xref: /linux/kernel/rcu/tree_plugin.h (revision ed7171ff9fabc49ae6ed42fbd082a576473836fc)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  *
10  * Author: Ingo Molnar <mingo@elte.hu>
11  *	   Paul E. McKenney <paulmck@linux.ibm.com>
12  */
13 
14 #include "../locking/rtmutex_common.h"
15 
16 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp)
17 {
18 	/*
19 	 * In order to read the offloaded state of an rdp in a safe
20 	 * and stable way and prevent from its value to be changed
21 	 * under us, we must either hold the barrier mutex, the cpu
22 	 * hotplug lock (read or write) or the nocb lock. Local
23 	 * non-preemptible reads are also safe. NOCB kthreads and
24 	 * timers have their own means of synchronization against the
25 	 * offloaded state updaters.
26 	 */
27 	RCU_LOCKDEP_WARN(
28 		!(lockdep_is_held(&rcu_state.barrier_mutex) ||
29 		  (IS_ENABLED(CONFIG_HOTPLUG_CPU) && lockdep_is_cpus_held()) ||
30 		  rcu_lockdep_is_held_nocb(rdp) ||
31 		  (!(IS_ENABLED(CONFIG_PREEMPT_COUNT) && preemptible()) &&
32 		   rdp == this_cpu_ptr(&rcu_data)) ||
33 		  rcu_current_is_nocb_kthread(rdp)),
34 		"Unsafe read of RCU_NOCB offloaded state"
35 	);
36 
37 	return rcu_segcblist_is_offloaded(&rdp->cblist);
38 }
39 
40 /*
41  * Check the RCU kernel configuration parameters and print informative
42  * messages about anything out of the ordinary.
43  */
44 static void __init rcu_bootup_announce_oddness(void)
45 {
46 	if (IS_ENABLED(CONFIG_RCU_TRACE))
47 		pr_info("\tRCU event tracing is enabled.\n");
48 	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
49 	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
50 		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
51 			RCU_FANOUT);
52 	if (rcu_fanout_exact)
53 		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
54 	if (IS_ENABLED(CONFIG_PROVE_RCU))
55 		pr_info("\tRCU lockdep checking is enabled.\n");
56 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
57 		pr_info("\tRCU strict (and thus non-scalable) grace periods are enabled.\n");
58 	if (RCU_NUM_LVLS >= 4)
59 		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
60 	if (RCU_FANOUT_LEAF != 16)
61 		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
62 			RCU_FANOUT_LEAF);
63 	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
64 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
65 			rcu_fanout_leaf);
66 	if (nr_cpu_ids != NR_CPUS)
67 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
68 #ifdef CONFIG_RCU_BOOST
69 	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
70 		kthread_prio, CONFIG_RCU_BOOST_DELAY);
71 #endif
72 	if (blimit != DEFAULT_RCU_BLIMIT)
73 		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
74 	if (qhimark != DEFAULT_RCU_QHIMARK)
75 		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
76 	if (qlowmark != DEFAULT_RCU_QLOMARK)
77 		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
78 	if (qovld != DEFAULT_RCU_QOVLD)
79 		pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
80 	if (jiffies_till_first_fqs != ULONG_MAX)
81 		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
82 	if (jiffies_till_next_fqs != ULONG_MAX)
83 		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
84 	if (jiffies_till_sched_qs != ULONG_MAX)
85 		pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
86 	if (rcu_kick_kthreads)
87 		pr_info("\tKick kthreads if too-long grace period.\n");
88 	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
89 		pr_info("\tRCU callback double-/use-after-free debug is enabled.\n");
90 	if (gp_preinit_delay)
91 		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
92 	if (gp_init_delay)
93 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
94 	if (gp_cleanup_delay)
95 		pr_info("\tRCU debug GP cleanup slowdown %d jiffies.\n", gp_cleanup_delay);
96 	if (nohz_full_patience_delay < 0) {
97 		pr_info("\tRCU NOCB CPU patience negative (%d), resetting to zero.\n", nohz_full_patience_delay);
98 		nohz_full_patience_delay = 0;
99 	} else if (nohz_full_patience_delay > 5 * MSEC_PER_SEC) {
100 		pr_info("\tRCU NOCB CPU patience too large (%d), resetting to %ld.\n", nohz_full_patience_delay, 5 * MSEC_PER_SEC);
101 		nohz_full_patience_delay = 5 * MSEC_PER_SEC;
102 	} else if (nohz_full_patience_delay) {
103 		pr_info("\tRCU NOCB CPU patience set to %d milliseconds.\n", nohz_full_patience_delay);
104 	}
105 	nohz_full_patience_delay_jiffies = msecs_to_jiffies(nohz_full_patience_delay);
106 	if (!use_softirq)
107 		pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
108 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
109 		pr_info("\tRCU debug extended QS entry/exit.\n");
110 	rcupdate_announce_bootup_oddness();
111 }
112 
113 #ifdef CONFIG_PREEMPT_RCU
114 
115 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
116 static void rcu_read_unlock_special(struct task_struct *t);
117 
118 /*
119  * Tell them what RCU they are running.
120  */
121 static void __init rcu_bootup_announce(void)
122 {
123 	pr_info("Preemptible hierarchical RCU implementation.\n");
124 	rcu_bootup_announce_oddness();
125 }
126 
127 /* Flags for rcu_preempt_ctxt_queue() decision table. */
128 #define RCU_GP_TASKS	0x8
129 #define RCU_EXP_TASKS	0x4
130 #define RCU_GP_BLKD	0x2
131 #define RCU_EXP_BLKD	0x1
132 
133 /*
134  * Queues a task preempted within an RCU-preempt read-side critical
135  * section into the appropriate location within the ->blkd_tasks list,
136  * depending on the states of any ongoing normal and expedited grace
137  * periods.  The ->gp_tasks pointer indicates which element the normal
138  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
139  * indicates which element the expedited grace period is waiting on (again,
140  * NULL if none).  If a grace period is waiting on a given element in the
141  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
142  * adding a task to the tail of the list blocks any grace period that is
143  * already waiting on one of the elements.  In contrast, adding a task
144  * to the head of the list won't block any grace period that is already
145  * waiting on one of the elements.
146  *
147  * This queuing is imprecise, and can sometimes make an ongoing grace
148  * period wait for a task that is not strictly speaking blocking it.
149  * Given the choice, we needlessly block a normal grace period rather than
150  * blocking an expedited grace period.
151  *
152  * Note that an endless sequence of expedited grace periods still cannot
153  * indefinitely postpone a normal grace period.  Eventually, all of the
154  * fixed number of preempted tasks blocking the normal grace period that are
155  * not also blocking the expedited grace period will resume and complete
156  * their RCU read-side critical sections.  At that point, the ->gp_tasks
157  * pointer will equal the ->exp_tasks pointer, at which point the end of
158  * the corresponding expedited grace period will also be the end of the
159  * normal grace period.
160  */
161 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
162 	__releases(rnp->lock) /* But leaves rrupts disabled. */
163 {
164 	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
165 			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
166 			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
167 			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
168 	struct task_struct *t = current;
169 
170 	raw_lockdep_assert_held_rcu_node(rnp);
171 	WARN_ON_ONCE(rdp->mynode != rnp);
172 	WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
173 	/* RCU better not be waiting on newly onlined CPUs! */
174 	WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
175 		     rdp->grpmask);
176 
177 	/*
178 	 * Decide where to queue the newly blocked task.  In theory,
179 	 * this could be an if-statement.  In practice, when I tried
180 	 * that, it was quite messy.
181 	 */
182 	switch (blkd_state) {
183 	case 0:
184 	case                RCU_EXP_TASKS:
185 	case                RCU_EXP_TASKS + RCU_GP_BLKD:
186 	case RCU_GP_TASKS:
187 	case RCU_GP_TASKS + RCU_EXP_TASKS:
188 
189 		/*
190 		 * Blocking neither GP, or first task blocking the normal
191 		 * GP but not blocking the already-waiting expedited GP.
192 		 * Queue at the head of the list to avoid unnecessarily
193 		 * blocking the already-waiting GPs.
194 		 */
195 		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
196 		break;
197 
198 	case                                              RCU_EXP_BLKD:
199 	case                                RCU_GP_BLKD:
200 	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
201 	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
202 	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
203 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
204 
205 		/*
206 		 * First task arriving that blocks either GP, or first task
207 		 * arriving that blocks the expedited GP (with the normal
208 		 * GP already waiting), or a task arriving that blocks
209 		 * both GPs with both GPs already waiting.  Queue at the
210 		 * tail of the list to avoid any GP waiting on any of the
211 		 * already queued tasks that are not blocking it.
212 		 */
213 		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
214 		break;
215 
216 	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
217 	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
218 	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
219 
220 		/*
221 		 * Second or subsequent task blocking the expedited GP.
222 		 * The task either does not block the normal GP, or is the
223 		 * first task blocking the normal GP.  Queue just after
224 		 * the first task blocking the expedited GP.
225 		 */
226 		list_add(&t->rcu_node_entry, rnp->exp_tasks);
227 		break;
228 
229 	case RCU_GP_TASKS +                 RCU_GP_BLKD:
230 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
231 
232 		/*
233 		 * Second or subsequent task blocking the normal GP.
234 		 * The task does not block the expedited GP. Queue just
235 		 * after the first task blocking the normal GP.
236 		 */
237 		list_add(&t->rcu_node_entry, rnp->gp_tasks);
238 		break;
239 
240 	default:
241 
242 		/* Yet another exercise in excessive paranoia. */
243 		WARN_ON_ONCE(1);
244 		break;
245 	}
246 
247 	/*
248 	 * We have now queued the task.  If it was the first one to
249 	 * block either grace period, update the ->gp_tasks and/or
250 	 * ->exp_tasks pointers, respectively, to reference the newly
251 	 * blocked tasks.
252 	 */
253 	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
254 		WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
255 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
256 	}
257 	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
258 		WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
259 	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
260 		     !(rnp->qsmask & rdp->grpmask));
261 	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
262 		     !(rnp->expmask & rdp->grpmask));
263 	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
264 
265 	/*
266 	 * Report the quiescent state for the expedited GP.  This expedited
267 	 * GP should not be able to end until we report, so there should be
268 	 * no need to check for a subsequent expedited GP.  (Though we are
269 	 * still in a quiescent state in any case.)
270 	 *
271 	 * Interrupts are disabled, so ->cpu_no_qs.b.exp cannot change.
272 	 */
273 	if (blkd_state & RCU_EXP_BLKD && rdp->cpu_no_qs.b.exp)
274 		rcu_report_exp_rdp(rdp);
275 	else
276 		WARN_ON_ONCE(rdp->cpu_no_qs.b.exp);
277 }
278 
279 /*
280  * Record a preemptible-RCU quiescent state for the specified CPU.
281  * Note that this does not necessarily mean that the task currently running
282  * on the CPU is in a quiescent state:  Instead, it means that the current
283  * grace period need not wait on any RCU read-side critical section that
284  * starts later on this CPU.  It also means that if the current task is
285  * in an RCU read-side critical section, it has already added itself to
286  * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
287  * current task, there might be any number of other tasks blocked while
288  * in an RCU read-side critical section.
289  *
290  * Unlike non-preemptible-RCU, quiescent state reports for expedited
291  * grace periods are handled separately via deferred quiescent states
292  * and context switch events.
293  *
294  * Callers to this function must disable preemption.
295  */
296 static void rcu_qs(void)
297 {
298 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
299 	if (__this_cpu_read(rcu_data.cpu_no_qs.b.norm)) {
300 		trace_rcu_grace_period(TPS("rcu_preempt"),
301 				       __this_cpu_read(rcu_data.gp_seq),
302 				       TPS("cpuqs"));
303 		__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
304 		barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
305 		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
306 	}
307 }
308 
309 /*
310  * We have entered the scheduler, and the current task might soon be
311  * context-switched away from.  If this task is in an RCU read-side
312  * critical section, we will no longer be able to rely on the CPU to
313  * record that fact, so we enqueue the task on the blkd_tasks list.
314  * The task will dequeue itself when it exits the outermost enclosing
315  * RCU read-side critical section.  Therefore, the current grace period
316  * cannot be permitted to complete until the blkd_tasks list entries
317  * predating the current grace period drain, in other words, until
318  * rnp->gp_tasks becomes NULL.
319  *
320  * Caller must disable interrupts.
321  */
322 void rcu_note_context_switch(bool preempt)
323 {
324 	struct task_struct *t = current;
325 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
326 	struct rcu_node *rnp;
327 
328 	trace_rcu_utilization(TPS("Start context switch"));
329 	lockdep_assert_irqs_disabled();
330 	WARN_ONCE(!preempt && rcu_preempt_depth() > 0, "Voluntary context switch within RCU read-side critical section!");
331 	if (rcu_preempt_depth() > 0 &&
332 	    !t->rcu_read_unlock_special.b.blocked) {
333 
334 		/* Possibly blocking in an RCU read-side critical section. */
335 		rnp = rdp->mynode;
336 		raw_spin_lock_rcu_node(rnp);
337 		t->rcu_read_unlock_special.b.blocked = true;
338 		t->rcu_blocked_node = rnp;
339 
340 		/*
341 		 * Verify the CPU's sanity, trace the preemption, and
342 		 * then queue the task as required based on the states
343 		 * of any ongoing and expedited grace periods.
344 		 */
345 		WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp));
346 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
347 		trace_rcu_preempt_task(rcu_state.name,
348 				       t->pid,
349 				       (rnp->qsmask & rdp->grpmask)
350 				       ? rnp->gp_seq
351 				       : rcu_seq_snap(&rnp->gp_seq));
352 		rcu_preempt_ctxt_queue(rnp, rdp);
353 	} else {
354 		rcu_preempt_deferred_qs(t);
355 	}
356 
357 	/*
358 	 * Either we were not in an RCU read-side critical section to
359 	 * begin with, or we have now recorded that critical section
360 	 * globally.  Either way, we can now note a quiescent state
361 	 * for this CPU.  Again, if we were in an RCU read-side critical
362 	 * section, and if that critical section was blocking the current
363 	 * grace period, then the fact that the task has been enqueued
364 	 * means that we continue to block the current grace period.
365 	 */
366 	rcu_qs();
367 	if (rdp->cpu_no_qs.b.exp)
368 		rcu_report_exp_rdp(rdp);
369 	rcu_tasks_qs(current, preempt);
370 	trace_rcu_utilization(TPS("End context switch"));
371 }
372 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
373 
374 /*
375  * Check for preempted RCU readers blocking the current grace period
376  * for the specified rcu_node structure.  If the caller needs a reliable
377  * answer, it must hold the rcu_node's ->lock.
378  */
379 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
380 {
381 	return READ_ONCE(rnp->gp_tasks) != NULL;
382 }
383 
384 /* limit value for ->rcu_read_lock_nesting. */
385 #define RCU_NEST_PMAX (INT_MAX / 2)
386 
387 static void rcu_preempt_read_enter(void)
388 {
389 	WRITE_ONCE(current->rcu_read_lock_nesting, READ_ONCE(current->rcu_read_lock_nesting) + 1);
390 }
391 
392 static int rcu_preempt_read_exit(void)
393 {
394 	int ret = READ_ONCE(current->rcu_read_lock_nesting) - 1;
395 
396 	WRITE_ONCE(current->rcu_read_lock_nesting, ret);
397 	return ret;
398 }
399 
400 static void rcu_preempt_depth_set(int val)
401 {
402 	WRITE_ONCE(current->rcu_read_lock_nesting, val);
403 }
404 
405 /*
406  * Preemptible RCU implementation for rcu_read_lock().
407  * Just increment ->rcu_read_lock_nesting, shared state will be updated
408  * if we block.
409  */
410 void __rcu_read_lock(void)
411 {
412 	rcu_preempt_read_enter();
413 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
414 		WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
415 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread)
416 		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true);
417 	barrier();  /* critical section after entry code. */
418 }
419 EXPORT_SYMBOL_GPL(__rcu_read_lock);
420 
421 /*
422  * Preemptible RCU implementation for rcu_read_unlock().
423  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
424  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
425  * invoke rcu_read_unlock_special() to clean up after a context switch
426  * in an RCU read-side critical section and other special cases.
427  */
428 void __rcu_read_unlock(void)
429 {
430 	struct task_struct *t = current;
431 
432 	barrier();  // critical section before exit code.
433 	if (rcu_preempt_read_exit() == 0) {
434 		barrier();  // critical-section exit before .s check.
435 		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
436 			rcu_read_unlock_special(t);
437 	}
438 	if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
439 		int rrln = rcu_preempt_depth();
440 
441 		WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
442 	}
443 }
444 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
445 
446 /*
447  * Advance a ->blkd_tasks-list pointer to the next entry, instead
448  * returning NULL if at the end of the list.
449  */
450 static struct list_head *rcu_next_node_entry(struct task_struct *t,
451 					     struct rcu_node *rnp)
452 {
453 	struct list_head *np;
454 
455 	np = t->rcu_node_entry.next;
456 	if (np == &rnp->blkd_tasks)
457 		np = NULL;
458 	return np;
459 }
460 
461 /*
462  * Return true if the specified rcu_node structure has tasks that were
463  * preempted within an RCU read-side critical section.
464  */
465 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
466 {
467 	return !list_empty(&rnp->blkd_tasks);
468 }
469 
470 /*
471  * Report deferred quiescent states.  The deferral time can
472  * be quite short, for example, in the case of the call from
473  * rcu_read_unlock_special().
474  */
475 static notrace void
476 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
477 {
478 	bool empty_exp;
479 	bool empty_norm;
480 	bool empty_exp_now;
481 	struct list_head *np;
482 	bool drop_boost_mutex = false;
483 	struct rcu_data *rdp;
484 	struct rcu_node *rnp;
485 	union rcu_special special;
486 
487 	/*
488 	 * If RCU core is waiting for this CPU to exit its critical section,
489 	 * report the fact that it has exited.  Because irqs are disabled,
490 	 * t->rcu_read_unlock_special cannot change.
491 	 */
492 	special = t->rcu_read_unlock_special;
493 	rdp = this_cpu_ptr(&rcu_data);
494 	if (!special.s && !rdp->cpu_no_qs.b.exp) {
495 		local_irq_restore(flags);
496 		return;
497 	}
498 	t->rcu_read_unlock_special.s = 0;
499 	if (special.b.need_qs) {
500 		if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
501 			rdp->cpu_no_qs.b.norm = false;
502 			rcu_report_qs_rdp(rdp);
503 			udelay(rcu_unlock_delay);
504 		} else {
505 			rcu_qs();
506 		}
507 	}
508 
509 	/*
510 	 * Respond to a request by an expedited grace period for a
511 	 * quiescent state from this CPU.  Note that requests from
512 	 * tasks are handled when removing the task from the
513 	 * blocked-tasks list below.
514 	 */
515 	if (rdp->cpu_no_qs.b.exp)
516 		rcu_report_exp_rdp(rdp);
517 
518 	/* Clean up if blocked during RCU read-side critical section. */
519 	if (special.b.blocked) {
520 
521 		/*
522 		 * Remove this task from the list it blocked on.  The task
523 		 * now remains queued on the rcu_node corresponding to the
524 		 * CPU it first blocked on, so there is no longer any need
525 		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
526 		 */
527 		rnp = t->rcu_blocked_node;
528 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
529 		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
530 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
531 		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
532 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
533 			     (!empty_norm || rnp->qsmask));
534 		empty_exp = sync_rcu_exp_done(rnp);
535 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
536 		np = rcu_next_node_entry(t, rnp);
537 		list_del_init(&t->rcu_node_entry);
538 		t->rcu_blocked_node = NULL;
539 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
540 						rnp->gp_seq, t->pid);
541 		if (&t->rcu_node_entry == rnp->gp_tasks)
542 			WRITE_ONCE(rnp->gp_tasks, np);
543 		if (&t->rcu_node_entry == rnp->exp_tasks)
544 			WRITE_ONCE(rnp->exp_tasks, np);
545 		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
546 			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
547 			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx.rtmutex) == t;
548 			if (&t->rcu_node_entry == rnp->boost_tasks)
549 				WRITE_ONCE(rnp->boost_tasks, np);
550 		}
551 
552 		/*
553 		 * If this was the last task on the current list, and if
554 		 * we aren't waiting on any CPUs, report the quiescent state.
555 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
556 		 * so we must take a snapshot of the expedited state.
557 		 */
558 		empty_exp_now = sync_rcu_exp_done(rnp);
559 		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
560 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
561 							 rnp->gp_seq,
562 							 0, rnp->qsmask,
563 							 rnp->level,
564 							 rnp->grplo,
565 							 rnp->grphi,
566 							 !!rnp->gp_tasks);
567 			rcu_report_unblock_qs_rnp(rnp, flags);
568 		} else {
569 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
570 		}
571 
572 		/*
573 		 * If this was the last task on the expedited lists,
574 		 * then we need to report up the rcu_node hierarchy.
575 		 */
576 		if (!empty_exp && empty_exp_now)
577 			rcu_report_exp_rnp(rnp, true);
578 
579 		/* Unboost if we were boosted. */
580 		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
581 			rt_mutex_futex_unlock(&rnp->boost_mtx.rtmutex);
582 	} else {
583 		local_irq_restore(flags);
584 	}
585 }
586 
587 /*
588  * Is a deferred quiescent-state pending, and are we also not in
589  * an RCU read-side critical section?  It is the caller's responsibility
590  * to ensure it is otherwise safe to report any deferred quiescent
591  * states.  The reason for this is that it is safe to report a
592  * quiescent state during context switch even though preemption
593  * is disabled.  This function cannot be expected to understand these
594  * nuances, so the caller must handle them.
595  */
596 static notrace bool rcu_preempt_need_deferred_qs(struct task_struct *t)
597 {
598 	return (__this_cpu_read(rcu_data.cpu_no_qs.b.exp) ||
599 		READ_ONCE(t->rcu_read_unlock_special.s)) &&
600 	       rcu_preempt_depth() == 0;
601 }
602 
603 /*
604  * Report a deferred quiescent state if needed and safe to do so.
605  * As with rcu_preempt_need_deferred_qs(), "safe" involves only
606  * not being in an RCU read-side critical section.  The caller must
607  * evaluate safety in terms of interrupt, softirq, and preemption
608  * disabling.
609  */
610 notrace void rcu_preempt_deferred_qs(struct task_struct *t)
611 {
612 	unsigned long flags;
613 
614 	if (!rcu_preempt_need_deferred_qs(t))
615 		return;
616 	local_irq_save(flags);
617 	rcu_preempt_deferred_qs_irqrestore(t, flags);
618 }
619 
620 /*
621  * Minimal handler to give the scheduler a chance to re-evaluate.
622  */
623 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
624 {
625 	struct rcu_data *rdp;
626 
627 	rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
628 	rdp->defer_qs_iw_pending = false;
629 }
630 
631 /*
632  * Handle special cases during rcu_read_unlock(), such as needing to
633  * notify RCU core processing or task having blocked during the RCU
634  * read-side critical section.
635  */
636 static void rcu_read_unlock_special(struct task_struct *t)
637 {
638 	unsigned long flags;
639 	bool irqs_were_disabled;
640 	bool preempt_bh_were_disabled =
641 			!!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
642 
643 	/* NMI handlers cannot block and cannot safely manipulate state. */
644 	if (in_nmi())
645 		return;
646 
647 	local_irq_save(flags);
648 	irqs_were_disabled = irqs_disabled_flags(flags);
649 	if (preempt_bh_were_disabled || irqs_were_disabled) {
650 		bool expboost; // Expedited GP in flight or possible boosting.
651 		struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
652 		struct rcu_node *rnp = rdp->mynode;
653 
654 		expboost = (t->rcu_blocked_node && READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
655 			   (rdp->grpmask & READ_ONCE(rnp->expmask)) ||
656 			   (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) &&
657 			   ((rdp->grpmask & READ_ONCE(rnp->qsmask)) || t->rcu_blocked_node)) ||
658 			   (IS_ENABLED(CONFIG_RCU_BOOST) && irqs_were_disabled &&
659 			    t->rcu_blocked_node);
660 		// Need to defer quiescent state until everything is enabled.
661 		if (use_softirq && (in_hardirq() || (expboost && !irqs_were_disabled))) {
662 			// Using softirq, safe to awaken, and either the
663 			// wakeup is free or there is either an expedited
664 			// GP in flight or a potential need to deboost.
665 			raise_softirq_irqoff(RCU_SOFTIRQ);
666 		} else {
667 			// Enabling BH or preempt does reschedule, so...
668 			// Also if no expediting and no possible deboosting,
669 			// slow is OK.  Plus nohz_full CPUs eventually get
670 			// tick enabled.
671 			set_tsk_need_resched(current);
672 			set_preempt_need_resched();
673 			if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
674 			    expboost && !rdp->defer_qs_iw_pending && cpu_online(rdp->cpu)) {
675 				// Get scheduler to re-evaluate and call hooks.
676 				// If !IRQ_WORK, FQS scan will eventually IPI.
677 				if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) &&
678 				    IS_ENABLED(CONFIG_PREEMPT_RT))
679 					rdp->defer_qs_iw = IRQ_WORK_INIT_HARD(
680 								rcu_preempt_deferred_qs_handler);
681 				else
682 					init_irq_work(&rdp->defer_qs_iw,
683 						      rcu_preempt_deferred_qs_handler);
684 				rdp->defer_qs_iw_pending = true;
685 				irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
686 			}
687 		}
688 		local_irq_restore(flags);
689 		return;
690 	}
691 	rcu_preempt_deferred_qs_irqrestore(t, flags);
692 }
693 
694 /*
695  * Check that the list of blocked tasks for the newly completed grace
696  * period is in fact empty.  It is a serious bug to complete a grace
697  * period that still has RCU readers blocked!  This function must be
698  * invoked -before- updating this rnp's ->gp_seq.
699  *
700  * Also, if there are blocked tasks on the list, they automatically
701  * block the newly created grace period, so set up ->gp_tasks accordingly.
702  */
703 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
704 {
705 	struct task_struct *t;
706 
707 	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
708 	raw_lockdep_assert_held_rcu_node(rnp);
709 	if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
710 		dump_blkd_tasks(rnp, 10);
711 	if (rcu_preempt_has_tasks(rnp) &&
712 	    (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
713 		WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
714 		t = container_of(rnp->gp_tasks, struct task_struct,
715 				 rcu_node_entry);
716 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
717 						rnp->gp_seq, t->pid);
718 	}
719 	WARN_ON_ONCE(rnp->qsmask);
720 }
721 
722 /*
723  * Check for a quiescent state from the current CPU, including voluntary
724  * context switches for Tasks RCU.  When a task blocks, the task is
725  * recorded in the corresponding CPU's rcu_node structure, which is checked
726  * elsewhere, hence this function need only check for quiescent states
727  * related to the current CPU, not to those related to tasks.
728  */
729 static void rcu_flavor_sched_clock_irq(int user)
730 {
731 	struct task_struct *t = current;
732 
733 	lockdep_assert_irqs_disabled();
734 	if (rcu_preempt_depth() > 0 ||
735 	    (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
736 		/* No QS, force context switch if deferred. */
737 		if (rcu_preempt_need_deferred_qs(t)) {
738 			set_tsk_need_resched(t);
739 			set_preempt_need_resched();
740 		}
741 	} else if (rcu_preempt_need_deferred_qs(t)) {
742 		rcu_preempt_deferred_qs(t); /* Report deferred QS. */
743 		return;
744 	} else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
745 		rcu_qs(); /* Report immediate QS. */
746 		return;
747 	}
748 
749 	/* If GP is oldish, ask for help from rcu_read_unlock_special(). */
750 	if (rcu_preempt_depth() > 0 &&
751 	    __this_cpu_read(rcu_data.core_needs_qs) &&
752 	    __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
753 	    !t->rcu_read_unlock_special.b.need_qs &&
754 	    time_after(jiffies, rcu_state.gp_start + HZ))
755 		t->rcu_read_unlock_special.b.need_qs = true;
756 }
757 
758 /*
759  * Check for a task exiting while in a preemptible-RCU read-side
760  * critical section, clean up if so.  No need to issue warnings, as
761  * debug_check_no_locks_held() already does this if lockdep is enabled.
762  * Besides, if this function does anything other than just immediately
763  * return, there was a bug of some sort.  Spewing warnings from this
764  * function is like as not to simply obscure important prior warnings.
765  */
766 void exit_rcu(void)
767 {
768 	struct task_struct *t = current;
769 
770 	if (unlikely(!list_empty(&current->rcu_node_entry))) {
771 		rcu_preempt_depth_set(1);
772 		barrier();
773 		WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
774 	} else if (unlikely(rcu_preempt_depth())) {
775 		rcu_preempt_depth_set(1);
776 	} else {
777 		return;
778 	}
779 	__rcu_read_unlock();
780 	rcu_preempt_deferred_qs(current);
781 }
782 
783 /*
784  * Dump the blocked-tasks state, but limit the list dump to the
785  * specified number of elements.
786  */
787 static void
788 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
789 {
790 	int cpu;
791 	int i;
792 	struct list_head *lhp;
793 	struct rcu_data *rdp;
794 	struct rcu_node *rnp1;
795 
796 	raw_lockdep_assert_held_rcu_node(rnp);
797 	pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
798 		__func__, rnp->grplo, rnp->grphi, rnp->level,
799 		(long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
800 	for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
801 		pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
802 			__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
803 	pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
804 		__func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
805 		READ_ONCE(rnp->exp_tasks));
806 	pr_info("%s: ->blkd_tasks", __func__);
807 	i = 0;
808 	list_for_each(lhp, &rnp->blkd_tasks) {
809 		pr_cont(" %p", lhp);
810 		if (++i >= ncheck)
811 			break;
812 	}
813 	pr_cont("\n");
814 	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
815 		rdp = per_cpu_ptr(&rcu_data, cpu);
816 		pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
817 			cpu, ".o"[rcu_rdp_cpu_online(rdp)],
818 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_state,
819 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_state);
820 	}
821 }
822 
823 #else /* #ifdef CONFIG_PREEMPT_RCU */
824 
825 /*
826  * If strict grace periods are enabled, and if the calling
827  * __rcu_read_unlock() marks the beginning of a quiescent state, immediately
828  * report that quiescent state and, if requested, spin for a bit.
829  */
830 void rcu_read_unlock_strict(void)
831 {
832 	struct rcu_data *rdp;
833 
834 	if (irqs_disabled() || preempt_count() || !rcu_state.gp_kthread)
835 		return;
836 	rdp = this_cpu_ptr(&rcu_data);
837 	rdp->cpu_no_qs.b.norm = false;
838 	rcu_report_qs_rdp(rdp);
839 	udelay(rcu_unlock_delay);
840 }
841 EXPORT_SYMBOL_GPL(rcu_read_unlock_strict);
842 
843 /*
844  * Tell them what RCU they are running.
845  */
846 static void __init rcu_bootup_announce(void)
847 {
848 	pr_info("Hierarchical RCU implementation.\n");
849 	rcu_bootup_announce_oddness();
850 }
851 
852 /*
853  * Note a quiescent state for PREEMPTION=n.  Because we do not need to know
854  * how many quiescent states passed, just if there was at least one since
855  * the start of the grace period, this just sets a flag.  The caller must
856  * have disabled preemption.
857  */
858 static void rcu_qs(void)
859 {
860 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
861 	if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
862 		return;
863 	trace_rcu_grace_period(TPS("rcu_sched"),
864 			       __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
865 	__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
866 	if (__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
867 		rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
868 }
869 
870 /*
871  * Register an urgently needed quiescent state.  If there is an
872  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
873  * dyntick-idle quiescent state visible to other CPUs, which will in
874  * some cases serve for expedited as well as normal grace periods.
875  * Either way, register a lightweight quiescent state.
876  */
877 void rcu_all_qs(void)
878 {
879 	unsigned long flags;
880 
881 	if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
882 		return;
883 	preempt_disable();  // For CONFIG_PREEMPT_COUNT=y kernels
884 	/* Load rcu_urgent_qs before other flags. */
885 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
886 		preempt_enable();
887 		return;
888 	}
889 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
890 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
891 		local_irq_save(flags);
892 		rcu_momentary_dyntick_idle();
893 		local_irq_restore(flags);
894 	}
895 	rcu_qs();
896 	preempt_enable();
897 }
898 EXPORT_SYMBOL_GPL(rcu_all_qs);
899 
900 /*
901  * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
902  */
903 void rcu_note_context_switch(bool preempt)
904 {
905 	trace_rcu_utilization(TPS("Start context switch"));
906 	rcu_qs();
907 	/* Load rcu_urgent_qs before other flags. */
908 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
909 		goto out;
910 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
911 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
912 		rcu_momentary_dyntick_idle();
913 out:
914 	rcu_tasks_qs(current, preempt);
915 	trace_rcu_utilization(TPS("End context switch"));
916 }
917 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
918 
919 /*
920  * Because preemptible RCU does not exist, there are never any preempted
921  * RCU readers.
922  */
923 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
924 {
925 	return 0;
926 }
927 
928 /*
929  * Because there is no preemptible RCU, there can be no readers blocked.
930  */
931 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
932 {
933 	return false;
934 }
935 
936 /*
937  * Because there is no preemptible RCU, there can be no deferred quiescent
938  * states.
939  */
940 static notrace bool rcu_preempt_need_deferred_qs(struct task_struct *t)
941 {
942 	return false;
943 }
944 
945 // Except that we do need to respond to a request by an expedited
946 // grace period for a quiescent state from this CPU.  Note that in
947 // non-preemptible kernels, there can be no context switches within RCU
948 // read-side critical sections, which in turn means that the leaf rcu_node
949 // structure's blocked-tasks list is always empty.  is therefore no need to
950 // actually check it.  Instead, a quiescent state from this CPU suffices,
951 // and this function is only called from such a quiescent state.
952 notrace void rcu_preempt_deferred_qs(struct task_struct *t)
953 {
954 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
955 
956 	if (READ_ONCE(rdp->cpu_no_qs.b.exp))
957 		rcu_report_exp_rdp(rdp);
958 }
959 
960 /*
961  * Because there is no preemptible RCU, there can be no readers blocked,
962  * so there is no need to check for blocked tasks.  So check only for
963  * bogus qsmask values.
964  */
965 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
966 {
967 	WARN_ON_ONCE(rnp->qsmask);
968 }
969 
970 /*
971  * Check to see if this CPU is in a non-context-switch quiescent state,
972  * namely user mode and idle loop.
973  */
974 static void rcu_flavor_sched_clock_irq(int user)
975 {
976 	if (user || rcu_is_cpu_rrupt_from_idle()) {
977 
978 		/*
979 		 * Get here if this CPU took its interrupt from user
980 		 * mode or from the idle loop, and if this is not a
981 		 * nested interrupt.  In this case, the CPU is in
982 		 * a quiescent state, so note it.
983 		 *
984 		 * No memory barrier is required here because rcu_qs()
985 		 * references only CPU-local variables that other CPUs
986 		 * neither access nor modify, at least not while the
987 		 * corresponding CPU is online.
988 		 */
989 		rcu_qs();
990 	}
991 }
992 
993 /*
994  * Because preemptible RCU does not exist, tasks cannot possibly exit
995  * while in preemptible RCU read-side critical sections.
996  */
997 void exit_rcu(void)
998 {
999 }
1000 
1001 /*
1002  * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
1003  */
1004 static void
1005 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
1006 {
1007 	WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
1008 }
1009 
1010 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
1011 
1012 /*
1013  * If boosting, set rcuc kthreads to realtime priority.
1014  */
1015 static void rcu_cpu_kthread_setup(unsigned int cpu)
1016 {
1017 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1018 #ifdef CONFIG_RCU_BOOST
1019 	struct sched_param sp;
1020 
1021 	sp.sched_priority = kthread_prio;
1022 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1023 #endif /* #ifdef CONFIG_RCU_BOOST */
1024 
1025 	WRITE_ONCE(rdp->rcuc_activity, jiffies);
1026 }
1027 
1028 static bool rcu_is_callbacks_nocb_kthread(struct rcu_data *rdp)
1029 {
1030 #ifdef CONFIG_RCU_NOCB_CPU
1031 	return rdp->nocb_cb_kthread == current;
1032 #else
1033 	return false;
1034 #endif
1035 }
1036 
1037 /*
1038  * Is the current CPU running the RCU-callbacks kthread?
1039  * Caller must have preemption disabled.
1040  */
1041 static bool rcu_is_callbacks_kthread(struct rcu_data *rdp)
1042 {
1043 	return rdp->rcu_cpu_kthread_task == current ||
1044 			rcu_is_callbacks_nocb_kthread(rdp);
1045 }
1046 
1047 #ifdef CONFIG_RCU_BOOST
1048 
1049 /*
1050  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1051  * or ->boost_tasks, advancing the pointer to the next task in the
1052  * ->blkd_tasks list.
1053  *
1054  * Note that irqs must be enabled: boosting the task can block.
1055  * Returns 1 if there are more tasks needing to be boosted.
1056  */
1057 static int rcu_boost(struct rcu_node *rnp)
1058 {
1059 	unsigned long flags;
1060 	struct task_struct *t;
1061 	struct list_head *tb;
1062 
1063 	if (READ_ONCE(rnp->exp_tasks) == NULL &&
1064 	    READ_ONCE(rnp->boost_tasks) == NULL)
1065 		return 0;  /* Nothing left to boost. */
1066 
1067 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1068 
1069 	/*
1070 	 * Recheck under the lock: all tasks in need of boosting
1071 	 * might exit their RCU read-side critical sections on their own.
1072 	 */
1073 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1074 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1075 		return 0;
1076 	}
1077 
1078 	/*
1079 	 * Preferentially boost tasks blocking expedited grace periods.
1080 	 * This cannot starve the normal grace periods because a second
1081 	 * expedited grace period must boost all blocked tasks, including
1082 	 * those blocking the pre-existing normal grace period.
1083 	 */
1084 	if (rnp->exp_tasks != NULL)
1085 		tb = rnp->exp_tasks;
1086 	else
1087 		tb = rnp->boost_tasks;
1088 
1089 	/*
1090 	 * We boost task t by manufacturing an rt_mutex that appears to
1091 	 * be held by task t.  We leave a pointer to that rt_mutex where
1092 	 * task t can find it, and task t will release the mutex when it
1093 	 * exits its outermost RCU read-side critical section.  Then
1094 	 * simply acquiring this artificial rt_mutex will boost task
1095 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1096 	 *
1097 	 * Note that task t must acquire rnp->lock to remove itself from
1098 	 * the ->blkd_tasks list, which it will do from exit() if from
1099 	 * nowhere else.  We therefore are guaranteed that task t will
1100 	 * stay around at least until we drop rnp->lock.  Note that
1101 	 * rnp->lock also resolves races between our priority boosting
1102 	 * and task t's exiting its outermost RCU read-side critical
1103 	 * section.
1104 	 */
1105 	t = container_of(tb, struct task_struct, rcu_node_entry);
1106 	rt_mutex_init_proxy_locked(&rnp->boost_mtx.rtmutex, t);
1107 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1108 	/* Lock only for side effect: boosts task t's priority. */
1109 	rt_mutex_lock(&rnp->boost_mtx);
1110 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1111 	rnp->n_boosts++;
1112 
1113 	return READ_ONCE(rnp->exp_tasks) != NULL ||
1114 	       READ_ONCE(rnp->boost_tasks) != NULL;
1115 }
1116 
1117 /*
1118  * Priority-boosting kthread, one per leaf rcu_node.
1119  */
1120 static int rcu_boost_kthread(void *arg)
1121 {
1122 	struct rcu_node *rnp = (struct rcu_node *)arg;
1123 	int spincnt = 0;
1124 	int more2boost;
1125 
1126 	trace_rcu_utilization(TPS("Start boost kthread@init"));
1127 	for (;;) {
1128 		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
1129 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1130 		rcu_wait(READ_ONCE(rnp->boost_tasks) ||
1131 			 READ_ONCE(rnp->exp_tasks));
1132 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1133 		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
1134 		more2boost = rcu_boost(rnp);
1135 		if (more2boost)
1136 			spincnt++;
1137 		else
1138 			spincnt = 0;
1139 		if (spincnt > 10) {
1140 			WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
1141 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1142 			schedule_timeout_idle(2);
1143 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1144 			spincnt = 0;
1145 		}
1146 	}
1147 	/* NOTREACHED */
1148 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1149 	return 0;
1150 }
1151 
1152 /*
1153  * Check to see if it is time to start boosting RCU readers that are
1154  * blocking the current grace period, and, if so, tell the per-rcu_node
1155  * kthread to start boosting them.  If there is an expedited grace
1156  * period in progress, it is always time to boost.
1157  *
1158  * The caller must hold rnp->lock, which this function releases.
1159  * The ->boost_kthread_task is immortal, so we don't need to worry
1160  * about it going away.
1161  */
1162 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1163 	__releases(rnp->lock)
1164 {
1165 	raw_lockdep_assert_held_rcu_node(rnp);
1166 	if (!rnp->boost_kthread_task ||
1167 	    (!rcu_preempt_blocked_readers_cgp(rnp) && !rnp->exp_tasks)) {
1168 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1169 		return;
1170 	}
1171 	if (rnp->exp_tasks != NULL ||
1172 	    (rnp->gp_tasks != NULL &&
1173 	     rnp->boost_tasks == NULL &&
1174 	     rnp->qsmask == 0 &&
1175 	     (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld ||
1176 	      IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)))) {
1177 		if (rnp->exp_tasks == NULL)
1178 			WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
1179 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1180 		rcu_wake_cond(rnp->boost_kthread_task,
1181 			      READ_ONCE(rnp->boost_kthread_status));
1182 	} else {
1183 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1184 	}
1185 }
1186 
1187 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1188 
1189 /*
1190  * Do priority-boost accounting for the start of a new grace period.
1191  */
1192 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1193 {
1194 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1195 }
1196 
1197 /*
1198  * Create an RCU-boost kthread for the specified node if one does not
1199  * already exist.  We only create this kthread for preemptible RCU.
1200  */
1201 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1202 {
1203 	unsigned long flags;
1204 	int rnp_index = rnp - rcu_get_root();
1205 	struct sched_param sp;
1206 	struct task_struct *t;
1207 
1208 	if (rnp->boost_kthread_task)
1209 		return;
1210 
1211 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1212 			   "rcub/%d", rnp_index);
1213 	if (WARN_ON_ONCE(IS_ERR(t)))
1214 		return;
1215 
1216 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1217 	rnp->boost_kthread_task = t;
1218 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1219 	sp.sched_priority = kthread_prio;
1220 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1221 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1222 }
1223 
1224 static struct task_struct *rcu_boost_task(struct rcu_node *rnp)
1225 {
1226 	return READ_ONCE(rnp->boost_kthread_task);
1227 }
1228 
1229 #else /* #ifdef CONFIG_RCU_BOOST */
1230 
1231 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1232 	__releases(rnp->lock)
1233 {
1234 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1235 }
1236 
1237 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1238 {
1239 }
1240 
1241 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1242 {
1243 }
1244 
1245 static struct task_struct *rcu_boost_task(struct rcu_node *rnp)
1246 {
1247 	return NULL;
1248 }
1249 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1250 
1251 /*
1252  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
1253  * grace-period kthread will do force_quiescent_state() processing?
1254  * The idea is to avoid waking up RCU core processing on such a
1255  * CPU unless the grace period has extended for too long.
1256  *
1257  * This code relies on the fact that all NO_HZ_FULL CPUs are also
1258  * RCU_NOCB_CPU CPUs.
1259  */
1260 static bool rcu_nohz_full_cpu(void)
1261 {
1262 #ifdef CONFIG_NO_HZ_FULL
1263 	if (tick_nohz_full_cpu(smp_processor_id()) &&
1264 	    (!rcu_gp_in_progress() ||
1265 	     time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
1266 		return true;
1267 #endif /* #ifdef CONFIG_NO_HZ_FULL */
1268 	return false;
1269 }
1270 
1271 /*
1272  * Bind the RCU grace-period kthreads to the housekeeping CPU.
1273  */
1274 static void rcu_bind_gp_kthread(void)
1275 {
1276 	if (!tick_nohz_full_enabled())
1277 		return;
1278 	housekeeping_affine(current, HK_TYPE_RCU);
1279 }
1280