xref: /linux/include/linux/rcupdate.h (revision 621cde16e49b3ecf7d59a8106a20aaebfb4a59a9)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion
4  *
5  * Copyright IBM Corporation, 2001
6  *
7  * Author: Dipankar Sarma <dipankar@in.ibm.com>
8  *
9  * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11  * Papers:
12  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14  *
15  * For detailed explanation of Read-Copy Update mechanism see -
16  *		http://lse.sourceforge.net/locking/rcupdate.html
17  *
18  */
19 
20 #ifndef __LINUX_RCUPDATE_H
21 #define __LINUX_RCUPDATE_H
22 
23 #include <linux/types.h>
24 #include <linux/compiler.h>
25 #include <linux/atomic.h>
26 #include <linux/irqflags.h>
27 #include <linux/preempt.h>
28 #include <linux/bottom_half.h>
29 #include <linux/lockdep.h>
30 #include <linux/cleanup.h>
31 #include <asm/processor.h>
32 #include <linux/cpumask.h>
33 #include <linux/context_tracking_irq.h>
34 
35 #define ULONG_CMP_GE(a, b)	(ULONG_MAX / 2 >= (a) - (b))
36 #define ULONG_CMP_LT(a, b)	(ULONG_MAX / 2 < (a) - (b))
37 
38 /* Exported common interfaces */
39 void call_rcu(struct rcu_head *head, rcu_callback_t func);
40 void rcu_barrier_tasks(void);
41 void rcu_barrier_tasks_rude(void);
42 void synchronize_rcu(void);
43 
44 struct rcu_gp_oldstate;
45 unsigned long get_completed_synchronize_rcu(void);
46 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp);
47 
48 // Maximum number of unsigned long values corresponding to
49 // not-yet-completed RCU grace periods.
50 #define NUM_ACTIVE_RCU_POLL_OLDSTATE 2
51 
52 /**
53  * same_state_synchronize_rcu - Are two old-state values identical?
54  * @oldstate1: First old-state value.
55  * @oldstate2: Second old-state value.
56  *
57  * The two old-state values must have been obtained from either
58  * get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or
59  * get_completed_synchronize_rcu().  Returns @true if the two values are
60  * identical and @false otherwise.  This allows structures whose lifetimes
61  * are tracked by old-state values to push these values to a list header,
62  * allowing those structures to be slightly smaller.
63  */
same_state_synchronize_rcu(unsigned long oldstate1,unsigned long oldstate2)64 static inline bool same_state_synchronize_rcu(unsigned long oldstate1, unsigned long oldstate2)
65 {
66 	return oldstate1 == oldstate2;
67 }
68 
69 #ifdef CONFIG_PREEMPT_RCU
70 
71 void __rcu_read_lock(void);
72 void __rcu_read_unlock(void);
73 
74 /*
75  * Defined as a macro as it is a very low level header included from
76  * areas that don't even know about current.  This gives the rcu_read_lock()
77  * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
78  * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
79  */
80 #define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting)
81 
82 #else /* #ifdef CONFIG_PREEMPT_RCU */
83 
84 #ifdef CONFIG_TINY_RCU
85 #define rcu_read_unlock_strict() do { } while (0)
86 #else
87 void rcu_read_unlock_strict(void);
88 #endif
89 
__rcu_read_lock(void)90 static inline void __rcu_read_lock(void)
91 {
92 	preempt_disable();
93 }
94 
__rcu_read_unlock(void)95 static inline void __rcu_read_unlock(void)
96 {
97 	preempt_enable();
98 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
99 		rcu_read_unlock_strict();
100 }
101 
rcu_preempt_depth(void)102 static inline int rcu_preempt_depth(void)
103 {
104 	return 0;
105 }
106 
107 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
108 
109 #ifdef CONFIG_RCU_LAZY
110 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func);
111 #else
call_rcu_hurry(struct rcu_head * head,rcu_callback_t func)112 static inline void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
113 {
114 	call_rcu(head, func);
115 }
116 #endif
117 
118 /* Internal to kernel */
119 void rcu_init(void);
120 extern int rcu_scheduler_active;
121 void rcu_sched_clock_irq(int user);
122 
123 #ifdef CONFIG_TASKS_RCU_GENERIC
124 void rcu_init_tasks_generic(void);
125 #else
rcu_init_tasks_generic(void)126 static inline void rcu_init_tasks_generic(void) { }
127 #endif
128 
129 #ifdef CONFIG_RCU_STALL_COMMON
130 void rcu_sysrq_start(void);
131 void rcu_sysrq_end(void);
132 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)133 static inline void rcu_sysrq_start(void) { }
rcu_sysrq_end(void)134 static inline void rcu_sysrq_end(void) { }
135 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
136 
137 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
138 void rcu_irq_work_resched(void);
139 #else
rcu_irq_work_resched(void)140 static inline void rcu_irq_work_resched(void) { }
141 #endif
142 
143 #ifdef CONFIG_RCU_NOCB_CPU
144 void rcu_init_nohz(void);
145 int rcu_nocb_cpu_offload(int cpu);
146 int rcu_nocb_cpu_deoffload(int cpu);
147 void rcu_nocb_flush_deferred_wakeup(void);
148 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
rcu_init_nohz(void)149 static inline void rcu_init_nohz(void) { }
rcu_nocb_cpu_offload(int cpu)150 static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; }
rcu_nocb_cpu_deoffload(int cpu)151 static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; }
rcu_nocb_flush_deferred_wakeup(void)152 static inline void rcu_nocb_flush_deferred_wakeup(void) { }
153 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
154 
155 /*
156  * Note a quasi-voluntary context switch for RCU-tasks's benefit.
157  * This is a macro rather than an inline function to avoid #include hell.
158  */
159 #ifdef CONFIG_TASKS_RCU_GENERIC
160 
161 # ifdef CONFIG_TASKS_RCU
162 # define rcu_tasks_classic_qs(t, preempt)				\
163 	do {								\
164 		if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout))	\
165 			WRITE_ONCE((t)->rcu_tasks_holdout, false);	\
166 	} while (0)
167 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
168 void synchronize_rcu_tasks(void);
169 # else
170 # define rcu_tasks_classic_qs(t, preempt) do { } while (0)
171 # define call_rcu_tasks call_rcu
172 # define synchronize_rcu_tasks synchronize_rcu
173 # endif
174 
175 # ifdef CONFIG_TASKS_TRACE_RCU
176 // Bits for ->trc_reader_special.b.need_qs field.
177 #define TRC_NEED_QS		0x1  // Task needs a quiescent state.
178 #define TRC_NEED_QS_CHECKED	0x2  // Task has been checked for needing quiescent state.
179 
180 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new);
181 void rcu_tasks_trace_qs_blkd(struct task_struct *t);
182 
183 # define rcu_tasks_trace_qs(t)							\
184 	do {									\
185 		int ___rttq_nesting = READ_ONCE((t)->trc_reader_nesting);	\
186 										\
187 		if (unlikely(READ_ONCE((t)->trc_reader_special.b.need_qs) == TRC_NEED_QS) &&	\
188 		    likely(!___rttq_nesting)) {					\
189 			rcu_trc_cmpxchg_need_qs((t), TRC_NEED_QS, TRC_NEED_QS_CHECKED);	\
190 		} else if (___rttq_nesting && ___rttq_nesting != INT_MIN &&	\
191 			   !READ_ONCE((t)->trc_reader_special.b.blocked)) {	\
192 			rcu_tasks_trace_qs_blkd(t);				\
193 		}								\
194 	} while (0)
195 # else
196 # define rcu_tasks_trace_qs(t) do { } while (0)
197 # endif
198 
199 #define rcu_tasks_qs(t, preempt)					\
200 do {									\
201 	rcu_tasks_classic_qs((t), (preempt));				\
202 	rcu_tasks_trace_qs(t);						\
203 } while (0)
204 
205 # ifdef CONFIG_TASKS_RUDE_RCU
206 void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
207 void synchronize_rcu_tasks_rude(void);
208 # endif
209 
210 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
211 void exit_tasks_rcu_start(void);
212 void exit_tasks_rcu_stop(void);
213 void exit_tasks_rcu_finish(void);
214 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
215 #define rcu_tasks_classic_qs(t, preempt) do { } while (0)
216 #define rcu_tasks_qs(t, preempt) do { } while (0)
217 #define rcu_note_voluntary_context_switch(t) do { } while (0)
218 #define call_rcu_tasks call_rcu
219 #define synchronize_rcu_tasks synchronize_rcu
exit_tasks_rcu_start(void)220 static inline void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_stop(void)221 static inline void exit_tasks_rcu_stop(void) { }
exit_tasks_rcu_finish(void)222 static inline void exit_tasks_rcu_finish(void) { }
223 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
224 
225 /**
226  * rcu_trace_implies_rcu_gp - does an RCU Tasks Trace grace period imply an RCU grace period?
227  *
228  * As an accident of implementation, an RCU Tasks Trace grace period also
229  * acts as an RCU grace period.  However, this could change at any time.
230  * Code relying on this accident must call this function to verify that
231  * this accident is still happening.
232  *
233  * You have been warned!
234  */
rcu_trace_implies_rcu_gp(void)235 static inline bool rcu_trace_implies_rcu_gp(void) { return true; }
236 
237 /**
238  * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
239  *
240  * This macro resembles cond_resched(), except that it is defined to
241  * report potential quiescent states to RCU-tasks even if the cond_resched()
242  * machinery were to be shut off, as some advocate for PREEMPTION kernels.
243  */
244 #define cond_resched_tasks_rcu_qs() \
245 do { \
246 	rcu_tasks_qs(current, false); \
247 	cond_resched(); \
248 } while (0)
249 
250 /**
251  * rcu_softirq_qs_periodic - Report RCU and RCU-Tasks quiescent states
252  * @old_ts: jiffies at start of processing.
253  *
254  * This helper is for long-running softirq handlers, such as NAPI threads in
255  * networking. The caller should initialize the variable passed in as @old_ts
256  * at the beginning of the softirq handler. When invoked frequently, this macro
257  * will invoke rcu_softirq_qs() every 100 milliseconds thereafter, which will
258  * provide both RCU and RCU-Tasks quiescent states. Note that this macro
259  * modifies its old_ts argument.
260  *
261  * Because regions of code that have disabled softirq act as RCU read-side
262  * critical sections, this macro should be invoked with softirq (and
263  * preemption) enabled.
264  *
265  * The macro is not needed when CONFIG_PREEMPT_RT is defined. RT kernels would
266  * have more chance to invoke schedule() calls and provide necessary quiescent
267  * states. As a contrast, calling cond_resched() only won't achieve the same
268  * effect because cond_resched() does not provide RCU-Tasks quiescent states.
269  */
270 #define rcu_softirq_qs_periodic(old_ts) \
271 do { \
272 	if (!IS_ENABLED(CONFIG_PREEMPT_RT) && \
273 	    time_after(jiffies, (old_ts) + HZ / 10)) { \
274 		preempt_disable(); \
275 		rcu_softirq_qs(); \
276 		preempt_enable(); \
277 		(old_ts) = jiffies; \
278 	} \
279 } while (0)
280 
281 /*
282  * Infrastructure to implement the synchronize_() primitives in
283  * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
284  */
285 
286 #if defined(CONFIG_TREE_RCU)
287 #include <linux/rcutree.h>
288 #elif defined(CONFIG_TINY_RCU)
289 #include <linux/rcutiny.h>
290 #else
291 #error "Unknown RCU implementation specified to kernel configuration"
292 #endif
293 
294 /*
295  * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
296  * are needed for dynamic initialization and destruction of rcu_head
297  * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
298  * dynamic initialization and destruction of statically allocated rcu_head
299  * structures.  However, rcu_head structures allocated dynamically in the
300  * heap don't need any initialization.
301  */
302 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
303 void init_rcu_head(struct rcu_head *head);
304 void destroy_rcu_head(struct rcu_head *head);
305 void init_rcu_head_on_stack(struct rcu_head *head);
306 void destroy_rcu_head_on_stack(struct rcu_head *head);
307 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)308 static inline void init_rcu_head(struct rcu_head *head) { }
destroy_rcu_head(struct rcu_head * head)309 static inline void destroy_rcu_head(struct rcu_head *head) { }
init_rcu_head_on_stack(struct rcu_head * head)310 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
destroy_rcu_head_on_stack(struct rcu_head * head)311 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
312 #endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
313 
314 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
315 bool rcu_lockdep_current_cpu_online(void);
316 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)317 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
318 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
319 
320 extern struct lockdep_map rcu_lock_map;
321 extern struct lockdep_map rcu_bh_lock_map;
322 extern struct lockdep_map rcu_sched_lock_map;
323 extern struct lockdep_map rcu_callback_map;
324 
325 #ifdef CONFIG_DEBUG_LOCK_ALLOC
326 
rcu_lock_acquire(struct lockdep_map * map)327 static inline void rcu_lock_acquire(struct lockdep_map *map)
328 {
329 	lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
330 }
331 
rcu_try_lock_acquire(struct lockdep_map * map)332 static inline void rcu_try_lock_acquire(struct lockdep_map *map)
333 {
334 	lock_acquire(map, 0, 1, 2, 0, NULL, _THIS_IP_);
335 }
336 
rcu_lock_release(struct lockdep_map * map)337 static inline void rcu_lock_release(struct lockdep_map *map)
338 {
339 	lock_release(map, _THIS_IP_);
340 }
341 
342 int debug_lockdep_rcu_enabled(void);
343 int rcu_read_lock_held(void);
344 int rcu_read_lock_bh_held(void);
345 int rcu_read_lock_sched_held(void);
346 int rcu_read_lock_any_held(void);
347 
348 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
349 
350 # define rcu_lock_acquire(a)		do { } while (0)
351 # define rcu_try_lock_acquire(a)	do { } while (0)
352 # define rcu_lock_release(a)		do { } while (0)
353 
rcu_read_lock_held(void)354 static inline int rcu_read_lock_held(void)
355 {
356 	return 1;
357 }
358 
rcu_read_lock_bh_held(void)359 static inline int rcu_read_lock_bh_held(void)
360 {
361 	return 1;
362 }
363 
rcu_read_lock_sched_held(void)364 static inline int rcu_read_lock_sched_held(void)
365 {
366 	return !preemptible();
367 }
368 
rcu_read_lock_any_held(void)369 static inline int rcu_read_lock_any_held(void)
370 {
371 	return !preemptible();
372 }
373 
debug_lockdep_rcu_enabled(void)374 static inline int debug_lockdep_rcu_enabled(void)
375 {
376 	return 0;
377 }
378 
379 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
380 
381 #ifdef CONFIG_PROVE_RCU
382 
383 /**
384  * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
385  * @c: condition to check
386  * @s: informative message
387  *
388  * This checks debug_lockdep_rcu_enabled() before checking (c) to
389  * prevent early boot splats due to lockdep not yet being initialized,
390  * and rechecks it after checking (c) to prevent false-positive splats
391  * due to races with lockdep being disabled.  See commit 3066820034b5dd
392  * ("rcu: Reject RCU_LOCKDEP_WARN() false positives") for more detail.
393  */
394 #define RCU_LOCKDEP_WARN(c, s)						\
395 	do {								\
396 		static bool __section(".data.unlikely") __warned;	\
397 		if (debug_lockdep_rcu_enabled() && (c) &&		\
398 		    debug_lockdep_rcu_enabled() && !__warned) {		\
399 			__warned = true;				\
400 			lockdep_rcu_suspicious(__FILE__, __LINE__, s);	\
401 		}							\
402 	} while (0)
403 
404 #ifndef CONFIG_PREEMPT_RCU
rcu_preempt_sleep_check(void)405 static inline void rcu_preempt_sleep_check(void)
406 {
407 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
408 			 "Illegal context switch in RCU read-side critical section");
409 }
410 #else // #ifndef CONFIG_PREEMPT_RCU
rcu_preempt_sleep_check(void)411 static inline void rcu_preempt_sleep_check(void) { }
412 #endif // #else // #ifndef CONFIG_PREEMPT_RCU
413 
414 #define rcu_sleep_check()						\
415 	do {								\
416 		rcu_preempt_sleep_check();				\
417 		if (!IS_ENABLED(CONFIG_PREEMPT_RT))			\
418 		    RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),	\
419 				 "Illegal context switch in RCU-bh read-side critical section"); \
420 		RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),	\
421 				 "Illegal context switch in RCU-sched read-side critical section"); \
422 	} while (0)
423 
424 #else /* #ifdef CONFIG_PROVE_RCU */
425 
426 #define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c))
427 #define rcu_sleep_check() do { } while (0)
428 
429 #endif /* #else #ifdef CONFIG_PROVE_RCU */
430 
431 /*
432  * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
433  * and rcu_assign_pointer().  Some of these could be folded into their
434  * callers, but they are left separate in order to ease introduction of
435  * multiple pointers markings to match different RCU implementations
436  * (e.g., __srcu), should this make sense in the future.
437  */
438 
439 #ifdef __CHECKER__
440 #define rcu_check_sparse(p, space) \
441 	((void)(((typeof(*p) space *)p) == p))
442 #else /* #ifdef __CHECKER__ */
443 #define rcu_check_sparse(p, space)
444 #endif /* #else #ifdef __CHECKER__ */
445 
446 #define __unrcu_pointer(p, local)					\
447 ({									\
448 	typeof(*p) *local = (typeof(*p) *__force)(p);			\
449 	rcu_check_sparse(p, __rcu);					\
450 	((typeof(*p) __force __kernel *)(local)); 			\
451 })
452 /**
453  * unrcu_pointer - mark a pointer as not being RCU protected
454  * @p: pointer needing to lose its __rcu property
455  *
456  * Converts @p from an __rcu pointer to a __kernel pointer.
457  * This allows an __rcu pointer to be used with xchg() and friends.
458  */
459 #define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu))
460 
461 #define __rcu_access_pointer(p, local, space) \
462 ({ \
463 	typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
464 	rcu_check_sparse(p, space); \
465 	((typeof(*p) __force __kernel *)(local)); \
466 })
467 #define __rcu_dereference_check(p, local, c, space) \
468 ({ \
469 	/* Dependency order vs. p above. */ \
470 	typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
471 	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
472 	rcu_check_sparse(p, space); \
473 	((typeof(*p) __force __kernel *)(local)); \
474 })
475 #define __rcu_dereference_protected(p, local, c, space) \
476 ({ \
477 	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
478 	rcu_check_sparse(p, space); \
479 	((typeof(*p) __force __kernel *)(p)); \
480 })
481 #define __rcu_dereference_raw(p, local) \
482 ({ \
483 	/* Dependency order vs. p above. */ \
484 	typeof(p) local = READ_ONCE(p); \
485 	((typeof(*p) __force __kernel *)(local)); \
486 })
487 #define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu))
488 
489 /**
490  * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
491  * @v: The value to statically initialize with.
492  */
493 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
494 
495 /**
496  * rcu_assign_pointer() - assign to RCU-protected pointer
497  * @p: pointer to assign to
498  * @v: value to assign (publish)
499  *
500  * Assigns the specified value to the specified RCU-protected
501  * pointer, ensuring that any concurrent RCU readers will see
502  * any prior initialization.
503  *
504  * Inserts memory barriers on architectures that require them
505  * (which is most of them), and also prevents the compiler from
506  * reordering the code that initializes the structure after the pointer
507  * assignment.  More importantly, this call documents which pointers
508  * will be dereferenced by RCU read-side code.
509  *
510  * In some special cases, you may use RCU_INIT_POINTER() instead
511  * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
512  * to the fact that it does not constrain either the CPU or the compiler.
513  * That said, using RCU_INIT_POINTER() when you should have used
514  * rcu_assign_pointer() is a very bad thing that results in
515  * impossible-to-diagnose memory corruption.  So please be careful.
516  * See the RCU_INIT_POINTER() comment header for details.
517  *
518  * Note that rcu_assign_pointer() evaluates each of its arguments only
519  * once, appearances notwithstanding.  One of the "extra" evaluations
520  * is in typeof() and the other visible only to sparse (__CHECKER__),
521  * neither of which actually execute the argument.  As with most cpp
522  * macros, this execute-arguments-only-once property is important, so
523  * please be careful when making changes to rcu_assign_pointer() and the
524  * other macros that it invokes.
525  */
526 #define rcu_assign_pointer(p, v)					      \
527 do {									      \
528 	uintptr_t _r_a_p__v = (uintptr_t)(v);				      \
529 	rcu_check_sparse(p, __rcu);					      \
530 									      \
531 	if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL)	      \
532 		WRITE_ONCE((p), (typeof(p))(_r_a_p__v));		      \
533 	else								      \
534 		smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
535 } while (0)
536 
537 /**
538  * rcu_replace_pointer() - replace an RCU pointer, returning its old value
539  * @rcu_ptr: RCU pointer, whose old value is returned
540  * @ptr: regular pointer
541  * @c: the lockdep conditions under which the dereference will take place
542  *
543  * Perform a replacement, where @rcu_ptr is an RCU-annotated
544  * pointer and @c is the lockdep argument that is passed to the
545  * rcu_dereference_protected() call used to read that pointer.  The old
546  * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
547  */
548 #define rcu_replace_pointer(rcu_ptr, ptr, c)				\
549 ({									\
550 	typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));	\
551 	rcu_assign_pointer((rcu_ptr), (ptr));				\
552 	__tmp;								\
553 })
554 
555 /**
556  * rcu_access_pointer() - fetch RCU pointer with no dereferencing
557  * @p: The pointer to read
558  *
559  * Return the value of the specified RCU-protected pointer, but omit the
560  * lockdep checks for being in an RCU read-side critical section.  This is
561  * useful when the value of this pointer is accessed, but the pointer is
562  * not dereferenced, for example, when testing an RCU-protected pointer
563  * against NULL.  Although rcu_access_pointer() may also be used in cases
564  * where update-side locks prevent the value of the pointer from changing,
565  * you should instead use rcu_dereference_protected() for this use case.
566  * Within an RCU read-side critical section, there is little reason to
567  * use rcu_access_pointer().
568  *
569  * It is usually best to test the rcu_access_pointer() return value
570  * directly in order to avoid accidental dereferences being introduced
571  * by later inattentive changes.  In other words, assigning the
572  * rcu_access_pointer() return value to a local variable results in an
573  * accident waiting to happen.
574  *
575  * It is also permissible to use rcu_access_pointer() when read-side
576  * access to the pointer was removed at least one grace period ago, as is
577  * the case in the context of the RCU callback that is freeing up the data,
578  * or after a synchronize_rcu() returns.  This can be useful when tearing
579  * down multi-linked structures after a grace period has elapsed.  However,
580  * rcu_dereference_protected() is normally preferred for this use case.
581  */
582 #define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu)
583 
584 /**
585  * rcu_dereference_check() - rcu_dereference with debug checking
586  * @p: The pointer to read, prior to dereferencing
587  * @c: The conditions under which the dereference will take place
588  *
589  * Do an rcu_dereference(), but check that the conditions under which the
590  * dereference will take place are correct.  Typically the conditions
591  * indicate the various locking conditions that should be held at that
592  * point.  The check should return true if the conditions are satisfied.
593  * An implicit check for being in an RCU read-side critical section
594  * (rcu_read_lock()) is included.
595  *
596  * For example:
597  *
598  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
599  *
600  * could be used to indicate to lockdep that foo->bar may only be dereferenced
601  * if either rcu_read_lock() is held, or that the lock required to replace
602  * the bar struct at foo->bar is held.
603  *
604  * Note that the list of conditions may also include indications of when a lock
605  * need not be held, for example during initialisation or destruction of the
606  * target struct:
607  *
608  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
609  *					      atomic_read(&foo->usage) == 0);
610  *
611  * Inserts memory barriers on architectures that require them
612  * (currently only the Alpha), prevents the compiler from refetching
613  * (and from merging fetches), and, more importantly, documents exactly
614  * which pointers are protected by RCU and checks that the pointer is
615  * annotated as __rcu.
616  */
617 #define rcu_dereference_check(p, c) \
618 	__rcu_dereference_check((p), __UNIQUE_ID(rcu), \
619 				(c) || rcu_read_lock_held(), __rcu)
620 
621 /**
622  * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
623  * @p: The pointer to read, prior to dereferencing
624  * @c: The conditions under which the dereference will take place
625  *
626  * This is the RCU-bh counterpart to rcu_dereference_check().  However,
627  * please note that starting in v5.0 kernels, vanilla RCU grace periods
628  * wait for local_bh_disable() regions of code in addition to regions of
629  * code demarked by rcu_read_lock() and rcu_read_unlock().  This means
630  * that synchronize_rcu(), call_rcu, and friends all take not only
631  * rcu_read_lock() but also rcu_read_lock_bh() into account.
632  */
633 #define rcu_dereference_bh_check(p, c) \
634 	__rcu_dereference_check((p), __UNIQUE_ID(rcu), \
635 				(c) || rcu_read_lock_bh_held(), __rcu)
636 
637 /**
638  * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
639  * @p: The pointer to read, prior to dereferencing
640  * @c: The conditions under which the dereference will take place
641  *
642  * This is the RCU-sched counterpart to rcu_dereference_check().
643  * However, please note that starting in v5.0 kernels, vanilla RCU grace
644  * periods wait for preempt_disable() regions of code in addition to
645  * regions of code demarked by rcu_read_lock() and rcu_read_unlock().
646  * This means that synchronize_rcu(), call_rcu, and friends all take not
647  * only rcu_read_lock() but also rcu_read_lock_sched() into account.
648  */
649 #define rcu_dereference_sched_check(p, c) \
650 	__rcu_dereference_check((p), __UNIQUE_ID(rcu), \
651 				(c) || rcu_read_lock_sched_held(), \
652 				__rcu)
653 
654 /*
655  * The tracing infrastructure traces RCU (we want that), but unfortunately
656  * some of the RCU checks causes tracing to lock up the system.
657  *
658  * The no-tracing version of rcu_dereference_raw() must not call
659  * rcu_read_lock_held().
660  */
661 #define rcu_dereference_raw_check(p) \
662 	__rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu)
663 
664 /**
665  * rcu_dereference_protected() - fetch RCU pointer when updates prevented
666  * @p: The pointer to read, prior to dereferencing
667  * @c: The conditions under which the dereference will take place
668  *
669  * Return the value of the specified RCU-protected pointer, but omit
670  * the READ_ONCE().  This is useful in cases where update-side locks
671  * prevent the value of the pointer from changing.  Please note that this
672  * primitive does *not* prevent the compiler from repeating this reference
673  * or combining it with other references, so it should not be used without
674  * protection of appropriate locks.
675  *
676  * This function is only for update-side use.  Using this function
677  * when protected only by rcu_read_lock() will result in infrequent
678  * but very ugly failures.
679  */
680 #define rcu_dereference_protected(p, c) \
681 	__rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu)
682 
683 
684 /**
685  * rcu_dereference() - fetch RCU-protected pointer for dereferencing
686  * @p: The pointer to read, prior to dereferencing
687  *
688  * This is a simple wrapper around rcu_dereference_check().
689  */
690 #define rcu_dereference(p) rcu_dereference_check(p, 0)
691 
692 /**
693  * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
694  * @p: The pointer to read, prior to dereferencing
695  *
696  * Makes rcu_dereference_check() do the dirty work.
697  */
698 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
699 
700 /**
701  * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
702  * @p: The pointer to read, prior to dereferencing
703  *
704  * Makes rcu_dereference_check() do the dirty work.
705  */
706 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
707 
708 /**
709  * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
710  * @p: The pointer to hand off
711  *
712  * This is simply an identity function, but it documents where a pointer
713  * is handed off from RCU to some other synchronization mechanism, for
714  * example, reference counting or locking.  In C11, it would map to
715  * kill_dependency().  It could be used as follows::
716  *
717  *	rcu_read_lock();
718  *	p = rcu_dereference(gp);
719  *	long_lived = is_long_lived(p);
720  *	if (long_lived) {
721  *		if (!atomic_inc_not_zero(p->refcnt))
722  *			long_lived = false;
723  *		else
724  *			p = rcu_pointer_handoff(p);
725  *	}
726  *	rcu_read_unlock();
727  */
728 #define rcu_pointer_handoff(p) (p)
729 
730 /**
731  * rcu_read_lock() - mark the beginning of an RCU read-side critical section
732  *
733  * When synchronize_rcu() is invoked on one CPU while other CPUs
734  * are within RCU read-side critical sections, then the
735  * synchronize_rcu() is guaranteed to block until after all the other
736  * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
737  * on one CPU while other CPUs are within RCU read-side critical
738  * sections, invocation of the corresponding RCU callback is deferred
739  * until after the all the other CPUs exit their critical sections.
740  *
741  * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also
742  * wait for regions of code with preemption disabled, including regions of
743  * code with interrupts or softirqs disabled.  In pre-v5.0 kernels, which
744  * define synchronize_sched(), only code enclosed within rcu_read_lock()
745  * and rcu_read_unlock() are guaranteed to be waited for.
746  *
747  * Note, however, that RCU callbacks are permitted to run concurrently
748  * with new RCU read-side critical sections.  One way that this can happen
749  * is via the following sequence of events: (1) CPU 0 enters an RCU
750  * read-side critical section, (2) CPU 1 invokes call_rcu() to register
751  * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
752  * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
753  * callback is invoked.  This is legal, because the RCU read-side critical
754  * section that was running concurrently with the call_rcu() (and which
755  * therefore might be referencing something that the corresponding RCU
756  * callback would free up) has completed before the corresponding
757  * RCU callback is invoked.
758  *
759  * RCU read-side critical sections may be nested.  Any deferred actions
760  * will be deferred until the outermost RCU read-side critical section
761  * completes.
762  *
763  * You can avoid reading and understanding the next paragraph by
764  * following this rule: don't put anything in an rcu_read_lock() RCU
765  * read-side critical section that would block in a !PREEMPTION kernel.
766  * But if you want the full story, read on!
767  *
768  * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
769  * it is illegal to block while in an RCU read-side critical section.
770  * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
771  * kernel builds, RCU read-side critical sections may be preempted,
772  * but explicit blocking is illegal.  Finally, in preemptible RCU
773  * implementations in real-time (with -rt patchset) kernel builds, RCU
774  * read-side critical sections may be preempted and they may also block, but
775  * only when acquiring spinlocks that are subject to priority inheritance.
776  */
rcu_read_lock(void)777 static __always_inline void rcu_read_lock(void)
778 {
779 	__rcu_read_lock();
780 	__acquire(RCU);
781 	rcu_lock_acquire(&rcu_lock_map);
782 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
783 			 "rcu_read_lock() used illegally while idle");
784 }
785 
786 /*
787  * So where is rcu_write_lock()?  It does not exist, as there is no
788  * way for writers to lock out RCU readers.  This is a feature, not
789  * a bug -- this property is what provides RCU's performance benefits.
790  * Of course, writers must coordinate with each other.  The normal
791  * spinlock primitives work well for this, but any other technique may be
792  * used as well.  RCU does not care how the writers keep out of each
793  * others' way, as long as they do so.
794  */
795 
796 /**
797  * rcu_read_unlock() - marks the end of an RCU read-side critical section.
798  *
799  * In almost all situations, rcu_read_unlock() is immune from deadlock.
800  * In recent kernels that have consolidated synchronize_sched() and
801  * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity
802  * also extends to the scheduler's runqueue and priority-inheritance
803  * spinlocks, courtesy of the quiescent-state deferral that is carried
804  * out when rcu_read_unlock() is invoked with interrupts disabled.
805  *
806  * See rcu_read_lock() for more information.
807  */
rcu_read_unlock(void)808 static inline void rcu_read_unlock(void)
809 {
810 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
811 			 "rcu_read_unlock() used illegally while idle");
812 	rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
813 	__release(RCU);
814 	__rcu_read_unlock();
815 }
816 
817 /**
818  * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
819  *
820  * This is equivalent to rcu_read_lock(), but also disables softirqs.
821  * Note that anything else that disables softirqs can also serve as an RCU
822  * read-side critical section.  However, please note that this equivalence
823  * applies only to v5.0 and later.  Before v5.0, rcu_read_lock() and
824  * rcu_read_lock_bh() were unrelated.
825  *
826  * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
827  * must occur in the same context, for example, it is illegal to invoke
828  * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
829  * was invoked from some other task.
830  */
rcu_read_lock_bh(void)831 static inline void rcu_read_lock_bh(void)
832 {
833 	local_bh_disable();
834 	__acquire(RCU_BH);
835 	rcu_lock_acquire(&rcu_bh_lock_map);
836 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
837 			 "rcu_read_lock_bh() used illegally while idle");
838 }
839 
840 /**
841  * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
842  *
843  * See rcu_read_lock_bh() for more information.
844  */
rcu_read_unlock_bh(void)845 static inline void rcu_read_unlock_bh(void)
846 {
847 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
848 			 "rcu_read_unlock_bh() used illegally while idle");
849 	rcu_lock_release(&rcu_bh_lock_map);
850 	__release(RCU_BH);
851 	local_bh_enable();
852 }
853 
854 /**
855  * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
856  *
857  * This is equivalent to rcu_read_lock(), but also disables preemption.
858  * Read-side critical sections can also be introduced by anything else that
859  * disables preemption, including local_irq_disable() and friends.  However,
860  * please note that the equivalence to rcu_read_lock() applies only to
861  * v5.0 and later.  Before v5.0, rcu_read_lock() and rcu_read_lock_sched()
862  * were unrelated.
863  *
864  * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
865  * must occur in the same context, for example, it is illegal to invoke
866  * rcu_read_unlock_sched() from process context if the matching
867  * rcu_read_lock_sched() was invoked from an NMI handler.
868  */
rcu_read_lock_sched(void)869 static inline void rcu_read_lock_sched(void)
870 {
871 	preempt_disable();
872 	__acquire(RCU_SCHED);
873 	rcu_lock_acquire(&rcu_sched_lock_map);
874 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
875 			 "rcu_read_lock_sched() used illegally while idle");
876 }
877 
878 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)879 static inline notrace void rcu_read_lock_sched_notrace(void)
880 {
881 	preempt_disable_notrace();
882 	__acquire(RCU_SCHED);
883 }
884 
885 /**
886  * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
887  *
888  * See rcu_read_lock_sched() for more information.
889  */
rcu_read_unlock_sched(void)890 static inline void rcu_read_unlock_sched(void)
891 {
892 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
893 			 "rcu_read_unlock_sched() used illegally while idle");
894 	rcu_lock_release(&rcu_sched_lock_map);
895 	__release(RCU_SCHED);
896 	preempt_enable();
897 }
898 
899 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)900 static inline notrace void rcu_read_unlock_sched_notrace(void)
901 {
902 	__release(RCU_SCHED);
903 	preempt_enable_notrace();
904 }
905 
906 /**
907  * RCU_INIT_POINTER() - initialize an RCU protected pointer
908  * @p: The pointer to be initialized.
909  * @v: The value to initialized the pointer to.
910  *
911  * Initialize an RCU-protected pointer in special cases where readers
912  * do not need ordering constraints on the CPU or the compiler.  These
913  * special cases are:
914  *
915  * 1.	This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
916  * 2.	The caller has taken whatever steps are required to prevent
917  *	RCU readers from concurrently accessing this pointer *or*
918  * 3.	The referenced data structure has already been exposed to
919  *	readers either at compile time or via rcu_assign_pointer() *and*
920  *
921  *	a.	You have not made *any* reader-visible changes to
922  *		this structure since then *or*
923  *	b.	It is OK for readers accessing this structure from its
924  *		new location to see the old state of the structure.  (For
925  *		example, the changes were to statistical counters or to
926  *		other state where exact synchronization is not required.)
927  *
928  * Failure to follow these rules governing use of RCU_INIT_POINTER() will
929  * result in impossible-to-diagnose memory corruption.  As in the structures
930  * will look OK in crash dumps, but any concurrent RCU readers might
931  * see pre-initialized values of the referenced data structure.  So
932  * please be very careful how you use RCU_INIT_POINTER()!!!
933  *
934  * If you are creating an RCU-protected linked structure that is accessed
935  * by a single external-to-structure RCU-protected pointer, then you may
936  * use RCU_INIT_POINTER() to initialize the internal RCU-protected
937  * pointers, but you must use rcu_assign_pointer() to initialize the
938  * external-to-structure pointer *after* you have completely initialized
939  * the reader-accessible portions of the linked structure.
940  *
941  * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
942  * ordering guarantees for either the CPU or the compiler.
943  */
944 #define RCU_INIT_POINTER(p, v) \
945 	do { \
946 		rcu_check_sparse(p, __rcu); \
947 		WRITE_ONCE(p, RCU_INITIALIZER(v)); \
948 	} while (0)
949 
950 /**
951  * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
952  * @p: The pointer to be initialized.
953  * @v: The value to initialized the pointer to.
954  *
955  * GCC-style initialization for an RCU-protected pointer in a structure field.
956  */
957 #define RCU_POINTER_INITIALIZER(p, v) \
958 		.p = RCU_INITIALIZER(v)
959 
960 /*
961  * Does the specified offset indicate that the corresponding rcu_head
962  * structure can be handled by kvfree_rcu()?
963  */
964 #define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
965 
966 /**
967  * kfree_rcu() - kfree an object after a grace period.
968  * @ptr: pointer to kfree for double-argument invocations.
969  * @rhf: the name of the struct rcu_head within the type of @ptr.
970  *
971  * Many rcu callbacks functions just call kfree() on the base structure.
972  * These functions are trivial, but their size adds up, and furthermore
973  * when they are used in a kernel module, that module must invoke the
974  * high-latency rcu_barrier() function at module-unload time.
975  *
976  * The kfree_rcu() function handles this issue.  Rather than encoding a
977  * function address in the embedded rcu_head structure, kfree_rcu() instead
978  * encodes the offset of the rcu_head structure within the base structure.
979  * Because the functions are not allowed in the low-order 4096 bytes of
980  * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
981  * If the offset is larger than 4095 bytes, a compile-time error will
982  * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can
983  * either fall back to use of call_rcu() or rearrange the structure to
984  * position the rcu_head structure into the first 4096 bytes.
985  *
986  * The object to be freed can be allocated either by kmalloc() or
987  * kmem_cache_alloc().
988  *
989  * Note that the allowable offset might decrease in the future.
990  *
991  * The BUILD_BUG_ON check must not involve any function calls, hence the
992  * checks are done in macros here.
993  */
994 #define kfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf)
995 #define kvfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf)
996 
997 /**
998  * kfree_rcu_mightsleep() - kfree an object after a grace period.
999  * @ptr: pointer to kfree for single-argument invocations.
1000  *
1001  * When it comes to head-less variant, only one argument
1002  * is passed and that is just a pointer which has to be
1003  * freed after a grace period. Therefore the semantic is
1004  *
1005  *     kfree_rcu_mightsleep(ptr);
1006  *
1007  * where @ptr is the pointer to be freed by kvfree().
1008  *
1009  * Please note, head-less way of freeing is permitted to
1010  * use from a context that has to follow might_sleep()
1011  * annotation. Otherwise, please switch and embed the
1012  * rcu_head structure within the type of @ptr.
1013  */
1014 #define kfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr)
1015 #define kvfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr)
1016 
1017 #define kvfree_rcu_arg_2(ptr, rhf)					\
1018 do {									\
1019 	typeof (ptr) ___p = (ptr);					\
1020 									\
1021 	if (___p) {									\
1022 		BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf)));	\
1023 		kvfree_call_rcu(&((___p)->rhf), (void *) (___p));			\
1024 	}										\
1025 } while (0)
1026 
1027 #define kvfree_rcu_arg_1(ptr)					\
1028 do {								\
1029 	typeof(ptr) ___p = (ptr);				\
1030 								\
1031 	if (___p)						\
1032 		kvfree_call_rcu(NULL, (void *) (___p));		\
1033 } while (0)
1034 
1035 /*
1036  * Place this after a lock-acquisition primitive to guarantee that
1037  * an UNLOCK+LOCK pair acts as a full barrier.  This guarantee applies
1038  * if the UNLOCK and LOCK are executed by the same CPU or if the
1039  * UNLOCK and LOCK operate on the same lock variable.
1040  */
1041 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
1042 #define smp_mb__after_unlock_lock()	smp_mb()  /* Full ordering for lock. */
1043 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1044 #define smp_mb__after_unlock_lock()	do { } while (0)
1045 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1046 
1047 
1048 /* Has the specified rcu_head structure been handed to call_rcu()? */
1049 
1050 /**
1051  * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
1052  * @rhp: The rcu_head structure to initialize.
1053  *
1054  * If you intend to invoke rcu_head_after_call_rcu() to test whether a
1055  * given rcu_head structure has already been passed to call_rcu(), then
1056  * you must also invoke this rcu_head_init() function on it just after
1057  * allocating that structure.  Calls to this function must not race with
1058  * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
1059  */
rcu_head_init(struct rcu_head * rhp)1060 static inline void rcu_head_init(struct rcu_head *rhp)
1061 {
1062 	rhp->func = (rcu_callback_t)~0L;
1063 }
1064 
1065 /**
1066  * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
1067  * @rhp: The rcu_head structure to test.
1068  * @f: The function passed to call_rcu() along with @rhp.
1069  *
1070  * Returns @true if the @rhp has been passed to call_rcu() with @func,
1071  * and @false otherwise.  Emits a warning in any other case, including
1072  * the case where @rhp has already been invoked after a grace period.
1073  * Calls to this function must not race with callback invocation.  One way
1074  * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
1075  * in an RCU read-side critical section that includes a read-side fetch
1076  * of the pointer to the structure containing @rhp.
1077  */
1078 static inline bool
rcu_head_after_call_rcu(struct rcu_head * rhp,rcu_callback_t f)1079 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
1080 {
1081 	rcu_callback_t func = READ_ONCE(rhp->func);
1082 
1083 	if (func == f)
1084 		return true;
1085 	WARN_ON_ONCE(func != (rcu_callback_t)~0L);
1086 	return false;
1087 }
1088 
1089 /* kernel/ksysfs.c definitions */
1090 extern int rcu_expedited;
1091 extern int rcu_normal;
1092 
1093 DEFINE_LOCK_GUARD_0(rcu,
1094 	do {
1095 		rcu_read_lock();
1096 		/*
1097 		 * sparse doesn't call the cleanup function,
1098 		 * so just release immediately and don't track
1099 		 * the context. We don't need to anyway, since
1100 		 * the whole point of the guard is to not need
1101 		 * the explicit unlock.
1102 		 */
1103 		__release(RCU);
1104 	} while (0),
1105 	rcu_read_unlock())
1106 
1107 #endif /* __LINUX_RCUPDATE_H */
1108