1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 * Internal non-public definitions that provide either classic
5 * or preemptible semantics.
6 *
7 * Copyright Red Hat, 2009
8 * Copyright IBM Corporation, 2009
9 *
10 * Author: Ingo Molnar <mingo@elte.hu>
11 * Paul E. McKenney <paulmck@linux.ibm.com>
12 */
13
14 #include "../locking/rtmutex_common.h"
15
rcu_rdp_is_offloaded(struct rcu_data * rdp)16 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp)
17 {
18 /*
19 * In order to read the offloaded state of an rdp in a safe
20 * and stable way and prevent from its value to be changed
21 * under us, we must either hold the barrier mutex, the cpu
22 * hotplug lock (read or write) or the nocb lock. Local
23 * non-preemptible reads are also safe. NOCB kthreads and
24 * timers have their own means of synchronization against the
25 * offloaded state updaters.
26 */
27 RCU_NOCB_LOCKDEP_WARN(
28 !(lockdep_is_held(&rcu_state.barrier_mutex) ||
29 (IS_ENABLED(CONFIG_HOTPLUG_CPU) && lockdep_is_cpus_held()) ||
30 lockdep_is_held(&rdp->nocb_lock) ||
31 lockdep_is_held(&rcu_state.nocb_mutex) ||
32 (!(IS_ENABLED(CONFIG_PREEMPT_COUNT) && preemptible()) &&
33 rdp == this_cpu_ptr(&rcu_data)) ||
34 rcu_current_is_nocb_kthread(rdp)),
35 "Unsafe read of RCU_NOCB offloaded state"
36 );
37
38 return rcu_segcblist_is_offloaded(&rdp->cblist);
39 }
40
41 /*
42 * Check the RCU kernel configuration parameters and print informative
43 * messages about anything out of the ordinary.
44 */
rcu_bootup_announce_oddness(void)45 static void __init rcu_bootup_announce_oddness(void)
46 {
47 if (IS_ENABLED(CONFIG_RCU_TRACE))
48 pr_info("\tRCU event tracing is enabled.\n");
49 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
50 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
51 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
52 RCU_FANOUT);
53 if (rcu_fanout_exact)
54 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
55 if (IS_ENABLED(CONFIG_PROVE_RCU))
56 pr_info("\tRCU lockdep checking is enabled.\n");
57 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
58 pr_info("\tRCU strict (and thus non-scalable) grace periods are enabled.\n");
59 if (RCU_NUM_LVLS >= 4)
60 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
61 if (RCU_FANOUT_LEAF != 16)
62 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
63 RCU_FANOUT_LEAF);
64 if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
65 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
66 rcu_fanout_leaf);
67 if (nr_cpu_ids != NR_CPUS)
68 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
69 #ifdef CONFIG_RCU_BOOST
70 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
71 kthread_prio, CONFIG_RCU_BOOST_DELAY);
72 #endif
73 if (blimit != DEFAULT_RCU_BLIMIT)
74 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
75 if (qhimark != DEFAULT_RCU_QHIMARK)
76 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
77 if (qlowmark != DEFAULT_RCU_QLOMARK)
78 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
79 if (qovld != DEFAULT_RCU_QOVLD)
80 pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
81 if (jiffies_till_first_fqs != ULONG_MAX)
82 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
83 if (jiffies_till_next_fqs != ULONG_MAX)
84 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
85 if (jiffies_till_sched_qs != ULONG_MAX)
86 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
87 if (rcu_kick_kthreads)
88 pr_info("\tKick kthreads if too-long grace period.\n");
89 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
90 pr_info("\tRCU callback double-/use-after-free debug is enabled.\n");
91 if (gp_preinit_delay)
92 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
93 if (gp_init_delay)
94 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
95 if (gp_cleanup_delay)
96 pr_info("\tRCU debug GP cleanup slowdown %d jiffies.\n", gp_cleanup_delay);
97 if (nohz_full_patience_delay < 0) {
98 pr_info("\tRCU NOCB CPU patience negative (%d), resetting to zero.\n", nohz_full_patience_delay);
99 nohz_full_patience_delay = 0;
100 } else if (nohz_full_patience_delay > 5 * MSEC_PER_SEC) {
101 pr_info("\tRCU NOCB CPU patience too large (%d), resetting to %ld.\n", nohz_full_patience_delay, 5 * MSEC_PER_SEC);
102 nohz_full_patience_delay = 5 * MSEC_PER_SEC;
103 } else if (nohz_full_patience_delay) {
104 pr_info("\tRCU NOCB CPU patience set to %d milliseconds.\n", nohz_full_patience_delay);
105 }
106 nohz_full_patience_delay_jiffies = msecs_to_jiffies(nohz_full_patience_delay);
107 if (!use_softirq)
108 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
109 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
110 pr_info("\tRCU debug extended QS entry/exit.\n");
111 rcupdate_announce_bootup_oddness();
112 }
113
114 #ifdef CONFIG_PREEMPT_RCU
115
116 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
117 static void rcu_read_unlock_special(struct task_struct *t);
118
119 /*
120 * Tell them what RCU they are running.
121 */
rcu_bootup_announce(void)122 static void __init rcu_bootup_announce(void)
123 {
124 pr_info("Preemptible hierarchical RCU implementation.\n");
125 rcu_bootup_announce_oddness();
126 }
127
128 /* Flags for rcu_preempt_ctxt_queue() decision table. */
129 #define RCU_GP_TASKS 0x8
130 #define RCU_EXP_TASKS 0x4
131 #define RCU_GP_BLKD 0x2
132 #define RCU_EXP_BLKD 0x1
133
134 /*
135 * Queues a task preempted within an RCU-preempt read-side critical
136 * section into the appropriate location within the ->blkd_tasks list,
137 * depending on the states of any ongoing normal and expedited grace
138 * periods. The ->gp_tasks pointer indicates which element the normal
139 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
140 * indicates which element the expedited grace period is waiting on (again,
141 * NULL if none). If a grace period is waiting on a given element in the
142 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
143 * adding a task to the tail of the list blocks any grace period that is
144 * already waiting on one of the elements. In contrast, adding a task
145 * to the head of the list won't block any grace period that is already
146 * waiting on one of the elements.
147 *
148 * This queuing is imprecise, and can sometimes make an ongoing grace
149 * period wait for a task that is not strictly speaking blocking it.
150 * Given the choice, we needlessly block a normal grace period rather than
151 * blocking an expedited grace period.
152 *
153 * Note that an endless sequence of expedited grace periods still cannot
154 * indefinitely postpone a normal grace period. Eventually, all of the
155 * fixed number of preempted tasks blocking the normal grace period that are
156 * not also blocking the expedited grace period will resume and complete
157 * their RCU read-side critical sections. At that point, the ->gp_tasks
158 * pointer will equal the ->exp_tasks pointer, at which point the end of
159 * the corresponding expedited grace period will also be the end of the
160 * normal grace period.
161 */
rcu_preempt_ctxt_queue(struct rcu_node * rnp,struct rcu_data * rdp)162 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
163 __releases(rnp->lock) /* But leaves rrupts disabled. */
164 {
165 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
166 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
167 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
168 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
169 struct task_struct *t = current;
170
171 raw_lockdep_assert_held_rcu_node(rnp);
172 WARN_ON_ONCE(rdp->mynode != rnp);
173 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
174 /* RCU better not be waiting on newly onlined CPUs! */
175 WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
176 rdp->grpmask);
177
178 /*
179 * Decide where to queue the newly blocked task. In theory,
180 * this could be an if-statement. In practice, when I tried
181 * that, it was quite messy.
182 */
183 switch (blkd_state) {
184 case 0:
185 case RCU_EXP_TASKS:
186 case RCU_EXP_TASKS | RCU_GP_BLKD:
187 case RCU_GP_TASKS:
188 case RCU_GP_TASKS | RCU_EXP_TASKS:
189
190 /*
191 * Blocking neither GP, or first task blocking the normal
192 * GP but not blocking the already-waiting expedited GP.
193 * Queue at the head of the list to avoid unnecessarily
194 * blocking the already-waiting GPs.
195 */
196 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
197 break;
198
199 case RCU_EXP_BLKD:
200 case RCU_GP_BLKD:
201 case RCU_GP_BLKD | RCU_EXP_BLKD:
202 case RCU_GP_TASKS | RCU_EXP_BLKD:
203 case RCU_GP_TASKS | RCU_GP_BLKD | RCU_EXP_BLKD:
204 case RCU_GP_TASKS | RCU_EXP_TASKS | RCU_GP_BLKD | RCU_EXP_BLKD:
205
206 /*
207 * First task arriving that blocks either GP, or first task
208 * arriving that blocks the expedited GP (with the normal
209 * GP already waiting), or a task arriving that blocks
210 * both GPs with both GPs already waiting. Queue at the
211 * tail of the list to avoid any GP waiting on any of the
212 * already queued tasks that are not blocking it.
213 */
214 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
215 break;
216
217 case RCU_EXP_TASKS | RCU_EXP_BLKD:
218 case RCU_EXP_TASKS | RCU_GP_BLKD | RCU_EXP_BLKD:
219 case RCU_GP_TASKS | RCU_EXP_TASKS | RCU_EXP_BLKD:
220
221 /*
222 * Second or subsequent task blocking the expedited GP.
223 * The task either does not block the normal GP, or is the
224 * first task blocking the normal GP. Queue just after
225 * the first task blocking the expedited GP.
226 */
227 list_add(&t->rcu_node_entry, rnp->exp_tasks);
228 break;
229
230 case RCU_GP_TASKS | RCU_GP_BLKD:
231 case RCU_GP_TASKS | RCU_EXP_TASKS | RCU_GP_BLKD:
232
233 /*
234 * Second or subsequent task blocking the normal GP.
235 * The task does not block the expedited GP. Queue just
236 * after the first task blocking the normal GP.
237 */
238 list_add(&t->rcu_node_entry, rnp->gp_tasks);
239 break;
240
241 default:
242
243 /* Yet another exercise in excessive paranoia. */
244 WARN_ON_ONCE(1);
245 break;
246 }
247
248 /*
249 * We have now queued the task. If it was the first one to
250 * block either grace period, update the ->gp_tasks and/or
251 * ->exp_tasks pointers, respectively, to reference the newly
252 * blocked tasks.
253 */
254 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
255 WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
256 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
257 }
258 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
259 WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
260 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
261 !(rnp->qsmask & rdp->grpmask));
262 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
263 !(rnp->expmask & rdp->grpmask));
264 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
265
266 /*
267 * Report the quiescent state for the expedited GP. This expedited
268 * GP should not be able to end until we report, so there should be
269 * no need to check for a subsequent expedited GP. (Though we are
270 * still in a quiescent state in any case.)
271 *
272 * Interrupts are disabled, so ->cpu_no_qs.b.exp cannot change.
273 */
274 if (blkd_state & RCU_EXP_BLKD && rdp->cpu_no_qs.b.exp)
275 rcu_report_exp_rdp(rdp);
276 else
277 WARN_ON_ONCE(rdp->cpu_no_qs.b.exp);
278 ASSERT_EXCLUSIVE_WRITER_SCOPED(rdp->cpu_no_qs.b.exp);
279 }
280
281 /*
282 * Record a preemptible-RCU quiescent state for the specified CPU.
283 * Note that this does not necessarily mean that the task currently running
284 * on the CPU is in a quiescent state: Instead, it means that the current
285 * grace period need not wait on any RCU read-side critical section that
286 * starts later on this CPU. It also means that if the current task is
287 * in an RCU read-side critical section, it has already added itself to
288 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the
289 * current task, there might be any number of other tasks blocked while
290 * in an RCU read-side critical section.
291 *
292 * Unlike non-preemptible-RCU, quiescent state reports for expedited
293 * grace periods are handled separately via deferred quiescent states
294 * and context switch events.
295 *
296 * Callers to this function must disable preemption.
297 */
rcu_qs(void)298 static void rcu_qs(void)
299 {
300 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
301 if (__this_cpu_read(rcu_data.cpu_no_qs.b.norm)) {
302 trace_rcu_grace_period(TPS("rcu_preempt"),
303 __this_cpu_read(rcu_data.gp_seq),
304 TPS("cpuqs"));
305 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
306 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
307 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
308 }
309 }
310
311 /*
312 * We have entered the scheduler, and the current task might soon be
313 * context-switched away from. If this task is in an RCU read-side
314 * critical section, we will no longer be able to rely on the CPU to
315 * record that fact, so we enqueue the task on the blkd_tasks list.
316 * The task will dequeue itself when it exits the outermost enclosing
317 * RCU read-side critical section. Therefore, the current grace period
318 * cannot be permitted to complete until the blkd_tasks list entries
319 * predating the current grace period drain, in other words, until
320 * rnp->gp_tasks becomes NULL.
321 *
322 * Caller must disable interrupts.
323 */
rcu_note_context_switch(bool preempt)324 void rcu_note_context_switch(bool preempt)
325 {
326 struct task_struct *t = current;
327 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
328 struct rcu_node *rnp;
329
330 trace_rcu_utilization(TPS("Start context switch"));
331 lockdep_assert_irqs_disabled();
332 WARN_ONCE(!preempt && rcu_preempt_depth() > 0, "Voluntary context switch within RCU read-side critical section!");
333 if (rcu_preempt_depth() > 0 &&
334 !t->rcu_read_unlock_special.b.blocked) {
335
336 /* Possibly blocking in an RCU read-side critical section. */
337 rnp = rdp->mynode;
338 raw_spin_lock_rcu_node(rnp);
339 t->rcu_read_unlock_special.b.blocked = true;
340 t->rcu_blocked_node = rnp;
341
342 /*
343 * Verify the CPU's sanity, trace the preemption, and
344 * then queue the task as required based on the states
345 * of any ongoing and expedited grace periods.
346 */
347 WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp));
348 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
349 trace_rcu_preempt_task(rcu_state.name,
350 t->pid,
351 (rnp->qsmask & rdp->grpmask)
352 ? rnp->gp_seq
353 : rcu_seq_snap(&rnp->gp_seq));
354 rcu_preempt_ctxt_queue(rnp, rdp);
355 } else {
356 rcu_preempt_deferred_qs(t);
357 }
358
359 /*
360 * Either we were not in an RCU read-side critical section to
361 * begin with, or we have now recorded that critical section
362 * globally. Either way, we can now note a quiescent state
363 * for this CPU. Again, if we were in an RCU read-side critical
364 * section, and if that critical section was blocking the current
365 * grace period, then the fact that the task has been enqueued
366 * means that we continue to block the current grace period.
367 */
368 rcu_qs();
369 if (rdp->cpu_no_qs.b.exp)
370 rcu_report_exp_rdp(rdp);
371 rcu_tasks_qs(current, preempt);
372 trace_rcu_utilization(TPS("End context switch"));
373 }
374 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
375
376 /*
377 * Check for preempted RCU readers blocking the current grace period
378 * for the specified rcu_node structure. If the caller needs a reliable
379 * answer, it must hold the rcu_node's ->lock.
380 */
rcu_preempt_blocked_readers_cgp(struct rcu_node * rnp)381 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
382 {
383 return READ_ONCE(rnp->gp_tasks) != NULL;
384 }
385
386 /* limit value for ->rcu_read_lock_nesting. */
387 #define RCU_NEST_PMAX (INT_MAX / 2)
388
rcu_preempt_read_enter(void)389 static void rcu_preempt_read_enter(void)
390 {
391 WRITE_ONCE(current->rcu_read_lock_nesting, READ_ONCE(current->rcu_read_lock_nesting) + 1);
392 }
393
rcu_preempt_read_exit(void)394 static int rcu_preempt_read_exit(void)
395 {
396 int ret = READ_ONCE(current->rcu_read_lock_nesting) - 1;
397
398 WRITE_ONCE(current->rcu_read_lock_nesting, ret);
399 return ret;
400 }
401
rcu_preempt_depth_set(int val)402 static void rcu_preempt_depth_set(int val)
403 {
404 WRITE_ONCE(current->rcu_read_lock_nesting, val);
405 }
406
407 /*
408 * Preemptible RCU implementation for rcu_read_lock().
409 * Just increment ->rcu_read_lock_nesting, shared state will be updated
410 * if we block.
411 */
__rcu_read_lock(void)412 void __rcu_read_lock(void)
413 {
414 rcu_preempt_read_enter();
415 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
416 WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
417 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread)
418 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true);
419 barrier(); /* critical section after entry code. */
420 }
421 EXPORT_SYMBOL_GPL(__rcu_read_lock);
422
423 /*
424 * Preemptible RCU implementation for rcu_read_unlock().
425 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
426 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
427 * invoke rcu_read_unlock_special() to clean up after a context switch
428 * in an RCU read-side critical section and other special cases.
429 */
__rcu_read_unlock(void)430 void __rcu_read_unlock(void)
431 {
432 struct task_struct *t = current;
433
434 barrier(); // critical section before exit code.
435 if (rcu_preempt_read_exit() == 0) {
436 barrier(); // critical-section exit before .s check.
437 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
438 rcu_read_unlock_special(t);
439 }
440 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
441 int rrln = rcu_preempt_depth();
442
443 WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
444 }
445 }
446 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
447
448 /*
449 * Advance a ->blkd_tasks-list pointer to the next entry, instead
450 * returning NULL if at the end of the list.
451 */
rcu_next_node_entry(struct task_struct * t,struct rcu_node * rnp)452 static struct list_head *rcu_next_node_entry(struct task_struct *t,
453 struct rcu_node *rnp)
454 {
455 struct list_head *np;
456
457 np = t->rcu_node_entry.next;
458 if (np == &rnp->blkd_tasks)
459 np = NULL;
460 return np;
461 }
462
463 /*
464 * Return true if the specified rcu_node structure has tasks that were
465 * preempted within an RCU read-side critical section.
466 */
rcu_preempt_has_tasks(struct rcu_node * rnp)467 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
468 {
469 return !list_empty(&rnp->blkd_tasks);
470 }
471
472 /*
473 * Report deferred quiescent states. The deferral time can
474 * be quite short, for example, in the case of the call from
475 * rcu_read_unlock_special().
476 */
477 static notrace void
rcu_preempt_deferred_qs_irqrestore(struct task_struct * t,unsigned long flags)478 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
479 {
480 bool empty_exp;
481 bool empty_norm;
482 bool empty_exp_now;
483 struct list_head *np;
484 bool drop_boost_mutex = false;
485 struct rcu_data *rdp;
486 struct rcu_node *rnp;
487 union rcu_special special;
488
489 /*
490 * If RCU core is waiting for this CPU to exit its critical section,
491 * report the fact that it has exited. Because irqs are disabled,
492 * t->rcu_read_unlock_special cannot change.
493 */
494 special = t->rcu_read_unlock_special;
495 rdp = this_cpu_ptr(&rcu_data);
496 if (!special.s && !rdp->cpu_no_qs.b.exp) {
497 local_irq_restore(flags);
498 return;
499 }
500 t->rcu_read_unlock_special.s = 0;
501 if (special.b.need_qs) {
502 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
503 rdp->cpu_no_qs.b.norm = false;
504 rcu_report_qs_rdp(rdp);
505 udelay(rcu_unlock_delay);
506 } else {
507 rcu_qs();
508 }
509 }
510
511 /*
512 * Respond to a request by an expedited grace period for a
513 * quiescent state from this CPU. Note that requests from
514 * tasks are handled when removing the task from the
515 * blocked-tasks list below.
516 */
517 if (rdp->cpu_no_qs.b.exp)
518 rcu_report_exp_rdp(rdp);
519
520 /* Clean up if blocked during RCU read-side critical section. */
521 if (special.b.blocked) {
522
523 /*
524 * Remove this task from the list it blocked on. The task
525 * now remains queued on the rcu_node corresponding to the
526 * CPU it first blocked on, so there is no longer any need
527 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
528 */
529 rnp = t->rcu_blocked_node;
530 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
531 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
532 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
533 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
534 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
535 (!empty_norm || rnp->qsmask));
536 empty_exp = sync_rcu_exp_done(rnp);
537 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
538 np = rcu_next_node_entry(t, rnp);
539 list_del_init(&t->rcu_node_entry);
540 t->rcu_blocked_node = NULL;
541 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
542 rnp->gp_seq, t->pid);
543 if (&t->rcu_node_entry == rnp->gp_tasks)
544 WRITE_ONCE(rnp->gp_tasks, np);
545 if (&t->rcu_node_entry == rnp->exp_tasks)
546 WRITE_ONCE(rnp->exp_tasks, np);
547 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
548 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
549 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx.rtmutex) == t;
550 if (&t->rcu_node_entry == rnp->boost_tasks)
551 WRITE_ONCE(rnp->boost_tasks, np);
552 }
553
554 /*
555 * If this was the last task on the current list, and if
556 * we aren't waiting on any CPUs, report the quiescent state.
557 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
558 * so we must take a snapshot of the expedited state.
559 */
560 empty_exp_now = sync_rcu_exp_done(rnp);
561 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
562 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
563 rnp->gp_seq,
564 0, rnp->qsmask,
565 rnp->level,
566 rnp->grplo,
567 rnp->grphi,
568 !!rnp->gp_tasks);
569 rcu_report_unblock_qs_rnp(rnp, flags);
570 } else {
571 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
572 }
573
574 /*
575 * If this was the last task on the expedited lists,
576 * then we need to report up the rcu_node hierarchy.
577 */
578 if (!empty_exp && empty_exp_now)
579 rcu_report_exp_rnp(rnp, true);
580
581 /* Unboost if we were boosted. */
582 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
583 rt_mutex_futex_unlock(&rnp->boost_mtx.rtmutex);
584 } else {
585 local_irq_restore(flags);
586 }
587 }
588
589 /*
590 * Is a deferred quiescent-state pending, and are we also not in
591 * an RCU read-side critical section? It is the caller's responsibility
592 * to ensure it is otherwise safe to report any deferred quiescent
593 * states. The reason for this is that it is safe to report a
594 * quiescent state during context switch even though preemption
595 * is disabled. This function cannot be expected to understand these
596 * nuances, so the caller must handle them.
597 */
rcu_preempt_need_deferred_qs(struct task_struct * t)598 static notrace bool rcu_preempt_need_deferred_qs(struct task_struct *t)
599 {
600 return (__this_cpu_read(rcu_data.cpu_no_qs.b.exp) ||
601 READ_ONCE(t->rcu_read_unlock_special.s)) &&
602 rcu_preempt_depth() == 0;
603 }
604
605 /*
606 * Report a deferred quiescent state if needed and safe to do so.
607 * As with rcu_preempt_need_deferred_qs(), "safe" involves only
608 * not being in an RCU read-side critical section. The caller must
609 * evaluate safety in terms of interrupt, softirq, and preemption
610 * disabling.
611 */
rcu_preempt_deferred_qs(struct task_struct * t)612 notrace void rcu_preempt_deferred_qs(struct task_struct *t)
613 {
614 unsigned long flags;
615
616 if (!rcu_preempt_need_deferred_qs(t))
617 return;
618 local_irq_save(flags);
619 rcu_preempt_deferred_qs_irqrestore(t, flags);
620 }
621
622 /*
623 * Minimal handler to give the scheduler a chance to re-evaluate.
624 */
rcu_preempt_deferred_qs_handler(struct irq_work * iwp)625 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
626 {
627 struct rcu_data *rdp;
628
629 rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
630 rdp->defer_qs_iw_pending = false;
631 }
632
633 /*
634 * Handle special cases during rcu_read_unlock(), such as needing to
635 * notify RCU core processing or task having blocked during the RCU
636 * read-side critical section.
637 */
rcu_read_unlock_special(struct task_struct * t)638 static void rcu_read_unlock_special(struct task_struct *t)
639 {
640 unsigned long flags;
641 bool irqs_were_disabled;
642 bool preempt_bh_were_disabled =
643 !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
644
645 /* NMI handlers cannot block and cannot safely manipulate state. */
646 if (in_nmi())
647 return;
648
649 local_irq_save(flags);
650 irqs_were_disabled = irqs_disabled_flags(flags);
651 if (preempt_bh_were_disabled || irqs_were_disabled) {
652 bool expboost; // Expedited GP in flight or possible boosting.
653 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
654 struct rcu_node *rnp = rdp->mynode;
655
656 expboost = (t->rcu_blocked_node && READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
657 (rdp->grpmask & READ_ONCE(rnp->expmask)) ||
658 (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) &&
659 ((rdp->grpmask & READ_ONCE(rnp->qsmask)) || t->rcu_blocked_node)) ||
660 (IS_ENABLED(CONFIG_RCU_BOOST) && irqs_were_disabled &&
661 t->rcu_blocked_node);
662 // Need to defer quiescent state until everything is enabled.
663 if (use_softirq && (in_hardirq() || (expboost && !irqs_were_disabled))) {
664 // Using softirq, safe to awaken, and either the
665 // wakeup is free or there is either an expedited
666 // GP in flight or a potential need to deboost.
667 raise_softirq_irqoff(RCU_SOFTIRQ);
668 } else {
669 // Enabling BH or preempt does reschedule, so...
670 // Also if no expediting and no possible deboosting,
671 // slow is OK. Plus nohz_full CPUs eventually get
672 // tick enabled.
673 set_tsk_need_resched(current);
674 set_preempt_need_resched();
675 if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
676 expboost && !rdp->defer_qs_iw_pending && cpu_online(rdp->cpu)) {
677 // Get scheduler to re-evaluate and call hooks.
678 // If !IRQ_WORK, FQS scan will eventually IPI.
679 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) &&
680 IS_ENABLED(CONFIG_PREEMPT_RT))
681 rdp->defer_qs_iw = IRQ_WORK_INIT_HARD(
682 rcu_preempt_deferred_qs_handler);
683 else
684 init_irq_work(&rdp->defer_qs_iw,
685 rcu_preempt_deferred_qs_handler);
686 rdp->defer_qs_iw_pending = true;
687 irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
688 }
689 }
690 local_irq_restore(flags);
691 return;
692 }
693 rcu_preempt_deferred_qs_irqrestore(t, flags);
694 }
695
696 /*
697 * Check that the list of blocked tasks for the newly completed grace
698 * period is in fact empty. It is a serious bug to complete a grace
699 * period that still has RCU readers blocked! This function must be
700 * invoked -before- updating this rnp's ->gp_seq.
701 *
702 * Also, if there are blocked tasks on the list, they automatically
703 * block the newly created grace period, so set up ->gp_tasks accordingly.
704 */
rcu_preempt_check_blocked_tasks(struct rcu_node * rnp)705 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
706 {
707 struct task_struct *t;
708
709 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
710 raw_lockdep_assert_held_rcu_node(rnp);
711 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
712 dump_blkd_tasks(rnp, 10);
713 if (rcu_preempt_has_tasks(rnp) &&
714 (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
715 WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
716 t = container_of(rnp->gp_tasks, struct task_struct,
717 rcu_node_entry);
718 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
719 rnp->gp_seq, t->pid);
720 }
721 WARN_ON_ONCE(rnp->qsmask);
722 }
723
724 /*
725 * Check for a quiescent state from the current CPU, including voluntary
726 * context switches for Tasks RCU. When a task blocks, the task is
727 * recorded in the corresponding CPU's rcu_node structure, which is checked
728 * elsewhere, hence this function need only check for quiescent states
729 * related to the current CPU, not to those related to tasks.
730 */
rcu_flavor_sched_clock_irq(int user)731 static void rcu_flavor_sched_clock_irq(int user)
732 {
733 struct task_struct *t = current;
734
735 lockdep_assert_irqs_disabled();
736 if (rcu_preempt_depth() > 0 ||
737 (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
738 /* No QS, force context switch if deferred. */
739 if (rcu_preempt_need_deferred_qs(t)) {
740 set_tsk_need_resched(t);
741 set_preempt_need_resched();
742 }
743 } else if (rcu_preempt_need_deferred_qs(t)) {
744 rcu_preempt_deferred_qs(t); /* Report deferred QS. */
745 return;
746 } else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
747 rcu_qs(); /* Report immediate QS. */
748 return;
749 }
750
751 /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
752 if (rcu_preempt_depth() > 0 &&
753 __this_cpu_read(rcu_data.core_needs_qs) &&
754 __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
755 !t->rcu_read_unlock_special.b.need_qs &&
756 time_after(jiffies, rcu_state.gp_start + HZ))
757 t->rcu_read_unlock_special.b.need_qs = true;
758 }
759
760 /*
761 * Check for a task exiting while in a preemptible-RCU read-side
762 * critical section, clean up if so. No need to issue warnings, as
763 * debug_check_no_locks_held() already does this if lockdep is enabled.
764 * Besides, if this function does anything other than just immediately
765 * return, there was a bug of some sort. Spewing warnings from this
766 * function is like as not to simply obscure important prior warnings.
767 */
exit_rcu(void)768 void exit_rcu(void)
769 {
770 struct task_struct *t = current;
771
772 if (unlikely(!list_empty(¤t->rcu_node_entry))) {
773 rcu_preempt_depth_set(1);
774 barrier();
775 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
776 } else if (unlikely(rcu_preempt_depth())) {
777 rcu_preempt_depth_set(1);
778 } else {
779 return;
780 }
781 __rcu_read_unlock();
782 rcu_preempt_deferred_qs(current);
783 }
784
785 /*
786 * Dump the blocked-tasks state, but limit the list dump to the
787 * specified number of elements.
788 */
789 static void
dump_blkd_tasks(struct rcu_node * rnp,int ncheck)790 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
791 {
792 int cpu;
793 int i;
794 struct list_head *lhp;
795 struct rcu_data *rdp;
796 struct rcu_node *rnp1;
797
798 raw_lockdep_assert_held_rcu_node(rnp);
799 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
800 __func__, rnp->grplo, rnp->grphi, rnp->level,
801 (long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
802 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
803 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
804 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
805 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
806 __func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
807 READ_ONCE(rnp->exp_tasks));
808 pr_info("%s: ->blkd_tasks", __func__);
809 i = 0;
810 list_for_each(lhp, &rnp->blkd_tasks) {
811 pr_cont(" %p", lhp);
812 if (++i >= ncheck)
813 break;
814 }
815 pr_cont("\n");
816 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
817 rdp = per_cpu_ptr(&rcu_data, cpu);
818 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
819 cpu, ".o"[rcu_rdp_cpu_online(rdp)],
820 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_state,
821 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_state);
822 }
823 }
824
825 #else /* #ifdef CONFIG_PREEMPT_RCU */
826
827 /*
828 * If strict grace periods are enabled, and if the calling
829 * __rcu_read_unlock() marks the beginning of a quiescent state, immediately
830 * report that quiescent state and, if requested, spin for a bit.
831 */
rcu_read_unlock_strict(void)832 void rcu_read_unlock_strict(void)
833 {
834 struct rcu_data *rdp;
835
836 if (irqs_disabled() || in_atomic_preempt_off() || !rcu_state.gp_kthread)
837 return;
838
839 /*
840 * rcu_report_qs_rdp() can only be invoked with a stable rdp and
841 * from the local CPU.
842 *
843 * The in_atomic_preempt_off() check ensures that we come here holding
844 * the last preempt_count (which will get dropped once we return to
845 * __rcu_read_unlock().
846 */
847 rdp = this_cpu_ptr(&rcu_data);
848 rdp->cpu_no_qs.b.norm = false;
849 rcu_report_qs_rdp(rdp);
850 udelay(rcu_unlock_delay);
851 }
852 EXPORT_SYMBOL_GPL(rcu_read_unlock_strict);
853
854 /*
855 * Tell them what RCU they are running.
856 */
rcu_bootup_announce(void)857 static void __init rcu_bootup_announce(void)
858 {
859 pr_info("Hierarchical RCU implementation.\n");
860 rcu_bootup_announce_oddness();
861 }
862
863 /*
864 * Note a quiescent state for PREEMPTION=n. Because we do not need to know
865 * how many quiescent states passed, just if there was at least one since
866 * the start of the grace period, this just sets a flag. The caller must
867 * have disabled preemption.
868 */
rcu_qs(void)869 static void rcu_qs(void)
870 {
871 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
872 if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
873 return;
874 trace_rcu_grace_period(TPS("rcu_sched"),
875 __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
876 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
877 if (__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
878 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
879 }
880
881 /*
882 * Register an urgently needed quiescent state. If there is an
883 * emergency, invoke rcu_momentary_eqs() to do a heavy-weight
884 * dyntick-idle quiescent state visible to other CPUs, which will in
885 * some cases serve for expedited as well as normal grace periods.
886 * Either way, register a lightweight quiescent state.
887 */
rcu_all_qs(void)888 void rcu_all_qs(void)
889 {
890 unsigned long flags;
891
892 if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
893 return;
894 preempt_disable(); // For CONFIG_PREEMPT_COUNT=y kernels
895 /* Load rcu_urgent_qs before other flags. */
896 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
897 preempt_enable();
898 return;
899 }
900 this_cpu_write(rcu_data.rcu_urgent_qs, false);
901 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
902 local_irq_save(flags);
903 rcu_momentary_eqs();
904 local_irq_restore(flags);
905 }
906 rcu_qs();
907 preempt_enable();
908 }
909 EXPORT_SYMBOL_GPL(rcu_all_qs);
910
911 /*
912 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
913 */
rcu_note_context_switch(bool preempt)914 void rcu_note_context_switch(bool preempt)
915 {
916 trace_rcu_utilization(TPS("Start context switch"));
917 rcu_qs();
918 /* Load rcu_urgent_qs before other flags. */
919 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
920 goto out;
921 this_cpu_write(rcu_data.rcu_urgent_qs, false);
922 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
923 rcu_momentary_eqs();
924 out:
925 rcu_tasks_qs(current, preempt);
926 trace_rcu_utilization(TPS("End context switch"));
927 }
928 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
929
930 /*
931 * Because preemptible RCU does not exist, there are never any preempted
932 * RCU readers.
933 */
rcu_preempt_blocked_readers_cgp(struct rcu_node * rnp)934 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
935 {
936 return 0;
937 }
938
939 /*
940 * Because there is no preemptible RCU, there can be no readers blocked.
941 */
rcu_preempt_has_tasks(struct rcu_node * rnp)942 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
943 {
944 return false;
945 }
946
947 /*
948 * Because there is no preemptible RCU, there can be no deferred quiescent
949 * states.
950 */
rcu_preempt_need_deferred_qs(struct task_struct * t)951 static notrace bool rcu_preempt_need_deferred_qs(struct task_struct *t)
952 {
953 return false;
954 }
955
956 // Except that we do need to respond to a request by an expedited
957 // grace period for a quiescent state from this CPU. Note that in
958 // non-preemptible kernels, there can be no context switches within RCU
959 // read-side critical sections, which in turn means that the leaf rcu_node
960 // structure's blocked-tasks list is always empty. is therefore no need to
961 // actually check it. Instead, a quiescent state from this CPU suffices,
962 // and this function is only called from such a quiescent state.
rcu_preempt_deferred_qs(struct task_struct * t)963 notrace void rcu_preempt_deferred_qs(struct task_struct *t)
964 {
965 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
966
967 if (READ_ONCE(rdp->cpu_no_qs.b.exp))
968 rcu_report_exp_rdp(rdp);
969 }
970
971 /*
972 * Because there is no preemptible RCU, there can be no readers blocked,
973 * so there is no need to check for blocked tasks. So check only for
974 * bogus qsmask values.
975 */
rcu_preempt_check_blocked_tasks(struct rcu_node * rnp)976 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
977 {
978 WARN_ON_ONCE(rnp->qsmask);
979 }
980
981 /*
982 * Check to see if this CPU is in a non-context-switch quiescent state,
983 * namely user mode and idle loop.
984 */
rcu_flavor_sched_clock_irq(int user)985 static void rcu_flavor_sched_clock_irq(int user)
986 {
987 if (user || rcu_is_cpu_rrupt_from_idle() ||
988 (IS_ENABLED(CONFIG_PREEMPT_COUNT) &&
989 (preempt_count() == HARDIRQ_OFFSET))) {
990
991 /*
992 * Get here if this CPU took its interrupt from user
993 * mode, from the idle loop without this being a nested
994 * interrupt, or while not holding the task preempt count
995 * (with PREEMPT_COUNT=y). In this case, the CPU is in a
996 * quiescent state, so note it.
997 *
998 * No memory barrier is required here because rcu_qs()
999 * references only CPU-local variables that other CPUs
1000 * neither access nor modify, at least not while the
1001 * corresponding CPU is online.
1002 */
1003 rcu_qs();
1004 }
1005 }
1006
1007 /*
1008 * Because preemptible RCU does not exist, tasks cannot possibly exit
1009 * while in preemptible RCU read-side critical sections.
1010 */
exit_rcu(void)1011 void exit_rcu(void)
1012 {
1013 }
1014
1015 /*
1016 * Dump the guaranteed-empty blocked-tasks state. Trust but verify.
1017 */
1018 static void
dump_blkd_tasks(struct rcu_node * rnp,int ncheck)1019 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
1020 {
1021 WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
1022 }
1023
1024 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
1025
1026 /*
1027 * If boosting, set rcuc kthreads to realtime priority.
1028 */
rcu_cpu_kthread_setup(unsigned int cpu)1029 static void rcu_cpu_kthread_setup(unsigned int cpu)
1030 {
1031 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1032 #ifdef CONFIG_RCU_BOOST
1033 struct sched_param sp;
1034
1035 sp.sched_priority = kthread_prio;
1036 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1037 #endif /* #ifdef CONFIG_RCU_BOOST */
1038
1039 WRITE_ONCE(rdp->rcuc_activity, jiffies);
1040 }
1041
rcu_is_callbacks_nocb_kthread(struct rcu_data * rdp)1042 static bool rcu_is_callbacks_nocb_kthread(struct rcu_data *rdp)
1043 {
1044 #ifdef CONFIG_RCU_NOCB_CPU
1045 return rdp->nocb_cb_kthread == current;
1046 #else
1047 return false;
1048 #endif
1049 }
1050
1051 /*
1052 * Is the current CPU running the RCU-callbacks kthread?
1053 * Caller must have preemption disabled.
1054 */
rcu_is_callbacks_kthread(struct rcu_data * rdp)1055 static bool rcu_is_callbacks_kthread(struct rcu_data *rdp)
1056 {
1057 return rdp->rcu_cpu_kthread_task == current ||
1058 rcu_is_callbacks_nocb_kthread(rdp);
1059 }
1060
1061 #ifdef CONFIG_RCU_BOOST
1062
1063 /*
1064 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1065 * or ->boost_tasks, advancing the pointer to the next task in the
1066 * ->blkd_tasks list.
1067 *
1068 * Note that irqs must be enabled: boosting the task can block.
1069 * Returns 1 if there are more tasks needing to be boosted.
1070 */
rcu_boost(struct rcu_node * rnp)1071 static int rcu_boost(struct rcu_node *rnp)
1072 {
1073 unsigned long flags;
1074 struct task_struct *t;
1075 struct list_head *tb;
1076
1077 if (READ_ONCE(rnp->exp_tasks) == NULL &&
1078 READ_ONCE(rnp->boost_tasks) == NULL)
1079 return 0; /* Nothing left to boost. */
1080
1081 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1082
1083 /*
1084 * Recheck under the lock: all tasks in need of boosting
1085 * might exit their RCU read-side critical sections on their own.
1086 */
1087 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1088 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1089 return 0;
1090 }
1091
1092 /*
1093 * Preferentially boost tasks blocking expedited grace periods.
1094 * This cannot starve the normal grace periods because a second
1095 * expedited grace period must boost all blocked tasks, including
1096 * those blocking the pre-existing normal grace period.
1097 */
1098 if (rnp->exp_tasks != NULL)
1099 tb = rnp->exp_tasks;
1100 else
1101 tb = rnp->boost_tasks;
1102
1103 /*
1104 * We boost task t by manufacturing an rt_mutex that appears to
1105 * be held by task t. We leave a pointer to that rt_mutex where
1106 * task t can find it, and task t will release the mutex when it
1107 * exits its outermost RCU read-side critical section. Then
1108 * simply acquiring this artificial rt_mutex will boost task
1109 * t's priority. (Thanks to tglx for suggesting this approach!)
1110 *
1111 * Note that task t must acquire rnp->lock to remove itself from
1112 * the ->blkd_tasks list, which it will do from exit() if from
1113 * nowhere else. We therefore are guaranteed that task t will
1114 * stay around at least until we drop rnp->lock. Note that
1115 * rnp->lock also resolves races between our priority boosting
1116 * and task t's exiting its outermost RCU read-side critical
1117 * section.
1118 */
1119 t = container_of(tb, struct task_struct, rcu_node_entry);
1120 rt_mutex_init_proxy_locked(&rnp->boost_mtx.rtmutex, t);
1121 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1122 /* Lock only for side effect: boosts task t's priority. */
1123 rt_mutex_lock(&rnp->boost_mtx);
1124 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
1125 rnp->n_boosts++;
1126
1127 return READ_ONCE(rnp->exp_tasks) != NULL ||
1128 READ_ONCE(rnp->boost_tasks) != NULL;
1129 }
1130
1131 /*
1132 * Priority-boosting kthread, one per leaf rcu_node.
1133 */
rcu_boost_kthread(void * arg)1134 static int rcu_boost_kthread(void *arg)
1135 {
1136 struct rcu_node *rnp = (struct rcu_node *)arg;
1137 int spincnt = 0;
1138 int more2boost;
1139
1140 trace_rcu_utilization(TPS("Start boost kthread@init"));
1141 for (;;) {
1142 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
1143 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1144 rcu_wait(READ_ONCE(rnp->boost_tasks) ||
1145 READ_ONCE(rnp->exp_tasks));
1146 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1147 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
1148 more2boost = rcu_boost(rnp);
1149 if (more2boost)
1150 spincnt++;
1151 else
1152 spincnt = 0;
1153 if (spincnt > 10) {
1154 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
1155 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1156 schedule_timeout_idle(2);
1157 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1158 spincnt = 0;
1159 }
1160 }
1161 /* NOTREACHED */
1162 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1163 return 0;
1164 }
1165
1166 /*
1167 * Check to see if it is time to start boosting RCU readers that are
1168 * blocking the current grace period, and, if so, tell the per-rcu_node
1169 * kthread to start boosting them. If there is an expedited grace
1170 * period in progress, it is always time to boost.
1171 *
1172 * The caller must hold rnp->lock, which this function releases.
1173 * The ->boost_kthread_task is immortal, so we don't need to worry
1174 * about it going away.
1175 */
rcu_initiate_boost(struct rcu_node * rnp,unsigned long flags)1176 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1177 __releases(rnp->lock)
1178 {
1179 raw_lockdep_assert_held_rcu_node(rnp);
1180 if (!rnp->boost_kthread_task ||
1181 (!rcu_preempt_blocked_readers_cgp(rnp) && !rnp->exp_tasks)) {
1182 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1183 return;
1184 }
1185 if (rnp->exp_tasks != NULL ||
1186 (rnp->gp_tasks != NULL &&
1187 rnp->boost_tasks == NULL &&
1188 rnp->qsmask == 0 &&
1189 (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld ||
1190 IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)))) {
1191 if (rnp->exp_tasks == NULL)
1192 WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
1193 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1194 rcu_wake_cond(rnp->boost_kthread_task,
1195 READ_ONCE(rnp->boost_kthread_status));
1196 } else {
1197 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1198 }
1199 }
1200
1201 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1202
1203 /*
1204 * Do priority-boost accounting for the start of a new grace period.
1205 */
rcu_preempt_boost_start_gp(struct rcu_node * rnp)1206 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1207 {
1208 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1209 }
1210
1211 /*
1212 * Create an RCU-boost kthread for the specified node if one does not
1213 * already exist. We only create this kthread for preemptible RCU.
1214 */
rcu_spawn_one_boost_kthread(struct rcu_node * rnp)1215 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1216 {
1217 unsigned long flags;
1218 int rnp_index = rnp - rcu_get_root();
1219 struct sched_param sp;
1220 struct task_struct *t;
1221
1222 if (rnp->boost_kthread_task)
1223 return;
1224
1225 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1226 "rcub/%d", rnp_index);
1227 if (WARN_ON_ONCE(IS_ERR(t)))
1228 return;
1229
1230 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1231 rnp->boost_kthread_task = t;
1232 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1233
1234 sp.sched_priority = kthread_prio;
1235 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1236 rcu_thread_affine_rnp(t, rnp);
1237 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1238 }
1239
1240 #else /* #ifdef CONFIG_RCU_BOOST */
1241
rcu_initiate_boost(struct rcu_node * rnp,unsigned long flags)1242 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1243 __releases(rnp->lock)
1244 {
1245 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1246 }
1247
rcu_preempt_boost_start_gp(struct rcu_node * rnp)1248 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1249 {
1250 }
1251
rcu_spawn_one_boost_kthread(struct rcu_node * rnp)1252 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1253 {
1254 }
1255
1256 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1257
1258 /*
1259 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
1260 * grace-period kthread will do force_quiescent_state() processing?
1261 * The idea is to avoid waking up RCU core processing on such a
1262 * CPU unless the grace period has extended for too long.
1263 *
1264 * This code relies on the fact that all NO_HZ_FULL CPUs are also
1265 * RCU_NOCB_CPU CPUs.
1266 */
rcu_nohz_full_cpu(void)1267 static bool rcu_nohz_full_cpu(void)
1268 {
1269 #ifdef CONFIG_NO_HZ_FULL
1270 if (tick_nohz_full_cpu(smp_processor_id()) &&
1271 (!rcu_gp_in_progress() ||
1272 time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
1273 return true;
1274 #endif /* #ifdef CONFIG_NO_HZ_FULL */
1275 return false;
1276 }
1277
1278 /*
1279 * Bind the RCU grace-period kthreads to the housekeeping CPU.
1280 */
rcu_bind_gp_kthread(void)1281 static void rcu_bind_gp_kthread(void)
1282 {
1283 if (!tick_nohz_full_enabled())
1284 return;
1285 housekeeping_affine(current, HK_TYPE_RCU);
1286 }
1287