1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion 4 * 5 * Copyright IBM Corporation, 2001 6 * 7 * Author: Dipankar Sarma <dipankar@in.ibm.com> 8 * 9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com> 10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 11 * Papers: 12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 14 * 15 * For detailed explanation of Read-Copy Update mechanism see - 16 * http://lse.sourceforge.net/locking/rcupdate.html 17 * 18 */ 19 20 #ifndef __LINUX_RCUPDATE_H 21 #define __LINUX_RCUPDATE_H 22 23 #include <linux/types.h> 24 #include <linux/compiler.h> 25 #include <linux/atomic.h> 26 #include <linux/irqflags.h> 27 #include <linux/sched.h> 28 #include <linux/bottom_half.h> 29 #include <linux/lockdep.h> 30 #include <linux/cleanup.h> 31 #include <asm/processor.h> 32 #include <linux/context_tracking_irq.h> 33 34 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 35 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 36 37 #define RCU_SEQ_CTR_SHIFT 2 38 #define RCU_SEQ_STATE_MASK ((1 << RCU_SEQ_CTR_SHIFT) - 1) 39 40 /* Exported common interfaces */ 41 void call_rcu(struct rcu_head *head, rcu_callback_t func); 42 void rcu_barrier_tasks(void); 43 void synchronize_rcu(void); 44 45 struct rcu_gp_oldstate; 46 unsigned long get_completed_synchronize_rcu(void); 47 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp); 48 49 // Maximum number of unsigned long values corresponding to 50 // not-yet-completed RCU grace periods. 51 #define NUM_ACTIVE_RCU_POLL_OLDSTATE 2 52 53 /** 54 * same_state_synchronize_rcu - Are two old-state values identical? 55 * @oldstate1: First old-state value. 56 * @oldstate2: Second old-state value. 57 * 58 * The two old-state values must have been obtained from either 59 * get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or 60 * get_completed_synchronize_rcu(). Returns @true if the two values are 61 * identical and @false otherwise. This allows structures whose lifetimes 62 * are tracked by old-state values to push these values to a list header, 63 * allowing those structures to be slightly smaller. 64 */ 65 static inline bool same_state_synchronize_rcu(unsigned long oldstate1, unsigned long oldstate2) 66 { 67 return oldstate1 == oldstate2; 68 } 69 70 #ifdef CONFIG_PREEMPT_RCU 71 72 void __rcu_read_lock(void); 73 void __rcu_read_unlock(void); 74 75 /* 76 * Defined as a macro as it is a very low level header included from 77 * areas that don't even know about current. This gives the rcu_read_lock() 78 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 79 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 80 */ 81 #define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting) 82 83 #else /* #ifdef CONFIG_PREEMPT_RCU */ 84 85 #ifdef CONFIG_TINY_RCU 86 #define rcu_read_unlock_strict() do { } while (0) 87 #else 88 void rcu_read_unlock_strict(void); 89 #endif 90 91 static inline void __rcu_read_lock(void) 92 { 93 preempt_disable(); 94 } 95 96 static inline void __rcu_read_unlock(void) 97 { 98 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 99 rcu_read_unlock_strict(); 100 preempt_enable(); 101 } 102 103 static inline int rcu_preempt_depth(void) 104 { 105 return 0; 106 } 107 108 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 109 110 #ifdef CONFIG_RCU_LAZY 111 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func); 112 #else 113 static inline void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func) 114 { 115 call_rcu(head, func); 116 } 117 #endif 118 119 /* Internal to kernel */ 120 void rcu_init(void); 121 extern int rcu_scheduler_active; 122 void rcu_sched_clock_irq(int user); 123 124 #ifdef CONFIG_RCU_STALL_COMMON 125 void rcu_sysrq_start(void); 126 void rcu_sysrq_end(void); 127 #else /* #ifdef CONFIG_RCU_STALL_COMMON */ 128 static inline void rcu_sysrq_start(void) { } 129 static inline void rcu_sysrq_end(void) { } 130 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */ 131 132 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) 133 void rcu_irq_work_resched(void); 134 #else 135 static __always_inline void rcu_irq_work_resched(void) { } 136 #endif 137 138 #ifdef CONFIG_RCU_NOCB_CPU 139 void rcu_init_nohz(void); 140 int rcu_nocb_cpu_offload(int cpu); 141 int rcu_nocb_cpu_deoffload(int cpu); 142 void rcu_nocb_flush_deferred_wakeup(void); 143 144 #define RCU_NOCB_LOCKDEP_WARN(c, s) RCU_LOCKDEP_WARN(c, s) 145 146 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 147 148 static inline void rcu_init_nohz(void) { } 149 static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; } 150 static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; } 151 static inline void rcu_nocb_flush_deferred_wakeup(void) { } 152 153 #define RCU_NOCB_LOCKDEP_WARN(c, s) 154 155 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 156 157 /* 158 * Note a quasi-voluntary context switch for RCU-tasks's benefit. 159 * This is a macro rather than an inline function to avoid #include hell. 160 */ 161 #ifdef CONFIG_TASKS_RCU_GENERIC 162 163 # ifdef CONFIG_TASKS_RCU 164 # define rcu_tasks_classic_qs(t, preempt) \ 165 do { \ 166 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \ 167 WRITE_ONCE((t)->rcu_tasks_holdout, false); \ 168 } while (0) 169 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func); 170 void synchronize_rcu_tasks(void); 171 void rcu_tasks_torture_stats_print(char *tt, char *tf); 172 # else 173 # define rcu_tasks_classic_qs(t, preempt) do { } while (0) 174 # define call_rcu_tasks call_rcu 175 # define synchronize_rcu_tasks synchronize_rcu 176 # endif 177 178 # ifdef CONFIG_TASKS_TRACE_RCU 179 // Bits for ->trc_reader_special.b.need_qs field. 180 #define TRC_NEED_QS 0x1 // Task needs a quiescent state. 181 #define TRC_NEED_QS_CHECKED 0x2 // Task has been checked for needing quiescent state. 182 183 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new); 184 void rcu_tasks_trace_qs_blkd(struct task_struct *t); 185 186 # define rcu_tasks_trace_qs(t) \ 187 do { \ 188 int ___rttq_nesting = READ_ONCE((t)->trc_reader_nesting); \ 189 \ 190 if (unlikely(READ_ONCE((t)->trc_reader_special.b.need_qs) == TRC_NEED_QS) && \ 191 likely(!___rttq_nesting)) { \ 192 rcu_trc_cmpxchg_need_qs((t), TRC_NEED_QS, TRC_NEED_QS_CHECKED); \ 193 } else if (___rttq_nesting && ___rttq_nesting != INT_MIN && \ 194 !READ_ONCE((t)->trc_reader_special.b.blocked)) { \ 195 rcu_tasks_trace_qs_blkd(t); \ 196 } \ 197 } while (0) 198 void rcu_tasks_trace_torture_stats_print(char *tt, char *tf); 199 # else 200 # define rcu_tasks_trace_qs(t) do { } while (0) 201 # endif 202 203 #define rcu_tasks_qs(t, preempt) \ 204 do { \ 205 rcu_tasks_classic_qs((t), (preempt)); \ 206 rcu_tasks_trace_qs(t); \ 207 } while (0) 208 209 # ifdef CONFIG_TASKS_RUDE_RCU 210 void synchronize_rcu_tasks_rude(void); 211 void rcu_tasks_rude_torture_stats_print(char *tt, char *tf); 212 # endif 213 214 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false) 215 void exit_tasks_rcu_start(void); 216 void exit_tasks_rcu_finish(void); 217 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ 218 #define rcu_tasks_classic_qs(t, preempt) do { } while (0) 219 #define rcu_tasks_qs(t, preempt) do { } while (0) 220 #define rcu_note_voluntary_context_switch(t) do { } while (0) 221 #define call_rcu_tasks call_rcu 222 #define synchronize_rcu_tasks synchronize_rcu 223 static inline void exit_tasks_rcu_start(void) { } 224 static inline void exit_tasks_rcu_finish(void) { } 225 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ 226 227 /** 228 * rcu_trace_implies_rcu_gp - does an RCU Tasks Trace grace period imply an RCU grace period? 229 * 230 * As an accident of implementation, an RCU Tasks Trace grace period also 231 * acts as an RCU grace period. However, this could change at any time. 232 * Code relying on this accident must call this function to verify that 233 * this accident is still happening. 234 * 235 * You have been warned! 236 */ 237 static inline bool rcu_trace_implies_rcu_gp(void) { return true; } 238 239 /** 240 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU 241 * 242 * This macro resembles cond_resched(), except that it is defined to 243 * report potential quiescent states to RCU-tasks even if the cond_resched() 244 * machinery were to be shut off, as some advocate for PREEMPTION kernels. 245 */ 246 #define cond_resched_tasks_rcu_qs() \ 247 do { \ 248 rcu_tasks_qs(current, false); \ 249 cond_resched(); \ 250 } while (0) 251 252 /** 253 * rcu_softirq_qs_periodic - Report RCU and RCU-Tasks quiescent states 254 * @old_ts: jiffies at start of processing. 255 * 256 * This helper is for long-running softirq handlers, such as NAPI threads in 257 * networking. The caller should initialize the variable passed in as @old_ts 258 * at the beginning of the softirq handler. When invoked frequently, this macro 259 * will invoke rcu_softirq_qs() every 100 milliseconds thereafter, which will 260 * provide both RCU and RCU-Tasks quiescent states. Note that this macro 261 * modifies its old_ts argument. 262 * 263 * Because regions of code that have disabled softirq act as RCU read-side 264 * critical sections, this macro should be invoked with softirq (and 265 * preemption) enabled. 266 * 267 * The macro is not needed when CONFIG_PREEMPT_RT is defined. RT kernels would 268 * have more chance to invoke schedule() calls and provide necessary quiescent 269 * states. As a contrast, calling cond_resched() only won't achieve the same 270 * effect because cond_resched() does not provide RCU-Tasks quiescent states. 271 */ 272 #define rcu_softirq_qs_periodic(old_ts) \ 273 do { \ 274 if (!IS_ENABLED(CONFIG_PREEMPT_RT) && \ 275 time_after(jiffies, (old_ts) + HZ / 10)) { \ 276 preempt_disable(); \ 277 rcu_softirq_qs(); \ 278 preempt_enable(); \ 279 (old_ts) = jiffies; \ 280 } \ 281 } while (0) 282 283 /* 284 * Infrastructure to implement the synchronize_() primitives in 285 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 286 */ 287 288 #if defined(CONFIG_TREE_RCU) 289 #include <linux/rcutree.h> 290 #elif defined(CONFIG_TINY_RCU) 291 #include <linux/rcutiny.h> 292 #else 293 #error "Unknown RCU implementation specified to kernel configuration" 294 #endif 295 296 /* 297 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls 298 * are needed for dynamic initialization and destruction of rcu_head 299 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for 300 * dynamic initialization and destruction of statically allocated rcu_head 301 * structures. However, rcu_head structures allocated dynamically in the 302 * heap don't need any initialization. 303 */ 304 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 305 void init_rcu_head(struct rcu_head *head); 306 void destroy_rcu_head(struct rcu_head *head); 307 void init_rcu_head_on_stack(struct rcu_head *head); 308 void destroy_rcu_head_on_stack(struct rcu_head *head); 309 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 310 static inline void init_rcu_head(struct rcu_head *head) { } 311 static inline void destroy_rcu_head(struct rcu_head *head) { } 312 static inline void init_rcu_head_on_stack(struct rcu_head *head) { } 313 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { } 314 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 315 316 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 317 bool rcu_lockdep_current_cpu_online(void); 318 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 319 static inline bool rcu_lockdep_current_cpu_online(void) { return true; } 320 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 321 322 extern struct lockdep_map rcu_lock_map; 323 extern struct lockdep_map rcu_bh_lock_map; 324 extern struct lockdep_map rcu_sched_lock_map; 325 extern struct lockdep_map rcu_callback_map; 326 327 #ifdef CONFIG_DEBUG_LOCK_ALLOC 328 329 static inline void rcu_lock_acquire(struct lockdep_map *map) 330 { 331 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); 332 } 333 334 static inline void rcu_try_lock_acquire(struct lockdep_map *map) 335 { 336 lock_acquire(map, 0, 1, 2, 0, NULL, _THIS_IP_); 337 } 338 339 static inline void rcu_lock_release(struct lockdep_map *map) 340 { 341 lock_release(map, _THIS_IP_); 342 } 343 344 int debug_lockdep_rcu_enabled(void); 345 int rcu_read_lock_held(void); 346 int rcu_read_lock_bh_held(void); 347 int rcu_read_lock_sched_held(void); 348 int rcu_read_lock_any_held(void); 349 350 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 351 352 # define rcu_lock_acquire(a) do { } while (0) 353 # define rcu_try_lock_acquire(a) do { } while (0) 354 # define rcu_lock_release(a) do { } while (0) 355 356 static inline int rcu_read_lock_held(void) 357 { 358 return 1; 359 } 360 361 static inline int rcu_read_lock_bh_held(void) 362 { 363 return 1; 364 } 365 366 static inline int rcu_read_lock_sched_held(void) 367 { 368 return !preemptible(); 369 } 370 371 static inline int rcu_read_lock_any_held(void) 372 { 373 return !preemptible(); 374 } 375 376 static inline int debug_lockdep_rcu_enabled(void) 377 { 378 return 0; 379 } 380 381 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 382 383 #ifdef CONFIG_PROVE_RCU 384 385 /** 386 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met 387 * @c: condition to check 388 * @s: informative message 389 * 390 * This checks debug_lockdep_rcu_enabled() before checking (c) to 391 * prevent early boot splats due to lockdep not yet being initialized, 392 * and rechecks it after checking (c) to prevent false-positive splats 393 * due to races with lockdep being disabled. See commit 3066820034b5dd 394 * ("rcu: Reject RCU_LOCKDEP_WARN() false positives") for more detail. 395 */ 396 #define RCU_LOCKDEP_WARN(c, s) \ 397 do { \ 398 static bool __section(".data..unlikely") __warned; \ 399 if (debug_lockdep_rcu_enabled() && (c) && \ 400 debug_lockdep_rcu_enabled() && !__warned) { \ 401 __warned = true; \ 402 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 403 } \ 404 } while (0) 405 406 #ifndef CONFIG_PREEMPT_RCU 407 static inline void rcu_preempt_sleep_check(void) 408 { 409 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 410 "Illegal context switch in RCU read-side critical section"); 411 } 412 #else // #ifndef CONFIG_PREEMPT_RCU 413 static inline void rcu_preempt_sleep_check(void) { } 414 #endif // #else // #ifndef CONFIG_PREEMPT_RCU 415 416 #define rcu_sleep_check() \ 417 do { \ 418 rcu_preempt_sleep_check(); \ 419 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ 420 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \ 421 "Illegal context switch in RCU-bh read-side critical section"); \ 422 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \ 423 "Illegal context switch in RCU-sched read-side critical section"); \ 424 } while (0) 425 426 // See RCU_LOCKDEP_WARN() for an explanation of the double call to 427 // debug_lockdep_rcu_enabled(). 428 static inline bool lockdep_assert_rcu_helper(bool c) 429 { 430 return debug_lockdep_rcu_enabled() && 431 (c || !rcu_is_watching() || !rcu_lockdep_current_cpu_online()) && 432 debug_lockdep_rcu_enabled(); 433 } 434 435 /** 436 * lockdep_assert_in_rcu_read_lock - WARN if not protected by rcu_read_lock() 437 * 438 * Splats if lockdep is enabled and there is no rcu_read_lock() in effect. 439 */ 440 #define lockdep_assert_in_rcu_read_lock() \ 441 WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_lock_map))) 442 443 /** 444 * lockdep_assert_in_rcu_read_lock_bh - WARN if not protected by rcu_read_lock_bh() 445 * 446 * Splats if lockdep is enabled and there is no rcu_read_lock_bh() in effect. 447 * Note that local_bh_disable() and friends do not suffice here, instead an 448 * actual rcu_read_lock_bh() is required. 449 */ 450 #define lockdep_assert_in_rcu_read_lock_bh() \ 451 WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_bh_lock_map))) 452 453 /** 454 * lockdep_assert_in_rcu_read_lock_sched - WARN if not protected by rcu_read_lock_sched() 455 * 456 * Splats if lockdep is enabled and there is no rcu_read_lock_sched() 457 * in effect. Note that preempt_disable() and friends do not suffice here, 458 * instead an actual rcu_read_lock_sched() is required. 459 */ 460 #define lockdep_assert_in_rcu_read_lock_sched() \ 461 WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_sched_lock_map))) 462 463 /** 464 * lockdep_assert_in_rcu_reader - WARN if not within some type of RCU reader 465 * 466 * Splats if lockdep is enabled and there is no RCU reader of any 467 * type in effect. Note that regions of code protected by things like 468 * preempt_disable, local_bh_disable(), and local_irq_disable() all qualify 469 * as RCU readers. 470 * 471 * Note that this will never trigger in PREEMPT_NONE or PREEMPT_VOLUNTARY 472 * kernels that are not also built with PREEMPT_COUNT. But if you have 473 * lockdep enabled, you might as well also enable PREEMPT_COUNT. 474 */ 475 #define lockdep_assert_in_rcu_reader() \ 476 WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_lock_map) && \ 477 !lock_is_held(&rcu_bh_lock_map) && \ 478 !lock_is_held(&rcu_sched_lock_map) && \ 479 preemptible())) 480 481 #else /* #ifdef CONFIG_PROVE_RCU */ 482 483 #define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c)) 484 #define rcu_sleep_check() do { } while (0) 485 486 #define lockdep_assert_in_rcu_read_lock() do { } while (0) 487 #define lockdep_assert_in_rcu_read_lock_bh() do { } while (0) 488 #define lockdep_assert_in_rcu_read_lock_sched() do { } while (0) 489 #define lockdep_assert_in_rcu_reader() do { } while (0) 490 491 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 492 493 /* 494 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 495 * and rcu_assign_pointer(). Some of these could be folded into their 496 * callers, but they are left separate in order to ease introduction of 497 * multiple pointers markings to match different RCU implementations 498 * (e.g., __srcu), should this make sense in the future. 499 */ 500 501 #ifdef __CHECKER__ 502 #define rcu_check_sparse(p, space) \ 503 ((void)(((typeof(*p) space *)p) == p)) 504 #else /* #ifdef __CHECKER__ */ 505 #define rcu_check_sparse(p, space) 506 #endif /* #else #ifdef __CHECKER__ */ 507 508 #define __unrcu_pointer(p, local) \ 509 ({ \ 510 typeof(*p) *local = (typeof(*p) *__force)(p); \ 511 rcu_check_sparse(p, __rcu); \ 512 ((typeof(*p) __force __kernel *)(local)); \ 513 }) 514 /** 515 * unrcu_pointer - mark a pointer as not being RCU protected 516 * @p: pointer needing to lose its __rcu property 517 * 518 * Converts @p from an __rcu pointer to a __kernel pointer. 519 * This allows an __rcu pointer to be used with xchg() and friends. 520 */ 521 #define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu)) 522 523 #define __rcu_access_pointer(p, local, space) \ 524 ({ \ 525 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \ 526 rcu_check_sparse(p, space); \ 527 ((typeof(*p) __force __kernel *)(local)); \ 528 }) 529 #define __rcu_dereference_check(p, local, c, space) \ 530 ({ \ 531 /* Dependency order vs. p above. */ \ 532 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \ 533 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \ 534 rcu_check_sparse(p, space); \ 535 ((typeof(*p) __force __kernel *)(local)); \ 536 }) 537 #define __rcu_dereference_protected(p, local, c, space) \ 538 ({ \ 539 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \ 540 rcu_check_sparse(p, space); \ 541 ((typeof(*p) __force __kernel *)(p)); \ 542 }) 543 #define __rcu_dereference_raw(p, local) \ 544 ({ \ 545 /* Dependency order vs. p above. */ \ 546 typeof(p) local = READ_ONCE(p); \ 547 ((typeof(*p) __force __kernel *)(local)); \ 548 }) 549 #define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu)) 550 551 /** 552 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable 553 * @v: The value to statically initialize with. 554 */ 555 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) 556 557 /** 558 * rcu_assign_pointer() - assign to RCU-protected pointer 559 * @p: pointer to assign to 560 * @v: value to assign (publish) 561 * 562 * Assigns the specified value to the specified RCU-protected 563 * pointer, ensuring that any concurrent RCU readers will see 564 * any prior initialization. 565 * 566 * Inserts memory barriers on architectures that require them 567 * (which is most of them), and also prevents the compiler from 568 * reordering the code that initializes the structure after the pointer 569 * assignment. More importantly, this call documents which pointers 570 * will be dereferenced by RCU read-side code. 571 * 572 * In some special cases, you may use RCU_INIT_POINTER() instead 573 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 574 * to the fact that it does not constrain either the CPU or the compiler. 575 * That said, using RCU_INIT_POINTER() when you should have used 576 * rcu_assign_pointer() is a very bad thing that results in 577 * impossible-to-diagnose memory corruption. So please be careful. 578 * See the RCU_INIT_POINTER() comment header for details. 579 * 580 * Note that rcu_assign_pointer() evaluates each of its arguments only 581 * once, appearances notwithstanding. One of the "extra" evaluations 582 * is in typeof() and the other visible only to sparse (__CHECKER__), 583 * neither of which actually execute the argument. As with most cpp 584 * macros, this execute-arguments-only-once property is important, so 585 * please be careful when making changes to rcu_assign_pointer() and the 586 * other macros that it invokes. 587 */ 588 #define rcu_assign_pointer(p, v) \ 589 do { \ 590 uintptr_t _r_a_p__v = (uintptr_t)(v); \ 591 rcu_check_sparse(p, __rcu); \ 592 \ 593 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \ 594 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \ 595 else \ 596 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \ 597 } while (0) 598 599 /** 600 * rcu_replace_pointer() - replace an RCU pointer, returning its old value 601 * @rcu_ptr: RCU pointer, whose old value is returned 602 * @ptr: regular pointer 603 * @c: the lockdep conditions under which the dereference will take place 604 * 605 * Perform a replacement, where @rcu_ptr is an RCU-annotated 606 * pointer and @c is the lockdep argument that is passed to the 607 * rcu_dereference_protected() call used to read that pointer. The old 608 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr. 609 */ 610 #define rcu_replace_pointer(rcu_ptr, ptr, c) \ 611 ({ \ 612 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \ 613 rcu_assign_pointer((rcu_ptr), (ptr)); \ 614 __tmp; \ 615 }) 616 617 /** 618 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 619 * @p: The pointer to read 620 * 621 * Return the value of the specified RCU-protected pointer, but omit the 622 * lockdep checks for being in an RCU read-side critical section. This is 623 * useful when the value of this pointer is accessed, but the pointer is 624 * not dereferenced, for example, when testing an RCU-protected pointer 625 * against NULL. Although rcu_access_pointer() may also be used in cases 626 * where update-side locks prevent the value of the pointer from changing, 627 * you should instead use rcu_dereference_protected() for this use case. 628 * Within an RCU read-side critical section, there is little reason to 629 * use rcu_access_pointer(). 630 * 631 * It is usually best to test the rcu_access_pointer() return value 632 * directly in order to avoid accidental dereferences being introduced 633 * by later inattentive changes. In other words, assigning the 634 * rcu_access_pointer() return value to a local variable results in an 635 * accident waiting to happen. 636 * 637 * It is also permissible to use rcu_access_pointer() when read-side 638 * access to the pointer was removed at least one grace period ago, as is 639 * the case in the context of the RCU callback that is freeing up the data, 640 * or after a synchronize_rcu() returns. This can be useful when tearing 641 * down multi-linked structures after a grace period has elapsed. However, 642 * rcu_dereference_protected() is normally preferred for this use case. 643 */ 644 #define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu) 645 646 /** 647 * rcu_dereference_check() - rcu_dereference with debug checking 648 * @p: The pointer to read, prior to dereferencing 649 * @c: The conditions under which the dereference will take place 650 * 651 * Do an rcu_dereference(), but check that the conditions under which the 652 * dereference will take place are correct. Typically the conditions 653 * indicate the various locking conditions that should be held at that 654 * point. The check should return true if the conditions are satisfied. 655 * An implicit check for being in an RCU read-side critical section 656 * (rcu_read_lock()) is included. 657 * 658 * For example: 659 * 660 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 661 * 662 * could be used to indicate to lockdep that foo->bar may only be dereferenced 663 * if either rcu_read_lock() is held, or that the lock required to replace 664 * the bar struct at foo->bar is held. 665 * 666 * Note that the list of conditions may also include indications of when a lock 667 * need not be held, for example during initialisation or destruction of the 668 * target struct: 669 * 670 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 671 * atomic_read(&foo->usage) == 0); 672 * 673 * Inserts memory barriers on architectures that require them 674 * (currently only the Alpha), prevents the compiler from refetching 675 * (and from merging fetches), and, more importantly, documents exactly 676 * which pointers are protected by RCU and checks that the pointer is 677 * annotated as __rcu. 678 */ 679 #define rcu_dereference_check(p, c) \ 680 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \ 681 (c) || rcu_read_lock_held(), __rcu) 682 683 /** 684 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 685 * @p: The pointer to read, prior to dereferencing 686 * @c: The conditions under which the dereference will take place 687 * 688 * This is the RCU-bh counterpart to rcu_dereference_check(). However, 689 * please note that starting in v5.0 kernels, vanilla RCU grace periods 690 * wait for local_bh_disable() regions of code in addition to regions of 691 * code demarked by rcu_read_lock() and rcu_read_unlock(). This means 692 * that synchronize_rcu(), call_rcu, and friends all take not only 693 * rcu_read_lock() but also rcu_read_lock_bh() into account. 694 */ 695 #define rcu_dereference_bh_check(p, c) \ 696 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \ 697 (c) || rcu_read_lock_bh_held(), __rcu) 698 699 /** 700 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 701 * @p: The pointer to read, prior to dereferencing 702 * @c: The conditions under which the dereference will take place 703 * 704 * This is the RCU-sched counterpart to rcu_dereference_check(). 705 * However, please note that starting in v5.0 kernels, vanilla RCU grace 706 * periods wait for preempt_disable() regions of code in addition to 707 * regions of code demarked by rcu_read_lock() and rcu_read_unlock(). 708 * This means that synchronize_rcu(), call_rcu, and friends all take not 709 * only rcu_read_lock() but also rcu_read_lock_sched() into account. 710 */ 711 #define rcu_dereference_sched_check(p, c) \ 712 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \ 713 (c) || rcu_read_lock_sched_held(), \ 714 __rcu) 715 716 /* 717 * The tracing infrastructure traces RCU (we want that), but unfortunately 718 * some of the RCU checks causes tracing to lock up the system. 719 * 720 * The no-tracing version of rcu_dereference_raw() must not call 721 * rcu_read_lock_held(). 722 */ 723 #define rcu_dereference_raw_check(p) \ 724 __rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu) 725 726 /** 727 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 728 * @p: The pointer to read, prior to dereferencing 729 * @c: The conditions under which the dereference will take place 730 * 731 * Return the value of the specified RCU-protected pointer, but omit 732 * the READ_ONCE(). This is useful in cases where update-side locks 733 * prevent the value of the pointer from changing. Please note that this 734 * primitive does *not* prevent the compiler from repeating this reference 735 * or combining it with other references, so it should not be used without 736 * protection of appropriate locks. 737 * 738 * This function is only for update-side use. Using this function 739 * when protected only by rcu_read_lock() will result in infrequent 740 * but very ugly failures. 741 */ 742 #define rcu_dereference_protected(p, c) \ 743 __rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu) 744 745 746 /** 747 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 748 * @p: The pointer to read, prior to dereferencing 749 * 750 * This is a simple wrapper around rcu_dereference_check(). 751 */ 752 #define rcu_dereference(p) rcu_dereference_check(p, 0) 753 754 /** 755 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 756 * @p: The pointer to read, prior to dereferencing 757 * 758 * Makes rcu_dereference_check() do the dirty work. 759 */ 760 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 761 762 /** 763 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 764 * @p: The pointer to read, prior to dereferencing 765 * 766 * Makes rcu_dereference_check() do the dirty work. 767 */ 768 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 769 770 /** 771 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism 772 * @p: The pointer to hand off 773 * 774 * This is simply an identity function, but it documents where a pointer 775 * is handed off from RCU to some other synchronization mechanism, for 776 * example, reference counting or locking. In C11, it would map to 777 * kill_dependency(). It could be used as follows:: 778 * 779 * rcu_read_lock(); 780 * p = rcu_dereference(gp); 781 * long_lived = is_long_lived(p); 782 * if (long_lived) { 783 * if (!atomic_inc_not_zero(p->refcnt)) 784 * long_lived = false; 785 * else 786 * p = rcu_pointer_handoff(p); 787 * } 788 * rcu_read_unlock(); 789 */ 790 #define rcu_pointer_handoff(p) (p) 791 792 /** 793 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 794 * 795 * When synchronize_rcu() is invoked on one CPU while other CPUs 796 * are within RCU read-side critical sections, then the 797 * synchronize_rcu() is guaranteed to block until after all the other 798 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 799 * on one CPU while other CPUs are within RCU read-side critical 800 * sections, invocation of the corresponding RCU callback is deferred 801 * until after the all the other CPUs exit their critical sections. 802 * 803 * Both synchronize_rcu() and call_rcu() also wait for regions of code 804 * with preemption disabled, including regions of code with interrupts or 805 * softirqs disabled. 806 * 807 * Note, however, that RCU callbacks are permitted to run concurrently 808 * with new RCU read-side critical sections. One way that this can happen 809 * is via the following sequence of events: (1) CPU 0 enters an RCU 810 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 811 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 812 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 813 * callback is invoked. This is legal, because the RCU read-side critical 814 * section that was running concurrently with the call_rcu() (and which 815 * therefore might be referencing something that the corresponding RCU 816 * callback would free up) has completed before the corresponding 817 * RCU callback is invoked. 818 * 819 * RCU read-side critical sections may be nested. Any deferred actions 820 * will be deferred until the outermost RCU read-side critical section 821 * completes. 822 * 823 * You can avoid reading and understanding the next paragraph by 824 * following this rule: don't put anything in an rcu_read_lock() RCU 825 * read-side critical section that would block in a !PREEMPTION kernel. 826 * But if you want the full story, read on! 827 * 828 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU), 829 * it is illegal to block while in an RCU read-side critical section. 830 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION 831 * kernel builds, RCU read-side critical sections may be preempted, 832 * but explicit blocking is illegal. Finally, in preemptible RCU 833 * implementations in real-time (with -rt patchset) kernel builds, RCU 834 * read-side critical sections may be preempted and they may also block, but 835 * only when acquiring spinlocks that are subject to priority inheritance. 836 */ 837 static __always_inline void rcu_read_lock(void) 838 { 839 __rcu_read_lock(); 840 __acquire(RCU); 841 rcu_lock_acquire(&rcu_lock_map); 842 RCU_LOCKDEP_WARN(!rcu_is_watching(), 843 "rcu_read_lock() used illegally while idle"); 844 } 845 846 /* 847 * So where is rcu_write_lock()? It does not exist, as there is no 848 * way for writers to lock out RCU readers. This is a feature, not 849 * a bug -- this property is what provides RCU's performance benefits. 850 * Of course, writers must coordinate with each other. The normal 851 * spinlock primitives work well for this, but any other technique may be 852 * used as well. RCU does not care how the writers keep out of each 853 * others' way, as long as they do so. 854 */ 855 856 /** 857 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 858 * 859 * In almost all situations, rcu_read_unlock() is immune from deadlock. 860 * This deadlock immunity also extends to the scheduler's runqueue 861 * and priority-inheritance spinlocks, courtesy of the quiescent-state 862 * deferral that is carried out when rcu_read_unlock() is invoked with 863 * interrupts disabled. 864 * 865 * See rcu_read_lock() for more information. 866 */ 867 static inline void rcu_read_unlock(void) 868 { 869 RCU_LOCKDEP_WARN(!rcu_is_watching(), 870 "rcu_read_unlock() used illegally while idle"); 871 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */ 872 __release(RCU); 873 __rcu_read_unlock(); 874 } 875 876 /** 877 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 878 * 879 * This is equivalent to rcu_read_lock(), but also disables softirqs. 880 * Note that anything else that disables softirqs can also serve as an RCU 881 * read-side critical section. However, please note that this equivalence 882 * applies only to v5.0 and later. Before v5.0, rcu_read_lock() and 883 * rcu_read_lock_bh() were unrelated. 884 * 885 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 886 * must occur in the same context, for example, it is illegal to invoke 887 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 888 * was invoked from some other task. 889 */ 890 static inline void rcu_read_lock_bh(void) 891 { 892 local_bh_disable(); 893 __acquire(RCU_BH); 894 rcu_lock_acquire(&rcu_bh_lock_map); 895 RCU_LOCKDEP_WARN(!rcu_is_watching(), 896 "rcu_read_lock_bh() used illegally while idle"); 897 } 898 899 /** 900 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section 901 * 902 * See rcu_read_lock_bh() for more information. 903 */ 904 static inline void rcu_read_unlock_bh(void) 905 { 906 RCU_LOCKDEP_WARN(!rcu_is_watching(), 907 "rcu_read_unlock_bh() used illegally while idle"); 908 rcu_lock_release(&rcu_bh_lock_map); 909 __release(RCU_BH); 910 local_bh_enable(); 911 } 912 913 /** 914 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 915 * 916 * This is equivalent to rcu_read_lock(), but also disables preemption. 917 * Read-side critical sections can also be introduced by anything else that 918 * disables preemption, including local_irq_disable() and friends. However, 919 * please note that the equivalence to rcu_read_lock() applies only to 920 * v5.0 and later. Before v5.0, rcu_read_lock() and rcu_read_lock_sched() 921 * were unrelated. 922 * 923 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 924 * must occur in the same context, for example, it is illegal to invoke 925 * rcu_read_unlock_sched() from process context if the matching 926 * rcu_read_lock_sched() was invoked from an NMI handler. 927 */ 928 static inline void rcu_read_lock_sched(void) 929 { 930 preempt_disable(); 931 __acquire(RCU_SCHED); 932 rcu_lock_acquire(&rcu_sched_lock_map); 933 RCU_LOCKDEP_WARN(!rcu_is_watching(), 934 "rcu_read_lock_sched() used illegally while idle"); 935 } 936 937 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 938 static inline notrace void rcu_read_lock_sched_notrace(void) 939 { 940 preempt_disable_notrace(); 941 __acquire(RCU_SCHED); 942 } 943 944 /** 945 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section 946 * 947 * See rcu_read_lock_sched() for more information. 948 */ 949 static inline void rcu_read_unlock_sched(void) 950 { 951 RCU_LOCKDEP_WARN(!rcu_is_watching(), 952 "rcu_read_unlock_sched() used illegally while idle"); 953 rcu_lock_release(&rcu_sched_lock_map); 954 __release(RCU_SCHED); 955 preempt_enable(); 956 } 957 958 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 959 static inline notrace void rcu_read_unlock_sched_notrace(void) 960 { 961 __release(RCU_SCHED); 962 preempt_enable_notrace(); 963 } 964 965 static __always_inline void rcu_read_lock_dont_migrate(void) 966 { 967 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) 968 migrate_disable(); 969 rcu_read_lock(); 970 } 971 972 static inline void rcu_read_unlock_migrate(void) 973 { 974 rcu_read_unlock(); 975 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) 976 migrate_enable(); 977 } 978 979 /** 980 * RCU_INIT_POINTER() - initialize an RCU protected pointer 981 * @p: The pointer to be initialized. 982 * @v: The value to initialized the pointer to. 983 * 984 * Initialize an RCU-protected pointer in special cases where readers 985 * do not need ordering constraints on the CPU or the compiler. These 986 * special cases are: 987 * 988 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or* 989 * 2. The caller has taken whatever steps are required to prevent 990 * RCU readers from concurrently accessing this pointer *or* 991 * 3. The referenced data structure has already been exposed to 992 * readers either at compile time or via rcu_assign_pointer() *and* 993 * 994 * a. You have not made *any* reader-visible changes to 995 * this structure since then *or* 996 * b. It is OK for readers accessing this structure from its 997 * new location to see the old state of the structure. (For 998 * example, the changes were to statistical counters or to 999 * other state where exact synchronization is not required.) 1000 * 1001 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 1002 * result in impossible-to-diagnose memory corruption. As in the structures 1003 * will look OK in crash dumps, but any concurrent RCU readers might 1004 * see pre-initialized values of the referenced data structure. So 1005 * please be very careful how you use RCU_INIT_POINTER()!!! 1006 * 1007 * If you are creating an RCU-protected linked structure that is accessed 1008 * by a single external-to-structure RCU-protected pointer, then you may 1009 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 1010 * pointers, but you must use rcu_assign_pointer() to initialize the 1011 * external-to-structure pointer *after* you have completely initialized 1012 * the reader-accessible portions of the linked structure. 1013 * 1014 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no 1015 * ordering guarantees for either the CPU or the compiler. 1016 */ 1017 #define RCU_INIT_POINTER(p, v) \ 1018 do { \ 1019 rcu_check_sparse(p, __rcu); \ 1020 WRITE_ONCE(p, RCU_INITIALIZER(v)); \ 1021 } while (0) 1022 1023 /** 1024 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer 1025 * @p: The pointer to be initialized. 1026 * @v: The value to initialized the pointer to. 1027 * 1028 * GCC-style initialization for an RCU-protected pointer in a structure field. 1029 */ 1030 #define RCU_POINTER_INITIALIZER(p, v) \ 1031 .p = RCU_INITIALIZER(v) 1032 1033 /** 1034 * kfree_rcu() - kfree an object after a grace period. 1035 * @ptr: pointer to kfree for double-argument invocations. 1036 * @rhf: the name of the struct rcu_head within the type of @ptr. 1037 * 1038 * Many rcu callbacks functions just call kfree() on the base structure. 1039 * These functions are trivial, but their size adds up, and furthermore 1040 * when they are used in a kernel module, that module must invoke the 1041 * high-latency rcu_barrier() function at module-unload time. 1042 * 1043 * The kfree_rcu() function handles this issue. In order to have a universal 1044 * callback function handling different offsets of rcu_head, the callback needs 1045 * to determine the starting address of the freed object, which can be a large 1046 * kmalloc or vmalloc allocation. To allow simply aligning the pointer down to 1047 * page boundary for those, only offsets up to 4095 bytes can be accommodated. 1048 * If the offset is larger than 4095 bytes, a compile-time error will 1049 * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can 1050 * either fall back to use of call_rcu() or rearrange the structure to 1051 * position the rcu_head structure into the first 4096 bytes. 1052 * 1053 * The object to be freed can be allocated either by kmalloc() or 1054 * kmem_cache_alloc(). 1055 * 1056 * Note that the allowable offset might decrease in the future. 1057 * 1058 * The BUILD_BUG_ON check must not involve any function calls, hence the 1059 * checks are done in macros here. 1060 */ 1061 #define kfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf) 1062 #define kvfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf) 1063 1064 /** 1065 * kfree_rcu_mightsleep() - kfree an object after a grace period. 1066 * @ptr: pointer to kfree for single-argument invocations. 1067 * 1068 * When it comes to head-less variant, only one argument 1069 * is passed and that is just a pointer which has to be 1070 * freed after a grace period. Therefore the semantic is 1071 * 1072 * kfree_rcu_mightsleep(ptr); 1073 * 1074 * where @ptr is the pointer to be freed by kvfree(). 1075 * 1076 * Please note, head-less way of freeing is permitted to 1077 * use from a context that has to follow might_sleep() 1078 * annotation. Otherwise, please switch and embed the 1079 * rcu_head structure within the type of @ptr. 1080 */ 1081 #define kfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr) 1082 #define kvfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr) 1083 1084 /* 1085 * In mm/slab_common.c, no suitable header to include here. 1086 */ 1087 void kvfree_call_rcu(struct rcu_head *head, void *ptr); 1088 1089 /* 1090 * The BUILD_BUG_ON() makes sure the rcu_head offset can be handled. See the 1091 * comment of kfree_rcu() for details. 1092 */ 1093 #define kvfree_rcu_arg_2(ptr, rhf) \ 1094 do { \ 1095 typeof (ptr) ___p = (ptr); \ 1096 \ 1097 if (___p) { \ 1098 BUILD_BUG_ON(offsetof(typeof(*(ptr)), rhf) >= 4096); \ 1099 kvfree_call_rcu(&((___p)->rhf), (void *) (___p)); \ 1100 } \ 1101 } while (0) 1102 1103 #define kvfree_rcu_arg_1(ptr) \ 1104 do { \ 1105 typeof(ptr) ___p = (ptr); \ 1106 \ 1107 if (___p) \ 1108 kvfree_call_rcu(NULL, (void *) (___p)); \ 1109 } while (0) 1110 1111 /* 1112 * Place this after a lock-acquisition primitive to guarantee that 1113 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies 1114 * if the UNLOCK and LOCK are executed by the same CPU or if the 1115 * UNLOCK and LOCK operate on the same lock variable. 1116 */ 1117 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE 1118 #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */ 1119 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 1120 #define smp_mb__after_unlock_lock() do { } while (0) 1121 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 1122 1123 1124 /* Has the specified rcu_head structure been handed to call_rcu()? */ 1125 1126 /** 1127 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu() 1128 * @rhp: The rcu_head structure to initialize. 1129 * 1130 * If you intend to invoke rcu_head_after_call_rcu() to test whether a 1131 * given rcu_head structure has already been passed to call_rcu(), then 1132 * you must also invoke this rcu_head_init() function on it just after 1133 * allocating that structure. Calls to this function must not race with 1134 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation. 1135 */ 1136 static inline void rcu_head_init(struct rcu_head *rhp) 1137 { 1138 rhp->func = (rcu_callback_t)~0L; 1139 } 1140 1141 /** 1142 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()? 1143 * @rhp: The rcu_head structure to test. 1144 * @f: The function passed to call_rcu() along with @rhp. 1145 * 1146 * Returns @true if the @rhp has been passed to call_rcu() with @func, 1147 * and @false otherwise. Emits a warning in any other case, including 1148 * the case where @rhp has already been invoked after a grace period. 1149 * Calls to this function must not race with callback invocation. One way 1150 * to avoid such races is to enclose the call to rcu_head_after_call_rcu() 1151 * in an RCU read-side critical section that includes a read-side fetch 1152 * of the pointer to the structure containing @rhp. 1153 */ 1154 static inline bool 1155 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f) 1156 { 1157 rcu_callback_t func = READ_ONCE(rhp->func); 1158 1159 if (func == f) 1160 return true; 1161 WARN_ON_ONCE(func != (rcu_callback_t)~0L); 1162 return false; 1163 } 1164 1165 /* kernel/ksysfs.c definitions */ 1166 extern int rcu_expedited; 1167 extern int rcu_normal; 1168 1169 DEFINE_LOCK_GUARD_0(rcu, 1170 do { 1171 rcu_read_lock(); 1172 /* 1173 * sparse doesn't call the cleanup function, 1174 * so just release immediately and don't track 1175 * the context. We don't need to anyway, since 1176 * the whole point of the guard is to not need 1177 * the explicit unlock. 1178 */ 1179 __release(RCU); 1180 } while (0), 1181 rcu_read_unlock()) 1182 1183 #endif /* __LINUX_RCUPDATE_H */ 1184