1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (c) 2011-2016 Synaptics Incorporated 4 * Copyright (c) 2011 Unixphere 5 */ 6 7 #ifndef _RMI_H 8 #define _RMI_H 9 #include <linux/kernel.h> 10 #include <linux/device.h> 11 #include <linux/interrupt.h> 12 #include <linux/input.h> 13 #include <linux/kfifo.h> 14 #include <linux/list.h> 15 #include <linux/module.h> 16 #include <linux/types.h> 17 18 #define NAME_BUFFER_SIZE 256 19 20 /** 21 * struct rmi_2d_axis_alignment - target axis alignment 22 * @swap_axes: set to TRUE if desired to swap x- and y-axis 23 * @flip_x: set to TRUE if desired to flip direction on x-axis 24 * @flip_y: set to TRUE if desired to flip direction on y-axis 25 * @clip_x_low - reported X coordinates below this setting will be clipped to 26 * the specified value 27 * @clip_x_high - reported X coordinates above this setting will be clipped to 28 * the specified value 29 * @clip_y_low - reported Y coordinates below this setting will be clipped to 30 * the specified value 31 * @clip_y_high - reported Y coordinates above this setting will be clipped to 32 * the specified value 33 * @offset_x - this value will be added to all reported X coordinates 34 * @offset_y - this value will be added to all reported Y coordinates 35 * @rel_report_enabled - if set to true, the relative reporting will be 36 * automatically enabled for this sensor. 37 */ 38 struct rmi_2d_axis_alignment { 39 bool swap_axes; 40 bool flip_x; 41 bool flip_y; 42 u16 clip_x_low; 43 u16 clip_y_low; 44 u16 clip_x_high; 45 u16 clip_y_high; 46 u16 offset_x; 47 u16 offset_y; 48 u8 delta_x_threshold; 49 u8 delta_y_threshold; 50 }; 51 52 /** This is used to override any hints an F11 2D sensor might have provided 53 * as to what type of sensor it is. 54 * 55 * @rmi_f11_sensor_default - do not override, determine from F11_2D_QUERY14 if 56 * available. 57 * @rmi_f11_sensor_touchscreen - treat the sensor as a touchscreen (direct 58 * pointing). 59 * @rmi_f11_sensor_touchpad - thread the sensor as a touchpad (indirect 60 * pointing). 61 */ 62 enum rmi_sensor_type { 63 rmi_sensor_default = 0, 64 rmi_sensor_touchscreen, 65 rmi_sensor_touchpad 66 }; 67 68 #define RMI_F11_DISABLE_ABS_REPORT BIT(0) 69 70 /** 71 * struct rmi_2d_sensor_data - overrides defaults for a 2D sensor. 72 * @axis_align - provides axis alignment overrides (see above). 73 * @sensor_type - Forces the driver to treat the sensor as an indirect 74 * pointing device (touchpad) rather than a direct pointing device 75 * (touchscreen). This is useful when F11_2D_QUERY14 register is not 76 * available. 77 * @disable_report_mask - Force data to not be reported even if it is supported 78 * by the firware. 79 * @topbuttonpad - Used with the "5 buttons touchpads" found on the Lenovo 40 80 * series 81 * @kernel_tracking - most moderns RMI f11 firmwares implement Multifinger 82 * Type B protocol. However, there are some corner cases where the user 83 * triggers some jumps by tapping with two fingers on the touchpad. 84 * Use this setting and dmax to filter out these jumps. 85 * Also, when using an old sensor using MF Type A behavior, set to true to 86 * report an actual MT protocol B. 87 * @dmax - the maximum distance (in sensor units) the kernel tracking allows two 88 * distincts fingers to be considered the same. 89 */ 90 struct rmi_2d_sensor_platform_data { 91 struct rmi_2d_axis_alignment axis_align; 92 enum rmi_sensor_type sensor_type; 93 int x_mm; 94 int y_mm; 95 int disable_report_mask; 96 u16 rezero_wait; 97 bool topbuttonpad; 98 bool kernel_tracking; 99 int dmax; 100 int dribble; 101 int palm_detect; 102 }; 103 104 /** 105 * struct rmi_gpio_data - overrides defaults for a single F30/F3A GPIOs/LED 106 * chip. 107 * @buttonpad - the touchpad is a buttonpad, so enable only the first actual 108 * button that is found. 109 * @trackstick_buttons - Set when the function 30 or 3a is handling the physical 110 * buttons of the trackstick (as a PS/2 passthrough device). 111 * @disable - the touchpad incorrectly reports F30/F3A and it should be ignored. 112 * This is a special case which is due to misconfigured firmware. 113 */ 114 struct rmi_gpio_data { 115 bool buttonpad; 116 bool trackstick_buttons; 117 bool disable; 118 }; 119 120 121 /* 122 * Set the state of a register 123 * DEFAULT - use the default value set by the firmware config 124 * OFF - explicitly disable the register 125 * ON - explicitly enable the register 126 */ 127 enum rmi_reg_state { 128 RMI_REG_STATE_DEFAULT = 0, 129 RMI_REG_STATE_OFF = 1, 130 RMI_REG_STATE_ON = 2 131 }; 132 133 /** 134 * struct rmi_f01_power_management -When non-zero, these values will be written 135 * to the touch sensor to override the default firmware settigns. For a 136 * detailed explanation of what each field does, see the corresponding 137 * documention in the RMI4 specification. 138 * 139 * @nosleep - specifies whether the device is permitted to sleep or doze (that 140 * is, enter a temporary low power state) when no fingers are touching the 141 * sensor. 142 * @wakeup_threshold - controls the capacitance threshold at which the touch 143 * sensor will decide to wake up from that low power state. 144 * @doze_holdoff - controls how long the touch sensor waits after the last 145 * finger lifts before entering the doze state, in units of 100ms. 146 * @doze_interval - controls the interval between checks for finger presence 147 * when the touch sensor is in doze mode, in units of 10ms. 148 */ 149 struct rmi_f01_power_management { 150 enum rmi_reg_state nosleep; 151 u8 wakeup_threshold; 152 u8 doze_holdoff; 153 u8 doze_interval; 154 }; 155 156 /** 157 * struct rmi_device_platform_data_spi - provides parameters used in SPI 158 * communications. All Synaptics SPI products support a standard SPI 159 * interface; some also support what is called SPI V2 mode, depending on 160 * firmware and/or ASIC limitations. In V2 mode, the touch sensor can 161 * support shorter delays during certain operations, and these are specified 162 * separately from the standard mode delays. 163 * 164 * @block_delay - for standard SPI transactions consisting of both a read and 165 * write operation, the delay (in microseconds) between the read and write 166 * operations. 167 * @split_read_block_delay_us - for V2 SPI transactions consisting of both a 168 * read and write operation, the delay (in microseconds) between the read and 169 * write operations. 170 * @read_delay_us - the delay between each byte of a read operation in normal 171 * SPI mode. 172 * @write_delay_us - the delay between each byte of a write operation in normal 173 * SPI mode. 174 * @split_read_byte_delay_us - the delay between each byte of a read operation 175 * in V2 mode. 176 * @pre_delay_us - the delay before the start of a SPI transaction. This is 177 * typically useful in conjunction with custom chip select assertions (see 178 * below). 179 * @post_delay_us - the delay after the completion of an SPI transaction. This 180 * is typically useful in conjunction with custom chip select assertions (see 181 * below). 182 * @cs_assert - For systems where the SPI subsystem does not control the CS/SSB 183 * line, or where such control is broken, you can provide a custom routine to 184 * handle a GPIO as CS/SSB. This routine will be called at the beginning and 185 * end of each SPI transaction. The RMI SPI implementation will wait 186 * pre_delay_us after this routine returns before starting the SPI transfer; 187 * and post_delay_us after completion of the SPI transfer(s) before calling it 188 * with assert==FALSE. 189 */ 190 struct rmi_device_platform_data_spi { 191 u32 block_delay_us; 192 u32 split_read_block_delay_us; 193 u32 read_delay_us; 194 u32 write_delay_us; 195 u32 split_read_byte_delay_us; 196 u32 pre_delay_us; 197 u32 post_delay_us; 198 u8 bits_per_word; 199 u16 mode; 200 201 void *cs_assert_data; 202 int (*cs_assert)(const void *cs_assert_data, const bool assert); 203 }; 204 205 /** 206 * struct rmi_device_platform_data - system specific configuration info. 207 * 208 * @reset_delay_ms - after issuing a reset command to the touch sensor, the 209 * driver waits a few milliseconds to give the firmware a chance to 210 * re-initialize. You can override the default wait period here. 211 * @irq: irq associated with the attn gpio line, or negative 212 */ 213 struct rmi_device_platform_data { 214 int reset_delay_ms; 215 int irq; 216 217 struct rmi_device_platform_data_spi spi_data; 218 219 /* function handler pdata */ 220 struct rmi_2d_sensor_platform_data sensor_pdata; 221 struct rmi_f01_power_management power_management; 222 struct rmi_gpio_data gpio_data; 223 }; 224 225 /** 226 * struct rmi_function_descriptor - RMI function base addresses 227 * 228 * @query_base_addr: The RMI Query base address 229 * @command_base_addr: The RMI Command base address 230 * @control_base_addr: The RMI Control base address 231 * @data_base_addr: The RMI Data base address 232 * @interrupt_source_count: The number of irqs this RMI function needs 233 * @function_number: The RMI function number 234 * 235 * This struct is used when iterating the Page Description Table. The addresses 236 * are 16-bit values to include the current page address. 237 * 238 */ 239 struct rmi_function_descriptor { 240 u16 query_base_addr; 241 u16 command_base_addr; 242 u16 control_base_addr; 243 u16 data_base_addr; 244 u8 interrupt_source_count; 245 u8 function_number; 246 u8 function_version; 247 }; 248 249 struct rmi_device; 250 251 /** 252 * struct rmi_transport_dev - represent an RMI transport device 253 * 254 * @dev: Pointer to the communication device, e.g. i2c or spi 255 * @rmi_dev: Pointer to the RMI device 256 * @proto_name: name of the transport protocol (SPI, i2c, etc) 257 * @ops: pointer to transport operations implementation 258 * 259 * The RMI transport device implements the glue between different communication 260 * buses such as I2C and SPI. 261 * 262 */ 263 struct rmi_transport_dev { 264 struct device *dev; 265 struct rmi_device *rmi_dev; 266 267 const char *proto_name; 268 const struct rmi_transport_ops *ops; 269 270 struct rmi_device_platform_data pdata; 271 272 struct input_dev *input; 273 }; 274 275 /** 276 * struct rmi_transport_ops - defines transport protocol operations. 277 * 278 * @write_block: Writing a block of data to the specified address 279 * @read_block: Read a block of data from the specified address. 280 */ 281 struct rmi_transport_ops { 282 int (*write_block)(struct rmi_transport_dev *xport, u16 addr, 283 const void *buf, size_t len); 284 int (*read_block)(struct rmi_transport_dev *xport, u16 addr, 285 void *buf, size_t len); 286 int (*reset)(struct rmi_transport_dev *xport, u16 reset_addr); 287 }; 288 289 /** 290 * struct rmi_driver - driver for an RMI4 sensor on the RMI bus. 291 * 292 * @driver: Device driver model driver 293 * @reset_handler: Called when a reset is detected. 294 * @clear_irq_bits: Clear the specified bits in the current interrupt mask. 295 * @set_irq_bist: Set the specified bits in the current interrupt mask. 296 * @store_productid: Callback for cache product id from function 01 297 * @data: Private data pointer 298 * 299 */ 300 struct rmi_driver { 301 struct device_driver driver; 302 303 int (*reset_handler)(struct rmi_device *rmi_dev); 304 int (*clear_irq_bits)(struct rmi_device *rmi_dev, unsigned long *mask); 305 int (*set_irq_bits)(struct rmi_device *rmi_dev, unsigned long *mask); 306 int (*store_productid)(struct rmi_device *rmi_dev); 307 int (*set_input_params)(struct rmi_device *rmi_dev, 308 struct input_dev *input); 309 void *data; 310 }; 311 312 /** 313 * struct rmi_device - represents an RMI4 sensor device on the RMI bus. 314 * 315 * @dev: The device created for the RMI bus 316 * @number: Unique number for the device on the bus. 317 * @driver: Pointer to associated driver 318 * @xport: Pointer to the transport interface 319 * 320 */ 321 struct rmi_device { 322 struct device dev; 323 int number; 324 325 struct rmi_driver *driver; 326 struct rmi_transport_dev *xport; 327 328 }; 329 330 struct rmi4_attn_data { 331 unsigned long irq_status; 332 size_t size; 333 void *data; 334 }; 335 336 struct rmi_driver_data { 337 struct list_head function_list; 338 339 struct rmi_device *rmi_dev; 340 341 struct rmi_function *f01_container; 342 struct rmi_function *f34_container; 343 bool bootloader_mode; 344 345 int num_of_irq_regs; 346 int irq_count; 347 void *irq_memory; 348 unsigned long *irq_status; 349 unsigned long *fn_irq_bits; 350 unsigned long *current_irq_mask; 351 unsigned long *new_irq_mask; 352 struct mutex irq_mutex; 353 struct input_dev *input; 354 355 struct irq_domain *irqdomain; 356 357 u8 pdt_props; 358 359 u8 num_rx_electrodes; 360 u8 num_tx_electrodes; 361 362 bool enabled; 363 struct mutex enabled_mutex; 364 365 struct rmi4_attn_data attn_data; 366 DECLARE_KFIFO(attn_fifo, struct rmi4_attn_data, 16); 367 }; 368 369 int rmi_register_transport_device(struct rmi_transport_dev *xport); 370 void rmi_unregister_transport_device(struct rmi_transport_dev *xport); 371 372 void rmi_set_attn_data(struct rmi_device *rmi_dev, unsigned long irq_status, 373 void *data, size_t size); 374 375 int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake); 376 int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake); 377 #endif 378