } 2094 2095 struct eb_batch { 2096 unsigned int nr; 2097 unsigned int cur; 2098 struct extent_buffer *ebs[PAGEVEC_SIZE]; 2099 }; 2100 2101 static inline bool eb_batch_add(struct eb_batch *batch, struct extent_buffer *eb) 2102 { 2103 batch->ebs[batch->nr++] = eb; 2104 return (batch->nr < PAGEVEC_SIZE); 2105 } 2106 2107 static inline void eb_batch_init(struct eb_batch *batch) 2108 { 2109 batch->nr = 0; 2110 batch->cur = 0; 2111 } 2112 2113 static inline struct extent_buffer *eb_batch_next(struct eb_batch *batch) 2114 { 2115 if (batch->cur >= batch->nr) 2116 return NULL; 2117 return batch->ebs[batch->cur++]; 2118 } 2119 2120 static inline void eb_batch_release(struct eb_batch *batch) 2121 { 2122 for (unsigned int i = 0; i < batch->nr; i++) 2123 free_extent_buffer(batch->ebs[i]); 2124 eb_batch_init(batch); 2125 } 2126 2127 static inline struct extent_buffer *find_get_eb(struct xa_state *xas, unsigned long max, 2128 xa_mark_t mark) 2129 { 2130 struct extent_buffer *eb; 2131 2132 retry: 2133 eb = xas_find_marked(xas, max, mark); 2134 2135 if (xas_retry(xas, eb)) 2136 goto retry; 2137 2138 if (!eb) 2139 return NULL; 2140 2141 if (!refcount_inc_not_zero(&eb->refs)) { 2142 xas_reset(xas); 2143 goto retry; 2144 } 2145 2146 if (unlikely(eb != xas_reload(xas))) { 2147 free_extent_buffer(eb); 2148 xas_reset(xas); 2149 goto retry; 2150 } 2151 2152 return eb; 2153 } 2154 2155 static unsigned int buffer_tree_get_ebs_tag(struct btrfs_fs_info *fs_info, 2156 unsigned long *start, 2157 unsigned long end, xa_mark_t tag, 2158 struct eb_batch *batch) 2159 { 2160 XA_STATE(xas, &fs_info->buffer_tree, *start); 2161 struct extent_buffer *eb; 2162 2163 rcu_read_lock(); 2164 while ((eb = find_get_eb(&xas, end, tag)) != NULL) { 2165 if (!eb_batch_add(batch, eb)) { 2166 *start = ((eb->start + eb->len) >> fs_info->nodesize_bits); 2167 goto out; 2168 } 2169 } 2170 if (end == ULONG_MAX) 2171 *start = ULONG_MAX; 2172 else 2173 *start = end + 1; 2174 out: 2175 rcu_read_unlock(); 2176 2177 return batch->nr; 2178 } 2179 2180 /* 2181 * The endio specific version which won't touch any unsafe spinlock in endio 2182 * context. 2183 */ 2184 static struct extent_buffer *find_extent_buffer_nolock( 2185 struct btrfs_fs_info *fs_info, u64 start) 2186 { 2187 struct extent_buffer *eb; 2188 unsigned long index = (start >> fs_info->nodesize_bits); 2189 2190 rcu_read_lock(); 2191 eb = xa_load(&fs_info->buffer_tree, index); 2192 if (eb && !refcount_inc_not_zero(&eb->refs)) 2193 eb = NULL; 2194 rcu_read_unlock(); 2195 return eb; 2196 } 2197 2198 static void end_bbio_meta_write(struct btrfs_bio *bbio) 2199 { 2200 struct extent_buffer *eb = bbio->private; 2201 struct folio_iter fi; 2202 2203 if (bbio->bio.bi_status != BLK_STS_OK) 2204 set_btree_ioerr(eb); 2205 2206 bio_for_each_folio_all(fi, &bbio->bio) { 2207 btrfs_meta_folio_clear_writeback(fi.folio, eb); 2208 } 2209 2210 buffer_tree_clear_mark(eb, PAGECACHE_TAG_WRITEBACK); 2211 clear_and_wake_up_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 2212 bio_put(&bbio->bio); 2213 } 2214 2215 static void prepare_eb_write(struct extent_buffer *eb) 2216 { 2217 u32 nritems; 2218 unsigned long start; 2219 unsigned long end; 2220 2221 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 2222 2223 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 2224 nritems = btrfs_header_nritems(eb); 2225 if (btrfs_header_level(eb) > 0) { 2226 end = btrfs_node_key_ptr_offset(eb, nritems); 2227 memzero_extent_buffer(eb, end, eb->len - end); 2228 } else { 2229 /* 2230 * Leaf: 2231 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 2232 */ 2233 start = btrfs_item_nr_offset(eb, nritems); 2234 end = btrfs_item_nr_offset(eb, 0); 2235 if (nritems == 0) 2236 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info); 2237 else 2238 end += btrfs_item_offset(eb, nritems - 1); 2239 memzero_extent_buffer(eb, start, end - start); 2240 } 2241 } 2242 2243 static noinline_for_stack void write_one_eb(struct extent_buffer *eb, 2244 struct writeback_control *wbc) 2245 { 2246 struct btrfs_fs_info *fs_info = eb->fs_info; 2247 struct btrfs_bio *bbio; 2248 2249 prepare_eb_write(eb); 2250 2251 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 2252 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc), 2253 BTRFS_I(fs_info->btree_inode), eb->start, 2254 end_bbio_meta_write, eb); 2255 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 2256 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 2257 wbc_init_bio(wbc, &bbio->bio); 2258 for (int i = 0; i < num_extent_folios(eb); i++) { 2259 struct folio *folio = eb->folios[i]; 2260 u64 range_start = max_t(u64, eb->start, folio_pos(folio)); 2261 u32 range_len = min_t(u64, folio_next_pos(folio), 2262 eb->start + eb->len) - range_start; 2263 2264 folio_lock(folio); 2265 btrfs_meta_folio_clear_dirty(folio, eb); 2266 btrfs_meta_folio_set_writeback(folio, eb); 2267 if (!folio_test_dirty(folio)) 2268 wbc->nr_to_write -= folio_nr_pages(folio); 2269 bio_add_folio_nofail(&bbio->bio, folio, range_len, 2270 offset_in_folio(folio, range_start)); 2271 wbc_account_cgroup_owner(wbc, folio, range_len); 2272 folio_unlock(folio); 2273 } 2274 /* 2275 * If the fs is already in error status, do not submit any writeback 2276 * but immediately finish it. 2277 */ 2278 if (unlikely(BTRFS_FS_ERROR(fs_info))) { 2279 btrfs_bio_end_io(bbio, errno_to_blk_status(BTRFS_FS_ERROR(fs_info))); 2280 return; 2281 } 2282 btrfs_submit_bbio(bbio, 0); 2283 } 2284 2285 /* 2286 * Wait for all eb writeback in the given range to finish. 2287 * 2288 * @fs_info: The fs_info for this file system. 2289 * @start: The offset of the range to start waiting on writeback. 2290 * @end: The end of the range, inclusive. This is meant to be used in 2291 * conjunction with wait_marked_extents, so this will usually be 2292 * the_next_eb->start - 1. 2293 */ 2294 void btrfs_btree_wait_writeback_range(struct btrfs_fs_info *fs_info, u64 start, 2295 u64 end) 2296 { 2297 struct eb_batch batch; 2298 unsigned long start_index = (start >> fs_info->nodesize_bits); 2299 unsigned long end_index = (end >> fs_info->nodesize_bits); 2300 2301 eb_batch_init(&batch); 2302 while (start_index <= end_index) { 2303 struct extent_buffer *eb; 2304 unsigned int nr_ebs; 2305 2306 nr_ebs = buffer_tree_get_ebs_tag(fs_info, &start_index, end_index, 2307 PAGECACHE_TAG_WRITEBACK, &batch); 2308 if (!nr_ebs) 2309 break; 2310 2311 while ((eb = eb_batch_next(&batch)) != NULL) 2312 wait_on_extent_buffer_writeback(eb); 2313 eb_batch_release(&batch); 2314 cond_resched(); 2315 } 2316 } 2317 2318 int btree_writepages(struct address_space *mapping, struct writeback_control *wbc) 2319 { 2320 struct btrfs_eb_write_context ctx = { .wbc = wbc }; 2321 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 2322 int ret = 0; 2323 int done = 0; 2324 int nr_to_write_done = 0; 2325 struct eb_batch batch; 2326 unsigned int nr_ebs; 2327 unsigned long index; 2328 unsigned long end; 2329 int scanned = 0; 2330 xa_mark_t tag; 2331 2332 eb_batch_init(&batch); 2333 if (wbc->range_cyclic) { 2334 index = ((mapping->writeback_index << PAGE_SHIFT) >> fs_info->nodesize_bits); 2335 end = -1; 2336 2337 /* 2338 * Start from the beginning does not need to cycle over the 2339 * range, mark it as scanned. 2340 */ 2341 scanned = (index == 0); 2342 } else { 2343 index = (wbc->range_start >> fs_info->nodesize_bits); 2344 end = (wbc->range_end >> fs_info->nodesize_bits); 2345 2346 scanned = 1; 2347 } 2348 if (wbc->sync_mode == WB_SYNC_ALL) 2349 tag = PAGECACHE_TAG_TOWRITE; 2350 else 2351 tag = PAGECACHE_TAG_DIRTY; 2352 btrfs_zoned_meta_io_lock(fs_info); 2353 retry: 2354 if (wbc->sync_mode == WB_SYNC_ALL) 2355 buffer_tree_tag_for_writeback(fs_info, index, end); 2356 while (!done && !nr_to_write_done && (index <= end) && 2357 (nr_ebs = buffer_tree_get_ebs_tag(fs_info, &index, end, tag, &batch))) { 2358 struct extent_buffer *eb; 2359 2360 while ((eb = eb_batch_next(&batch)) != NULL) { 2361 ctx.eb = eb; 2362 2363 ret = btrfs_check_meta_write_pointer(eb->fs_info, &ctx); 2364 if (ret) { 2365 if (ret == -EBUSY) 2366 ret = 0; 2367 2368 if (ret) { 2369 done = 1; 2370 break; 2371 } 2372 continue; 2373 } 2374 2375 if (!lock_extent_buffer_for_io(eb, wbc)) 2376 continue; 2377 2378 /* Implies write in zoned mode. */ 2379 if (ctx.zoned_bg) { 2380 /* Mark the last eb in the block group. */ 2381 btrfs_schedule_zone_finish_bg(ctx.zoned_bg, eb); 2382 ctx.zoned_bg->meta_write_pointer += eb->len; 2383 } 2384 write_one_eb(eb, wbc); 2385 } 2386 nr_to_write_done = (wbc->nr_to_write <= 0); 2387 eb_batch_release(&batch); 2388 cond_resched(); 2389 } 2390 if (!scanned && !done) { 2391 /* 2392 * We hit the last page and there is more work to be done: wrap 2393 * back to the start of the file 2394 */ 2395 scanned = 1; 2396 index = 0; 2397 goto retry; 2398 } 2399 /* 2400 * If something went wrong, don't allow any metadata write bio to be 2401 * submitted. 2402 * 2403 * This would prevent use-after-free if we had dirty pages not 2404 * cleaned up, which can still happen by fuzzed images. 2405 * 2406 * - Bad extent tree 2407 * Allowing existing tree block to be allocated for other trees. 2408 * 2409 * - Log tree operations 2410 * Exiting tree blocks get allocated to log tree, bumps its 2411 * generation, then get cleaned in tree re-balance. 2412 * Such tree block will not be written back, since it's clean, 2413 * thus no WRITTEN flag set. 2414 * And after log writes back, this tree block is not traced by 2415 * any dirty extent_io_tree. 2416 * 2417 * - Offending tree block gets re-dirtied from its original owner 2418 * Since it has bumped generation, no WRITTEN flag, it can be 2419 * reused without COWing. This tree block will not be traced 2420 * by btrfs_transaction::dirty_pages. 2421 * 2422 * Now such dirty tree block will not be cleaned by any dirty 2423 * extent io tree. Thus we don't want to submit such wild eb 2424 * if the fs already has error. 2425 * 2426 * We can get ret > 0 from submit_extent_folio() indicating how many ebs 2427 * were submitted. Reset it to 0 to avoid false alerts for the caller. 2428 */ 2429 if (ret > 0) 2430 ret = 0; 2431 if (!ret && BTRFS_FS_ERROR(fs_info)) 2432 ret = -EROFS; 2433 2434 if (ctx.zoned_bg) 2435 btrfs_put_block_group(ctx.zoned_bg); 2436 btrfs_zoned_meta_io_unlock(fs_info); 2437 return ret; 2438 } 2439 2440 /* 2441 * Walk the list of dirty pages of the given address space and write all of them. 2442 * 2443 * @mapping: address space structure to write 2444 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2445 * @bio_ctrl: holds context for the write, namely the bio 2446 * 2447 * If a page is already under I/O, write_cache_pages() skips it, even 2448 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2449 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2450 * and msync() need to guarantee that all the data which was dirty at the time 2451 * the call was made get new I/O started against them. If wbc->sync_mode is 2452 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2453 * existing IO to complete. 2454 */ 2455 static int extent_write_cache_pages(struct address_space *mapping, 2456 struct btrfs_bio_ctrl *bio_ctrl) 2457 { 2458 struct writeback_control *wbc = bio_ctrl->wbc; 2459 struct inode *inode = mapping->host; 2460 int ret = 0; 2461 int done = 0; 2462 int nr_to_write_done = 0; 2463 struct folio_batch fbatch; 2464 unsigned int nr_folios; 2465 pgoff_t index; 2466 pgoff_t end; /* Inclusive */ 2467 pgoff_t done_index; 2468 int range_whole = 0; 2469 int scanned = 0; 2470 xa_mark_t tag; 2471 2472 /* 2473 * We have to hold onto the inode so that ordered extents can do their 2474 * work when the IO finishes. The alternative to this is failing to add 2475 * an ordered extent if the igrab() fails there and that is a huge pain 2476 * to deal with, so instead just hold onto the inode throughout the 2477 * writepages operation. If it fails here we are freeing up the inode 2478 * anyway and we'd rather not waste our time writing out stuff that is 2479 * going to be truncated anyway. 2480 */ 2481 if (!igrab(inode)) 2482 return 0; 2483 2484 folio_batch_init(&fbatch); 2485 if (wbc->range_cyclic) { 2486 index = mapping->writeback_index; /* Start from prev offset */ 2487 end = -1; 2488 /* 2489 * Start from the beginning does not need to cycle over the 2490 * range, mark it as scanned. 2491 */ 2492 scanned = (index == 0); 2493 } else { 2494 index = wbc->range_start >> PAGE_SHIFT; 2495 end = wbc->range_end >> PAGE_SHIFT; 2496 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2497 range_whole = 1; 2498 scanned = 1; 2499 } 2500 2501 /* 2502 * We do the tagged writepage as long as the snapshot flush bit is set 2503 * and we are the first one who do the filemap_flush() on this inode. 2504 * 2505 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 2506 * not race in and drop the bit. 2507 */ 2508 if (range_whole && wbc->nr_to_write == LONG_MAX && 2509 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 2510 &BTRFS_I(inode)->runtime_flags)) 2511 wbc->tagged_writepages = 1; 2512 2513 tag = wbc_to_tag(wbc); 2514 retry: 2515 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2516 tag_pages_for_writeback(mapping, index, end); 2517 done_index = index; 2518 while (!done && !nr_to_write_done && (index <= end) && 2519 (nr_folios = filemap_get_folios_tag(mapping, &index, 2520 end, tag, &fbatch))) { 2521 unsigned i; 2522 2523 for (i = 0; i < nr_folios; i++) { 2524 struct folio *folio = fbatch.folios[i]; 2525 2526 done_index = folio_next_index(folio); 2527 /* 2528 * At this point we hold neither the i_pages lock nor 2529 * the folio lock: the folio may be truncated or 2530 * invalidated (changing folio->mapping to NULL). 2531 */ 2532 if (!folio_trylock(folio)) { 2533 submit_write_bio(bio_ctrl, 0); 2534 folio_lock(folio); 2535 } 2536 2537 if (unlikely(folio->mapping != mapping)) { 2538 folio_unlock(folio); 2539 continue; 2540 } 2541 2542 if (!folio_test_dirty(folio)) { 2543 /* Someone wrote it for us. */ 2544 folio_unlock(folio); 2545 continue; 2546 } 2547 2548 /* 2549 * For subpage case, compression can lead to mixed 2550 * writeback and dirty flags, e.g: 2551 * 0 32K 64K 96K 128K 2552 * | |//////||/////| |//| 2553 * 2554 * In above case, [32K, 96K) is asynchronously submitted 2555 * for compression, and [124K, 128K) needs to be written back. 2556 * 2557 * If we didn't wait writeback for page 64K, [128K, 128K) 2558 * won't be submitted as the page still has writeback flag 2559 * and will be skipped in the next check. 2560 * 2561 * This mixed writeback and dirty case is only possible for 2562 * subpage case. 2563 * 2564 * TODO: Remove this check after migrating compression to 2565 * regular submission. 2566 */ 2567 if (wbc->sync_mode != WB_SYNC_NONE || 2568 btrfs_is_subpage(inode_to_fs_info(inode), folio)) { 2569 if (folio_test_writeback(folio)) 2570 submit_write_bio(bio_ctrl, 0); 2571 folio_wait_writeback(folio); 2572 } 2573 2574 if (folio_test_writeback(folio) || 2575 !folio_clear_dirty_for_io(folio)) { 2576 folio_unlock(folio); 2577 continue; 2578 } 2579 2580 ret = extent_writepage(folio, bio_ctrl); 2581 if (ret < 0) { 2582 done = 1; 2583 break; 2584 } 2585 2586 /* 2587 * The filesystem may choose to bump up nr_to_write. 2588 * We have to make sure to honor the new nr_to_write 2589 * at any time. 2590 */ 2591 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE && 2592 wbc->nr_to_write <= 0); 2593 } 2594 folio_batch_release(&fbatch); 2595 cond_resched(); 2596 } 2597 if (!scanned && !done) { 2598 /* 2599 * We hit the last page and there is more work to be done: wrap 2600 * back to the start of the file 2601 */ 2602 scanned = 1; 2603 index = 0; 2604 2605 /* 2606 * If we're looping we could run into a page that is locked by a 2607 * writer and that writer could be waiting on writeback for a 2608 * page in our current bio, and thus deadlock, so flush the 2609 * write bio here. 2610 */ 2611 submit_write_bio(bio_ctrl, 0); 2612 goto retry; 2613 } 2614 2615 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 2616 mapping->writeback_index = done_index; 2617 2618 btrfs_add_delayed_iput(BTRFS_I(inode)); 2619 return ret; 2620 } 2621 2622 /* 2623 * Submit the pages in the range to bio for call sites which delalloc range has 2624 * already been ran (aka, ordered extent inserted) and all pages are still 2625 * locked. 2626 */ 2627 void extent_write_locked_range(struct inode *inode, const struct folio *locked_folio, 2628 u64 start, u64 end, struct writeback_control *wbc, 2629 bool pages_dirty) 2630 { 2631 bool found_error = false; 2632 int ret = 0; 2633 struct address_space *mapping = inode->i_mapping; 2634 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2635 const u32 sectorsize = fs_info->sectorsize; 2636 loff_t i_size = i_size_read(inode); 2637 u64 cur = start; 2638 struct btrfs_bio_ctrl bio_ctrl = { 2639 .wbc = wbc, 2640 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2641 }; 2642 2643 if (wbc->no_cgroup_owner) 2644 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT; 2645 2646 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 2647 2648 while (cur <= end) { 2649 u64 cur_end; 2650 u32 cur_len; 2651 struct folio *folio; 2652 2653 folio = filemap_get_folio(mapping, cur >> PAGE_SHIFT); 2654 2655 /* 2656 * This shouldn't happen, the pages are pinned and locked, this 2657 * code is just in case, but shouldn't actually be run. 2658 */ 2659 if (IS_ERR(folio)) { 2660 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 2661 cur_len = cur_end + 1 - cur; 2662 btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL, 2663 cur, cur_len, false); 2664 mapping_set_error(mapping, PTR_ERR(folio)); 2665 cur = cur_end; 2666 continue; 2667 } 2668 2669 cur_end = min_t(u64, folio_next_pos(folio) - 1, end); 2670 cur_len = cur_end + 1 - cur; 2671 2672 ASSERT(folio_test_locked(folio)); 2673 if (pages_dirty && folio != locked_folio) 2674 ASSERT(folio_test_dirty(folio)); 2675 2676 /* 2677 * Set the submission bitmap to submit all sectors. 2678 * extent_writepage_io() will do the truncation correctly. 2679 */ 2680 bio_ctrl.submit_bitmap = (unsigned long)-1; 2681 ret = extent_writepage_io(BTRFS_I(inode), folio, cur, cur_len, 2682 &bio_ctrl, i_size); 2683 if (ret == 1) 2684 goto next_page; 2685 2686 if (ret) 2687 mapping_set_error(mapping, ret); 2688 btrfs_folio_end_lock(fs_info, folio, cur, cur_len); 2689 if (ret < 0) 2690 found_error = true; 2691 next_page: 2692 folio_put(folio); 2693 cur = cur_end + 1; 2694 } 2695 2696 submit_write_bio(&bio_ctrl, found_error ? ret : 0); 2697 } 2698 2699 int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 2700 { 2701 struct inode *inode = mapping->host; 2702 int ret = 0; 2703 struct btrfs_bio_ctrl bio_ctrl = { 2704 .wbc = wbc, 2705 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2706 }; 2707 2708 /* 2709 * Allow only a single thread to do the reloc work in zoned mode to 2710 * protect the write pointer updates. 2711 */ 2712 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 2713 ret = extent_write_cache_pages(mapping, &bio_ctrl); 2714 submit_write_bio(&bio_ctrl, ret); 2715 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 2716 return ret; 2717 } 2718 2719 void btrfs_readahead(struct readahead_control *rac) 2720 { 2721 struct btrfs_bio_ctrl bio_ctrl = { 2722 .opf = REQ_OP_READ | REQ_RAHEAD, 2723 .ractl = rac, 2724 .last_em_start = U64_MAX, 2725 }; 2726 struct folio *folio; 2727 struct inode *vfs_inode = rac->mapping->host; 2728 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 2729 const u64 start = readahead_pos(rac); 2730 const u64 end = start + readahead_length(rac) - 1; 2731 struct extent_state *cached_state = NULL; 2732 struct extent_map *em_cached = NULL; 2733 struct fsverity_info *vi = NULL; 2734 2735 lock_extents_for_read(inode, start, end, &cached_state); 2736 if (start < i_size_read(vfs_inode)) 2737 vi = fsverity_get_info(vfs_inode); 2738 while ((folio = readahead_folio(rac)) != NULL) 2739 btrfs_do_readpage(folio, &em_cached, &bio_ctrl, vi); 2740 2741 btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state); 2742 2743 if (em_cached) 2744 btrfs_free_extent_map(em_cached); 2745 submit_one_bio(&bio_ctrl); 2746 } 2747 2748 /* 2749 * basic invalidate_folio code, this waits on any locked or writeback 2750 * ranges corresponding to the folio, and then deletes any extent state 2751 * records from the tree 2752 */ 2753 int extent_invalidate_folio(struct extent_io_tree *tree, 2754 struct folio *folio, size_t offset) 2755 { 2756 struct extent_state *cached_state = NULL; 2757 u64 start = folio_pos(folio); 2758 u64 end = start + folio_size(folio) - 1; 2759 size_t blocksize = folio_to_fs_info(folio)->sectorsize; 2760 2761 /* This function is only called for the btree inode */ 2762 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 2763 2764 start += ALIGN(offset, blocksize); 2765 if (start > end) 2766 return 0; 2767 2768 btrfs_lock_extent(tree, start, end, &cached_state); 2769 folio_wait_writeback(folio); 2770 2771 /* 2772 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 2773 * so here we only need to unlock the extent range to free any 2774 * existing extent state. 2775 */ 2776 btrfs_unlock_extent(tree, start, end, &cached_state); 2777 return 0; 2778 } 2779 2780 /* 2781 * A helper for struct address_space_operations::release_folio, this tests for 2782 * areas of the folio that are locked or under IO and drops the related state 2783 * bits if it is safe to drop the folio. 2784 */ 2785 static bool try_release_extent_state(struct extent_io_tree *tree, 2786 struct folio *folio) 2787 { 2788 struct extent_state *cached_state = NULL; 2789 u64 start = folio_pos(folio); 2790 u64 end = start + folio_size(folio) - 1; 2791 u32 range_bits; 2792 u32 clear_bits; 2793 bool ret = false; 2794 int ret2; 2795 2796 btrfs_get_range_bits(tree, start, end, &range_bits, &cached_state); 2797 2798 /* 2799 * We can release the folio if it's locked only for ordered extent 2800 * completion, since that doesn't require using the folio. 2801 */ 2802 if ((range_bits & EXTENT_LOCKED) && 2803 !(range_bits & EXTENT_FINISHING_ORDERED)) 2804 goto out; 2805 2806 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW | 2807 EXTENT_CTLBITS | EXTENT_QGROUP_RESERVED | 2808 EXTENT_FINISHING_ORDERED); 2809 /* 2810 * At this point we can safely clear everything except the locked, 2811 * nodatasum, delalloc new and finishing ordered bits. The delalloc new 2812 * bit will be cleared by ordered extent completion. 2813 */ 2814 ret2 = btrfs_clear_extent_bit(tree, start, end, clear_bits, &cached_state); 2815 /* 2816 * If clear_extent_bit failed for enomem reasons, we can't allow the 2817 * release to continue. 2818 */ 2819 if (ret2 == 0) 2820 ret = true; 2821 out: 2822 btrfs_free_extent_state(cached_state); 2823 2824 return ret; 2825 } 2826 2827 /* 2828 * a helper for release_folio. As long as there are no locked extents 2829 * in the range corresponding to the page, both state records and extent 2830 * map records are removed 2831 */ 2832 bool try_release_extent_mapping(struct folio *folio, gfp_t mask) 2833 { 2834 u64 start = folio_pos(folio); 2835 u64 end = start + folio_size(folio) - 1; 2836 struct btrfs_inode *inode = folio_to_inode(folio); 2837 struct extent_io_tree *io_tree = &inode->io_tree; 2838 2839 while (start <= end) { 2840 const u64 cur_gen = btrfs_get_fs_generation(inode->root->fs_info); 2841 const u64 len = end - start + 1; 2842 struct extent_map_tree *extent_tree = &inode->extent_tree; 2843 struct extent_map *em; 2844 2845 write_lock(&extent_tree->lock); 2846 em = btrfs_lookup_extent_mapping(extent_tree, start, len); 2847 if (!em) { 2848 write_unlock(&extent_tree->lock); 2849 break; 2850 } 2851 if ((em->flags & EXTENT_FLAG_PINNED) || em->start != start) { 2852 write_unlock(&extent_tree->lock); 2853 btrfs_free_extent_map(em); 2854 break; 2855 } 2856 if (btrfs_test_range_bit_exists(io_tree, em->start, 2857 btrfs_extent_map_end(em) - 1, 2858 EXTENT_LOCKED)) 2859 goto next; 2860 /* 2861 * If it's not in the list of modified extents, used by a fast 2862 * fsync, we can remove it. If it's being logged we can safely 2863 * remove it since fsync took an extra reference on the em. 2864 */ 2865 if (list_empty(&em->list) || (em->flags & EXTENT_FLAG_LOGGING)) 2866 goto remove_em; 2867 /* 2868 * If it's in the list of modified extents, remove it only if 2869 * its generation is older then the current one, in which case 2870 * we don't need it for a fast fsync. Otherwise don't remove it, 2871 * we could be racing with an ongoing fast fsync that could miss 2872 * the new extent. 2873 */ 2874 if (em->generation >= cur_gen) 2875 goto next; 2876 remove_em: 2877 /* 2878 * We only remove extent maps that are not in the list of 2879 * modified extents or that are in the list but with a 2880 * generation lower then the current generation, so there is no 2881 * need to set the full fsync flag on the inode (it hurts the 2882 * fsync performance for workloads with a data size that exceeds 2883 * or is close to the system's memory). 2884 */ 2885 btrfs_remove_extent_mapping(inode, em); 2886 /* Once for the inode's extent map tree. */ 2887 btrfs_free_extent_map(em); 2888 next: 2889 start = btrfs_extent_map_end(em); 2890 write_unlock(&extent_tree->lock); 2891 2892 /* Once for us, for the lookup_extent_mapping() reference. */ 2893 btrfs_free_extent_map(em); 2894 2895 if (need_resched()) { 2896 /* 2897 * If we need to resched but we can't block just exit 2898 * and leave any remaining extent maps. 2899 */ 2900 if (!gfpflags_allow_blocking(mask)) 2901 break; 2902 2903 cond_resched(); 2904 } 2905 } 2906 return try_release_extent_state(io_tree, folio); 2907 } 2908 2909 static int extent_buffer_under_io(const struct extent_buffer *eb) 2910 { 2911 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 2912 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 2913 } 2914 2915 static bool folio_range_has_eb(struct folio *folio) 2916 { 2917 struct btrfs_folio_state *bfs; 2918 2919 lockdep_assert_held(&folio->mapping->i_private_lock); 2920 2921 if (folio_test_private(folio)) { 2922 bfs = folio_get_private(folio); 2923 if (atomic_read(&bfs->eb_refs)) 2924 return true; 2925 } 2926 return false; 2927 } 2928 2929 static void detach_extent_buffer_folio(const struct extent_buffer *eb, struct folio *folio) 2930 { 2931 struct btrfs_fs_info *fs_info = eb->fs_info; 2932 struct address_space *mapping = folio->mapping; 2933 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 2934 2935 /* 2936 * For mapped eb, we're going to change the folio private, which should 2937 * be done under the i_private_lock. 2938 */ 2939 if (mapped) 2940 spin_lock(&mapping->i_private_lock); 2941 2942 if (!folio_test_private(folio)) { 2943 if (mapped) 2944 spin_unlock(&mapping->i_private_lock); 2945 return; 2946 } 2947 2948 if (!btrfs_meta_is_subpage(fs_info)) { 2949 /* 2950 * We do this since we'll remove the pages after we've removed 2951 * the eb from the xarray, so we could race and have this page 2952 * now attached to the new eb. So only clear folio if it's 2953 * still connected to this eb. 2954 */ 2955 if (folio_test_private(folio) && folio_get_private(folio) == eb) { 2956 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 2957 BUG_ON(folio_test_dirty(folio)); 2958 BUG_ON(folio_test_writeback(folio)); 2959 /* We need to make sure we haven't be attached to a new eb. */ 2960 folio_detach_private(folio); 2961 } 2962 if (mapped) 2963 spin_unlock(&mapping->i_private_lock); 2964 return; 2965 } 2966 2967 /* 2968 * For subpage, we can have dummy eb with folio private attached. In 2969 * this case, we can directly detach the private as such folio is only 2970 * attached to one dummy eb, no sharing. 2971 */ 2972 if (!mapped) { 2973 btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA); 2974 return; 2975 } 2976 2977 btrfs_folio_dec_eb_refs(fs_info, folio); 2978 2979 /* 2980 * We can only detach the folio private if there are no other ebs in the 2981 * page range and no unfinished IO. 2982 */ 2983 if (!folio_range_has_eb(folio)) 2984 btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA); 2985 2986 spin_unlock(&mapping->i_private_lock); 2987 } 2988 2989 /* Release all folios attached to the extent buffer */ 2990 static void btrfs_release_extent_buffer_folios(const struct extent_buffer *eb) 2991 { 2992 ASSERT(!extent_buffer_under_io(eb)); 2993 2994 for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) { 2995 struct folio *folio = eb->folios[i]; 2996 2997 if (!folio) 2998 continue; 2999 3000 detach_extent_buffer_folio(eb, folio); 3001 } 3002 } 3003 3004 /* 3005 * Helper for releasing the extent buffer. 3006 */ 3007 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 3008 { 3009 btrfs_release_extent_buffer_folios(eb); 3010 btrfs_leak_debug_del_eb(eb); 3011 kmem_cache_free(extent_buffer_cache, eb); 3012 } 3013 3014 static struct extent_buffer *__alloc_extent_buffer(struct btrfs_fs_info *fs_info, 3015 u64 start) 3016 { 3017 struct extent_buffer *eb = NULL; 3018 3019 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 3020 eb->start = start; 3021 eb->len = fs_info->nodesize; 3022 eb->fs_info = fs_info; 3023 init_rwsem(&eb->lock); 3024 3025 btrfs_leak_debug_add_eb(eb); 3026 3027 spin_lock_init(&eb->refs_lock); 3028 refcount_set(&eb->refs, 1); 3029 3030 ASSERT(eb->len <= BTRFS_MAX_METADATA_BLOCKSIZE); 3031 3032 return eb; 3033 } 3034 3035 /* 3036 * For use in eb allocation error cleanup paths, as btrfs_release_extent_buffer() 3037 * does not call folio_put(), and we need to set the folios to NULL so that 3038 * btrfs_release_extent_buffer() will not detach them a second time. 3039 */ 3040 static void cleanup_extent_buffer_folios(struct extent_buffer *eb) 3041 { 3042 const int num_folios = num_extent_folios(eb); 3043 3044 /* We cannot use num_extent_folios() as loop bound as eb->folios changes. */ 3045 for (int i = 0; i < num_folios; i++) { 3046 ASSERT(eb->folios[i]); 3047 detach_extent_buffer_folio(eb, eb->folios[i]); 3048 folio_put(eb->folios[i]); 3049 eb->folios[i] = NULL; 3050 } 3051 } 3052 3053 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 3054 { 3055 struct extent_buffer *new; 3056 int num_folios; 3057 int ret; 3058 3059 new = __alloc_extent_buffer(src->fs_info, src->start); 3060 if (new == NULL) 3061 return NULL; 3062 3063 /* 3064 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 3065 * btrfs_release_extent_buffer() have different behavior for 3066 * UNMAPPED subpage extent buffer. 3067 */ 3068 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 3069 3070 ret = alloc_eb_folio_array(new, false); 3071 if (ret) 3072 goto release_eb; 3073 3074 ASSERT(num_extent_folios(src) == num_extent_folios(new), 3075 "%d != %d", num_extent_folios(src), num_extent_folios(new)); 3076 /* Explicitly use the cached num_extent value from now on. */ 3077 num_folios = num_extent_folios(src); 3078 for (int i = 0; i < num_folios; i++) { 3079 struct folio *folio = new->folios[i]; 3080 3081 ret = attach_extent_buffer_folio(new, folio, NULL); 3082 if (ret < 0) 3083 goto cleanup_folios; 3084 WARN_ON(folio_test_dirty(folio)); 3085 } 3086 for (int i = 0; i < num_folios; i++) 3087 folio_put(new->folios[i]); 3088 3089 copy_extent_buffer_full(new, src); 3090 set_extent_buffer_uptodate(new); 3091 3092 return new; 3093 3094 cleanup_folios: 3095 cleanup_extent_buffer_folios(new); 3096 release_eb: 3097 btrfs_release_extent_buffer(new); 3098 return NULL; 3099 } 3100 3101 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 3102 u64 start) 3103 { 3104 struct extent_buffer *eb; 3105 int ret; 3106 3107 eb = __alloc_extent_buffer(fs_info, start); 3108 if (!eb) 3109 return NULL; 3110 3111 ret = alloc_eb_folio_array(eb, false); 3112 if (ret) 3113 goto release_eb; 3114 3115 for (int i = 0; i < num_extent_folios(eb); i++) { 3116 ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL); 3117 if (ret < 0) 3118 goto cleanup_folios; 3119 } 3120 for (int i = 0; i < num_extent_folios(eb); i++) 3121 folio_put(eb->folios[i]); 3122 3123 set_extent_buffer_uptodate(eb); 3124 btrfs_set_header_nritems(eb, 0); 3125 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3126 3127 return eb; 3128 3129 cleanup_folios: 3130 cleanup_extent_buffer_folios(eb); 3131 release_eb: 3132 btrfs_release_extent_buffer(eb); 3133 return NULL; 3134 } 3135 3136 static void check_buffer_tree_ref(struct extent_buffer *eb) 3137 { 3138 int refs; 3139 /* 3140 * The TREE_REF bit is first set when the extent_buffer is added to the 3141 * xarray. It is also reset, if unset, when a new reference is created 3142 * by find_extent_buffer. 3143 * 3144 * It is only cleared in two cases: freeing the last non-tree 3145 * reference to the extent_buffer when its STALE bit is set or 3146 * calling release_folio when the tree reference is the only reference. 3147 * 3148 * In both cases, care is taken to ensure that the extent_buffer's 3149 * pages are not under io. However, release_folio can be concurrently 3150 * called with creating new references, which is prone to race 3151 * conditions between the calls to check_buffer_tree_ref in those 3152 * codepaths and clearing TREE_REF in try_release_extent_buffer. 3153 * 3154 * The actual lifetime of the extent_buffer in the xarray is adequately 3155 * protected by the refcount, but the TREE_REF bit and its corresponding 3156 * reference are not. To protect against this class of races, we call 3157 * check_buffer_tree_ref() from the code paths which trigger io. Note that 3158 * once io is initiated, TREE_REF can no longer be cleared, so that is 3159 * the moment at which any such race is best fixed. 3160 */ 3161 refs = refcount_read(&eb->refs); 3162 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3163 return; 3164 3165 spin_lock(&eb->refs_lock); 3166 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3167 refcount_inc(&eb->refs); 3168 spin_unlock(&eb->refs_lock); 3169 } 3170 3171 static void mark_extent_buffer_accessed(struct extent_buffer *eb) 3172 { 3173 check_buffer_tree_ref(eb); 3174 3175 for (int i = 0; i < num_extent_folios(eb); i++) 3176 folio_mark_accessed(eb->folios[i]); 3177 } 3178 3179 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 3180 u64 start) 3181 { 3182 struct extent_buffer *eb; 3183 3184 eb = find_extent_buffer_nolock(fs_info, start); 3185 if (!eb) 3186 return NULL; 3187 /* 3188 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 3189 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 3190 * another task running free_extent_buffer() might have seen that flag 3191 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 3192 * writeback flags not set) and it's still in the tree (flag 3193 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 3194 * decrementing the extent buffer's reference count twice. So here we 3195 * could race and increment the eb's reference count, clear its stale 3196 * flag, mark it as dirty and drop our reference before the other task 3197 * finishes executing free_extent_buffer, which would later result in 3198 * an attempt to free an extent buffer that is dirty. 3199 */ 3200 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 3201 spin_lock(&eb->refs_lock); 3202 spin_unlock(&eb->refs_lock); 3203 } 3204 mark_extent_buffer_accessed(eb); 3205 return eb; 3206 } 3207 3208 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 3209 u64 start) 3210 { 3211 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3212 struct extent_buffer *eb, *exists = NULL; 3213 int ret; 3214 3215 eb = find_extent_buffer(fs_info, start); 3216 if (eb) 3217 return eb; 3218 eb = alloc_dummy_extent_buffer(fs_info, start); 3219 if (!eb) 3220 return ERR_PTR(-ENOMEM); 3221 eb->fs_info = fs_info; 3222 again: 3223 xa_lock_irq(&fs_info->buffer_tree); 3224 exists = __xa_cmpxchg(&fs_info->buffer_tree, start >> fs_info->nodesize_bits, 3225 NULL, eb, GFP_NOFS); 3226 if (xa_is_err(exists)) { 3227 ret = xa_err(exists); 3228 xa_unlock_irq(&fs_info->buffer_tree); 3229 btrfs_release_extent_buffer(eb); 3230 return ERR_PTR(ret); 3231 } 3232 if (exists) { 3233 if (!refcount_inc_not_zero(&exists->refs)) { 3234 /* The extent buffer is being freed, retry. */ 3235 xa_unlock_irq(&fs_info->buffer_tree); 3236 goto again; 3237 } 3238 xa_unlock_irq(&fs_info->buffer_tree); 3239 btrfs_release_extent_buffer(eb); 3240 return exists; 3241 } 3242 xa_unlock_irq(&fs_info->buffer_tree); 3243 check_buffer_tree_ref(eb); 3244 3245 return eb; 3246 #else 3247 /* Stub to avoid linker error when compiled with optimizations turned off. */ 3248 return NULL; 3249 #endif 3250 } 3251 3252 static struct extent_buffer *grab_extent_buffer(struct btrfs_fs_info *fs_info, 3253 struct folio *folio) 3254 { 3255 struct extent_buffer *exists; 3256 3257 lockdep_assert_held(&folio->mapping->i_private_lock); 3258 3259 /* 3260 * For subpage case, we completely rely on xarray to ensure we don't try 3261 * to insert two ebs for the same bytenr. So here we always return NULL 3262 * and just continue. 3263 */ 3264 if (btrfs_meta_is_subpage(fs_info)) 3265 return NULL; 3266 3267 /* Page not yet attached to an extent buffer */ 3268 if (!folio_test_private(folio)) 3269 return NULL; 3270 3271 /* 3272 * We could have already allocated an eb for this folio and attached one 3273 * so lets see if we can get a ref on the existing eb, and if we can we 3274 * know it's good and we can just return that one, else we know we can 3275 * just overwrite folio private. 3276 */ 3277 exists = folio_get_private(folio); 3278 if (refcount_inc_not_zero(&exists->refs)) 3279 return exists; 3280 3281 WARN_ON(folio_test_dirty(folio)); 3282 folio_detach_private(folio); 3283 return NULL; 3284 } 3285 3286 /* 3287 * Validate alignment constraints of eb at logical address @start. 3288 */ 3289 static bool check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) 3290 { 3291 const u32 nodesize = fs_info->nodesize; 3292 3293 if (unlikely(!IS_ALIGNED(start, fs_info->sectorsize))) { 3294 btrfs_err(fs_info, "bad tree block start %llu", start); 3295 return true; 3296 } 3297 3298 if (unlikely(nodesize < PAGE_SIZE && !IS_ALIGNED(start, nodesize))) { 3299 btrfs_err(fs_info, 3300 "tree block is not nodesize aligned, start %llu nodesize %u", 3301 start, nodesize); 3302 return true; 3303 } 3304 if (unlikely(nodesize >= PAGE_SIZE && !PAGE_ALIGNED(start))) { 3305 btrfs_err(fs_info, 3306 "tree block is not page aligned, start %llu nodesize %u", 3307 start, nodesize); 3308 return true; 3309 } 3310 if (unlikely(!IS_ALIGNED(start, nodesize) && 3311 !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags))) { 3312 btrfs_warn(fs_info, 3313 "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance", 3314 start, nodesize); 3315 } 3316 return false; 3317 } 3318 3319 /* 3320 * Return 0 if eb->folios[i] is attached to btree inode successfully. 3321 * Return >0 if there is already another extent buffer for the range, 3322 * and @found_eb_ret would be updated. 3323 * Return -EAGAIN if the filemap has an existing folio but with different size 3324 * than @eb. 3325 * The caller needs to free the existing folios and retry using the same order. 3326 */ 3327 static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i, 3328 struct btrfs_folio_state *prealloc, 3329 struct extent_buffer **found_eb_ret) 3330 { 3331 3332 struct btrfs_fs_info *fs_info = eb->fs_info; 3333 struct address_space *mapping = fs_info->btree_inode->i_mapping; 3334 const pgoff_t index = eb->start >> PAGE_SHIFT; 3335 struct folio *existing_folio; 3336 int ret; 3337 3338 ASSERT(found_eb_ret); 3339 3340 /* Caller should ensure the folio exists. */ 3341 ASSERT(eb->folios[i]); 3342 3343 retry: 3344 existing_folio = NULL; 3345 ret = filemap_add_folio(mapping, eb->folios[i], index + i, 3346 GFP_NOFS | __GFP_NOFAIL); 3347 if (!ret) 3348 goto finish; 3349 3350 existing_folio = filemap_lock_folio(mapping, index + i); 3351 /* The page cache only exists for a very short time, just retry. */ 3352 if (IS_ERR(existing_folio)) 3353 goto retry; 3354 3355 /* For now, we should only have single-page folios for btree inode. */ 3356 ASSERT(folio_nr_pages(existing_folio) == 1); 3357 3358 if (folio_size(existing_folio) != eb->folio_size) { 3359 folio_unlock(existing_folio); 3360 folio_put(existing_folio); 3361 return -EAGAIN; 3362 } 3363 3364 finish: 3365 spin_lock(&mapping->i_private_lock); 3366 if (existing_folio && btrfs_meta_is_subpage(fs_info)) { 3367 /* We're going to reuse the existing page, can drop our folio now. */ 3368 __free_page(folio_page(eb->folios[i], 0)); 3369 eb->folios[i] = existing_folio; 3370 } else if (existing_folio) { 3371 struct extent_buffer *existing_eb; 3372 3373 existing_eb = grab_extent_buffer(fs_info, existing_folio); 3374 if (existing_eb) { 3375 /* The extent buffer still exists, we can use it directly. */ 3376 *found_eb_ret = existing_eb; 3377 spin_unlock(&mapping->i_private_lock); 3378 folio_unlock(existing_folio); 3379 folio_put(existing_folio); 3380 return 1; 3381 } 3382 /* The extent buffer no longer exists, we can reuse the folio. */ 3383 __free_page(folio_page(eb->folios[i], 0)); 3384 eb->folios[i] = existing_folio; 3385 } 3386 eb->folio_size = folio_size(eb->folios[i]); 3387 eb->folio_shift = folio_shift(eb->folios[i]); 3388 /* Should not fail, as we have preallocated the memory. */ 3389 ret = attach_extent_buffer_folio(eb, eb->folios[i], prealloc); 3390 ASSERT(!ret); 3391 /* 3392 * To inform we have an extra eb under allocation, so that 3393 * detach_extent_buffer_page() won't release the folio private when the 3394 * eb hasn't been inserted into the xarray yet. 3395 * 3396 * The ref will be decreased when the eb releases the page, in 3397 * detach_extent_buffer_page(). Thus needs no special handling in the 3398 * error path. 3399 */ 3400 btrfs_folio_inc_eb_refs(fs_info, eb->folios[i]); 3401 spin_unlock(&mapping->i_private_lock); 3402 return 0; 3403 } 3404 3405 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 3406 u64 start, u64 owner_root, int level) 3407 { 3408 int attached = 0; 3409 struct extent_buffer *eb; 3410 struct extent_buffer *existing_eb = NULL; 3411 struct btrfs_folio_state *prealloc = NULL; 3412 u64 lockdep_owner = owner_root; 3413 bool page_contig = true; 3414 int uptodate = 1; 3415 int ret; 3416 3417 if (check_eb_alignment(fs_info, start)) 3418 return ERR_PTR(-EINVAL); 3419 3420 #if BITS_PER_LONG == 32 3421 if (start >= MAX_LFS_FILESIZE) { 3422 btrfs_err_rl(fs_info, 3423 "extent buffer %llu is beyond 32bit page cache limit", start); 3424 btrfs_err_32bit_limit(fs_info); 3425 return ERR_PTR(-EOVERFLOW); 3426 } 3427 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 3428 btrfs_warn_32bit_limit(fs_info); 3429 #endif 3430 3431 eb = find_extent_buffer(fs_info, start); 3432 if (eb) 3433 return eb; 3434 3435 eb = __alloc_extent_buffer(fs_info, start); 3436 if (!eb) 3437 return ERR_PTR(-ENOMEM); 3438 3439 /* 3440 * The reloc trees are just snapshots, so we need them to appear to be 3441 * just like any other fs tree WRT lockdep. 3442 */ 3443 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID) 3444 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 3445 3446 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level); 3447 3448 /* 3449 * Preallocate folio private for subpage case, so that we won't 3450 * allocate memory with i_private_lock nor page lock hold. 3451 * 3452 * The memory will be freed by attach_extent_buffer_page() or freed 3453 * manually if we exit earlier. 3454 */ 3455 if (btrfs_meta_is_subpage(fs_info)) { 3456 prealloc = btrfs_alloc_folio_state(fs_info, PAGE_SIZE, BTRFS_SUBPAGE_METADATA); 3457 if (IS_ERR(prealloc)) { 3458 ret = PTR_ERR(prealloc); 3459 goto out; 3460 } 3461 } 3462 3463 reallocate: 3464 /* Allocate all pages first. */ 3465 ret = alloc_eb_folio_array(eb, true); 3466 if (ret < 0) { 3467 btrfs_free_folio_state(prealloc); 3468 goto out; 3469 } 3470 3471 /* Attach all pages to the filemap. */ 3472 for (int i = 0; i < num_extent_folios(eb); i++) { 3473 struct folio *folio; 3474 3475 ret = attach_eb_folio_to_filemap(eb, i, prealloc, &existing_eb); 3476 if (ret > 0) { 3477 ASSERT(existing_eb); 3478 goto out; 3479 } 3480 3481 /* 3482 * TODO: Special handling for a corner case where the order of 3483 * folios mismatch between the new eb and filemap. 3484 * 3485 * This happens when: 3486 * 3487 * - the new eb is using higher order folio 3488 * 3489 * - the filemap is still using 0-order folios for the range 3490 * This can happen at the previous eb allocation, and we don't 3491 * have higher order folio for the call. 3492 * 3493 * - the existing eb has already been freed 3494 * 3495 * In this case, we have to free the existing folios first, and 3496 * re-allocate using the same order. 3497 * Thankfully this is not going to happen yet, as we're still 3498 * using 0-order folios. 3499 */ 3500 if (unlikely(ret == -EAGAIN)) { 3501 DEBUG_WARN("folio order mismatch between new eb and filemap"); 3502 goto reallocate; 3503 } 3504 attached++; 3505 3506 /* 3507 * Only after attach_eb_folio_to_filemap(), eb->folios[] is 3508 * reliable, as we may choose to reuse the existing page cache 3509 * and free the allocated page. 3510 */ 3511 folio = eb->folios[i]; 3512 WARN_ON(btrfs_meta_folio_test_dirty(folio, eb)); 3513 3514 /* 3515 * Check if the current page is physically contiguous with previous eb 3516 * page. 3517 * At this stage, either we allocated a large folio, thus @i 3518 * would only be 0, or we fall back to per-page allocation. 3519 */ 3520 if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0)) 3521 page_contig = false; 3522 3523 if (!btrfs_meta_folio_test_uptodate(folio, eb)) 3524 uptodate = 0; 3525 3526 /* 3527 * We can't unlock the pages just yet since the extent buffer 3528 * hasn't been properly inserted into the xarray, this opens a 3529 * race with btree_release_folio() which can free a page while we 3530 * are still filling in all pages for the buffer and we could crash. 3531 */ 3532 } 3533 if (uptodate) 3534 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3535 /* All pages are physically contiguous, can skip cross page handling. */ 3536 if (page_contig) 3537 eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start); 3538 again: 3539 xa_lock_irq(&fs_info->buffer_tree); 3540 existing_eb = __xa_cmpxchg(&fs_info->buffer_tree, 3541 start >> fs_info->nodesize_bits, NULL, eb, 3542 GFP_NOFS); 3543 if (xa_is_err(existing_eb)) { 3544 ret = xa_err(existing_eb); 3545 xa_unlock_irq(&fs_info->buffer_tree); 3546 goto out; 3547 } 3548 if (existing_eb) { 3549 if (!refcount_inc_not_zero(&existing_eb->refs)) { 3550 xa_unlock_irq(&fs_info->buffer_tree); 3551 goto again; 3552 } 3553 xa_unlock_irq(&fs_info->buffer_tree); 3554 goto out; 3555 } 3556 xa_unlock_irq(&fs_info->buffer_tree); 3557 3558 /* add one reference for the tree */ 3559 check_buffer_tree_ref(eb); 3560 3561 /* 3562 * Now it's safe to unlock the pages because any calls to 3563 * btree_release_folio will correctly detect that a page belongs to a 3564 * live buffer and won't free them prematurely. 3565 */ 3566 for (int i = 0; i < num_extent_folios(eb); i++) { 3567 folio_unlock(eb->folios[i]); 3568 /* 3569 * A folio that has been added to an address_space mapping 3570 * should not continue holding the refcount from its original 3571 * allocation indefinitely. 3572 */ 3573 folio_put(eb->folios[i]); 3574 } 3575 return eb; 3576 3577 out: 3578 WARN_ON(!refcount_dec_and_test(&eb->refs)); 3579 3580 /* 3581 * Any attached folios need to be detached before we unlock them. This 3582 * is because when we're inserting our new folios into the mapping, and 3583 * then attaching our eb to that folio. If we fail to insert our folio 3584 * we'll lookup the folio for that index, and grab that EB. We do not 3585 * want that to grab this eb, as we're getting ready to free it. So we 3586 * have to detach it first and then unlock it. 3587 * 3588 * Note: the bounds is num_extent_pages() as we need to go through all slots. 3589 */ 3590 for (int i = 0; i < num_extent_pages(eb); i++) { 3591 struct folio *folio = eb->folios[i]; 3592 3593 if (i < attached) { 3594 ASSERT(folio); 3595 detach_extent_buffer_folio(eb, folio); 3596 folio_unlock(folio); 3597 } else if (!folio) { 3598 continue; 3599 } 3600 3601 folio_put(folio); 3602 eb->folios[i] = NULL; 3603 } 3604 btrfs_release_extent_buffer(eb); 3605 if (ret < 0) 3606 return ERR_PTR(ret); 3607 ASSERT(existing_eb); 3608 return existing_eb; 3609 } 3610 3611 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 3612 { 3613 struct extent_buffer *eb = 3614 container_of(head, struct extent_buffer, rcu_head); 3615 3616 kmem_cache_free(extent_buffer_cache, eb); 3617 } 3618 3619 static int release_extent_buffer(struct extent_buffer *eb) 3620 __releases(&eb->refs_lock) 3621 { 3622 lockdep_assert_held(&eb->refs_lock); 3623 3624 if (refcount_dec_and_test(&eb->refs)) { 3625 struct btrfs_fs_info *fs_info = eb->fs_info; 3626 3627 spin_unlock(&eb->refs_lock); 3628 3629 /* 3630 * We're erasing, theoretically there will be no allocations, so 3631 * just use GFP_ATOMIC. 3632 * 3633 * We use cmpxchg instead of erase because we do not know if 3634 * this eb is actually in the tree or not, we could be cleaning 3635 * up an eb that we allocated but never inserted into the tree. 3636 * Thus use cmpxchg to remove it from the tree if it is there, 3637 * or leave the other entry if this isn't in the tree. 3638 * 3639 * The documentation says that putting a NULL value is the same 3640 * as erase as long as XA_FLAGS_ALLOC is not set, which it isn't 3641 * in this case. 3642 */ 3643 xa_cmpxchg_irq(&fs_info->buffer_tree, 3644 eb->start >> fs_info->nodesize_bits, eb, NULL, 3645 GFP_ATOMIC); 3646 3647 btrfs_leak_debug_del_eb(eb); 3648 /* Should be safe to release folios at this point. */ 3649 btrfs_release_extent_buffer_folios(eb); 3650 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3651 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 3652 kmem_cache_free(extent_buffer_cache, eb); 3653 return 1; 3654 } 3655 #endif 3656 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 3657 return 1; 3658 } 3659 spin_unlock(&eb->refs_lock); 3660 3661 return 0; 3662 } 3663 3664 void free_extent_buffer(struct extent_buffer *eb) 3665 { 3666 int refs; 3667 if (!eb) 3668 return; 3669 3670 refs = refcount_read(&eb->refs); 3671 while (1) { 3672 if (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)) { 3673 if (refs == 1) 3674 break; 3675 } else if (refs <= 3) { 3676 break; 3677 } 3678 3679 /* Optimization to avoid locking eb->refs_lock. */ 3680 if (atomic_try_cmpxchg(&eb->refs.refs, &refs, refs - 1)) 3681 return; 3682 } 3683 3684 spin_lock(&eb->refs_lock); 3685 if (refcount_read(&eb->refs) == 2 && 3686 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 3687 !extent_buffer_under_io(eb) && 3688 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3689 refcount_dec(&eb->refs); 3690 3691 /* 3692 * I know this is terrible, but it's temporary until we stop tracking 3693 * the uptodate bits and such for the extent buffers. 3694 */ 3695 release_extent_buffer(eb); 3696 } 3697 3698 void free_extent_buffer_stale(struct extent_buffer *eb) 3699 { 3700 if (!eb) 3701 return; 3702 3703 spin_lock(&eb->refs_lock); 3704 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 3705 3706 if (refcount_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 3707 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3708 refcount_dec(&eb->refs); 3709 release_extent_buffer(eb); 3710 } 3711 3712 static void btree_clear_folio_dirty_tag(struct folio *folio) 3713 { 3714 ASSERT(!folio_test_dirty(folio)); 3715 ASSERT(folio_test_locked(folio)); 3716 xa_lock_irq(&folio->mapping->i_pages); 3717 if (!folio_test_dirty(folio)) 3718 __xa_clear_mark(&folio->mapping->i_pages, folio->index, 3719 PAGECACHE_TAG_DIRTY); 3720 xa_unlock_irq(&folio->mapping->i_pages); 3721 } 3722 3723 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans, 3724 struct extent_buffer *eb) 3725 { 3726 struct btrfs_fs_info *fs_info = eb->fs_info; 3727 3728 btrfs_assert_tree_write_locked(eb); 3729 3730 if (trans && btrfs_header_generation(eb) != trans->transid) 3731 return; 3732 3733 /* 3734 * Instead of clearing the dirty flag off of the buffer, mark it as 3735 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve 3736 * write-ordering in zoned mode, without the need to later re-dirty 3737 * the extent_buffer. 3738 * 3739 * The actual zeroout of the buffer will happen later in 3740 * btree_csum_one_bio. 3741 */ 3742 if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3743 set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags); 3744 return; 3745 } 3746 3747 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) 3748 return; 3749 3750 buffer_tree_clear_mark(eb, PAGECACHE_TAG_DIRTY); 3751 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len, 3752 fs_info->dirty_metadata_batch); 3753 3754 for (int i = 0; i < num_extent_folios(eb); i++) { 3755 struct folio *folio = eb->folios[i]; 3756 bool last; 3757 3758 if (!folio_test_dirty(folio)) 3759 continue; 3760 folio_lock(folio); 3761 last = btrfs_meta_folio_clear_and_test_dirty(folio, eb); 3762 if (last) 3763 btree_clear_folio_dirty_tag(folio); 3764 folio_unlock(folio); 3765 } 3766 WARN_ON(refcount_read(&eb->refs) == 0); 3767 } 3768 3769 void set_extent_buffer_dirty(struct extent_buffer *eb) 3770 { 3771 bool was_dirty; 3772 3773 check_buffer_tree_ref(eb); 3774 3775 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3776 3777 WARN_ON(refcount_read(&eb->refs) == 0); 3778 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 3779 WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)); 3780 3781 if (!was_dirty) { 3782 bool subpage = btrfs_meta_is_subpage(eb->fs_info); 3783 3784 /* 3785 * For subpage case, we can have other extent buffers in the 3786 * same page, and in clear_extent_buffer_dirty() we 3787 * have to clear page dirty without subpage lock held. 3788 * This can cause race where our page gets dirty cleared after 3789 * we just set it. 3790 * 3791 * Thankfully, clear_extent_buffer_dirty() has locked 3792 * its page for other reasons, we can use page lock to prevent 3793 * the above race. 3794 */ 3795 if (subpage) 3796 folio_lock(eb->folios[0]); 3797 for (int i = 0; i < num_extent_folios(eb); i++) 3798 btrfs_meta_folio_set_dirty(eb->folios[i], eb); 3799 buffer_tree_set_mark(eb, PAGECACHE_TAG_DIRTY); 3800 if (subpage) 3801 folio_unlock(eb->folios[0]); 3802 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes, 3803 eb->len, 3804 eb->fs_info->dirty_metadata_batch); 3805 } 3806 #ifdef CONFIG_BTRFS_DEBUG 3807 for (int i = 0; i < num_extent_folios(eb); i++) 3808 ASSERT(folio_test_dirty(eb->folios[i])); 3809 #endif 3810 } 3811 3812 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 3813 { 3814 3815 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3816 for (int i = 0; i < num_extent_folios(eb); i++) { 3817 struct folio *folio = eb->folios[i]; 3818 3819 if (!folio) 3820 continue; 3821 3822 btrfs_meta_folio_clear_uptodate(folio, eb); 3823 } 3824 } 3825 3826 void set_extent_buffer_uptodate(struct extent_buffer *eb) 3827 { 3828 3829 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3830 for (int i = 0; i < num_extent_folios(eb); i++) 3831 btrfs_meta_folio_set_uptodate(eb->folios[i], eb); 3832 } 3833 3834 static void clear_extent_buffer_reading(struct extent_buffer *eb) 3835 { 3836 clear_and_wake_up_bit(EXTENT_BUFFER_READING, &eb->bflags); 3837 } 3838 3839 static void end_bbio_meta_read(struct btrfs_bio *bbio) 3840 { 3841 struct extent_buffer *eb = bbio->private; 3842 bool uptodate = !bbio->bio.bi_status; 3843 3844 /* 3845 * If the extent buffer is marked UPTODATE before the read operation 3846 * completes, other calls to read_extent_buffer_pages() will return 3847 * early without waiting for the read to finish, causing data races. 3848 */ 3849 WARN_ON(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)); 3850 3851 eb->read_mirror = bbio->mirror_num; 3852 3853 if (uptodate && 3854 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0) 3855 uptodate = false; 3856 3857 if (uptodate) 3858 set_extent_buffer_uptodate(eb); 3859 else 3860 clear_extent_buffer_uptodate(eb); 3861 3862 clear_extent_buffer_reading(eb); 3863 free_extent_buffer(eb); 3864 3865 bio_put(&bbio->bio); 3866 } 3867 3868 int read_extent_buffer_pages_nowait(struct extent_buffer *eb, int mirror_num, 3869 const struct btrfs_tree_parent_check *check) 3870 { 3871 struct btrfs_fs_info *fs_info = eb->fs_info; 3872 struct btrfs_bio *bbio; 3873 3874 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3875 return 0; 3876 3877 /* 3878 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 3879 * operation, which could potentially still be in flight. In this case 3880 * we simply want to return an error. 3881 */ 3882 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 3883 return -EIO; 3884 3885 /* Someone else is already reading the buffer, just wait for it. */ 3886 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags)) 3887 return 0; 3888 3889 /* 3890 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above 3891 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have 3892 * started and finished reading the same eb. In this case, UPTODATE 3893 * will now be set, and we shouldn't read it in again. 3894 */ 3895 if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) { 3896 clear_extent_buffer_reading(eb); 3897 return 0; 3898 } 3899 3900 eb->read_mirror = 0; 3901 check_buffer_tree_ref(eb); 3902 refcount_inc(&eb->refs); 3903 3904 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 3905 REQ_OP_READ | REQ_META, BTRFS_I(fs_info->btree_inode), 3906 eb->start, end_bbio_meta_read, eb); 3907 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 3908 memcpy(&bbio->parent_check, check, sizeof(*check)); 3909 for (int i = 0; i < num_extent_folios(eb); i++) { 3910 struct folio *folio = eb->folios[i]; 3911 u64 range_start = max_t(u64, eb->start, folio_pos(folio)); 3912 u32 range_len = min_t(u64, folio_next_pos(folio), 3913 eb->start + eb->len) - range_start; 3914 3915 bio_add_folio_nofail(&bbio->bio, folio, range_len, 3916 offset_in_folio(folio, range_start)); 3917 } 3918 btrfs_submit_bbio(bbio, mirror_num); 3919 return 0; 3920 } 3921 3922 int read_extent_buffer_pages(struct extent_buffer *eb, int mirror_num, 3923 const struct btrfs_tree_parent_check *check) 3924 { 3925 int ret; 3926 3927 ret = read_extent_buffer_pages_nowait(eb, mirror_num, check); 3928 if (ret < 0) 3929 return ret; 3930 3931 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE); 3932 if (unlikely(!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) 3933 return -EIO; 3934 return 0; 3935 } 3936 3937 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 3938 unsigned long len) 3939 { 3940 btrfs_warn(eb->fs_info, 3941 "access to eb bytenr %llu len %u out of range start %lu len %lu", 3942 eb->start, eb->len, start, len); 3943 DEBUG_WARN(); 3944 3945 return true; 3946 } 3947 3948 /* 3949 * Check if the [start, start + len) range is valid before reading/writing 3950 * the eb. 3951 * NOTE: @start and @len are offset inside the eb, not logical address. 3952 * 3953 * Caller should not touch the dst/src memory if this function returns error. 3954 */ 3955 static inline int check_eb_range(const struct extent_buffer *eb, 3956 unsigned long start, unsigned long len) 3957 { 3958 unsigned long offset; 3959 3960 /* start, start + len should not go beyond eb->len nor overflow */ 3961 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 3962 return report_eb_range(eb, start, len); 3963 3964 return false; 3965 } 3966 3967 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 3968 unsigned long start, unsigned long len) 3969 { 3970 const int unit_size = eb->folio_size; 3971 size_t cur; 3972 size_t offset; 3973 char *dst = (char *)dstv; 3974 unsigned long i = get_eb_folio_index(eb, start); 3975 3976 if (check_eb_range(eb, start, len)) { 3977 /* 3978 * Invalid range hit, reset the memory, so callers won't get 3979 * some random garbage for their uninitialized memory. 3980 */ 3981 memset(dstv, 0, len); 3982 return; 3983 } 3984 3985 if (eb->addr) { 3986 memcpy(dstv, eb->addr + start, len); 3987 return; 3988 } 3989 3990 offset = get_eb_offset_in_folio(eb, start); 3991 3992 while (len > 0) { 3993 char *kaddr; 3994 3995 cur = min(len, unit_size - offset); 3996 kaddr = folio_address(eb->folios[i]); 3997 memcpy(dst, kaddr + offset, cur); 3998 3999 dst += cur; 4000 len -= cur; 4001 offset = 0; 4002 i++; 4003 } 4004 } 4005 4006 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 4007 void __user *dstv, 4008 unsigned long start, unsigned long len) 4009 { 4010 const int unit_size = eb->folio_size; 4011 size_t cur; 4012 size_t offset; 4013 char __user *dst = (char __user *)dstv; 4014 unsigned long i = get_eb_folio_index(eb, start); 4015 int ret = 0; 4016 4017 WARN_ON(start > eb->len); 4018 WARN_ON(start + len > eb->start + eb->len); 4019 4020 if (eb->addr) { 4021 if (copy_to_user_nofault(dstv, eb->addr + start, len)) 4022 ret = -EFAULT; 4023 return ret; 4024 } 4025 4026 offset = get_eb_offset_in_folio(eb, start); 4027 4028 while (len > 0) { 4029 char *kaddr; 4030 4031 cur = min(len, unit_size - offset); 4032 kaddr = folio_address(eb->folios[i]); 4033 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 4034 ret = -EFAULT; 4035 break; 4036 } 4037 4038 dst += cur; 4039 len -= cur; 4040 offset = 0; 4041 i++; 4042 } 4043 4044 return ret; 4045 } 4046 4047 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 4048 unsigned long start, unsigned long len) 4049 { 4050 const int unit_size = eb->folio_size; 4051 size_t cur; 4052 size_t offset; 4053 char *kaddr; 4054 char *ptr = (char *)ptrv; 4055 unsigned long i = get_eb_folio_index(eb, start); 4056 int ret = 0; 4057 4058 if (check_eb_range(eb, start, len)) 4059 return -EINVAL; 4060 4061 if (eb->addr) 4062 return memcmp(ptrv, eb->addr + start, len); 4063 4064 offset = get_eb_offset_in_folio(eb, start); 4065 4066 while (len > 0) { 4067 cur = min(len, unit_size - offset); 4068 kaddr = folio_address(eb->folios[i]); 4069 ret = memcmp(ptr, kaddr + offset, cur); 4070 if (ret) 4071 break; 4072 4073 ptr += cur; 4074 len -= cur; 4075 offset = 0; 4076 i++; 4077 } 4078 return ret; 4079 } 4080 4081 /* 4082 * Check that the extent buffer is uptodate. 4083 * 4084 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 4085 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 4086 */ 4087 static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i) 4088 { 4089 struct btrfs_fs_info *fs_info = eb->fs_info; 4090 struct folio *folio = eb->folios[i]; 4091 4092 ASSERT(folio); 4093 4094 /* 4095 * If we are using the commit root we could potentially clear a page 4096 * Uptodate while we're using the extent buffer that we've previously 4097 * looked up. We don't want to complain in this case, as the page was 4098 * valid before, we just didn't write it out. Instead we want to catch 4099 * the case where we didn't actually read the block properly, which 4100 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR. 4101 */ 4102 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 4103 return; 4104 4105 if (btrfs_meta_is_subpage(fs_info)) { 4106 folio = eb->folios[0]; 4107 ASSERT(i == 0); 4108 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio, 4109 eb->start, eb->len))) 4110 btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len); 4111 } else { 4112 WARN_ON(!folio_test_uptodate(folio)); 4113 } 4114 } 4115 4116 static void __write_extent_buffer(const struct extent_buffer *eb, 4117 const void *srcv, unsigned long start, 4118 unsigned long len, bool use_memmove) 4119 { 4120 const int unit_size = eb->folio_size; 4121 size_t cur; 4122 size_t offset; 4123 char *kaddr; 4124 const char *src = (const char *)srcv; 4125 unsigned long i = get_eb_folio_index(eb, start); 4126 /* For unmapped (dummy) ebs, no need to check their uptodate status. */ 4127 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4128 4129 if (check_eb_range(eb, start, len)) 4130 return; 4131 4132 if (eb->addr) { 4133 if (use_memmove) 4134 memmove(eb->addr + start, srcv, len); 4135 else 4136 memcpy(eb->addr + start, srcv, len); 4137 return; 4138 } 4139 4140 offset = get_eb_offset_in_folio(eb, start); 4141 4142 while (len > 0) { 4143 if (check_uptodate) 4144 assert_eb_folio_uptodate(eb, i); 4145 4146 cur = min(len, unit_size - offset); 4147 kaddr = folio_address(eb->folios[i]); 4148 if (use_memmove) 4149 memmove(kaddr + offset, src, cur); 4150 else 4151 memcpy(kaddr + offset, src, cur); 4152 4153 src += cur; 4154 len -= cur; 4155 offset = 0; 4156 i++; 4157 } 4158 } 4159 4160 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 4161 unsigned long start, unsigned long len) 4162 { 4163 return __write_extent_buffer(eb, srcv, start, len, false); 4164 } 4165 4166 static void memset_extent_buffer(const struct extent_buffer *eb, int c, 4167 unsigned long start, unsigned long len) 4168 { 4169 const int unit_size = eb->folio_size; 4170 unsigned long cur = start; 4171 4172 if (eb->addr) { 4173 memset(eb->addr + start, c, len); 4174 return; 4175 } 4176 4177 while (cur < start + len) { 4178 unsigned long index = get_eb_folio_index(eb, cur); 4179 unsigned int offset = get_eb_offset_in_folio(eb, cur); 4180 unsigned int cur_len = min(start + len - cur, unit_size - offset); 4181 4182 assert_eb_folio_uptodate(eb, index); 4183 memset(folio_address(eb->folios[index]) + offset, c, cur_len); 4184 4185 cur += cur_len; 4186 } 4187 } 4188 4189 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 4190 unsigned long len) 4191 { 4192 if (check_eb_range(eb, start, len)) 4193 return; 4194 return memset_extent_buffer(eb, 0, start, len); 4195 } 4196 4197 void copy_extent_buffer_full(const struct extent_buffer *dst, 4198 const struct extent_buffer *src) 4199 { 4200 const int unit_size = src->folio_size; 4201 unsigned long cur = 0; 4202 4203 ASSERT(dst->len == src->len); 4204 4205 while (cur < src->len) { 4206 unsigned long index = get_eb_folio_index(src, cur); 4207 unsigned long offset = get_eb_offset_in_folio(src, cur); 4208 unsigned long cur_len = min(src->len, unit_size - offset); 4209 void *addr = folio_address(src->folios[index]) + offset; 4210 4211 write_extent_buffer(dst, addr, cur, cur_len); 4212 4213 cur += cur_len; 4214 } 4215 } 4216 4217 void copy_extent_buffer(const struct extent_buffer *dst, 4218 const struct extent_buffer *src, 4219 unsigned long dst_offset, unsigned long src_offset, 4220 unsigned long len) 4221 { 4222 const int unit_size = dst->folio_size; 4223 u64 dst_len = dst->len; 4224 size_t cur; 4225 size_t offset; 4226 char *kaddr; 4227 unsigned long i = get_eb_folio_index(dst, dst_offset); 4228 4229 if (check_eb_range(dst, dst_offset, len) || 4230 check_eb_range(src, src_offset, len)) 4231 return; 4232 4233 WARN_ON(src->len != dst_len); 4234 4235 offset = get_eb_offset_in_folio(dst, dst_offset); 4236 4237 while (len > 0) { 4238 assert_eb_folio_uptodate(dst, i); 4239 4240 cur = min(len, (unsigned long)(unit_size - offset)); 4241 4242 kaddr = folio_address(dst->folios[i]); 4243 read_extent_buffer(src, kaddr + offset, src_offset, cur); 4244 4245 src_offset += cur; 4246 len -= cur; 4247 offset = 0; 4248 i++; 4249 } 4250 } 4251 4252 /* 4253 * Calculate the folio and offset of the byte containing the given bit number. 4254 * 4255 * @eb: the extent buffer 4256 * @start: offset of the bitmap item in the extent buffer 4257 * @nr: bit number 4258 * @folio_index: return index of the folio in the extent buffer that contains 4259 * the given bit number 4260 * @folio_offset: return offset into the folio given by folio_index 4261 * 4262 * This helper hides the ugliness of finding the byte in an extent buffer which 4263 * contains a given bit. 4264 */ 4265 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 4266 unsigned long start, unsigned long nr, 4267 unsigned long *folio_index, 4268 size_t *folio_offset) 4269 { 4270 size_t byte_offset = BIT_BYTE(nr); 4271 size_t offset; 4272 4273 /* 4274 * The byte we want is the offset of the extent buffer + the offset of 4275 * the bitmap item in the extent buffer + the offset of the byte in the 4276 * bitmap item. 4277 */ 4278 offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset; 4279 4280 *folio_index = offset >> eb->folio_shift; 4281 *folio_offset = offset_in_eb_folio(eb, offset); 4282 } 4283 4284 /* 4285 * Determine whether a bit in a bitmap item is set. 4286 * 4287 * @eb: the extent buffer 4288 * @start: offset of the bitmap item in the extent buffer 4289 * @nr: bit number to test 4290 */ 4291 bool extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 4292 unsigned long nr) 4293 { 4294 unsigned long i; 4295 size_t offset; 4296 u8 *kaddr; 4297 4298 eb_bitmap_offset(eb, start, nr, &i, &offset); 4299 assert_eb_folio_uptodate(eb, i); 4300 kaddr = folio_address(eb->folios[i]); 4301 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 4302 } 4303 4304 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr) 4305 { 4306 unsigned long index = get_eb_folio_index(eb, bytenr); 4307 4308 if (check_eb_range(eb, bytenr, 1)) 4309 return NULL; 4310 return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr); 4311 } 4312 4313 /* 4314 * Set an area of a bitmap to 1. 4315 * 4316 * @eb: the extent buffer 4317 * @start: offset of the bitmap item in the extent buffer 4318 * @pos: bit number of the first bit 4319 * @len: number of bits to set 4320 */ 4321 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 4322 unsigned long pos, unsigned long len) 4323 { 4324 unsigned int first_byte = start + BIT_BYTE(pos); 4325 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4326 const bool same_byte = (first_byte == last_byte); 4327 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4328 u8 *kaddr; 4329 4330 if (same_byte) 4331 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4332 4333 /* Handle the first byte. */ 4334 kaddr = extent_buffer_get_byte(eb, first_byte); 4335 *kaddr |= mask; 4336 if (same_byte) 4337 return; 4338 4339 /* Handle the byte aligned part. */ 4340 ASSERT(first_byte + 1 <= last_byte); 4341 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1); 4342 4343 /* Handle the last byte. */ 4344 kaddr = extent_buffer_get_byte(eb, last_byte); 4345 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len); 4346 } 4347 4348 4349 /* 4350 * Clear an area of a bitmap. 4351 * 4352 * @eb: the extent buffer 4353 * @start: offset of the bitmap item in the extent buffer 4354 * @pos: bit number of the first bit 4355 * @len: number of bits to clear 4356 */ 4357 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 4358 unsigned long start, unsigned long pos, 4359 unsigned long len) 4360 { 4361 unsigned int first_byte = start + BIT_BYTE(pos); 4362 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4363 const bool same_byte = (first_byte == last_byte); 4364 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4365 u8 *kaddr; 4366 4367 if (same_byte) 4368 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4369 4370 /* Handle the first byte. */ 4371 kaddr = extent_buffer_get_byte(eb, first_byte); 4372 *kaddr &= ~mask; 4373 if (same_byte) 4374 return; 4375 4376 /* Handle the byte aligned part. */ 4377 ASSERT(first_byte + 1 <= last_byte); 4378 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1); 4379 4380 /* Handle the last byte. */ 4381 kaddr = extent_buffer_get_byte(eb, last_byte); 4382 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len); 4383 } 4384 4385 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 4386 { 4387 unsigned long distance = (src > dst) ? src - dst : dst - src; 4388 return distance < len; 4389 } 4390 4391 void memcpy_extent_buffer(const struct extent_buffer *dst, 4392 unsigned long dst_offset, unsigned long src_offset, 4393 unsigned long len) 4394 { 4395 const int unit_size = dst->folio_size; 4396 unsigned long cur_off = 0; 4397 4398 if (check_eb_range(dst, dst_offset, len) || 4399 check_eb_range(dst, src_offset, len)) 4400 return; 4401 4402 if (dst->addr) { 4403 const bool use_memmove = areas_overlap(src_offset, dst_offset, len); 4404 4405 if (use_memmove) 4406 memmove(dst->addr + dst_offset, dst->addr + src_offset, len); 4407 else 4408 memcpy(dst->addr + dst_offset, dst->addr + src_offset, len); 4409 return; 4410 } 4411 4412 while (cur_off < len) { 4413 unsigned long cur_src = cur_off + src_offset; 4414 unsigned long folio_index = get_eb_folio_index(dst, cur_src); 4415 unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src); 4416 unsigned long cur_len = min(src_offset + len - cur_src, 4417 unit_size - folio_off); 4418 void *src_addr = folio_address(dst->folios[folio_index]) + folio_off; 4419 const bool use_memmove = areas_overlap(src_offset + cur_off, 4420 dst_offset + cur_off, cur_len); 4421 4422 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len, 4423 use_memmove); 4424 cur_off += cur_len; 4425 } 4426 } 4427 4428 void memmove_extent_buffer(const struct extent_buffer *dst, 4429 unsigned long dst_offset, unsigned long src_offset, 4430 unsigned long len) 4431 { 4432 unsigned long dst_end = dst_offset + len - 1; 4433 unsigned long src_end = src_offset + len - 1; 4434 4435 if (check_eb_range(dst, dst_offset, len) || 4436 check_eb_range(dst, src_offset, len)) 4437 return; 4438 4439 if (dst_offset < src_offset) { 4440 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 4441 return; 4442 } 4443 4444 if (dst->addr) { 4445 memmove(dst->addr + dst_offset, dst->addr + src_offset, len); 4446 return; 4447 } 4448 4449 while (len > 0) { 4450 unsigned long src_i; 4451 size_t cur; 4452 size_t dst_off_in_folio; 4453 size_t src_off_in_folio; 4454 void *src_addr; 4455 bool use_memmove; 4456 4457 src_i = get_eb_folio_index(dst, src_end); 4458 4459 dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end); 4460 src_off_in_folio = get_eb_offset_in_folio(dst, src_end); 4461 4462 cur = min_t(unsigned long, len, src_off_in_folio + 1); 4463 cur = min(cur, dst_off_in_folio + 1); 4464 4465 src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio - 4466 cur + 1; 4467 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1, 4468 cur); 4469 4470 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur, 4471 use_memmove); 4472 4473 dst_end -= cur; 4474 src_end -= cur; 4475 len -= cur; 4476 } 4477 } 4478 4479 static int try_release_subpage_extent_buffer(struct folio *folio) 4480 { 4481 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 4482 struct extent_buffer *eb; 4483 unsigned long start = (folio_pos(folio) >> fs_info->nodesize_bits); 4484 unsigned long index = start; 4485 unsigned long end = index + (PAGE_SIZE >> fs_info->nodesize_bits) - 1; 4486 int ret; 4487 4488 rcu_read_lock(); 4489 xa_for_each_range(&fs_info->buffer_tree, index, eb, start, end) { 4490 /* 4491 * The same as try_release_extent_buffer(), to ensure the eb 4492 * won't disappear out from under us. 4493 */ 4494 spin_lock(&eb->refs_lock); 4495 rcu_read_unlock(); 4496 4497 if (refcount_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4498 spin_unlock(&eb->refs_lock); 4499 rcu_read_lock(); 4500 continue; 4501 } 4502 4503 /* 4504 * If tree ref isn't set then we know the ref on this eb is a 4505 * real ref, so just return, this eb will likely be freed soon 4506 * anyway. 4507 */ 4508 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4509 spin_unlock(&eb->refs_lock); 4510 break; 4511 } 4512 4513 /* 4514 * Here we don't care about the return value, we will always 4515 * check the folio private at the end. And 4516 * release_extent_buffer() will release the refs_lock. 4517 */ 4518 release_extent_buffer(eb); 4519 rcu_read_lock(); 4520 } 4521 rcu_read_unlock(); 4522 4523 /* 4524 * Finally to check if we have cleared folio private, as if we have 4525 * released all ebs in the page, the folio private should be cleared now. 4526 */ 4527 spin_lock(&folio->mapping->i_private_lock); 4528 if (!folio_test_private(folio)) 4529 ret = 1; 4530 else 4531 ret = 0; 4532 spin_unlock(&folio->mapping->i_private_lock); 4533 return ret; 4534 } 4535 4536 int try_release_extent_buffer(struct folio *folio) 4537 { 4538 struct extent_buffer *eb; 4539 4540 if (btrfs_meta_is_subpage(folio_to_fs_info(folio))) 4541 return try_release_subpage_extent_buffer(folio); 4542 4543 /* 4544 * We need to make sure nobody is changing folio private, as we rely on 4545 * folio private as the pointer to extent buffer. 4546 */ 4547 spin_lock(&folio->mapping->i_private_lock); 4548 if (!folio_test_private(folio)) { 4549 spin_unlock(&folio->mapping->i_private_lock); 4550 return 1; 4551 } 4552 4553 eb = folio_get_private(folio); 4554 BUG_ON(!eb); 4555 4556 /* 4557 * This is a little awful but should be ok, we need to make sure that 4558 * the eb doesn't disappear out from under us while we're looking at 4559 * this page. 4560 */ 4561 spin_lock(&eb->refs_lock); 4562 if (refcount_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4563 spin_unlock(&eb->refs_lock); 4564 spin_unlock(&folio->mapping->i_private_lock); 4565 return 0; 4566 } 4567 spin_unlock(&folio->mapping->i_private_lock); 4568 4569 /* 4570 * If tree ref isn't set then we know the ref on this eb is a real ref, 4571 * so just return, this page will likely be freed soon anyway. 4572 */ 4573 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4574 spin_unlock(&eb->refs_lock); 4575 return 0; 4576 } 4577 4578 return release_extent_buffer(eb); 4579 } 4580 4581 /* 4582 * Attempt to readahead a child block. 4583 * 4584 * @fs_info: the fs_info 4585 * @bytenr: bytenr to read 4586 * @owner_root: objectid of the root that owns this eb 4587 * @gen: generation for the uptodate check, can be 0 4588 * @level: level for the eb 4589 * 4590 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 4591 * normal uptodate check of the eb, without checking the generation. If we have 4592 * to read the block we will not block on anything. 4593 */ 4594 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 4595 u64 bytenr, u64 owner_root, u64 gen, int level) 4596 { 4597 struct btrfs_tree_parent_check check = { 4598 .level = level, 4599 .transid = gen 4600 }; 4601 struct extent_buffer *eb; 4602 int ret; 4603 4604 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 4605 if (IS_ERR(eb)) 4606 return; 4607 4608 if (btrfs_buffer_uptodate(eb, gen, true)) { 4609 free_extent_buffer(eb); 4610 return; 4611 } 4612 4613 ret = read_extent_buffer_pages_nowait(eb, 0, &check); 4614 if (ret < 0) 4615 free_extent_buffer_stale(eb); 4616 else 4617 free_extent_buffer(eb); 4618 } 4619 4620 /* 4621 * Readahead a node's child block. 4622 * 4623 * @node: parent node we're reading from 4624 * @slot: slot in the parent node for the child we want to read 4625 * 4626 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 4627 * the slot in the node provided. 4628 */ 4629 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 4630 { 4631 btrfs_readahead_tree_block(node->fs_info, 4632 btrfs_node_blockptr(node, slot), 4633 btrfs_header_owner(node), 4634 btrfs_node_ptr_generation(node, slot), 4635 btrfs_header_level(node) - 1); 4636 } 4637