xref: /linux/kernel/rcu/tree_plugin.h (revision f49040c7aaa5532a1f94355ef5073c49e6b32349)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  *
10  * Author: Ingo Molnar <mingo@elte.hu>
11  *	   Paul E. McKenney <paulmck@linux.ibm.com>
12  */
13 
14 #include "../locking/rtmutex_common.h"
15 
rcu_rdp_is_offloaded(struct rcu_data * rdp)16 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp)
17 {
18 	/*
19 	 * In order to read the offloaded state of an rdp in a safe
20 	 * and stable way and prevent from its value to be changed
21 	 * under us, we must either hold the barrier mutex, the cpu
22 	 * hotplug lock (read or write) or the nocb lock. Local
23 	 * non-preemptible reads are also safe. NOCB kthreads and
24 	 * timers have their own means of synchronization against the
25 	 * offloaded state updaters.
26 	 */
27 	RCU_NOCB_LOCKDEP_WARN(
28 		!(lockdep_is_held(&rcu_state.barrier_mutex) ||
29 		  (IS_ENABLED(CONFIG_HOTPLUG_CPU) && lockdep_is_cpus_held()) ||
30 		  lockdep_is_held(&rdp->nocb_lock) ||
31 		  lockdep_is_held(&rcu_state.nocb_mutex) ||
32 		  (!(IS_ENABLED(CONFIG_PREEMPT_COUNT) && preemptible()) &&
33 		   rdp == this_cpu_ptr(&rcu_data)) ||
34 		  rcu_current_is_nocb_kthread(rdp)),
35 		"Unsafe read of RCU_NOCB offloaded state"
36 	);
37 
38 	return rcu_segcblist_is_offloaded(&rdp->cblist);
39 }
40 
41 /*
42  * Check the RCU kernel configuration parameters and print informative
43  * messages about anything out of the ordinary.
44  */
rcu_bootup_announce_oddness(void)45 static void __init rcu_bootup_announce_oddness(void)
46 {
47 	if (IS_ENABLED(CONFIG_RCU_TRACE))
48 		pr_info("\tRCU event tracing is enabled.\n");
49 	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
50 	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
51 		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
52 			RCU_FANOUT);
53 	if (rcu_fanout_exact)
54 		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
55 	if (IS_ENABLED(CONFIG_PROVE_RCU))
56 		pr_info("\tRCU lockdep checking is enabled.\n");
57 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
58 		pr_info("\tRCU strict (and thus non-scalable) grace periods are enabled.\n");
59 	if (RCU_NUM_LVLS >= 4)
60 		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
61 	if (RCU_FANOUT_LEAF != 16)
62 		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
63 			RCU_FANOUT_LEAF);
64 	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
65 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
66 			rcu_fanout_leaf);
67 	if (nr_cpu_ids != NR_CPUS)
68 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
69 #ifdef CONFIG_RCU_BOOST
70 	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
71 		kthread_prio, CONFIG_RCU_BOOST_DELAY);
72 #endif
73 	if (blimit != DEFAULT_RCU_BLIMIT)
74 		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
75 	if (qhimark != DEFAULT_RCU_QHIMARK)
76 		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
77 	if (qlowmark != DEFAULT_RCU_QLOMARK)
78 		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
79 	if (qovld != DEFAULT_RCU_QOVLD)
80 		pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
81 	if (jiffies_till_first_fqs != ULONG_MAX)
82 		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
83 	if (jiffies_till_next_fqs != ULONG_MAX)
84 		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
85 	if (jiffies_till_sched_qs != ULONG_MAX)
86 		pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
87 	if (rcu_kick_kthreads)
88 		pr_info("\tKick kthreads if too-long grace period.\n");
89 	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
90 		pr_info("\tRCU callback double-/use-after-free debug is enabled.\n");
91 	if (gp_preinit_delay)
92 		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
93 	if (gp_init_delay)
94 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
95 	if (gp_cleanup_delay)
96 		pr_info("\tRCU debug GP cleanup slowdown %d jiffies.\n", gp_cleanup_delay);
97 	if (nohz_full_patience_delay < 0) {
98 		pr_info("\tRCU NOCB CPU patience negative (%d), resetting to zero.\n", nohz_full_patience_delay);
99 		nohz_full_patience_delay = 0;
100 	} else if (nohz_full_patience_delay > 5 * MSEC_PER_SEC) {
101 		pr_info("\tRCU NOCB CPU patience too large (%d), resetting to %ld.\n", nohz_full_patience_delay, 5 * MSEC_PER_SEC);
102 		nohz_full_patience_delay = 5 * MSEC_PER_SEC;
103 	} else if (nohz_full_patience_delay) {
104 		pr_info("\tRCU NOCB CPU patience set to %d milliseconds.\n", nohz_full_patience_delay);
105 	}
106 	nohz_full_patience_delay_jiffies = msecs_to_jiffies(nohz_full_patience_delay);
107 	if (!use_softirq)
108 		pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
109 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
110 		pr_info("\tRCU debug extended QS entry/exit.\n");
111 	rcupdate_announce_bootup_oddness();
112 }
113 
114 #ifdef CONFIG_PREEMPT_RCU
115 
116 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
117 static void rcu_read_unlock_special(struct task_struct *t);
118 
119 /*
120  * Tell them what RCU they are running.
121  */
rcu_bootup_announce(void)122 static void __init rcu_bootup_announce(void)
123 {
124 	pr_info("Preemptible hierarchical RCU implementation.\n");
125 	rcu_bootup_announce_oddness();
126 }
127 
128 /* Flags for rcu_preempt_ctxt_queue() decision table. */
129 #define RCU_GP_TASKS	0x8
130 #define RCU_EXP_TASKS	0x4
131 #define RCU_GP_BLKD	0x2
132 #define RCU_EXP_BLKD	0x1
133 
134 /*
135  * Queues a task preempted within an RCU-preempt read-side critical
136  * section into the appropriate location within the ->blkd_tasks list,
137  * depending on the states of any ongoing normal and expedited grace
138  * periods.  The ->gp_tasks pointer indicates which element the normal
139  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
140  * indicates which element the expedited grace period is waiting on (again,
141  * NULL if none).  If a grace period is waiting on a given element in the
142  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
143  * adding a task to the tail of the list blocks any grace period that is
144  * already waiting on one of the elements.  In contrast, adding a task
145  * to the head of the list won't block any grace period that is already
146  * waiting on one of the elements.
147  *
148  * This queuing is imprecise, and can sometimes make an ongoing grace
149  * period wait for a task that is not strictly speaking blocking it.
150  * Given the choice, we needlessly block a normal grace period rather than
151  * blocking an expedited grace period.
152  *
153  * Note that an endless sequence of expedited grace periods still cannot
154  * indefinitely postpone a normal grace period.  Eventually, all of the
155  * fixed number of preempted tasks blocking the normal grace period that are
156  * not also blocking the expedited grace period will resume and complete
157  * their RCU read-side critical sections.  At that point, the ->gp_tasks
158  * pointer will equal the ->exp_tasks pointer, at which point the end of
159  * the corresponding expedited grace period will also be the end of the
160  * normal grace period.
161  */
rcu_preempt_ctxt_queue(struct rcu_node * rnp,struct rcu_data * rdp)162 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
163 	__releases(rnp->lock) /* But leaves rrupts disabled. */
164 {
165 	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
166 			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
167 			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
168 			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
169 	struct task_struct *t = current;
170 
171 	raw_lockdep_assert_held_rcu_node(rnp);
172 	WARN_ON_ONCE(rdp->mynode != rnp);
173 	WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
174 	/* RCU better not be waiting on newly onlined CPUs! */
175 	WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
176 		     rdp->grpmask);
177 
178 	/*
179 	 * Decide where to queue the newly blocked task.  In theory,
180 	 * this could be an if-statement.  In practice, when I tried
181 	 * that, it was quite messy.
182 	 */
183 	switch (blkd_state) {
184 	case 0:
185 	case                RCU_EXP_TASKS:
186 	case                RCU_EXP_TASKS | RCU_GP_BLKD:
187 	case RCU_GP_TASKS:
188 	case RCU_GP_TASKS | RCU_EXP_TASKS:
189 
190 		/*
191 		 * Blocking neither GP, or first task blocking the normal
192 		 * GP but not blocking the already-waiting expedited GP.
193 		 * Queue at the head of the list to avoid unnecessarily
194 		 * blocking the already-waiting GPs.
195 		 */
196 		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
197 		break;
198 
199 	case                                              RCU_EXP_BLKD:
200 	case                                RCU_GP_BLKD:
201 	case                                RCU_GP_BLKD | RCU_EXP_BLKD:
202 	case RCU_GP_TASKS |                               RCU_EXP_BLKD:
203 	case RCU_GP_TASKS |                 RCU_GP_BLKD | RCU_EXP_BLKD:
204 	case RCU_GP_TASKS | RCU_EXP_TASKS | RCU_GP_BLKD | RCU_EXP_BLKD:
205 
206 		/*
207 		 * First task arriving that blocks either GP, or first task
208 		 * arriving that blocks the expedited GP (with the normal
209 		 * GP already waiting), or a task arriving that blocks
210 		 * both GPs with both GPs already waiting.  Queue at the
211 		 * tail of the list to avoid any GP waiting on any of the
212 		 * already queued tasks that are not blocking it.
213 		 */
214 		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
215 		break;
216 
217 	case                RCU_EXP_TASKS |               RCU_EXP_BLKD:
218 	case                RCU_EXP_TASKS | RCU_GP_BLKD | RCU_EXP_BLKD:
219 	case RCU_GP_TASKS | RCU_EXP_TASKS |               RCU_EXP_BLKD:
220 
221 		/*
222 		 * Second or subsequent task blocking the expedited GP.
223 		 * The task either does not block the normal GP, or is the
224 		 * first task blocking the normal GP.  Queue just after
225 		 * the first task blocking the expedited GP.
226 		 */
227 		list_add(&t->rcu_node_entry, rnp->exp_tasks);
228 		break;
229 
230 	case RCU_GP_TASKS |                 RCU_GP_BLKD:
231 	case RCU_GP_TASKS | RCU_EXP_TASKS | RCU_GP_BLKD:
232 
233 		/*
234 		 * Second or subsequent task blocking the normal GP.
235 		 * The task does not block the expedited GP. Queue just
236 		 * after the first task blocking the normal GP.
237 		 */
238 		list_add(&t->rcu_node_entry, rnp->gp_tasks);
239 		break;
240 
241 	default:
242 
243 		/* Yet another exercise in excessive paranoia. */
244 		WARN_ON_ONCE(1);
245 		break;
246 	}
247 
248 	/*
249 	 * We have now queued the task.  If it was the first one to
250 	 * block either grace period, update the ->gp_tasks and/or
251 	 * ->exp_tasks pointers, respectively, to reference the newly
252 	 * blocked tasks.
253 	 */
254 	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
255 		WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
256 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
257 	}
258 	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
259 		WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
260 	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
261 		     !(rnp->qsmask & rdp->grpmask));
262 	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
263 		     !(rnp->expmask & rdp->grpmask));
264 	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
265 
266 	/*
267 	 * Report the quiescent state for the expedited GP.  This expedited
268 	 * GP should not be able to end until we report, so there should be
269 	 * no need to check for a subsequent expedited GP.  (Though we are
270 	 * still in a quiescent state in any case.)
271 	 *
272 	 * Interrupts are disabled, so ->cpu_no_qs.b.exp cannot change.
273 	 */
274 	if (blkd_state & RCU_EXP_BLKD && rdp->cpu_no_qs.b.exp)
275 		rcu_report_exp_rdp(rdp);
276 	else
277 		WARN_ON_ONCE(rdp->cpu_no_qs.b.exp);
278 	ASSERT_EXCLUSIVE_WRITER_SCOPED(rdp->cpu_no_qs.b.exp);
279 }
280 
281 /*
282  * Record a preemptible-RCU quiescent state for the specified CPU.
283  * Note that this does not necessarily mean that the task currently running
284  * on the CPU is in a quiescent state:  Instead, it means that the current
285  * grace period need not wait on any RCU read-side critical section that
286  * starts later on this CPU.  It also means that if the current task is
287  * in an RCU read-side critical section, it has already added itself to
288  * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
289  * current task, there might be any number of other tasks blocked while
290  * in an RCU read-side critical section.
291  *
292  * Unlike non-preemptible-RCU, quiescent state reports for expedited
293  * grace periods are handled separately via deferred quiescent states
294  * and context switch events.
295  *
296  * Callers to this function must disable preemption.
297  */
rcu_qs(void)298 static void rcu_qs(void)
299 {
300 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
301 	if (__this_cpu_read(rcu_data.cpu_no_qs.b.norm)) {
302 		trace_rcu_grace_period(TPS("rcu_preempt"),
303 				       __this_cpu_read(rcu_data.gp_seq),
304 				       TPS("cpuqs"));
305 		__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
306 		barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
307 		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
308 	}
309 }
310 
311 /*
312  * We have entered the scheduler, and the current task might soon be
313  * context-switched away from.  If this task is in an RCU read-side
314  * critical section, we will no longer be able to rely on the CPU to
315  * record that fact, so we enqueue the task on the blkd_tasks list.
316  * The task will dequeue itself when it exits the outermost enclosing
317  * RCU read-side critical section.  Therefore, the current grace period
318  * cannot be permitted to complete until the blkd_tasks list entries
319  * predating the current grace period drain, in other words, until
320  * rnp->gp_tasks becomes NULL.
321  *
322  * Caller must disable interrupts.
323  */
rcu_note_context_switch(bool preempt)324 void rcu_note_context_switch(bool preempt)
325 {
326 	struct task_struct *t = current;
327 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
328 	struct rcu_node *rnp;
329 
330 	trace_rcu_utilization(TPS("Start context switch"));
331 	lockdep_assert_irqs_disabled();
332 	WARN_ONCE(!preempt && rcu_preempt_depth() > 0, "Voluntary context switch within RCU read-side critical section!");
333 	if (rcu_preempt_depth() > 0 &&
334 	    !t->rcu_read_unlock_special.b.blocked) {
335 
336 		/* Possibly blocking in an RCU read-side critical section. */
337 		rnp = rdp->mynode;
338 		raw_spin_lock_rcu_node(rnp);
339 		t->rcu_read_unlock_special.b.blocked = true;
340 		t->rcu_blocked_node = rnp;
341 
342 		/*
343 		 * Verify the CPU's sanity, trace the preemption, and
344 		 * then queue the task as required based on the states
345 		 * of any ongoing and expedited grace periods.
346 		 */
347 		WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp));
348 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
349 		trace_rcu_preempt_task(rcu_state.name,
350 				       t->pid,
351 				       (rnp->qsmask & rdp->grpmask)
352 				       ? rnp->gp_seq
353 				       : rcu_seq_snap(&rnp->gp_seq));
354 		rcu_preempt_ctxt_queue(rnp, rdp);
355 	} else {
356 		rcu_preempt_deferred_qs(t);
357 	}
358 
359 	/*
360 	 * Either we were not in an RCU read-side critical section to
361 	 * begin with, or we have now recorded that critical section
362 	 * globally.  Either way, we can now note a quiescent state
363 	 * for this CPU.  Again, if we were in an RCU read-side critical
364 	 * section, and if that critical section was blocking the current
365 	 * grace period, then the fact that the task has been enqueued
366 	 * means that we continue to block the current grace period.
367 	 */
368 	rcu_qs();
369 	if (rdp->cpu_no_qs.b.exp)
370 		rcu_report_exp_rdp(rdp);
371 	rcu_tasks_qs(current, preempt);
372 	trace_rcu_utilization(TPS("End context switch"));
373 }
374 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
375 
376 /*
377  * Check for preempted RCU readers blocking the current grace period
378  * for the specified rcu_node structure.  If the caller needs a reliable
379  * answer, it must hold the rcu_node's ->lock.
380  */
rcu_preempt_blocked_readers_cgp(struct rcu_node * rnp)381 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
382 {
383 	return READ_ONCE(rnp->gp_tasks) != NULL;
384 }
385 
386 /* limit value for ->rcu_read_lock_nesting. */
387 #define RCU_NEST_PMAX (INT_MAX / 2)
388 
rcu_preempt_read_enter(void)389 static void rcu_preempt_read_enter(void)
390 {
391 	WRITE_ONCE(current->rcu_read_lock_nesting, READ_ONCE(current->rcu_read_lock_nesting) + 1);
392 }
393 
rcu_preempt_read_exit(void)394 static int rcu_preempt_read_exit(void)
395 {
396 	int ret = READ_ONCE(current->rcu_read_lock_nesting) - 1;
397 
398 	WRITE_ONCE(current->rcu_read_lock_nesting, ret);
399 	return ret;
400 }
401 
rcu_preempt_depth_set(int val)402 static void rcu_preempt_depth_set(int val)
403 {
404 	WRITE_ONCE(current->rcu_read_lock_nesting, val);
405 }
406 
407 /*
408  * Preemptible RCU implementation for rcu_read_lock().
409  * Just increment ->rcu_read_lock_nesting, shared state will be updated
410  * if we block.
411  */
__rcu_read_lock(void)412 void __rcu_read_lock(void)
413 {
414 	rcu_preempt_read_enter();
415 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
416 		WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
417 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread)
418 		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true);
419 	barrier();  /* critical section after entry code. */
420 }
421 EXPORT_SYMBOL_GPL(__rcu_read_lock);
422 
423 /*
424  * Preemptible RCU implementation for rcu_read_unlock().
425  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
426  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
427  * invoke rcu_read_unlock_special() to clean up after a context switch
428  * in an RCU read-side critical section and other special cases.
429  */
__rcu_read_unlock(void)430 void __rcu_read_unlock(void)
431 {
432 	struct task_struct *t = current;
433 
434 	barrier();  // critical section before exit code.
435 	if (rcu_preempt_read_exit() == 0) {
436 		barrier();  // critical-section exit before .s check.
437 		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
438 			rcu_read_unlock_special(t);
439 	}
440 	if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
441 		int rrln = rcu_preempt_depth();
442 
443 		WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
444 	}
445 }
446 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
447 
448 /*
449  * Advance a ->blkd_tasks-list pointer to the next entry, instead
450  * returning NULL if at the end of the list.
451  */
rcu_next_node_entry(struct task_struct * t,struct rcu_node * rnp)452 static struct list_head *rcu_next_node_entry(struct task_struct *t,
453 					     struct rcu_node *rnp)
454 {
455 	struct list_head *np;
456 
457 	np = t->rcu_node_entry.next;
458 	if (np == &rnp->blkd_tasks)
459 		np = NULL;
460 	return np;
461 }
462 
463 /*
464  * Return true if the specified rcu_node structure has tasks that were
465  * preempted within an RCU read-side critical section.
466  */
rcu_preempt_has_tasks(struct rcu_node * rnp)467 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
468 {
469 	return !list_empty(&rnp->blkd_tasks);
470 }
471 
472 /*
473  * Report deferred quiescent states.  The deferral time can
474  * be quite short, for example, in the case of the call from
475  * rcu_read_unlock_special().
476  */
477 static notrace void
rcu_preempt_deferred_qs_irqrestore(struct task_struct * t,unsigned long flags)478 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
479 {
480 	bool empty_exp;
481 	bool empty_norm;
482 	bool empty_exp_now;
483 	struct list_head *np;
484 	bool drop_boost_mutex = false;
485 	struct rcu_data *rdp;
486 	struct rcu_node *rnp;
487 	union rcu_special special;
488 
489 	/*
490 	 * If RCU core is waiting for this CPU to exit its critical section,
491 	 * report the fact that it has exited.  Because irqs are disabled,
492 	 * t->rcu_read_unlock_special cannot change.
493 	 */
494 	special = t->rcu_read_unlock_special;
495 	rdp = this_cpu_ptr(&rcu_data);
496 	if (!special.s && !rdp->cpu_no_qs.b.exp) {
497 		local_irq_restore(flags);
498 		return;
499 	}
500 	t->rcu_read_unlock_special.s = 0;
501 	if (special.b.need_qs) {
502 		if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
503 			rdp->cpu_no_qs.b.norm = false;
504 			rcu_report_qs_rdp(rdp);
505 			udelay(rcu_unlock_delay);
506 		} else {
507 			rcu_qs();
508 		}
509 	}
510 
511 	/*
512 	 * Respond to a request by an expedited grace period for a
513 	 * quiescent state from this CPU.  Note that requests from
514 	 * tasks are handled when removing the task from the
515 	 * blocked-tasks list below.
516 	 */
517 	if (rdp->cpu_no_qs.b.exp)
518 		rcu_report_exp_rdp(rdp);
519 
520 	/* Clean up if blocked during RCU read-side critical section. */
521 	if (special.b.blocked) {
522 
523 		/*
524 		 * Remove this task from the list it blocked on.  The task
525 		 * now remains queued on the rcu_node corresponding to the
526 		 * CPU it first blocked on, so there is no longer any need
527 		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
528 		 */
529 		rnp = t->rcu_blocked_node;
530 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
531 		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
532 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
533 		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
534 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
535 			     (!empty_norm || rnp->qsmask));
536 		empty_exp = sync_rcu_exp_done(rnp);
537 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
538 		np = rcu_next_node_entry(t, rnp);
539 		list_del_init(&t->rcu_node_entry);
540 		t->rcu_blocked_node = NULL;
541 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
542 						rnp->gp_seq, t->pid);
543 		if (&t->rcu_node_entry == rnp->gp_tasks)
544 			WRITE_ONCE(rnp->gp_tasks, np);
545 		if (&t->rcu_node_entry == rnp->exp_tasks)
546 			WRITE_ONCE(rnp->exp_tasks, np);
547 		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
548 			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
549 			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx.rtmutex) == t;
550 			if (&t->rcu_node_entry == rnp->boost_tasks)
551 				WRITE_ONCE(rnp->boost_tasks, np);
552 		}
553 
554 		/*
555 		 * If this was the last task on the current list, and if
556 		 * we aren't waiting on any CPUs, report the quiescent state.
557 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
558 		 * so we must take a snapshot of the expedited state.
559 		 */
560 		empty_exp_now = sync_rcu_exp_done(rnp);
561 		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
562 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
563 							 rnp->gp_seq,
564 							 0, rnp->qsmask,
565 							 rnp->level,
566 							 rnp->grplo,
567 							 rnp->grphi,
568 							 !!rnp->gp_tasks);
569 			rcu_report_unblock_qs_rnp(rnp, flags);
570 		} else {
571 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
572 		}
573 
574 		/*
575 		 * If this was the last task on the expedited lists,
576 		 * then we need to report up the rcu_node hierarchy.
577 		 */
578 		if (!empty_exp && empty_exp_now)
579 			rcu_report_exp_rnp(rnp, true);
580 
581 		/* Unboost if we were boosted. */
582 		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
583 			rt_mutex_futex_unlock(&rnp->boost_mtx.rtmutex);
584 	} else {
585 		local_irq_restore(flags);
586 	}
587 }
588 
589 /*
590  * Is a deferred quiescent-state pending, and are we also not in
591  * an RCU read-side critical section?  It is the caller's responsibility
592  * to ensure it is otherwise safe to report any deferred quiescent
593  * states.  The reason for this is that it is safe to report a
594  * quiescent state during context switch even though preemption
595  * is disabled.  This function cannot be expected to understand these
596  * nuances, so the caller must handle them.
597  */
rcu_preempt_need_deferred_qs(struct task_struct * t)598 static notrace bool rcu_preempt_need_deferred_qs(struct task_struct *t)
599 {
600 	return (__this_cpu_read(rcu_data.cpu_no_qs.b.exp) ||
601 		READ_ONCE(t->rcu_read_unlock_special.s)) &&
602 	       rcu_preempt_depth() == 0;
603 }
604 
605 /*
606  * Report a deferred quiescent state if needed and safe to do so.
607  * As with rcu_preempt_need_deferred_qs(), "safe" involves only
608  * not being in an RCU read-side critical section.  The caller must
609  * evaluate safety in terms of interrupt, softirq, and preemption
610  * disabling.
611  */
rcu_preempt_deferred_qs(struct task_struct * t)612 notrace void rcu_preempt_deferred_qs(struct task_struct *t)
613 {
614 	unsigned long flags;
615 
616 	if (!rcu_preempt_need_deferred_qs(t))
617 		return;
618 	local_irq_save(flags);
619 	rcu_preempt_deferred_qs_irqrestore(t, flags);
620 }
621 
622 /*
623  * Minimal handler to give the scheduler a chance to re-evaluate.
624  */
rcu_preempt_deferred_qs_handler(struct irq_work * iwp)625 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
626 {
627 	struct rcu_data *rdp;
628 
629 	rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
630 	rdp->defer_qs_iw_pending = false;
631 }
632 
633 /*
634  * Handle special cases during rcu_read_unlock(), such as needing to
635  * notify RCU core processing or task having blocked during the RCU
636  * read-side critical section.
637  */
rcu_read_unlock_special(struct task_struct * t)638 static void rcu_read_unlock_special(struct task_struct *t)
639 {
640 	unsigned long flags;
641 	bool irqs_were_disabled;
642 	bool preempt_bh_were_disabled =
643 			!!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
644 
645 	/* NMI handlers cannot block and cannot safely manipulate state. */
646 	if (in_nmi())
647 		return;
648 
649 	local_irq_save(flags);
650 	irqs_were_disabled = irqs_disabled_flags(flags);
651 	if (preempt_bh_were_disabled || irqs_were_disabled) {
652 		bool expboost; // Expedited GP in flight or possible boosting.
653 		struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
654 		struct rcu_node *rnp = rdp->mynode;
655 
656 		expboost = (t->rcu_blocked_node && READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
657 			   (rdp->grpmask & READ_ONCE(rnp->expmask)) ||
658 			   (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) &&
659 			   ((rdp->grpmask & READ_ONCE(rnp->qsmask)) || t->rcu_blocked_node)) ||
660 			   (IS_ENABLED(CONFIG_RCU_BOOST) && irqs_were_disabled &&
661 			    t->rcu_blocked_node);
662 		// Need to defer quiescent state until everything is enabled.
663 		if (use_softirq && (in_hardirq() || (expboost && !irqs_were_disabled))) {
664 			// Using softirq, safe to awaken, and either the
665 			// wakeup is free or there is either an expedited
666 			// GP in flight or a potential need to deboost.
667 			raise_softirq_irqoff(RCU_SOFTIRQ);
668 		} else {
669 			// Enabling BH or preempt does reschedule, so...
670 			// Also if no expediting and no possible deboosting,
671 			// slow is OK.  Plus nohz_full CPUs eventually get
672 			// tick enabled.
673 			set_tsk_need_resched(current);
674 			set_preempt_need_resched();
675 			if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
676 			    expboost && !rdp->defer_qs_iw_pending && cpu_online(rdp->cpu)) {
677 				// Get scheduler to re-evaluate and call hooks.
678 				// If !IRQ_WORK, FQS scan will eventually IPI.
679 				if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) &&
680 				    IS_ENABLED(CONFIG_PREEMPT_RT))
681 					rdp->defer_qs_iw = IRQ_WORK_INIT_HARD(
682 								rcu_preempt_deferred_qs_handler);
683 				else
684 					init_irq_work(&rdp->defer_qs_iw,
685 						      rcu_preempt_deferred_qs_handler);
686 				rdp->defer_qs_iw_pending = true;
687 				irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
688 			}
689 		}
690 		local_irq_restore(flags);
691 		return;
692 	}
693 	rcu_preempt_deferred_qs_irqrestore(t, flags);
694 }
695 
696 /*
697  * Check that the list of blocked tasks for the newly completed grace
698  * period is in fact empty.  It is a serious bug to complete a grace
699  * period that still has RCU readers blocked!  This function must be
700  * invoked -before- updating this rnp's ->gp_seq.
701  *
702  * Also, if there are blocked tasks on the list, they automatically
703  * block the newly created grace period, so set up ->gp_tasks accordingly.
704  */
rcu_preempt_check_blocked_tasks(struct rcu_node * rnp)705 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
706 {
707 	struct task_struct *t;
708 
709 	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
710 	raw_lockdep_assert_held_rcu_node(rnp);
711 	if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
712 		dump_blkd_tasks(rnp, 10);
713 	if (rcu_preempt_has_tasks(rnp) &&
714 	    (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
715 		WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
716 		t = container_of(rnp->gp_tasks, struct task_struct,
717 				 rcu_node_entry);
718 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
719 						rnp->gp_seq, t->pid);
720 	}
721 	WARN_ON_ONCE(rnp->qsmask);
722 }
723 
724 /*
725  * Check for a quiescent state from the current CPU, including voluntary
726  * context switches for Tasks RCU.  When a task blocks, the task is
727  * recorded in the corresponding CPU's rcu_node structure, which is checked
728  * elsewhere, hence this function need only check for quiescent states
729  * related to the current CPU, not to those related to tasks.
730  */
rcu_flavor_sched_clock_irq(int user)731 static void rcu_flavor_sched_clock_irq(int user)
732 {
733 	struct task_struct *t = current;
734 
735 	lockdep_assert_irqs_disabled();
736 	if (rcu_preempt_depth() > 0 ||
737 	    (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
738 		/* No QS, force context switch if deferred. */
739 		if (rcu_preempt_need_deferred_qs(t)) {
740 			set_tsk_need_resched(t);
741 			set_preempt_need_resched();
742 		}
743 	} else if (rcu_preempt_need_deferred_qs(t)) {
744 		rcu_preempt_deferred_qs(t); /* Report deferred QS. */
745 		return;
746 	} else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
747 		rcu_qs(); /* Report immediate QS. */
748 		return;
749 	}
750 
751 	/* If GP is oldish, ask for help from rcu_read_unlock_special(). */
752 	if (rcu_preempt_depth() > 0 &&
753 	    __this_cpu_read(rcu_data.core_needs_qs) &&
754 	    __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
755 	    !t->rcu_read_unlock_special.b.need_qs &&
756 	    time_after(jiffies, rcu_state.gp_start + HZ))
757 		t->rcu_read_unlock_special.b.need_qs = true;
758 }
759 
760 /*
761  * Check for a task exiting while in a preemptible-RCU read-side
762  * critical section, clean up if so.  No need to issue warnings, as
763  * debug_check_no_locks_held() already does this if lockdep is enabled.
764  * Besides, if this function does anything other than just immediately
765  * return, there was a bug of some sort.  Spewing warnings from this
766  * function is like as not to simply obscure important prior warnings.
767  */
exit_rcu(void)768 void exit_rcu(void)
769 {
770 	struct task_struct *t = current;
771 
772 	if (unlikely(!list_empty(&current->rcu_node_entry))) {
773 		rcu_preempt_depth_set(1);
774 		barrier();
775 		WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
776 	} else if (unlikely(rcu_preempt_depth())) {
777 		rcu_preempt_depth_set(1);
778 	} else {
779 		return;
780 	}
781 	__rcu_read_unlock();
782 	rcu_preempt_deferred_qs(current);
783 }
784 
785 /*
786  * Dump the blocked-tasks state, but limit the list dump to the
787  * specified number of elements.
788  */
789 static void
dump_blkd_tasks(struct rcu_node * rnp,int ncheck)790 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
791 {
792 	int cpu;
793 	int i;
794 	struct list_head *lhp;
795 	struct rcu_data *rdp;
796 	struct rcu_node *rnp1;
797 
798 	raw_lockdep_assert_held_rcu_node(rnp);
799 	pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
800 		__func__, rnp->grplo, rnp->grphi, rnp->level,
801 		(long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
802 	for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
803 		pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
804 			__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
805 	pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
806 		__func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
807 		READ_ONCE(rnp->exp_tasks));
808 	pr_info("%s: ->blkd_tasks", __func__);
809 	i = 0;
810 	list_for_each(lhp, &rnp->blkd_tasks) {
811 		pr_cont(" %p", lhp);
812 		if (++i >= ncheck)
813 			break;
814 	}
815 	pr_cont("\n");
816 	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
817 		rdp = per_cpu_ptr(&rcu_data, cpu);
818 		pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
819 			cpu, ".o"[rcu_rdp_cpu_online(rdp)],
820 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_state,
821 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_state);
822 	}
823 }
824 
825 #else /* #ifdef CONFIG_PREEMPT_RCU */
826 
827 /*
828  * If strict grace periods are enabled, and if the calling
829  * __rcu_read_unlock() marks the beginning of a quiescent state, immediately
830  * report that quiescent state and, if requested, spin for a bit.
831  */
rcu_read_unlock_strict(void)832 void rcu_read_unlock_strict(void)
833 {
834 	struct rcu_data *rdp;
835 
836 	if (irqs_disabled() || in_atomic_preempt_off() || !rcu_state.gp_kthread)
837 		return;
838 
839 	/*
840 	 * rcu_report_qs_rdp() can only be invoked with a stable rdp and
841 	 * from the local CPU.
842 	 *
843 	 * The in_atomic_preempt_off() check ensures that we come here holding
844 	 * the last preempt_count (which will get dropped once we return to
845 	 * __rcu_read_unlock().
846 	 */
847 	rdp = this_cpu_ptr(&rcu_data);
848 	rdp->cpu_no_qs.b.norm = false;
849 	rcu_report_qs_rdp(rdp);
850 	udelay(rcu_unlock_delay);
851 }
852 EXPORT_SYMBOL_GPL(rcu_read_unlock_strict);
853 
854 /*
855  * Tell them what RCU they are running.
856  */
rcu_bootup_announce(void)857 static void __init rcu_bootup_announce(void)
858 {
859 	pr_info("Hierarchical RCU implementation.\n");
860 	rcu_bootup_announce_oddness();
861 }
862 
863 /*
864  * Note a quiescent state for PREEMPTION=n.  Because we do not need to know
865  * how many quiescent states passed, just if there was at least one since
866  * the start of the grace period, this just sets a flag.  The caller must
867  * have disabled preemption.
868  */
rcu_qs(void)869 static void rcu_qs(void)
870 {
871 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
872 	if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
873 		return;
874 	trace_rcu_grace_period(TPS("rcu_sched"),
875 			       __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
876 	__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
877 	if (__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
878 		rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
879 }
880 
881 /*
882  * Register an urgently needed quiescent state.  If there is an
883  * emergency, invoke rcu_momentary_eqs() to do a heavy-weight
884  * dyntick-idle quiescent state visible to other CPUs, which will in
885  * some cases serve for expedited as well as normal grace periods.
886  * Either way, register a lightweight quiescent state.
887  */
rcu_all_qs(void)888 void rcu_all_qs(void)
889 {
890 	unsigned long flags;
891 
892 	if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
893 		return;
894 	preempt_disable();  // For CONFIG_PREEMPT_COUNT=y kernels
895 	/* Load rcu_urgent_qs before other flags. */
896 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
897 		preempt_enable();
898 		return;
899 	}
900 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
901 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
902 		local_irq_save(flags);
903 		rcu_momentary_eqs();
904 		local_irq_restore(flags);
905 	}
906 	rcu_qs();
907 	preempt_enable();
908 }
909 EXPORT_SYMBOL_GPL(rcu_all_qs);
910 
911 /*
912  * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
913  */
rcu_note_context_switch(bool preempt)914 void rcu_note_context_switch(bool preempt)
915 {
916 	trace_rcu_utilization(TPS("Start context switch"));
917 	rcu_qs();
918 	/* Load rcu_urgent_qs before other flags. */
919 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
920 		goto out;
921 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
922 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
923 		rcu_momentary_eqs();
924 out:
925 	rcu_tasks_qs(current, preempt);
926 	trace_rcu_utilization(TPS("End context switch"));
927 }
928 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
929 
930 /*
931  * Because preemptible RCU does not exist, there are never any preempted
932  * RCU readers.
933  */
rcu_preempt_blocked_readers_cgp(struct rcu_node * rnp)934 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
935 {
936 	return 0;
937 }
938 
939 /*
940  * Because there is no preemptible RCU, there can be no readers blocked.
941  */
rcu_preempt_has_tasks(struct rcu_node * rnp)942 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
943 {
944 	return false;
945 }
946 
947 /*
948  * Because there is no preemptible RCU, there can be no deferred quiescent
949  * states.
950  */
rcu_preempt_need_deferred_qs(struct task_struct * t)951 static notrace bool rcu_preempt_need_deferred_qs(struct task_struct *t)
952 {
953 	return false;
954 }
955 
956 // Except that we do need to respond to a request by an expedited
957 // grace period for a quiescent state from this CPU.  Note that in
958 // non-preemptible kernels, there can be no context switches within RCU
959 // read-side critical sections, which in turn means that the leaf rcu_node
960 // structure's blocked-tasks list is always empty.  is therefore no need to
961 // actually check it.  Instead, a quiescent state from this CPU suffices,
962 // and this function is only called from such a quiescent state.
rcu_preempt_deferred_qs(struct task_struct * t)963 notrace void rcu_preempt_deferred_qs(struct task_struct *t)
964 {
965 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
966 
967 	if (READ_ONCE(rdp->cpu_no_qs.b.exp))
968 		rcu_report_exp_rdp(rdp);
969 }
970 
971 /*
972  * Because there is no preemptible RCU, there can be no readers blocked,
973  * so there is no need to check for blocked tasks.  So check only for
974  * bogus qsmask values.
975  */
rcu_preempt_check_blocked_tasks(struct rcu_node * rnp)976 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
977 {
978 	WARN_ON_ONCE(rnp->qsmask);
979 }
980 
981 /*
982  * Check to see if this CPU is in a non-context-switch quiescent state,
983  * namely user mode and idle loop.
984  */
rcu_flavor_sched_clock_irq(int user)985 static void rcu_flavor_sched_clock_irq(int user)
986 {
987 	if (user || rcu_is_cpu_rrupt_from_idle() ||
988 	     (IS_ENABLED(CONFIG_PREEMPT_COUNT) &&
989 	      (preempt_count() == HARDIRQ_OFFSET))) {
990 
991 		/*
992 		 * Get here if this CPU took its interrupt from user
993 		 * mode, from the idle loop without this being a nested
994 		 * interrupt, or while not holding the task preempt count
995 		 * (with PREEMPT_COUNT=y). In this case, the CPU is in a
996 		 * quiescent state, so note it.
997 		 *
998 		 * No memory barrier is required here because rcu_qs()
999 		 * references only CPU-local variables that other CPUs
1000 		 * neither access nor modify, at least not while the
1001 		 * corresponding CPU is online.
1002 		 */
1003 		rcu_qs();
1004 	}
1005 }
1006 
1007 /*
1008  * Because preemptible RCU does not exist, tasks cannot possibly exit
1009  * while in preemptible RCU read-side critical sections.
1010  */
exit_rcu(void)1011 void exit_rcu(void)
1012 {
1013 }
1014 
1015 /*
1016  * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
1017  */
1018 static void
dump_blkd_tasks(struct rcu_node * rnp,int ncheck)1019 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
1020 {
1021 	WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
1022 }
1023 
1024 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
1025 
1026 /*
1027  * If boosting, set rcuc kthreads to realtime priority.
1028  */
rcu_cpu_kthread_setup(unsigned int cpu)1029 static void rcu_cpu_kthread_setup(unsigned int cpu)
1030 {
1031 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1032 #ifdef CONFIG_RCU_BOOST
1033 	struct sched_param sp;
1034 
1035 	sp.sched_priority = kthread_prio;
1036 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1037 #endif /* #ifdef CONFIG_RCU_BOOST */
1038 
1039 	WRITE_ONCE(rdp->rcuc_activity, jiffies);
1040 }
1041 
rcu_is_callbacks_nocb_kthread(struct rcu_data * rdp)1042 static bool rcu_is_callbacks_nocb_kthread(struct rcu_data *rdp)
1043 {
1044 #ifdef CONFIG_RCU_NOCB_CPU
1045 	return rdp->nocb_cb_kthread == current;
1046 #else
1047 	return false;
1048 #endif
1049 }
1050 
1051 /*
1052  * Is the current CPU running the RCU-callbacks kthread?
1053  * Caller must have preemption disabled.
1054  */
rcu_is_callbacks_kthread(struct rcu_data * rdp)1055 static bool rcu_is_callbacks_kthread(struct rcu_data *rdp)
1056 {
1057 	return rdp->rcu_cpu_kthread_task == current ||
1058 			rcu_is_callbacks_nocb_kthread(rdp);
1059 }
1060 
1061 #ifdef CONFIG_RCU_BOOST
1062 
1063 /*
1064  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1065  * or ->boost_tasks, advancing the pointer to the next task in the
1066  * ->blkd_tasks list.
1067  *
1068  * Note that irqs must be enabled: boosting the task can block.
1069  * Returns 1 if there are more tasks needing to be boosted.
1070  */
rcu_boost(struct rcu_node * rnp)1071 static int rcu_boost(struct rcu_node *rnp)
1072 {
1073 	unsigned long flags;
1074 	struct task_struct *t;
1075 	struct list_head *tb;
1076 
1077 	if (READ_ONCE(rnp->exp_tasks) == NULL &&
1078 	    READ_ONCE(rnp->boost_tasks) == NULL)
1079 		return 0;  /* Nothing left to boost. */
1080 
1081 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1082 
1083 	/*
1084 	 * Recheck under the lock: all tasks in need of boosting
1085 	 * might exit their RCU read-side critical sections on their own.
1086 	 */
1087 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1088 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1089 		return 0;
1090 	}
1091 
1092 	/*
1093 	 * Preferentially boost tasks blocking expedited grace periods.
1094 	 * This cannot starve the normal grace periods because a second
1095 	 * expedited grace period must boost all blocked tasks, including
1096 	 * those blocking the pre-existing normal grace period.
1097 	 */
1098 	if (rnp->exp_tasks != NULL)
1099 		tb = rnp->exp_tasks;
1100 	else
1101 		tb = rnp->boost_tasks;
1102 
1103 	/*
1104 	 * We boost task t by manufacturing an rt_mutex that appears to
1105 	 * be held by task t.  We leave a pointer to that rt_mutex where
1106 	 * task t can find it, and task t will release the mutex when it
1107 	 * exits its outermost RCU read-side critical section.  Then
1108 	 * simply acquiring this artificial rt_mutex will boost task
1109 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1110 	 *
1111 	 * Note that task t must acquire rnp->lock to remove itself from
1112 	 * the ->blkd_tasks list, which it will do from exit() if from
1113 	 * nowhere else.  We therefore are guaranteed that task t will
1114 	 * stay around at least until we drop rnp->lock.  Note that
1115 	 * rnp->lock also resolves races between our priority boosting
1116 	 * and task t's exiting its outermost RCU read-side critical
1117 	 * section.
1118 	 */
1119 	t = container_of(tb, struct task_struct, rcu_node_entry);
1120 	rt_mutex_init_proxy_locked(&rnp->boost_mtx.rtmutex, t);
1121 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1122 	/* Lock only for side effect: boosts task t's priority. */
1123 	rt_mutex_lock(&rnp->boost_mtx);
1124 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1125 	rnp->n_boosts++;
1126 
1127 	return READ_ONCE(rnp->exp_tasks) != NULL ||
1128 	       READ_ONCE(rnp->boost_tasks) != NULL;
1129 }
1130 
1131 /*
1132  * Priority-boosting kthread, one per leaf rcu_node.
1133  */
rcu_boost_kthread(void * arg)1134 static int rcu_boost_kthread(void *arg)
1135 {
1136 	struct rcu_node *rnp = (struct rcu_node *)arg;
1137 	int spincnt = 0;
1138 	int more2boost;
1139 
1140 	trace_rcu_utilization(TPS("Start boost kthread@init"));
1141 	for (;;) {
1142 		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
1143 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1144 		rcu_wait(READ_ONCE(rnp->boost_tasks) ||
1145 			 READ_ONCE(rnp->exp_tasks));
1146 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1147 		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
1148 		more2boost = rcu_boost(rnp);
1149 		if (more2boost)
1150 			spincnt++;
1151 		else
1152 			spincnt = 0;
1153 		if (spincnt > 10) {
1154 			WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
1155 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1156 			schedule_timeout_idle(2);
1157 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1158 			spincnt = 0;
1159 		}
1160 	}
1161 	/* NOTREACHED */
1162 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1163 	return 0;
1164 }
1165 
1166 /*
1167  * Check to see if it is time to start boosting RCU readers that are
1168  * blocking the current grace period, and, if so, tell the per-rcu_node
1169  * kthread to start boosting them.  If there is an expedited grace
1170  * period in progress, it is always time to boost.
1171  *
1172  * The caller must hold rnp->lock, which this function releases.
1173  * The ->boost_kthread_task is immortal, so we don't need to worry
1174  * about it going away.
1175  */
rcu_initiate_boost(struct rcu_node * rnp,unsigned long flags)1176 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1177 	__releases(rnp->lock)
1178 {
1179 	raw_lockdep_assert_held_rcu_node(rnp);
1180 	if (!rnp->boost_kthread_task ||
1181 	    (!rcu_preempt_blocked_readers_cgp(rnp) && !rnp->exp_tasks)) {
1182 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1183 		return;
1184 	}
1185 	if (rnp->exp_tasks != NULL ||
1186 	    (rnp->gp_tasks != NULL &&
1187 	     rnp->boost_tasks == NULL &&
1188 	     rnp->qsmask == 0 &&
1189 	     (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld ||
1190 	      IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)))) {
1191 		if (rnp->exp_tasks == NULL)
1192 			WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
1193 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1194 		rcu_wake_cond(rnp->boost_kthread_task,
1195 			      READ_ONCE(rnp->boost_kthread_status));
1196 	} else {
1197 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1198 	}
1199 }
1200 
1201 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1202 
1203 /*
1204  * Do priority-boost accounting for the start of a new grace period.
1205  */
rcu_preempt_boost_start_gp(struct rcu_node * rnp)1206 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1207 {
1208 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1209 }
1210 
1211 /*
1212  * Create an RCU-boost kthread for the specified node if one does not
1213  * already exist.  We only create this kthread for preemptible RCU.
1214  */
rcu_spawn_one_boost_kthread(struct rcu_node * rnp)1215 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1216 {
1217 	unsigned long flags;
1218 	int rnp_index = rnp - rcu_get_root();
1219 	struct sched_param sp;
1220 	struct task_struct *t;
1221 
1222 	if (rnp->boost_kthread_task)
1223 		return;
1224 
1225 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1226 			   "rcub/%d", rnp_index);
1227 	if (WARN_ON_ONCE(IS_ERR(t)))
1228 		return;
1229 
1230 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1231 	rnp->boost_kthread_task = t;
1232 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1233 
1234 	sp.sched_priority = kthread_prio;
1235 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1236 	rcu_thread_affine_rnp(t, rnp);
1237 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1238 }
1239 
1240 #else /* #ifdef CONFIG_RCU_BOOST */
1241 
rcu_initiate_boost(struct rcu_node * rnp,unsigned long flags)1242 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1243 	__releases(rnp->lock)
1244 {
1245 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1246 }
1247 
rcu_preempt_boost_start_gp(struct rcu_node * rnp)1248 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1249 {
1250 }
1251 
rcu_spawn_one_boost_kthread(struct rcu_node * rnp)1252 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1253 {
1254 }
1255 
1256 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1257 
1258 /*
1259  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
1260  * grace-period kthread will do force_quiescent_state() processing?
1261  * The idea is to avoid waking up RCU core processing on such a
1262  * CPU unless the grace period has extended for too long.
1263  *
1264  * This code relies on the fact that all NO_HZ_FULL CPUs are also
1265  * RCU_NOCB_CPU CPUs.
1266  */
rcu_nohz_full_cpu(void)1267 static bool rcu_nohz_full_cpu(void)
1268 {
1269 #ifdef CONFIG_NO_HZ_FULL
1270 	if (tick_nohz_full_cpu(smp_processor_id()) &&
1271 	    (!rcu_gp_in_progress() ||
1272 	     time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
1273 		return true;
1274 #endif /* #ifdef CONFIG_NO_HZ_FULL */
1275 	return false;
1276 }
1277 
1278 /*
1279  * Bind the RCU grace-period kthreads to the housekeeping CPU.
1280  */
rcu_bind_gp_kthread(void)1281 static void rcu_bind_gp_kthread(void)
1282 {
1283 	if (!tick_nohz_full_enabled())
1284 		return;
1285 	housekeeping_affine(current, HK_TYPE_RCU);
1286 }
1287