xref: /linux/include/linux/rcupdate.h (revision 3a39d672e7f48b8d6b91a09afa4b55352773b4b5)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion
4  *
5  * Copyright IBM Corporation, 2001
6  *
7  * Author: Dipankar Sarma <dipankar@in.ibm.com>
8  *
9  * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11  * Papers:
12  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14  *
15  * For detailed explanation of Read-Copy Update mechanism see -
16  *		http://lse.sourceforge.net/locking/rcupdate.html
17  *
18  */
19 
20 #ifndef __LINUX_RCUPDATE_H
21 #define __LINUX_RCUPDATE_H
22 
23 #include <linux/types.h>
24 #include <linux/compiler.h>
25 #include <linux/atomic.h>
26 #include <linux/irqflags.h>
27 #include <linux/preempt.h>
28 #include <linux/bottom_half.h>
29 #include <linux/lockdep.h>
30 #include <linux/cleanup.h>
31 #include <asm/processor.h>
32 #include <linux/context_tracking_irq.h>
33 
34 #define ULONG_CMP_GE(a, b)	(ULONG_MAX / 2 >= (a) - (b))
35 #define ULONG_CMP_LT(a, b)	(ULONG_MAX / 2 < (a) - (b))
36 
37 #define RCU_SEQ_CTR_SHIFT    2
38 #define RCU_SEQ_STATE_MASK   ((1 << RCU_SEQ_CTR_SHIFT) - 1)
39 
40 /* Exported common interfaces */
41 void call_rcu(struct rcu_head *head, rcu_callback_t func);
42 void rcu_barrier_tasks(void);
43 void synchronize_rcu(void);
44 
45 struct rcu_gp_oldstate;
46 unsigned long get_completed_synchronize_rcu(void);
47 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp);
48 
49 // Maximum number of unsigned long values corresponding to
50 // not-yet-completed RCU grace periods.
51 #define NUM_ACTIVE_RCU_POLL_OLDSTATE 2
52 
53 /**
54  * same_state_synchronize_rcu - Are two old-state values identical?
55  * @oldstate1: First old-state value.
56  * @oldstate2: Second old-state value.
57  *
58  * The two old-state values must have been obtained from either
59  * get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or
60  * get_completed_synchronize_rcu().  Returns @true if the two values are
61  * identical and @false otherwise.  This allows structures whose lifetimes
62  * are tracked by old-state values to push these values to a list header,
63  * allowing those structures to be slightly smaller.
64  */
same_state_synchronize_rcu(unsigned long oldstate1,unsigned long oldstate2)65 static inline bool same_state_synchronize_rcu(unsigned long oldstate1, unsigned long oldstate2)
66 {
67 	return oldstate1 == oldstate2;
68 }
69 
70 #ifdef CONFIG_PREEMPT_RCU
71 
72 void __rcu_read_lock(void);
73 void __rcu_read_unlock(void);
74 
75 /*
76  * Defined as a macro as it is a very low level header included from
77  * areas that don't even know about current.  This gives the rcu_read_lock()
78  * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
79  * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
80  */
81 #define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting)
82 
83 #else /* #ifdef CONFIG_PREEMPT_RCU */
84 
85 #ifdef CONFIG_TINY_RCU
86 #define rcu_read_unlock_strict() do { } while (0)
87 #else
88 void rcu_read_unlock_strict(void);
89 #endif
90 
__rcu_read_lock(void)91 static inline void __rcu_read_lock(void)
92 {
93 	preempt_disable();
94 }
95 
__rcu_read_unlock(void)96 static inline void __rcu_read_unlock(void)
97 {
98 	preempt_enable();
99 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
100 		rcu_read_unlock_strict();
101 }
102 
rcu_preempt_depth(void)103 static inline int rcu_preempt_depth(void)
104 {
105 	return 0;
106 }
107 
108 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
109 
110 #ifdef CONFIG_RCU_LAZY
111 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func);
112 #else
call_rcu_hurry(struct rcu_head * head,rcu_callback_t func)113 static inline void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
114 {
115 	call_rcu(head, func);
116 }
117 #endif
118 
119 /* Internal to kernel */
120 void rcu_init(void);
121 extern int rcu_scheduler_active;
122 void rcu_sched_clock_irq(int user);
123 
124 #ifdef CONFIG_TASKS_RCU_GENERIC
125 void rcu_init_tasks_generic(void);
126 #else
rcu_init_tasks_generic(void)127 static inline void rcu_init_tasks_generic(void) { }
128 #endif
129 
130 #ifdef CONFIG_RCU_STALL_COMMON
131 void rcu_sysrq_start(void);
132 void rcu_sysrq_end(void);
133 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)134 static inline void rcu_sysrq_start(void) { }
rcu_sysrq_end(void)135 static inline void rcu_sysrq_end(void) { }
136 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
137 
138 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
139 void rcu_irq_work_resched(void);
140 #else
rcu_irq_work_resched(void)141 static inline void rcu_irq_work_resched(void) { }
142 #endif
143 
144 #ifdef CONFIG_RCU_NOCB_CPU
145 void rcu_init_nohz(void);
146 int rcu_nocb_cpu_offload(int cpu);
147 int rcu_nocb_cpu_deoffload(int cpu);
148 void rcu_nocb_flush_deferred_wakeup(void);
149 
150 #define RCU_NOCB_LOCKDEP_WARN(c, s) RCU_LOCKDEP_WARN(c, s)
151 
152 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
153 
rcu_init_nohz(void)154 static inline void rcu_init_nohz(void) { }
rcu_nocb_cpu_offload(int cpu)155 static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; }
rcu_nocb_cpu_deoffload(int cpu)156 static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; }
rcu_nocb_flush_deferred_wakeup(void)157 static inline void rcu_nocb_flush_deferred_wakeup(void) { }
158 
159 #define RCU_NOCB_LOCKDEP_WARN(c, s)
160 
161 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
162 
163 /*
164  * Note a quasi-voluntary context switch for RCU-tasks's benefit.
165  * This is a macro rather than an inline function to avoid #include hell.
166  */
167 #ifdef CONFIG_TASKS_RCU_GENERIC
168 
169 # ifdef CONFIG_TASKS_RCU
170 # define rcu_tasks_classic_qs(t, preempt)				\
171 	do {								\
172 		if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout))	\
173 			WRITE_ONCE((t)->rcu_tasks_holdout, false);	\
174 	} while (0)
175 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
176 void synchronize_rcu_tasks(void);
177 void rcu_tasks_torture_stats_print(char *tt, char *tf);
178 # else
179 # define rcu_tasks_classic_qs(t, preempt) do { } while (0)
180 # define call_rcu_tasks call_rcu
181 # define synchronize_rcu_tasks synchronize_rcu
182 # endif
183 
184 # ifdef CONFIG_TASKS_TRACE_RCU
185 // Bits for ->trc_reader_special.b.need_qs field.
186 #define TRC_NEED_QS		0x1  // Task needs a quiescent state.
187 #define TRC_NEED_QS_CHECKED	0x2  // Task has been checked for needing quiescent state.
188 
189 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new);
190 void rcu_tasks_trace_qs_blkd(struct task_struct *t);
191 
192 # define rcu_tasks_trace_qs(t)							\
193 	do {									\
194 		int ___rttq_nesting = READ_ONCE((t)->trc_reader_nesting);	\
195 										\
196 		if (unlikely(READ_ONCE((t)->trc_reader_special.b.need_qs) == TRC_NEED_QS) &&	\
197 		    likely(!___rttq_nesting)) {					\
198 			rcu_trc_cmpxchg_need_qs((t), TRC_NEED_QS, TRC_NEED_QS_CHECKED);	\
199 		} else if (___rttq_nesting && ___rttq_nesting != INT_MIN &&	\
200 			   !READ_ONCE((t)->trc_reader_special.b.blocked)) {	\
201 			rcu_tasks_trace_qs_blkd(t);				\
202 		}								\
203 	} while (0)
204 void rcu_tasks_trace_torture_stats_print(char *tt, char *tf);
205 # else
206 # define rcu_tasks_trace_qs(t) do { } while (0)
207 # endif
208 
209 #define rcu_tasks_qs(t, preempt)					\
210 do {									\
211 	rcu_tasks_classic_qs((t), (preempt));				\
212 	rcu_tasks_trace_qs(t);						\
213 } while (0)
214 
215 # ifdef CONFIG_TASKS_RUDE_RCU
216 void synchronize_rcu_tasks_rude(void);
217 void rcu_tasks_rude_torture_stats_print(char *tt, char *tf);
218 # endif
219 
220 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
221 void exit_tasks_rcu_start(void);
222 void exit_tasks_rcu_finish(void);
223 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
224 #define rcu_tasks_classic_qs(t, preempt) do { } while (0)
225 #define rcu_tasks_qs(t, preempt) do { } while (0)
226 #define rcu_note_voluntary_context_switch(t) do { } while (0)
227 #define call_rcu_tasks call_rcu
228 #define synchronize_rcu_tasks synchronize_rcu
exit_tasks_rcu_start(void)229 static inline void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_finish(void)230 static inline void exit_tasks_rcu_finish(void) { }
231 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
232 
233 /**
234  * rcu_trace_implies_rcu_gp - does an RCU Tasks Trace grace period imply an RCU grace period?
235  *
236  * As an accident of implementation, an RCU Tasks Trace grace period also
237  * acts as an RCU grace period.  However, this could change at any time.
238  * Code relying on this accident must call this function to verify that
239  * this accident is still happening.
240  *
241  * You have been warned!
242  */
rcu_trace_implies_rcu_gp(void)243 static inline bool rcu_trace_implies_rcu_gp(void) { return true; }
244 
245 /**
246  * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
247  *
248  * This macro resembles cond_resched(), except that it is defined to
249  * report potential quiescent states to RCU-tasks even if the cond_resched()
250  * machinery were to be shut off, as some advocate for PREEMPTION kernels.
251  */
252 #define cond_resched_tasks_rcu_qs() \
253 do { \
254 	rcu_tasks_qs(current, false); \
255 	cond_resched(); \
256 } while (0)
257 
258 /**
259  * rcu_softirq_qs_periodic - Report RCU and RCU-Tasks quiescent states
260  * @old_ts: jiffies at start of processing.
261  *
262  * This helper is for long-running softirq handlers, such as NAPI threads in
263  * networking. The caller should initialize the variable passed in as @old_ts
264  * at the beginning of the softirq handler. When invoked frequently, this macro
265  * will invoke rcu_softirq_qs() every 100 milliseconds thereafter, which will
266  * provide both RCU and RCU-Tasks quiescent states. Note that this macro
267  * modifies its old_ts argument.
268  *
269  * Because regions of code that have disabled softirq act as RCU read-side
270  * critical sections, this macro should be invoked with softirq (and
271  * preemption) enabled.
272  *
273  * The macro is not needed when CONFIG_PREEMPT_RT is defined. RT kernels would
274  * have more chance to invoke schedule() calls and provide necessary quiescent
275  * states. As a contrast, calling cond_resched() only won't achieve the same
276  * effect because cond_resched() does not provide RCU-Tasks quiescent states.
277  */
278 #define rcu_softirq_qs_periodic(old_ts) \
279 do { \
280 	if (!IS_ENABLED(CONFIG_PREEMPT_RT) && \
281 	    time_after(jiffies, (old_ts) + HZ / 10)) { \
282 		preempt_disable(); \
283 		rcu_softirq_qs(); \
284 		preempt_enable(); \
285 		(old_ts) = jiffies; \
286 	} \
287 } while (0)
288 
289 /*
290  * Infrastructure to implement the synchronize_() primitives in
291  * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
292  */
293 
294 #if defined(CONFIG_TREE_RCU)
295 #include <linux/rcutree.h>
296 #elif defined(CONFIG_TINY_RCU)
297 #include <linux/rcutiny.h>
298 #else
299 #error "Unknown RCU implementation specified to kernel configuration"
300 #endif
301 
302 /*
303  * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
304  * are needed for dynamic initialization and destruction of rcu_head
305  * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
306  * dynamic initialization and destruction of statically allocated rcu_head
307  * structures.  However, rcu_head structures allocated dynamically in the
308  * heap don't need any initialization.
309  */
310 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
311 void init_rcu_head(struct rcu_head *head);
312 void destroy_rcu_head(struct rcu_head *head);
313 void init_rcu_head_on_stack(struct rcu_head *head);
314 void destroy_rcu_head_on_stack(struct rcu_head *head);
315 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)316 static inline void init_rcu_head(struct rcu_head *head) { }
destroy_rcu_head(struct rcu_head * head)317 static inline void destroy_rcu_head(struct rcu_head *head) { }
init_rcu_head_on_stack(struct rcu_head * head)318 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
destroy_rcu_head_on_stack(struct rcu_head * head)319 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
320 #endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
321 
322 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
323 bool rcu_lockdep_current_cpu_online(void);
324 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)325 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
326 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
327 
328 extern struct lockdep_map rcu_lock_map;
329 extern struct lockdep_map rcu_bh_lock_map;
330 extern struct lockdep_map rcu_sched_lock_map;
331 extern struct lockdep_map rcu_callback_map;
332 
333 #ifdef CONFIG_DEBUG_LOCK_ALLOC
334 
rcu_lock_acquire(struct lockdep_map * map)335 static inline void rcu_lock_acquire(struct lockdep_map *map)
336 {
337 	lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
338 }
339 
rcu_try_lock_acquire(struct lockdep_map * map)340 static inline void rcu_try_lock_acquire(struct lockdep_map *map)
341 {
342 	lock_acquire(map, 0, 1, 2, 0, NULL, _THIS_IP_);
343 }
344 
rcu_lock_release(struct lockdep_map * map)345 static inline void rcu_lock_release(struct lockdep_map *map)
346 {
347 	lock_release(map, _THIS_IP_);
348 }
349 
350 int debug_lockdep_rcu_enabled(void);
351 int rcu_read_lock_held(void);
352 int rcu_read_lock_bh_held(void);
353 int rcu_read_lock_sched_held(void);
354 int rcu_read_lock_any_held(void);
355 
356 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
357 
358 # define rcu_lock_acquire(a)		do { } while (0)
359 # define rcu_try_lock_acquire(a)	do { } while (0)
360 # define rcu_lock_release(a)		do { } while (0)
361 
rcu_read_lock_held(void)362 static inline int rcu_read_lock_held(void)
363 {
364 	return 1;
365 }
366 
rcu_read_lock_bh_held(void)367 static inline int rcu_read_lock_bh_held(void)
368 {
369 	return 1;
370 }
371 
rcu_read_lock_sched_held(void)372 static inline int rcu_read_lock_sched_held(void)
373 {
374 	return !preemptible();
375 }
376 
rcu_read_lock_any_held(void)377 static inline int rcu_read_lock_any_held(void)
378 {
379 	return !preemptible();
380 }
381 
debug_lockdep_rcu_enabled(void)382 static inline int debug_lockdep_rcu_enabled(void)
383 {
384 	return 0;
385 }
386 
387 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
388 
389 #ifdef CONFIG_PROVE_RCU
390 
391 /**
392  * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
393  * @c: condition to check
394  * @s: informative message
395  *
396  * This checks debug_lockdep_rcu_enabled() before checking (c) to
397  * prevent early boot splats due to lockdep not yet being initialized,
398  * and rechecks it after checking (c) to prevent false-positive splats
399  * due to races with lockdep being disabled.  See commit 3066820034b5dd
400  * ("rcu: Reject RCU_LOCKDEP_WARN() false positives") for more detail.
401  */
402 #define RCU_LOCKDEP_WARN(c, s)						\
403 	do {								\
404 		static bool __section(".data.unlikely") __warned;	\
405 		if (debug_lockdep_rcu_enabled() && (c) &&		\
406 		    debug_lockdep_rcu_enabled() && !__warned) {		\
407 			__warned = true;				\
408 			lockdep_rcu_suspicious(__FILE__, __LINE__, s);	\
409 		}							\
410 	} while (0)
411 
412 #ifndef CONFIG_PREEMPT_RCU
rcu_preempt_sleep_check(void)413 static inline void rcu_preempt_sleep_check(void)
414 {
415 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
416 			 "Illegal context switch in RCU read-side critical section");
417 }
418 #else // #ifndef CONFIG_PREEMPT_RCU
rcu_preempt_sleep_check(void)419 static inline void rcu_preempt_sleep_check(void) { }
420 #endif // #else // #ifndef CONFIG_PREEMPT_RCU
421 
422 #define rcu_sleep_check()						\
423 	do {								\
424 		rcu_preempt_sleep_check();				\
425 		if (!IS_ENABLED(CONFIG_PREEMPT_RT))			\
426 		    RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),	\
427 				 "Illegal context switch in RCU-bh read-side critical section"); \
428 		RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),	\
429 				 "Illegal context switch in RCU-sched read-side critical section"); \
430 	} while (0)
431 
432 // See RCU_LOCKDEP_WARN() for an explanation of the double call to
433 // debug_lockdep_rcu_enabled().
lockdep_assert_rcu_helper(bool c)434 static inline bool lockdep_assert_rcu_helper(bool c)
435 {
436 	return debug_lockdep_rcu_enabled() &&
437 	       (c || !rcu_is_watching() || !rcu_lockdep_current_cpu_online()) &&
438 	       debug_lockdep_rcu_enabled();
439 }
440 
441 /**
442  * lockdep_assert_in_rcu_read_lock - WARN if not protected by rcu_read_lock()
443  *
444  * Splats if lockdep is enabled and there is no rcu_read_lock() in effect.
445  */
446 #define lockdep_assert_in_rcu_read_lock() \
447 	WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_lock_map)))
448 
449 /**
450  * lockdep_assert_in_rcu_read_lock_bh - WARN if not protected by rcu_read_lock_bh()
451  *
452  * Splats if lockdep is enabled and there is no rcu_read_lock_bh() in effect.
453  * Note that local_bh_disable() and friends do not suffice here, instead an
454  * actual rcu_read_lock_bh() is required.
455  */
456 #define lockdep_assert_in_rcu_read_lock_bh() \
457 	WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_bh_lock_map)))
458 
459 /**
460  * lockdep_assert_in_rcu_read_lock_sched - WARN if not protected by rcu_read_lock_sched()
461  *
462  * Splats if lockdep is enabled and there is no rcu_read_lock_sched()
463  * in effect.  Note that preempt_disable() and friends do not suffice here,
464  * instead an actual rcu_read_lock_sched() is required.
465  */
466 #define lockdep_assert_in_rcu_read_lock_sched() \
467 	WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_sched_lock_map)))
468 
469 /**
470  * lockdep_assert_in_rcu_reader - WARN if not within some type of RCU reader
471  *
472  * Splats if lockdep is enabled and there is no RCU reader of any
473  * type in effect.  Note that regions of code protected by things like
474  * preempt_disable, local_bh_disable(), and local_irq_disable() all qualify
475  * as RCU readers.
476  *
477  * Note that this will never trigger in PREEMPT_NONE or PREEMPT_VOLUNTARY
478  * kernels that are not also built with PREEMPT_COUNT.  But if you have
479  * lockdep enabled, you might as well also enable PREEMPT_COUNT.
480  */
481 #define lockdep_assert_in_rcu_reader()								\
482 	WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_lock_map) &&			\
483 					       !lock_is_held(&rcu_bh_lock_map) &&		\
484 					       !lock_is_held(&rcu_sched_lock_map) &&		\
485 					       preemptible()))
486 
487 #else /* #ifdef CONFIG_PROVE_RCU */
488 
489 #define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c))
490 #define rcu_sleep_check() do { } while (0)
491 
492 #define lockdep_assert_in_rcu_read_lock() do { } while (0)
493 #define lockdep_assert_in_rcu_read_lock_bh() do { } while (0)
494 #define lockdep_assert_in_rcu_read_lock_sched() do { } while (0)
495 #define lockdep_assert_in_rcu_reader() do { } while (0)
496 
497 #endif /* #else #ifdef CONFIG_PROVE_RCU */
498 
499 /*
500  * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
501  * and rcu_assign_pointer().  Some of these could be folded into their
502  * callers, but they are left separate in order to ease introduction of
503  * multiple pointers markings to match different RCU implementations
504  * (e.g., __srcu), should this make sense in the future.
505  */
506 
507 #ifdef __CHECKER__
508 #define rcu_check_sparse(p, space) \
509 	((void)(((typeof(*p) space *)p) == p))
510 #else /* #ifdef __CHECKER__ */
511 #define rcu_check_sparse(p, space)
512 #endif /* #else #ifdef __CHECKER__ */
513 
514 #define __unrcu_pointer(p, local)					\
515 ({									\
516 	typeof(*p) *local = (typeof(*p) *__force)(p);			\
517 	rcu_check_sparse(p, __rcu);					\
518 	((typeof(*p) __force __kernel *)(local)); 			\
519 })
520 /**
521  * unrcu_pointer - mark a pointer as not being RCU protected
522  * @p: pointer needing to lose its __rcu property
523  *
524  * Converts @p from an __rcu pointer to a __kernel pointer.
525  * This allows an __rcu pointer to be used with xchg() and friends.
526  */
527 #define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu))
528 
529 #define __rcu_access_pointer(p, local, space) \
530 ({ \
531 	typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
532 	rcu_check_sparse(p, space); \
533 	((typeof(*p) __force __kernel *)(local)); \
534 })
535 #define __rcu_dereference_check(p, local, c, space) \
536 ({ \
537 	/* Dependency order vs. p above. */ \
538 	typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
539 	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
540 	rcu_check_sparse(p, space); \
541 	((typeof(*p) __force __kernel *)(local)); \
542 })
543 #define __rcu_dereference_protected(p, local, c, space) \
544 ({ \
545 	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
546 	rcu_check_sparse(p, space); \
547 	((typeof(*p) __force __kernel *)(p)); \
548 })
549 #define __rcu_dereference_raw(p, local) \
550 ({ \
551 	/* Dependency order vs. p above. */ \
552 	typeof(p) local = READ_ONCE(p); \
553 	((typeof(*p) __force __kernel *)(local)); \
554 })
555 #define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu))
556 
557 /**
558  * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
559  * @v: The value to statically initialize with.
560  */
561 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
562 
563 /**
564  * rcu_assign_pointer() - assign to RCU-protected pointer
565  * @p: pointer to assign to
566  * @v: value to assign (publish)
567  *
568  * Assigns the specified value to the specified RCU-protected
569  * pointer, ensuring that any concurrent RCU readers will see
570  * any prior initialization.
571  *
572  * Inserts memory barriers on architectures that require them
573  * (which is most of them), and also prevents the compiler from
574  * reordering the code that initializes the structure after the pointer
575  * assignment.  More importantly, this call documents which pointers
576  * will be dereferenced by RCU read-side code.
577  *
578  * In some special cases, you may use RCU_INIT_POINTER() instead
579  * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
580  * to the fact that it does not constrain either the CPU or the compiler.
581  * That said, using RCU_INIT_POINTER() when you should have used
582  * rcu_assign_pointer() is a very bad thing that results in
583  * impossible-to-diagnose memory corruption.  So please be careful.
584  * See the RCU_INIT_POINTER() comment header for details.
585  *
586  * Note that rcu_assign_pointer() evaluates each of its arguments only
587  * once, appearances notwithstanding.  One of the "extra" evaluations
588  * is in typeof() and the other visible only to sparse (__CHECKER__),
589  * neither of which actually execute the argument.  As with most cpp
590  * macros, this execute-arguments-only-once property is important, so
591  * please be careful when making changes to rcu_assign_pointer() and the
592  * other macros that it invokes.
593  */
594 #define rcu_assign_pointer(p, v)					      \
595 do {									      \
596 	uintptr_t _r_a_p__v = (uintptr_t)(v);				      \
597 	rcu_check_sparse(p, __rcu);					      \
598 									      \
599 	if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL)	      \
600 		WRITE_ONCE((p), (typeof(p))(_r_a_p__v));		      \
601 	else								      \
602 		smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
603 } while (0)
604 
605 /**
606  * rcu_replace_pointer() - replace an RCU pointer, returning its old value
607  * @rcu_ptr: RCU pointer, whose old value is returned
608  * @ptr: regular pointer
609  * @c: the lockdep conditions under which the dereference will take place
610  *
611  * Perform a replacement, where @rcu_ptr is an RCU-annotated
612  * pointer and @c is the lockdep argument that is passed to the
613  * rcu_dereference_protected() call used to read that pointer.  The old
614  * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
615  */
616 #define rcu_replace_pointer(rcu_ptr, ptr, c)				\
617 ({									\
618 	typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));	\
619 	rcu_assign_pointer((rcu_ptr), (ptr));				\
620 	__tmp;								\
621 })
622 
623 /**
624  * rcu_access_pointer() - fetch RCU pointer with no dereferencing
625  * @p: The pointer to read
626  *
627  * Return the value of the specified RCU-protected pointer, but omit the
628  * lockdep checks for being in an RCU read-side critical section.  This is
629  * useful when the value of this pointer is accessed, but the pointer is
630  * not dereferenced, for example, when testing an RCU-protected pointer
631  * against NULL.  Although rcu_access_pointer() may also be used in cases
632  * where update-side locks prevent the value of the pointer from changing,
633  * you should instead use rcu_dereference_protected() for this use case.
634  * Within an RCU read-side critical section, there is little reason to
635  * use rcu_access_pointer().
636  *
637  * It is usually best to test the rcu_access_pointer() return value
638  * directly in order to avoid accidental dereferences being introduced
639  * by later inattentive changes.  In other words, assigning the
640  * rcu_access_pointer() return value to a local variable results in an
641  * accident waiting to happen.
642  *
643  * It is also permissible to use rcu_access_pointer() when read-side
644  * access to the pointer was removed at least one grace period ago, as is
645  * the case in the context of the RCU callback that is freeing up the data,
646  * or after a synchronize_rcu() returns.  This can be useful when tearing
647  * down multi-linked structures after a grace period has elapsed.  However,
648  * rcu_dereference_protected() is normally preferred for this use case.
649  */
650 #define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu)
651 
652 /**
653  * rcu_dereference_check() - rcu_dereference with debug checking
654  * @p: The pointer to read, prior to dereferencing
655  * @c: The conditions under which the dereference will take place
656  *
657  * Do an rcu_dereference(), but check that the conditions under which the
658  * dereference will take place are correct.  Typically the conditions
659  * indicate the various locking conditions that should be held at that
660  * point.  The check should return true if the conditions are satisfied.
661  * An implicit check for being in an RCU read-side critical section
662  * (rcu_read_lock()) is included.
663  *
664  * For example:
665  *
666  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
667  *
668  * could be used to indicate to lockdep that foo->bar may only be dereferenced
669  * if either rcu_read_lock() is held, or that the lock required to replace
670  * the bar struct at foo->bar is held.
671  *
672  * Note that the list of conditions may also include indications of when a lock
673  * need not be held, for example during initialisation or destruction of the
674  * target struct:
675  *
676  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
677  *					      atomic_read(&foo->usage) == 0);
678  *
679  * Inserts memory barriers on architectures that require them
680  * (currently only the Alpha), prevents the compiler from refetching
681  * (and from merging fetches), and, more importantly, documents exactly
682  * which pointers are protected by RCU and checks that the pointer is
683  * annotated as __rcu.
684  */
685 #define rcu_dereference_check(p, c) \
686 	__rcu_dereference_check((p), __UNIQUE_ID(rcu), \
687 				(c) || rcu_read_lock_held(), __rcu)
688 
689 /**
690  * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
691  * @p: The pointer to read, prior to dereferencing
692  * @c: The conditions under which the dereference will take place
693  *
694  * This is the RCU-bh counterpart to rcu_dereference_check().  However,
695  * please note that starting in v5.0 kernels, vanilla RCU grace periods
696  * wait for local_bh_disable() regions of code in addition to regions of
697  * code demarked by rcu_read_lock() and rcu_read_unlock().  This means
698  * that synchronize_rcu(), call_rcu, and friends all take not only
699  * rcu_read_lock() but also rcu_read_lock_bh() into account.
700  */
701 #define rcu_dereference_bh_check(p, c) \
702 	__rcu_dereference_check((p), __UNIQUE_ID(rcu), \
703 				(c) || rcu_read_lock_bh_held(), __rcu)
704 
705 /**
706  * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
707  * @p: The pointer to read, prior to dereferencing
708  * @c: The conditions under which the dereference will take place
709  *
710  * This is the RCU-sched counterpart to rcu_dereference_check().
711  * However, please note that starting in v5.0 kernels, vanilla RCU grace
712  * periods wait for preempt_disable() regions of code in addition to
713  * regions of code demarked by rcu_read_lock() and rcu_read_unlock().
714  * This means that synchronize_rcu(), call_rcu, and friends all take not
715  * only rcu_read_lock() but also rcu_read_lock_sched() into account.
716  */
717 #define rcu_dereference_sched_check(p, c) \
718 	__rcu_dereference_check((p), __UNIQUE_ID(rcu), \
719 				(c) || rcu_read_lock_sched_held(), \
720 				__rcu)
721 
722 /*
723  * The tracing infrastructure traces RCU (we want that), but unfortunately
724  * some of the RCU checks causes tracing to lock up the system.
725  *
726  * The no-tracing version of rcu_dereference_raw() must not call
727  * rcu_read_lock_held().
728  */
729 #define rcu_dereference_raw_check(p) \
730 	__rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu)
731 
732 /**
733  * rcu_dereference_protected() - fetch RCU pointer when updates prevented
734  * @p: The pointer to read, prior to dereferencing
735  * @c: The conditions under which the dereference will take place
736  *
737  * Return the value of the specified RCU-protected pointer, but omit
738  * the READ_ONCE().  This is useful in cases where update-side locks
739  * prevent the value of the pointer from changing.  Please note that this
740  * primitive does *not* prevent the compiler from repeating this reference
741  * or combining it with other references, so it should not be used without
742  * protection of appropriate locks.
743  *
744  * This function is only for update-side use.  Using this function
745  * when protected only by rcu_read_lock() will result in infrequent
746  * but very ugly failures.
747  */
748 #define rcu_dereference_protected(p, c) \
749 	__rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu)
750 
751 
752 /**
753  * rcu_dereference() - fetch RCU-protected pointer for dereferencing
754  * @p: The pointer to read, prior to dereferencing
755  *
756  * This is a simple wrapper around rcu_dereference_check().
757  */
758 #define rcu_dereference(p) rcu_dereference_check(p, 0)
759 
760 /**
761  * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
762  * @p: The pointer to read, prior to dereferencing
763  *
764  * Makes rcu_dereference_check() do the dirty work.
765  */
766 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
767 
768 /**
769  * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
770  * @p: The pointer to read, prior to dereferencing
771  *
772  * Makes rcu_dereference_check() do the dirty work.
773  */
774 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
775 
776 /**
777  * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
778  * @p: The pointer to hand off
779  *
780  * This is simply an identity function, but it documents where a pointer
781  * is handed off from RCU to some other synchronization mechanism, for
782  * example, reference counting or locking.  In C11, it would map to
783  * kill_dependency().  It could be used as follows::
784  *
785  *	rcu_read_lock();
786  *	p = rcu_dereference(gp);
787  *	long_lived = is_long_lived(p);
788  *	if (long_lived) {
789  *		if (!atomic_inc_not_zero(p->refcnt))
790  *			long_lived = false;
791  *		else
792  *			p = rcu_pointer_handoff(p);
793  *	}
794  *	rcu_read_unlock();
795  */
796 #define rcu_pointer_handoff(p) (p)
797 
798 /**
799  * rcu_read_lock() - mark the beginning of an RCU read-side critical section
800  *
801  * When synchronize_rcu() is invoked on one CPU while other CPUs
802  * are within RCU read-side critical sections, then the
803  * synchronize_rcu() is guaranteed to block until after all the other
804  * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
805  * on one CPU while other CPUs are within RCU read-side critical
806  * sections, invocation of the corresponding RCU callback is deferred
807  * until after the all the other CPUs exit their critical sections.
808  *
809  * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also
810  * wait for regions of code with preemption disabled, including regions of
811  * code with interrupts or softirqs disabled.  In pre-v5.0 kernels, which
812  * define synchronize_sched(), only code enclosed within rcu_read_lock()
813  * and rcu_read_unlock() are guaranteed to be waited for.
814  *
815  * Note, however, that RCU callbacks are permitted to run concurrently
816  * with new RCU read-side critical sections.  One way that this can happen
817  * is via the following sequence of events: (1) CPU 0 enters an RCU
818  * read-side critical section, (2) CPU 1 invokes call_rcu() to register
819  * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
820  * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
821  * callback is invoked.  This is legal, because the RCU read-side critical
822  * section that was running concurrently with the call_rcu() (and which
823  * therefore might be referencing something that the corresponding RCU
824  * callback would free up) has completed before the corresponding
825  * RCU callback is invoked.
826  *
827  * RCU read-side critical sections may be nested.  Any deferred actions
828  * will be deferred until the outermost RCU read-side critical section
829  * completes.
830  *
831  * You can avoid reading and understanding the next paragraph by
832  * following this rule: don't put anything in an rcu_read_lock() RCU
833  * read-side critical section that would block in a !PREEMPTION kernel.
834  * But if you want the full story, read on!
835  *
836  * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
837  * it is illegal to block while in an RCU read-side critical section.
838  * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
839  * kernel builds, RCU read-side critical sections may be preempted,
840  * but explicit blocking is illegal.  Finally, in preemptible RCU
841  * implementations in real-time (with -rt patchset) kernel builds, RCU
842  * read-side critical sections may be preempted and they may also block, but
843  * only when acquiring spinlocks that are subject to priority inheritance.
844  */
rcu_read_lock(void)845 static __always_inline void rcu_read_lock(void)
846 {
847 	__rcu_read_lock();
848 	__acquire(RCU);
849 	rcu_lock_acquire(&rcu_lock_map);
850 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
851 			 "rcu_read_lock() used illegally while idle");
852 }
853 
854 /*
855  * So where is rcu_write_lock()?  It does not exist, as there is no
856  * way for writers to lock out RCU readers.  This is a feature, not
857  * a bug -- this property is what provides RCU's performance benefits.
858  * Of course, writers must coordinate with each other.  The normal
859  * spinlock primitives work well for this, but any other technique may be
860  * used as well.  RCU does not care how the writers keep out of each
861  * others' way, as long as they do so.
862  */
863 
864 /**
865  * rcu_read_unlock() - marks the end of an RCU read-side critical section.
866  *
867  * In almost all situations, rcu_read_unlock() is immune from deadlock.
868  * In recent kernels that have consolidated synchronize_sched() and
869  * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity
870  * also extends to the scheduler's runqueue and priority-inheritance
871  * spinlocks, courtesy of the quiescent-state deferral that is carried
872  * out when rcu_read_unlock() is invoked with interrupts disabled.
873  *
874  * See rcu_read_lock() for more information.
875  */
rcu_read_unlock(void)876 static inline void rcu_read_unlock(void)
877 {
878 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
879 			 "rcu_read_unlock() used illegally while idle");
880 	rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
881 	__release(RCU);
882 	__rcu_read_unlock();
883 }
884 
885 /**
886  * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
887  *
888  * This is equivalent to rcu_read_lock(), but also disables softirqs.
889  * Note that anything else that disables softirqs can also serve as an RCU
890  * read-side critical section.  However, please note that this equivalence
891  * applies only to v5.0 and later.  Before v5.0, rcu_read_lock() and
892  * rcu_read_lock_bh() were unrelated.
893  *
894  * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
895  * must occur in the same context, for example, it is illegal to invoke
896  * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
897  * was invoked from some other task.
898  */
rcu_read_lock_bh(void)899 static inline void rcu_read_lock_bh(void)
900 {
901 	local_bh_disable();
902 	__acquire(RCU_BH);
903 	rcu_lock_acquire(&rcu_bh_lock_map);
904 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
905 			 "rcu_read_lock_bh() used illegally while idle");
906 }
907 
908 /**
909  * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
910  *
911  * See rcu_read_lock_bh() for more information.
912  */
rcu_read_unlock_bh(void)913 static inline void rcu_read_unlock_bh(void)
914 {
915 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
916 			 "rcu_read_unlock_bh() used illegally while idle");
917 	rcu_lock_release(&rcu_bh_lock_map);
918 	__release(RCU_BH);
919 	local_bh_enable();
920 }
921 
922 /**
923  * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
924  *
925  * This is equivalent to rcu_read_lock(), but also disables preemption.
926  * Read-side critical sections can also be introduced by anything else that
927  * disables preemption, including local_irq_disable() and friends.  However,
928  * please note that the equivalence to rcu_read_lock() applies only to
929  * v5.0 and later.  Before v5.0, rcu_read_lock() and rcu_read_lock_sched()
930  * were unrelated.
931  *
932  * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
933  * must occur in the same context, for example, it is illegal to invoke
934  * rcu_read_unlock_sched() from process context if the matching
935  * rcu_read_lock_sched() was invoked from an NMI handler.
936  */
rcu_read_lock_sched(void)937 static inline void rcu_read_lock_sched(void)
938 {
939 	preempt_disable();
940 	__acquire(RCU_SCHED);
941 	rcu_lock_acquire(&rcu_sched_lock_map);
942 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
943 			 "rcu_read_lock_sched() used illegally while idle");
944 }
945 
946 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)947 static inline notrace void rcu_read_lock_sched_notrace(void)
948 {
949 	preempt_disable_notrace();
950 	__acquire(RCU_SCHED);
951 }
952 
953 /**
954  * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
955  *
956  * See rcu_read_lock_sched() for more information.
957  */
rcu_read_unlock_sched(void)958 static inline void rcu_read_unlock_sched(void)
959 {
960 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
961 			 "rcu_read_unlock_sched() used illegally while idle");
962 	rcu_lock_release(&rcu_sched_lock_map);
963 	__release(RCU_SCHED);
964 	preempt_enable();
965 }
966 
967 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)968 static inline notrace void rcu_read_unlock_sched_notrace(void)
969 {
970 	__release(RCU_SCHED);
971 	preempt_enable_notrace();
972 }
973 
974 /**
975  * RCU_INIT_POINTER() - initialize an RCU protected pointer
976  * @p: The pointer to be initialized.
977  * @v: The value to initialized the pointer to.
978  *
979  * Initialize an RCU-protected pointer in special cases where readers
980  * do not need ordering constraints on the CPU or the compiler.  These
981  * special cases are:
982  *
983  * 1.	This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
984  * 2.	The caller has taken whatever steps are required to prevent
985  *	RCU readers from concurrently accessing this pointer *or*
986  * 3.	The referenced data structure has already been exposed to
987  *	readers either at compile time or via rcu_assign_pointer() *and*
988  *
989  *	a.	You have not made *any* reader-visible changes to
990  *		this structure since then *or*
991  *	b.	It is OK for readers accessing this structure from its
992  *		new location to see the old state of the structure.  (For
993  *		example, the changes were to statistical counters or to
994  *		other state where exact synchronization is not required.)
995  *
996  * Failure to follow these rules governing use of RCU_INIT_POINTER() will
997  * result in impossible-to-diagnose memory corruption.  As in the structures
998  * will look OK in crash dumps, but any concurrent RCU readers might
999  * see pre-initialized values of the referenced data structure.  So
1000  * please be very careful how you use RCU_INIT_POINTER()!!!
1001  *
1002  * If you are creating an RCU-protected linked structure that is accessed
1003  * by a single external-to-structure RCU-protected pointer, then you may
1004  * use RCU_INIT_POINTER() to initialize the internal RCU-protected
1005  * pointers, but you must use rcu_assign_pointer() to initialize the
1006  * external-to-structure pointer *after* you have completely initialized
1007  * the reader-accessible portions of the linked structure.
1008  *
1009  * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
1010  * ordering guarantees for either the CPU or the compiler.
1011  */
1012 #define RCU_INIT_POINTER(p, v) \
1013 	do { \
1014 		rcu_check_sparse(p, __rcu); \
1015 		WRITE_ONCE(p, RCU_INITIALIZER(v)); \
1016 	} while (0)
1017 
1018 /**
1019  * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
1020  * @p: The pointer to be initialized.
1021  * @v: The value to initialized the pointer to.
1022  *
1023  * GCC-style initialization for an RCU-protected pointer in a structure field.
1024  */
1025 #define RCU_POINTER_INITIALIZER(p, v) \
1026 		.p = RCU_INITIALIZER(v)
1027 
1028 /*
1029  * Does the specified offset indicate that the corresponding rcu_head
1030  * structure can be handled by kvfree_rcu()?
1031  */
1032 #define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
1033 
1034 /**
1035  * kfree_rcu() - kfree an object after a grace period.
1036  * @ptr: pointer to kfree for double-argument invocations.
1037  * @rhf: the name of the struct rcu_head within the type of @ptr.
1038  *
1039  * Many rcu callbacks functions just call kfree() on the base structure.
1040  * These functions are trivial, but their size adds up, and furthermore
1041  * when they are used in a kernel module, that module must invoke the
1042  * high-latency rcu_barrier() function at module-unload time.
1043  *
1044  * The kfree_rcu() function handles this issue.  Rather than encoding a
1045  * function address in the embedded rcu_head structure, kfree_rcu() instead
1046  * encodes the offset of the rcu_head structure within the base structure.
1047  * Because the functions are not allowed in the low-order 4096 bytes of
1048  * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1049  * If the offset is larger than 4095 bytes, a compile-time error will
1050  * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can
1051  * either fall back to use of call_rcu() or rearrange the structure to
1052  * position the rcu_head structure into the first 4096 bytes.
1053  *
1054  * The object to be freed can be allocated either by kmalloc() or
1055  * kmem_cache_alloc().
1056  *
1057  * Note that the allowable offset might decrease in the future.
1058  *
1059  * The BUILD_BUG_ON check must not involve any function calls, hence the
1060  * checks are done in macros here.
1061  */
1062 #define kfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf)
1063 #define kvfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf)
1064 
1065 /**
1066  * kfree_rcu_mightsleep() - kfree an object after a grace period.
1067  * @ptr: pointer to kfree for single-argument invocations.
1068  *
1069  * When it comes to head-less variant, only one argument
1070  * is passed and that is just a pointer which has to be
1071  * freed after a grace period. Therefore the semantic is
1072  *
1073  *     kfree_rcu_mightsleep(ptr);
1074  *
1075  * where @ptr is the pointer to be freed by kvfree().
1076  *
1077  * Please note, head-less way of freeing is permitted to
1078  * use from a context that has to follow might_sleep()
1079  * annotation. Otherwise, please switch and embed the
1080  * rcu_head structure within the type of @ptr.
1081  */
1082 #define kfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr)
1083 #define kvfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr)
1084 
1085 #define kvfree_rcu_arg_2(ptr, rhf)					\
1086 do {									\
1087 	typeof (ptr) ___p = (ptr);					\
1088 									\
1089 	if (___p) {									\
1090 		BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf)));	\
1091 		kvfree_call_rcu(&((___p)->rhf), (void *) (___p));			\
1092 	}										\
1093 } while (0)
1094 
1095 #define kvfree_rcu_arg_1(ptr)					\
1096 do {								\
1097 	typeof(ptr) ___p = (ptr);				\
1098 								\
1099 	if (___p)						\
1100 		kvfree_call_rcu(NULL, (void *) (___p));		\
1101 } while (0)
1102 
1103 /*
1104  * Place this after a lock-acquisition primitive to guarantee that
1105  * an UNLOCK+LOCK pair acts as a full barrier.  This guarantee applies
1106  * if the UNLOCK and LOCK are executed by the same CPU or if the
1107  * UNLOCK and LOCK operate on the same lock variable.
1108  */
1109 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
1110 #define smp_mb__after_unlock_lock()	smp_mb()  /* Full ordering for lock. */
1111 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1112 #define smp_mb__after_unlock_lock()	do { } while (0)
1113 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1114 
1115 
1116 /* Has the specified rcu_head structure been handed to call_rcu()? */
1117 
1118 /**
1119  * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
1120  * @rhp: The rcu_head structure to initialize.
1121  *
1122  * If you intend to invoke rcu_head_after_call_rcu() to test whether a
1123  * given rcu_head structure has already been passed to call_rcu(), then
1124  * you must also invoke this rcu_head_init() function on it just after
1125  * allocating that structure.  Calls to this function must not race with
1126  * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
1127  */
rcu_head_init(struct rcu_head * rhp)1128 static inline void rcu_head_init(struct rcu_head *rhp)
1129 {
1130 	rhp->func = (rcu_callback_t)~0L;
1131 }
1132 
1133 /**
1134  * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
1135  * @rhp: The rcu_head structure to test.
1136  * @f: The function passed to call_rcu() along with @rhp.
1137  *
1138  * Returns @true if the @rhp has been passed to call_rcu() with @func,
1139  * and @false otherwise.  Emits a warning in any other case, including
1140  * the case where @rhp has already been invoked after a grace period.
1141  * Calls to this function must not race with callback invocation.  One way
1142  * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
1143  * in an RCU read-side critical section that includes a read-side fetch
1144  * of the pointer to the structure containing @rhp.
1145  */
1146 static inline bool
rcu_head_after_call_rcu(struct rcu_head * rhp,rcu_callback_t f)1147 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
1148 {
1149 	rcu_callback_t func = READ_ONCE(rhp->func);
1150 
1151 	if (func == f)
1152 		return true;
1153 	WARN_ON_ONCE(func != (rcu_callback_t)~0L);
1154 	return false;
1155 }
1156 
1157 /* kernel/ksysfs.c definitions */
1158 extern int rcu_expedited;
1159 extern int rcu_normal;
1160 
1161 DEFINE_LOCK_GUARD_0(rcu,
1162 	do {
1163 		rcu_read_lock();
1164 		/*
1165 		 * sparse doesn't call the cleanup function,
1166 		 * so just release immediately and don't track
1167 		 * the context. We don't need to anyway, since
1168 		 * the whole point of the guard is to not need
1169 		 * the explicit unlock.
1170 		 */
1171 		__release(RCU);
1172 	} while (0),
1173 	rcu_read_unlock())
1174 
1175 #endif /* __LINUX_RCUPDATE_H */
1176