1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 * Internal non-public definitions that provide either classic
5 * or preemptible semantics.
6 *
7 * Copyright Red Hat, 2009
8 * Copyright IBM Corporation, 2009
9 * Copyright SUSE, 2021
10 *
11 * Author: Ingo Molnar <mingo@elte.hu>
12 * Paul E. McKenney <paulmck@linux.ibm.com>
13 * Frederic Weisbecker <frederic@kernel.org>
14 */
15
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
19
rcu_current_is_nocb_kthread(struct rcu_data * rdp)20 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
21 {
22 /* Race on early boot between thread creation and assignment */
23 if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread)
24 return true;
25
26 if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread)
27 if (in_task())
28 return true;
29 return false;
30 }
31
32 /*
33 * Offload callback processing from the boot-time-specified set of CPUs
34 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads
35 * created that pull the callbacks from the corresponding CPU, wait for
36 * a grace period to elapse, and invoke the callbacks. These kthreads
37 * are organized into GP kthreads, which manage incoming callbacks, wait for
38 * grace periods, and awaken CB kthreads, and the CB kthreads, which only
39 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs
40 * do a wake_up() on their GP kthread when they insert a callback into any
41 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
42 * in which case each kthread actively polls its CPU. (Which isn't so great
43 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
44 *
45 * This is intended to be used in conjunction with Frederic Weisbecker's
46 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
47 * running CPU-bound user-mode computations.
48 *
49 * Offloading of callbacks can also be used as an energy-efficiency
50 * measure because CPUs with no RCU callbacks queued are more aggressive
51 * about entering dyntick-idle mode.
52 */
53
54
55 /*
56 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
57 * If the list is invalid, a warning is emitted and all CPUs are offloaded.
58 */
rcu_nocb_setup(char * str)59 static int __init rcu_nocb_setup(char *str)
60 {
61 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
62 if (*str == '=') {
63 if (cpulist_parse(++str, rcu_nocb_mask)) {
64 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
65 cpumask_setall(rcu_nocb_mask);
66 }
67 }
68 rcu_state.nocb_is_setup = true;
69 return 1;
70 }
71 __setup("rcu_nocbs", rcu_nocb_setup);
72
parse_rcu_nocb_poll(char * arg)73 static int __init parse_rcu_nocb_poll(char *arg)
74 {
75 rcu_nocb_poll = true;
76 return 1;
77 }
78 __setup("rcu_nocb_poll", parse_rcu_nocb_poll);
79
80 /*
81 * Don't bother bypassing ->cblist if the call_rcu() rate is low.
82 * After all, the main point of bypassing is to avoid lock contention
83 * on ->nocb_lock, which only can happen at high call_rcu() rates.
84 */
85 static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
86 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
87
88 /*
89 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the
90 * lock isn't immediately available, perform minimal sanity check.
91 */
rcu_nocb_bypass_lock(struct rcu_data * rdp)92 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
93 __acquires(&rdp->nocb_bypass_lock)
94 {
95 lockdep_assert_irqs_disabled();
96 if (raw_spin_trylock(&rdp->nocb_bypass_lock))
97 return;
98 /*
99 * Contention expected only when local enqueue collide with
100 * remote flush from kthreads.
101 */
102 WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
103 raw_spin_lock(&rdp->nocb_bypass_lock);
104 }
105
106 /*
107 * Conditionally acquire the specified rcu_data structure's
108 * ->nocb_bypass_lock.
109 */
rcu_nocb_bypass_trylock(struct rcu_data * rdp)110 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
111 {
112 lockdep_assert_irqs_disabled();
113 return raw_spin_trylock(&rdp->nocb_bypass_lock);
114 }
115
116 /*
117 * Release the specified rcu_data structure's ->nocb_bypass_lock.
118 */
rcu_nocb_bypass_unlock(struct rcu_data * rdp)119 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
120 __releases(&rdp->nocb_bypass_lock)
121 {
122 lockdep_assert_irqs_disabled();
123 raw_spin_unlock(&rdp->nocb_bypass_lock);
124 }
125
126 /*
127 * Acquire the specified rcu_data structure's ->nocb_lock, but only
128 * if it corresponds to a no-CBs CPU.
129 */
rcu_nocb_lock(struct rcu_data * rdp)130 static void rcu_nocb_lock(struct rcu_data *rdp)
131 {
132 lockdep_assert_irqs_disabled();
133 if (!rcu_rdp_is_offloaded(rdp))
134 return;
135 raw_spin_lock(&rdp->nocb_lock);
136 }
137
138 /*
139 * Release the specified rcu_data structure's ->nocb_lock, but only
140 * if it corresponds to a no-CBs CPU.
141 */
rcu_nocb_unlock(struct rcu_data * rdp)142 static void rcu_nocb_unlock(struct rcu_data *rdp)
143 {
144 if (rcu_rdp_is_offloaded(rdp)) {
145 lockdep_assert_irqs_disabled();
146 raw_spin_unlock(&rdp->nocb_lock);
147 }
148 }
149
150 /*
151 * Release the specified rcu_data structure's ->nocb_lock and restore
152 * interrupts, but only if it corresponds to a no-CBs CPU.
153 */
rcu_nocb_unlock_irqrestore(struct rcu_data * rdp,unsigned long flags)154 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
155 unsigned long flags)
156 {
157 if (rcu_rdp_is_offloaded(rdp)) {
158 lockdep_assert_irqs_disabled();
159 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
160 } else {
161 local_irq_restore(flags);
162 }
163 }
164
165 /* Lockdep check that ->cblist may be safely accessed. */
rcu_lockdep_assert_cblist_protected(struct rcu_data * rdp)166 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
167 {
168 lockdep_assert_irqs_disabled();
169 if (rcu_rdp_is_offloaded(rdp))
170 lockdep_assert_held(&rdp->nocb_lock);
171 }
172
173 /*
174 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
175 * grace period.
176 */
rcu_nocb_gp_cleanup(struct swait_queue_head * sq)177 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
178 {
179 swake_up_all(sq);
180 }
181
rcu_nocb_gp_get(struct rcu_node * rnp)182 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
183 {
184 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
185 }
186
rcu_init_one_nocb(struct rcu_node * rnp)187 static void rcu_init_one_nocb(struct rcu_node *rnp)
188 {
189 init_swait_queue_head(&rnp->nocb_gp_wq[0]);
190 init_swait_queue_head(&rnp->nocb_gp_wq[1]);
191 }
192
__wake_nocb_gp(struct rcu_data * rdp_gp,struct rcu_data * rdp,bool force,unsigned long flags)193 static bool __wake_nocb_gp(struct rcu_data *rdp_gp,
194 struct rcu_data *rdp,
195 bool force, unsigned long flags)
196 __releases(rdp_gp->nocb_gp_lock)
197 {
198 bool needwake = false;
199
200 if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
201 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
202 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
203 TPS("AlreadyAwake"));
204 return false;
205 }
206
207 if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
208 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
209 del_timer(&rdp_gp->nocb_timer);
210 }
211
212 if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
213 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
214 needwake = true;
215 }
216 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
217 if (needwake) {
218 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
219 swake_up_one_online(&rdp_gp->nocb_gp_wq);
220 }
221
222 return needwake;
223 }
224
225 /*
226 * Kick the GP kthread for this NOCB group.
227 */
wake_nocb_gp(struct rcu_data * rdp,bool force)228 static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
229 {
230 unsigned long flags;
231 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
232
233 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
234 return __wake_nocb_gp(rdp_gp, rdp, force, flags);
235 }
236
237 #ifdef CONFIG_RCU_LAZY
238 /*
239 * LAZY_FLUSH_JIFFIES decides the maximum amount of time that
240 * can elapse before lazy callbacks are flushed. Lazy callbacks
241 * could be flushed much earlier for a number of other reasons
242 * however, LAZY_FLUSH_JIFFIES will ensure no lazy callbacks are
243 * left unsubmitted to RCU after those many jiffies.
244 */
245 #define LAZY_FLUSH_JIFFIES (10 * HZ)
246 static unsigned long jiffies_lazy_flush = LAZY_FLUSH_JIFFIES;
247
248 // To be called only from test code.
rcu_set_jiffies_lazy_flush(unsigned long jif)249 void rcu_set_jiffies_lazy_flush(unsigned long jif)
250 {
251 jiffies_lazy_flush = jif;
252 }
253 EXPORT_SYMBOL(rcu_set_jiffies_lazy_flush);
254
rcu_get_jiffies_lazy_flush(void)255 unsigned long rcu_get_jiffies_lazy_flush(void)
256 {
257 return jiffies_lazy_flush;
258 }
259 EXPORT_SYMBOL(rcu_get_jiffies_lazy_flush);
260 #endif
261
262 /*
263 * Arrange to wake the GP kthread for this NOCB group at some future
264 * time when it is safe to do so.
265 */
wake_nocb_gp_defer(struct rcu_data * rdp,int waketype,const char * reason)266 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
267 const char *reason)
268 {
269 unsigned long flags;
270 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
271
272 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
273
274 /*
275 * Bypass wakeup overrides previous deferments. In case of
276 * callback storms, no need to wake up too early.
277 */
278 if (waketype == RCU_NOCB_WAKE_LAZY &&
279 rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) {
280 mod_timer(&rdp_gp->nocb_timer, jiffies + rcu_get_jiffies_lazy_flush());
281 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
282 } else if (waketype == RCU_NOCB_WAKE_BYPASS) {
283 mod_timer(&rdp_gp->nocb_timer, jiffies + 2);
284 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
285 } else {
286 if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE)
287 mod_timer(&rdp_gp->nocb_timer, jiffies + 1);
288 if (rdp_gp->nocb_defer_wakeup < waketype)
289 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
290 }
291
292 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
293
294 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
295 }
296
297 /*
298 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
299 * However, if there is a callback to be enqueued and if ->nocb_bypass
300 * proves to be initially empty, just return false because the no-CB GP
301 * kthread may need to be awakened in this case.
302 *
303 * Return true if there was something to be flushed and it succeeded, otherwise
304 * false.
305 *
306 * Note that this function always returns true if rhp is NULL.
307 */
rcu_nocb_do_flush_bypass(struct rcu_data * rdp,struct rcu_head * rhp_in,unsigned long j,bool lazy)308 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp_in,
309 unsigned long j, bool lazy)
310 {
311 struct rcu_cblist rcl;
312 struct rcu_head *rhp = rhp_in;
313
314 WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
315 rcu_lockdep_assert_cblist_protected(rdp);
316 lockdep_assert_held(&rdp->nocb_bypass_lock);
317 if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
318 raw_spin_unlock(&rdp->nocb_bypass_lock);
319 return false;
320 }
321 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
322 if (rhp)
323 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
324
325 /*
326 * If the new CB requested was a lazy one, queue it onto the main
327 * ->cblist so that we can take advantage of the grace-period that will
328 * happen regardless. But queue it onto the bypass list first so that
329 * the lazy CB is ordered with the existing CBs in the bypass list.
330 */
331 if (lazy && rhp) {
332 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
333 rhp = NULL;
334 }
335 rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
336 WRITE_ONCE(rdp->lazy_len, 0);
337
338 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
339 WRITE_ONCE(rdp->nocb_bypass_first, j);
340 rcu_nocb_bypass_unlock(rdp);
341 return true;
342 }
343
344 /*
345 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
346 * However, if there is a callback to be enqueued and if ->nocb_bypass
347 * proves to be initially empty, just return false because the no-CB GP
348 * kthread may need to be awakened in this case.
349 *
350 * Note that this function always returns true if rhp is NULL.
351 */
rcu_nocb_flush_bypass(struct rcu_data * rdp,struct rcu_head * rhp,unsigned long j,bool lazy)352 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
353 unsigned long j, bool lazy)
354 {
355 if (!rcu_rdp_is_offloaded(rdp))
356 return true;
357 rcu_lockdep_assert_cblist_protected(rdp);
358 rcu_nocb_bypass_lock(rdp);
359 return rcu_nocb_do_flush_bypass(rdp, rhp, j, lazy);
360 }
361
362 /*
363 * If the ->nocb_bypass_lock is immediately available, flush the
364 * ->nocb_bypass queue into ->cblist.
365 */
rcu_nocb_try_flush_bypass(struct rcu_data * rdp,unsigned long j)366 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
367 {
368 rcu_lockdep_assert_cblist_protected(rdp);
369 if (!rcu_rdp_is_offloaded(rdp) ||
370 !rcu_nocb_bypass_trylock(rdp))
371 return;
372 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j, false));
373 }
374
375 /*
376 * See whether it is appropriate to use the ->nocb_bypass list in order
377 * to control contention on ->nocb_lock. A limited number of direct
378 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass
379 * is non-empty, further callbacks must be placed into ->nocb_bypass,
380 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch
381 * back to direct use of ->cblist. However, ->nocb_bypass should not be
382 * used if ->cblist is empty, because otherwise callbacks can be stranded
383 * on ->nocb_bypass because we cannot count on the current CPU ever again
384 * invoking call_rcu(). The general rule is that if ->nocb_bypass is
385 * non-empty, the corresponding no-CBs grace-period kthread must not be
386 * in an indefinite sleep state.
387 *
388 * Finally, it is not permitted to use the bypass during early boot,
389 * as doing so would confuse the auto-initialization code. Besides
390 * which, there is no point in worrying about lock contention while
391 * there is only one CPU in operation.
392 */
rcu_nocb_try_bypass(struct rcu_data * rdp,struct rcu_head * rhp,bool * was_alldone,unsigned long flags,bool lazy)393 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
394 bool *was_alldone, unsigned long flags,
395 bool lazy)
396 {
397 unsigned long c;
398 unsigned long cur_gp_seq;
399 unsigned long j = jiffies;
400 long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
401 bool bypass_is_lazy = (ncbs == READ_ONCE(rdp->lazy_len));
402
403 lockdep_assert_irqs_disabled();
404
405 // Pure softirq/rcuc based processing: no bypassing, no
406 // locking.
407 if (!rcu_rdp_is_offloaded(rdp)) {
408 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
409 return false;
410 }
411
412 // Don't use ->nocb_bypass during early boot.
413 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
414 rcu_nocb_lock(rdp);
415 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
416 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
417 return false;
418 }
419
420 // If we have advanced to a new jiffy, reset counts to allow
421 // moving back from ->nocb_bypass to ->cblist.
422 if (j == rdp->nocb_nobypass_last) {
423 c = rdp->nocb_nobypass_count + 1;
424 } else {
425 WRITE_ONCE(rdp->nocb_nobypass_last, j);
426 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
427 if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
428 nocb_nobypass_lim_per_jiffy))
429 c = 0;
430 else if (c > nocb_nobypass_lim_per_jiffy)
431 c = nocb_nobypass_lim_per_jiffy;
432 }
433 WRITE_ONCE(rdp->nocb_nobypass_count, c);
434
435 // If there hasn't yet been all that many ->cblist enqueues
436 // this jiffy, tell the caller to enqueue onto ->cblist. But flush
437 // ->nocb_bypass first.
438 // Lazy CBs throttle this back and do immediate bypass queuing.
439 if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy && !lazy) {
440 rcu_nocb_lock(rdp);
441 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
442 if (*was_alldone)
443 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
444 TPS("FirstQ"));
445
446 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j, false));
447 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
448 return false; // Caller must enqueue the callback.
449 }
450
451 // If ->nocb_bypass has been used too long or is too full,
452 // flush ->nocb_bypass to ->cblist.
453 if ((ncbs && !bypass_is_lazy && j != READ_ONCE(rdp->nocb_bypass_first)) ||
454 (ncbs && bypass_is_lazy &&
455 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + rcu_get_jiffies_lazy_flush()))) ||
456 ncbs >= qhimark) {
457 rcu_nocb_lock(rdp);
458 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
459
460 if (!rcu_nocb_flush_bypass(rdp, rhp, j, lazy)) {
461 if (*was_alldone)
462 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
463 TPS("FirstQ"));
464 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
465 return false; // Caller must enqueue the callback.
466 }
467 if (j != rdp->nocb_gp_adv_time &&
468 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
469 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
470 rcu_advance_cbs_nowake(rdp->mynode, rdp);
471 rdp->nocb_gp_adv_time = j;
472 }
473
474 // The flush succeeded and we moved CBs into the regular list.
475 // Don't wait for the wake up timer as it may be too far ahead.
476 // Wake up the GP thread now instead, if the cblist was empty.
477 __call_rcu_nocb_wake(rdp, *was_alldone, flags);
478
479 return true; // Callback already enqueued.
480 }
481
482 // We need to use the bypass.
483 rcu_nocb_bypass_lock(rdp);
484 ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
485 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
486 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
487
488 if (lazy)
489 WRITE_ONCE(rdp->lazy_len, rdp->lazy_len + 1);
490
491 if (!ncbs) {
492 WRITE_ONCE(rdp->nocb_bypass_first, j);
493 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
494 }
495 rcu_nocb_bypass_unlock(rdp);
496
497 // A wake up of the grace period kthread or timer adjustment
498 // needs to be done only if:
499 // 1. Bypass list was fully empty before (this is the first
500 // bypass list entry), or:
501 // 2. Both of these conditions are met:
502 // a. The bypass list previously had only lazy CBs, and:
503 // b. The new CB is non-lazy.
504 if (!ncbs || (bypass_is_lazy && !lazy)) {
505 // No-CBs GP kthread might be indefinitely asleep, if so, wake.
506 rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
507 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
508 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
509 TPS("FirstBQwake"));
510 __call_rcu_nocb_wake(rdp, true, flags);
511 } else {
512 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
513 TPS("FirstBQnoWake"));
514 rcu_nocb_unlock(rdp);
515 }
516 }
517 return true; // Callback already enqueued.
518 }
519
520 /*
521 * Awaken the no-CBs grace-period kthread if needed, either due to it
522 * legitimately being asleep or due to overload conditions.
523 *
524 * If warranted, also wake up the kthread servicing this CPUs queues.
525 */
__call_rcu_nocb_wake(struct rcu_data * rdp,bool was_alldone,unsigned long flags)526 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
527 unsigned long flags)
528 __releases(rdp->nocb_lock)
529 {
530 long bypass_len;
531 unsigned long cur_gp_seq;
532 unsigned long j;
533 long lazy_len;
534 long len;
535 struct task_struct *t;
536 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
537
538 // If we are being polled or there is no kthread, just leave.
539 t = READ_ONCE(rdp->nocb_gp_kthread);
540 if (rcu_nocb_poll || !t) {
541 rcu_nocb_unlock(rdp);
542 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
543 TPS("WakeNotPoll"));
544 return;
545 }
546 // Need to actually to a wakeup.
547 len = rcu_segcblist_n_cbs(&rdp->cblist);
548 bypass_len = rcu_cblist_n_cbs(&rdp->nocb_bypass);
549 lazy_len = READ_ONCE(rdp->lazy_len);
550 if (was_alldone) {
551 rdp->qlen_last_fqs_check = len;
552 // Only lazy CBs in bypass list
553 if (lazy_len && bypass_len == lazy_len) {
554 rcu_nocb_unlock(rdp);
555 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_LAZY,
556 TPS("WakeLazy"));
557 } else if (!irqs_disabled_flags(flags) && cpu_online(rdp->cpu)) {
558 /* ... if queue was empty ... */
559 rcu_nocb_unlock(rdp);
560 wake_nocb_gp(rdp, false);
561 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
562 TPS("WakeEmpty"));
563 } else {
564 /*
565 * Don't do the wake-up upfront on fragile paths.
566 * Also offline CPUs can't call swake_up_one_online() from
567 * (soft-)IRQs. Rely on the final deferred wake-up from
568 * rcutree_report_cpu_dead()
569 */
570 rcu_nocb_unlock(rdp);
571 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
572 TPS("WakeEmptyIsDeferred"));
573 }
574 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
575 /* ... or if many callbacks queued. */
576 rdp->qlen_last_fqs_check = len;
577 j = jiffies;
578 if (j != rdp->nocb_gp_adv_time &&
579 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
580 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
581 rcu_advance_cbs_nowake(rdp->mynode, rdp);
582 rdp->nocb_gp_adv_time = j;
583 }
584 smp_mb(); /* Enqueue before timer_pending(). */
585 if ((rdp->nocb_cb_sleep ||
586 !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
587 !timer_pending(&rdp_gp->nocb_timer)) {
588 rcu_nocb_unlock(rdp);
589 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
590 TPS("WakeOvfIsDeferred"));
591 } else {
592 rcu_nocb_unlock(rdp);
593 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
594 }
595 } else {
596 rcu_nocb_unlock(rdp);
597 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
598 }
599 }
600
call_rcu_nocb(struct rcu_data * rdp,struct rcu_head * head,rcu_callback_t func,unsigned long flags,bool lazy)601 static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head,
602 rcu_callback_t func, unsigned long flags, bool lazy)
603 {
604 bool was_alldone;
605
606 if (!rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) {
607 /* Not enqueued on bypass but locked, do regular enqueue */
608 rcutree_enqueue(rdp, head, func);
609 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
610 }
611 }
612
nocb_gp_toggle_rdp(struct rcu_data * rdp_gp,struct rcu_data * rdp)613 static void nocb_gp_toggle_rdp(struct rcu_data *rdp_gp, struct rcu_data *rdp)
614 {
615 struct rcu_segcblist *cblist = &rdp->cblist;
616 unsigned long flags;
617
618 /*
619 * Locking orders future de-offloaded callbacks enqueue against previous
620 * handling of this rdp. Ie: Make sure rcuog is done with this rdp before
621 * deoffloaded callbacks can be enqueued.
622 */
623 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
624 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
625 /*
626 * Offloading. Set our flag and notify the offload worker.
627 * We will handle this rdp until it ever gets de-offloaded.
628 */
629 list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp);
630 rcu_segcblist_set_flags(cblist, SEGCBLIST_OFFLOADED);
631 } else {
632 /*
633 * De-offloading. Clear our flag and notify the de-offload worker.
634 * We will ignore this rdp until it ever gets re-offloaded.
635 */
636 list_del(&rdp->nocb_entry_rdp);
637 rcu_segcblist_clear_flags(cblist, SEGCBLIST_OFFLOADED);
638 }
639 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
640 }
641
nocb_gp_sleep(struct rcu_data * my_rdp,int cpu)642 static void nocb_gp_sleep(struct rcu_data *my_rdp, int cpu)
643 {
644 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
645 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
646 !READ_ONCE(my_rdp->nocb_gp_sleep));
647 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
648 }
649
650 /*
651 * No-CBs GP kthreads come here to wait for additional callbacks to show up
652 * or for grace periods to end.
653 */
nocb_gp_wait(struct rcu_data * my_rdp)654 static void nocb_gp_wait(struct rcu_data *my_rdp)
655 {
656 bool bypass = false;
657 int __maybe_unused cpu = my_rdp->cpu;
658 unsigned long cur_gp_seq;
659 unsigned long flags;
660 bool gotcbs = false;
661 unsigned long j = jiffies;
662 bool lazy = false;
663 bool needwait_gp = false; // This prevents actual uninitialized use.
664 bool needwake;
665 bool needwake_gp;
666 struct rcu_data *rdp, *rdp_toggling = NULL;
667 struct rcu_node *rnp;
668 unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
669 bool wasempty = false;
670
671 /*
672 * Each pass through the following loop checks for CBs and for the
673 * nearest grace period (if any) to wait for next. The CB kthreads
674 * and the global grace-period kthread are awakened if needed.
675 */
676 WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
677 /*
678 * An rcu_data structure is removed from the list after its
679 * CPU is de-offloaded and added to the list before that CPU is
680 * (re-)offloaded. If the following loop happens to be referencing
681 * that rcu_data structure during the time that the corresponding
682 * CPU is de-offloaded and then immediately re-offloaded, this
683 * loop's rdp pointer will be carried to the end of the list by
684 * the resulting pair of list operations. This can cause the loop
685 * to skip over some of the rcu_data structures that were supposed
686 * to have been scanned. Fortunately a new iteration through the
687 * entire loop is forced after a given CPU's rcu_data structure
688 * is added to the list, so the skipped-over rcu_data structures
689 * won't be ignored for long.
690 */
691 list_for_each_entry(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp) {
692 long bypass_ncbs;
693 bool flush_bypass = false;
694 long lazy_ncbs;
695
696 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
697 rcu_nocb_lock_irqsave(rdp, flags);
698 lockdep_assert_held(&rdp->nocb_lock);
699 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
700 lazy_ncbs = READ_ONCE(rdp->lazy_len);
701
702 if (bypass_ncbs && (lazy_ncbs == bypass_ncbs) &&
703 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + rcu_get_jiffies_lazy_flush()) ||
704 bypass_ncbs > 2 * qhimark)) {
705 flush_bypass = true;
706 } else if (bypass_ncbs && (lazy_ncbs != bypass_ncbs) &&
707 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
708 bypass_ncbs > 2 * qhimark)) {
709 flush_bypass = true;
710 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
711 rcu_nocb_unlock_irqrestore(rdp, flags);
712 continue; /* No callbacks here, try next. */
713 }
714
715 if (flush_bypass) {
716 // Bypass full or old, so flush it.
717 (void)rcu_nocb_try_flush_bypass(rdp, j);
718 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
719 lazy_ncbs = READ_ONCE(rdp->lazy_len);
720 }
721
722 if (bypass_ncbs) {
723 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
724 bypass_ncbs == lazy_ncbs ? TPS("Lazy") : TPS("Bypass"));
725 if (bypass_ncbs == lazy_ncbs)
726 lazy = true;
727 else
728 bypass = true;
729 }
730 rnp = rdp->mynode;
731
732 // Advance callbacks if helpful and low contention.
733 needwake_gp = false;
734 if (!rcu_segcblist_restempty(&rdp->cblist,
735 RCU_NEXT_READY_TAIL) ||
736 (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
737 rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
738 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
739 needwake_gp = rcu_advance_cbs(rnp, rdp);
740 wasempty = rcu_segcblist_restempty(&rdp->cblist,
741 RCU_NEXT_READY_TAIL);
742 raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
743 }
744 // Need to wait on some grace period?
745 WARN_ON_ONCE(wasempty &&
746 !rcu_segcblist_restempty(&rdp->cblist,
747 RCU_NEXT_READY_TAIL));
748 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
749 if (!needwait_gp ||
750 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
751 wait_gp_seq = cur_gp_seq;
752 needwait_gp = true;
753 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
754 TPS("NeedWaitGP"));
755 }
756 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
757 needwake = rdp->nocb_cb_sleep;
758 WRITE_ONCE(rdp->nocb_cb_sleep, false);
759 } else {
760 needwake = false;
761 }
762 rcu_nocb_unlock_irqrestore(rdp, flags);
763 if (needwake) {
764 swake_up_one(&rdp->nocb_cb_wq);
765 gotcbs = true;
766 }
767 if (needwake_gp)
768 rcu_gp_kthread_wake();
769 }
770
771 my_rdp->nocb_gp_bypass = bypass;
772 my_rdp->nocb_gp_gp = needwait_gp;
773 my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
774
775 // At least one child with non-empty ->nocb_bypass, so set
776 // timer in order to avoid stranding its callbacks.
777 if (!rcu_nocb_poll) {
778 // If bypass list only has lazy CBs. Add a deferred lazy wake up.
779 if (lazy && !bypass) {
780 wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_LAZY,
781 TPS("WakeLazyIsDeferred"));
782 // Otherwise add a deferred bypass wake up.
783 } else if (bypass) {
784 wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS,
785 TPS("WakeBypassIsDeferred"));
786 }
787 }
788
789 if (rcu_nocb_poll) {
790 /* Polling, so trace if first poll in the series. */
791 if (gotcbs)
792 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
793 if (list_empty(&my_rdp->nocb_head_rdp)) {
794 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
795 if (!my_rdp->nocb_toggling_rdp)
796 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
797 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
798 /* Wait for any offloading rdp */
799 nocb_gp_sleep(my_rdp, cpu);
800 } else {
801 schedule_timeout_idle(1);
802 }
803 } else if (!needwait_gp) {
804 /* Wait for callbacks to appear. */
805 nocb_gp_sleep(my_rdp, cpu);
806 } else {
807 rnp = my_rdp->mynode;
808 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
809 swait_event_interruptible_exclusive(
810 rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
811 rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
812 !READ_ONCE(my_rdp->nocb_gp_sleep));
813 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
814 }
815
816 if (!rcu_nocb_poll) {
817 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
818 // (De-)queue an rdp to/from the group if its nocb state is changing
819 rdp_toggling = my_rdp->nocb_toggling_rdp;
820 if (rdp_toggling)
821 my_rdp->nocb_toggling_rdp = NULL;
822
823 if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
824 WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
825 del_timer(&my_rdp->nocb_timer);
826 }
827 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
828 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
829 } else {
830 rdp_toggling = READ_ONCE(my_rdp->nocb_toggling_rdp);
831 if (rdp_toggling) {
832 /*
833 * Paranoid locking to make sure nocb_toggling_rdp is well
834 * reset *before* we (re)set SEGCBLIST_KTHREAD_GP or we could
835 * race with another round of nocb toggling for this rdp.
836 * Nocb locking should prevent from that already but we stick
837 * to paranoia, especially in rare path.
838 */
839 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
840 my_rdp->nocb_toggling_rdp = NULL;
841 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
842 }
843 }
844
845 if (rdp_toggling) {
846 nocb_gp_toggle_rdp(my_rdp, rdp_toggling);
847 swake_up_one(&rdp_toggling->nocb_state_wq);
848 }
849
850 my_rdp->nocb_gp_seq = -1;
851 WARN_ON(signal_pending(current));
852 }
853
854 /*
855 * No-CBs grace-period-wait kthread. There is one of these per group
856 * of CPUs, but only once at least one CPU in that group has come online
857 * at least once since boot. This kthread checks for newly posted
858 * callbacks from any of the CPUs it is responsible for, waits for a
859 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
860 * that then have callback-invocation work to do.
861 */
rcu_nocb_gp_kthread(void * arg)862 static int rcu_nocb_gp_kthread(void *arg)
863 {
864 struct rcu_data *rdp = arg;
865
866 for (;;) {
867 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
868 nocb_gp_wait(rdp);
869 cond_resched_tasks_rcu_qs();
870 }
871 return 0;
872 }
873
nocb_cb_wait_cond(struct rcu_data * rdp)874 static inline bool nocb_cb_wait_cond(struct rcu_data *rdp)
875 {
876 return !READ_ONCE(rdp->nocb_cb_sleep) || kthread_should_park();
877 }
878
879 /*
880 * Invoke any ready callbacks from the corresponding no-CBs CPU,
881 * then, if there are no more, wait for more to appear.
882 */
nocb_cb_wait(struct rcu_data * rdp)883 static void nocb_cb_wait(struct rcu_data *rdp)
884 {
885 struct rcu_segcblist *cblist = &rdp->cblist;
886 unsigned long cur_gp_seq;
887 unsigned long flags;
888 bool needwake_gp = false;
889 struct rcu_node *rnp = rdp->mynode;
890
891 swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
892 nocb_cb_wait_cond(rdp));
893 if (kthread_should_park()) {
894 kthread_parkme();
895 } else if (READ_ONCE(rdp->nocb_cb_sleep)) {
896 WARN_ON(signal_pending(current));
897 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
898 }
899
900 WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
901
902 local_irq_save(flags);
903 rcu_momentary_eqs();
904 local_irq_restore(flags);
905 /*
906 * Disable BH to provide the expected environment. Also, when
907 * transitioning to/from NOCB mode, a self-requeuing callback might
908 * be invoked from softirq. A short grace period could cause both
909 * instances of this callback would execute concurrently.
910 */
911 local_bh_disable();
912 rcu_do_batch(rdp);
913 local_bh_enable();
914 lockdep_assert_irqs_enabled();
915 rcu_nocb_lock_irqsave(rdp, flags);
916 if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) &&
917 rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
918 raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
919 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
920 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
921 }
922
923 if (!rcu_segcblist_ready_cbs(cblist)) {
924 WRITE_ONCE(rdp->nocb_cb_sleep, true);
925 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
926 } else {
927 WRITE_ONCE(rdp->nocb_cb_sleep, false);
928 }
929
930 rcu_nocb_unlock_irqrestore(rdp, flags);
931 if (needwake_gp)
932 rcu_gp_kthread_wake();
933 }
934
935 /*
936 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke
937 * nocb_cb_wait() to do the dirty work.
938 */
rcu_nocb_cb_kthread(void * arg)939 static int rcu_nocb_cb_kthread(void *arg)
940 {
941 struct rcu_data *rdp = arg;
942
943 // Each pass through this loop does one callback batch, and,
944 // if there are no more ready callbacks, waits for them.
945 for (;;) {
946 nocb_cb_wait(rdp);
947 cond_resched_tasks_rcu_qs();
948 }
949 return 0;
950 }
951
952 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
rcu_nocb_need_deferred_wakeup(struct rcu_data * rdp,int level)953 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
954 {
955 return READ_ONCE(rdp->nocb_defer_wakeup) >= level;
956 }
957
958 /* Do a deferred wakeup of rcu_nocb_kthread(). */
do_nocb_deferred_wakeup_common(struct rcu_data * rdp_gp,struct rcu_data * rdp,int level,unsigned long flags)959 static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp,
960 struct rcu_data *rdp, int level,
961 unsigned long flags)
962 __releases(rdp_gp->nocb_gp_lock)
963 {
964 int ndw;
965 int ret;
966
967 if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) {
968 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
969 return false;
970 }
971
972 ndw = rdp_gp->nocb_defer_wakeup;
973 ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
974 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
975
976 return ret;
977 }
978
979 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
do_nocb_deferred_wakeup_timer(struct timer_list * t)980 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
981 {
982 unsigned long flags;
983 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
984
985 WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp);
986 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
987
988 raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags);
989 smp_mb__after_spinlock(); /* Timer expire before wakeup. */
990 do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags);
991 }
992
993 /*
994 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
995 * This means we do an inexact common-case check. Note that if
996 * we miss, ->nocb_timer will eventually clean things up.
997 */
do_nocb_deferred_wakeup(struct rcu_data * rdp)998 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
999 {
1000 unsigned long flags;
1001 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1002
1003 if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE))
1004 return false;
1005
1006 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1007 return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags);
1008 }
1009
rcu_nocb_flush_deferred_wakeup(void)1010 void rcu_nocb_flush_deferred_wakeup(void)
1011 {
1012 do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data));
1013 }
1014 EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup);
1015
rcu_nocb_queue_toggle_rdp(struct rcu_data * rdp)1016 static int rcu_nocb_queue_toggle_rdp(struct rcu_data *rdp)
1017 {
1018 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1019 bool wake_gp = false;
1020 unsigned long flags;
1021
1022 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1023 // Queue this rdp for add/del to/from the list to iterate on rcuog
1024 WRITE_ONCE(rdp_gp->nocb_toggling_rdp, rdp);
1025 if (rdp_gp->nocb_gp_sleep) {
1026 rdp_gp->nocb_gp_sleep = false;
1027 wake_gp = true;
1028 }
1029 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1030
1031 return wake_gp;
1032 }
1033
rcu_nocb_rdp_deoffload_wait_cond(struct rcu_data * rdp)1034 static bool rcu_nocb_rdp_deoffload_wait_cond(struct rcu_data *rdp)
1035 {
1036 unsigned long flags;
1037 bool ret;
1038
1039 /*
1040 * Locking makes sure rcuog is done handling this rdp before deoffloaded
1041 * enqueue can happen. Also it keeps the SEGCBLIST_OFFLOADED flag stable
1042 * while the ->nocb_lock is held.
1043 */
1044 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1045 ret = !rcu_segcblist_test_flags(&rdp->cblist, SEGCBLIST_OFFLOADED);
1046 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1047
1048 return ret;
1049 }
1050
rcu_nocb_rdp_deoffload(struct rcu_data * rdp)1051 static int rcu_nocb_rdp_deoffload(struct rcu_data *rdp)
1052 {
1053 unsigned long flags;
1054 int wake_gp;
1055 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1056
1057 /* CPU must be offline, unless it's early boot */
1058 WARN_ON_ONCE(cpu_online(rdp->cpu) && rdp->cpu != raw_smp_processor_id());
1059
1060 pr_info("De-offloading %d\n", rdp->cpu);
1061
1062 /* Flush all callbacks from segcblist and bypass */
1063 rcu_barrier();
1064
1065 /*
1066 * Make sure the rcuoc kthread isn't in the middle of a nocb locked
1067 * sequence while offloading is deactivated, along with nocb locking.
1068 */
1069 if (rdp->nocb_cb_kthread)
1070 kthread_park(rdp->nocb_cb_kthread);
1071
1072 rcu_nocb_lock_irqsave(rdp, flags);
1073 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1074 WARN_ON_ONCE(rcu_segcblist_n_cbs(&rdp->cblist));
1075 rcu_nocb_unlock_irqrestore(rdp, flags);
1076
1077 wake_gp = rcu_nocb_queue_toggle_rdp(rdp);
1078
1079 mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
1080
1081 if (rdp_gp->nocb_gp_kthread) {
1082 if (wake_gp)
1083 wake_up_process(rdp_gp->nocb_gp_kthread);
1084
1085 swait_event_exclusive(rdp->nocb_state_wq,
1086 rcu_nocb_rdp_deoffload_wait_cond(rdp));
1087 } else {
1088 /*
1089 * No kthread to clear the flags for us or remove the rdp from the nocb list
1090 * to iterate. Do it here instead. Locking doesn't look stricly necessary
1091 * but we stick to paranoia in this rare path.
1092 */
1093 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1094 rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_OFFLOADED);
1095 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1096
1097 list_del(&rdp->nocb_entry_rdp);
1098 }
1099
1100 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1101
1102 return 0;
1103 }
1104
rcu_nocb_cpu_deoffload(int cpu)1105 int rcu_nocb_cpu_deoffload(int cpu)
1106 {
1107 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1108 int ret = 0;
1109
1110 cpus_read_lock();
1111 mutex_lock(&rcu_state.nocb_mutex);
1112 if (rcu_rdp_is_offloaded(rdp)) {
1113 if (!cpu_online(cpu)) {
1114 ret = rcu_nocb_rdp_deoffload(rdp);
1115 if (!ret)
1116 cpumask_clear_cpu(cpu, rcu_nocb_mask);
1117 } else {
1118 pr_info("NOCB: Cannot CB-deoffload online CPU %d\n", rdp->cpu);
1119 ret = -EINVAL;
1120 }
1121 }
1122 mutex_unlock(&rcu_state.nocb_mutex);
1123 cpus_read_unlock();
1124
1125 return ret;
1126 }
1127 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload);
1128
rcu_nocb_rdp_offload_wait_cond(struct rcu_data * rdp)1129 static bool rcu_nocb_rdp_offload_wait_cond(struct rcu_data *rdp)
1130 {
1131 unsigned long flags;
1132 bool ret;
1133
1134 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1135 ret = rcu_segcblist_test_flags(&rdp->cblist, SEGCBLIST_OFFLOADED);
1136 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1137
1138 return ret;
1139 }
1140
rcu_nocb_rdp_offload(struct rcu_data * rdp)1141 static int rcu_nocb_rdp_offload(struct rcu_data *rdp)
1142 {
1143 int wake_gp;
1144 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1145
1146 WARN_ON_ONCE(cpu_online(rdp->cpu));
1147 /*
1148 * For now we only support re-offload, ie: the rdp must have been
1149 * offloaded on boot first.
1150 */
1151 if (!rdp->nocb_gp_rdp)
1152 return -EINVAL;
1153
1154 if (WARN_ON_ONCE(!rdp_gp->nocb_gp_kthread))
1155 return -EINVAL;
1156
1157 pr_info("Offloading %d\n", rdp->cpu);
1158
1159 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1160 WARN_ON_ONCE(rcu_segcblist_n_cbs(&rdp->cblist));
1161
1162 wake_gp = rcu_nocb_queue_toggle_rdp(rdp);
1163 if (wake_gp)
1164 wake_up_process(rdp_gp->nocb_gp_kthread);
1165
1166 swait_event_exclusive(rdp->nocb_state_wq,
1167 rcu_nocb_rdp_offload_wait_cond(rdp));
1168
1169 kthread_unpark(rdp->nocb_cb_kthread);
1170
1171 return 0;
1172 }
1173
rcu_nocb_cpu_offload(int cpu)1174 int rcu_nocb_cpu_offload(int cpu)
1175 {
1176 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1177 int ret = 0;
1178
1179 cpus_read_lock();
1180 mutex_lock(&rcu_state.nocb_mutex);
1181 if (!rcu_rdp_is_offloaded(rdp)) {
1182 if (!cpu_online(cpu)) {
1183 ret = rcu_nocb_rdp_offload(rdp);
1184 if (!ret)
1185 cpumask_set_cpu(cpu, rcu_nocb_mask);
1186 } else {
1187 pr_info("NOCB: Cannot CB-offload online CPU %d\n", rdp->cpu);
1188 ret = -EINVAL;
1189 }
1190 }
1191 mutex_unlock(&rcu_state.nocb_mutex);
1192 cpus_read_unlock();
1193
1194 return ret;
1195 }
1196 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload);
1197
1198 #ifdef CONFIG_RCU_LAZY
1199 static unsigned long
lazy_rcu_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1200 lazy_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1201 {
1202 int cpu;
1203 unsigned long count = 0;
1204
1205 if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask)))
1206 return 0;
1207
1208 /* Protect rcu_nocb_mask against concurrent (de-)offloading. */
1209 if (!mutex_trylock(&rcu_state.nocb_mutex))
1210 return 0;
1211
1212 /* Snapshot count of all CPUs */
1213 for_each_cpu(cpu, rcu_nocb_mask) {
1214 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1215
1216 count += READ_ONCE(rdp->lazy_len);
1217 }
1218
1219 mutex_unlock(&rcu_state.nocb_mutex);
1220
1221 return count ? count : SHRINK_EMPTY;
1222 }
1223
1224 static unsigned long
lazy_rcu_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1225 lazy_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1226 {
1227 int cpu;
1228 unsigned long flags;
1229 unsigned long count = 0;
1230
1231 if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask)))
1232 return 0;
1233 /*
1234 * Protect against concurrent (de-)offloading. Otherwise nocb locking
1235 * may be ignored or imbalanced.
1236 */
1237 if (!mutex_trylock(&rcu_state.nocb_mutex)) {
1238 /*
1239 * But really don't insist if nocb_mutex is contended since we
1240 * can't guarantee that it will never engage in a dependency
1241 * chain involving memory allocation. The lock is seldom contended
1242 * anyway.
1243 */
1244 return 0;
1245 }
1246
1247 /* Snapshot count of all CPUs */
1248 for_each_cpu(cpu, rcu_nocb_mask) {
1249 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1250 int _count;
1251
1252 if (WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp)))
1253 continue;
1254
1255 if (!READ_ONCE(rdp->lazy_len))
1256 continue;
1257
1258 rcu_nocb_lock_irqsave(rdp, flags);
1259 /*
1260 * Recheck under the nocb lock. Since we are not holding the bypass
1261 * lock we may still race with increments from the enqueuer but still
1262 * we know for sure if there is at least one lazy callback.
1263 */
1264 _count = READ_ONCE(rdp->lazy_len);
1265 if (!_count) {
1266 rcu_nocb_unlock_irqrestore(rdp, flags);
1267 continue;
1268 }
1269 rcu_nocb_try_flush_bypass(rdp, jiffies);
1270 rcu_nocb_unlock_irqrestore(rdp, flags);
1271 wake_nocb_gp(rdp, false);
1272 sc->nr_to_scan -= _count;
1273 count += _count;
1274 if (sc->nr_to_scan <= 0)
1275 break;
1276 }
1277
1278 mutex_unlock(&rcu_state.nocb_mutex);
1279
1280 return count ? count : SHRINK_STOP;
1281 }
1282 #endif // #ifdef CONFIG_RCU_LAZY
1283
rcu_init_nohz(void)1284 void __init rcu_init_nohz(void)
1285 {
1286 int cpu;
1287 struct rcu_data *rdp;
1288 const struct cpumask *cpumask = NULL;
1289 struct shrinker * __maybe_unused lazy_rcu_shrinker;
1290
1291 #if defined(CONFIG_NO_HZ_FULL)
1292 if (tick_nohz_full_running && !cpumask_empty(tick_nohz_full_mask))
1293 cpumask = tick_nohz_full_mask;
1294 #endif
1295
1296 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL) &&
1297 !rcu_state.nocb_is_setup && !cpumask)
1298 cpumask = cpu_possible_mask;
1299
1300 if (cpumask) {
1301 if (!cpumask_available(rcu_nocb_mask)) {
1302 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
1303 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
1304 return;
1305 }
1306 }
1307
1308 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, cpumask);
1309 rcu_state.nocb_is_setup = true;
1310 }
1311
1312 if (!rcu_state.nocb_is_setup)
1313 return;
1314
1315 #ifdef CONFIG_RCU_LAZY
1316 lazy_rcu_shrinker = shrinker_alloc(0, "rcu-lazy");
1317 if (!lazy_rcu_shrinker) {
1318 pr_err("Failed to allocate lazy_rcu shrinker!\n");
1319 } else {
1320 lazy_rcu_shrinker->count_objects = lazy_rcu_shrink_count;
1321 lazy_rcu_shrinker->scan_objects = lazy_rcu_shrink_scan;
1322
1323 shrinker_register(lazy_rcu_shrinker);
1324 }
1325 #endif // #ifdef CONFIG_RCU_LAZY
1326
1327 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
1328 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
1329 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
1330 rcu_nocb_mask);
1331 }
1332 if (cpumask_empty(rcu_nocb_mask))
1333 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
1334 else
1335 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
1336 cpumask_pr_args(rcu_nocb_mask));
1337 if (rcu_nocb_poll)
1338 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
1339
1340 for_each_cpu(cpu, rcu_nocb_mask) {
1341 rdp = per_cpu_ptr(&rcu_data, cpu);
1342 if (rcu_segcblist_empty(&rdp->cblist))
1343 rcu_segcblist_init(&rdp->cblist);
1344 rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_OFFLOADED);
1345 }
1346 rcu_organize_nocb_kthreads();
1347 }
1348
1349 /* Initialize per-rcu_data variables for no-CBs CPUs. */
rcu_boot_init_nocb_percpu_data(struct rcu_data * rdp)1350 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1351 {
1352 init_swait_queue_head(&rdp->nocb_cb_wq);
1353 init_swait_queue_head(&rdp->nocb_gp_wq);
1354 init_swait_queue_head(&rdp->nocb_state_wq);
1355 raw_spin_lock_init(&rdp->nocb_lock);
1356 raw_spin_lock_init(&rdp->nocb_bypass_lock);
1357 raw_spin_lock_init(&rdp->nocb_gp_lock);
1358 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
1359 rcu_cblist_init(&rdp->nocb_bypass);
1360 WRITE_ONCE(rdp->lazy_len, 0);
1361 mutex_init(&rdp->nocb_gp_kthread_mutex);
1362 }
1363
1364 /*
1365 * If the specified CPU is a no-CBs CPU that does not already have its
1366 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread
1367 * for this CPU's group has not yet been created, spawn it as well.
1368 */
rcu_spawn_cpu_nocb_kthread(int cpu)1369 static void rcu_spawn_cpu_nocb_kthread(int cpu)
1370 {
1371 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1372 struct rcu_data *rdp_gp;
1373 struct task_struct *t;
1374 struct sched_param sp;
1375
1376 if (!rcu_scheduler_fully_active || !rcu_state.nocb_is_setup)
1377 return;
1378
1379 /* If there already is an rcuo kthread, then nothing to do. */
1380 if (rdp->nocb_cb_kthread)
1381 return;
1382
1383 /* If we didn't spawn the GP kthread first, reorganize! */
1384 sp.sched_priority = kthread_prio;
1385 rdp_gp = rdp->nocb_gp_rdp;
1386 mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
1387 if (!rdp_gp->nocb_gp_kthread) {
1388 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
1389 "rcuog/%d", rdp_gp->cpu);
1390 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) {
1391 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1392 goto err;
1393 }
1394 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
1395 if (kthread_prio)
1396 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1397 }
1398 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1399
1400 /* Spawn the kthread for this CPU. */
1401 t = kthread_create(rcu_nocb_cb_kthread, rdp,
1402 "rcuo%c/%d", rcu_state.abbr, cpu);
1403 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
1404 goto err;
1405
1406 if (rcu_rdp_is_offloaded(rdp))
1407 wake_up_process(t);
1408 else
1409 kthread_park(t);
1410
1411 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_CB_BOOST) && kthread_prio)
1412 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1413
1414 WRITE_ONCE(rdp->nocb_cb_kthread, t);
1415 WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
1416 return;
1417
1418 err:
1419 /*
1420 * No need to protect against concurrent rcu_barrier()
1421 * because the number of callbacks should be 0 for a non-boot CPU,
1422 * therefore rcu_barrier() shouldn't even try to grab the nocb_lock.
1423 * But hold nocb_mutex to avoid nocb_lock imbalance from shrinker.
1424 */
1425 WARN_ON_ONCE(system_state > SYSTEM_BOOTING && rcu_segcblist_n_cbs(&rdp->cblist));
1426 mutex_lock(&rcu_state.nocb_mutex);
1427 if (rcu_rdp_is_offloaded(rdp)) {
1428 rcu_nocb_rdp_deoffload(rdp);
1429 cpumask_clear_cpu(cpu, rcu_nocb_mask);
1430 }
1431 mutex_unlock(&rcu_state.nocb_mutex);
1432 }
1433
1434 /* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */
1435 static int rcu_nocb_gp_stride = -1;
1436 module_param(rcu_nocb_gp_stride, int, 0444);
1437
1438 /*
1439 * Initialize GP-CB relationships for all no-CBs CPU.
1440 */
rcu_organize_nocb_kthreads(void)1441 static void __init rcu_organize_nocb_kthreads(void)
1442 {
1443 int cpu;
1444 bool firsttime = true;
1445 bool gotnocbs = false;
1446 bool gotnocbscbs = true;
1447 int ls = rcu_nocb_gp_stride;
1448 int nl = 0; /* Next GP kthread. */
1449 struct rcu_data *rdp;
1450 struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */
1451
1452 if (!cpumask_available(rcu_nocb_mask))
1453 return;
1454 if (ls == -1) {
1455 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
1456 rcu_nocb_gp_stride = ls;
1457 }
1458
1459 /*
1460 * Each pass through this loop sets up one rcu_data structure.
1461 * Should the corresponding CPU come online in the future, then
1462 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
1463 */
1464 for_each_possible_cpu(cpu) {
1465 rdp = per_cpu_ptr(&rcu_data, cpu);
1466 if (rdp->cpu >= nl) {
1467 /* New GP kthread, set up for CBs & next GP. */
1468 gotnocbs = true;
1469 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
1470 rdp_gp = rdp;
1471 INIT_LIST_HEAD(&rdp->nocb_head_rdp);
1472 if (dump_tree) {
1473 if (!firsttime)
1474 pr_cont("%s\n", gotnocbscbs
1475 ? "" : " (self only)");
1476 gotnocbscbs = false;
1477 firsttime = false;
1478 pr_alert("%s: No-CB GP kthread CPU %d:",
1479 __func__, cpu);
1480 }
1481 } else {
1482 /* Another CB kthread, link to previous GP kthread. */
1483 gotnocbscbs = true;
1484 if (dump_tree)
1485 pr_cont(" %d", cpu);
1486 }
1487 rdp->nocb_gp_rdp = rdp_gp;
1488 if (cpumask_test_cpu(cpu, rcu_nocb_mask))
1489 list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp);
1490 }
1491 if (gotnocbs && dump_tree)
1492 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
1493 }
1494
1495 /*
1496 * Bind the current task to the offloaded CPUs. If there are no offloaded
1497 * CPUs, leave the task unbound. Splat if the bind attempt fails.
1498 */
rcu_bind_current_to_nocb(void)1499 void rcu_bind_current_to_nocb(void)
1500 {
1501 if (cpumask_available(rcu_nocb_mask) && !cpumask_empty(rcu_nocb_mask))
1502 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
1503 }
1504 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
1505
1506 // The ->on_cpu field is available only in CONFIG_SMP=y, so...
1507 #ifdef CONFIG_SMP
show_rcu_should_be_on_cpu(struct task_struct * tsp)1508 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1509 {
1510 return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : "";
1511 }
1512 #else // #ifdef CONFIG_SMP
show_rcu_should_be_on_cpu(struct task_struct * tsp)1513 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1514 {
1515 return "";
1516 }
1517 #endif // #else #ifdef CONFIG_SMP
1518
1519 /*
1520 * Dump out nocb grace-period kthread state for the specified rcu_data
1521 * structure.
1522 */
show_rcu_nocb_gp_state(struct rcu_data * rdp)1523 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
1524 {
1525 struct rcu_node *rnp = rdp->mynode;
1526
1527 pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n",
1528 rdp->cpu,
1529 "kK"[!!rdp->nocb_gp_kthread],
1530 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
1531 "dD"[!!rdp->nocb_defer_wakeup],
1532 "tT"[timer_pending(&rdp->nocb_timer)],
1533 "sS"[!!rdp->nocb_gp_sleep],
1534 ".W"[swait_active(&rdp->nocb_gp_wq)],
1535 ".W"[swait_active(&rnp->nocb_gp_wq[0])],
1536 ".W"[swait_active(&rnp->nocb_gp_wq[1])],
1537 ".B"[!!rdp->nocb_gp_bypass],
1538 ".G"[!!rdp->nocb_gp_gp],
1539 (long)rdp->nocb_gp_seq,
1540 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops),
1541 rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.',
1542 rdp->nocb_gp_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
1543 show_rcu_should_be_on_cpu(rdp->nocb_gp_kthread));
1544 }
1545
1546 /* Dump out nocb kthread state for the specified rcu_data structure. */
show_rcu_nocb_state(struct rcu_data * rdp)1547 static void show_rcu_nocb_state(struct rcu_data *rdp)
1548 {
1549 char bufw[20];
1550 char bufr[20];
1551 struct rcu_data *nocb_next_rdp;
1552 struct rcu_segcblist *rsclp = &rdp->cblist;
1553 bool waslocked;
1554 bool wassleep;
1555
1556 if (rdp->nocb_gp_rdp == rdp)
1557 show_rcu_nocb_gp_state(rdp);
1558
1559 nocb_next_rdp = list_next_or_null_rcu(&rdp->nocb_gp_rdp->nocb_head_rdp,
1560 &rdp->nocb_entry_rdp,
1561 typeof(*rdp),
1562 nocb_entry_rdp);
1563
1564 sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]);
1565 sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]);
1566 pr_info(" CB %d^%d->%d %c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n",
1567 rdp->cpu, rdp->nocb_gp_rdp->cpu,
1568 nocb_next_rdp ? nocb_next_rdp->cpu : -1,
1569 "kK"[!!rdp->nocb_cb_kthread],
1570 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
1571 "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
1572 "sS"[!!rdp->nocb_cb_sleep],
1573 ".W"[swait_active(&rdp->nocb_cb_wq)],
1574 jiffies - rdp->nocb_bypass_first,
1575 jiffies - rdp->nocb_nobypass_last,
1576 rdp->nocb_nobypass_count,
1577 ".D"[rcu_segcblist_ready_cbs(rsclp)],
1578 ".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)],
1579 rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw,
1580 ".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)],
1581 rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr,
1582 ".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)],
1583 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
1584 rcu_segcblist_n_cbs(&rdp->cblist),
1585 rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.',
1586 rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_cb_kthread) : -1,
1587 show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
1588
1589 /* It is OK for GP kthreads to have GP state. */
1590 if (rdp->nocb_gp_rdp == rdp)
1591 return;
1592
1593 waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
1594 wassleep = swait_active(&rdp->nocb_gp_wq);
1595 if (!rdp->nocb_gp_sleep && !waslocked && !wassleep)
1596 return; /* Nothing untoward. */
1597
1598 pr_info(" nocb GP activity on CB-only CPU!!! %c%c%c %c\n",
1599 "lL"[waslocked],
1600 "dD"[!!rdp->nocb_defer_wakeup],
1601 "sS"[!!rdp->nocb_gp_sleep],
1602 ".W"[wassleep]);
1603 }
1604
1605 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
1606
1607 /* No ->nocb_lock to acquire. */
rcu_nocb_lock(struct rcu_data * rdp)1608 static void rcu_nocb_lock(struct rcu_data *rdp)
1609 {
1610 }
1611
1612 /* No ->nocb_lock to release. */
rcu_nocb_unlock(struct rcu_data * rdp)1613 static void rcu_nocb_unlock(struct rcu_data *rdp)
1614 {
1615 }
1616
1617 /* No ->nocb_lock to release. */
rcu_nocb_unlock_irqrestore(struct rcu_data * rdp,unsigned long flags)1618 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1619 unsigned long flags)
1620 {
1621 local_irq_restore(flags);
1622 }
1623
1624 /* Lockdep check that ->cblist may be safely accessed. */
rcu_lockdep_assert_cblist_protected(struct rcu_data * rdp)1625 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1626 {
1627 lockdep_assert_irqs_disabled();
1628 }
1629
rcu_nocb_gp_cleanup(struct swait_queue_head * sq)1630 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1631 {
1632 }
1633
rcu_nocb_gp_get(struct rcu_node * rnp)1634 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1635 {
1636 return NULL;
1637 }
1638
rcu_init_one_nocb(struct rcu_node * rnp)1639 static void rcu_init_one_nocb(struct rcu_node *rnp)
1640 {
1641 }
1642
wake_nocb_gp(struct rcu_data * rdp,bool force)1643 static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
1644 {
1645 return false;
1646 }
1647
rcu_nocb_flush_bypass(struct rcu_data * rdp,struct rcu_head * rhp,unsigned long j,bool lazy)1648 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1649 unsigned long j, bool lazy)
1650 {
1651 return true;
1652 }
1653
call_rcu_nocb(struct rcu_data * rdp,struct rcu_head * head,rcu_callback_t func,unsigned long flags,bool lazy)1654 static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head,
1655 rcu_callback_t func, unsigned long flags, bool lazy)
1656 {
1657 WARN_ON_ONCE(1); /* Should be dead code! */
1658 }
1659
__call_rcu_nocb_wake(struct rcu_data * rdp,bool was_empty,unsigned long flags)1660 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
1661 unsigned long flags)
1662 {
1663 WARN_ON_ONCE(1); /* Should be dead code! */
1664 }
1665
rcu_boot_init_nocb_percpu_data(struct rcu_data * rdp)1666 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1667 {
1668 }
1669
rcu_nocb_need_deferred_wakeup(struct rcu_data * rdp,int level)1670 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
1671 {
1672 return false;
1673 }
1674
do_nocb_deferred_wakeup(struct rcu_data * rdp)1675 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
1676 {
1677 return false;
1678 }
1679
rcu_spawn_cpu_nocb_kthread(int cpu)1680 static void rcu_spawn_cpu_nocb_kthread(int cpu)
1681 {
1682 }
1683
show_rcu_nocb_state(struct rcu_data * rdp)1684 static void show_rcu_nocb_state(struct rcu_data *rdp)
1685 {
1686 }
1687
1688 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
1689