xref: /linux/drivers/infiniband/core/rw.c (revision afcae7d7b8a278a6c29e064f99e5bafd4ac1fb37)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2016 HGST, a Western Digital Company.
4  */
5 #include <linux/memremap.h>
6 #include <linux/moduleparam.h>
7 #include <linux/slab.h>
8 #include <linux/pci-p2pdma.h>
9 #include <rdma/mr_pool.h>
10 #include <rdma/rw.h>
11 
12 enum {
13 	RDMA_RW_SINGLE_WR,
14 	RDMA_RW_MULTI_WR,
15 	RDMA_RW_MR,
16 	RDMA_RW_SIG_MR,
17 	RDMA_RW_IOVA,
18 };
19 
20 static bool rdma_rw_force_mr;
21 module_param_named(force_mr, rdma_rw_force_mr, bool, 0);
22 MODULE_PARM_DESC(force_mr, "Force usage of MRs for RDMA READ/WRITE operations");
23 
24 /*
25  * Report whether memory registration should be used. Memory registration must
26  * be used for iWarp devices because of iWARP-specific limitations. Memory
27  * registration is also enabled if registering memory might yield better
28  * performance than using multiple SGE entries, see rdma_rw_io_needs_mr()
29  */
30 static inline bool rdma_rw_can_use_mr(struct ib_device *dev, u32 port_num)
31 {
32 	if (rdma_protocol_iwarp(dev, port_num))
33 		return true;
34 	if (dev->attrs.max_sgl_rd)
35 		return true;
36 	if (unlikely(rdma_rw_force_mr))
37 		return true;
38 	return false;
39 }
40 
41 /*
42  * Check if the device will use memory registration for this RW operation.
43  * For RDMA READs we must use MRs on iWarp and can optionally use them as an
44  * optimization otherwise.  Additionally we have a debug option to force usage
45  * of MRs to help testing this code path.
46  */
47 static inline bool rdma_rw_io_needs_mr(struct ib_device *dev, u32 port_num,
48 		enum dma_data_direction dir, int dma_nents)
49 {
50 	if (dir == DMA_FROM_DEVICE) {
51 		if (rdma_protocol_iwarp(dev, port_num))
52 			return true;
53 		if (dev->attrs.max_sgl_rd && dma_nents > dev->attrs.max_sgl_rd)
54 			return true;
55 	}
56 	if (unlikely(rdma_rw_force_mr))
57 		return true;
58 	return false;
59 }
60 
61 static inline u32 rdma_rw_fr_page_list_len(struct ib_device *dev,
62 					   bool pi_support)
63 {
64 	u32 max_pages;
65 
66 	if (pi_support)
67 		max_pages = dev->attrs.max_pi_fast_reg_page_list_len;
68 	else
69 		max_pages = dev->attrs.max_fast_reg_page_list_len;
70 
71 	/* arbitrary limit to avoid allocating gigantic resources */
72 	return min_t(u32, max_pages, 256);
73 }
74 
75 static inline int rdma_rw_inv_key(struct rdma_rw_reg_ctx *reg)
76 {
77 	int count = 0;
78 
79 	if (reg->mr->need_inval) {
80 		reg->inv_wr.opcode = IB_WR_LOCAL_INV;
81 		reg->inv_wr.ex.invalidate_rkey = reg->mr->lkey;
82 		reg->inv_wr.next = &reg->reg_wr.wr;
83 		count++;
84 	} else {
85 		reg->inv_wr.next = NULL;
86 	}
87 
88 	return count;
89 }
90 
91 /* Caller must have zero-initialized *reg. */
92 static int rdma_rw_init_one_mr(struct ib_qp *qp, u32 port_num,
93 		struct rdma_rw_reg_ctx *reg, struct scatterlist *sg,
94 		u32 sg_cnt, u32 offset)
95 {
96 	u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device,
97 						    qp->integrity_en);
98 	u32 nents = min(sg_cnt, pages_per_mr);
99 	int count = 0, ret;
100 
101 	reg->mr = ib_mr_pool_get(qp, &qp->rdma_mrs);
102 	if (!reg->mr)
103 		return -EAGAIN;
104 
105 	count += rdma_rw_inv_key(reg);
106 
107 	ret = ib_map_mr_sg(reg->mr, sg, nents, &offset, PAGE_SIZE);
108 	if (ret < 0 || ret < nents) {
109 		ib_mr_pool_put(qp, &qp->rdma_mrs, reg->mr);
110 		return -EINVAL;
111 	}
112 
113 	reg->reg_wr.wr.opcode = IB_WR_REG_MR;
114 	reg->reg_wr.mr = reg->mr;
115 	reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE;
116 	if (rdma_protocol_iwarp(qp->device, port_num))
117 		reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE;
118 	count++;
119 
120 	reg->sge.addr = reg->mr->iova;
121 	reg->sge.length = reg->mr->length;
122 	return count;
123 }
124 
125 static int rdma_rw_init_reg_wr(struct rdma_rw_reg_ctx *reg,
126 		struct rdma_rw_reg_ctx *prev, struct ib_qp *qp, u32 port_num,
127 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
128 {
129 	if (prev) {
130 		if (reg->mr->need_inval)
131 			prev->wr.wr.next = &reg->inv_wr;
132 		else
133 			prev->wr.wr.next = &reg->reg_wr.wr;
134 	}
135 
136 	reg->reg_wr.wr.next = &reg->wr.wr;
137 
138 	reg->wr.wr.sg_list = &reg->sge;
139 	reg->wr.wr.num_sge = 1;
140 	reg->wr.remote_addr = remote_addr;
141 	reg->wr.rkey = rkey;
142 
143 	if (dir == DMA_TO_DEVICE) {
144 		reg->wr.wr.opcode = IB_WR_RDMA_WRITE;
145 	} else if (!rdma_cap_read_inv(qp->device, port_num)) {
146 		reg->wr.wr.opcode = IB_WR_RDMA_READ;
147 	} else {
148 		reg->wr.wr.opcode = IB_WR_RDMA_READ_WITH_INV;
149 		reg->wr.wr.ex.invalidate_rkey = reg->mr->lkey;
150 	}
151 
152 	return 1;
153 }
154 
155 static int rdma_rw_init_mr_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
156 		u32 port_num, struct scatterlist *sg, u32 sg_cnt, u32 offset,
157 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
158 {
159 	struct rdma_rw_reg_ctx *prev = NULL;
160 	u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device,
161 						    qp->integrity_en);
162 	int i, j, ret = 0, count = 0;
163 
164 	ctx->nr_ops = DIV_ROUND_UP(sg_cnt, pages_per_mr);
165 	ctx->reg = kcalloc(ctx->nr_ops, sizeof(*ctx->reg), GFP_KERNEL);
166 	if (!ctx->reg) {
167 		ret = -ENOMEM;
168 		goto out;
169 	}
170 
171 	for (i = 0; i < ctx->nr_ops; i++) {
172 		struct rdma_rw_reg_ctx *reg = &ctx->reg[i];
173 		u32 nents = min(sg_cnt, pages_per_mr);
174 
175 		ret = rdma_rw_init_one_mr(qp, port_num, reg, sg, sg_cnt,
176 				offset);
177 		if (ret < 0)
178 			goto out_free;
179 		count += ret;
180 		count += rdma_rw_init_reg_wr(reg, prev, qp, port_num,
181 				remote_addr, rkey, dir);
182 		remote_addr += reg->sge.length;
183 		sg_cnt -= nents;
184 		for (j = 0; j < nents; j++)
185 			sg = sg_next(sg);
186 		prev = reg;
187 		offset = 0;
188 	}
189 
190 	if (prev)
191 		prev->wr.wr.next = NULL;
192 
193 	ctx->type = RDMA_RW_MR;
194 	return count;
195 
196 out_free:
197 	while (--i >= 0)
198 		ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr);
199 	kfree(ctx->reg);
200 out:
201 	return ret;
202 }
203 
204 static int rdma_rw_init_mr_wrs_bvec(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
205 		u32 port_num, const struct bio_vec *bvecs, u32 nr_bvec,
206 		struct bvec_iter *iter, u64 remote_addr, u32 rkey,
207 		enum dma_data_direction dir)
208 {
209 	struct ib_device *dev = qp->pd->device;
210 	struct rdma_rw_reg_ctx *prev = NULL;
211 	u32 pages_per_mr = rdma_rw_fr_page_list_len(dev, qp->integrity_en);
212 	struct scatterlist *sg;
213 	int i, ret, count = 0;
214 	u32 nents = 0;
215 
216 	ctx->reg = kcalloc(DIV_ROUND_UP(nr_bvec, pages_per_mr),
217 			   sizeof(*ctx->reg), GFP_KERNEL);
218 	if (!ctx->reg)
219 		return -ENOMEM;
220 
221 	/*
222 	 * Build scatterlist from bvecs using the iterator. This follows
223 	 * the pattern from __blk_rq_map_sg.
224 	 */
225 	ctx->reg[0].sgt.sgl = kmalloc_array(nr_bvec,
226 					    sizeof(*ctx->reg[0].sgt.sgl),
227 					    GFP_KERNEL);
228 	if (!ctx->reg[0].sgt.sgl) {
229 		ret = -ENOMEM;
230 		goto out_free_reg;
231 	}
232 	sg_init_table(ctx->reg[0].sgt.sgl, nr_bvec);
233 
234 	for (sg = ctx->reg[0].sgt.sgl; iter->bi_size; sg = sg_next(sg)) {
235 		struct bio_vec bv = mp_bvec_iter_bvec(bvecs, *iter);
236 
237 		if (nents >= nr_bvec) {
238 			ret = -EINVAL;
239 			goto out_free_sgl;
240 		}
241 		sg_set_page(sg, bv.bv_page, bv.bv_len, bv.bv_offset);
242 		bvec_iter_advance(bvecs, iter, bv.bv_len);
243 		nents++;
244 	}
245 	sg_mark_end(sg_last(ctx->reg[0].sgt.sgl, nents));
246 	ctx->reg[0].sgt.orig_nents = nents;
247 
248 	/* DMA map the scatterlist */
249 	ret = ib_dma_map_sgtable_attrs(dev, &ctx->reg[0].sgt, dir, 0);
250 	if (ret)
251 		goto out_free_sgl;
252 
253 	ctx->nr_ops = DIV_ROUND_UP(ctx->reg[0].sgt.nents, pages_per_mr);
254 
255 	sg = ctx->reg[0].sgt.sgl;
256 	nents = ctx->reg[0].sgt.nents;
257 	for (i = 0; i < ctx->nr_ops; i++) {
258 		struct rdma_rw_reg_ctx *reg = &ctx->reg[i];
259 		u32 sge_cnt = min(nents, pages_per_mr);
260 
261 		ret = rdma_rw_init_one_mr(qp, port_num, reg, sg, sge_cnt, 0);
262 		if (ret < 0)
263 			goto out_free_mrs;
264 		count += ret;
265 		count += rdma_rw_init_reg_wr(reg, prev, qp, port_num,
266 				remote_addr, rkey, dir);
267 		remote_addr += reg->sge.length;
268 		nents -= sge_cnt;
269 		sg += sge_cnt;
270 		prev = reg;
271 	}
272 
273 	if (prev)
274 		prev->wr.wr.next = NULL;
275 
276 	ctx->type = RDMA_RW_MR;
277 	return count;
278 
279 out_free_mrs:
280 	while (--i >= 0)
281 		ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr);
282 	ib_dma_unmap_sgtable_attrs(dev, &ctx->reg[0].sgt, dir, 0);
283 out_free_sgl:
284 	kfree(ctx->reg[0].sgt.sgl);
285 out_free_reg:
286 	kfree(ctx->reg);
287 	return ret;
288 }
289 
290 static int rdma_rw_init_map_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
291 		struct scatterlist *sg, u32 sg_cnt, u32 offset,
292 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
293 {
294 	u32 max_sge = dir == DMA_TO_DEVICE ? qp->max_write_sge :
295 		      qp->max_read_sge;
296 	struct ib_sge *sge;
297 	u32 total_len = 0, i, j;
298 
299 	ctx->nr_ops = DIV_ROUND_UP(sg_cnt, max_sge);
300 
301 	ctx->map.sges = sge = kcalloc(sg_cnt, sizeof(*sge), GFP_KERNEL);
302 	if (!ctx->map.sges)
303 		goto out;
304 
305 	ctx->map.wrs = kcalloc(ctx->nr_ops, sizeof(*ctx->map.wrs), GFP_KERNEL);
306 	if (!ctx->map.wrs)
307 		goto out_free_sges;
308 
309 	for (i = 0; i < ctx->nr_ops; i++) {
310 		struct ib_rdma_wr *rdma_wr = &ctx->map.wrs[i];
311 		u32 nr_sge = min(sg_cnt, max_sge);
312 
313 		if (dir == DMA_TO_DEVICE)
314 			rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
315 		else
316 			rdma_wr->wr.opcode = IB_WR_RDMA_READ;
317 		rdma_wr->remote_addr = remote_addr + total_len;
318 		rdma_wr->rkey = rkey;
319 		rdma_wr->wr.num_sge = nr_sge;
320 		rdma_wr->wr.sg_list = sge;
321 
322 		for (j = 0; j < nr_sge; j++, sg = sg_next(sg)) {
323 			sge->addr = sg_dma_address(sg) + offset;
324 			sge->length = sg_dma_len(sg) - offset;
325 			sge->lkey = qp->pd->local_dma_lkey;
326 
327 			total_len += sge->length;
328 			sge++;
329 			sg_cnt--;
330 			offset = 0;
331 		}
332 
333 		rdma_wr->wr.next = i + 1 < ctx->nr_ops ?
334 			&ctx->map.wrs[i + 1].wr : NULL;
335 	}
336 
337 	ctx->type = RDMA_RW_MULTI_WR;
338 	return ctx->nr_ops;
339 
340 out_free_sges:
341 	kfree(ctx->map.sges);
342 out:
343 	return -ENOMEM;
344 }
345 
346 static int rdma_rw_init_single_wr(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
347 		struct scatterlist *sg, u32 offset, u64 remote_addr, u32 rkey,
348 		enum dma_data_direction dir)
349 {
350 	struct ib_rdma_wr *rdma_wr = &ctx->single.wr;
351 
352 	ctx->nr_ops = 1;
353 
354 	ctx->single.sge.lkey = qp->pd->local_dma_lkey;
355 	ctx->single.sge.addr = sg_dma_address(sg) + offset;
356 	ctx->single.sge.length = sg_dma_len(sg) - offset;
357 
358 	memset(rdma_wr, 0, sizeof(*rdma_wr));
359 	if (dir == DMA_TO_DEVICE)
360 		rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
361 	else
362 		rdma_wr->wr.opcode = IB_WR_RDMA_READ;
363 	rdma_wr->wr.sg_list = &ctx->single.sge;
364 	rdma_wr->wr.num_sge = 1;
365 	rdma_wr->remote_addr = remote_addr;
366 	rdma_wr->rkey = rkey;
367 
368 	ctx->type = RDMA_RW_SINGLE_WR;
369 	return 1;
370 }
371 
372 static int rdma_rw_init_single_wr_bvec(struct rdma_rw_ctx *ctx,
373 		struct ib_qp *qp, const struct bio_vec *bvecs,
374 		struct bvec_iter *iter, u64 remote_addr, u32 rkey,
375 		enum dma_data_direction dir)
376 {
377 	struct ib_device *dev = qp->pd->device;
378 	struct ib_rdma_wr *rdma_wr = &ctx->single.wr;
379 	struct bio_vec bv = mp_bvec_iter_bvec(bvecs, *iter);
380 	u64 dma_addr;
381 
382 	ctx->nr_ops = 1;
383 
384 	dma_addr = ib_dma_map_bvec(dev, &bv, dir);
385 	if (ib_dma_mapping_error(dev, dma_addr))
386 		return -ENOMEM;
387 
388 	ctx->single.sge.lkey = qp->pd->local_dma_lkey;
389 	ctx->single.sge.addr = dma_addr;
390 	ctx->single.sge.length = bv.bv_len;
391 
392 	memset(rdma_wr, 0, sizeof(*rdma_wr));
393 	if (dir == DMA_TO_DEVICE)
394 		rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
395 	else
396 		rdma_wr->wr.opcode = IB_WR_RDMA_READ;
397 	rdma_wr->wr.sg_list = &ctx->single.sge;
398 	rdma_wr->wr.num_sge = 1;
399 	rdma_wr->remote_addr = remote_addr;
400 	rdma_wr->rkey = rkey;
401 
402 	ctx->type = RDMA_RW_SINGLE_WR;
403 	return 1;
404 }
405 
406 static int rdma_rw_init_map_wrs_bvec(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
407 		const struct bio_vec *bvecs, u32 nr_bvec, struct bvec_iter *iter,
408 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
409 {
410 	struct ib_device *dev = qp->pd->device;
411 	u32 max_sge = dir == DMA_TO_DEVICE ? qp->max_write_sge :
412 		      qp->max_read_sge;
413 	struct ib_sge *sge;
414 	u32 total_len = 0, i, j;
415 	u32 mapped_bvecs = 0;
416 	u32 nr_ops = DIV_ROUND_UP(nr_bvec, max_sge);
417 	size_t sges_size = array_size(nr_bvec, sizeof(*ctx->map.sges));
418 	size_t wrs_offset = ALIGN(sges_size, __alignof__(*ctx->map.wrs));
419 	size_t wrs_size = array_size(nr_ops, sizeof(*ctx->map.wrs));
420 	void *mem;
421 
422 	if (sges_size == SIZE_MAX || wrs_size == SIZE_MAX ||
423 	    check_add_overflow(wrs_offset, wrs_size, &wrs_size))
424 		return -ENOMEM;
425 
426 	mem = kzalloc(wrs_size, GFP_KERNEL);
427 	if (!mem)
428 		return -ENOMEM;
429 
430 	ctx->map.sges = sge = mem;
431 	ctx->map.wrs = mem + wrs_offset;
432 
433 	for (i = 0; i < nr_ops; i++) {
434 		struct ib_rdma_wr *rdma_wr = &ctx->map.wrs[i];
435 		u32 nr_sge = min(nr_bvec - mapped_bvecs, max_sge);
436 
437 		if (dir == DMA_TO_DEVICE)
438 			rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
439 		else
440 			rdma_wr->wr.opcode = IB_WR_RDMA_READ;
441 		rdma_wr->remote_addr = remote_addr + total_len;
442 		rdma_wr->rkey = rkey;
443 		rdma_wr->wr.num_sge = nr_sge;
444 		rdma_wr->wr.sg_list = sge;
445 
446 		for (j = 0; j < nr_sge; j++) {
447 			struct bio_vec bv = mp_bvec_iter_bvec(bvecs, *iter);
448 			u64 dma_addr;
449 
450 			dma_addr = ib_dma_map_bvec(dev, &bv, dir);
451 			if (ib_dma_mapping_error(dev, dma_addr))
452 				goto out_unmap;
453 
454 			mapped_bvecs++;
455 			sge->addr = dma_addr;
456 			sge->length = bv.bv_len;
457 			sge->lkey = qp->pd->local_dma_lkey;
458 
459 			total_len += bv.bv_len;
460 			sge++;
461 
462 			bvec_iter_advance_single(bvecs, iter, bv.bv_len);
463 		}
464 
465 		rdma_wr->wr.next = i + 1 < nr_ops ?
466 			&ctx->map.wrs[i + 1].wr : NULL;
467 	}
468 
469 	ctx->nr_ops = nr_ops;
470 	ctx->type = RDMA_RW_MULTI_WR;
471 	return nr_ops;
472 
473 out_unmap:
474 	for (i = 0; i < mapped_bvecs; i++)
475 		ib_dma_unmap_bvec(dev, ctx->map.sges[i].addr,
476 				  ctx->map.sges[i].length, dir);
477 	kfree(ctx->map.sges);
478 	return -ENOMEM;
479 }
480 
481 /*
482  * Try to use the two-step IOVA API to map bvecs into a contiguous DMA range.
483  * This reduces IOTLB sync overhead by doing one sync at the end instead of
484  * one per bvec, and produces a contiguous DMA address range that can be
485  * described by a single SGE.
486  *
487  * Returns the number of WQEs (always 1) on success, -EOPNOTSUPP if IOVA
488  * mapping is not available, or another negative error code on failure.
489  */
490 static int rdma_rw_init_iova_wrs_bvec(struct rdma_rw_ctx *ctx,
491 		struct ib_qp *qp, const struct bio_vec *bvec,
492 		struct bvec_iter *iter, u64 remote_addr, u32 rkey,
493 		enum dma_data_direction dir)
494 {
495 	struct ib_device *dev = qp->pd->device;
496 	struct device *dma_dev = dev->dma_device;
497 	size_t total_len = iter->bi_size;
498 	struct bio_vec first_bv;
499 	size_t mapped_len = 0;
500 	int ret;
501 
502 	/* Virtual DMA devices cannot support IOVA allocators */
503 	if (ib_uses_virt_dma(dev))
504 		return -EOPNOTSUPP;
505 
506 	/* Try to allocate contiguous IOVA space */
507 	first_bv = mp_bvec_iter_bvec(bvec, *iter);
508 	if (!dma_iova_try_alloc(dma_dev, &ctx->iova.state,
509 				bvec_phys(&first_bv), total_len))
510 		return -EOPNOTSUPP;
511 
512 	/* Link all bvecs into the IOVA space */
513 	while (iter->bi_size) {
514 		struct bio_vec bv = mp_bvec_iter_bvec(bvec, *iter);
515 
516 		ret = dma_iova_link(dma_dev, &ctx->iova.state, bvec_phys(&bv),
517 				    mapped_len, bv.bv_len, dir, 0);
518 		if (ret)
519 			goto out_destroy;
520 
521 		mapped_len += bv.bv_len;
522 		bvec_iter_advance(bvec, iter, bv.bv_len);
523 	}
524 
525 	/* Sync the IOTLB once for all linked pages */
526 	ret = dma_iova_sync(dma_dev, &ctx->iova.state, 0, mapped_len);
527 	if (ret)
528 		goto out_destroy;
529 
530 	ctx->iova.mapped_len = mapped_len;
531 
532 	/* Single SGE covers the entire contiguous IOVA range */
533 	ctx->iova.sge.addr = ctx->iova.state.addr;
534 	ctx->iova.sge.length = mapped_len;
535 	ctx->iova.sge.lkey = qp->pd->local_dma_lkey;
536 
537 	/* Single WR for the whole transfer */
538 	memset(&ctx->iova.wr, 0, sizeof(ctx->iova.wr));
539 	if (dir == DMA_TO_DEVICE)
540 		ctx->iova.wr.wr.opcode = IB_WR_RDMA_WRITE;
541 	else
542 		ctx->iova.wr.wr.opcode = IB_WR_RDMA_READ;
543 	ctx->iova.wr.wr.num_sge = 1;
544 	ctx->iova.wr.wr.sg_list = &ctx->iova.sge;
545 	ctx->iova.wr.remote_addr = remote_addr;
546 	ctx->iova.wr.rkey = rkey;
547 
548 	ctx->type = RDMA_RW_IOVA;
549 	ctx->nr_ops = 1;
550 	return 1;
551 
552 out_destroy:
553 	/*
554 	 * dma_iova_destroy() expects the actual mapped length, not the
555 	 * total allocation size. It unlinks only the successfully linked
556 	 * range and frees the entire IOVA allocation.
557 	 */
558 	dma_iova_destroy(dma_dev, &ctx->iova.state, mapped_len, dir, 0);
559 	return ret;
560 }
561 
562 /**
563  * rdma_rw_ctx_init - initialize a RDMA READ/WRITE context
564  * @ctx:	context to initialize
565  * @qp:		queue pair to operate on
566  * @port_num:	port num to which the connection is bound
567  * @sg:		scatterlist to READ/WRITE from/to
568  * @sg_cnt:	number of entries in @sg
569  * @sg_offset:	current byte offset into @sg
570  * @remote_addr:remote address to read/write (relative to @rkey)
571  * @rkey:	remote key to operate on
572  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
573  *
574  * Returns the number of WQEs that will be needed on the workqueue if
575  * successful, or a negative error code.
576  */
577 int rdma_rw_ctx_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u32 port_num,
578 		struct scatterlist *sg, u32 sg_cnt, u32 sg_offset,
579 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
580 {
581 	struct ib_device *dev = qp->pd->device;
582 	struct sg_table sgt = {
583 		.sgl = sg,
584 		.orig_nents = sg_cnt,
585 	};
586 	int ret;
587 
588 	ret = ib_dma_map_sgtable_attrs(dev, &sgt, dir, 0);
589 	if (ret)
590 		return ret;
591 	sg_cnt = sgt.nents;
592 
593 	/*
594 	 * Skip to the S/G entry that sg_offset falls into:
595 	 */
596 	for (;;) {
597 		u32 len = sg_dma_len(sg);
598 
599 		if (sg_offset < len)
600 			break;
601 
602 		sg = sg_next(sg);
603 		sg_offset -= len;
604 		sg_cnt--;
605 	}
606 
607 	ret = -EIO;
608 	if (WARN_ON_ONCE(sg_cnt == 0))
609 		goto out_unmap_sg;
610 
611 	if (rdma_rw_io_needs_mr(qp->device, port_num, dir, sg_cnt)) {
612 		ret = rdma_rw_init_mr_wrs(ctx, qp, port_num, sg, sg_cnt,
613 				sg_offset, remote_addr, rkey, dir);
614 	} else if (sg_cnt > 1) {
615 		ret = rdma_rw_init_map_wrs(ctx, qp, sg, sg_cnt, sg_offset,
616 				remote_addr, rkey, dir);
617 	} else {
618 		ret = rdma_rw_init_single_wr(ctx, qp, sg, sg_offset,
619 				remote_addr, rkey, dir);
620 	}
621 
622 	if (ret < 0)
623 		goto out_unmap_sg;
624 	return ret;
625 
626 out_unmap_sg:
627 	ib_dma_unmap_sgtable_attrs(dev, &sgt, dir, 0);
628 	return ret;
629 }
630 EXPORT_SYMBOL(rdma_rw_ctx_init);
631 
632 /**
633  * rdma_rw_ctx_init_bvec - initialize a RDMA READ/WRITE context from bio_vec
634  * @ctx:	context to initialize
635  * @qp:		queue pair to operate on
636  * @port_num:	port num to which the connection is bound
637  * @bvecs:	bio_vec array to READ/WRITE from/to
638  * @nr_bvec:	number of entries in @bvecs
639  * @iter:	bvec iterator describing offset and length
640  * @remote_addr: remote address to read/write (relative to @rkey)
641  * @rkey:	remote key to operate on
642  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
643  *
644  * Maps the bio_vec array directly, avoiding intermediate scatterlist
645  * conversion. Supports MR registration for iWARP devices and force_mr mode.
646  *
647  * Returns the number of WQEs that will be needed on the workqueue if
648  * successful, or a negative error code:
649  *
650  *   * -EINVAL  - @nr_bvec is zero or @iter.bi_size is zero
651  *   * -ENOMEM - DMA mapping or memory allocation failed
652  */
653 int rdma_rw_ctx_init_bvec(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
654 		u32 port_num, const struct bio_vec *bvecs, u32 nr_bvec,
655 		struct bvec_iter iter, u64 remote_addr, u32 rkey,
656 		enum dma_data_direction dir)
657 {
658 	struct ib_device *dev = qp->pd->device;
659 	int ret;
660 
661 	if (nr_bvec == 0 || iter.bi_size == 0)
662 		return -EINVAL;
663 
664 	/*
665 	 * iWARP requires MR registration for all RDMA READs. The force_mr
666 	 * debug option also mandates MR usage.
667 	 */
668 	if (dir == DMA_FROM_DEVICE && rdma_protocol_iwarp(dev, port_num))
669 		return rdma_rw_init_mr_wrs_bvec(ctx, qp, port_num, bvecs,
670 						nr_bvec, &iter, remote_addr,
671 						rkey, dir);
672 	if (unlikely(rdma_rw_force_mr))
673 		return rdma_rw_init_mr_wrs_bvec(ctx, qp, port_num, bvecs,
674 						nr_bvec, &iter, remote_addr,
675 						rkey, dir);
676 
677 	if (nr_bvec == 1)
678 		return rdma_rw_init_single_wr_bvec(ctx, qp, bvecs, &iter,
679 				remote_addr, rkey, dir);
680 
681 	/*
682 	 * Try IOVA-based mapping first for multi-bvec transfers.
683 	 * IOVA coalesces bvecs into a single DMA-contiguous region,
684 	 * reducing the number of WRs needed and avoiding MR overhead.
685 	 */
686 	ret = rdma_rw_init_iova_wrs_bvec(ctx, qp, bvecs, &iter, remote_addr,
687 			rkey, dir);
688 	if (ret != -EOPNOTSUPP)
689 		return ret;
690 
691 	/*
692 	 * IOVA mapping not available. Check if MR registration provides
693 	 * better performance than multiple SGE entries.
694 	 */
695 	if (rdma_rw_io_needs_mr(dev, port_num, dir, nr_bvec))
696 		return rdma_rw_init_mr_wrs_bvec(ctx, qp, port_num, bvecs,
697 						nr_bvec, &iter, remote_addr,
698 						rkey, dir);
699 
700 	return rdma_rw_init_map_wrs_bvec(ctx, qp, bvecs, nr_bvec, &iter,
701 			remote_addr, rkey, dir);
702 }
703 EXPORT_SYMBOL(rdma_rw_ctx_init_bvec);
704 
705 /**
706  * rdma_rw_ctx_signature_init - initialize a RW context with signature offload
707  * @ctx:	context to initialize
708  * @qp:		queue pair to operate on
709  * @port_num:	port num to which the connection is bound
710  * @sg:		scatterlist to READ/WRITE from/to
711  * @sg_cnt:	number of entries in @sg
712  * @prot_sg:	scatterlist to READ/WRITE protection information from/to
713  * @prot_sg_cnt: number of entries in @prot_sg
714  * @sig_attrs:	signature offloading algorithms
715  * @remote_addr:remote address to read/write (relative to @rkey)
716  * @rkey:	remote key to operate on
717  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
718  *
719  * Returns the number of WQEs that will be needed on the workqueue if
720  * successful, or a negative error code.
721  */
722 int rdma_rw_ctx_signature_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
723 		u32 port_num, struct scatterlist *sg, u32 sg_cnt,
724 		struct scatterlist *prot_sg, u32 prot_sg_cnt,
725 		struct ib_sig_attrs *sig_attrs,
726 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
727 {
728 	struct ib_device *dev = qp->pd->device;
729 	u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device,
730 						    qp->integrity_en);
731 	struct sg_table sgt = {
732 		.sgl = sg,
733 		.orig_nents = sg_cnt,
734 	};
735 	struct sg_table prot_sgt = {
736 		.sgl = prot_sg,
737 		.orig_nents = prot_sg_cnt,
738 	};
739 	struct ib_rdma_wr *rdma_wr;
740 	int count = 0, ret;
741 
742 	if (sg_cnt > pages_per_mr || prot_sg_cnt > pages_per_mr) {
743 		pr_err("SG count too large: sg_cnt=%u, prot_sg_cnt=%u, pages_per_mr=%u\n",
744 		       sg_cnt, prot_sg_cnt, pages_per_mr);
745 		return -EINVAL;
746 	}
747 
748 	ret = ib_dma_map_sgtable_attrs(dev, &sgt, dir, 0);
749 	if (ret)
750 		return ret;
751 
752 	if (prot_sg_cnt) {
753 		ret = ib_dma_map_sgtable_attrs(dev, &prot_sgt, dir, 0);
754 		if (ret)
755 			goto out_unmap_sg;
756 	}
757 
758 	ctx->type = RDMA_RW_SIG_MR;
759 	ctx->nr_ops = 1;
760 	ctx->reg = kzalloc(sizeof(*ctx->reg), GFP_KERNEL);
761 	if (!ctx->reg) {
762 		ret = -ENOMEM;
763 		goto out_unmap_prot_sg;
764 	}
765 
766 	ctx->reg->mr = ib_mr_pool_get(qp, &qp->sig_mrs);
767 	if (!ctx->reg->mr) {
768 		ret = -EAGAIN;
769 		goto out_free_ctx;
770 	}
771 
772 	count += rdma_rw_inv_key(ctx->reg);
773 
774 	memcpy(ctx->reg->mr->sig_attrs, sig_attrs, sizeof(struct ib_sig_attrs));
775 
776 	ret = ib_map_mr_sg_pi(ctx->reg->mr, sg, sgt.nents, NULL, prot_sg,
777 			      prot_sgt.nents, NULL, SZ_4K);
778 	if (unlikely(ret)) {
779 		pr_err("failed to map PI sg (%u)\n",
780 		       sgt.nents + prot_sgt.nents);
781 		goto out_destroy_sig_mr;
782 	}
783 
784 	ctx->reg->reg_wr.wr.opcode = IB_WR_REG_MR_INTEGRITY;
785 	ctx->reg->reg_wr.wr.wr_cqe = NULL;
786 	ctx->reg->reg_wr.wr.num_sge = 0;
787 	ctx->reg->reg_wr.wr.send_flags = 0;
788 	ctx->reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE;
789 	if (rdma_protocol_iwarp(qp->device, port_num))
790 		ctx->reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE;
791 	ctx->reg->reg_wr.mr = ctx->reg->mr;
792 	ctx->reg->reg_wr.key = ctx->reg->mr->lkey;
793 	count++;
794 
795 	ctx->reg->sge.addr = ctx->reg->mr->iova;
796 	ctx->reg->sge.length = ctx->reg->mr->length;
797 	if (sig_attrs->wire.sig_type == IB_SIG_TYPE_NONE)
798 		ctx->reg->sge.length -= ctx->reg->mr->sig_attrs->meta_length;
799 
800 	rdma_wr = &ctx->reg->wr;
801 	rdma_wr->wr.sg_list = &ctx->reg->sge;
802 	rdma_wr->wr.num_sge = 1;
803 	rdma_wr->remote_addr = remote_addr;
804 	rdma_wr->rkey = rkey;
805 	if (dir == DMA_TO_DEVICE)
806 		rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
807 	else
808 		rdma_wr->wr.opcode = IB_WR_RDMA_READ;
809 	ctx->reg->reg_wr.wr.next = &rdma_wr->wr;
810 	count++;
811 
812 	return count;
813 
814 out_destroy_sig_mr:
815 	ib_mr_pool_put(qp, &qp->sig_mrs, ctx->reg->mr);
816 out_free_ctx:
817 	kfree(ctx->reg);
818 out_unmap_prot_sg:
819 	if (prot_sgt.nents)
820 		ib_dma_unmap_sgtable_attrs(dev, &prot_sgt, dir, 0);
821 out_unmap_sg:
822 	ib_dma_unmap_sgtable_attrs(dev, &sgt, dir, 0);
823 	return ret;
824 }
825 EXPORT_SYMBOL(rdma_rw_ctx_signature_init);
826 
827 /*
828  * Now that we are going to post the WRs we can update the lkey and need_inval
829  * state on the MRs.  If we were doing this at init time, we would get double
830  * or missing invalidations if a context was initialized but not actually
831  * posted.
832  */
833 static void rdma_rw_update_lkey(struct rdma_rw_reg_ctx *reg, bool need_inval)
834 {
835 	reg->mr->need_inval = need_inval;
836 	ib_update_fast_reg_key(reg->mr, ib_inc_rkey(reg->mr->lkey));
837 	reg->reg_wr.key = reg->mr->lkey;
838 	reg->sge.lkey = reg->mr->lkey;
839 }
840 
841 /**
842  * rdma_rw_ctx_wrs - return chain of WRs for a RDMA READ or WRITE operation
843  * @ctx:	context to operate on
844  * @qp:		queue pair to operate on
845  * @port_num:	port num to which the connection is bound
846  * @cqe:	completion queue entry for the last WR
847  * @chain_wr:	WR to append to the posted chain
848  *
849  * Return the WR chain for the set of RDMA READ/WRITE operations described by
850  * @ctx, as well as any memory registration operations needed.  If @chain_wr
851  * is non-NULL the WR it points to will be appended to the chain of WRs posted.
852  * If @chain_wr is not set @cqe must be set so that the caller gets a
853  * completion notification.
854  */
855 struct ib_send_wr *rdma_rw_ctx_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
856 		u32 port_num, struct ib_cqe *cqe, struct ib_send_wr *chain_wr)
857 {
858 	struct ib_send_wr *first_wr, *last_wr;
859 	int i;
860 
861 	switch (ctx->type) {
862 	case RDMA_RW_SIG_MR:
863 	case RDMA_RW_MR:
864 		for (i = 0; i < ctx->nr_ops; i++) {
865 			rdma_rw_update_lkey(&ctx->reg[i],
866 				ctx->reg[i].wr.wr.opcode !=
867 					IB_WR_RDMA_READ_WITH_INV);
868 		}
869 
870 		if (ctx->reg[0].inv_wr.next)
871 			first_wr = &ctx->reg[0].inv_wr;
872 		else
873 			first_wr = &ctx->reg[0].reg_wr.wr;
874 		last_wr = &ctx->reg[ctx->nr_ops - 1].wr.wr;
875 		break;
876 	case RDMA_RW_IOVA:
877 		first_wr = &ctx->iova.wr.wr;
878 		last_wr = &ctx->iova.wr.wr;
879 		break;
880 	case RDMA_RW_MULTI_WR:
881 		first_wr = &ctx->map.wrs[0].wr;
882 		last_wr = &ctx->map.wrs[ctx->nr_ops - 1].wr;
883 		break;
884 	case RDMA_RW_SINGLE_WR:
885 		first_wr = &ctx->single.wr.wr;
886 		last_wr = &ctx->single.wr.wr;
887 		break;
888 	default:
889 		BUG();
890 	}
891 
892 	if (chain_wr) {
893 		last_wr->next = chain_wr;
894 	} else {
895 		last_wr->wr_cqe = cqe;
896 		last_wr->send_flags |= IB_SEND_SIGNALED;
897 	}
898 
899 	return first_wr;
900 }
901 EXPORT_SYMBOL(rdma_rw_ctx_wrs);
902 
903 /**
904  * rdma_rw_ctx_post - post a RDMA READ or RDMA WRITE operation
905  * @ctx:	context to operate on
906  * @qp:		queue pair to operate on
907  * @port_num:	port num to which the connection is bound
908  * @cqe:	completion queue entry for the last WR
909  * @chain_wr:	WR to append to the posted chain
910  *
911  * Post the set of RDMA READ/WRITE operations described by @ctx, as well as
912  * any memory registration operations needed.  If @chain_wr is non-NULL the
913  * WR it points to will be appended to the chain of WRs posted.  If @chain_wr
914  * is not set @cqe must be set so that the caller gets a completion
915  * notification.
916  */
917 int rdma_rw_ctx_post(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u32 port_num,
918 		struct ib_cqe *cqe, struct ib_send_wr *chain_wr)
919 {
920 	struct ib_send_wr *first_wr;
921 
922 	first_wr = rdma_rw_ctx_wrs(ctx, qp, port_num, cqe, chain_wr);
923 	return ib_post_send(qp, first_wr, NULL);
924 }
925 EXPORT_SYMBOL(rdma_rw_ctx_post);
926 
927 /**
928  * rdma_rw_ctx_destroy - release all resources allocated by rdma_rw_ctx_init
929  * @ctx:	context to release
930  * @qp:		queue pair to operate on
931  * @port_num:	port num to which the connection is bound
932  * @sg:		scatterlist that was used for the READ/WRITE
933  * @sg_cnt:	number of entries in @sg
934  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
935  */
936 void rdma_rw_ctx_destroy(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
937 			 u32 port_num, struct scatterlist *sg, u32 sg_cnt,
938 			 enum dma_data_direction dir)
939 {
940 	int i;
941 
942 	switch (ctx->type) {
943 	case RDMA_RW_MR:
944 		/* Bvec MR contexts must use rdma_rw_ctx_destroy_bvec() */
945 		WARN_ON_ONCE(ctx->reg[0].sgt.sgl);
946 		for (i = 0; i < ctx->nr_ops; i++)
947 			ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr);
948 		kfree(ctx->reg);
949 		break;
950 	case RDMA_RW_MULTI_WR:
951 		kfree(ctx->map.wrs);
952 		kfree(ctx->map.sges);
953 		break;
954 	case RDMA_RW_SINGLE_WR:
955 		break;
956 	case RDMA_RW_IOVA:
957 		/* IOVA contexts must use rdma_rw_ctx_destroy_bvec() */
958 		WARN_ON_ONCE(1);
959 		return;
960 	default:
961 		BUG();
962 		break;
963 	}
964 
965 	ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir);
966 }
967 EXPORT_SYMBOL(rdma_rw_ctx_destroy);
968 
969 /**
970  * rdma_rw_ctx_destroy_bvec - release resources from rdma_rw_ctx_init_bvec
971  * @ctx:	context to release
972  * @qp:		queue pair to operate on
973  * @port_num:	port num to which the connection is bound (unused)
974  * @bvecs:	bio_vec array that was used for the READ/WRITE (unused)
975  * @nr_bvec:	number of entries in @bvecs
976  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
977  *
978  * Releases all resources allocated by a successful rdma_rw_ctx_init_bvec()
979  * call. Must not be called if rdma_rw_ctx_init_bvec() returned an error.
980  *
981  * The @port_num and @bvecs parameters are unused but present for API
982  * symmetry with rdma_rw_ctx_destroy().
983  */
984 void rdma_rw_ctx_destroy_bvec(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
985 		u32 __maybe_unused port_num,
986 		const struct bio_vec __maybe_unused *bvecs,
987 		u32 nr_bvec, enum dma_data_direction dir)
988 {
989 	struct ib_device *dev = qp->pd->device;
990 	u32 i;
991 
992 	switch (ctx->type) {
993 	case RDMA_RW_MR:
994 		for (i = 0; i < ctx->nr_ops; i++)
995 			ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr);
996 		ib_dma_unmap_sgtable_attrs(dev, &ctx->reg[0].sgt, dir, 0);
997 		kfree(ctx->reg[0].sgt.sgl);
998 		kfree(ctx->reg);
999 		break;
1000 	case RDMA_RW_IOVA:
1001 		dma_iova_destroy(dev->dma_device, &ctx->iova.state,
1002 				 ctx->iova.mapped_len, dir, 0);
1003 		break;
1004 	case RDMA_RW_MULTI_WR:
1005 		for (i = 0; i < nr_bvec; i++)
1006 			ib_dma_unmap_bvec(dev, ctx->map.sges[i].addr,
1007 					  ctx->map.sges[i].length, dir);
1008 		kfree(ctx->map.sges);
1009 		break;
1010 	case RDMA_RW_SINGLE_WR:
1011 		ib_dma_unmap_bvec(dev, ctx->single.sge.addr,
1012 				  ctx->single.sge.length, dir);
1013 		break;
1014 	default:
1015 		WARN_ON_ONCE(1);
1016 		return;
1017 	}
1018 }
1019 EXPORT_SYMBOL(rdma_rw_ctx_destroy_bvec);
1020 
1021 /**
1022  * rdma_rw_ctx_destroy_signature - release all resources allocated by
1023  *	rdma_rw_ctx_signature_init
1024  * @ctx:	context to release
1025  * @qp:		queue pair to operate on
1026  * @port_num:	port num to which the connection is bound
1027  * @sg:		scatterlist that was used for the READ/WRITE
1028  * @sg_cnt:	number of entries in @sg
1029  * @prot_sg:	scatterlist that was used for the READ/WRITE of the PI
1030  * @prot_sg_cnt: number of entries in @prot_sg
1031  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
1032  */
1033 void rdma_rw_ctx_destroy_signature(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
1034 		u32 port_num, struct scatterlist *sg, u32 sg_cnt,
1035 		struct scatterlist *prot_sg, u32 prot_sg_cnt,
1036 		enum dma_data_direction dir)
1037 {
1038 	if (WARN_ON_ONCE(ctx->type != RDMA_RW_SIG_MR))
1039 		return;
1040 
1041 	ib_mr_pool_put(qp, &qp->sig_mrs, ctx->reg->mr);
1042 	kfree(ctx->reg);
1043 
1044 	if (prot_sg_cnt)
1045 		ib_dma_unmap_sg(qp->pd->device, prot_sg, prot_sg_cnt, dir);
1046 	ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir);
1047 }
1048 EXPORT_SYMBOL(rdma_rw_ctx_destroy_signature);
1049 
1050 /**
1051  * rdma_rw_mr_factor - return number of MRs required for a payload
1052  * @device:	device handling the connection
1053  * @port_num:	port num to which the connection is bound
1054  * @maxpages:	maximum payload pages per rdma_rw_ctx
1055  *
1056  * Returns the number of MRs the device requires to move @maxpayload
1057  * bytes. The returned value is used during transport creation to
1058  * compute max_rdma_ctxts and the size of the transport's Send and
1059  * Send Completion Queues.
1060  */
1061 unsigned int rdma_rw_mr_factor(struct ib_device *device, u32 port_num,
1062 			       unsigned int maxpages)
1063 {
1064 	unsigned int mr_pages;
1065 
1066 	if (rdma_rw_can_use_mr(device, port_num))
1067 		mr_pages = rdma_rw_fr_page_list_len(device, false);
1068 	else
1069 		mr_pages = device->attrs.max_sge_rd;
1070 	return DIV_ROUND_UP(maxpages, mr_pages);
1071 }
1072 EXPORT_SYMBOL(rdma_rw_mr_factor);
1073 
1074 /**
1075  * rdma_rw_max_send_wr - compute max Send WRs needed for RDMA R/W contexts
1076  * @dev: RDMA device
1077  * @port_num: port number
1078  * @max_rdma_ctxs: number of rdma_rw_ctx structures
1079  * @create_flags: QP create flags (pass IB_QP_CREATE_INTEGRITY_EN if
1080  *                data integrity will be enabled on the QP)
1081  *
1082  * Returns the total number of Send Queue entries needed for
1083  * @max_rdma_ctxs. The result accounts for memory registration and
1084  * invalidation work requests when the device requires them.
1085  *
1086  * ULPs use this to size Send Queues and Send CQs before creating a
1087  * Queue Pair.
1088  */
1089 unsigned int rdma_rw_max_send_wr(struct ib_device *dev, u32 port_num,
1090 				 unsigned int max_rdma_ctxs, u32 create_flags)
1091 {
1092 	unsigned int factor = 1;
1093 	unsigned int result;
1094 
1095 	if (create_flags & IB_QP_CREATE_INTEGRITY_EN ||
1096 	    rdma_rw_can_use_mr(dev, port_num))
1097 		factor += 2;	/* reg + inv */
1098 
1099 	if (check_mul_overflow(factor, max_rdma_ctxs, &result))
1100 		return UINT_MAX;
1101 	return result;
1102 }
1103 EXPORT_SYMBOL(rdma_rw_max_send_wr);
1104 
1105 void rdma_rw_init_qp(struct ib_device *dev, struct ib_qp_init_attr *attr)
1106 {
1107 	unsigned int factor = 1;
1108 
1109 	WARN_ON_ONCE(attr->port_num == 0);
1110 
1111 	/*
1112 	 * If the device uses MRs to perform RDMA READ or WRITE operations,
1113 	 * or if data integrity is enabled, account for registration and
1114 	 * invalidation work requests.
1115 	 */
1116 	if (attr->create_flags & IB_QP_CREATE_INTEGRITY_EN ||
1117 	    rdma_rw_can_use_mr(dev, attr->port_num))
1118 		factor += 2;	/* reg + inv */
1119 
1120 	attr->cap.max_send_wr += factor * attr->cap.max_rdma_ctxs;
1121 
1122 	/*
1123 	 * The device might not support all we need, and we'll have to
1124 	 * live with what we get.
1125 	 */
1126 	attr->cap.max_send_wr =
1127 		min_t(u32, attr->cap.max_send_wr, dev->attrs.max_qp_wr);
1128 }
1129 
1130 int rdma_rw_init_mrs(struct ib_qp *qp, struct ib_qp_init_attr *attr)
1131 {
1132 	struct ib_device *dev = qp->pd->device;
1133 	u32 nr_mrs = 0, nr_sig_mrs = 0, max_num_sg = 0;
1134 	int ret = 0;
1135 
1136 	if (attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) {
1137 		nr_sig_mrs = attr->cap.max_rdma_ctxs;
1138 		nr_mrs = attr->cap.max_rdma_ctxs;
1139 		max_num_sg = rdma_rw_fr_page_list_len(dev, true);
1140 	} else if (rdma_rw_can_use_mr(dev, attr->port_num)) {
1141 		nr_mrs = attr->cap.max_rdma_ctxs;
1142 		max_num_sg = rdma_rw_fr_page_list_len(dev, false);
1143 	}
1144 
1145 	if (nr_mrs) {
1146 		ret = ib_mr_pool_init(qp, &qp->rdma_mrs, nr_mrs,
1147 				IB_MR_TYPE_MEM_REG,
1148 				max_num_sg, 0);
1149 		if (ret) {
1150 			pr_err("%s: failed to allocated %u MRs\n",
1151 				__func__, nr_mrs);
1152 			return ret;
1153 		}
1154 	}
1155 
1156 	if (nr_sig_mrs) {
1157 		ret = ib_mr_pool_init(qp, &qp->sig_mrs, nr_sig_mrs,
1158 				IB_MR_TYPE_INTEGRITY, max_num_sg, max_num_sg);
1159 		if (ret) {
1160 			pr_err("%s: failed to allocated %u SIG MRs\n",
1161 				__func__, nr_sig_mrs);
1162 			goto out_free_rdma_mrs;
1163 		}
1164 	}
1165 
1166 	return 0;
1167 
1168 out_free_rdma_mrs:
1169 	ib_mr_pool_destroy(qp, &qp->rdma_mrs);
1170 	return ret;
1171 }
1172 
1173 void rdma_rw_cleanup_mrs(struct ib_qp *qp)
1174 {
1175 	ib_mr_pool_destroy(qp, &qp->sig_mrs);
1176 	ib_mr_pool_destroy(qp, &qp->rdma_mrs);
1177 }
1178