xref: /linux/kernel/events/ring_buffer.c (revision 2fc18d0b8958dcea74c7357ebbc6912d0d6e2936)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events ring-buffer code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/perf_event.h>
12 #include <linux/vmalloc.h>
13 #include <linux/slab.h>
14 #include <linux/circ_buf.h>
15 #include <linux/poll.h>
16 #include <linux/nospec.h>
17 
18 #include "internal.h"
19 
perf_output_wakeup(struct perf_output_handle * handle)20 static void perf_output_wakeup(struct perf_output_handle *handle)
21 {
22 	atomic_set(&handle->rb->poll, EPOLLIN | EPOLLRDNORM);
23 
24 	handle->event->pending_wakeup = 1;
25 
26 	if (*perf_event_fasync(handle->event) && !handle->event->pending_kill)
27 		handle->event->pending_kill = POLL_IN;
28 
29 	irq_work_queue(&handle->event->pending_irq);
30 }
31 
32 /*
33  * We need to ensure a later event_id doesn't publish a head when a former
34  * event isn't done writing. However since we need to deal with NMIs we
35  * cannot fully serialize things.
36  *
37  * We only publish the head (and generate a wakeup) when the outer-most
38  * event completes.
39  */
perf_output_get_handle(struct perf_output_handle * handle)40 static void perf_output_get_handle(struct perf_output_handle *handle)
41 {
42 	struct perf_buffer *rb = handle->rb;
43 
44 	preempt_disable();
45 
46 	/*
47 	 * Avoid an explicit LOAD/STORE such that architectures with memops
48 	 * can use them.
49 	 */
50 	(*(volatile unsigned int *)&rb->nest)++;
51 	handle->wakeup = local_read(&rb->wakeup);
52 }
53 
perf_output_put_handle(struct perf_output_handle * handle)54 static void perf_output_put_handle(struct perf_output_handle *handle)
55 {
56 	struct perf_buffer *rb = handle->rb;
57 	unsigned long head;
58 	unsigned int nest;
59 
60 	/*
61 	 * If this isn't the outermost nesting, we don't have to update
62 	 * @rb->user_page->data_head.
63 	 */
64 	nest = READ_ONCE(rb->nest);
65 	if (nest > 1) {
66 		WRITE_ONCE(rb->nest, nest - 1);
67 		goto out;
68 	}
69 
70 again:
71 	/*
72 	 * In order to avoid publishing a head value that goes backwards,
73 	 * we must ensure the load of @rb->head happens after we've
74 	 * incremented @rb->nest.
75 	 *
76 	 * Otherwise we can observe a @rb->head value before one published
77 	 * by an IRQ/NMI happening between the load and the increment.
78 	 */
79 	barrier();
80 	head = local_read(&rb->head);
81 
82 	/*
83 	 * IRQ/NMI can happen here and advance @rb->head, causing our
84 	 * load above to be stale.
85 	 */
86 
87 	/*
88 	 * Since the mmap() consumer (userspace) can run on a different CPU:
89 	 *
90 	 *   kernel				user
91 	 *
92 	 *   if (LOAD ->data_tail) {		LOAD ->data_head
93 	 *			(A)		smp_rmb()	(C)
94 	 *	STORE $data			LOAD $data
95 	 *	smp_wmb()	(B)		smp_mb()	(D)
96 	 *	STORE ->data_head		STORE ->data_tail
97 	 *   }
98 	 *
99 	 * Where A pairs with D, and B pairs with C.
100 	 *
101 	 * In our case (A) is a control dependency that separates the load of
102 	 * the ->data_tail and the stores of $data. In case ->data_tail
103 	 * indicates there is no room in the buffer to store $data we do not.
104 	 *
105 	 * D needs to be a full barrier since it separates the data READ
106 	 * from the tail WRITE.
107 	 *
108 	 * For B a WMB is sufficient since it separates two WRITEs, and for C
109 	 * an RMB is sufficient since it separates two READs.
110 	 *
111 	 * See perf_output_begin().
112 	 */
113 	smp_wmb(); /* B, matches C */
114 	WRITE_ONCE(rb->user_page->data_head, head);
115 
116 	/*
117 	 * We must publish the head before decrementing the nest count,
118 	 * otherwise an IRQ/NMI can publish a more recent head value and our
119 	 * write will (temporarily) publish a stale value.
120 	 */
121 	barrier();
122 	WRITE_ONCE(rb->nest, 0);
123 
124 	/*
125 	 * Ensure we decrement @rb->nest before we validate the @rb->head.
126 	 * Otherwise we cannot be sure we caught the 'last' nested update.
127 	 */
128 	barrier();
129 	if (unlikely(head != local_read(&rb->head))) {
130 		WRITE_ONCE(rb->nest, 1);
131 		goto again;
132 	}
133 
134 	if (handle->wakeup != local_read(&rb->wakeup))
135 		perf_output_wakeup(handle);
136 
137 out:
138 	preempt_enable();
139 }
140 
141 static __always_inline bool
ring_buffer_has_space(unsigned long head,unsigned long tail,unsigned long data_size,unsigned int size,bool backward)142 ring_buffer_has_space(unsigned long head, unsigned long tail,
143 		      unsigned long data_size, unsigned int size,
144 		      bool backward)
145 {
146 	if (!backward)
147 		return CIRC_SPACE(head, tail, data_size) >= size;
148 	else
149 		return CIRC_SPACE(tail, head, data_size) >= size;
150 }
151 
152 static __always_inline int
__perf_output_begin(struct perf_output_handle * handle,struct perf_sample_data * data,struct perf_event * event,unsigned int size,bool backward)153 __perf_output_begin(struct perf_output_handle *handle,
154 		    struct perf_sample_data *data,
155 		    struct perf_event *event, unsigned int size,
156 		    bool backward)
157 {
158 	struct perf_buffer *rb;
159 	unsigned long tail, offset, head;
160 	int have_lost, page_shift;
161 	struct {
162 		struct perf_event_header header;
163 		u64			 id;
164 		u64			 lost;
165 	} lost_event;
166 
167 	rcu_read_lock();
168 	/*
169 	 * For inherited events we send all the output towards the parent.
170 	 */
171 	if (event->parent)
172 		event = event->parent;
173 
174 	rb = rcu_dereference(event->rb);
175 	if (unlikely(!rb))
176 		goto out;
177 
178 	if (unlikely(rb->paused)) {
179 		if (rb->nr_pages) {
180 			local_inc(&rb->lost);
181 			atomic64_inc(&event->lost_samples);
182 		}
183 		goto out;
184 	}
185 
186 	handle->rb    = rb;
187 	handle->event = event;
188 	handle->flags = 0;
189 
190 	have_lost = local_read(&rb->lost);
191 	if (unlikely(have_lost)) {
192 		size += sizeof(lost_event);
193 		if (event->attr.sample_id_all)
194 			size += event->id_header_size;
195 	}
196 
197 	perf_output_get_handle(handle);
198 
199 	offset = local_read(&rb->head);
200 	do {
201 		head = offset;
202 		tail = READ_ONCE(rb->user_page->data_tail);
203 		if (!rb->overwrite) {
204 			if (unlikely(!ring_buffer_has_space(head, tail,
205 							    perf_data_size(rb),
206 							    size, backward)))
207 				goto fail;
208 		}
209 
210 		/*
211 		 * The above forms a control dependency barrier separating the
212 		 * @tail load above from the data stores below. Since the @tail
213 		 * load is required to compute the branch to fail below.
214 		 *
215 		 * A, matches D; the full memory barrier userspace SHOULD issue
216 		 * after reading the data and before storing the new tail
217 		 * position.
218 		 *
219 		 * See perf_output_put_handle().
220 		 */
221 
222 		if (!backward)
223 			head += size;
224 		else
225 			head -= size;
226 	} while (!local_try_cmpxchg(&rb->head, &offset, head));
227 
228 	if (backward) {
229 		offset = head;
230 		head = (u64)(-head);
231 	}
232 
233 	/*
234 	 * We rely on the implied barrier() by local_cmpxchg() to ensure
235 	 * none of the data stores below can be lifted up by the compiler.
236 	 */
237 
238 	if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
239 		local_add(rb->watermark, &rb->wakeup);
240 
241 	page_shift = PAGE_SHIFT + page_order(rb);
242 
243 	handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
244 	offset &= (1UL << page_shift) - 1;
245 	handle->addr = rb->data_pages[handle->page] + offset;
246 	handle->size = (1UL << page_shift) - offset;
247 
248 	if (unlikely(have_lost)) {
249 		lost_event.header.size = sizeof(lost_event);
250 		lost_event.header.type = PERF_RECORD_LOST;
251 		lost_event.header.misc = 0;
252 		lost_event.id          = event->id;
253 		lost_event.lost        = local_xchg(&rb->lost, 0);
254 
255 		/* XXX mostly redundant; @data is already fully initializes */
256 		perf_event_header__init_id(&lost_event.header, data, event);
257 		perf_output_put(handle, lost_event);
258 		perf_event__output_id_sample(event, handle, data);
259 	}
260 
261 	return 0;
262 
263 fail:
264 	local_inc(&rb->lost);
265 	atomic64_inc(&event->lost_samples);
266 	perf_output_put_handle(handle);
267 out:
268 	rcu_read_unlock();
269 
270 	return -ENOSPC;
271 }
272 
perf_output_begin_forward(struct perf_output_handle * handle,struct perf_sample_data * data,struct perf_event * event,unsigned int size)273 int perf_output_begin_forward(struct perf_output_handle *handle,
274 			      struct perf_sample_data *data,
275 			      struct perf_event *event, unsigned int size)
276 {
277 	return __perf_output_begin(handle, data, event, size, false);
278 }
279 
perf_output_begin_backward(struct perf_output_handle * handle,struct perf_sample_data * data,struct perf_event * event,unsigned int size)280 int perf_output_begin_backward(struct perf_output_handle *handle,
281 			       struct perf_sample_data *data,
282 			       struct perf_event *event, unsigned int size)
283 {
284 	return __perf_output_begin(handle, data, event, size, true);
285 }
286 
perf_output_begin(struct perf_output_handle * handle,struct perf_sample_data * data,struct perf_event * event,unsigned int size)287 int perf_output_begin(struct perf_output_handle *handle,
288 		      struct perf_sample_data *data,
289 		      struct perf_event *event, unsigned int size)
290 {
291 
292 	return __perf_output_begin(handle, data, event, size,
293 				   unlikely(is_write_backward(event)));
294 }
295 
perf_output_copy(struct perf_output_handle * handle,const void * buf,unsigned int len)296 unsigned int perf_output_copy(struct perf_output_handle *handle,
297 		      const void *buf, unsigned int len)
298 {
299 	return __output_copy(handle, buf, len);
300 }
301 
perf_output_skip(struct perf_output_handle * handle,unsigned int len)302 unsigned int perf_output_skip(struct perf_output_handle *handle,
303 			      unsigned int len)
304 {
305 	return __output_skip(handle, NULL, len);
306 }
307 
perf_output_end(struct perf_output_handle * handle)308 void perf_output_end(struct perf_output_handle *handle)
309 {
310 	perf_output_put_handle(handle);
311 	rcu_read_unlock();
312 }
313 
314 static void
ring_buffer_init(struct perf_buffer * rb,long watermark,int flags)315 ring_buffer_init(struct perf_buffer *rb, long watermark, int flags)
316 {
317 	long max_size = perf_data_size(rb);
318 
319 	if (watermark)
320 		rb->watermark = min(max_size, watermark);
321 
322 	if (!rb->watermark)
323 		rb->watermark = max_size / 2;
324 
325 	if (flags & RING_BUFFER_WRITABLE)
326 		rb->overwrite = 0;
327 	else
328 		rb->overwrite = 1;
329 
330 	refcount_set(&rb->refcount, 1);
331 
332 	INIT_LIST_HEAD(&rb->event_list);
333 	spin_lock_init(&rb->event_lock);
334 
335 	/*
336 	 * perf_output_begin() only checks rb->paused, therefore
337 	 * rb->paused must be true if we have no pages for output.
338 	 */
339 	if (!rb->nr_pages)
340 		rb->paused = 1;
341 
342 	mutex_init(&rb->aux_mutex);
343 }
344 
perf_aux_output_flag(struct perf_output_handle * handle,u64 flags)345 void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags)
346 {
347 	/*
348 	 * OVERWRITE is determined by perf_aux_output_end() and can't
349 	 * be passed in directly.
350 	 */
351 	if (WARN_ON_ONCE(flags & PERF_AUX_FLAG_OVERWRITE))
352 		return;
353 
354 	handle->aux_flags |= flags;
355 }
356 EXPORT_SYMBOL_GPL(perf_aux_output_flag);
357 
358 /*
359  * This is called before hardware starts writing to the AUX area to
360  * obtain an output handle and make sure there's room in the buffer.
361  * When the capture completes, call perf_aux_output_end() to commit
362  * the recorded data to the buffer.
363  *
364  * The ordering is similar to that of perf_output_{begin,end}, with
365  * the exception of (B), which should be taken care of by the pmu
366  * driver, since ordering rules will differ depending on hardware.
367  *
368  * Call this from pmu::start(); see the comment in perf_aux_output_end()
369  * about its use in pmu callbacks. Both can also be called from the PMI
370  * handler if needed.
371  */
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)372 void *perf_aux_output_begin(struct perf_output_handle *handle,
373 			    struct perf_event *event)
374 {
375 	struct perf_event *output_event = event;
376 	unsigned long aux_head, aux_tail;
377 	struct perf_buffer *rb;
378 	unsigned int nest;
379 
380 	if (output_event->parent)
381 		output_event = output_event->parent;
382 
383 	/*
384 	 * Since this will typically be open across pmu::add/pmu::del, we
385 	 * grab ring_buffer's refcount instead of holding rcu read lock
386 	 * to make sure it doesn't disappear under us.
387 	 */
388 	rb = ring_buffer_get(output_event);
389 	if (!rb)
390 		return NULL;
391 
392 	if (!rb_has_aux(rb))
393 		goto err;
394 
395 	/*
396 	 * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(),
397 	 * about to get freed, so we leave immediately.
398 	 *
399 	 * Checking rb::aux_mmap_count and rb::refcount has to be done in
400 	 * the same order, see perf_mmap_close. Otherwise we end up freeing
401 	 * aux pages in this path, which is a bug, because in_atomic().
402 	 */
403 	if (!atomic_read(&rb->aux_mmap_count))
404 		goto err;
405 
406 	if (!refcount_inc_not_zero(&rb->aux_refcount))
407 		goto err;
408 
409 	nest = READ_ONCE(rb->aux_nest);
410 	/*
411 	 * Nesting is not supported for AUX area, make sure nested
412 	 * writers are caught early
413 	 */
414 	if (WARN_ON_ONCE(nest))
415 		goto err_put;
416 
417 	WRITE_ONCE(rb->aux_nest, nest + 1);
418 
419 	aux_head = rb->aux_head;
420 
421 	handle->rb = rb;
422 	handle->event = event;
423 	handle->head = aux_head;
424 	handle->size = 0;
425 	handle->aux_flags = 0;
426 
427 	/*
428 	 * In overwrite mode, AUX data stores do not depend on aux_tail,
429 	 * therefore (A) control dependency barrier does not exist. The
430 	 * (B) <-> (C) ordering is still observed by the pmu driver.
431 	 */
432 	if (!rb->aux_overwrite) {
433 		aux_tail = READ_ONCE(rb->user_page->aux_tail);
434 		handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
435 		if (aux_head - aux_tail < perf_aux_size(rb))
436 			handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb));
437 
438 		/*
439 		 * handle->size computation depends on aux_tail load; this forms a
440 		 * control dependency barrier separating aux_tail load from aux data
441 		 * store that will be enabled on successful return
442 		 */
443 		if (!handle->size) { /* A, matches D */
444 			perf_event_disable_inatomic(handle->event);
445 			perf_output_wakeup(handle);
446 			WRITE_ONCE(rb->aux_nest, 0);
447 			goto err_put;
448 		}
449 	}
450 
451 	return handle->rb->aux_priv;
452 
453 err_put:
454 	/* can't be last */
455 	rb_free_aux(rb);
456 
457 err:
458 	ring_buffer_put(rb);
459 	handle->event = NULL;
460 
461 	return NULL;
462 }
463 EXPORT_SYMBOL_GPL(perf_aux_output_begin);
464 
rb_need_aux_wakeup(struct perf_buffer * rb)465 static __always_inline bool rb_need_aux_wakeup(struct perf_buffer *rb)
466 {
467 	if (rb->aux_overwrite)
468 		return false;
469 
470 	if (rb->aux_head - rb->aux_wakeup >= rb->aux_watermark) {
471 		rb->aux_wakeup = rounddown(rb->aux_head, rb->aux_watermark);
472 		return true;
473 	}
474 
475 	return false;
476 }
477 
478 /*
479  * Commit the data written by hardware into the ring buffer by adjusting
480  * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the
481  * pmu driver's responsibility to observe ordering rules of the hardware,
482  * so that all the data is externally visible before this is called.
483  *
484  * Note: this has to be called from pmu::stop() callback, as the assumption
485  * of the AUX buffer management code is that after pmu::stop(), the AUX
486  * transaction must be stopped and therefore drop the AUX reference count.
487  */
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size)488 void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
489 {
490 	bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED);
491 	struct perf_buffer *rb = handle->rb;
492 	unsigned long aux_head;
493 
494 	/* in overwrite mode, driver provides aux_head via handle */
495 	if (rb->aux_overwrite) {
496 		handle->aux_flags |= PERF_AUX_FLAG_OVERWRITE;
497 
498 		aux_head = handle->head;
499 		rb->aux_head = aux_head;
500 	} else {
501 		handle->aux_flags &= ~PERF_AUX_FLAG_OVERWRITE;
502 
503 		aux_head = rb->aux_head;
504 		rb->aux_head += size;
505 	}
506 
507 	/*
508 	 * Only send RECORD_AUX if we have something useful to communicate
509 	 *
510 	 * Note: the OVERWRITE records by themselves are not considered
511 	 * useful, as they don't communicate any *new* information,
512 	 * aside from the short-lived offset, that becomes history at
513 	 * the next event sched-in and therefore isn't useful.
514 	 * The userspace that needs to copy out AUX data in overwrite
515 	 * mode should know to use user_page::aux_head for the actual
516 	 * offset. So, from now on we don't output AUX records that
517 	 * have *only* OVERWRITE flag set.
518 	 */
519 	if (size || (handle->aux_flags & ~(u64)PERF_AUX_FLAG_OVERWRITE))
520 		perf_event_aux_event(handle->event, aux_head, size,
521 				     handle->aux_flags);
522 
523 	WRITE_ONCE(rb->user_page->aux_head, rb->aux_head);
524 	if (rb_need_aux_wakeup(rb))
525 		wakeup = true;
526 
527 	if (wakeup) {
528 		if (handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)
529 			perf_event_disable_inatomic(handle->event);
530 		perf_output_wakeup(handle);
531 	}
532 
533 	handle->event = NULL;
534 
535 	WRITE_ONCE(rb->aux_nest, 0);
536 	/* can't be last */
537 	rb_free_aux(rb);
538 	ring_buffer_put(rb);
539 }
540 EXPORT_SYMBOL_GPL(perf_aux_output_end);
541 
542 /*
543  * Skip over a given number of bytes in the AUX buffer, due to, for example,
544  * hardware's alignment constraints.
545  */
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)546 int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size)
547 {
548 	struct perf_buffer *rb = handle->rb;
549 
550 	if (size > handle->size)
551 		return -ENOSPC;
552 
553 	rb->aux_head += size;
554 
555 	WRITE_ONCE(rb->user_page->aux_head, rb->aux_head);
556 	if (rb_need_aux_wakeup(rb)) {
557 		perf_output_wakeup(handle);
558 		handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
559 	}
560 
561 	handle->head = rb->aux_head;
562 	handle->size -= size;
563 
564 	return 0;
565 }
566 EXPORT_SYMBOL_GPL(perf_aux_output_skip);
567 
perf_get_aux(struct perf_output_handle * handle)568 void *perf_get_aux(struct perf_output_handle *handle)
569 {
570 	/* this is only valid between perf_aux_output_begin and *_end */
571 	if (!handle->event)
572 		return NULL;
573 
574 	return handle->rb->aux_priv;
575 }
576 EXPORT_SYMBOL_GPL(perf_get_aux);
577 
578 /*
579  * Copy out AUX data from an AUX handle.
580  */
perf_output_copy_aux(struct perf_output_handle * aux_handle,struct perf_output_handle * handle,unsigned long from,unsigned long to)581 long perf_output_copy_aux(struct perf_output_handle *aux_handle,
582 			  struct perf_output_handle *handle,
583 			  unsigned long from, unsigned long to)
584 {
585 	struct perf_buffer *rb = aux_handle->rb;
586 	unsigned long tocopy, remainder, len = 0;
587 	void *addr;
588 
589 	from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
590 	to &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
591 
592 	do {
593 		tocopy = PAGE_SIZE - offset_in_page(from);
594 		if (to > from)
595 			tocopy = min(tocopy, to - from);
596 		if (!tocopy)
597 			break;
598 
599 		addr = rb->aux_pages[from >> PAGE_SHIFT];
600 		addr += offset_in_page(from);
601 
602 		remainder = perf_output_copy(handle, addr, tocopy);
603 		if (remainder)
604 			return -EFAULT;
605 
606 		len += tocopy;
607 		from += tocopy;
608 		from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
609 	} while (to != from);
610 
611 	return len;
612 }
613 
614 #define PERF_AUX_GFP	(GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY)
615 
rb_alloc_aux_page(int node,int order)616 static struct page *rb_alloc_aux_page(int node, int order)
617 {
618 	struct page *page;
619 
620 	if (order > MAX_PAGE_ORDER)
621 		order = MAX_PAGE_ORDER;
622 
623 	do {
624 		page = alloc_pages_node(node, PERF_AUX_GFP, order);
625 	} while (!page && order--);
626 
627 	if (page && order) {
628 		/*
629 		 * Communicate the allocation size to the driver:
630 		 * if we managed to secure a high-order allocation,
631 		 * set its first page's private to this order;
632 		 * !PagePrivate(page) means it's just a normal page.
633 		 */
634 		split_page(page, order);
635 		SetPagePrivate(page);
636 		set_page_private(page, order);
637 	}
638 
639 	return page;
640 }
641 
rb_free_aux_page(struct perf_buffer * rb,int idx)642 static void rb_free_aux_page(struct perf_buffer *rb, int idx)
643 {
644 	struct page *page = virt_to_page(rb->aux_pages[idx]);
645 
646 	ClearPagePrivate(page);
647 	__free_page(page);
648 }
649 
__rb_free_aux(struct perf_buffer * rb)650 static void __rb_free_aux(struct perf_buffer *rb)
651 {
652 	int pg;
653 
654 	/*
655 	 * Should never happen, the last reference should be dropped from
656 	 * perf_mmap_close() path, which first stops aux transactions (which
657 	 * in turn are the atomic holders of aux_refcount) and then does the
658 	 * last rb_free_aux().
659 	 */
660 	WARN_ON_ONCE(in_atomic());
661 
662 	if (rb->aux_priv) {
663 		rb->free_aux(rb->aux_priv);
664 		rb->free_aux = NULL;
665 		rb->aux_priv = NULL;
666 	}
667 
668 	if (rb->aux_nr_pages) {
669 		for (pg = 0; pg < rb->aux_nr_pages; pg++)
670 			rb_free_aux_page(rb, pg);
671 
672 		kfree(rb->aux_pages);
673 		rb->aux_nr_pages = 0;
674 	}
675 }
676 
rb_alloc_aux(struct perf_buffer * rb,struct perf_event * event,pgoff_t pgoff,int nr_pages,long watermark,int flags)677 int rb_alloc_aux(struct perf_buffer *rb, struct perf_event *event,
678 		 pgoff_t pgoff, int nr_pages, long watermark, int flags)
679 {
680 	bool overwrite = !(flags & RING_BUFFER_WRITABLE);
681 	int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu);
682 	bool use_contiguous_pages = event->pmu->capabilities & (
683 		PERF_PMU_CAP_AUX_NO_SG | PERF_PMU_CAP_AUX_PREFER_LARGE);
684 	/*
685 	 * Initialize max_order to 0 for page allocation. This allocates single
686 	 * pages to minimize memory fragmentation. This is overridden if the
687 	 * PMU needs or prefers contiguous pages (use_contiguous_pages = true).
688 	 */
689 	int max_order = 0;
690 	int ret = -ENOMEM;
691 
692 	if (!has_aux(event))
693 		return -EOPNOTSUPP;
694 
695 	if (nr_pages <= 0)
696 		return -EINVAL;
697 
698 	if (!overwrite) {
699 		/*
700 		 * Watermark defaults to half the buffer, to aid PMU drivers
701 		 * in double buffering.
702 		 */
703 		if (!watermark)
704 			watermark = min_t(unsigned long,
705 					  U32_MAX,
706 					  (unsigned long)nr_pages << (PAGE_SHIFT - 1));
707 
708 		/*
709 		 * If using contiguous pages, use aux_watermark as the basis
710 		 * for chunking to help PMU drivers honor the watermark.
711 		 */
712 		if (use_contiguous_pages)
713 			max_order = get_order(watermark);
714 	} else {
715 		/*
716 		 * If using contiguous pages, we need to start with the
717 		 * max_order that fits in nr_pages, not the other way around,
718 		 * hence ilog2() and not get_order.
719 		 */
720 		if (use_contiguous_pages)
721 			max_order = ilog2(nr_pages);
722 		watermark = 0;
723 	}
724 
725 	/*
726 	 * kcalloc_node() is unable to allocate buffer if the size is larger
727 	 * than: PAGE_SIZE << MAX_PAGE_ORDER; directly bail out in this case.
728 	 */
729 	if (get_order((unsigned long)nr_pages * sizeof(void *)) > MAX_PAGE_ORDER)
730 		return -ENOMEM;
731 	rb->aux_pages = kcalloc_node(nr_pages, sizeof(void *), GFP_KERNEL,
732 				     node);
733 	if (!rb->aux_pages)
734 		return -ENOMEM;
735 
736 	rb->free_aux = event->pmu->free_aux;
737 	for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) {
738 		struct page *page;
739 		int last, order;
740 
741 		order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages));
742 		page = rb_alloc_aux_page(node, order);
743 		if (!page)
744 			goto out;
745 
746 		for (last = rb->aux_nr_pages + (1 << page_private(page));
747 		     last > rb->aux_nr_pages; rb->aux_nr_pages++)
748 			rb->aux_pages[rb->aux_nr_pages] = page_address(page++);
749 	}
750 
751 	/*
752 	 * In overwrite mode, PMUs that don't support SG may not handle more
753 	 * than one contiguous allocation, since they rely on PMI to do double
754 	 * buffering. In this case, the entire buffer has to be one contiguous
755 	 * chunk.
756 	 */
757 	if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) &&
758 	    overwrite) {
759 		struct page *page = virt_to_page(rb->aux_pages[0]);
760 
761 		if (page_private(page) != max_order)
762 			goto out;
763 	}
764 
765 	rb->aux_priv = event->pmu->setup_aux(event, rb->aux_pages, nr_pages,
766 					     overwrite);
767 	if (!rb->aux_priv)
768 		goto out;
769 
770 	ret = 0;
771 
772 	/*
773 	 * aux_pages (and pmu driver's private data, aux_priv) will be
774 	 * referenced in both producer's and consumer's contexts, thus
775 	 * we keep a refcount here to make sure either of the two can
776 	 * reference them safely.
777 	 */
778 	refcount_set(&rb->aux_refcount, 1);
779 
780 	rb->aux_overwrite = overwrite;
781 	rb->aux_watermark = watermark;
782 
783 out:
784 	if (!ret)
785 		rb->aux_pgoff = pgoff;
786 	else
787 		__rb_free_aux(rb);
788 
789 	return ret;
790 }
791 
rb_free_aux(struct perf_buffer * rb)792 void rb_free_aux(struct perf_buffer *rb)
793 {
794 	if (refcount_dec_and_test(&rb->aux_refcount))
795 		__rb_free_aux(rb);
796 }
797 
798 #ifndef CONFIG_PERF_USE_VMALLOC
799 
800 /*
801  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
802  */
803 
804 static struct page *
__perf_mmap_to_page(struct perf_buffer * rb,unsigned long pgoff)805 __perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
806 {
807 	if (pgoff > rb->nr_pages)
808 		return NULL;
809 
810 	if (pgoff == 0)
811 		return virt_to_page(rb->user_page);
812 
813 	return virt_to_page(rb->data_pages[pgoff - 1]);
814 }
815 
perf_mmap_alloc_page(int cpu)816 static void *perf_mmap_alloc_page(int cpu)
817 {
818 	struct page *page;
819 	int node;
820 
821 	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
822 	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
823 	if (!page)
824 		return NULL;
825 
826 	return page_address(page);
827 }
828 
perf_mmap_free_page(void * addr)829 static void perf_mmap_free_page(void *addr)
830 {
831 	struct page *page = virt_to_page(addr);
832 
833 	__free_page(page);
834 }
835 
rb_alloc(int nr_pages,long watermark,int cpu,int flags)836 struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
837 {
838 	struct perf_buffer *rb;
839 	unsigned long size;
840 	int i, node;
841 
842 	size = sizeof(struct perf_buffer);
843 	size += nr_pages * sizeof(void *);
844 
845 	if (order_base_2(size) > PAGE_SHIFT+MAX_PAGE_ORDER)
846 		goto fail;
847 
848 	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
849 	rb = kzalloc_node(size, GFP_KERNEL, node);
850 	if (!rb)
851 		goto fail;
852 
853 	rb->user_page = perf_mmap_alloc_page(cpu);
854 	if (!rb->user_page)
855 		goto fail_user_page;
856 
857 	for (i = 0; i < nr_pages; i++) {
858 		rb->data_pages[i] = perf_mmap_alloc_page(cpu);
859 		if (!rb->data_pages[i])
860 			goto fail_data_pages;
861 	}
862 
863 	rb->nr_pages = nr_pages;
864 
865 	ring_buffer_init(rb, watermark, flags);
866 
867 	return rb;
868 
869 fail_data_pages:
870 	for (i--; i >= 0; i--)
871 		perf_mmap_free_page(rb->data_pages[i]);
872 
873 	perf_mmap_free_page(rb->user_page);
874 
875 fail_user_page:
876 	kfree(rb);
877 
878 fail:
879 	return NULL;
880 }
881 
rb_free(struct perf_buffer * rb)882 void rb_free(struct perf_buffer *rb)
883 {
884 	int i;
885 
886 	perf_mmap_free_page(rb->user_page);
887 	for (i = 0; i < rb->nr_pages; i++)
888 		perf_mmap_free_page(rb->data_pages[i]);
889 	kfree(rb);
890 }
891 
892 #else
893 static struct page *
__perf_mmap_to_page(struct perf_buffer * rb,unsigned long pgoff)894 __perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
895 {
896 	/* The '>' counts in the user page. */
897 	if (pgoff > data_page_nr(rb))
898 		return NULL;
899 
900 	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
901 }
902 
rb_free_work(struct work_struct * work)903 static void rb_free_work(struct work_struct *work)
904 {
905 	struct perf_buffer *rb;
906 
907 	rb = container_of(work, struct perf_buffer, work);
908 
909 	vfree(rb->user_page);
910 	kfree(rb);
911 }
912 
rb_free(struct perf_buffer * rb)913 void rb_free(struct perf_buffer *rb)
914 {
915 	schedule_work(&rb->work);
916 }
917 
rb_alloc(int nr_pages,long watermark,int cpu,int flags)918 struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
919 {
920 	struct perf_buffer *rb;
921 	unsigned long size;
922 	void *all_buf;
923 	int node;
924 
925 	size = sizeof(struct perf_buffer);
926 	size += sizeof(void *);
927 
928 	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
929 	rb = kzalloc_node(size, GFP_KERNEL, node);
930 	if (!rb)
931 		goto fail;
932 
933 	INIT_WORK(&rb->work, rb_free_work);
934 
935 	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
936 	if (!all_buf)
937 		goto fail_all_buf;
938 
939 	rb->user_page = all_buf;
940 	rb->data_pages[0] = all_buf + PAGE_SIZE;
941 	if (nr_pages) {
942 		rb->nr_pages = 1;
943 		rb->page_order = ilog2(nr_pages);
944 	}
945 
946 	ring_buffer_init(rb, watermark, flags);
947 
948 	return rb;
949 
950 fail_all_buf:
951 	kfree(rb);
952 
953 fail:
954 	return NULL;
955 }
956 
957 #endif
958 
959 struct page *
perf_mmap_to_page(struct perf_buffer * rb,unsigned long pgoff)960 perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
961 {
962 	if (rb->aux_nr_pages) {
963 		/* above AUX space */
964 		if (pgoff > rb->aux_pgoff + rb->aux_nr_pages)
965 			return NULL;
966 
967 		/* AUX space */
968 		if (pgoff >= rb->aux_pgoff) {
969 			int aux_pgoff = array_index_nospec(pgoff - rb->aux_pgoff, rb->aux_nr_pages);
970 			return virt_to_page(rb->aux_pages[aux_pgoff]);
971 		}
972 	}
973 
974 	return __perf_mmap_to_page(rb, pgoff);
975 }
976