xref: /linux/drivers/gpu/drm/renesas/rcar-du/rcar_du_group.c (revision 2c1ed907520c50326b8f604907a8478b27881a2e)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * R-Car Display Unit Channels Pair
4  *
5  * Copyright (C) 2013-2015 Renesas Electronics Corporation
6  *
7  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
8  */
9 
10 /*
11  * The R8A7779 DU is split in per-CRTC resources (scan-out engine, blending
12  * unit, timings generator, ...) and device-global resources (start/stop
13  * control, planes, ...) shared between the two CRTCs.
14  *
15  * The R8A7790 introduced a third CRTC with its own set of global resources.
16  * This would be modeled as two separate DU device instances if it wasn't for
17  * a handful or resources that are shared between the three CRTCs (mostly
18  * related to input and output routing). For this reason the R8A7790 DU must be
19  * modeled as a single device with three CRTCs, two sets of "semi-global"
20  * resources, and a few device-global resources.
21  *
22  * The rcar_du_group object is a driver specific object, without any real
23  * counterpart in the DU documentation, that models those semi-global resources.
24  */
25 
26 #include <linux/clk.h>
27 #include <linux/io.h>
28 
29 #include "rcar_du_drv.h"
30 #include "rcar_du_group.h"
31 #include "rcar_du_regs.h"
32 
rcar_du_group_read(struct rcar_du_group * rgrp,u32 reg)33 u32 rcar_du_group_read(struct rcar_du_group *rgrp, u32 reg)
34 {
35 	return rcar_du_read(rgrp->dev, rgrp->mmio_offset + reg);
36 }
37 
rcar_du_group_write(struct rcar_du_group * rgrp,u32 reg,u32 data)38 void rcar_du_group_write(struct rcar_du_group *rgrp, u32 reg, u32 data)
39 {
40 	rcar_du_write(rgrp->dev, rgrp->mmio_offset + reg, data);
41 }
42 
rcar_du_group_setup_pins(struct rcar_du_group * rgrp)43 static void rcar_du_group_setup_pins(struct rcar_du_group *rgrp)
44 {
45 	u32 defr6 = DEFR6_CODE;
46 
47 	if (rgrp->channels_mask & BIT(0))
48 		defr6 |= DEFR6_ODPM02_DISP;
49 
50 	if (rgrp->channels_mask & BIT(1))
51 		defr6 |= DEFR6_ODPM12_DISP;
52 
53 	rcar_du_group_write(rgrp, DEFR6, defr6);
54 }
55 
rcar_du_group_setup_defr8(struct rcar_du_group * rgrp)56 static void rcar_du_group_setup_defr8(struct rcar_du_group *rgrp)
57 {
58 	struct rcar_du_device *rcdu = rgrp->dev;
59 	u32 defr8 = DEFR8_CODE;
60 
61 	if (rcdu->info->gen < 3) {
62 		defr8 |= DEFR8_DEFE8;
63 
64 		/*
65 		 * On Gen2 the DEFR8 register for the first group also controls
66 		 * RGB output routing to DPAD0 and VSPD1 routing to DU0/1/2 for
67 		 * DU instances that support it.
68 		 */
69 		if (rgrp->index == 0) {
70 			defr8 |= DEFR8_DRGBS_DU(rcdu->dpad0_source);
71 			if (rgrp->dev->vspd1_sink == 2)
72 				defr8 |= DEFR8_VSCS;
73 		}
74 	} else {
75 		/*
76 		 * On Gen3 VSPD routing can't be configured, and DPAD routing
77 		 * is set in the group corresponding to the DPAD output (no Gen3
78 		 * SoC has multiple DPAD sources belonging to separate groups).
79 		 */
80 		if (rgrp->index == rcdu->dpad0_source / 2)
81 			defr8 |= DEFR8_DRGBS_DU(rcdu->dpad0_source);
82 	}
83 
84 	rcar_du_group_write(rgrp, DEFR8, defr8);
85 }
86 
rcar_du_group_setup_didsr(struct rcar_du_group * rgrp)87 static void rcar_du_group_setup_didsr(struct rcar_du_group *rgrp)
88 {
89 	struct rcar_du_device *rcdu = rgrp->dev;
90 	struct rcar_du_crtc *rcrtc;
91 	unsigned int num_crtcs = 0;
92 	unsigned int i;
93 	u32 didsr;
94 
95 	/*
96 	 * Configure input dot clock routing with a hardcoded configuration. If
97 	 * the DU channel can use the LVDS encoder output clock as the dot
98 	 * clock, do so. Otherwise route DU_DOTCLKINn signal to DUn.
99 	 *
100 	 * Each channel can then select between the dot clock configured here
101 	 * and the clock provided by the CPG through the ESCR register.
102 	 */
103 	if (rcdu->info->gen < 3 && rgrp->index == 0) {
104 		/*
105 		 * On Gen2 a single register in the first group controls dot
106 		 * clock selection for all channels.
107 		 */
108 		rcrtc = rcdu->crtcs;
109 		num_crtcs = rcdu->num_crtcs;
110 	} else if ((rcdu->info->gen == 3 && rgrp->num_crtcs > 1) ||
111 		   rcdu->info->gen == 4) {
112 		/*
113 		 * On Gen3 dot clocks are setup through per-group registers,
114 		 * only available when the group has two channels.
115 		 * On Gen4 the registers are there for single channel too.
116 		 */
117 		rcrtc = &rcdu->crtcs[rgrp->index * 2];
118 		num_crtcs = rgrp->num_crtcs;
119 	}
120 
121 	if (!num_crtcs)
122 		return;
123 
124 	didsr = DIDSR_CODE;
125 	for (i = 0; i < num_crtcs; ++i, ++rcrtc) {
126 		if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index))
127 			didsr |= DIDSR_LDCS_LVDS0(i)
128 			      |  DIDSR_PDCS_CLK(i, 0);
129 		else if (rcdu->info->dsi_clk_mask & BIT(rcrtc->index))
130 			didsr |= DIDSR_LDCS_DSI(i);
131 		else
132 			didsr |= DIDSR_LDCS_DCLKIN(i)
133 			      |  DIDSR_PDCS_CLK(i, 0);
134 	}
135 
136 	rcar_du_group_write(rgrp, DIDSR, didsr);
137 }
138 
rcar_du_group_setup(struct rcar_du_group * rgrp)139 static void rcar_du_group_setup(struct rcar_du_group *rgrp)
140 {
141 	struct rcar_du_device *rcdu = rgrp->dev;
142 	u32 defr7 = DEFR7_CODE;
143 	u32 dorcr;
144 
145 	/* Enable extended features */
146 	rcar_du_group_write(rgrp, DEFR, DEFR_CODE | DEFR_DEFE);
147 	if (rcdu->info->gen < 3) {
148 		rcar_du_group_write(rgrp, DEFR2, DEFR2_CODE | DEFR2_DEFE2G);
149 		rcar_du_group_write(rgrp, DEFR3, DEFR3_CODE | DEFR3_DEFE3);
150 		rcar_du_group_write(rgrp, DEFR4, DEFR4_CODE);
151 	}
152 	rcar_du_group_write(rgrp, DEFR5, DEFR5_CODE | DEFR5_DEFE5);
153 
154 	if (rcdu->info->gen < 4)
155 		rcar_du_group_setup_pins(rgrp);
156 
157 	if (rcdu->info->gen < 4) {
158 		/*
159 		 * TODO: Handle routing of the DU output to CMM dynamically, as
160 		 * we should bypass CMM completely when no color management
161 		 * feature is used.
162 		 */
163 		defr7 |= (rgrp->cmms_mask & BIT(1) ? DEFR7_CMME1 : 0) |
164 			 (rgrp->cmms_mask & BIT(0) ? DEFR7_CMME0 : 0);
165 		rcar_du_group_write(rgrp, DEFR7, defr7);
166 	}
167 
168 	if (rcdu->info->gen >= 2) {
169 		if (rcdu->info->gen < 4)
170 			rcar_du_group_setup_defr8(rgrp);
171 		rcar_du_group_setup_didsr(rgrp);
172 	}
173 
174 	if (rcdu->info->gen >= 3)
175 		rcar_du_group_write(rgrp, DEFR10, DEFR10_CODE | DEFR10_DEFE10);
176 
177 	/*
178 	 * Use DS1PR and DS2PR to configure planes priorities and connects the
179 	 * superposition 0 to DU0 pins. DU1 pins will be configured dynamically.
180 	 *
181 	 * Groups that have a single channel have a hardcoded configuration. On
182 	 * Gen3 and newer, the documentation requires PG1T, DK1S and PG1D_DS1 to
183 	 * always be set in this case.
184 	 */
185 	dorcr = DORCR_PG0D_DS0 | DORCR_DPRS;
186 	if (rcdu->info->gen >= 3 && rgrp->num_crtcs == 1)
187 		dorcr |= DORCR_PG1T | DORCR_DK1S | DORCR_PG1D_DS1;
188 	rcar_du_group_write(rgrp, DORCR, dorcr);
189 
190 	/*
191 	 * DPTSR is used to select the source for the planes of a group. The
192 	 * first source is chosen by writing 0 to the respective bits, and this
193 	 * is always the default value of the register. In other words, writing
194 	 * DPTSR is only needed if the SoC supports choosing the second source.
195 	 *
196 	 * The SoCs documentations seems to confirm this, as the DPTSR register
197 	 * is not documented if only the first source exists on that SoC.
198 	 */
199 	if (rgrp->channels_mask & BIT(1)) {
200 		mutex_lock(&rgrp->lock);
201 		rcar_du_group_write(rgrp, DPTSR, (rgrp->dptsr_planes << 16) |
202 				    rgrp->dptsr_planes);
203 		mutex_unlock(&rgrp->lock);
204 	}
205 }
206 
207 /*
208  * rcar_du_group_get - Acquire a reference to the DU channels group
209  *
210  * Acquiring the first reference setups core registers. A reference must be held
211  * before accessing any hardware registers.
212  *
213  * This function must be called with the DRM mode_config lock held.
214  *
215  * Return 0 in case of success or a negative error code otherwise.
216  */
rcar_du_group_get(struct rcar_du_group * rgrp)217 int rcar_du_group_get(struct rcar_du_group *rgrp)
218 {
219 	if (rgrp->use_count)
220 		goto done;
221 
222 	rcar_du_group_setup(rgrp);
223 
224 done:
225 	rgrp->use_count++;
226 	return 0;
227 }
228 
229 /*
230  * rcar_du_group_put - Release a reference to the DU
231  *
232  * This function must be called with the DRM mode_config lock held.
233  */
rcar_du_group_put(struct rcar_du_group * rgrp)234 void rcar_du_group_put(struct rcar_du_group *rgrp)
235 {
236 	--rgrp->use_count;
237 }
238 
__rcar_du_group_start_stop(struct rcar_du_group * rgrp,bool start)239 static void __rcar_du_group_start_stop(struct rcar_du_group *rgrp, bool start)
240 {
241 	struct rcar_du_device *rcdu = rgrp->dev;
242 
243 	/*
244 	 * Group start/stop is controlled by the DRES and DEN bits of DSYSR0
245 	 * for the first group and DSYSR2 for the second group. On most DU
246 	 * instances, this maps to the first CRTC of the group, and we can just
247 	 * use rcar_du_crtc_dsysr_clr_set() to access the correct DSYSR. On
248 	 * M3-N, however, DU2 doesn't exist, but DSYSR2 does. We thus need to
249 	 * access the register directly using group read/write.
250 	 */
251 	if (rcdu->info->channels_mask & BIT(rgrp->index * 2)) {
252 		struct rcar_du_crtc *rcrtc = &rgrp->dev->crtcs[rgrp->index * 2];
253 
254 		rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_DRES | DSYSR_DEN,
255 					   start ? DSYSR_DEN : DSYSR_DRES);
256 	} else {
257 		rcar_du_group_write(rgrp, DSYSR,
258 				    start ? DSYSR_DEN : DSYSR_DRES);
259 	}
260 }
261 
rcar_du_group_start_stop(struct rcar_du_group * rgrp,bool start)262 void rcar_du_group_start_stop(struct rcar_du_group *rgrp, bool start)
263 {
264 	/*
265 	 * Many of the configuration bits are only updated when the display
266 	 * reset (DRES) bit in DSYSR is set to 1, disabling *both* CRTCs. Some
267 	 * of those bits could be pre-configured, but others (especially the
268 	 * bits related to plane assignment to display timing controllers) need
269 	 * to be modified at runtime.
270 	 *
271 	 * Restart the display controller if a start is requested. Sorry for the
272 	 * flicker. It should be possible to move most of the "DRES-update" bits
273 	 * setup to driver initialization time and minimize the number of cases
274 	 * when the display controller will have to be restarted.
275 	 */
276 	if (start) {
277 		if (rgrp->used_crtcs++ != 0)
278 			__rcar_du_group_start_stop(rgrp, false);
279 		__rcar_du_group_start_stop(rgrp, true);
280 	} else {
281 		if (--rgrp->used_crtcs == 0)
282 			__rcar_du_group_start_stop(rgrp, false);
283 	}
284 }
285 
rcar_du_group_restart(struct rcar_du_group * rgrp)286 void rcar_du_group_restart(struct rcar_du_group *rgrp)
287 {
288 	rgrp->need_restart = false;
289 
290 	__rcar_du_group_start_stop(rgrp, false);
291 	__rcar_du_group_start_stop(rgrp, true);
292 }
293 
rcar_du_set_dpad0_vsp1_routing(struct rcar_du_device * rcdu)294 int rcar_du_set_dpad0_vsp1_routing(struct rcar_du_device *rcdu)
295 {
296 	struct rcar_du_group *rgrp;
297 	struct rcar_du_crtc *crtc;
298 	unsigned int index;
299 	int ret;
300 
301 	if (rcdu->info->gen < 2)
302 		return 0;
303 
304 	/*
305 	 * RGB output routing to DPAD0 and VSP1D routing to DU0/1/2 are
306 	 * configured in the DEFR8 register of the first group on Gen2 and the
307 	 * last group on Gen3. As this function can be called with the DU
308 	 * channels of the corresponding CRTCs disabled, we need to enable the
309 	 * group clock before accessing the register.
310 	 */
311 	index = rcdu->info->gen < 3 ? 0 : DIV_ROUND_UP(rcdu->num_crtcs, 2) - 1;
312 	rgrp = &rcdu->groups[index];
313 	crtc = &rcdu->crtcs[index * 2];
314 
315 	ret = clk_prepare_enable(crtc->clock);
316 	if (ret < 0)
317 		return ret;
318 
319 	rcar_du_group_setup_defr8(rgrp);
320 
321 	clk_disable_unprepare(crtc->clock);
322 
323 	return 0;
324 }
325 
rcar_du_group_set_dpad_levels(struct rcar_du_group * rgrp)326 static void rcar_du_group_set_dpad_levels(struct rcar_du_group *rgrp)
327 {
328 	static const u32 doflr_values[2] = {
329 		DOFLR_HSYCFL0 | DOFLR_VSYCFL0 | DOFLR_ODDFL0 |
330 		DOFLR_DISPFL0 | DOFLR_CDEFL0  | DOFLR_RGBFL0,
331 		DOFLR_HSYCFL1 | DOFLR_VSYCFL1 | DOFLR_ODDFL1 |
332 		DOFLR_DISPFL1 | DOFLR_CDEFL1  | DOFLR_RGBFL1,
333 	};
334 	static const u32 dpad_mask = BIT(RCAR_DU_OUTPUT_DPAD1)
335 				   | BIT(RCAR_DU_OUTPUT_DPAD0);
336 	struct rcar_du_device *rcdu = rgrp->dev;
337 	u32 doflr = DOFLR_CODE;
338 	unsigned int i;
339 
340 	if (rcdu->info->gen < 2)
341 		return;
342 
343 	/*
344 	 * The DPAD outputs can't be controlled directly. However, the parallel
345 	 * output of the DU channels routed to DPAD can be set to fixed levels
346 	 * through the DOFLR group register. Use this to turn the DPAD on or off
347 	 * by driving fixed low-level signals at the output of any DU channel
348 	 * not routed to a DPAD output. This doesn't affect the DU output
349 	 * signals going to other outputs, such as the internal LVDS and HDMI
350 	 * encoders.
351 	 */
352 
353 	for (i = 0; i < rgrp->num_crtcs; ++i) {
354 		struct rcar_du_crtc_state *rstate;
355 		struct rcar_du_crtc *rcrtc;
356 
357 		rcrtc = &rcdu->crtcs[rgrp->index * 2 + i];
358 		rstate = to_rcar_crtc_state(rcrtc->crtc.state);
359 
360 		if (!(rstate->outputs & dpad_mask))
361 			doflr |= doflr_values[i];
362 	}
363 
364 	rcar_du_group_write(rgrp, DOFLR, doflr);
365 }
366 
rcar_du_group_set_routing(struct rcar_du_group * rgrp)367 int rcar_du_group_set_routing(struct rcar_du_group *rgrp)
368 {
369 	struct rcar_du_device *rcdu = rgrp->dev;
370 	u32 dorcr = rcar_du_group_read(rgrp, DORCR);
371 
372 	dorcr &= ~(DORCR_PG1T | DORCR_DK1S | DORCR_PG1D_MASK);
373 
374 	/*
375 	 * Set the DPAD1 pins sources. Select CRTC 0 if explicitly requested and
376 	 * CRTC 1 in all other cases to avoid cloning CRTC 0 to DPAD0 and DPAD1
377 	 * by default.
378 	 */
379 	if (rcdu->dpad1_source == rgrp->index * 2)
380 		dorcr |= DORCR_PG1D_DS0;
381 	else
382 		dorcr |= DORCR_PG1T | DORCR_DK1S | DORCR_PG1D_DS1;
383 
384 	rcar_du_group_write(rgrp, DORCR, dorcr);
385 
386 	rcar_du_group_set_dpad_levels(rgrp);
387 
388 	return rcar_du_set_dpad0_vsp1_routing(rgrp->dev);
389 }
390