1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Generic ring buffer
4 *
5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 */
7 #include <linux/sched/isolation.h>
8 #include <linux/trace_recursion.h>
9 #include <linux/trace_events.h>
10 #include <linux/ring_buffer.h>
11 #include <linux/trace_clock.h>
12 #include <linux/sched/clock.h>
13 #include <linux/cacheflush.h>
14 #include <linux/trace_seq.h>
15 #include <linux/spinlock.h>
16 #include <linux/irq_work.h>
17 #include <linux/security.h>
18 #include <linux/uaccess.h>
19 #include <linux/hardirq.h>
20 #include <linux/kthread.h> /* for self test */
21 #include <linux/module.h>
22 #include <linux/percpu.h>
23 #include <linux/mutex.h>
24 #include <linux/delay.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/hash.h>
28 #include <linux/list.h>
29 #include <linux/cpu.h>
30 #include <linux/oom.h>
31 #include <linux/mm.h>
32
33 #include <asm/local64.h>
34 #include <asm/local.h>
35 #include <asm/setup.h>
36
37 #include "trace.h"
38
39 /*
40 * The "absolute" timestamp in the buffer is only 59 bits.
41 * If a clock has the 5 MSBs set, it needs to be saved and
42 * reinserted.
43 */
44 #define TS_MSB (0xf8ULL << 56)
45 #define ABS_TS_MASK (~TS_MSB)
46
47 static void update_pages_handler(struct work_struct *work);
48
49 #define RING_BUFFER_META_MAGIC 0xBADFEED
50
51 struct ring_buffer_meta {
52 int magic;
53 int struct_sizes;
54 unsigned long total_size;
55 unsigned long buffers_offset;
56 };
57
58 struct ring_buffer_cpu_meta {
59 unsigned long first_buffer;
60 unsigned long head_buffer;
61 unsigned long commit_buffer;
62 __u32 subbuf_size;
63 __u32 nr_subbufs;
64 int buffers[];
65 };
66
67 /*
68 * The ring buffer header is special. We must manually up keep it.
69 */
ring_buffer_print_entry_header(struct trace_seq * s)70 int ring_buffer_print_entry_header(struct trace_seq *s)
71 {
72 trace_seq_puts(s, "# compressed entry header\n");
73 trace_seq_puts(s, "\ttype_len : 5 bits\n");
74 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
75 trace_seq_puts(s, "\tarray : 32 bits\n");
76 trace_seq_putc(s, '\n');
77 trace_seq_printf(s, "\tpadding : type == %d\n",
78 RINGBUF_TYPE_PADDING);
79 trace_seq_printf(s, "\ttime_extend : type == %d\n",
80 RINGBUF_TYPE_TIME_EXTEND);
81 trace_seq_printf(s, "\ttime_stamp : type == %d\n",
82 RINGBUF_TYPE_TIME_STAMP);
83 trace_seq_printf(s, "\tdata max type_len == %d\n",
84 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
85
86 return !trace_seq_has_overflowed(s);
87 }
88
89 /*
90 * The ring buffer is made up of a list of pages. A separate list of pages is
91 * allocated for each CPU. A writer may only write to a buffer that is
92 * associated with the CPU it is currently executing on. A reader may read
93 * from any per cpu buffer.
94 *
95 * The reader is special. For each per cpu buffer, the reader has its own
96 * reader page. When a reader has read the entire reader page, this reader
97 * page is swapped with another page in the ring buffer.
98 *
99 * Now, as long as the writer is off the reader page, the reader can do what
100 * ever it wants with that page. The writer will never write to that page
101 * again (as long as it is out of the ring buffer).
102 *
103 * Here's some silly ASCII art.
104 *
105 * +------+
106 * |reader| RING BUFFER
107 * |page |
108 * +------+ +---+ +---+ +---+
109 * | |-->| |-->| |
110 * +---+ +---+ +---+
111 * ^ |
112 * | |
113 * +---------------+
114 *
115 *
116 * +------+
117 * |reader| RING BUFFER
118 * |page |------------------v
119 * +------+ +---+ +---+ +---+
120 * | |-->| |-->| |
121 * +---+ +---+ +---+
122 * ^ |
123 * | |
124 * +---------------+
125 *
126 *
127 * +------+
128 * |reader| RING BUFFER
129 * |page |------------------v
130 * +------+ +---+ +---+ +---+
131 * ^ | |-->| |-->| |
132 * | +---+ +---+ +---+
133 * | |
134 * | |
135 * +------------------------------+
136 *
137 *
138 * +------+
139 * |buffer| RING BUFFER
140 * |page |------------------v
141 * +------+ +---+ +---+ +---+
142 * ^ | | | |-->| |
143 * | New +---+ +---+ +---+
144 * | Reader------^ |
145 * | page |
146 * +------------------------------+
147 *
148 *
149 * After we make this swap, the reader can hand this page off to the splice
150 * code and be done with it. It can even allocate a new page if it needs to
151 * and swap that into the ring buffer.
152 *
153 * We will be using cmpxchg soon to make all this lockless.
154 *
155 */
156
157 /* Used for individual buffers (after the counter) */
158 #define RB_BUFFER_OFF (1 << 20)
159
160 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
161
162 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
163 #define RB_ALIGNMENT 4U
164 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
165 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
166
167 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
168 # define RB_FORCE_8BYTE_ALIGNMENT 0
169 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
170 #else
171 # define RB_FORCE_8BYTE_ALIGNMENT 1
172 # define RB_ARCH_ALIGNMENT 8U
173 #endif
174
175 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
176
177 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
178 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
179
180 enum {
181 RB_LEN_TIME_EXTEND = 8,
182 RB_LEN_TIME_STAMP = 8,
183 };
184
185 #define skip_time_extend(event) \
186 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
187
188 #define extended_time(event) \
189 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
190
rb_null_event(struct ring_buffer_event * event)191 static inline bool rb_null_event(struct ring_buffer_event *event)
192 {
193 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
194 }
195
rb_event_set_padding(struct ring_buffer_event * event)196 static void rb_event_set_padding(struct ring_buffer_event *event)
197 {
198 /* padding has a NULL time_delta */
199 event->type_len = RINGBUF_TYPE_PADDING;
200 event->time_delta = 0;
201 }
202
203 static unsigned
rb_event_data_length(struct ring_buffer_event * event)204 rb_event_data_length(struct ring_buffer_event *event)
205 {
206 unsigned length;
207
208 if (event->type_len)
209 length = event->type_len * RB_ALIGNMENT;
210 else
211 length = event->array[0];
212 return length + RB_EVNT_HDR_SIZE;
213 }
214
215 /*
216 * Return the length of the given event. Will return
217 * the length of the time extend if the event is a
218 * time extend.
219 */
220 static inline unsigned
rb_event_length(struct ring_buffer_event * event)221 rb_event_length(struct ring_buffer_event *event)
222 {
223 switch (event->type_len) {
224 case RINGBUF_TYPE_PADDING:
225 if (rb_null_event(event))
226 /* undefined */
227 return -1;
228 return event->array[0] + RB_EVNT_HDR_SIZE;
229
230 case RINGBUF_TYPE_TIME_EXTEND:
231 return RB_LEN_TIME_EXTEND;
232
233 case RINGBUF_TYPE_TIME_STAMP:
234 return RB_LEN_TIME_STAMP;
235
236 case RINGBUF_TYPE_DATA:
237 return rb_event_data_length(event);
238 default:
239 WARN_ON_ONCE(1);
240 }
241 /* not hit */
242 return 0;
243 }
244
245 /*
246 * Return total length of time extend and data,
247 * or just the event length for all other events.
248 */
249 static inline unsigned
rb_event_ts_length(struct ring_buffer_event * event)250 rb_event_ts_length(struct ring_buffer_event *event)
251 {
252 unsigned len = 0;
253
254 if (extended_time(event)) {
255 /* time extends include the data event after it */
256 len = RB_LEN_TIME_EXTEND;
257 event = skip_time_extend(event);
258 }
259 return len + rb_event_length(event);
260 }
261
262 /**
263 * ring_buffer_event_length - return the length of the event
264 * @event: the event to get the length of
265 *
266 * Returns the size of the data load of a data event.
267 * If the event is something other than a data event, it
268 * returns the size of the event itself. With the exception
269 * of a TIME EXTEND, where it still returns the size of the
270 * data load of the data event after it.
271 */
ring_buffer_event_length(struct ring_buffer_event * event)272 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
273 {
274 unsigned length;
275
276 if (extended_time(event))
277 event = skip_time_extend(event);
278
279 length = rb_event_length(event);
280 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
281 return length;
282 length -= RB_EVNT_HDR_SIZE;
283 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
284 length -= sizeof(event->array[0]);
285 return length;
286 }
287 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
288
289 /* inline for ring buffer fast paths */
290 static __always_inline void *
rb_event_data(struct ring_buffer_event * event)291 rb_event_data(struct ring_buffer_event *event)
292 {
293 if (extended_time(event))
294 event = skip_time_extend(event);
295 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
296 /* If length is in len field, then array[0] has the data */
297 if (event->type_len)
298 return (void *)&event->array[0];
299 /* Otherwise length is in array[0] and array[1] has the data */
300 return (void *)&event->array[1];
301 }
302
303 /**
304 * ring_buffer_event_data - return the data of the event
305 * @event: the event to get the data from
306 */
ring_buffer_event_data(struct ring_buffer_event * event)307 void *ring_buffer_event_data(struct ring_buffer_event *event)
308 {
309 return rb_event_data(event);
310 }
311 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
312
313 #define for_each_buffer_cpu(buffer, cpu) \
314 for_each_cpu(cpu, buffer->cpumask)
315
316 #define for_each_online_buffer_cpu(buffer, cpu) \
317 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
318
319 #define TS_SHIFT 27
320 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
321 #define TS_DELTA_TEST (~TS_MASK)
322
rb_event_time_stamp(struct ring_buffer_event * event)323 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
324 {
325 u64 ts;
326
327 ts = event->array[0];
328 ts <<= TS_SHIFT;
329 ts += event->time_delta;
330
331 return ts;
332 }
333
334 /* Flag when events were overwritten */
335 #define RB_MISSED_EVENTS (1 << 31)
336 /* Missed count stored at end */
337 #define RB_MISSED_STORED (1 << 30)
338
339 #define RB_MISSED_MASK (3 << 30)
340
341 struct buffer_data_page {
342 u64 time_stamp; /* page time stamp */
343 local_t commit; /* write committed index */
344 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
345 };
346
347 struct buffer_data_read_page {
348 unsigned order; /* order of the page */
349 struct buffer_data_page *data; /* actual data, stored in this page */
350 };
351
352 /*
353 * Note, the buffer_page list must be first. The buffer pages
354 * are allocated in cache lines, which means that each buffer
355 * page will be at the beginning of a cache line, and thus
356 * the least significant bits will be zero. We use this to
357 * add flags in the list struct pointers, to make the ring buffer
358 * lockless.
359 */
360 struct buffer_page {
361 struct list_head list; /* list of buffer pages */
362 local_t write; /* index for next write */
363 unsigned read; /* index for next read */
364 local_t entries; /* entries on this page */
365 unsigned long real_end; /* real end of data */
366 unsigned order; /* order of the page */
367 u32 id:30; /* ID for external mapping */
368 u32 range:1; /* Mapped via a range */
369 struct buffer_data_page *page; /* Actual data page */
370 };
371
372 /*
373 * The buffer page counters, write and entries, must be reset
374 * atomically when crossing page boundaries. To synchronize this
375 * update, two counters are inserted into the number. One is
376 * the actual counter for the write position or count on the page.
377 *
378 * The other is a counter of updaters. Before an update happens
379 * the update partition of the counter is incremented. This will
380 * allow the updater to update the counter atomically.
381 *
382 * The counter is 20 bits, and the state data is 12.
383 */
384 #define RB_WRITE_MASK 0xfffff
385 #define RB_WRITE_INTCNT (1 << 20)
386
rb_init_page(struct buffer_data_page * bpage)387 static void rb_init_page(struct buffer_data_page *bpage)
388 {
389 local_set(&bpage->commit, 0);
390 }
391
rb_page_commit(struct buffer_page * bpage)392 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
393 {
394 return local_read(&bpage->page->commit);
395 }
396
free_buffer_page(struct buffer_page * bpage)397 static void free_buffer_page(struct buffer_page *bpage)
398 {
399 /* Range pages are not to be freed */
400 if (!bpage->range)
401 free_pages((unsigned long)bpage->page, bpage->order);
402 kfree(bpage);
403 }
404
405 /*
406 * For best performance, allocate cpu buffer data cache line sized
407 * and per CPU.
408 */
409 #define alloc_cpu_buffer(cpu) (struct ring_buffer_per_cpu *) \
410 kzalloc_node(ALIGN(sizeof(struct ring_buffer_per_cpu), \
411 cache_line_size()), GFP_KERNEL, cpu_to_node(cpu));
412
413 #define alloc_cpu_page(cpu) (struct buffer_page *) \
414 kzalloc_node(ALIGN(sizeof(struct buffer_page), \
415 cache_line_size()), GFP_KERNEL, cpu_to_node(cpu));
416
alloc_cpu_data(int cpu,int order)417 static struct buffer_data_page *alloc_cpu_data(int cpu, int order)
418 {
419 struct buffer_data_page *dpage;
420 struct page *page;
421 gfp_t mflags;
422
423 /*
424 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
425 * gracefully without invoking oom-killer and the system is not
426 * destabilized.
427 */
428 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_COMP | __GFP_ZERO;
429
430 page = alloc_pages_node(cpu_to_node(cpu), mflags, order);
431 if (!page)
432 return NULL;
433
434 dpage = page_address(page);
435 rb_init_page(dpage);
436
437 return dpage;
438 }
439
440 /*
441 * We need to fit the time_stamp delta into 27 bits.
442 */
test_time_stamp(u64 delta)443 static inline bool test_time_stamp(u64 delta)
444 {
445 return !!(delta & TS_DELTA_TEST);
446 }
447
448 struct rb_irq_work {
449 struct irq_work work;
450 wait_queue_head_t waiters;
451 wait_queue_head_t full_waiters;
452 atomic_t seq;
453 bool waiters_pending;
454 bool full_waiters_pending;
455 bool wakeup_full;
456 };
457
458 /*
459 * Structure to hold event state and handle nested events.
460 */
461 struct rb_event_info {
462 u64 ts;
463 u64 delta;
464 u64 before;
465 u64 after;
466 unsigned long length;
467 struct buffer_page *tail_page;
468 int add_timestamp;
469 };
470
471 /*
472 * Used for the add_timestamp
473 * NONE
474 * EXTEND - wants a time extend
475 * ABSOLUTE - the buffer requests all events to have absolute time stamps
476 * FORCE - force a full time stamp.
477 */
478 enum {
479 RB_ADD_STAMP_NONE = 0,
480 RB_ADD_STAMP_EXTEND = BIT(1),
481 RB_ADD_STAMP_ABSOLUTE = BIT(2),
482 RB_ADD_STAMP_FORCE = BIT(3)
483 };
484 /*
485 * Used for which event context the event is in.
486 * TRANSITION = 0
487 * NMI = 1
488 * IRQ = 2
489 * SOFTIRQ = 3
490 * NORMAL = 4
491 *
492 * See trace_recursive_lock() comment below for more details.
493 */
494 enum {
495 RB_CTX_TRANSITION,
496 RB_CTX_NMI,
497 RB_CTX_IRQ,
498 RB_CTX_SOFTIRQ,
499 RB_CTX_NORMAL,
500 RB_CTX_MAX
501 };
502
503 struct rb_time_struct {
504 local64_t time;
505 };
506 typedef struct rb_time_struct rb_time_t;
507
508 #define MAX_NEST 5
509
510 /*
511 * head_page == tail_page && head == tail then buffer is empty.
512 */
513 struct ring_buffer_per_cpu {
514 int cpu;
515 atomic_t record_disabled;
516 atomic_t resize_disabled;
517 struct trace_buffer *buffer;
518 raw_spinlock_t reader_lock; /* serialize readers */
519 arch_spinlock_t lock;
520 struct lock_class_key lock_key;
521 struct buffer_data_page *free_page;
522 unsigned long nr_pages;
523 unsigned int current_context;
524 struct list_head *pages;
525 /* pages generation counter, incremented when the list changes */
526 unsigned long cnt;
527 struct buffer_page *head_page; /* read from head */
528 struct buffer_page *tail_page; /* write to tail */
529 struct buffer_page *commit_page; /* committed pages */
530 struct buffer_page *reader_page;
531 unsigned long lost_events;
532 unsigned long last_overrun;
533 unsigned long nest;
534 local_t entries_bytes;
535 local_t entries;
536 local_t overrun;
537 local_t commit_overrun;
538 local_t dropped_events;
539 local_t committing;
540 local_t commits;
541 local_t pages_touched;
542 local_t pages_lost;
543 local_t pages_read;
544 long last_pages_touch;
545 size_t shortest_full;
546 unsigned long read;
547 unsigned long read_bytes;
548 rb_time_t write_stamp;
549 rb_time_t before_stamp;
550 u64 event_stamp[MAX_NEST];
551 u64 read_stamp;
552 /* pages removed since last reset */
553 unsigned long pages_removed;
554
555 unsigned int mapped;
556 unsigned int user_mapped; /* user space mapping */
557 struct mutex mapping_lock;
558 unsigned long *subbuf_ids; /* ID to subbuf VA */
559 struct trace_buffer_meta *meta_page;
560 struct ring_buffer_cpu_meta *ring_meta;
561
562 /* ring buffer pages to update, > 0 to add, < 0 to remove */
563 long nr_pages_to_update;
564 struct list_head new_pages; /* new pages to add */
565 struct work_struct update_pages_work;
566 struct completion update_done;
567
568 struct rb_irq_work irq_work;
569 };
570
571 struct trace_buffer {
572 unsigned flags;
573 int cpus;
574 atomic_t record_disabled;
575 atomic_t resizing;
576 cpumask_var_t cpumask;
577
578 struct lock_class_key *reader_lock_key;
579
580 struct mutex mutex;
581
582 struct ring_buffer_per_cpu **buffers;
583
584 struct hlist_node node;
585 u64 (*clock)(void);
586
587 struct rb_irq_work irq_work;
588 bool time_stamp_abs;
589
590 unsigned long range_addr_start;
591 unsigned long range_addr_end;
592
593 struct ring_buffer_meta *meta;
594
595 unsigned int subbuf_size;
596 unsigned int subbuf_order;
597 unsigned int max_data_size;
598 };
599
600 struct ring_buffer_iter {
601 struct ring_buffer_per_cpu *cpu_buffer;
602 unsigned long head;
603 unsigned long next_event;
604 struct buffer_page *head_page;
605 struct buffer_page *cache_reader_page;
606 unsigned long cache_read;
607 unsigned long cache_pages_removed;
608 u64 read_stamp;
609 u64 page_stamp;
610 struct ring_buffer_event *event;
611 size_t event_size;
612 int missed_events;
613 };
614
ring_buffer_print_page_header(struct trace_buffer * buffer,struct trace_seq * s)615 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
616 {
617 struct buffer_data_page field;
618
619 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
620 "offset:0;\tsize:%u;\tsigned:%u;\n",
621 (unsigned int)sizeof(field.time_stamp),
622 (unsigned int)is_signed_type(u64));
623
624 trace_seq_printf(s, "\tfield: local_t commit;\t"
625 "offset:%u;\tsize:%u;\tsigned:%u;\n",
626 (unsigned int)offsetof(typeof(field), commit),
627 (unsigned int)sizeof(field.commit),
628 (unsigned int)is_signed_type(long));
629
630 trace_seq_printf(s, "\tfield: int overwrite;\t"
631 "offset:%u;\tsize:%u;\tsigned:%u;\n",
632 (unsigned int)offsetof(typeof(field), commit),
633 1,
634 (unsigned int)is_signed_type(long));
635
636 trace_seq_printf(s, "\tfield: char data;\t"
637 "offset:%u;\tsize:%u;\tsigned:%u;\n",
638 (unsigned int)offsetof(typeof(field), data),
639 (unsigned int)buffer->subbuf_size,
640 (unsigned int)is_signed_type(char));
641
642 return !trace_seq_has_overflowed(s);
643 }
644
rb_time_read(rb_time_t * t,u64 * ret)645 static inline void rb_time_read(rb_time_t *t, u64 *ret)
646 {
647 *ret = local64_read(&t->time);
648 }
rb_time_set(rb_time_t * t,u64 val)649 static void rb_time_set(rb_time_t *t, u64 val)
650 {
651 local64_set(&t->time, val);
652 }
653
654 /*
655 * Enable this to make sure that the event passed to
656 * ring_buffer_event_time_stamp() is not committed and also
657 * is on the buffer that it passed in.
658 */
659 //#define RB_VERIFY_EVENT
660 #ifdef RB_VERIFY_EVENT
661 static struct list_head *rb_list_head(struct list_head *list);
verify_event(struct ring_buffer_per_cpu * cpu_buffer,void * event)662 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
663 void *event)
664 {
665 struct buffer_page *page = cpu_buffer->commit_page;
666 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
667 struct list_head *next;
668 long commit, write;
669 unsigned long addr = (unsigned long)event;
670 bool done = false;
671 int stop = 0;
672
673 /* Make sure the event exists and is not committed yet */
674 do {
675 if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
676 done = true;
677 commit = local_read(&page->page->commit);
678 write = local_read(&page->write);
679 if (addr >= (unsigned long)&page->page->data[commit] &&
680 addr < (unsigned long)&page->page->data[write])
681 return;
682
683 next = rb_list_head(page->list.next);
684 page = list_entry(next, struct buffer_page, list);
685 } while (!done);
686 WARN_ON_ONCE(1);
687 }
688 #else
verify_event(struct ring_buffer_per_cpu * cpu_buffer,void * event)689 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
690 void *event)
691 {
692 }
693 #endif
694
695 /*
696 * The absolute time stamp drops the 5 MSBs and some clocks may
697 * require them. The rb_fix_abs_ts() will take a previous full
698 * time stamp, and add the 5 MSB of that time stamp on to the
699 * saved absolute time stamp. Then they are compared in case of
700 * the unlikely event that the latest time stamp incremented
701 * the 5 MSB.
702 */
rb_fix_abs_ts(u64 abs,u64 save_ts)703 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
704 {
705 if (save_ts & TS_MSB) {
706 abs |= save_ts & TS_MSB;
707 /* Check for overflow */
708 if (unlikely(abs < save_ts))
709 abs += 1ULL << 59;
710 }
711 return abs;
712 }
713
714 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
715
716 /**
717 * ring_buffer_event_time_stamp - return the event's current time stamp
718 * @buffer: The buffer that the event is on
719 * @event: the event to get the time stamp of
720 *
721 * Note, this must be called after @event is reserved, and before it is
722 * committed to the ring buffer. And must be called from the same
723 * context where the event was reserved (normal, softirq, irq, etc).
724 *
725 * Returns the time stamp associated with the current event.
726 * If the event has an extended time stamp, then that is used as
727 * the time stamp to return.
728 * In the highly unlikely case that the event was nested more than
729 * the max nesting, then the write_stamp of the buffer is returned,
730 * otherwise current time is returned, but that really neither of
731 * the last two cases should ever happen.
732 */
ring_buffer_event_time_stamp(struct trace_buffer * buffer,struct ring_buffer_event * event)733 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
734 struct ring_buffer_event *event)
735 {
736 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
737 unsigned int nest;
738 u64 ts;
739
740 /* If the event includes an absolute time, then just use that */
741 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
742 ts = rb_event_time_stamp(event);
743 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
744 }
745
746 nest = local_read(&cpu_buffer->committing);
747 verify_event(cpu_buffer, event);
748 if (WARN_ON_ONCE(!nest))
749 goto fail;
750
751 /* Read the current saved nesting level time stamp */
752 if (likely(--nest < MAX_NEST))
753 return cpu_buffer->event_stamp[nest];
754
755 /* Shouldn't happen, warn if it does */
756 WARN_ONCE(1, "nest (%d) greater than max", nest);
757
758 fail:
759 rb_time_read(&cpu_buffer->write_stamp, &ts);
760
761 return ts;
762 }
763
764 /**
765 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
766 * @buffer: The ring_buffer to get the number of pages from
767 * @cpu: The cpu of the ring_buffer to get the number of pages from
768 *
769 * Returns the number of pages that have content in the ring buffer.
770 */
ring_buffer_nr_dirty_pages(struct trace_buffer * buffer,int cpu)771 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
772 {
773 size_t read;
774 size_t lost;
775 size_t cnt;
776
777 read = local_read(&buffer->buffers[cpu]->pages_read);
778 lost = local_read(&buffer->buffers[cpu]->pages_lost);
779 cnt = local_read(&buffer->buffers[cpu]->pages_touched);
780
781 if (WARN_ON_ONCE(cnt < lost))
782 return 0;
783
784 cnt -= lost;
785
786 /* The reader can read an empty page, but not more than that */
787 if (cnt < read) {
788 WARN_ON_ONCE(read > cnt + 1);
789 return 0;
790 }
791
792 return cnt - read;
793 }
794
full_hit(struct trace_buffer * buffer,int cpu,int full)795 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
796 {
797 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
798 size_t nr_pages;
799 size_t dirty;
800
801 nr_pages = cpu_buffer->nr_pages;
802 if (!nr_pages || !full)
803 return true;
804
805 /*
806 * Add one as dirty will never equal nr_pages, as the sub-buffer
807 * that the writer is on is not counted as dirty.
808 * This is needed if "buffer_percent" is set to 100.
809 */
810 dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
811
812 return (dirty * 100) >= (full * nr_pages);
813 }
814
815 /*
816 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
817 *
818 * Schedules a delayed work to wake up any task that is blocked on the
819 * ring buffer waiters queue.
820 */
rb_wake_up_waiters(struct irq_work * work)821 static void rb_wake_up_waiters(struct irq_work *work)
822 {
823 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
824
825 /* For waiters waiting for the first wake up */
826 (void)atomic_fetch_inc_release(&rbwork->seq);
827
828 wake_up_all(&rbwork->waiters);
829 if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
830 /* Only cpu_buffer sets the above flags */
831 struct ring_buffer_per_cpu *cpu_buffer =
832 container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
833
834 /* Called from interrupt context */
835 raw_spin_lock(&cpu_buffer->reader_lock);
836 rbwork->wakeup_full = false;
837 rbwork->full_waiters_pending = false;
838
839 /* Waking up all waiters, they will reset the shortest full */
840 cpu_buffer->shortest_full = 0;
841 raw_spin_unlock(&cpu_buffer->reader_lock);
842
843 wake_up_all(&rbwork->full_waiters);
844 }
845 }
846
847 /**
848 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
849 * @buffer: The ring buffer to wake waiters on
850 * @cpu: The CPU buffer to wake waiters on
851 *
852 * In the case of a file that represents a ring buffer is closing,
853 * it is prudent to wake up any waiters that are on this.
854 */
ring_buffer_wake_waiters(struct trace_buffer * buffer,int cpu)855 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
856 {
857 struct ring_buffer_per_cpu *cpu_buffer;
858 struct rb_irq_work *rbwork;
859
860 if (!buffer)
861 return;
862
863 if (cpu == RING_BUFFER_ALL_CPUS) {
864
865 /* Wake up individual ones too. One level recursion */
866 for_each_buffer_cpu(buffer, cpu)
867 ring_buffer_wake_waiters(buffer, cpu);
868
869 rbwork = &buffer->irq_work;
870 } else {
871 if (WARN_ON_ONCE(!buffer->buffers))
872 return;
873 if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
874 return;
875
876 cpu_buffer = buffer->buffers[cpu];
877 /* The CPU buffer may not have been initialized yet */
878 if (!cpu_buffer)
879 return;
880 rbwork = &cpu_buffer->irq_work;
881 }
882
883 /* This can be called in any context */
884 irq_work_queue(&rbwork->work);
885 }
886
rb_watermark_hit(struct trace_buffer * buffer,int cpu,int full)887 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
888 {
889 struct ring_buffer_per_cpu *cpu_buffer;
890 bool ret = false;
891
892 /* Reads of all CPUs always waits for any data */
893 if (cpu == RING_BUFFER_ALL_CPUS)
894 return !ring_buffer_empty(buffer);
895
896 cpu_buffer = buffer->buffers[cpu];
897
898 if (!ring_buffer_empty_cpu(buffer, cpu)) {
899 unsigned long flags;
900 bool pagebusy;
901
902 if (!full)
903 return true;
904
905 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
906 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
907 ret = !pagebusy && full_hit(buffer, cpu, full);
908
909 if (!ret && (!cpu_buffer->shortest_full ||
910 cpu_buffer->shortest_full > full)) {
911 cpu_buffer->shortest_full = full;
912 }
913 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
914 }
915 return ret;
916 }
917
918 static inline bool
rb_wait_cond(struct rb_irq_work * rbwork,struct trace_buffer * buffer,int cpu,int full,ring_buffer_cond_fn cond,void * data)919 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer,
920 int cpu, int full, ring_buffer_cond_fn cond, void *data)
921 {
922 if (rb_watermark_hit(buffer, cpu, full))
923 return true;
924
925 if (cond(data))
926 return true;
927
928 /*
929 * The events can happen in critical sections where
930 * checking a work queue can cause deadlocks.
931 * After adding a task to the queue, this flag is set
932 * only to notify events to try to wake up the queue
933 * using irq_work.
934 *
935 * We don't clear it even if the buffer is no longer
936 * empty. The flag only causes the next event to run
937 * irq_work to do the work queue wake up. The worse
938 * that can happen if we race with !trace_empty() is that
939 * an event will cause an irq_work to try to wake up
940 * an empty queue.
941 *
942 * There's no reason to protect this flag either, as
943 * the work queue and irq_work logic will do the necessary
944 * synchronization for the wake ups. The only thing
945 * that is necessary is that the wake up happens after
946 * a task has been queued. It's OK for spurious wake ups.
947 */
948 if (full)
949 rbwork->full_waiters_pending = true;
950 else
951 rbwork->waiters_pending = true;
952
953 return false;
954 }
955
956 struct rb_wait_data {
957 struct rb_irq_work *irq_work;
958 int seq;
959 };
960
961 /*
962 * The default wait condition for ring_buffer_wait() is to just to exit the
963 * wait loop the first time it is woken up.
964 */
rb_wait_once(void * data)965 static bool rb_wait_once(void *data)
966 {
967 struct rb_wait_data *rdata = data;
968 struct rb_irq_work *rbwork = rdata->irq_work;
969
970 return atomic_read_acquire(&rbwork->seq) != rdata->seq;
971 }
972
973 /**
974 * ring_buffer_wait - wait for input to the ring buffer
975 * @buffer: buffer to wait on
976 * @cpu: the cpu buffer to wait on
977 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
978 * @cond: condition function to break out of wait (NULL to run once)
979 * @data: the data to pass to @cond.
980 *
981 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
982 * as data is added to any of the @buffer's cpu buffers. Otherwise
983 * it will wait for data to be added to a specific cpu buffer.
984 */
ring_buffer_wait(struct trace_buffer * buffer,int cpu,int full,ring_buffer_cond_fn cond,void * data)985 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full,
986 ring_buffer_cond_fn cond, void *data)
987 {
988 struct ring_buffer_per_cpu *cpu_buffer;
989 struct wait_queue_head *waitq;
990 struct rb_irq_work *rbwork;
991 struct rb_wait_data rdata;
992 int ret = 0;
993
994 /*
995 * Depending on what the caller is waiting for, either any
996 * data in any cpu buffer, or a specific buffer, put the
997 * caller on the appropriate wait queue.
998 */
999 if (cpu == RING_BUFFER_ALL_CPUS) {
1000 rbwork = &buffer->irq_work;
1001 /* Full only makes sense on per cpu reads */
1002 full = 0;
1003 } else {
1004 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1005 return -ENODEV;
1006 cpu_buffer = buffer->buffers[cpu];
1007 rbwork = &cpu_buffer->irq_work;
1008 }
1009
1010 if (full)
1011 waitq = &rbwork->full_waiters;
1012 else
1013 waitq = &rbwork->waiters;
1014
1015 /* Set up to exit loop as soon as it is woken */
1016 if (!cond) {
1017 cond = rb_wait_once;
1018 rdata.irq_work = rbwork;
1019 rdata.seq = atomic_read_acquire(&rbwork->seq);
1020 data = &rdata;
1021 }
1022
1023 ret = wait_event_interruptible((*waitq),
1024 rb_wait_cond(rbwork, buffer, cpu, full, cond, data));
1025
1026 return ret;
1027 }
1028
1029 /**
1030 * ring_buffer_poll_wait - poll on buffer input
1031 * @buffer: buffer to wait on
1032 * @cpu: the cpu buffer to wait on
1033 * @filp: the file descriptor
1034 * @poll_table: The poll descriptor
1035 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1036 *
1037 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1038 * as data is added to any of the @buffer's cpu buffers. Otherwise
1039 * it will wait for data to be added to a specific cpu buffer.
1040 *
1041 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1042 * zero otherwise.
1043 */
ring_buffer_poll_wait(struct trace_buffer * buffer,int cpu,struct file * filp,poll_table * poll_table,int full)1044 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1045 struct file *filp, poll_table *poll_table, int full)
1046 {
1047 struct ring_buffer_per_cpu *cpu_buffer;
1048 struct rb_irq_work *rbwork;
1049
1050 if (cpu == RING_BUFFER_ALL_CPUS) {
1051 rbwork = &buffer->irq_work;
1052 full = 0;
1053 } else {
1054 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1055 return EPOLLERR;
1056
1057 cpu_buffer = buffer->buffers[cpu];
1058 rbwork = &cpu_buffer->irq_work;
1059 }
1060
1061 if (full) {
1062 poll_wait(filp, &rbwork->full_waiters, poll_table);
1063
1064 if (rb_watermark_hit(buffer, cpu, full))
1065 return EPOLLIN | EPOLLRDNORM;
1066 /*
1067 * Only allow full_waiters_pending update to be seen after
1068 * the shortest_full is set (in rb_watermark_hit). If the
1069 * writer sees the full_waiters_pending flag set, it will
1070 * compare the amount in the ring buffer to shortest_full.
1071 * If the amount in the ring buffer is greater than the
1072 * shortest_full percent, it will call the irq_work handler
1073 * to wake up this list. The irq_handler will reset shortest_full
1074 * back to zero. That's done under the reader_lock, but
1075 * the below smp_mb() makes sure that the update to
1076 * full_waiters_pending doesn't leak up into the above.
1077 */
1078 smp_mb();
1079 rbwork->full_waiters_pending = true;
1080 return 0;
1081 }
1082
1083 poll_wait(filp, &rbwork->waiters, poll_table);
1084 rbwork->waiters_pending = true;
1085
1086 /*
1087 * There's a tight race between setting the waiters_pending and
1088 * checking if the ring buffer is empty. Once the waiters_pending bit
1089 * is set, the next event will wake the task up, but we can get stuck
1090 * if there's only a single event in.
1091 *
1092 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1093 * but adding a memory barrier to all events will cause too much of a
1094 * performance hit in the fast path. We only need a memory barrier when
1095 * the buffer goes from empty to having content. But as this race is
1096 * extremely small, and it's not a problem if another event comes in, we
1097 * will fix it later.
1098 */
1099 smp_mb();
1100
1101 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1102 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1103 return EPOLLIN | EPOLLRDNORM;
1104 return 0;
1105 }
1106
1107 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1108 #define RB_WARN_ON(b, cond) \
1109 ({ \
1110 int _____ret = unlikely(cond); \
1111 if (_____ret) { \
1112 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1113 struct ring_buffer_per_cpu *__b = \
1114 (void *)b; \
1115 atomic_inc(&__b->buffer->record_disabled); \
1116 } else \
1117 atomic_inc(&b->record_disabled); \
1118 WARN_ON(1); \
1119 } \
1120 _____ret; \
1121 })
1122
1123 /* Up this if you want to test the TIME_EXTENTS and normalization */
1124 #define DEBUG_SHIFT 0
1125
rb_time_stamp(struct trace_buffer * buffer)1126 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1127 {
1128 u64 ts;
1129
1130 /* Skip retpolines :-( */
1131 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1132 ts = trace_clock_local();
1133 else
1134 ts = buffer->clock();
1135
1136 /* shift to debug/test normalization and TIME_EXTENTS */
1137 return ts << DEBUG_SHIFT;
1138 }
1139
ring_buffer_time_stamp(struct trace_buffer * buffer)1140 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1141 {
1142 u64 time;
1143
1144 preempt_disable_notrace();
1145 time = rb_time_stamp(buffer);
1146 preempt_enable_notrace();
1147
1148 return time;
1149 }
1150 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1151
ring_buffer_normalize_time_stamp(struct trace_buffer * buffer,int cpu,u64 * ts)1152 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1153 int cpu, u64 *ts)
1154 {
1155 /* Just stupid testing the normalize function and deltas */
1156 *ts >>= DEBUG_SHIFT;
1157 }
1158 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1159
1160 /*
1161 * Making the ring buffer lockless makes things tricky.
1162 * Although writes only happen on the CPU that they are on,
1163 * and they only need to worry about interrupts. Reads can
1164 * happen on any CPU.
1165 *
1166 * The reader page is always off the ring buffer, but when the
1167 * reader finishes with a page, it needs to swap its page with
1168 * a new one from the buffer. The reader needs to take from
1169 * the head (writes go to the tail). But if a writer is in overwrite
1170 * mode and wraps, it must push the head page forward.
1171 *
1172 * Here lies the problem.
1173 *
1174 * The reader must be careful to replace only the head page, and
1175 * not another one. As described at the top of the file in the
1176 * ASCII art, the reader sets its old page to point to the next
1177 * page after head. It then sets the page after head to point to
1178 * the old reader page. But if the writer moves the head page
1179 * during this operation, the reader could end up with the tail.
1180 *
1181 * We use cmpxchg to help prevent this race. We also do something
1182 * special with the page before head. We set the LSB to 1.
1183 *
1184 * When the writer must push the page forward, it will clear the
1185 * bit that points to the head page, move the head, and then set
1186 * the bit that points to the new head page.
1187 *
1188 * We also don't want an interrupt coming in and moving the head
1189 * page on another writer. Thus we use the second LSB to catch
1190 * that too. Thus:
1191 *
1192 * head->list->prev->next bit 1 bit 0
1193 * ------- -------
1194 * Normal page 0 0
1195 * Points to head page 0 1
1196 * New head page 1 0
1197 *
1198 * Note we can not trust the prev pointer of the head page, because:
1199 *
1200 * +----+ +-----+ +-----+
1201 * | |------>| T |---X--->| N |
1202 * | |<------| | | |
1203 * +----+ +-----+ +-----+
1204 * ^ ^ |
1205 * | +-----+ | |
1206 * +----------| R |----------+ |
1207 * | |<-----------+
1208 * +-----+
1209 *
1210 * Key: ---X--> HEAD flag set in pointer
1211 * T Tail page
1212 * R Reader page
1213 * N Next page
1214 *
1215 * (see __rb_reserve_next() to see where this happens)
1216 *
1217 * What the above shows is that the reader just swapped out
1218 * the reader page with a page in the buffer, but before it
1219 * could make the new header point back to the new page added
1220 * it was preempted by a writer. The writer moved forward onto
1221 * the new page added by the reader and is about to move forward
1222 * again.
1223 *
1224 * You can see, it is legitimate for the previous pointer of
1225 * the head (or any page) not to point back to itself. But only
1226 * temporarily.
1227 */
1228
1229 #define RB_PAGE_NORMAL 0UL
1230 #define RB_PAGE_HEAD 1UL
1231 #define RB_PAGE_UPDATE 2UL
1232
1233
1234 #define RB_FLAG_MASK 3UL
1235
1236 /* PAGE_MOVED is not part of the mask */
1237 #define RB_PAGE_MOVED 4UL
1238
1239 /*
1240 * rb_list_head - remove any bit
1241 */
rb_list_head(struct list_head * list)1242 static struct list_head *rb_list_head(struct list_head *list)
1243 {
1244 unsigned long val = (unsigned long)list;
1245
1246 return (struct list_head *)(val & ~RB_FLAG_MASK);
1247 }
1248
1249 /*
1250 * rb_is_head_page - test if the given page is the head page
1251 *
1252 * Because the reader may move the head_page pointer, we can
1253 * not trust what the head page is (it may be pointing to
1254 * the reader page). But if the next page is a header page,
1255 * its flags will be non zero.
1256 */
1257 static inline int
rb_is_head_page(struct buffer_page * page,struct list_head * list)1258 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1259 {
1260 unsigned long val;
1261
1262 val = (unsigned long)list->next;
1263
1264 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1265 return RB_PAGE_MOVED;
1266
1267 return val & RB_FLAG_MASK;
1268 }
1269
1270 /*
1271 * rb_is_reader_page
1272 *
1273 * The unique thing about the reader page, is that, if the
1274 * writer is ever on it, the previous pointer never points
1275 * back to the reader page.
1276 */
rb_is_reader_page(struct buffer_page * page)1277 static bool rb_is_reader_page(struct buffer_page *page)
1278 {
1279 struct list_head *list = page->list.prev;
1280
1281 return rb_list_head(list->next) != &page->list;
1282 }
1283
1284 /*
1285 * rb_set_list_to_head - set a list_head to be pointing to head.
1286 */
rb_set_list_to_head(struct list_head * list)1287 static void rb_set_list_to_head(struct list_head *list)
1288 {
1289 unsigned long *ptr;
1290
1291 ptr = (unsigned long *)&list->next;
1292 *ptr |= RB_PAGE_HEAD;
1293 *ptr &= ~RB_PAGE_UPDATE;
1294 }
1295
1296 /*
1297 * rb_head_page_activate - sets up head page
1298 */
rb_head_page_activate(struct ring_buffer_per_cpu * cpu_buffer)1299 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1300 {
1301 struct buffer_page *head;
1302
1303 head = cpu_buffer->head_page;
1304 if (!head)
1305 return;
1306
1307 /*
1308 * Set the previous list pointer to have the HEAD flag.
1309 */
1310 rb_set_list_to_head(head->list.prev);
1311
1312 if (cpu_buffer->ring_meta) {
1313 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
1314 meta->head_buffer = (unsigned long)head->page;
1315 }
1316 }
1317
rb_list_head_clear(struct list_head * list)1318 static void rb_list_head_clear(struct list_head *list)
1319 {
1320 unsigned long *ptr = (unsigned long *)&list->next;
1321
1322 *ptr &= ~RB_FLAG_MASK;
1323 }
1324
1325 /*
1326 * rb_head_page_deactivate - clears head page ptr (for free list)
1327 */
1328 static void
rb_head_page_deactivate(struct ring_buffer_per_cpu * cpu_buffer)1329 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1330 {
1331 struct list_head *hd;
1332
1333 /* Go through the whole list and clear any pointers found. */
1334 rb_list_head_clear(cpu_buffer->pages);
1335
1336 list_for_each(hd, cpu_buffer->pages)
1337 rb_list_head_clear(hd);
1338 }
1339
rb_head_page_set(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag,int new_flag)1340 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1341 struct buffer_page *head,
1342 struct buffer_page *prev,
1343 int old_flag, int new_flag)
1344 {
1345 struct list_head *list;
1346 unsigned long val = (unsigned long)&head->list;
1347 unsigned long ret;
1348
1349 list = &prev->list;
1350
1351 val &= ~RB_FLAG_MASK;
1352
1353 ret = cmpxchg((unsigned long *)&list->next,
1354 val | old_flag, val | new_flag);
1355
1356 /* check if the reader took the page */
1357 if ((ret & ~RB_FLAG_MASK) != val)
1358 return RB_PAGE_MOVED;
1359
1360 return ret & RB_FLAG_MASK;
1361 }
1362
rb_head_page_set_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1363 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1364 struct buffer_page *head,
1365 struct buffer_page *prev,
1366 int old_flag)
1367 {
1368 return rb_head_page_set(cpu_buffer, head, prev,
1369 old_flag, RB_PAGE_UPDATE);
1370 }
1371
rb_head_page_set_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1372 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1373 struct buffer_page *head,
1374 struct buffer_page *prev,
1375 int old_flag)
1376 {
1377 return rb_head_page_set(cpu_buffer, head, prev,
1378 old_flag, RB_PAGE_HEAD);
1379 }
1380
rb_head_page_set_normal(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1381 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1382 struct buffer_page *head,
1383 struct buffer_page *prev,
1384 int old_flag)
1385 {
1386 return rb_head_page_set(cpu_buffer, head, prev,
1387 old_flag, RB_PAGE_NORMAL);
1388 }
1389
rb_inc_page(struct buffer_page ** bpage)1390 static inline void rb_inc_page(struct buffer_page **bpage)
1391 {
1392 struct list_head *p = rb_list_head((*bpage)->list.next);
1393
1394 *bpage = list_entry(p, struct buffer_page, list);
1395 }
1396
rb_dec_page(struct buffer_page ** bpage)1397 static inline void rb_dec_page(struct buffer_page **bpage)
1398 {
1399 struct list_head *p = rb_list_head((*bpage)->list.prev);
1400
1401 *bpage = list_entry(p, struct buffer_page, list);
1402 }
1403
1404 static struct buffer_page *
rb_set_head_page(struct ring_buffer_per_cpu * cpu_buffer)1405 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1406 {
1407 struct buffer_page *head;
1408 struct buffer_page *page;
1409 struct list_head *list;
1410 int i;
1411
1412 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1413 return NULL;
1414
1415 /* sanity check */
1416 list = cpu_buffer->pages;
1417 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1418 return NULL;
1419
1420 page = head = cpu_buffer->head_page;
1421 /*
1422 * It is possible that the writer moves the header behind
1423 * where we started, and we miss in one loop.
1424 * A second loop should grab the header, but we'll do
1425 * three loops just because I'm paranoid.
1426 */
1427 for (i = 0; i < 3; i++) {
1428 do {
1429 if (rb_is_head_page(page, page->list.prev)) {
1430 cpu_buffer->head_page = page;
1431 return page;
1432 }
1433 rb_inc_page(&page);
1434 } while (page != head);
1435 }
1436
1437 RB_WARN_ON(cpu_buffer, 1);
1438
1439 return NULL;
1440 }
1441
rb_head_page_replace(struct buffer_page * old,struct buffer_page * new)1442 static bool rb_head_page_replace(struct buffer_page *old,
1443 struct buffer_page *new)
1444 {
1445 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1446 unsigned long val;
1447
1448 val = *ptr & ~RB_FLAG_MASK;
1449 val |= RB_PAGE_HEAD;
1450
1451 return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1452 }
1453
1454 /*
1455 * rb_tail_page_update - move the tail page forward
1456 */
rb_tail_page_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)1457 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1458 struct buffer_page *tail_page,
1459 struct buffer_page *next_page)
1460 {
1461 unsigned long old_entries;
1462 unsigned long old_write;
1463
1464 /*
1465 * The tail page now needs to be moved forward.
1466 *
1467 * We need to reset the tail page, but without messing
1468 * with possible erasing of data brought in by interrupts
1469 * that have moved the tail page and are currently on it.
1470 *
1471 * We add a counter to the write field to denote this.
1472 */
1473 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1474 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1475
1476 /*
1477 * Just make sure we have seen our old_write and synchronize
1478 * with any interrupts that come in.
1479 */
1480 barrier();
1481
1482 /*
1483 * If the tail page is still the same as what we think
1484 * it is, then it is up to us to update the tail
1485 * pointer.
1486 */
1487 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1488 /* Zero the write counter */
1489 unsigned long val = old_write & ~RB_WRITE_MASK;
1490 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1491
1492 /*
1493 * This will only succeed if an interrupt did
1494 * not come in and change it. In which case, we
1495 * do not want to modify it.
1496 *
1497 * We add (void) to let the compiler know that we do not care
1498 * about the return value of these functions. We use the
1499 * cmpxchg to only update if an interrupt did not already
1500 * do it for us. If the cmpxchg fails, we don't care.
1501 */
1502 (void)local_cmpxchg(&next_page->write, old_write, val);
1503 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1504
1505 /*
1506 * No need to worry about races with clearing out the commit.
1507 * it only can increment when a commit takes place. But that
1508 * only happens in the outer most nested commit.
1509 */
1510 local_set(&next_page->page->commit, 0);
1511
1512 /* Either we update tail_page or an interrupt does */
1513 if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page))
1514 local_inc(&cpu_buffer->pages_touched);
1515 }
1516 }
1517
rb_check_bpage(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)1518 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1519 struct buffer_page *bpage)
1520 {
1521 unsigned long val = (unsigned long)bpage;
1522
1523 RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1524 }
1525
rb_check_links(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)1526 static bool rb_check_links(struct ring_buffer_per_cpu *cpu_buffer,
1527 struct list_head *list)
1528 {
1529 if (RB_WARN_ON(cpu_buffer,
1530 rb_list_head(rb_list_head(list->next)->prev) != list))
1531 return false;
1532
1533 if (RB_WARN_ON(cpu_buffer,
1534 rb_list_head(rb_list_head(list->prev)->next) != list))
1535 return false;
1536
1537 return true;
1538 }
1539
1540 /**
1541 * rb_check_pages - integrity check of buffer pages
1542 * @cpu_buffer: CPU buffer with pages to test
1543 *
1544 * As a safety measure we check to make sure the data pages have not
1545 * been corrupted.
1546 */
rb_check_pages(struct ring_buffer_per_cpu * cpu_buffer)1547 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1548 {
1549 struct list_head *head, *tmp;
1550 unsigned long buffer_cnt;
1551 unsigned long flags;
1552 int nr_loops = 0;
1553
1554 /*
1555 * Walk the linked list underpinning the ring buffer and validate all
1556 * its next and prev links.
1557 *
1558 * The check acquires the reader_lock to avoid concurrent processing
1559 * with code that could be modifying the list. However, the lock cannot
1560 * be held for the entire duration of the walk, as this would make the
1561 * time when interrupts are disabled non-deterministic, dependent on the
1562 * ring buffer size. Therefore, the code releases and re-acquires the
1563 * lock after checking each page. The ring_buffer_per_cpu.cnt variable
1564 * is then used to detect if the list was modified while the lock was
1565 * not held, in which case the check needs to be restarted.
1566 *
1567 * The code attempts to perform the check at most three times before
1568 * giving up. This is acceptable because this is only a self-validation
1569 * to detect problems early on. In practice, the list modification
1570 * operations are fairly spaced, and so this check typically succeeds at
1571 * most on the second try.
1572 */
1573 again:
1574 if (++nr_loops > 3)
1575 return;
1576
1577 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1578 head = rb_list_head(cpu_buffer->pages);
1579 if (!rb_check_links(cpu_buffer, head))
1580 goto out_locked;
1581 buffer_cnt = cpu_buffer->cnt;
1582 tmp = head;
1583 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1584
1585 while (true) {
1586 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1587
1588 if (buffer_cnt != cpu_buffer->cnt) {
1589 /* The list was updated, try again. */
1590 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1591 goto again;
1592 }
1593
1594 tmp = rb_list_head(tmp->next);
1595 if (tmp == head)
1596 /* The iteration circled back, all is done. */
1597 goto out_locked;
1598
1599 if (!rb_check_links(cpu_buffer, tmp))
1600 goto out_locked;
1601
1602 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1603 }
1604
1605 out_locked:
1606 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1607 }
1608
1609 /*
1610 * Take an address, add the meta data size as well as the array of
1611 * array subbuffer indexes, then align it to a subbuffer size.
1612 *
1613 * This is used to help find the next per cpu subbuffer within a mapped range.
1614 */
1615 static unsigned long
rb_range_align_subbuf(unsigned long addr,int subbuf_size,int nr_subbufs)1616 rb_range_align_subbuf(unsigned long addr, int subbuf_size, int nr_subbufs)
1617 {
1618 addr += sizeof(struct ring_buffer_cpu_meta) +
1619 sizeof(int) * nr_subbufs;
1620 return ALIGN(addr, subbuf_size);
1621 }
1622
1623 /*
1624 * Return the ring_buffer_meta for a given @cpu.
1625 */
rb_range_meta(struct trace_buffer * buffer,int nr_pages,int cpu)1626 static void *rb_range_meta(struct trace_buffer *buffer, int nr_pages, int cpu)
1627 {
1628 int subbuf_size = buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
1629 struct ring_buffer_cpu_meta *meta;
1630 struct ring_buffer_meta *bmeta;
1631 unsigned long ptr;
1632 int nr_subbufs;
1633
1634 bmeta = buffer->meta;
1635 if (!bmeta)
1636 return NULL;
1637
1638 ptr = (unsigned long)bmeta + bmeta->buffers_offset;
1639 meta = (struct ring_buffer_cpu_meta *)ptr;
1640
1641 /* When nr_pages passed in is zero, the first meta has already been initialized */
1642 if (!nr_pages) {
1643 nr_subbufs = meta->nr_subbufs;
1644 } else {
1645 /* Include the reader page */
1646 nr_subbufs = nr_pages + 1;
1647 }
1648
1649 /*
1650 * The first chunk may not be subbuffer aligned, where as
1651 * the rest of the chunks are.
1652 */
1653 if (cpu) {
1654 ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1655 ptr += subbuf_size * nr_subbufs;
1656
1657 /* We can use multiplication to find chunks greater than 1 */
1658 if (cpu > 1) {
1659 unsigned long size;
1660 unsigned long p;
1661
1662 /* Save the beginning of this CPU chunk */
1663 p = ptr;
1664 ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1665 ptr += subbuf_size * nr_subbufs;
1666
1667 /* Now all chunks after this are the same size */
1668 size = ptr - p;
1669 ptr += size * (cpu - 2);
1670 }
1671 }
1672 return (void *)ptr;
1673 }
1674
1675 /* Return the start of subbufs given the meta pointer */
rb_subbufs_from_meta(struct ring_buffer_cpu_meta * meta)1676 static void *rb_subbufs_from_meta(struct ring_buffer_cpu_meta *meta)
1677 {
1678 int subbuf_size = meta->subbuf_size;
1679 unsigned long ptr;
1680
1681 ptr = (unsigned long)meta;
1682 ptr = rb_range_align_subbuf(ptr, subbuf_size, meta->nr_subbufs);
1683
1684 return (void *)ptr;
1685 }
1686
1687 /*
1688 * Return a specific sub-buffer for a given @cpu defined by @idx.
1689 */
rb_range_buffer(struct ring_buffer_per_cpu * cpu_buffer,int idx)1690 static void *rb_range_buffer(struct ring_buffer_per_cpu *cpu_buffer, int idx)
1691 {
1692 struct ring_buffer_cpu_meta *meta;
1693 unsigned long ptr;
1694 int subbuf_size;
1695
1696 meta = rb_range_meta(cpu_buffer->buffer, 0, cpu_buffer->cpu);
1697 if (!meta)
1698 return NULL;
1699
1700 if (WARN_ON_ONCE(idx >= meta->nr_subbufs))
1701 return NULL;
1702
1703 subbuf_size = meta->subbuf_size;
1704
1705 /* Map this buffer to the order that's in meta->buffers[] */
1706 idx = meta->buffers[idx];
1707
1708 ptr = (unsigned long)rb_subbufs_from_meta(meta);
1709
1710 ptr += subbuf_size * idx;
1711 if (ptr + subbuf_size > cpu_buffer->buffer->range_addr_end)
1712 return NULL;
1713
1714 return (void *)ptr;
1715 }
1716
1717 /*
1718 * See if the existing memory contains a valid meta section.
1719 * if so, use that, otherwise initialize it.
1720 */
rb_meta_init(struct trace_buffer * buffer,int scratch_size)1721 static bool rb_meta_init(struct trace_buffer *buffer, int scratch_size)
1722 {
1723 unsigned long ptr = buffer->range_addr_start;
1724 struct ring_buffer_meta *bmeta;
1725 unsigned long total_size;
1726 int struct_sizes;
1727
1728 bmeta = (struct ring_buffer_meta *)ptr;
1729 buffer->meta = bmeta;
1730
1731 total_size = buffer->range_addr_end - buffer->range_addr_start;
1732
1733 struct_sizes = sizeof(struct ring_buffer_cpu_meta);
1734 struct_sizes |= sizeof(*bmeta) << 16;
1735
1736 /* The first buffer will start word size after the meta page */
1737 ptr += sizeof(*bmeta);
1738 ptr = ALIGN(ptr, sizeof(long));
1739 ptr += scratch_size;
1740
1741 if (bmeta->magic != RING_BUFFER_META_MAGIC) {
1742 pr_info("Ring buffer boot meta mismatch of magic\n");
1743 goto init;
1744 }
1745
1746 if (bmeta->struct_sizes != struct_sizes) {
1747 pr_info("Ring buffer boot meta mismatch of struct size\n");
1748 goto init;
1749 }
1750
1751 if (bmeta->total_size != total_size) {
1752 pr_info("Ring buffer boot meta mismatch of total size\n");
1753 goto init;
1754 }
1755
1756 if (bmeta->buffers_offset > bmeta->total_size) {
1757 pr_info("Ring buffer boot meta mismatch of offset outside of total size\n");
1758 goto init;
1759 }
1760
1761 if (bmeta->buffers_offset != (void *)ptr - (void *)bmeta) {
1762 pr_info("Ring buffer boot meta mismatch of first buffer offset\n");
1763 goto init;
1764 }
1765
1766 return true;
1767
1768 init:
1769 bmeta->magic = RING_BUFFER_META_MAGIC;
1770 bmeta->struct_sizes = struct_sizes;
1771 bmeta->total_size = total_size;
1772 bmeta->buffers_offset = (void *)ptr - (void *)bmeta;
1773
1774 /* Zero out the scratch pad */
1775 memset((void *)bmeta + sizeof(*bmeta), 0, bmeta->buffers_offset - sizeof(*bmeta));
1776
1777 return false;
1778 }
1779
1780 /*
1781 * See if the existing memory contains valid ring buffer data.
1782 * As the previous kernel must be the same as this kernel, all
1783 * the calculations (size of buffers and number of buffers)
1784 * must be the same.
1785 */
rb_cpu_meta_valid(struct ring_buffer_cpu_meta * meta,int cpu,struct trace_buffer * buffer,int nr_pages,unsigned long * subbuf_mask)1786 static bool rb_cpu_meta_valid(struct ring_buffer_cpu_meta *meta, int cpu,
1787 struct trace_buffer *buffer, int nr_pages,
1788 unsigned long *subbuf_mask)
1789 {
1790 int subbuf_size = PAGE_SIZE;
1791 struct buffer_data_page *subbuf;
1792 unsigned long buffers_start;
1793 unsigned long buffers_end;
1794 int i;
1795
1796 if (!subbuf_mask)
1797 return false;
1798
1799 buffers_start = meta->first_buffer;
1800 buffers_end = meta->first_buffer + (subbuf_size * meta->nr_subbufs);
1801
1802 /* Is the head and commit buffers within the range of buffers? */
1803 if (meta->head_buffer < buffers_start ||
1804 meta->head_buffer >= buffers_end) {
1805 pr_info("Ring buffer boot meta [%d] head buffer out of range\n", cpu);
1806 return false;
1807 }
1808
1809 if (meta->commit_buffer < buffers_start ||
1810 meta->commit_buffer >= buffers_end) {
1811 pr_info("Ring buffer boot meta [%d] commit buffer out of range\n", cpu);
1812 return false;
1813 }
1814
1815 subbuf = rb_subbufs_from_meta(meta);
1816
1817 bitmap_clear(subbuf_mask, 0, meta->nr_subbufs);
1818
1819 /* Is the meta buffers and the subbufs themselves have correct data? */
1820 for (i = 0; i < meta->nr_subbufs; i++) {
1821 if (meta->buffers[i] < 0 ||
1822 meta->buffers[i] >= meta->nr_subbufs) {
1823 pr_info("Ring buffer boot meta [%d] array out of range\n", cpu);
1824 return false;
1825 }
1826
1827 if ((unsigned)local_read(&subbuf->commit) > subbuf_size) {
1828 pr_info("Ring buffer boot meta [%d] buffer invalid commit\n", cpu);
1829 return false;
1830 }
1831
1832 if (test_bit(meta->buffers[i], subbuf_mask)) {
1833 pr_info("Ring buffer boot meta [%d] array has duplicates\n", cpu);
1834 return false;
1835 }
1836
1837 set_bit(meta->buffers[i], subbuf_mask);
1838 subbuf = (void *)subbuf + subbuf_size;
1839 }
1840
1841 return true;
1842 }
1843
1844 static int rb_meta_subbuf_idx(struct ring_buffer_cpu_meta *meta, void *subbuf);
1845
rb_read_data_buffer(struct buffer_data_page * dpage,int tail,int cpu,unsigned long long * timestamp,u64 * delta_ptr)1846 static int rb_read_data_buffer(struct buffer_data_page *dpage, int tail, int cpu,
1847 unsigned long long *timestamp, u64 *delta_ptr)
1848 {
1849 struct ring_buffer_event *event;
1850 u64 ts, delta;
1851 int events = 0;
1852 int len;
1853 int e;
1854
1855 *delta_ptr = 0;
1856 *timestamp = 0;
1857
1858 ts = dpage->time_stamp;
1859
1860 for (e = 0; e < tail; e += len) {
1861
1862 event = (struct ring_buffer_event *)(dpage->data + e);
1863 len = rb_event_length(event);
1864 if (len <= 0 || len > tail - e)
1865 return -1;
1866
1867 switch (event->type_len) {
1868
1869 case RINGBUF_TYPE_TIME_EXTEND:
1870 delta = rb_event_time_stamp(event);
1871 ts += delta;
1872 break;
1873
1874 case RINGBUF_TYPE_TIME_STAMP:
1875 delta = rb_event_time_stamp(event);
1876 delta = rb_fix_abs_ts(delta, ts);
1877 if (delta < ts) {
1878 *delta_ptr = delta;
1879 *timestamp = ts;
1880 return -1;
1881 }
1882 ts = delta;
1883 break;
1884
1885 case RINGBUF_TYPE_PADDING:
1886 if (event->time_delta == 1)
1887 break;
1888 fallthrough;
1889 case RINGBUF_TYPE_DATA:
1890 events++;
1891 ts += event->time_delta;
1892 break;
1893
1894 default:
1895 return -1;
1896 }
1897 }
1898 *timestamp = ts;
1899 return events;
1900 }
1901
rb_validate_buffer(struct buffer_data_page * dpage,int cpu)1902 static int rb_validate_buffer(struct buffer_data_page *dpage, int cpu)
1903 {
1904 unsigned long long ts;
1905 u64 delta;
1906 int tail;
1907
1908 tail = local_read(&dpage->commit);
1909 return rb_read_data_buffer(dpage, tail, cpu, &ts, &delta);
1910 }
1911
1912 /* If the meta data has been validated, now validate the events */
rb_meta_validate_events(struct ring_buffer_per_cpu * cpu_buffer)1913 static void rb_meta_validate_events(struct ring_buffer_per_cpu *cpu_buffer)
1914 {
1915 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
1916 struct buffer_page *head_page, *orig_head;
1917 unsigned long entry_bytes = 0;
1918 unsigned long entries = 0;
1919 int ret;
1920 u64 ts;
1921 int i;
1922
1923 if (!meta || !meta->head_buffer)
1924 return;
1925
1926 orig_head = head_page = cpu_buffer->head_page;
1927
1928 /* Do the reader page first */
1929 ret = rb_validate_buffer(cpu_buffer->reader_page->page, cpu_buffer->cpu);
1930 if (ret < 0) {
1931 pr_info("Ring buffer reader page is invalid\n");
1932 goto invalid;
1933 }
1934 entries += ret;
1935 entry_bytes += local_read(&cpu_buffer->reader_page->page->commit);
1936 local_set(&cpu_buffer->reader_page->entries, ret);
1937
1938 ts = head_page->page->time_stamp;
1939
1940 /*
1941 * Try to rewind the head so that we can read the pages which already
1942 * read in the previous boot.
1943 */
1944 if (head_page == cpu_buffer->tail_page)
1945 goto skip_rewind;
1946
1947 rb_dec_page(&head_page);
1948 for (i = 0; i < meta->nr_subbufs + 1; i++, rb_dec_page(&head_page)) {
1949
1950 /* Rewind until tail (writer) page. */
1951 if (head_page == cpu_buffer->tail_page)
1952 break;
1953
1954 /* Ensure the page has older data than head. */
1955 if (ts < head_page->page->time_stamp)
1956 break;
1957
1958 ts = head_page->page->time_stamp;
1959 /* Ensure the page has correct timestamp and some data. */
1960 if (!ts || rb_page_commit(head_page) == 0)
1961 break;
1962
1963 /* Stop rewind if the page is invalid. */
1964 ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu);
1965 if (ret < 0)
1966 break;
1967
1968 /* Recover the number of entries and update stats. */
1969 local_set(&head_page->entries, ret);
1970 if (ret)
1971 local_inc(&cpu_buffer->pages_touched);
1972 entries += ret;
1973 entry_bytes += rb_page_commit(head_page);
1974 }
1975 if (i)
1976 pr_info("Ring buffer [%d] rewound %d pages\n", cpu_buffer->cpu, i);
1977
1978 /* The last rewound page must be skipped. */
1979 if (head_page != orig_head)
1980 rb_inc_page(&head_page);
1981
1982 /*
1983 * If the ring buffer was rewound, then inject the reader page
1984 * into the location just before the original head page.
1985 */
1986 if (head_page != orig_head) {
1987 struct buffer_page *bpage = orig_head;
1988
1989 rb_dec_page(&bpage);
1990 /*
1991 * Insert the reader_page before the original head page.
1992 * Since the list encode RB_PAGE flags, general list
1993 * operations should be avoided.
1994 */
1995 cpu_buffer->reader_page->list.next = &orig_head->list;
1996 cpu_buffer->reader_page->list.prev = orig_head->list.prev;
1997 orig_head->list.prev = &cpu_buffer->reader_page->list;
1998 bpage->list.next = &cpu_buffer->reader_page->list;
1999
2000 /* Make the head_page the reader page */
2001 cpu_buffer->reader_page = head_page;
2002 bpage = head_page;
2003 rb_inc_page(&head_page);
2004 head_page->list.prev = bpage->list.prev;
2005 rb_dec_page(&bpage);
2006 bpage->list.next = &head_page->list;
2007 rb_set_list_to_head(&bpage->list);
2008 cpu_buffer->pages = &head_page->list;
2009
2010 cpu_buffer->head_page = head_page;
2011 meta->head_buffer = (unsigned long)head_page->page;
2012
2013 /* Reset all the indexes */
2014 bpage = cpu_buffer->reader_page;
2015 meta->buffers[0] = rb_meta_subbuf_idx(meta, bpage->page);
2016 bpage->id = 0;
2017
2018 for (i = 1, bpage = head_page; i < meta->nr_subbufs;
2019 i++, rb_inc_page(&bpage)) {
2020 meta->buffers[i] = rb_meta_subbuf_idx(meta, bpage->page);
2021 bpage->id = i;
2022 }
2023
2024 /* We'll restart verifying from orig_head */
2025 head_page = orig_head;
2026 }
2027
2028 skip_rewind:
2029 /* If the commit_buffer is the reader page, update the commit page */
2030 if (meta->commit_buffer == (unsigned long)cpu_buffer->reader_page->page) {
2031 cpu_buffer->commit_page = cpu_buffer->reader_page;
2032 /* Nothing more to do, the only page is the reader page */
2033 goto done;
2034 }
2035
2036 /* Iterate until finding the commit page */
2037 for (i = 0; i < meta->nr_subbufs + 1; i++, rb_inc_page(&head_page)) {
2038
2039 /* Reader page has already been done */
2040 if (head_page == cpu_buffer->reader_page)
2041 continue;
2042
2043 ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu);
2044 if (ret < 0) {
2045 pr_info("Ring buffer meta [%d] invalid buffer page\n",
2046 cpu_buffer->cpu);
2047 goto invalid;
2048 }
2049
2050 /* If the buffer has content, update pages_touched */
2051 if (ret)
2052 local_inc(&cpu_buffer->pages_touched);
2053
2054 entries += ret;
2055 entry_bytes += local_read(&head_page->page->commit);
2056 local_set(&cpu_buffer->head_page->entries, ret);
2057
2058 if (head_page == cpu_buffer->commit_page)
2059 break;
2060 }
2061
2062 if (head_page != cpu_buffer->commit_page) {
2063 pr_info("Ring buffer meta [%d] commit page not found\n",
2064 cpu_buffer->cpu);
2065 goto invalid;
2066 }
2067 done:
2068 local_set(&cpu_buffer->entries, entries);
2069 local_set(&cpu_buffer->entries_bytes, entry_bytes);
2070
2071 pr_info("Ring buffer meta [%d] is from previous boot!\n", cpu_buffer->cpu);
2072 return;
2073
2074 invalid:
2075 /* The content of the buffers are invalid, reset the meta data */
2076 meta->head_buffer = 0;
2077 meta->commit_buffer = 0;
2078
2079 /* Reset the reader page */
2080 local_set(&cpu_buffer->reader_page->entries, 0);
2081 local_set(&cpu_buffer->reader_page->page->commit, 0);
2082
2083 /* Reset all the subbuffers */
2084 for (i = 0; i < meta->nr_subbufs - 1; i++, rb_inc_page(&head_page)) {
2085 local_set(&head_page->entries, 0);
2086 local_set(&head_page->page->commit, 0);
2087 }
2088 }
2089
rb_range_meta_init(struct trace_buffer * buffer,int nr_pages,int scratch_size)2090 static void rb_range_meta_init(struct trace_buffer *buffer, int nr_pages, int scratch_size)
2091 {
2092 struct ring_buffer_cpu_meta *meta;
2093 unsigned long *subbuf_mask;
2094 unsigned long delta;
2095 void *subbuf;
2096 bool valid = false;
2097 int cpu;
2098 int i;
2099
2100 /* Create a mask to test the subbuf array */
2101 subbuf_mask = bitmap_alloc(nr_pages + 1, GFP_KERNEL);
2102 /* If subbuf_mask fails to allocate, then rb_meta_valid() will return false */
2103
2104 if (rb_meta_init(buffer, scratch_size))
2105 valid = true;
2106
2107 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
2108 void *next_meta;
2109
2110 meta = rb_range_meta(buffer, nr_pages, cpu);
2111
2112 if (valid && rb_cpu_meta_valid(meta, cpu, buffer, nr_pages, subbuf_mask)) {
2113 /* Make the mappings match the current address */
2114 subbuf = rb_subbufs_from_meta(meta);
2115 delta = (unsigned long)subbuf - meta->first_buffer;
2116 meta->first_buffer += delta;
2117 meta->head_buffer += delta;
2118 meta->commit_buffer += delta;
2119 continue;
2120 }
2121
2122 if (cpu < nr_cpu_ids - 1)
2123 next_meta = rb_range_meta(buffer, nr_pages, cpu + 1);
2124 else
2125 next_meta = (void *)buffer->range_addr_end;
2126
2127 memset(meta, 0, next_meta - (void *)meta);
2128
2129 meta->nr_subbufs = nr_pages + 1;
2130 meta->subbuf_size = PAGE_SIZE;
2131
2132 subbuf = rb_subbufs_from_meta(meta);
2133
2134 meta->first_buffer = (unsigned long)subbuf;
2135
2136 /*
2137 * The buffers[] array holds the order of the sub-buffers
2138 * that are after the meta data. The sub-buffers may
2139 * be swapped out when read and inserted into a different
2140 * location of the ring buffer. Although their addresses
2141 * remain the same, the buffers[] array contains the
2142 * index into the sub-buffers holding their actual order.
2143 */
2144 for (i = 0; i < meta->nr_subbufs; i++) {
2145 meta->buffers[i] = i;
2146 rb_init_page(subbuf);
2147 subbuf += meta->subbuf_size;
2148 }
2149 }
2150 bitmap_free(subbuf_mask);
2151 }
2152
rbm_start(struct seq_file * m,loff_t * pos)2153 static void *rbm_start(struct seq_file *m, loff_t *pos)
2154 {
2155 struct ring_buffer_per_cpu *cpu_buffer = m->private;
2156 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
2157 unsigned long val;
2158
2159 if (!meta)
2160 return NULL;
2161
2162 if (*pos > meta->nr_subbufs)
2163 return NULL;
2164
2165 val = *pos;
2166 val++;
2167
2168 return (void *)val;
2169 }
2170
rbm_next(struct seq_file * m,void * v,loff_t * pos)2171 static void *rbm_next(struct seq_file *m, void *v, loff_t *pos)
2172 {
2173 (*pos)++;
2174
2175 return rbm_start(m, pos);
2176 }
2177
rbm_show(struct seq_file * m,void * v)2178 static int rbm_show(struct seq_file *m, void *v)
2179 {
2180 struct ring_buffer_per_cpu *cpu_buffer = m->private;
2181 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
2182 unsigned long val = (unsigned long)v;
2183
2184 if (val == 1) {
2185 seq_printf(m, "head_buffer: %d\n",
2186 rb_meta_subbuf_idx(meta, (void *)meta->head_buffer));
2187 seq_printf(m, "commit_buffer: %d\n",
2188 rb_meta_subbuf_idx(meta, (void *)meta->commit_buffer));
2189 seq_printf(m, "subbuf_size: %d\n", meta->subbuf_size);
2190 seq_printf(m, "nr_subbufs: %d\n", meta->nr_subbufs);
2191 return 0;
2192 }
2193
2194 val -= 2;
2195 seq_printf(m, "buffer[%ld]: %d\n", val, meta->buffers[val]);
2196
2197 return 0;
2198 }
2199
rbm_stop(struct seq_file * m,void * p)2200 static void rbm_stop(struct seq_file *m, void *p)
2201 {
2202 }
2203
2204 static const struct seq_operations rb_meta_seq_ops = {
2205 .start = rbm_start,
2206 .next = rbm_next,
2207 .show = rbm_show,
2208 .stop = rbm_stop,
2209 };
2210
ring_buffer_meta_seq_init(struct file * file,struct trace_buffer * buffer,int cpu)2211 int ring_buffer_meta_seq_init(struct file *file, struct trace_buffer *buffer, int cpu)
2212 {
2213 struct seq_file *m;
2214 int ret;
2215
2216 ret = seq_open(file, &rb_meta_seq_ops);
2217 if (ret)
2218 return ret;
2219
2220 m = file->private_data;
2221 m->private = buffer->buffers[cpu];
2222
2223 return 0;
2224 }
2225
2226 /* Map the buffer_pages to the previous head and commit pages */
rb_meta_buffer_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)2227 static void rb_meta_buffer_update(struct ring_buffer_per_cpu *cpu_buffer,
2228 struct buffer_page *bpage)
2229 {
2230 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
2231
2232 if (meta->head_buffer == (unsigned long)bpage->page)
2233 cpu_buffer->head_page = bpage;
2234
2235 if (meta->commit_buffer == (unsigned long)bpage->page) {
2236 cpu_buffer->commit_page = bpage;
2237 cpu_buffer->tail_page = bpage;
2238 }
2239 }
2240
__rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,long nr_pages,struct list_head * pages)2241 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2242 long nr_pages, struct list_head *pages)
2243 {
2244 struct trace_buffer *buffer = cpu_buffer->buffer;
2245 struct ring_buffer_cpu_meta *meta = NULL;
2246 struct buffer_page *bpage, *tmp;
2247 bool user_thread = current->mm != NULL;
2248 long i;
2249
2250 /*
2251 * Check if the available memory is there first.
2252 * Note, si_mem_available() only gives us a rough estimate of available
2253 * memory. It may not be accurate. But we don't care, we just want
2254 * to prevent doing any allocation when it is obvious that it is
2255 * not going to succeed.
2256 */
2257 i = si_mem_available();
2258 if (i < nr_pages)
2259 return -ENOMEM;
2260
2261 /*
2262 * If a user thread allocates too much, and si_mem_available()
2263 * reports there's enough memory, even though there is not.
2264 * Make sure the OOM killer kills this thread. This can happen
2265 * even with RETRY_MAYFAIL because another task may be doing
2266 * an allocation after this task has taken all memory.
2267 * This is the task the OOM killer needs to take out during this
2268 * loop, even if it was triggered by an allocation somewhere else.
2269 */
2270 if (user_thread)
2271 set_current_oom_origin();
2272
2273 if (buffer->range_addr_start)
2274 meta = rb_range_meta(buffer, nr_pages, cpu_buffer->cpu);
2275
2276 for (i = 0; i < nr_pages; i++) {
2277
2278 bpage = alloc_cpu_page(cpu_buffer->cpu);
2279 if (!bpage)
2280 goto free_pages;
2281
2282 rb_check_bpage(cpu_buffer, bpage);
2283
2284 /*
2285 * Append the pages as for mapped buffers we want to keep
2286 * the order
2287 */
2288 list_add_tail(&bpage->list, pages);
2289
2290 if (meta) {
2291 /* A range was given. Use that for the buffer page */
2292 bpage->page = rb_range_buffer(cpu_buffer, i + 1);
2293 if (!bpage->page)
2294 goto free_pages;
2295 /* If this is valid from a previous boot */
2296 if (meta->head_buffer)
2297 rb_meta_buffer_update(cpu_buffer, bpage);
2298 bpage->range = 1;
2299 bpage->id = i + 1;
2300 } else {
2301 int order = cpu_buffer->buffer->subbuf_order;
2302 bpage->page = alloc_cpu_data(cpu_buffer->cpu, order);
2303 if (!bpage->page)
2304 goto free_pages;
2305 }
2306 bpage->order = cpu_buffer->buffer->subbuf_order;
2307
2308 if (user_thread && fatal_signal_pending(current))
2309 goto free_pages;
2310 }
2311 if (user_thread)
2312 clear_current_oom_origin();
2313
2314 return 0;
2315
2316 free_pages:
2317 list_for_each_entry_safe(bpage, tmp, pages, list) {
2318 list_del_init(&bpage->list);
2319 free_buffer_page(bpage);
2320 }
2321 if (user_thread)
2322 clear_current_oom_origin();
2323
2324 return -ENOMEM;
2325 }
2326
rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)2327 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2328 unsigned long nr_pages)
2329 {
2330 LIST_HEAD(pages);
2331
2332 WARN_ON(!nr_pages);
2333
2334 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
2335 return -ENOMEM;
2336
2337 /*
2338 * The ring buffer page list is a circular list that does not
2339 * start and end with a list head. All page list items point to
2340 * other pages.
2341 */
2342 cpu_buffer->pages = pages.next;
2343 list_del(&pages);
2344
2345 cpu_buffer->nr_pages = nr_pages;
2346
2347 rb_check_pages(cpu_buffer);
2348
2349 return 0;
2350 }
2351
2352 static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct trace_buffer * buffer,long nr_pages,int cpu)2353 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
2354 {
2355 struct ring_buffer_per_cpu *cpu_buffer __free(kfree) =
2356 alloc_cpu_buffer(cpu);
2357 struct ring_buffer_cpu_meta *meta;
2358 struct buffer_page *bpage;
2359 int ret;
2360
2361 if (!cpu_buffer)
2362 return NULL;
2363
2364 cpu_buffer->cpu = cpu;
2365 cpu_buffer->buffer = buffer;
2366 raw_spin_lock_init(&cpu_buffer->reader_lock);
2367 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
2368 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
2369 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
2370 init_completion(&cpu_buffer->update_done);
2371 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
2372 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
2373 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
2374 mutex_init(&cpu_buffer->mapping_lock);
2375
2376 bpage = alloc_cpu_page(cpu);
2377 if (!bpage)
2378 return NULL;
2379
2380 rb_check_bpage(cpu_buffer, bpage);
2381
2382 cpu_buffer->reader_page = bpage;
2383
2384 if (buffer->range_addr_start) {
2385 /*
2386 * Range mapped buffers have the same restrictions as memory
2387 * mapped ones do.
2388 */
2389 cpu_buffer->mapped = 1;
2390 cpu_buffer->ring_meta = rb_range_meta(buffer, nr_pages, cpu);
2391 bpage->page = rb_range_buffer(cpu_buffer, 0);
2392 if (!bpage->page)
2393 goto fail_free_reader;
2394 if (cpu_buffer->ring_meta->head_buffer)
2395 rb_meta_buffer_update(cpu_buffer, bpage);
2396 bpage->range = 1;
2397 } else {
2398 int order = cpu_buffer->buffer->subbuf_order;
2399 bpage->page = alloc_cpu_data(cpu, order);
2400 if (!bpage->page)
2401 goto fail_free_reader;
2402 }
2403
2404 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2405 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2406
2407 ret = rb_allocate_pages(cpu_buffer, nr_pages);
2408 if (ret < 0)
2409 goto fail_free_reader;
2410
2411 rb_meta_validate_events(cpu_buffer);
2412
2413 /* If the boot meta was valid then this has already been updated */
2414 meta = cpu_buffer->ring_meta;
2415 if (!meta || !meta->head_buffer ||
2416 !cpu_buffer->head_page || !cpu_buffer->commit_page || !cpu_buffer->tail_page) {
2417 if (meta && meta->head_buffer &&
2418 (cpu_buffer->head_page || cpu_buffer->commit_page || cpu_buffer->tail_page)) {
2419 pr_warn("Ring buffer meta buffers not all mapped\n");
2420 if (!cpu_buffer->head_page)
2421 pr_warn(" Missing head_page\n");
2422 if (!cpu_buffer->commit_page)
2423 pr_warn(" Missing commit_page\n");
2424 if (!cpu_buffer->tail_page)
2425 pr_warn(" Missing tail_page\n");
2426 }
2427
2428 cpu_buffer->head_page
2429 = list_entry(cpu_buffer->pages, struct buffer_page, list);
2430 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
2431
2432 rb_head_page_activate(cpu_buffer);
2433
2434 if (cpu_buffer->ring_meta)
2435 meta->commit_buffer = meta->head_buffer;
2436 } else {
2437 /* The valid meta buffer still needs to activate the head page */
2438 rb_head_page_activate(cpu_buffer);
2439 }
2440
2441 return_ptr(cpu_buffer);
2442
2443 fail_free_reader:
2444 free_buffer_page(cpu_buffer->reader_page);
2445
2446 return NULL;
2447 }
2448
rb_free_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)2449 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
2450 {
2451 struct list_head *head = cpu_buffer->pages;
2452 struct buffer_page *bpage, *tmp;
2453
2454 irq_work_sync(&cpu_buffer->irq_work.work);
2455
2456 free_buffer_page(cpu_buffer->reader_page);
2457
2458 if (head) {
2459 rb_head_page_deactivate(cpu_buffer);
2460
2461 list_for_each_entry_safe(bpage, tmp, head, list) {
2462 list_del_init(&bpage->list);
2463 free_buffer_page(bpage);
2464 }
2465 bpage = list_entry(head, struct buffer_page, list);
2466 free_buffer_page(bpage);
2467 }
2468
2469 free_page((unsigned long)cpu_buffer->free_page);
2470
2471 kfree(cpu_buffer);
2472 }
2473
alloc_buffer(unsigned long size,unsigned flags,int order,unsigned long start,unsigned long end,unsigned long scratch_size,struct lock_class_key * key)2474 static struct trace_buffer *alloc_buffer(unsigned long size, unsigned flags,
2475 int order, unsigned long start,
2476 unsigned long end,
2477 unsigned long scratch_size,
2478 struct lock_class_key *key)
2479 {
2480 struct trace_buffer *buffer __free(kfree) = NULL;
2481 long nr_pages;
2482 int subbuf_size;
2483 int bsize;
2484 int cpu;
2485 int ret;
2486
2487 /* keep it in its own cache line */
2488 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
2489 GFP_KERNEL);
2490 if (!buffer)
2491 return NULL;
2492
2493 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
2494 return NULL;
2495
2496 buffer->subbuf_order = order;
2497 subbuf_size = (PAGE_SIZE << order);
2498 buffer->subbuf_size = subbuf_size - BUF_PAGE_HDR_SIZE;
2499
2500 /* Max payload is buffer page size - header (8bytes) */
2501 buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
2502
2503 buffer->flags = flags;
2504 buffer->clock = trace_clock_local;
2505 buffer->reader_lock_key = key;
2506
2507 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
2508 init_waitqueue_head(&buffer->irq_work.waiters);
2509
2510 buffer->cpus = nr_cpu_ids;
2511
2512 bsize = sizeof(void *) * nr_cpu_ids;
2513 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
2514 GFP_KERNEL);
2515 if (!buffer->buffers)
2516 goto fail_free_cpumask;
2517
2518 /* If start/end are specified, then that overrides size */
2519 if (start && end) {
2520 unsigned long buffers_start;
2521 unsigned long ptr;
2522 int n;
2523
2524 /* Make sure that start is word aligned */
2525 start = ALIGN(start, sizeof(long));
2526
2527 /* scratch_size needs to be aligned too */
2528 scratch_size = ALIGN(scratch_size, sizeof(long));
2529
2530 /* Subtract the buffer meta data and word aligned */
2531 buffers_start = start + sizeof(struct ring_buffer_cpu_meta);
2532 buffers_start = ALIGN(buffers_start, sizeof(long));
2533 buffers_start += scratch_size;
2534
2535 /* Calculate the size for the per CPU data */
2536 size = end - buffers_start;
2537 size = size / nr_cpu_ids;
2538
2539 /*
2540 * The number of sub-buffers (nr_pages) is determined by the
2541 * total size allocated minus the meta data size.
2542 * Then that is divided by the number of per CPU buffers
2543 * needed, plus account for the integer array index that
2544 * will be appended to the meta data.
2545 */
2546 nr_pages = (size - sizeof(struct ring_buffer_cpu_meta)) /
2547 (subbuf_size + sizeof(int));
2548 /* Need at least two pages plus the reader page */
2549 if (nr_pages < 3)
2550 goto fail_free_buffers;
2551
2552 again:
2553 /* Make sure that the size fits aligned */
2554 for (n = 0, ptr = buffers_start; n < nr_cpu_ids; n++) {
2555 ptr += sizeof(struct ring_buffer_cpu_meta) +
2556 sizeof(int) * nr_pages;
2557 ptr = ALIGN(ptr, subbuf_size);
2558 ptr += subbuf_size * nr_pages;
2559 }
2560 if (ptr > end) {
2561 if (nr_pages <= 3)
2562 goto fail_free_buffers;
2563 nr_pages--;
2564 goto again;
2565 }
2566
2567 /* nr_pages should not count the reader page */
2568 nr_pages--;
2569 buffer->range_addr_start = start;
2570 buffer->range_addr_end = end;
2571
2572 rb_range_meta_init(buffer, nr_pages, scratch_size);
2573 } else {
2574
2575 /* need at least two pages */
2576 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2577 if (nr_pages < 2)
2578 nr_pages = 2;
2579 }
2580
2581 cpu = raw_smp_processor_id();
2582 cpumask_set_cpu(cpu, buffer->cpumask);
2583 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
2584 if (!buffer->buffers[cpu])
2585 goto fail_free_buffers;
2586
2587 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2588 if (ret < 0)
2589 goto fail_free_buffers;
2590
2591 mutex_init(&buffer->mutex);
2592
2593 return_ptr(buffer);
2594
2595 fail_free_buffers:
2596 for_each_buffer_cpu(buffer, cpu) {
2597 if (buffer->buffers[cpu])
2598 rb_free_cpu_buffer(buffer->buffers[cpu]);
2599 }
2600 kfree(buffer->buffers);
2601
2602 fail_free_cpumask:
2603 free_cpumask_var(buffer->cpumask);
2604
2605 return NULL;
2606 }
2607
2608 /**
2609 * __ring_buffer_alloc - allocate a new ring_buffer
2610 * @size: the size in bytes per cpu that is needed.
2611 * @flags: attributes to set for the ring buffer.
2612 * @key: ring buffer reader_lock_key.
2613 *
2614 * Currently the only flag that is available is the RB_FL_OVERWRITE
2615 * flag. This flag means that the buffer will overwrite old data
2616 * when the buffer wraps. If this flag is not set, the buffer will
2617 * drop data when the tail hits the head.
2618 */
__ring_buffer_alloc(unsigned long size,unsigned flags,struct lock_class_key * key)2619 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
2620 struct lock_class_key *key)
2621 {
2622 /* Default buffer page size - one system page */
2623 return alloc_buffer(size, flags, 0, 0, 0, 0, key);
2624
2625 }
2626 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
2627
2628 /**
2629 * __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory
2630 * @size: the size in bytes per cpu that is needed.
2631 * @flags: attributes to set for the ring buffer.
2632 * @order: sub-buffer order
2633 * @start: start of allocated range
2634 * @range_size: size of allocated range
2635 * @scratch_size: size of scratch area (for preallocated memory buffers)
2636 * @key: ring buffer reader_lock_key.
2637 *
2638 * Currently the only flag that is available is the RB_FL_OVERWRITE
2639 * flag. This flag means that the buffer will overwrite old data
2640 * when the buffer wraps. If this flag is not set, the buffer will
2641 * drop data when the tail hits the head.
2642 */
__ring_buffer_alloc_range(unsigned long size,unsigned flags,int order,unsigned long start,unsigned long range_size,unsigned long scratch_size,struct lock_class_key * key)2643 struct trace_buffer *__ring_buffer_alloc_range(unsigned long size, unsigned flags,
2644 int order, unsigned long start,
2645 unsigned long range_size,
2646 unsigned long scratch_size,
2647 struct lock_class_key *key)
2648 {
2649 return alloc_buffer(size, flags, order, start, start + range_size,
2650 scratch_size, key);
2651 }
2652
ring_buffer_meta_scratch(struct trace_buffer * buffer,unsigned int * size)2653 void *ring_buffer_meta_scratch(struct trace_buffer *buffer, unsigned int *size)
2654 {
2655 struct ring_buffer_meta *meta;
2656 void *ptr;
2657
2658 if (!buffer || !buffer->meta)
2659 return NULL;
2660
2661 meta = buffer->meta;
2662
2663 ptr = (void *)ALIGN((unsigned long)meta + sizeof(*meta), sizeof(long));
2664
2665 if (size)
2666 *size = (void *)meta + meta->buffers_offset - ptr;
2667
2668 return ptr;
2669 }
2670
2671 /**
2672 * ring_buffer_free - free a ring buffer.
2673 * @buffer: the buffer to free.
2674 */
2675 void
ring_buffer_free(struct trace_buffer * buffer)2676 ring_buffer_free(struct trace_buffer *buffer)
2677 {
2678 int cpu;
2679
2680 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2681
2682 irq_work_sync(&buffer->irq_work.work);
2683
2684 for_each_buffer_cpu(buffer, cpu)
2685 rb_free_cpu_buffer(buffer->buffers[cpu]);
2686
2687 kfree(buffer->buffers);
2688 free_cpumask_var(buffer->cpumask);
2689
2690 kfree(buffer);
2691 }
2692 EXPORT_SYMBOL_GPL(ring_buffer_free);
2693
ring_buffer_set_clock(struct trace_buffer * buffer,u64 (* clock)(void))2694 void ring_buffer_set_clock(struct trace_buffer *buffer,
2695 u64 (*clock)(void))
2696 {
2697 buffer->clock = clock;
2698 }
2699
ring_buffer_set_time_stamp_abs(struct trace_buffer * buffer,bool abs)2700 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
2701 {
2702 buffer->time_stamp_abs = abs;
2703 }
2704
ring_buffer_time_stamp_abs(struct trace_buffer * buffer)2705 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
2706 {
2707 return buffer->time_stamp_abs;
2708 }
2709
rb_page_entries(struct buffer_page * bpage)2710 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
2711 {
2712 return local_read(&bpage->entries) & RB_WRITE_MASK;
2713 }
2714
rb_page_write(struct buffer_page * bpage)2715 static inline unsigned long rb_page_write(struct buffer_page *bpage)
2716 {
2717 return local_read(&bpage->write) & RB_WRITE_MASK;
2718 }
2719
2720 static bool
rb_remove_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)2721 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
2722 {
2723 struct list_head *tail_page, *to_remove, *next_page;
2724 struct buffer_page *to_remove_page, *tmp_iter_page;
2725 struct buffer_page *last_page, *first_page;
2726 unsigned long nr_removed;
2727 unsigned long head_bit;
2728 int page_entries;
2729
2730 head_bit = 0;
2731
2732 raw_spin_lock_irq(&cpu_buffer->reader_lock);
2733 atomic_inc(&cpu_buffer->record_disabled);
2734 /*
2735 * We don't race with the readers since we have acquired the reader
2736 * lock. We also don't race with writers after disabling recording.
2737 * This makes it easy to figure out the first and the last page to be
2738 * removed from the list. We unlink all the pages in between including
2739 * the first and last pages. This is done in a busy loop so that we
2740 * lose the least number of traces.
2741 * The pages are freed after we restart recording and unlock readers.
2742 */
2743 tail_page = &cpu_buffer->tail_page->list;
2744
2745 /*
2746 * tail page might be on reader page, we remove the next page
2747 * from the ring buffer
2748 */
2749 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2750 tail_page = rb_list_head(tail_page->next);
2751 to_remove = tail_page;
2752
2753 /* start of pages to remove */
2754 first_page = list_entry(rb_list_head(to_remove->next),
2755 struct buffer_page, list);
2756
2757 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
2758 to_remove = rb_list_head(to_remove)->next;
2759 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
2760 }
2761 /* Read iterators need to reset themselves when some pages removed */
2762 cpu_buffer->pages_removed += nr_removed;
2763
2764 next_page = rb_list_head(to_remove)->next;
2765
2766 /*
2767 * Now we remove all pages between tail_page and next_page.
2768 * Make sure that we have head_bit value preserved for the
2769 * next page
2770 */
2771 tail_page->next = (struct list_head *)((unsigned long)next_page |
2772 head_bit);
2773 next_page = rb_list_head(next_page);
2774 next_page->prev = tail_page;
2775
2776 /* make sure pages points to a valid page in the ring buffer */
2777 cpu_buffer->pages = next_page;
2778 cpu_buffer->cnt++;
2779
2780 /* update head page */
2781 if (head_bit)
2782 cpu_buffer->head_page = list_entry(next_page,
2783 struct buffer_page, list);
2784
2785 /* pages are removed, resume tracing and then free the pages */
2786 atomic_dec(&cpu_buffer->record_disabled);
2787 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2788
2789 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
2790
2791 /* last buffer page to remove */
2792 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2793 list);
2794 tmp_iter_page = first_page;
2795
2796 do {
2797 cond_resched();
2798
2799 to_remove_page = tmp_iter_page;
2800 rb_inc_page(&tmp_iter_page);
2801
2802 /* update the counters */
2803 page_entries = rb_page_entries(to_remove_page);
2804 if (page_entries) {
2805 /*
2806 * If something was added to this page, it was full
2807 * since it is not the tail page. So we deduct the
2808 * bytes consumed in ring buffer from here.
2809 * Increment overrun to account for the lost events.
2810 */
2811 local_add(page_entries, &cpu_buffer->overrun);
2812 local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
2813 local_inc(&cpu_buffer->pages_lost);
2814 }
2815
2816 /*
2817 * We have already removed references to this list item, just
2818 * free up the buffer_page and its page
2819 */
2820 free_buffer_page(to_remove_page);
2821 nr_removed--;
2822
2823 } while (to_remove_page != last_page);
2824
2825 RB_WARN_ON(cpu_buffer, nr_removed);
2826
2827 return nr_removed == 0;
2828 }
2829
2830 static bool
rb_insert_pages(struct ring_buffer_per_cpu * cpu_buffer)2831 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2832 {
2833 struct list_head *pages = &cpu_buffer->new_pages;
2834 unsigned long flags;
2835 bool success;
2836 int retries;
2837
2838 /* Can be called at early boot up, where interrupts must not been enabled */
2839 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2840 /*
2841 * We are holding the reader lock, so the reader page won't be swapped
2842 * in the ring buffer. Now we are racing with the writer trying to
2843 * move head page and the tail page.
2844 * We are going to adapt the reader page update process where:
2845 * 1. We first splice the start and end of list of new pages between
2846 * the head page and its previous page.
2847 * 2. We cmpxchg the prev_page->next to point from head page to the
2848 * start of new pages list.
2849 * 3. Finally, we update the head->prev to the end of new list.
2850 *
2851 * We will try this process 10 times, to make sure that we don't keep
2852 * spinning.
2853 */
2854 retries = 10;
2855 success = false;
2856 while (retries--) {
2857 struct list_head *head_page, *prev_page;
2858 struct list_head *last_page, *first_page;
2859 struct list_head *head_page_with_bit;
2860 struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2861
2862 if (!hpage)
2863 break;
2864 head_page = &hpage->list;
2865 prev_page = head_page->prev;
2866
2867 first_page = pages->next;
2868 last_page = pages->prev;
2869
2870 head_page_with_bit = (struct list_head *)
2871 ((unsigned long)head_page | RB_PAGE_HEAD);
2872
2873 last_page->next = head_page_with_bit;
2874 first_page->prev = prev_page;
2875
2876 /* caution: head_page_with_bit gets updated on cmpxchg failure */
2877 if (try_cmpxchg(&prev_page->next,
2878 &head_page_with_bit, first_page)) {
2879 /*
2880 * yay, we replaced the page pointer to our new list,
2881 * now, we just have to update to head page's prev
2882 * pointer to point to end of list
2883 */
2884 head_page->prev = last_page;
2885 cpu_buffer->cnt++;
2886 success = true;
2887 break;
2888 }
2889 }
2890
2891 if (success)
2892 INIT_LIST_HEAD(pages);
2893 /*
2894 * If we weren't successful in adding in new pages, warn and stop
2895 * tracing
2896 */
2897 RB_WARN_ON(cpu_buffer, !success);
2898 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2899
2900 /* free pages if they weren't inserted */
2901 if (!success) {
2902 struct buffer_page *bpage, *tmp;
2903 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2904 list) {
2905 list_del_init(&bpage->list);
2906 free_buffer_page(bpage);
2907 }
2908 }
2909 return success;
2910 }
2911
rb_update_pages(struct ring_buffer_per_cpu * cpu_buffer)2912 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2913 {
2914 bool success;
2915
2916 if (cpu_buffer->nr_pages_to_update > 0)
2917 success = rb_insert_pages(cpu_buffer);
2918 else
2919 success = rb_remove_pages(cpu_buffer,
2920 -cpu_buffer->nr_pages_to_update);
2921
2922 if (success)
2923 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2924 }
2925
update_pages_handler(struct work_struct * work)2926 static void update_pages_handler(struct work_struct *work)
2927 {
2928 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2929 struct ring_buffer_per_cpu, update_pages_work);
2930 rb_update_pages(cpu_buffer);
2931 complete(&cpu_buffer->update_done);
2932 }
2933
2934 /**
2935 * ring_buffer_resize - resize the ring buffer
2936 * @buffer: the buffer to resize.
2937 * @size: the new size.
2938 * @cpu_id: the cpu buffer to resize
2939 *
2940 * Minimum size is 2 * buffer->subbuf_size.
2941 *
2942 * Returns 0 on success and < 0 on failure.
2943 */
ring_buffer_resize(struct trace_buffer * buffer,unsigned long size,int cpu_id)2944 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2945 int cpu_id)
2946 {
2947 struct ring_buffer_per_cpu *cpu_buffer;
2948 unsigned long nr_pages;
2949 int cpu, err;
2950
2951 /*
2952 * Always succeed at resizing a non-existent buffer:
2953 */
2954 if (!buffer)
2955 return 0;
2956
2957 /* Make sure the requested buffer exists */
2958 if (cpu_id != RING_BUFFER_ALL_CPUS &&
2959 !cpumask_test_cpu(cpu_id, buffer->cpumask))
2960 return 0;
2961
2962 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2963
2964 /* we need a minimum of two pages */
2965 if (nr_pages < 2)
2966 nr_pages = 2;
2967
2968 /*
2969 * Keep CPUs from coming online while resizing to synchronize
2970 * with new per CPU buffers being created.
2971 */
2972 guard(cpus_read_lock)();
2973
2974 /* prevent another thread from changing buffer sizes */
2975 mutex_lock(&buffer->mutex);
2976 atomic_inc(&buffer->resizing);
2977
2978 if (cpu_id == RING_BUFFER_ALL_CPUS) {
2979 /*
2980 * Don't succeed if resizing is disabled, as a reader might be
2981 * manipulating the ring buffer and is expecting a sane state while
2982 * this is true.
2983 */
2984 for_each_buffer_cpu(buffer, cpu) {
2985 cpu_buffer = buffer->buffers[cpu];
2986 if (atomic_read(&cpu_buffer->resize_disabled)) {
2987 err = -EBUSY;
2988 goto out_err_unlock;
2989 }
2990 }
2991
2992 /* calculate the pages to update */
2993 for_each_buffer_cpu(buffer, cpu) {
2994 cpu_buffer = buffer->buffers[cpu];
2995
2996 cpu_buffer->nr_pages_to_update = nr_pages -
2997 cpu_buffer->nr_pages;
2998 /*
2999 * nothing more to do for removing pages or no update
3000 */
3001 if (cpu_buffer->nr_pages_to_update <= 0)
3002 continue;
3003 /*
3004 * to add pages, make sure all new pages can be
3005 * allocated without receiving ENOMEM
3006 */
3007 INIT_LIST_HEAD(&cpu_buffer->new_pages);
3008 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
3009 &cpu_buffer->new_pages)) {
3010 /* not enough memory for new pages */
3011 err = -ENOMEM;
3012 goto out_err;
3013 }
3014
3015 cond_resched();
3016 }
3017
3018 /*
3019 * Fire off all the required work handlers
3020 * We can't schedule on offline CPUs, but it's not necessary
3021 * since we can change their buffer sizes without any race.
3022 */
3023 for_each_buffer_cpu(buffer, cpu) {
3024 cpu_buffer = buffer->buffers[cpu];
3025 if (!cpu_buffer->nr_pages_to_update)
3026 continue;
3027
3028 /* Can't run something on an offline CPU. */
3029 if (!cpu_online(cpu)) {
3030 rb_update_pages(cpu_buffer);
3031 cpu_buffer->nr_pages_to_update = 0;
3032 } else {
3033 /* Run directly if possible. */
3034 migrate_disable();
3035 if (cpu != smp_processor_id()) {
3036 migrate_enable();
3037 schedule_work_on(cpu,
3038 &cpu_buffer->update_pages_work);
3039 } else {
3040 update_pages_handler(&cpu_buffer->update_pages_work);
3041 migrate_enable();
3042 }
3043 }
3044 }
3045
3046 /* wait for all the updates to complete */
3047 for_each_buffer_cpu(buffer, cpu) {
3048 cpu_buffer = buffer->buffers[cpu];
3049 if (!cpu_buffer->nr_pages_to_update)
3050 continue;
3051
3052 if (cpu_online(cpu))
3053 wait_for_completion(&cpu_buffer->update_done);
3054 cpu_buffer->nr_pages_to_update = 0;
3055 }
3056
3057 } else {
3058 cpu_buffer = buffer->buffers[cpu_id];
3059
3060 if (nr_pages == cpu_buffer->nr_pages)
3061 goto out;
3062
3063 /*
3064 * Don't succeed if resizing is disabled, as a reader might be
3065 * manipulating the ring buffer and is expecting a sane state while
3066 * this is true.
3067 */
3068 if (atomic_read(&cpu_buffer->resize_disabled)) {
3069 err = -EBUSY;
3070 goto out_err_unlock;
3071 }
3072
3073 cpu_buffer->nr_pages_to_update = nr_pages -
3074 cpu_buffer->nr_pages;
3075
3076 INIT_LIST_HEAD(&cpu_buffer->new_pages);
3077 if (cpu_buffer->nr_pages_to_update > 0 &&
3078 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
3079 &cpu_buffer->new_pages)) {
3080 err = -ENOMEM;
3081 goto out_err;
3082 }
3083
3084 /* Can't run something on an offline CPU. */
3085 if (!cpu_online(cpu_id))
3086 rb_update_pages(cpu_buffer);
3087 else {
3088 /* Run directly if possible. */
3089 migrate_disable();
3090 if (cpu_id == smp_processor_id()) {
3091 rb_update_pages(cpu_buffer);
3092 migrate_enable();
3093 } else {
3094 migrate_enable();
3095 schedule_work_on(cpu_id,
3096 &cpu_buffer->update_pages_work);
3097 wait_for_completion(&cpu_buffer->update_done);
3098 }
3099 }
3100
3101 cpu_buffer->nr_pages_to_update = 0;
3102 }
3103
3104 out:
3105 /*
3106 * The ring buffer resize can happen with the ring buffer
3107 * enabled, so that the update disturbs the tracing as little
3108 * as possible. But if the buffer is disabled, we do not need
3109 * to worry about that, and we can take the time to verify
3110 * that the buffer is not corrupt.
3111 */
3112 if (atomic_read(&buffer->record_disabled)) {
3113 atomic_inc(&buffer->record_disabled);
3114 /*
3115 * Even though the buffer was disabled, we must make sure
3116 * that it is truly disabled before calling rb_check_pages.
3117 * There could have been a race between checking
3118 * record_disable and incrementing it.
3119 */
3120 synchronize_rcu();
3121 for_each_buffer_cpu(buffer, cpu) {
3122 cpu_buffer = buffer->buffers[cpu];
3123 rb_check_pages(cpu_buffer);
3124 }
3125 atomic_dec(&buffer->record_disabled);
3126 }
3127
3128 atomic_dec(&buffer->resizing);
3129 mutex_unlock(&buffer->mutex);
3130 return 0;
3131
3132 out_err:
3133 for_each_buffer_cpu(buffer, cpu) {
3134 struct buffer_page *bpage, *tmp;
3135
3136 cpu_buffer = buffer->buffers[cpu];
3137 cpu_buffer->nr_pages_to_update = 0;
3138
3139 if (list_empty(&cpu_buffer->new_pages))
3140 continue;
3141
3142 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
3143 list) {
3144 list_del_init(&bpage->list);
3145 free_buffer_page(bpage);
3146
3147 cond_resched();
3148 }
3149 }
3150 out_err_unlock:
3151 atomic_dec(&buffer->resizing);
3152 mutex_unlock(&buffer->mutex);
3153 return err;
3154 }
3155 EXPORT_SYMBOL_GPL(ring_buffer_resize);
3156
ring_buffer_change_overwrite(struct trace_buffer * buffer,int val)3157 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
3158 {
3159 mutex_lock(&buffer->mutex);
3160 if (val)
3161 buffer->flags |= RB_FL_OVERWRITE;
3162 else
3163 buffer->flags &= ~RB_FL_OVERWRITE;
3164 mutex_unlock(&buffer->mutex);
3165 }
3166 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
3167
__rb_page_index(struct buffer_page * bpage,unsigned index)3168 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
3169 {
3170 return bpage->page->data + index;
3171 }
3172
3173 static __always_inline struct ring_buffer_event *
rb_reader_event(struct ring_buffer_per_cpu * cpu_buffer)3174 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
3175 {
3176 return __rb_page_index(cpu_buffer->reader_page,
3177 cpu_buffer->reader_page->read);
3178 }
3179
3180 static struct ring_buffer_event *
rb_iter_head_event(struct ring_buffer_iter * iter)3181 rb_iter_head_event(struct ring_buffer_iter *iter)
3182 {
3183 struct ring_buffer_event *event;
3184 struct buffer_page *iter_head_page = iter->head_page;
3185 unsigned long commit;
3186 unsigned length;
3187
3188 if (iter->head != iter->next_event)
3189 return iter->event;
3190
3191 /*
3192 * When the writer goes across pages, it issues a cmpxchg which
3193 * is a mb(), which will synchronize with the rmb here.
3194 * (see rb_tail_page_update() and __rb_reserve_next())
3195 */
3196 commit = rb_page_commit(iter_head_page);
3197 smp_rmb();
3198
3199 /* An event needs to be at least 8 bytes in size */
3200 if (iter->head > commit - 8)
3201 goto reset;
3202
3203 event = __rb_page_index(iter_head_page, iter->head);
3204 length = rb_event_length(event);
3205
3206 /*
3207 * READ_ONCE() doesn't work on functions and we don't want the
3208 * compiler doing any crazy optimizations with length.
3209 */
3210 barrier();
3211
3212 if ((iter->head + length) > commit || length > iter->event_size)
3213 /* Writer corrupted the read? */
3214 goto reset;
3215
3216 memcpy(iter->event, event, length);
3217 /*
3218 * If the page stamp is still the same after this rmb() then the
3219 * event was safely copied without the writer entering the page.
3220 */
3221 smp_rmb();
3222
3223 /* Make sure the page didn't change since we read this */
3224 if (iter->page_stamp != iter_head_page->page->time_stamp ||
3225 commit > rb_page_commit(iter_head_page))
3226 goto reset;
3227
3228 iter->next_event = iter->head + length;
3229 return iter->event;
3230 reset:
3231 /* Reset to the beginning */
3232 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3233 iter->head = 0;
3234 iter->next_event = 0;
3235 iter->missed_events = 1;
3236 return NULL;
3237 }
3238
3239 /* Size is determined by what has been committed */
rb_page_size(struct buffer_page * bpage)3240 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
3241 {
3242 return rb_page_commit(bpage) & ~RB_MISSED_MASK;
3243 }
3244
3245 static __always_inline unsigned
rb_commit_index(struct ring_buffer_per_cpu * cpu_buffer)3246 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
3247 {
3248 return rb_page_commit(cpu_buffer->commit_page);
3249 }
3250
3251 static __always_inline unsigned
rb_event_index(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3252 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
3253 {
3254 unsigned long addr = (unsigned long)event;
3255
3256 addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
3257
3258 return addr - BUF_PAGE_HDR_SIZE;
3259 }
3260
rb_inc_iter(struct ring_buffer_iter * iter)3261 static void rb_inc_iter(struct ring_buffer_iter *iter)
3262 {
3263 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3264
3265 /*
3266 * The iterator could be on the reader page (it starts there).
3267 * But the head could have moved, since the reader was
3268 * found. Check for this case and assign the iterator
3269 * to the head page instead of next.
3270 */
3271 if (iter->head_page == cpu_buffer->reader_page)
3272 iter->head_page = rb_set_head_page(cpu_buffer);
3273 else
3274 rb_inc_page(&iter->head_page);
3275
3276 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3277 iter->head = 0;
3278 iter->next_event = 0;
3279 }
3280
3281 /* Return the index into the sub-buffers for a given sub-buffer */
rb_meta_subbuf_idx(struct ring_buffer_cpu_meta * meta,void * subbuf)3282 static int rb_meta_subbuf_idx(struct ring_buffer_cpu_meta *meta, void *subbuf)
3283 {
3284 void *subbuf_array;
3285
3286 subbuf_array = (void *)meta + sizeof(int) * meta->nr_subbufs;
3287 subbuf_array = (void *)ALIGN((unsigned long)subbuf_array, meta->subbuf_size);
3288 return (subbuf - subbuf_array) / meta->subbuf_size;
3289 }
3290
rb_update_meta_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * next_page)3291 static void rb_update_meta_head(struct ring_buffer_per_cpu *cpu_buffer,
3292 struct buffer_page *next_page)
3293 {
3294 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
3295 unsigned long old_head = (unsigned long)next_page->page;
3296 unsigned long new_head;
3297
3298 rb_inc_page(&next_page);
3299 new_head = (unsigned long)next_page->page;
3300
3301 /*
3302 * Only move it forward once, if something else came in and
3303 * moved it forward, then we don't want to touch it.
3304 */
3305 (void)cmpxchg(&meta->head_buffer, old_head, new_head);
3306 }
3307
rb_update_meta_reader(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * reader)3308 static void rb_update_meta_reader(struct ring_buffer_per_cpu *cpu_buffer,
3309 struct buffer_page *reader)
3310 {
3311 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
3312 void *old_reader = cpu_buffer->reader_page->page;
3313 void *new_reader = reader->page;
3314 int id;
3315
3316 id = reader->id;
3317 cpu_buffer->reader_page->id = id;
3318 reader->id = 0;
3319
3320 meta->buffers[0] = rb_meta_subbuf_idx(meta, new_reader);
3321 meta->buffers[id] = rb_meta_subbuf_idx(meta, old_reader);
3322
3323 /* The head pointer is the one after the reader */
3324 rb_update_meta_head(cpu_buffer, reader);
3325 }
3326
3327 /*
3328 * rb_handle_head_page - writer hit the head page
3329 *
3330 * Returns: +1 to retry page
3331 * 0 to continue
3332 * -1 on error
3333 */
3334 static int
rb_handle_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)3335 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
3336 struct buffer_page *tail_page,
3337 struct buffer_page *next_page)
3338 {
3339 struct buffer_page *new_head;
3340 int entries;
3341 int type;
3342 int ret;
3343
3344 entries = rb_page_entries(next_page);
3345
3346 /*
3347 * The hard part is here. We need to move the head
3348 * forward, and protect against both readers on
3349 * other CPUs and writers coming in via interrupts.
3350 */
3351 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
3352 RB_PAGE_HEAD);
3353
3354 /*
3355 * type can be one of four:
3356 * NORMAL - an interrupt already moved it for us
3357 * HEAD - we are the first to get here.
3358 * UPDATE - we are the interrupt interrupting
3359 * a current move.
3360 * MOVED - a reader on another CPU moved the next
3361 * pointer to its reader page. Give up
3362 * and try again.
3363 */
3364
3365 switch (type) {
3366 case RB_PAGE_HEAD:
3367 /*
3368 * We changed the head to UPDATE, thus
3369 * it is our responsibility to update
3370 * the counters.
3371 */
3372 local_add(entries, &cpu_buffer->overrun);
3373 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
3374 local_inc(&cpu_buffer->pages_lost);
3375
3376 if (cpu_buffer->ring_meta)
3377 rb_update_meta_head(cpu_buffer, next_page);
3378 /*
3379 * The entries will be zeroed out when we move the
3380 * tail page.
3381 */
3382
3383 /* still more to do */
3384 break;
3385
3386 case RB_PAGE_UPDATE:
3387 /*
3388 * This is an interrupt that interrupt the
3389 * previous update. Still more to do.
3390 */
3391 break;
3392 case RB_PAGE_NORMAL:
3393 /*
3394 * An interrupt came in before the update
3395 * and processed this for us.
3396 * Nothing left to do.
3397 */
3398 return 1;
3399 case RB_PAGE_MOVED:
3400 /*
3401 * The reader is on another CPU and just did
3402 * a swap with our next_page.
3403 * Try again.
3404 */
3405 return 1;
3406 default:
3407 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
3408 return -1;
3409 }
3410
3411 /*
3412 * Now that we are here, the old head pointer is
3413 * set to UPDATE. This will keep the reader from
3414 * swapping the head page with the reader page.
3415 * The reader (on another CPU) will spin till
3416 * we are finished.
3417 *
3418 * We just need to protect against interrupts
3419 * doing the job. We will set the next pointer
3420 * to HEAD. After that, we set the old pointer
3421 * to NORMAL, but only if it was HEAD before.
3422 * otherwise we are an interrupt, and only
3423 * want the outer most commit to reset it.
3424 */
3425 new_head = next_page;
3426 rb_inc_page(&new_head);
3427
3428 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
3429 RB_PAGE_NORMAL);
3430
3431 /*
3432 * Valid returns are:
3433 * HEAD - an interrupt came in and already set it.
3434 * NORMAL - One of two things:
3435 * 1) We really set it.
3436 * 2) A bunch of interrupts came in and moved
3437 * the page forward again.
3438 */
3439 switch (ret) {
3440 case RB_PAGE_HEAD:
3441 case RB_PAGE_NORMAL:
3442 /* OK */
3443 break;
3444 default:
3445 RB_WARN_ON(cpu_buffer, 1);
3446 return -1;
3447 }
3448
3449 /*
3450 * It is possible that an interrupt came in,
3451 * set the head up, then more interrupts came in
3452 * and moved it again. When we get back here,
3453 * the page would have been set to NORMAL but we
3454 * just set it back to HEAD.
3455 *
3456 * How do you detect this? Well, if that happened
3457 * the tail page would have moved.
3458 */
3459 if (ret == RB_PAGE_NORMAL) {
3460 struct buffer_page *buffer_tail_page;
3461
3462 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
3463 /*
3464 * If the tail had moved passed next, then we need
3465 * to reset the pointer.
3466 */
3467 if (buffer_tail_page != tail_page &&
3468 buffer_tail_page != next_page)
3469 rb_head_page_set_normal(cpu_buffer, new_head,
3470 next_page,
3471 RB_PAGE_HEAD);
3472 }
3473
3474 /*
3475 * If this was the outer most commit (the one that
3476 * changed the original pointer from HEAD to UPDATE),
3477 * then it is up to us to reset it to NORMAL.
3478 */
3479 if (type == RB_PAGE_HEAD) {
3480 ret = rb_head_page_set_normal(cpu_buffer, next_page,
3481 tail_page,
3482 RB_PAGE_UPDATE);
3483 if (RB_WARN_ON(cpu_buffer,
3484 ret != RB_PAGE_UPDATE))
3485 return -1;
3486 }
3487
3488 return 0;
3489 }
3490
3491 static inline void
rb_reset_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)3492 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
3493 unsigned long tail, struct rb_event_info *info)
3494 {
3495 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
3496 struct buffer_page *tail_page = info->tail_page;
3497 struct ring_buffer_event *event;
3498 unsigned long length = info->length;
3499
3500 /*
3501 * Only the event that crossed the page boundary
3502 * must fill the old tail_page with padding.
3503 */
3504 if (tail >= bsize) {
3505 /*
3506 * If the page was filled, then we still need
3507 * to update the real_end. Reset it to zero
3508 * and the reader will ignore it.
3509 */
3510 if (tail == bsize)
3511 tail_page->real_end = 0;
3512
3513 local_sub(length, &tail_page->write);
3514 return;
3515 }
3516
3517 event = __rb_page_index(tail_page, tail);
3518
3519 /*
3520 * Save the original length to the meta data.
3521 * This will be used by the reader to add lost event
3522 * counter.
3523 */
3524 tail_page->real_end = tail;
3525
3526 /*
3527 * If this event is bigger than the minimum size, then
3528 * we need to be careful that we don't subtract the
3529 * write counter enough to allow another writer to slip
3530 * in on this page.
3531 * We put in a discarded commit instead, to make sure
3532 * that this space is not used again, and this space will
3533 * not be accounted into 'entries_bytes'.
3534 *
3535 * If we are less than the minimum size, we don't need to
3536 * worry about it.
3537 */
3538 if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
3539 /* No room for any events */
3540
3541 /* Mark the rest of the page with padding */
3542 rb_event_set_padding(event);
3543
3544 /* Make sure the padding is visible before the write update */
3545 smp_wmb();
3546
3547 /* Set the write back to the previous setting */
3548 local_sub(length, &tail_page->write);
3549 return;
3550 }
3551
3552 /* Put in a discarded event */
3553 event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
3554 event->type_len = RINGBUF_TYPE_PADDING;
3555 /* time delta must be non zero */
3556 event->time_delta = 1;
3557
3558 /* account for padding bytes */
3559 local_add(bsize - tail, &cpu_buffer->entries_bytes);
3560
3561 /* Make sure the padding is visible before the tail_page->write update */
3562 smp_wmb();
3563
3564 /* Set write to end of buffer */
3565 length = (tail + length) - bsize;
3566 local_sub(length, &tail_page->write);
3567 }
3568
3569 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
3570
3571 /*
3572 * This is the slow path, force gcc not to inline it.
3573 */
3574 static noinline struct ring_buffer_event *
rb_move_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)3575 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
3576 unsigned long tail, struct rb_event_info *info)
3577 {
3578 struct buffer_page *tail_page = info->tail_page;
3579 struct buffer_page *commit_page = cpu_buffer->commit_page;
3580 struct trace_buffer *buffer = cpu_buffer->buffer;
3581 struct buffer_page *next_page;
3582 int ret;
3583
3584 next_page = tail_page;
3585
3586 rb_inc_page(&next_page);
3587
3588 /*
3589 * If for some reason, we had an interrupt storm that made
3590 * it all the way around the buffer, bail, and warn
3591 * about it.
3592 */
3593 if (unlikely(next_page == commit_page)) {
3594 local_inc(&cpu_buffer->commit_overrun);
3595 goto out_reset;
3596 }
3597
3598 /*
3599 * This is where the fun begins!
3600 *
3601 * We are fighting against races between a reader that
3602 * could be on another CPU trying to swap its reader
3603 * page with the buffer head.
3604 *
3605 * We are also fighting against interrupts coming in and
3606 * moving the head or tail on us as well.
3607 *
3608 * If the next page is the head page then we have filled
3609 * the buffer, unless the commit page is still on the
3610 * reader page.
3611 */
3612 if (rb_is_head_page(next_page, &tail_page->list)) {
3613
3614 /*
3615 * If the commit is not on the reader page, then
3616 * move the header page.
3617 */
3618 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
3619 /*
3620 * If we are not in overwrite mode,
3621 * this is easy, just stop here.
3622 */
3623 if (!(buffer->flags & RB_FL_OVERWRITE)) {
3624 local_inc(&cpu_buffer->dropped_events);
3625 goto out_reset;
3626 }
3627
3628 ret = rb_handle_head_page(cpu_buffer,
3629 tail_page,
3630 next_page);
3631 if (ret < 0)
3632 goto out_reset;
3633 if (ret)
3634 goto out_again;
3635 } else {
3636 /*
3637 * We need to be careful here too. The
3638 * commit page could still be on the reader
3639 * page. We could have a small buffer, and
3640 * have filled up the buffer with events
3641 * from interrupts and such, and wrapped.
3642 *
3643 * Note, if the tail page is also on the
3644 * reader_page, we let it move out.
3645 */
3646 if (unlikely((cpu_buffer->commit_page !=
3647 cpu_buffer->tail_page) &&
3648 (cpu_buffer->commit_page ==
3649 cpu_buffer->reader_page))) {
3650 local_inc(&cpu_buffer->commit_overrun);
3651 goto out_reset;
3652 }
3653 }
3654 }
3655
3656 rb_tail_page_update(cpu_buffer, tail_page, next_page);
3657
3658 out_again:
3659
3660 rb_reset_tail(cpu_buffer, tail, info);
3661
3662 /* Commit what we have for now. */
3663 rb_end_commit(cpu_buffer);
3664 /* rb_end_commit() decs committing */
3665 local_inc(&cpu_buffer->committing);
3666
3667 /* fail and let the caller try again */
3668 return ERR_PTR(-EAGAIN);
3669
3670 out_reset:
3671 /* reset write */
3672 rb_reset_tail(cpu_buffer, tail, info);
3673
3674 return NULL;
3675 }
3676
3677 /* Slow path */
3678 static struct ring_buffer_event *
rb_add_time_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,u64 delta,bool abs)3679 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3680 struct ring_buffer_event *event, u64 delta, bool abs)
3681 {
3682 if (abs)
3683 event->type_len = RINGBUF_TYPE_TIME_STAMP;
3684 else
3685 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
3686
3687 /* Not the first event on the page, or not delta? */
3688 if (abs || rb_event_index(cpu_buffer, event)) {
3689 event->time_delta = delta & TS_MASK;
3690 event->array[0] = delta >> TS_SHIFT;
3691 } else {
3692 /* nope, just zero it */
3693 event->time_delta = 0;
3694 event->array[0] = 0;
3695 }
3696
3697 return skip_time_extend(event);
3698 }
3699
3700 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
sched_clock_stable(void)3701 static inline bool sched_clock_stable(void)
3702 {
3703 return true;
3704 }
3705 #endif
3706
3707 static void
rb_check_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)3708 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3709 struct rb_event_info *info)
3710 {
3711 u64 write_stamp;
3712
3713 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
3714 (unsigned long long)info->delta,
3715 (unsigned long long)info->ts,
3716 (unsigned long long)info->before,
3717 (unsigned long long)info->after,
3718 (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
3719 sched_clock_stable() ? "" :
3720 "If you just came from a suspend/resume,\n"
3721 "please switch to the trace global clock:\n"
3722 " echo global > /sys/kernel/tracing/trace_clock\n"
3723 "or add trace_clock=global to the kernel command line\n");
3724 }
3725
rb_add_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event ** event,struct rb_event_info * info,u64 * delta,unsigned int * length)3726 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3727 struct ring_buffer_event **event,
3728 struct rb_event_info *info,
3729 u64 *delta,
3730 unsigned int *length)
3731 {
3732 bool abs = info->add_timestamp &
3733 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
3734
3735 if (unlikely(info->delta > (1ULL << 59))) {
3736 /*
3737 * Some timers can use more than 59 bits, and when a timestamp
3738 * is added to the buffer, it will lose those bits.
3739 */
3740 if (abs && (info->ts & TS_MSB)) {
3741 info->delta &= ABS_TS_MASK;
3742
3743 /* did the clock go backwards */
3744 } else if (info->before == info->after && info->before > info->ts) {
3745 /* not interrupted */
3746 static int once;
3747
3748 /*
3749 * This is possible with a recalibrating of the TSC.
3750 * Do not produce a call stack, but just report it.
3751 */
3752 if (!once) {
3753 once++;
3754 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
3755 info->before, info->ts);
3756 }
3757 } else
3758 rb_check_timestamp(cpu_buffer, info);
3759 if (!abs)
3760 info->delta = 0;
3761 }
3762 *event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
3763 *length -= RB_LEN_TIME_EXTEND;
3764 *delta = 0;
3765 }
3766
3767 /**
3768 * rb_update_event - update event type and data
3769 * @cpu_buffer: The per cpu buffer of the @event
3770 * @event: the event to update
3771 * @info: The info to update the @event with (contains length and delta)
3772 *
3773 * Update the type and data fields of the @event. The length
3774 * is the actual size that is written to the ring buffer,
3775 * and with this, we can determine what to place into the
3776 * data field.
3777 */
3778 static void
rb_update_event(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,struct rb_event_info * info)3779 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
3780 struct ring_buffer_event *event,
3781 struct rb_event_info *info)
3782 {
3783 unsigned length = info->length;
3784 u64 delta = info->delta;
3785 unsigned int nest = local_read(&cpu_buffer->committing) - 1;
3786
3787 if (!WARN_ON_ONCE(nest >= MAX_NEST))
3788 cpu_buffer->event_stamp[nest] = info->ts;
3789
3790 /*
3791 * If we need to add a timestamp, then we
3792 * add it to the start of the reserved space.
3793 */
3794 if (unlikely(info->add_timestamp))
3795 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
3796
3797 event->time_delta = delta;
3798 length -= RB_EVNT_HDR_SIZE;
3799 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
3800 event->type_len = 0;
3801 event->array[0] = length;
3802 } else
3803 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
3804 }
3805
rb_calculate_event_length(unsigned length)3806 static unsigned rb_calculate_event_length(unsigned length)
3807 {
3808 struct ring_buffer_event event; /* Used only for sizeof array */
3809
3810 /* zero length can cause confusions */
3811 if (!length)
3812 length++;
3813
3814 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
3815 length += sizeof(event.array[0]);
3816
3817 length += RB_EVNT_HDR_SIZE;
3818 length = ALIGN(length, RB_ARCH_ALIGNMENT);
3819
3820 /*
3821 * In case the time delta is larger than the 27 bits for it
3822 * in the header, we need to add a timestamp. If another
3823 * event comes in when trying to discard this one to increase
3824 * the length, then the timestamp will be added in the allocated
3825 * space of this event. If length is bigger than the size needed
3826 * for the TIME_EXTEND, then padding has to be used. The events
3827 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
3828 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
3829 * As length is a multiple of 4, we only need to worry if it
3830 * is 12 (RB_LEN_TIME_EXTEND + 4).
3831 */
3832 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
3833 length += RB_ALIGNMENT;
3834
3835 return length;
3836 }
3837
3838 static inline bool
rb_try_to_discard(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3839 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3840 struct ring_buffer_event *event)
3841 {
3842 unsigned long new_index, old_index;
3843 struct buffer_page *bpage;
3844 unsigned long addr;
3845
3846 new_index = rb_event_index(cpu_buffer, event);
3847 old_index = new_index + rb_event_ts_length(event);
3848 addr = (unsigned long)event;
3849 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3850
3851 bpage = READ_ONCE(cpu_buffer->tail_page);
3852
3853 /*
3854 * Make sure the tail_page is still the same and
3855 * the next write location is the end of this event
3856 */
3857 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3858 unsigned long write_mask =
3859 local_read(&bpage->write) & ~RB_WRITE_MASK;
3860 unsigned long event_length = rb_event_length(event);
3861
3862 /*
3863 * For the before_stamp to be different than the write_stamp
3864 * to make sure that the next event adds an absolute
3865 * value and does not rely on the saved write stamp, which
3866 * is now going to be bogus.
3867 *
3868 * By setting the before_stamp to zero, the next event
3869 * is not going to use the write_stamp and will instead
3870 * create an absolute timestamp. This means there's no
3871 * reason to update the wirte_stamp!
3872 */
3873 rb_time_set(&cpu_buffer->before_stamp, 0);
3874
3875 /*
3876 * If an event were to come in now, it would see that the
3877 * write_stamp and the before_stamp are different, and assume
3878 * that this event just added itself before updating
3879 * the write stamp. The interrupting event will fix the
3880 * write stamp for us, and use an absolute timestamp.
3881 */
3882
3883 /*
3884 * This is on the tail page. It is possible that
3885 * a write could come in and move the tail page
3886 * and write to the next page. That is fine
3887 * because we just shorten what is on this page.
3888 */
3889 old_index += write_mask;
3890 new_index += write_mask;
3891
3892 /* caution: old_index gets updated on cmpxchg failure */
3893 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3894 /* update counters */
3895 local_sub(event_length, &cpu_buffer->entries_bytes);
3896 return true;
3897 }
3898 }
3899
3900 /* could not discard */
3901 return false;
3902 }
3903
rb_start_commit(struct ring_buffer_per_cpu * cpu_buffer)3904 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3905 {
3906 local_inc(&cpu_buffer->committing);
3907 local_inc(&cpu_buffer->commits);
3908 }
3909
3910 static __always_inline void
rb_set_commit_to_write(struct ring_buffer_per_cpu * cpu_buffer)3911 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3912 {
3913 unsigned long max_count;
3914
3915 /*
3916 * We only race with interrupts and NMIs on this CPU.
3917 * If we own the commit event, then we can commit
3918 * all others that interrupted us, since the interruptions
3919 * are in stack format (they finish before they come
3920 * back to us). This allows us to do a simple loop to
3921 * assign the commit to the tail.
3922 */
3923 again:
3924 max_count = cpu_buffer->nr_pages * 100;
3925
3926 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3927 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3928 return;
3929 if (RB_WARN_ON(cpu_buffer,
3930 rb_is_reader_page(cpu_buffer->tail_page)))
3931 return;
3932 /*
3933 * No need for a memory barrier here, as the update
3934 * of the tail_page did it for this page.
3935 */
3936 local_set(&cpu_buffer->commit_page->page->commit,
3937 rb_page_write(cpu_buffer->commit_page));
3938 rb_inc_page(&cpu_buffer->commit_page);
3939 if (cpu_buffer->ring_meta) {
3940 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
3941 meta->commit_buffer = (unsigned long)cpu_buffer->commit_page->page;
3942 }
3943 /* add barrier to keep gcc from optimizing too much */
3944 barrier();
3945 }
3946 while (rb_commit_index(cpu_buffer) !=
3947 rb_page_write(cpu_buffer->commit_page)) {
3948
3949 /* Make sure the readers see the content of what is committed. */
3950 smp_wmb();
3951 local_set(&cpu_buffer->commit_page->page->commit,
3952 rb_page_write(cpu_buffer->commit_page));
3953 RB_WARN_ON(cpu_buffer,
3954 local_read(&cpu_buffer->commit_page->page->commit) &
3955 ~RB_WRITE_MASK);
3956 barrier();
3957 }
3958
3959 /* again, keep gcc from optimizing */
3960 barrier();
3961
3962 /*
3963 * If an interrupt came in just after the first while loop
3964 * and pushed the tail page forward, we will be left with
3965 * a dangling commit that will never go forward.
3966 */
3967 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3968 goto again;
3969 }
3970
rb_end_commit(struct ring_buffer_per_cpu * cpu_buffer)3971 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3972 {
3973 unsigned long commits;
3974
3975 if (RB_WARN_ON(cpu_buffer,
3976 !local_read(&cpu_buffer->committing)))
3977 return;
3978
3979 again:
3980 commits = local_read(&cpu_buffer->commits);
3981 /* synchronize with interrupts */
3982 barrier();
3983 if (local_read(&cpu_buffer->committing) == 1)
3984 rb_set_commit_to_write(cpu_buffer);
3985
3986 local_dec(&cpu_buffer->committing);
3987
3988 /* synchronize with interrupts */
3989 barrier();
3990
3991 /*
3992 * Need to account for interrupts coming in between the
3993 * updating of the commit page and the clearing of the
3994 * committing counter.
3995 */
3996 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3997 !local_read(&cpu_buffer->committing)) {
3998 local_inc(&cpu_buffer->committing);
3999 goto again;
4000 }
4001 }
4002
rb_event_discard(struct ring_buffer_event * event)4003 static inline void rb_event_discard(struct ring_buffer_event *event)
4004 {
4005 if (extended_time(event))
4006 event = skip_time_extend(event);
4007
4008 /* array[0] holds the actual length for the discarded event */
4009 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
4010 event->type_len = RINGBUF_TYPE_PADDING;
4011 /* time delta must be non zero */
4012 if (!event->time_delta)
4013 event->time_delta = 1;
4014 }
4015
rb_commit(struct ring_buffer_per_cpu * cpu_buffer)4016 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
4017 {
4018 local_inc(&cpu_buffer->entries);
4019 rb_end_commit(cpu_buffer);
4020 }
4021
4022 static bool
rb_irq_work_queue(struct rb_irq_work * irq_work)4023 rb_irq_work_queue(struct rb_irq_work *irq_work)
4024 {
4025 int cpu;
4026
4027 /* irq_work_queue_on() is not NMI-safe */
4028 if (unlikely(in_nmi()))
4029 return irq_work_queue(&irq_work->work);
4030
4031 /*
4032 * If CPU isolation is not active, cpu is always the current
4033 * CPU, and the following is equivallent to irq_work_queue().
4034 */
4035 cpu = housekeeping_any_cpu(HK_TYPE_KERNEL_NOISE);
4036 return irq_work_queue_on(&irq_work->work, cpu);
4037 }
4038
4039 static __always_inline void
rb_wakeups(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer)4040 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
4041 {
4042 if (buffer->irq_work.waiters_pending) {
4043 buffer->irq_work.waiters_pending = false;
4044 /* irq_work_queue() supplies it's own memory barriers */
4045 rb_irq_work_queue(&buffer->irq_work);
4046 }
4047
4048 if (cpu_buffer->irq_work.waiters_pending) {
4049 cpu_buffer->irq_work.waiters_pending = false;
4050 /* irq_work_queue() supplies it's own memory barriers */
4051 rb_irq_work_queue(&cpu_buffer->irq_work);
4052 }
4053
4054 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
4055 return;
4056
4057 if (cpu_buffer->reader_page == cpu_buffer->commit_page)
4058 return;
4059
4060 if (!cpu_buffer->irq_work.full_waiters_pending)
4061 return;
4062
4063 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
4064
4065 if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
4066 return;
4067
4068 cpu_buffer->irq_work.wakeup_full = true;
4069 cpu_buffer->irq_work.full_waiters_pending = false;
4070 /* irq_work_queue() supplies it's own memory barriers */
4071 rb_irq_work_queue(&cpu_buffer->irq_work);
4072 }
4073
4074 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
4075 # define do_ring_buffer_record_recursion() \
4076 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
4077 #else
4078 # define do_ring_buffer_record_recursion() do { } while (0)
4079 #endif
4080
4081 /*
4082 * The lock and unlock are done within a preempt disable section.
4083 * The current_context per_cpu variable can only be modified
4084 * by the current task between lock and unlock. But it can
4085 * be modified more than once via an interrupt. To pass this
4086 * information from the lock to the unlock without having to
4087 * access the 'in_interrupt()' functions again (which do show
4088 * a bit of overhead in something as critical as function tracing,
4089 * we use a bitmask trick.
4090 *
4091 * bit 1 = NMI context
4092 * bit 2 = IRQ context
4093 * bit 3 = SoftIRQ context
4094 * bit 4 = normal context.
4095 *
4096 * This works because this is the order of contexts that can
4097 * preempt other contexts. A SoftIRQ never preempts an IRQ
4098 * context.
4099 *
4100 * When the context is determined, the corresponding bit is
4101 * checked and set (if it was set, then a recursion of that context
4102 * happened).
4103 *
4104 * On unlock, we need to clear this bit. To do so, just subtract
4105 * 1 from the current_context and AND it to itself.
4106 *
4107 * (binary)
4108 * 101 - 1 = 100
4109 * 101 & 100 = 100 (clearing bit zero)
4110 *
4111 * 1010 - 1 = 1001
4112 * 1010 & 1001 = 1000 (clearing bit 1)
4113 *
4114 * The least significant bit can be cleared this way, and it
4115 * just so happens that it is the same bit corresponding to
4116 * the current context.
4117 *
4118 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
4119 * is set when a recursion is detected at the current context, and if
4120 * the TRANSITION bit is already set, it will fail the recursion.
4121 * This is needed because there's a lag between the changing of
4122 * interrupt context and updating the preempt count. In this case,
4123 * a false positive will be found. To handle this, one extra recursion
4124 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
4125 * bit is already set, then it is considered a recursion and the function
4126 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
4127 *
4128 * On the trace_recursive_unlock(), the TRANSITION bit will be the first
4129 * to be cleared. Even if it wasn't the context that set it. That is,
4130 * if an interrupt comes in while NORMAL bit is set and the ring buffer
4131 * is called before preempt_count() is updated, since the check will
4132 * be on the NORMAL bit, the TRANSITION bit will then be set. If an
4133 * NMI then comes in, it will set the NMI bit, but when the NMI code
4134 * does the trace_recursive_unlock() it will clear the TRANSITION bit
4135 * and leave the NMI bit set. But this is fine, because the interrupt
4136 * code that set the TRANSITION bit will then clear the NMI bit when it
4137 * calls trace_recursive_unlock(). If another NMI comes in, it will
4138 * set the TRANSITION bit and continue.
4139 *
4140 * Note: The TRANSITION bit only handles a single transition between context.
4141 */
4142
4143 static __always_inline bool
trace_recursive_lock(struct ring_buffer_per_cpu * cpu_buffer)4144 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
4145 {
4146 unsigned int val = cpu_buffer->current_context;
4147 int bit = interrupt_context_level();
4148
4149 bit = RB_CTX_NORMAL - bit;
4150
4151 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
4152 /*
4153 * It is possible that this was called by transitioning
4154 * between interrupt context, and preempt_count() has not
4155 * been updated yet. In this case, use the TRANSITION bit.
4156 */
4157 bit = RB_CTX_TRANSITION;
4158 if (val & (1 << (bit + cpu_buffer->nest))) {
4159 do_ring_buffer_record_recursion();
4160 return true;
4161 }
4162 }
4163
4164 val |= (1 << (bit + cpu_buffer->nest));
4165 cpu_buffer->current_context = val;
4166
4167 return false;
4168 }
4169
4170 static __always_inline void
trace_recursive_unlock(struct ring_buffer_per_cpu * cpu_buffer)4171 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
4172 {
4173 cpu_buffer->current_context &=
4174 cpu_buffer->current_context - (1 << cpu_buffer->nest);
4175 }
4176
4177 /* The recursive locking above uses 5 bits */
4178 #define NESTED_BITS 5
4179
4180 /**
4181 * ring_buffer_nest_start - Allow to trace while nested
4182 * @buffer: The ring buffer to modify
4183 *
4184 * The ring buffer has a safety mechanism to prevent recursion.
4185 * But there may be a case where a trace needs to be done while
4186 * tracing something else. In this case, calling this function
4187 * will allow this function to nest within a currently active
4188 * ring_buffer_lock_reserve().
4189 *
4190 * Call this function before calling another ring_buffer_lock_reserve() and
4191 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
4192 */
ring_buffer_nest_start(struct trace_buffer * buffer)4193 void ring_buffer_nest_start(struct trace_buffer *buffer)
4194 {
4195 struct ring_buffer_per_cpu *cpu_buffer;
4196 int cpu;
4197
4198 /* Enabled by ring_buffer_nest_end() */
4199 preempt_disable_notrace();
4200 cpu = raw_smp_processor_id();
4201 cpu_buffer = buffer->buffers[cpu];
4202 /* This is the shift value for the above recursive locking */
4203 cpu_buffer->nest += NESTED_BITS;
4204 }
4205
4206 /**
4207 * ring_buffer_nest_end - Allow to trace while nested
4208 * @buffer: The ring buffer to modify
4209 *
4210 * Must be called after ring_buffer_nest_start() and after the
4211 * ring_buffer_unlock_commit().
4212 */
ring_buffer_nest_end(struct trace_buffer * buffer)4213 void ring_buffer_nest_end(struct trace_buffer *buffer)
4214 {
4215 struct ring_buffer_per_cpu *cpu_buffer;
4216 int cpu;
4217
4218 /* disabled by ring_buffer_nest_start() */
4219 cpu = raw_smp_processor_id();
4220 cpu_buffer = buffer->buffers[cpu];
4221 /* This is the shift value for the above recursive locking */
4222 cpu_buffer->nest -= NESTED_BITS;
4223 preempt_enable_notrace();
4224 }
4225
4226 /**
4227 * ring_buffer_unlock_commit - commit a reserved
4228 * @buffer: The buffer to commit to
4229 *
4230 * This commits the data to the ring buffer, and releases any locks held.
4231 *
4232 * Must be paired with ring_buffer_lock_reserve.
4233 */
ring_buffer_unlock_commit(struct trace_buffer * buffer)4234 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
4235 {
4236 struct ring_buffer_per_cpu *cpu_buffer;
4237 int cpu = raw_smp_processor_id();
4238
4239 cpu_buffer = buffer->buffers[cpu];
4240
4241 rb_commit(cpu_buffer);
4242
4243 rb_wakeups(buffer, cpu_buffer);
4244
4245 trace_recursive_unlock(cpu_buffer);
4246
4247 preempt_enable_notrace();
4248
4249 return 0;
4250 }
4251 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
4252
4253 /* Special value to validate all deltas on a page. */
4254 #define CHECK_FULL_PAGE 1L
4255
4256 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
4257
show_irq_str(int bits)4258 static const char *show_irq_str(int bits)
4259 {
4260 static const char * type[] = {
4261 ".", // 0
4262 "s", // 1
4263 "h", // 2
4264 "Hs", // 3
4265 "n", // 4
4266 "Ns", // 5
4267 "Nh", // 6
4268 "NHs", // 7
4269 };
4270
4271 return type[bits];
4272 }
4273
4274 /* Assume this is a trace event */
show_flags(struct ring_buffer_event * event)4275 static const char *show_flags(struct ring_buffer_event *event)
4276 {
4277 struct trace_entry *entry;
4278 int bits = 0;
4279
4280 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4281 return "X";
4282
4283 entry = ring_buffer_event_data(event);
4284
4285 if (entry->flags & TRACE_FLAG_SOFTIRQ)
4286 bits |= 1;
4287
4288 if (entry->flags & TRACE_FLAG_HARDIRQ)
4289 bits |= 2;
4290
4291 if (entry->flags & TRACE_FLAG_NMI)
4292 bits |= 4;
4293
4294 return show_irq_str(bits);
4295 }
4296
show_irq(struct ring_buffer_event * event)4297 static const char *show_irq(struct ring_buffer_event *event)
4298 {
4299 struct trace_entry *entry;
4300
4301 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4302 return "";
4303
4304 entry = ring_buffer_event_data(event);
4305 if (entry->flags & TRACE_FLAG_IRQS_OFF)
4306 return "d";
4307 return "";
4308 }
4309
show_interrupt_level(void)4310 static const char *show_interrupt_level(void)
4311 {
4312 unsigned long pc = preempt_count();
4313 unsigned char level = 0;
4314
4315 if (pc & SOFTIRQ_OFFSET)
4316 level |= 1;
4317
4318 if (pc & HARDIRQ_MASK)
4319 level |= 2;
4320
4321 if (pc & NMI_MASK)
4322 level |= 4;
4323
4324 return show_irq_str(level);
4325 }
4326
dump_buffer_page(struct buffer_data_page * bpage,struct rb_event_info * info,unsigned long tail)4327 static void dump_buffer_page(struct buffer_data_page *bpage,
4328 struct rb_event_info *info,
4329 unsigned long tail)
4330 {
4331 struct ring_buffer_event *event;
4332 u64 ts, delta;
4333 int e;
4334
4335 ts = bpage->time_stamp;
4336 pr_warn(" [%lld] PAGE TIME STAMP\n", ts);
4337
4338 for (e = 0; e < tail; e += rb_event_length(event)) {
4339
4340 event = (struct ring_buffer_event *)(bpage->data + e);
4341
4342 switch (event->type_len) {
4343
4344 case RINGBUF_TYPE_TIME_EXTEND:
4345 delta = rb_event_time_stamp(event);
4346 ts += delta;
4347 pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
4348 e, ts, delta);
4349 break;
4350
4351 case RINGBUF_TYPE_TIME_STAMP:
4352 delta = rb_event_time_stamp(event);
4353 ts = rb_fix_abs_ts(delta, ts);
4354 pr_warn(" 0x%x: [%lld] absolute:%lld TIME STAMP\n",
4355 e, ts, delta);
4356 break;
4357
4358 case RINGBUF_TYPE_PADDING:
4359 ts += event->time_delta;
4360 pr_warn(" 0x%x: [%lld] delta:%d PADDING\n",
4361 e, ts, event->time_delta);
4362 break;
4363
4364 case RINGBUF_TYPE_DATA:
4365 ts += event->time_delta;
4366 pr_warn(" 0x%x: [%lld] delta:%d %s%s\n",
4367 e, ts, event->time_delta,
4368 show_flags(event), show_irq(event));
4369 break;
4370
4371 default:
4372 break;
4373 }
4374 }
4375 pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
4376 }
4377
4378 static DEFINE_PER_CPU(atomic_t, checking);
4379 static atomic_t ts_dump;
4380
4381 #define buffer_warn_return(fmt, ...) \
4382 do { \
4383 /* If another report is happening, ignore this one */ \
4384 if (atomic_inc_return(&ts_dump) != 1) { \
4385 atomic_dec(&ts_dump); \
4386 goto out; \
4387 } \
4388 atomic_inc(&cpu_buffer->record_disabled); \
4389 pr_warn(fmt, ##__VA_ARGS__); \
4390 dump_buffer_page(bpage, info, tail); \
4391 atomic_dec(&ts_dump); \
4392 /* There's some cases in boot up that this can happen */ \
4393 if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING)) \
4394 /* Do not re-enable checking */ \
4395 return; \
4396 } while (0)
4397
4398 /*
4399 * Check if the current event time stamp matches the deltas on
4400 * the buffer page.
4401 */
check_buffer(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info,unsigned long tail)4402 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4403 struct rb_event_info *info,
4404 unsigned long tail)
4405 {
4406 struct buffer_data_page *bpage;
4407 u64 ts, delta;
4408 bool full = false;
4409 int ret;
4410
4411 bpage = info->tail_page->page;
4412
4413 if (tail == CHECK_FULL_PAGE) {
4414 full = true;
4415 tail = local_read(&bpage->commit);
4416 } else if (info->add_timestamp &
4417 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
4418 /* Ignore events with absolute time stamps */
4419 return;
4420 }
4421
4422 /*
4423 * Do not check the first event (skip possible extends too).
4424 * Also do not check if previous events have not been committed.
4425 */
4426 if (tail <= 8 || tail > local_read(&bpage->commit))
4427 return;
4428
4429 /*
4430 * If this interrupted another event,
4431 */
4432 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
4433 goto out;
4434
4435 ret = rb_read_data_buffer(bpage, tail, cpu_buffer->cpu, &ts, &delta);
4436 if (ret < 0) {
4437 if (delta < ts) {
4438 buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
4439 cpu_buffer->cpu, ts, delta);
4440 goto out;
4441 }
4442 }
4443 if ((full && ts > info->ts) ||
4444 (!full && ts + info->delta != info->ts)) {
4445 buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
4446 cpu_buffer->cpu,
4447 ts + info->delta, info->ts, info->delta,
4448 info->before, info->after,
4449 full ? " (full)" : "", show_interrupt_level());
4450 }
4451 out:
4452 atomic_dec(this_cpu_ptr(&checking));
4453 }
4454 #else
check_buffer(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info,unsigned long tail)4455 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4456 struct rb_event_info *info,
4457 unsigned long tail)
4458 {
4459 }
4460 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
4461
4462 static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)4463 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
4464 struct rb_event_info *info)
4465 {
4466 struct ring_buffer_event *event;
4467 struct buffer_page *tail_page;
4468 unsigned long tail, write, w;
4469
4470 /* Don't let the compiler play games with cpu_buffer->tail_page */
4471 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
4472
4473 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK;
4474 barrier();
4475 rb_time_read(&cpu_buffer->before_stamp, &info->before);
4476 rb_time_read(&cpu_buffer->write_stamp, &info->after);
4477 barrier();
4478 info->ts = rb_time_stamp(cpu_buffer->buffer);
4479
4480 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
4481 info->delta = info->ts;
4482 } else {
4483 /*
4484 * If interrupting an event time update, we may need an
4485 * absolute timestamp.
4486 * Don't bother if this is the start of a new page (w == 0).
4487 */
4488 if (!w) {
4489 /* Use the sub-buffer timestamp */
4490 info->delta = 0;
4491 } else if (unlikely(info->before != info->after)) {
4492 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
4493 info->length += RB_LEN_TIME_EXTEND;
4494 } else {
4495 info->delta = info->ts - info->after;
4496 if (unlikely(test_time_stamp(info->delta))) {
4497 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
4498 info->length += RB_LEN_TIME_EXTEND;
4499 }
4500 }
4501 }
4502
4503 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts);
4504
4505 /*C*/ write = local_add_return(info->length, &tail_page->write);
4506
4507 /* set write to only the index of the write */
4508 write &= RB_WRITE_MASK;
4509
4510 tail = write - info->length;
4511
4512 /* See if we shot pass the end of this buffer page */
4513 if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
4514 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
4515 return rb_move_tail(cpu_buffer, tail, info);
4516 }
4517
4518 if (likely(tail == w)) {
4519 /* Nothing interrupted us between A and C */
4520 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts);
4521 /*
4522 * If something came in between C and D, the write stamp
4523 * may now not be in sync. But that's fine as the before_stamp
4524 * will be different and then next event will just be forced
4525 * to use an absolute timestamp.
4526 */
4527 if (likely(!(info->add_timestamp &
4528 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4529 /* This did not interrupt any time update */
4530 info->delta = info->ts - info->after;
4531 else
4532 /* Just use full timestamp for interrupting event */
4533 info->delta = info->ts;
4534 check_buffer(cpu_buffer, info, tail);
4535 } else {
4536 u64 ts;
4537 /* SLOW PATH - Interrupted between A and C */
4538
4539 /* Save the old before_stamp */
4540 rb_time_read(&cpu_buffer->before_stamp, &info->before);
4541
4542 /*
4543 * Read a new timestamp and update the before_stamp to make
4544 * the next event after this one force using an absolute
4545 * timestamp. This is in case an interrupt were to come in
4546 * between E and F.
4547 */
4548 ts = rb_time_stamp(cpu_buffer->buffer);
4549 rb_time_set(&cpu_buffer->before_stamp, ts);
4550
4551 barrier();
4552 /*E*/ rb_time_read(&cpu_buffer->write_stamp, &info->after);
4553 barrier();
4554 /*F*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
4555 info->after == info->before && info->after < ts) {
4556 /*
4557 * Nothing came after this event between C and F, it is
4558 * safe to use info->after for the delta as it
4559 * matched info->before and is still valid.
4560 */
4561 info->delta = ts - info->after;
4562 } else {
4563 /*
4564 * Interrupted between C and F:
4565 * Lost the previous events time stamp. Just set the
4566 * delta to zero, and this will be the same time as
4567 * the event this event interrupted. And the events that
4568 * came after this will still be correct (as they would
4569 * have built their delta on the previous event.
4570 */
4571 info->delta = 0;
4572 }
4573 info->ts = ts;
4574 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
4575 }
4576
4577 /*
4578 * If this is the first commit on the page, then it has the same
4579 * timestamp as the page itself.
4580 */
4581 if (unlikely(!tail && !(info->add_timestamp &
4582 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4583 info->delta = 0;
4584
4585 /* We reserved something on the buffer */
4586
4587 event = __rb_page_index(tail_page, tail);
4588 rb_update_event(cpu_buffer, event, info);
4589
4590 local_inc(&tail_page->entries);
4591
4592 /*
4593 * If this is the first commit on the page, then update
4594 * its timestamp.
4595 */
4596 if (unlikely(!tail))
4597 tail_page->page->time_stamp = info->ts;
4598
4599 /* account for these added bytes */
4600 local_add(info->length, &cpu_buffer->entries_bytes);
4601
4602 return event;
4603 }
4604
4605 static __always_inline struct ring_buffer_event *
rb_reserve_next_event(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer,unsigned long length)4606 rb_reserve_next_event(struct trace_buffer *buffer,
4607 struct ring_buffer_per_cpu *cpu_buffer,
4608 unsigned long length)
4609 {
4610 struct ring_buffer_event *event;
4611 struct rb_event_info info;
4612 int nr_loops = 0;
4613 int add_ts_default;
4614
4615 /*
4616 * ring buffer does cmpxchg as well as atomic64 operations
4617 * (which some archs use locking for atomic64), make sure this
4618 * is safe in NMI context
4619 */
4620 if ((!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) ||
4621 IS_ENABLED(CONFIG_GENERIC_ATOMIC64)) &&
4622 (unlikely(in_nmi()))) {
4623 return NULL;
4624 }
4625
4626 rb_start_commit(cpu_buffer);
4627 /* The commit page can not change after this */
4628
4629 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4630 /*
4631 * Due to the ability to swap a cpu buffer from a buffer
4632 * it is possible it was swapped before we committed.
4633 * (committing stops a swap). We check for it here and
4634 * if it happened, we have to fail the write.
4635 */
4636 barrier();
4637 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
4638 local_dec(&cpu_buffer->committing);
4639 local_dec(&cpu_buffer->commits);
4640 return NULL;
4641 }
4642 #endif
4643
4644 info.length = rb_calculate_event_length(length);
4645
4646 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
4647 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
4648 info.length += RB_LEN_TIME_EXTEND;
4649 if (info.length > cpu_buffer->buffer->max_data_size)
4650 goto out_fail;
4651 } else {
4652 add_ts_default = RB_ADD_STAMP_NONE;
4653 }
4654
4655 again:
4656 info.add_timestamp = add_ts_default;
4657 info.delta = 0;
4658
4659 /*
4660 * We allow for interrupts to reenter here and do a trace.
4661 * If one does, it will cause this original code to loop
4662 * back here. Even with heavy interrupts happening, this
4663 * should only happen a few times in a row. If this happens
4664 * 1000 times in a row, there must be either an interrupt
4665 * storm or we have something buggy.
4666 * Bail!
4667 */
4668 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
4669 goto out_fail;
4670
4671 event = __rb_reserve_next(cpu_buffer, &info);
4672
4673 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
4674 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
4675 info.length -= RB_LEN_TIME_EXTEND;
4676 goto again;
4677 }
4678
4679 if (likely(event))
4680 return event;
4681 out_fail:
4682 rb_end_commit(cpu_buffer);
4683 return NULL;
4684 }
4685
4686 /**
4687 * ring_buffer_lock_reserve - reserve a part of the buffer
4688 * @buffer: the ring buffer to reserve from
4689 * @length: the length of the data to reserve (excluding event header)
4690 *
4691 * Returns a reserved event on the ring buffer to copy directly to.
4692 * The user of this interface will need to get the body to write into
4693 * and can use the ring_buffer_event_data() interface.
4694 *
4695 * The length is the length of the data needed, not the event length
4696 * which also includes the event header.
4697 *
4698 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
4699 * If NULL is returned, then nothing has been allocated or locked.
4700 */
4701 struct ring_buffer_event *
ring_buffer_lock_reserve(struct trace_buffer * buffer,unsigned long length)4702 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
4703 {
4704 struct ring_buffer_per_cpu *cpu_buffer;
4705 struct ring_buffer_event *event;
4706 int cpu;
4707
4708 /* If we are tracing schedule, we don't want to recurse */
4709 preempt_disable_notrace();
4710
4711 if (unlikely(atomic_read(&buffer->record_disabled)))
4712 goto out;
4713
4714 cpu = raw_smp_processor_id();
4715
4716 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
4717 goto out;
4718
4719 cpu_buffer = buffer->buffers[cpu];
4720
4721 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
4722 goto out;
4723
4724 if (unlikely(length > buffer->max_data_size))
4725 goto out;
4726
4727 if (unlikely(trace_recursive_lock(cpu_buffer)))
4728 goto out;
4729
4730 event = rb_reserve_next_event(buffer, cpu_buffer, length);
4731 if (!event)
4732 goto out_unlock;
4733
4734 return event;
4735
4736 out_unlock:
4737 trace_recursive_unlock(cpu_buffer);
4738 out:
4739 preempt_enable_notrace();
4740 return NULL;
4741 }
4742 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
4743
4744 /*
4745 * Decrement the entries to the page that an event is on.
4746 * The event does not even need to exist, only the pointer
4747 * to the page it is on. This may only be called before the commit
4748 * takes place.
4749 */
4750 static inline void
rb_decrement_entry(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)4751 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
4752 struct ring_buffer_event *event)
4753 {
4754 unsigned long addr = (unsigned long)event;
4755 struct buffer_page *bpage = cpu_buffer->commit_page;
4756 struct buffer_page *start;
4757
4758 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
4759
4760 /* Do the likely case first */
4761 if (likely(bpage->page == (void *)addr)) {
4762 local_dec(&bpage->entries);
4763 return;
4764 }
4765
4766 /*
4767 * Because the commit page may be on the reader page we
4768 * start with the next page and check the end loop there.
4769 */
4770 rb_inc_page(&bpage);
4771 start = bpage;
4772 do {
4773 if (bpage->page == (void *)addr) {
4774 local_dec(&bpage->entries);
4775 return;
4776 }
4777 rb_inc_page(&bpage);
4778 } while (bpage != start);
4779
4780 /* commit not part of this buffer?? */
4781 RB_WARN_ON(cpu_buffer, 1);
4782 }
4783
4784 /**
4785 * ring_buffer_discard_commit - discard an event that has not been committed
4786 * @buffer: the ring buffer
4787 * @event: non committed event to discard
4788 *
4789 * Sometimes an event that is in the ring buffer needs to be ignored.
4790 * This function lets the user discard an event in the ring buffer
4791 * and then that event will not be read later.
4792 *
4793 * This function only works if it is called before the item has been
4794 * committed. It will try to free the event from the ring buffer
4795 * if another event has not been added behind it.
4796 *
4797 * If another event has been added behind it, it will set the event
4798 * up as discarded, and perform the commit.
4799 *
4800 * If this function is called, do not call ring_buffer_unlock_commit on
4801 * the event.
4802 */
ring_buffer_discard_commit(struct trace_buffer * buffer,struct ring_buffer_event * event)4803 void ring_buffer_discard_commit(struct trace_buffer *buffer,
4804 struct ring_buffer_event *event)
4805 {
4806 struct ring_buffer_per_cpu *cpu_buffer;
4807 int cpu;
4808
4809 /* The event is discarded regardless */
4810 rb_event_discard(event);
4811
4812 cpu = smp_processor_id();
4813 cpu_buffer = buffer->buffers[cpu];
4814
4815 /*
4816 * This must only be called if the event has not been
4817 * committed yet. Thus we can assume that preemption
4818 * is still disabled.
4819 */
4820 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
4821
4822 rb_decrement_entry(cpu_buffer, event);
4823 rb_try_to_discard(cpu_buffer, event);
4824 rb_end_commit(cpu_buffer);
4825
4826 trace_recursive_unlock(cpu_buffer);
4827
4828 preempt_enable_notrace();
4829
4830 }
4831 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
4832
4833 /**
4834 * ring_buffer_write - write data to the buffer without reserving
4835 * @buffer: The ring buffer to write to.
4836 * @length: The length of the data being written (excluding the event header)
4837 * @data: The data to write to the buffer.
4838 *
4839 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
4840 * one function. If you already have the data to write to the buffer, it
4841 * may be easier to simply call this function.
4842 *
4843 * Note, like ring_buffer_lock_reserve, the length is the length of the data
4844 * and not the length of the event which would hold the header.
4845 */
ring_buffer_write(struct trace_buffer * buffer,unsigned long length,void * data)4846 int ring_buffer_write(struct trace_buffer *buffer,
4847 unsigned long length,
4848 void *data)
4849 {
4850 struct ring_buffer_per_cpu *cpu_buffer;
4851 struct ring_buffer_event *event;
4852 void *body;
4853 int ret = -EBUSY;
4854 int cpu;
4855
4856 guard(preempt_notrace)();
4857
4858 if (atomic_read(&buffer->record_disabled))
4859 return -EBUSY;
4860
4861 cpu = raw_smp_processor_id();
4862
4863 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4864 return -EBUSY;
4865
4866 cpu_buffer = buffer->buffers[cpu];
4867
4868 if (atomic_read(&cpu_buffer->record_disabled))
4869 return -EBUSY;
4870
4871 if (length > buffer->max_data_size)
4872 return -EBUSY;
4873
4874 if (unlikely(trace_recursive_lock(cpu_buffer)))
4875 return -EBUSY;
4876
4877 event = rb_reserve_next_event(buffer, cpu_buffer, length);
4878 if (!event)
4879 goto out_unlock;
4880
4881 body = rb_event_data(event);
4882
4883 memcpy(body, data, length);
4884
4885 rb_commit(cpu_buffer);
4886
4887 rb_wakeups(buffer, cpu_buffer);
4888
4889 ret = 0;
4890
4891 out_unlock:
4892 trace_recursive_unlock(cpu_buffer);
4893 return ret;
4894 }
4895 EXPORT_SYMBOL_GPL(ring_buffer_write);
4896
4897 /*
4898 * The total entries in the ring buffer is the running counter
4899 * of entries entered into the ring buffer, minus the sum of
4900 * the entries read from the ring buffer and the number of
4901 * entries that were overwritten.
4902 */
4903 static inline unsigned long
rb_num_of_entries(struct ring_buffer_per_cpu * cpu_buffer)4904 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4905 {
4906 return local_read(&cpu_buffer->entries) -
4907 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4908 }
4909
rb_per_cpu_empty(struct ring_buffer_per_cpu * cpu_buffer)4910 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
4911 {
4912 return !rb_num_of_entries(cpu_buffer);
4913 }
4914
4915 /**
4916 * ring_buffer_record_disable - stop all writes into the buffer
4917 * @buffer: The ring buffer to stop writes to.
4918 *
4919 * This prevents all writes to the buffer. Any attempt to write
4920 * to the buffer after this will fail and return NULL.
4921 *
4922 * The caller should call synchronize_rcu() after this.
4923 */
ring_buffer_record_disable(struct trace_buffer * buffer)4924 void ring_buffer_record_disable(struct trace_buffer *buffer)
4925 {
4926 atomic_inc(&buffer->record_disabled);
4927 }
4928 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4929
4930 /**
4931 * ring_buffer_record_enable - enable writes to the buffer
4932 * @buffer: The ring buffer to enable writes
4933 *
4934 * Note, multiple disables will need the same number of enables
4935 * to truly enable the writing (much like preempt_disable).
4936 */
ring_buffer_record_enable(struct trace_buffer * buffer)4937 void ring_buffer_record_enable(struct trace_buffer *buffer)
4938 {
4939 atomic_dec(&buffer->record_disabled);
4940 }
4941 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4942
4943 /**
4944 * ring_buffer_record_off - stop all writes into the buffer
4945 * @buffer: The ring buffer to stop writes to.
4946 *
4947 * This prevents all writes to the buffer. Any attempt to write
4948 * to the buffer after this will fail and return NULL.
4949 *
4950 * This is different than ring_buffer_record_disable() as
4951 * it works like an on/off switch, where as the disable() version
4952 * must be paired with a enable().
4953 */
ring_buffer_record_off(struct trace_buffer * buffer)4954 void ring_buffer_record_off(struct trace_buffer *buffer)
4955 {
4956 unsigned int rd;
4957 unsigned int new_rd;
4958
4959 rd = atomic_read(&buffer->record_disabled);
4960 do {
4961 new_rd = rd | RB_BUFFER_OFF;
4962 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4963 }
4964 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4965
4966 /**
4967 * ring_buffer_record_on - restart writes into the buffer
4968 * @buffer: The ring buffer to start writes to.
4969 *
4970 * This enables all writes to the buffer that was disabled by
4971 * ring_buffer_record_off().
4972 *
4973 * This is different than ring_buffer_record_enable() as
4974 * it works like an on/off switch, where as the enable() version
4975 * must be paired with a disable().
4976 */
ring_buffer_record_on(struct trace_buffer * buffer)4977 void ring_buffer_record_on(struct trace_buffer *buffer)
4978 {
4979 unsigned int rd;
4980 unsigned int new_rd;
4981
4982 rd = atomic_read(&buffer->record_disabled);
4983 do {
4984 new_rd = rd & ~RB_BUFFER_OFF;
4985 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4986 }
4987 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4988
4989 /**
4990 * ring_buffer_record_is_on - return true if the ring buffer can write
4991 * @buffer: The ring buffer to see if write is enabled
4992 *
4993 * Returns true if the ring buffer is in a state that it accepts writes.
4994 */
ring_buffer_record_is_on(struct trace_buffer * buffer)4995 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4996 {
4997 return !atomic_read(&buffer->record_disabled);
4998 }
4999
5000 /**
5001 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
5002 * @buffer: The ring buffer to see if write is set enabled
5003 *
5004 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
5005 * Note that this does NOT mean it is in a writable state.
5006 *
5007 * It may return true when the ring buffer has been disabled by
5008 * ring_buffer_record_disable(), as that is a temporary disabling of
5009 * the ring buffer.
5010 */
ring_buffer_record_is_set_on(struct trace_buffer * buffer)5011 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
5012 {
5013 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
5014 }
5015
5016 /**
5017 * ring_buffer_record_is_on_cpu - return true if the ring buffer can write
5018 * @buffer: The ring buffer to see if write is enabled
5019 * @cpu: The CPU to test if the ring buffer can write too
5020 *
5021 * Returns true if the ring buffer is in a state that it accepts writes
5022 * for a particular CPU.
5023 */
ring_buffer_record_is_on_cpu(struct trace_buffer * buffer,int cpu)5024 bool ring_buffer_record_is_on_cpu(struct trace_buffer *buffer, int cpu)
5025 {
5026 struct ring_buffer_per_cpu *cpu_buffer;
5027
5028 cpu_buffer = buffer->buffers[cpu];
5029
5030 return ring_buffer_record_is_set_on(buffer) &&
5031 !atomic_read(&cpu_buffer->record_disabled);
5032 }
5033
5034 /**
5035 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
5036 * @buffer: The ring buffer to stop writes to.
5037 * @cpu: The CPU buffer to stop
5038 *
5039 * This prevents all writes to the buffer. Any attempt to write
5040 * to the buffer after this will fail and return NULL.
5041 *
5042 * The caller should call synchronize_rcu() after this.
5043 */
ring_buffer_record_disable_cpu(struct trace_buffer * buffer,int cpu)5044 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
5045 {
5046 struct ring_buffer_per_cpu *cpu_buffer;
5047
5048 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5049 return;
5050
5051 cpu_buffer = buffer->buffers[cpu];
5052 atomic_inc(&cpu_buffer->record_disabled);
5053 }
5054 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
5055
5056 /**
5057 * ring_buffer_record_enable_cpu - enable writes to the buffer
5058 * @buffer: The ring buffer to enable writes
5059 * @cpu: The CPU to enable.
5060 *
5061 * Note, multiple disables will need the same number of enables
5062 * to truly enable the writing (much like preempt_disable).
5063 */
ring_buffer_record_enable_cpu(struct trace_buffer * buffer,int cpu)5064 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
5065 {
5066 struct ring_buffer_per_cpu *cpu_buffer;
5067
5068 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5069 return;
5070
5071 cpu_buffer = buffer->buffers[cpu];
5072 atomic_dec(&cpu_buffer->record_disabled);
5073 }
5074 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
5075
5076 /**
5077 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
5078 * @buffer: The ring buffer
5079 * @cpu: The per CPU buffer to read from.
5080 */
ring_buffer_oldest_event_ts(struct trace_buffer * buffer,int cpu)5081 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
5082 {
5083 unsigned long flags;
5084 struct ring_buffer_per_cpu *cpu_buffer;
5085 struct buffer_page *bpage;
5086 u64 ret = 0;
5087
5088 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5089 return 0;
5090
5091 cpu_buffer = buffer->buffers[cpu];
5092 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5093 /*
5094 * if the tail is on reader_page, oldest time stamp is on the reader
5095 * page
5096 */
5097 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
5098 bpage = cpu_buffer->reader_page;
5099 else
5100 bpage = rb_set_head_page(cpu_buffer);
5101 if (bpage)
5102 ret = bpage->page->time_stamp;
5103 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5104
5105 return ret;
5106 }
5107 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
5108
5109 /**
5110 * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
5111 * @buffer: The ring buffer
5112 * @cpu: The per CPU buffer to read from.
5113 */
ring_buffer_bytes_cpu(struct trace_buffer * buffer,int cpu)5114 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
5115 {
5116 struct ring_buffer_per_cpu *cpu_buffer;
5117 unsigned long ret;
5118
5119 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5120 return 0;
5121
5122 cpu_buffer = buffer->buffers[cpu];
5123 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
5124
5125 return ret;
5126 }
5127 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
5128
5129 /**
5130 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
5131 * @buffer: The ring buffer
5132 * @cpu: The per CPU buffer to get the entries from.
5133 */
ring_buffer_entries_cpu(struct trace_buffer * buffer,int cpu)5134 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
5135 {
5136 struct ring_buffer_per_cpu *cpu_buffer;
5137
5138 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5139 return 0;
5140
5141 cpu_buffer = buffer->buffers[cpu];
5142
5143 return rb_num_of_entries(cpu_buffer);
5144 }
5145 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
5146
5147 /**
5148 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
5149 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
5150 * @buffer: The ring buffer
5151 * @cpu: The per CPU buffer to get the number of overruns from
5152 */
ring_buffer_overrun_cpu(struct trace_buffer * buffer,int cpu)5153 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
5154 {
5155 struct ring_buffer_per_cpu *cpu_buffer;
5156 unsigned long ret;
5157
5158 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5159 return 0;
5160
5161 cpu_buffer = buffer->buffers[cpu];
5162 ret = local_read(&cpu_buffer->overrun);
5163
5164 return ret;
5165 }
5166 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
5167
5168 /**
5169 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
5170 * commits failing due to the buffer wrapping around while there are uncommitted
5171 * events, such as during an interrupt storm.
5172 * @buffer: The ring buffer
5173 * @cpu: The per CPU buffer to get the number of overruns from
5174 */
5175 unsigned long
ring_buffer_commit_overrun_cpu(struct trace_buffer * buffer,int cpu)5176 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
5177 {
5178 struct ring_buffer_per_cpu *cpu_buffer;
5179 unsigned long ret;
5180
5181 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5182 return 0;
5183
5184 cpu_buffer = buffer->buffers[cpu];
5185 ret = local_read(&cpu_buffer->commit_overrun);
5186
5187 return ret;
5188 }
5189 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
5190
5191 /**
5192 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
5193 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
5194 * @buffer: The ring buffer
5195 * @cpu: The per CPU buffer to get the number of overruns from
5196 */
5197 unsigned long
ring_buffer_dropped_events_cpu(struct trace_buffer * buffer,int cpu)5198 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
5199 {
5200 struct ring_buffer_per_cpu *cpu_buffer;
5201 unsigned long ret;
5202
5203 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5204 return 0;
5205
5206 cpu_buffer = buffer->buffers[cpu];
5207 ret = local_read(&cpu_buffer->dropped_events);
5208
5209 return ret;
5210 }
5211 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
5212
5213 /**
5214 * ring_buffer_read_events_cpu - get the number of events successfully read
5215 * @buffer: The ring buffer
5216 * @cpu: The per CPU buffer to get the number of events read
5217 */
5218 unsigned long
ring_buffer_read_events_cpu(struct trace_buffer * buffer,int cpu)5219 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
5220 {
5221 struct ring_buffer_per_cpu *cpu_buffer;
5222
5223 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5224 return 0;
5225
5226 cpu_buffer = buffer->buffers[cpu];
5227 return cpu_buffer->read;
5228 }
5229 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
5230
5231 /**
5232 * ring_buffer_entries - get the number of entries in a buffer
5233 * @buffer: The ring buffer
5234 *
5235 * Returns the total number of entries in the ring buffer
5236 * (all CPU entries)
5237 */
ring_buffer_entries(struct trace_buffer * buffer)5238 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
5239 {
5240 struct ring_buffer_per_cpu *cpu_buffer;
5241 unsigned long entries = 0;
5242 int cpu;
5243
5244 /* if you care about this being correct, lock the buffer */
5245 for_each_buffer_cpu(buffer, cpu) {
5246 cpu_buffer = buffer->buffers[cpu];
5247 entries += rb_num_of_entries(cpu_buffer);
5248 }
5249
5250 return entries;
5251 }
5252 EXPORT_SYMBOL_GPL(ring_buffer_entries);
5253
5254 /**
5255 * ring_buffer_overruns - get the number of overruns in buffer
5256 * @buffer: The ring buffer
5257 *
5258 * Returns the total number of overruns in the ring buffer
5259 * (all CPU entries)
5260 */
ring_buffer_overruns(struct trace_buffer * buffer)5261 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
5262 {
5263 struct ring_buffer_per_cpu *cpu_buffer;
5264 unsigned long overruns = 0;
5265 int cpu;
5266
5267 /* if you care about this being correct, lock the buffer */
5268 for_each_buffer_cpu(buffer, cpu) {
5269 cpu_buffer = buffer->buffers[cpu];
5270 overruns += local_read(&cpu_buffer->overrun);
5271 }
5272
5273 return overruns;
5274 }
5275 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
5276
rb_iter_reset(struct ring_buffer_iter * iter)5277 static void rb_iter_reset(struct ring_buffer_iter *iter)
5278 {
5279 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5280
5281 /* Iterator usage is expected to have record disabled */
5282 iter->head_page = cpu_buffer->reader_page;
5283 iter->head = cpu_buffer->reader_page->read;
5284 iter->next_event = iter->head;
5285
5286 iter->cache_reader_page = iter->head_page;
5287 iter->cache_read = cpu_buffer->read;
5288 iter->cache_pages_removed = cpu_buffer->pages_removed;
5289
5290 if (iter->head) {
5291 iter->read_stamp = cpu_buffer->read_stamp;
5292 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
5293 } else {
5294 iter->read_stamp = iter->head_page->page->time_stamp;
5295 iter->page_stamp = iter->read_stamp;
5296 }
5297 }
5298
5299 /**
5300 * ring_buffer_iter_reset - reset an iterator
5301 * @iter: The iterator to reset
5302 *
5303 * Resets the iterator, so that it will start from the beginning
5304 * again.
5305 */
ring_buffer_iter_reset(struct ring_buffer_iter * iter)5306 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
5307 {
5308 struct ring_buffer_per_cpu *cpu_buffer;
5309 unsigned long flags;
5310
5311 if (!iter)
5312 return;
5313
5314 cpu_buffer = iter->cpu_buffer;
5315
5316 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5317 rb_iter_reset(iter);
5318 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5319 }
5320 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
5321
5322 /**
5323 * ring_buffer_iter_empty - check if an iterator has no more to read
5324 * @iter: The iterator to check
5325 */
ring_buffer_iter_empty(struct ring_buffer_iter * iter)5326 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
5327 {
5328 struct ring_buffer_per_cpu *cpu_buffer;
5329 struct buffer_page *reader;
5330 struct buffer_page *head_page;
5331 struct buffer_page *commit_page;
5332 struct buffer_page *curr_commit_page;
5333 unsigned commit;
5334 u64 curr_commit_ts;
5335 u64 commit_ts;
5336
5337 cpu_buffer = iter->cpu_buffer;
5338 reader = cpu_buffer->reader_page;
5339 head_page = cpu_buffer->head_page;
5340 commit_page = READ_ONCE(cpu_buffer->commit_page);
5341 commit_ts = commit_page->page->time_stamp;
5342
5343 /*
5344 * When the writer goes across pages, it issues a cmpxchg which
5345 * is a mb(), which will synchronize with the rmb here.
5346 * (see rb_tail_page_update())
5347 */
5348 smp_rmb();
5349 commit = rb_page_commit(commit_page);
5350 /* We want to make sure that the commit page doesn't change */
5351 smp_rmb();
5352
5353 /* Make sure commit page didn't change */
5354 curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
5355 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
5356
5357 /* If the commit page changed, then there's more data */
5358 if (curr_commit_page != commit_page ||
5359 curr_commit_ts != commit_ts)
5360 return 0;
5361
5362 /* Still racy, as it may return a false positive, but that's OK */
5363 return ((iter->head_page == commit_page && iter->head >= commit) ||
5364 (iter->head_page == reader && commit_page == head_page &&
5365 head_page->read == commit &&
5366 iter->head == rb_page_size(cpu_buffer->reader_page)));
5367 }
5368 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
5369
5370 static void
rb_update_read_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)5371 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
5372 struct ring_buffer_event *event)
5373 {
5374 u64 delta;
5375
5376 switch (event->type_len) {
5377 case RINGBUF_TYPE_PADDING:
5378 return;
5379
5380 case RINGBUF_TYPE_TIME_EXTEND:
5381 delta = rb_event_time_stamp(event);
5382 cpu_buffer->read_stamp += delta;
5383 return;
5384
5385 case RINGBUF_TYPE_TIME_STAMP:
5386 delta = rb_event_time_stamp(event);
5387 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
5388 cpu_buffer->read_stamp = delta;
5389 return;
5390
5391 case RINGBUF_TYPE_DATA:
5392 cpu_buffer->read_stamp += event->time_delta;
5393 return;
5394
5395 default:
5396 RB_WARN_ON(cpu_buffer, 1);
5397 }
5398 }
5399
5400 static void
rb_update_iter_read_stamp(struct ring_buffer_iter * iter,struct ring_buffer_event * event)5401 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
5402 struct ring_buffer_event *event)
5403 {
5404 u64 delta;
5405
5406 switch (event->type_len) {
5407 case RINGBUF_TYPE_PADDING:
5408 return;
5409
5410 case RINGBUF_TYPE_TIME_EXTEND:
5411 delta = rb_event_time_stamp(event);
5412 iter->read_stamp += delta;
5413 return;
5414
5415 case RINGBUF_TYPE_TIME_STAMP:
5416 delta = rb_event_time_stamp(event);
5417 delta = rb_fix_abs_ts(delta, iter->read_stamp);
5418 iter->read_stamp = delta;
5419 return;
5420
5421 case RINGBUF_TYPE_DATA:
5422 iter->read_stamp += event->time_delta;
5423 return;
5424
5425 default:
5426 RB_WARN_ON(iter->cpu_buffer, 1);
5427 }
5428 }
5429
5430 static struct buffer_page *
rb_get_reader_page(struct ring_buffer_per_cpu * cpu_buffer)5431 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
5432 {
5433 struct buffer_page *reader = NULL;
5434 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
5435 unsigned long overwrite;
5436 unsigned long flags;
5437 int nr_loops = 0;
5438 bool ret;
5439
5440 local_irq_save(flags);
5441 arch_spin_lock(&cpu_buffer->lock);
5442
5443 again:
5444 /*
5445 * This should normally only loop twice. But because the
5446 * start of the reader inserts an empty page, it causes
5447 * a case where we will loop three times. There should be no
5448 * reason to loop four times (that I know of).
5449 */
5450 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
5451 reader = NULL;
5452 goto out;
5453 }
5454
5455 reader = cpu_buffer->reader_page;
5456
5457 /* If there's more to read, return this page */
5458 if (cpu_buffer->reader_page->read < rb_page_size(reader))
5459 goto out;
5460
5461 /* Never should we have an index greater than the size */
5462 if (RB_WARN_ON(cpu_buffer,
5463 cpu_buffer->reader_page->read > rb_page_size(reader)))
5464 goto out;
5465
5466 /* check if we caught up to the tail */
5467 reader = NULL;
5468 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
5469 goto out;
5470
5471 /* Don't bother swapping if the ring buffer is empty */
5472 if (rb_num_of_entries(cpu_buffer) == 0)
5473 goto out;
5474
5475 /*
5476 * Reset the reader page to size zero.
5477 */
5478 local_set(&cpu_buffer->reader_page->write, 0);
5479 local_set(&cpu_buffer->reader_page->entries, 0);
5480 cpu_buffer->reader_page->real_end = 0;
5481
5482 spin:
5483 /*
5484 * Splice the empty reader page into the list around the head.
5485 */
5486 reader = rb_set_head_page(cpu_buffer);
5487 if (!reader)
5488 goto out;
5489 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
5490 cpu_buffer->reader_page->list.prev = reader->list.prev;
5491
5492 /*
5493 * cpu_buffer->pages just needs to point to the buffer, it
5494 * has no specific buffer page to point to. Lets move it out
5495 * of our way so we don't accidentally swap it.
5496 */
5497 cpu_buffer->pages = reader->list.prev;
5498
5499 /* The reader page will be pointing to the new head */
5500 rb_set_list_to_head(&cpu_buffer->reader_page->list);
5501
5502 /*
5503 * We want to make sure we read the overruns after we set up our
5504 * pointers to the next object. The writer side does a
5505 * cmpxchg to cross pages which acts as the mb on the writer
5506 * side. Note, the reader will constantly fail the swap
5507 * while the writer is updating the pointers, so this
5508 * guarantees that the overwrite recorded here is the one we
5509 * want to compare with the last_overrun.
5510 */
5511 smp_mb();
5512 overwrite = local_read(&(cpu_buffer->overrun));
5513
5514 /*
5515 * Here's the tricky part.
5516 *
5517 * We need to move the pointer past the header page.
5518 * But we can only do that if a writer is not currently
5519 * moving it. The page before the header page has the
5520 * flag bit '1' set if it is pointing to the page we want.
5521 * but if the writer is in the process of moving it
5522 * then it will be '2' or already moved '0'.
5523 */
5524
5525 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
5526
5527 /*
5528 * If we did not convert it, then we must try again.
5529 */
5530 if (!ret)
5531 goto spin;
5532
5533 if (cpu_buffer->ring_meta)
5534 rb_update_meta_reader(cpu_buffer, reader);
5535
5536 /*
5537 * Yay! We succeeded in replacing the page.
5538 *
5539 * Now make the new head point back to the reader page.
5540 */
5541 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
5542 rb_inc_page(&cpu_buffer->head_page);
5543
5544 cpu_buffer->cnt++;
5545 local_inc(&cpu_buffer->pages_read);
5546
5547 /* Finally update the reader page to the new head */
5548 cpu_buffer->reader_page = reader;
5549 cpu_buffer->reader_page->read = 0;
5550
5551 if (overwrite != cpu_buffer->last_overrun) {
5552 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
5553 cpu_buffer->last_overrun = overwrite;
5554 }
5555
5556 goto again;
5557
5558 out:
5559 /* Update the read_stamp on the first event */
5560 if (reader && reader->read == 0)
5561 cpu_buffer->read_stamp = reader->page->time_stamp;
5562
5563 arch_spin_unlock(&cpu_buffer->lock);
5564 local_irq_restore(flags);
5565
5566 /*
5567 * The writer has preempt disable, wait for it. But not forever
5568 * Although, 1 second is pretty much "forever"
5569 */
5570 #define USECS_WAIT 1000000
5571 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
5572 /* If the write is past the end of page, a writer is still updating it */
5573 if (likely(!reader || rb_page_write(reader) <= bsize))
5574 break;
5575
5576 udelay(1);
5577
5578 /* Get the latest version of the reader write value */
5579 smp_rmb();
5580 }
5581
5582 /* The writer is not moving forward? Something is wrong */
5583 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
5584 reader = NULL;
5585
5586 /*
5587 * Make sure we see any padding after the write update
5588 * (see rb_reset_tail()).
5589 *
5590 * In addition, a writer may be writing on the reader page
5591 * if the page has not been fully filled, so the read barrier
5592 * is also needed to make sure we see the content of what is
5593 * committed by the writer (see rb_set_commit_to_write()).
5594 */
5595 smp_rmb();
5596
5597
5598 return reader;
5599 }
5600
rb_advance_reader(struct ring_buffer_per_cpu * cpu_buffer)5601 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
5602 {
5603 struct ring_buffer_event *event;
5604 struct buffer_page *reader;
5605 unsigned length;
5606
5607 reader = rb_get_reader_page(cpu_buffer);
5608
5609 /* This function should not be called when buffer is empty */
5610 if (RB_WARN_ON(cpu_buffer, !reader))
5611 return;
5612
5613 event = rb_reader_event(cpu_buffer);
5614
5615 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
5616 cpu_buffer->read++;
5617
5618 rb_update_read_stamp(cpu_buffer, event);
5619
5620 length = rb_event_length(event);
5621 cpu_buffer->reader_page->read += length;
5622 cpu_buffer->read_bytes += length;
5623 }
5624
rb_advance_iter(struct ring_buffer_iter * iter)5625 static void rb_advance_iter(struct ring_buffer_iter *iter)
5626 {
5627 struct ring_buffer_per_cpu *cpu_buffer;
5628
5629 cpu_buffer = iter->cpu_buffer;
5630
5631 /* If head == next_event then we need to jump to the next event */
5632 if (iter->head == iter->next_event) {
5633 /* If the event gets overwritten again, there's nothing to do */
5634 if (rb_iter_head_event(iter) == NULL)
5635 return;
5636 }
5637
5638 iter->head = iter->next_event;
5639
5640 /*
5641 * Check if we are at the end of the buffer.
5642 */
5643 if (iter->next_event >= rb_page_size(iter->head_page)) {
5644 /* discarded commits can make the page empty */
5645 if (iter->head_page == cpu_buffer->commit_page)
5646 return;
5647 rb_inc_iter(iter);
5648 return;
5649 }
5650
5651 rb_update_iter_read_stamp(iter, iter->event);
5652 }
5653
rb_lost_events(struct ring_buffer_per_cpu * cpu_buffer)5654 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
5655 {
5656 return cpu_buffer->lost_events;
5657 }
5658
5659 static struct ring_buffer_event *
rb_buffer_peek(struct ring_buffer_per_cpu * cpu_buffer,u64 * ts,unsigned long * lost_events)5660 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
5661 unsigned long *lost_events)
5662 {
5663 struct ring_buffer_event *event;
5664 struct buffer_page *reader;
5665 int nr_loops = 0;
5666
5667 if (ts)
5668 *ts = 0;
5669 again:
5670 /*
5671 * We repeat when a time extend is encountered.
5672 * Since the time extend is always attached to a data event,
5673 * we should never loop more than once.
5674 * (We never hit the following condition more than twice).
5675 */
5676 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
5677 return NULL;
5678
5679 reader = rb_get_reader_page(cpu_buffer);
5680 if (!reader)
5681 return NULL;
5682
5683 event = rb_reader_event(cpu_buffer);
5684
5685 switch (event->type_len) {
5686 case RINGBUF_TYPE_PADDING:
5687 if (rb_null_event(event))
5688 RB_WARN_ON(cpu_buffer, 1);
5689 /*
5690 * Because the writer could be discarding every
5691 * event it creates (which would probably be bad)
5692 * if we were to go back to "again" then we may never
5693 * catch up, and will trigger the warn on, or lock
5694 * the box. Return the padding, and we will release
5695 * the current locks, and try again.
5696 */
5697 return event;
5698
5699 case RINGBUF_TYPE_TIME_EXTEND:
5700 /* Internal data, OK to advance */
5701 rb_advance_reader(cpu_buffer);
5702 goto again;
5703
5704 case RINGBUF_TYPE_TIME_STAMP:
5705 if (ts) {
5706 *ts = rb_event_time_stamp(event);
5707 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
5708 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5709 cpu_buffer->cpu, ts);
5710 }
5711 /* Internal data, OK to advance */
5712 rb_advance_reader(cpu_buffer);
5713 goto again;
5714
5715 case RINGBUF_TYPE_DATA:
5716 if (ts && !(*ts)) {
5717 *ts = cpu_buffer->read_stamp + event->time_delta;
5718 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5719 cpu_buffer->cpu, ts);
5720 }
5721 if (lost_events)
5722 *lost_events = rb_lost_events(cpu_buffer);
5723 return event;
5724
5725 default:
5726 RB_WARN_ON(cpu_buffer, 1);
5727 }
5728
5729 return NULL;
5730 }
5731 EXPORT_SYMBOL_GPL(ring_buffer_peek);
5732
5733 static struct ring_buffer_event *
rb_iter_peek(struct ring_buffer_iter * iter,u64 * ts)5734 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5735 {
5736 struct trace_buffer *buffer;
5737 struct ring_buffer_per_cpu *cpu_buffer;
5738 struct ring_buffer_event *event;
5739 int nr_loops = 0;
5740
5741 if (ts)
5742 *ts = 0;
5743
5744 cpu_buffer = iter->cpu_buffer;
5745 buffer = cpu_buffer->buffer;
5746
5747 /*
5748 * Check if someone performed a consuming read to the buffer
5749 * or removed some pages from the buffer. In these cases,
5750 * iterator was invalidated and we need to reset it.
5751 */
5752 if (unlikely(iter->cache_read != cpu_buffer->read ||
5753 iter->cache_reader_page != cpu_buffer->reader_page ||
5754 iter->cache_pages_removed != cpu_buffer->pages_removed))
5755 rb_iter_reset(iter);
5756
5757 again:
5758 if (ring_buffer_iter_empty(iter))
5759 return NULL;
5760
5761 /*
5762 * As the writer can mess with what the iterator is trying
5763 * to read, just give up if we fail to get an event after
5764 * three tries. The iterator is not as reliable when reading
5765 * the ring buffer with an active write as the consumer is.
5766 * Do not warn if the three failures is reached.
5767 */
5768 if (++nr_loops > 3)
5769 return NULL;
5770
5771 if (rb_per_cpu_empty(cpu_buffer))
5772 return NULL;
5773
5774 if (iter->head >= rb_page_size(iter->head_page)) {
5775 rb_inc_iter(iter);
5776 goto again;
5777 }
5778
5779 event = rb_iter_head_event(iter);
5780 if (!event)
5781 goto again;
5782
5783 switch (event->type_len) {
5784 case RINGBUF_TYPE_PADDING:
5785 if (rb_null_event(event)) {
5786 rb_inc_iter(iter);
5787 goto again;
5788 }
5789 rb_advance_iter(iter);
5790 return event;
5791
5792 case RINGBUF_TYPE_TIME_EXTEND:
5793 /* Internal data, OK to advance */
5794 rb_advance_iter(iter);
5795 goto again;
5796
5797 case RINGBUF_TYPE_TIME_STAMP:
5798 if (ts) {
5799 *ts = rb_event_time_stamp(event);
5800 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
5801 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5802 cpu_buffer->cpu, ts);
5803 }
5804 /* Internal data, OK to advance */
5805 rb_advance_iter(iter);
5806 goto again;
5807
5808 case RINGBUF_TYPE_DATA:
5809 if (ts && !(*ts)) {
5810 *ts = iter->read_stamp + event->time_delta;
5811 ring_buffer_normalize_time_stamp(buffer,
5812 cpu_buffer->cpu, ts);
5813 }
5814 return event;
5815
5816 default:
5817 RB_WARN_ON(cpu_buffer, 1);
5818 }
5819
5820 return NULL;
5821 }
5822 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
5823
rb_reader_lock(struct ring_buffer_per_cpu * cpu_buffer)5824 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
5825 {
5826 if (likely(!in_nmi())) {
5827 raw_spin_lock(&cpu_buffer->reader_lock);
5828 return true;
5829 }
5830
5831 /*
5832 * If an NMI die dumps out the content of the ring buffer
5833 * trylock must be used to prevent a deadlock if the NMI
5834 * preempted a task that holds the ring buffer locks. If
5835 * we get the lock then all is fine, if not, then continue
5836 * to do the read, but this can corrupt the ring buffer,
5837 * so it must be permanently disabled from future writes.
5838 * Reading from NMI is a oneshot deal.
5839 */
5840 if (raw_spin_trylock(&cpu_buffer->reader_lock))
5841 return true;
5842
5843 /* Continue without locking, but disable the ring buffer */
5844 atomic_inc(&cpu_buffer->record_disabled);
5845 return false;
5846 }
5847
5848 static inline void
rb_reader_unlock(struct ring_buffer_per_cpu * cpu_buffer,bool locked)5849 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
5850 {
5851 if (likely(locked))
5852 raw_spin_unlock(&cpu_buffer->reader_lock);
5853 }
5854
5855 /**
5856 * ring_buffer_peek - peek at the next event to be read
5857 * @buffer: The ring buffer to read
5858 * @cpu: The cpu to peak at
5859 * @ts: The timestamp counter of this event.
5860 * @lost_events: a variable to store if events were lost (may be NULL)
5861 *
5862 * This will return the event that will be read next, but does
5863 * not consume the data.
5864 */
5865 struct ring_buffer_event *
ring_buffer_peek(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)5866 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
5867 unsigned long *lost_events)
5868 {
5869 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5870 struct ring_buffer_event *event;
5871 unsigned long flags;
5872 bool dolock;
5873
5874 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5875 return NULL;
5876
5877 again:
5878 local_irq_save(flags);
5879 dolock = rb_reader_lock(cpu_buffer);
5880 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5881 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5882 rb_advance_reader(cpu_buffer);
5883 rb_reader_unlock(cpu_buffer, dolock);
5884 local_irq_restore(flags);
5885
5886 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5887 goto again;
5888
5889 return event;
5890 }
5891
5892 /** ring_buffer_iter_dropped - report if there are dropped events
5893 * @iter: The ring buffer iterator
5894 *
5895 * Returns true if there was dropped events since the last peek.
5896 */
ring_buffer_iter_dropped(struct ring_buffer_iter * iter)5897 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5898 {
5899 bool ret = iter->missed_events != 0;
5900
5901 iter->missed_events = 0;
5902 return ret;
5903 }
5904 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5905
5906 /**
5907 * ring_buffer_iter_peek - peek at the next event to be read
5908 * @iter: The ring buffer iterator
5909 * @ts: The timestamp counter of this event.
5910 *
5911 * This will return the event that will be read next, but does
5912 * not increment the iterator.
5913 */
5914 struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter * iter,u64 * ts)5915 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5916 {
5917 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5918 struct ring_buffer_event *event;
5919 unsigned long flags;
5920
5921 again:
5922 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5923 event = rb_iter_peek(iter, ts);
5924 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5925
5926 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5927 goto again;
5928
5929 return event;
5930 }
5931
5932 /**
5933 * ring_buffer_consume - return an event and consume it
5934 * @buffer: The ring buffer to get the next event from
5935 * @cpu: the cpu to read the buffer from
5936 * @ts: a variable to store the timestamp (may be NULL)
5937 * @lost_events: a variable to store if events were lost (may be NULL)
5938 *
5939 * Returns the next event in the ring buffer, and that event is consumed.
5940 * Meaning, that sequential reads will keep returning a different event,
5941 * and eventually empty the ring buffer if the producer is slower.
5942 */
5943 struct ring_buffer_event *
ring_buffer_consume(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)5944 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5945 unsigned long *lost_events)
5946 {
5947 struct ring_buffer_per_cpu *cpu_buffer;
5948 struct ring_buffer_event *event = NULL;
5949 unsigned long flags;
5950 bool dolock;
5951
5952 again:
5953 /* might be called in atomic */
5954 preempt_disable();
5955
5956 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5957 goto out;
5958
5959 cpu_buffer = buffer->buffers[cpu];
5960 local_irq_save(flags);
5961 dolock = rb_reader_lock(cpu_buffer);
5962
5963 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5964 if (event) {
5965 cpu_buffer->lost_events = 0;
5966 rb_advance_reader(cpu_buffer);
5967 }
5968
5969 rb_reader_unlock(cpu_buffer, dolock);
5970 local_irq_restore(flags);
5971
5972 out:
5973 preempt_enable();
5974
5975 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5976 goto again;
5977
5978 return event;
5979 }
5980 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5981
5982 /**
5983 * ring_buffer_read_start - start a non consuming read of the buffer
5984 * @buffer: The ring buffer to read from
5985 * @cpu: The cpu buffer to iterate over
5986 * @flags: gfp flags to use for memory allocation
5987 *
5988 * This creates an iterator to allow non-consuming iteration through
5989 * the buffer. If the buffer is disabled for writing, it will produce
5990 * the same information each time, but if the buffer is still writing
5991 * then the first hit of a write will cause the iteration to stop.
5992 *
5993 * Must be paired with ring_buffer_read_finish.
5994 */
5995 struct ring_buffer_iter *
ring_buffer_read_start(struct trace_buffer * buffer,int cpu,gfp_t flags)5996 ring_buffer_read_start(struct trace_buffer *buffer, int cpu, gfp_t flags)
5997 {
5998 struct ring_buffer_per_cpu *cpu_buffer;
5999 struct ring_buffer_iter *iter;
6000
6001 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6002 return NULL;
6003
6004 iter = kzalloc_obj(*iter, flags);
6005 if (!iter)
6006 return NULL;
6007
6008 /* Holds the entire event: data and meta data */
6009 iter->event_size = buffer->subbuf_size;
6010 iter->event = kmalloc(iter->event_size, flags);
6011 if (!iter->event) {
6012 kfree(iter);
6013 return NULL;
6014 }
6015
6016 cpu_buffer = buffer->buffers[cpu];
6017
6018 iter->cpu_buffer = cpu_buffer;
6019
6020 atomic_inc(&cpu_buffer->resize_disabled);
6021
6022 guard(raw_spinlock_irqsave)(&cpu_buffer->reader_lock);
6023 arch_spin_lock(&cpu_buffer->lock);
6024 rb_iter_reset(iter);
6025 arch_spin_unlock(&cpu_buffer->lock);
6026
6027 return iter;
6028 }
6029 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
6030
6031 /**
6032 * ring_buffer_read_finish - finish reading the iterator of the buffer
6033 * @iter: The iterator retrieved by ring_buffer_start
6034 *
6035 * This re-enables resizing of the buffer, and frees the iterator.
6036 */
6037 void
ring_buffer_read_finish(struct ring_buffer_iter * iter)6038 ring_buffer_read_finish(struct ring_buffer_iter *iter)
6039 {
6040 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
6041
6042 /* Use this opportunity to check the integrity of the ring buffer. */
6043 rb_check_pages(cpu_buffer);
6044
6045 atomic_dec(&cpu_buffer->resize_disabled);
6046 kfree(iter->event);
6047 kfree(iter);
6048 }
6049 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
6050
6051 /**
6052 * ring_buffer_iter_advance - advance the iterator to the next location
6053 * @iter: The ring buffer iterator
6054 *
6055 * Move the location of the iterator such that the next read will
6056 * be the next location of the iterator.
6057 */
ring_buffer_iter_advance(struct ring_buffer_iter * iter)6058 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
6059 {
6060 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
6061 unsigned long flags;
6062
6063 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6064
6065 rb_advance_iter(iter);
6066
6067 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6068 }
6069 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
6070
6071 /**
6072 * ring_buffer_size - return the size of the ring buffer (in bytes)
6073 * @buffer: The ring buffer.
6074 * @cpu: The CPU to get ring buffer size from.
6075 */
ring_buffer_size(struct trace_buffer * buffer,int cpu)6076 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
6077 {
6078 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6079 return 0;
6080
6081 return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
6082 }
6083 EXPORT_SYMBOL_GPL(ring_buffer_size);
6084
6085 /**
6086 * ring_buffer_max_event_size - return the max data size of an event
6087 * @buffer: The ring buffer.
6088 *
6089 * Returns the maximum size an event can be.
6090 */
ring_buffer_max_event_size(struct trace_buffer * buffer)6091 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
6092 {
6093 /* If abs timestamp is requested, events have a timestamp too */
6094 if (ring_buffer_time_stamp_abs(buffer))
6095 return buffer->max_data_size - RB_LEN_TIME_EXTEND;
6096 return buffer->max_data_size;
6097 }
6098 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
6099
rb_clear_buffer_page(struct buffer_page * page)6100 static void rb_clear_buffer_page(struct buffer_page *page)
6101 {
6102 local_set(&page->write, 0);
6103 local_set(&page->entries, 0);
6104 rb_init_page(page->page);
6105 page->read = 0;
6106 }
6107
6108 /*
6109 * When the buffer is memory mapped to user space, each sub buffer
6110 * has a unique id that is used by the meta data to tell the user
6111 * where the current reader page is.
6112 *
6113 * For a normal allocated ring buffer, the id is saved in the buffer page
6114 * id field, and updated via this function.
6115 *
6116 * But for a fixed memory mapped buffer, the id is already assigned for
6117 * fixed memory ordering in the memory layout and can not be used. Instead
6118 * the index of where the page lies in the memory layout is used.
6119 *
6120 * For the normal pages, set the buffer page id with the passed in @id
6121 * value and return that.
6122 *
6123 * For fixed memory mapped pages, get the page index in the memory layout
6124 * and return that as the id.
6125 */
rb_page_id(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage,int id)6126 static int rb_page_id(struct ring_buffer_per_cpu *cpu_buffer,
6127 struct buffer_page *bpage, int id)
6128 {
6129 /*
6130 * For boot buffers, the id is the index,
6131 * otherwise, set the buffer page with this id
6132 */
6133 if (cpu_buffer->ring_meta)
6134 id = rb_meta_subbuf_idx(cpu_buffer->ring_meta, bpage->page);
6135 else
6136 bpage->id = id;
6137
6138 return id;
6139 }
6140
rb_update_meta_page(struct ring_buffer_per_cpu * cpu_buffer)6141 static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6142 {
6143 struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6144
6145 if (!meta)
6146 return;
6147
6148 meta->reader.read = cpu_buffer->reader_page->read;
6149 meta->reader.id = rb_page_id(cpu_buffer, cpu_buffer->reader_page,
6150 cpu_buffer->reader_page->id);
6151
6152 meta->reader.lost_events = cpu_buffer->lost_events;
6153
6154 meta->entries = local_read(&cpu_buffer->entries);
6155 meta->overrun = local_read(&cpu_buffer->overrun);
6156 meta->read = cpu_buffer->read;
6157
6158 /* Some archs do not have data cache coherency between kernel and user-space */
6159 flush_kernel_vmap_range(cpu_buffer->meta_page, PAGE_SIZE);
6160 }
6161
6162 static void
rb_reset_cpu(struct ring_buffer_per_cpu * cpu_buffer)6163 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
6164 {
6165 struct buffer_page *page;
6166
6167 rb_head_page_deactivate(cpu_buffer);
6168
6169 cpu_buffer->head_page
6170 = list_entry(cpu_buffer->pages, struct buffer_page, list);
6171 rb_clear_buffer_page(cpu_buffer->head_page);
6172 list_for_each_entry(page, cpu_buffer->pages, list) {
6173 rb_clear_buffer_page(page);
6174 }
6175
6176 cpu_buffer->tail_page = cpu_buffer->head_page;
6177 cpu_buffer->commit_page = cpu_buffer->head_page;
6178
6179 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
6180 INIT_LIST_HEAD(&cpu_buffer->new_pages);
6181 rb_clear_buffer_page(cpu_buffer->reader_page);
6182
6183 local_set(&cpu_buffer->entries_bytes, 0);
6184 local_set(&cpu_buffer->overrun, 0);
6185 local_set(&cpu_buffer->commit_overrun, 0);
6186 local_set(&cpu_buffer->dropped_events, 0);
6187 local_set(&cpu_buffer->entries, 0);
6188 local_set(&cpu_buffer->committing, 0);
6189 local_set(&cpu_buffer->commits, 0);
6190 local_set(&cpu_buffer->pages_touched, 0);
6191 local_set(&cpu_buffer->pages_lost, 0);
6192 local_set(&cpu_buffer->pages_read, 0);
6193 cpu_buffer->last_pages_touch = 0;
6194 cpu_buffer->shortest_full = 0;
6195 cpu_buffer->read = 0;
6196 cpu_buffer->read_bytes = 0;
6197
6198 rb_time_set(&cpu_buffer->write_stamp, 0);
6199 rb_time_set(&cpu_buffer->before_stamp, 0);
6200
6201 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
6202
6203 cpu_buffer->lost_events = 0;
6204 cpu_buffer->last_overrun = 0;
6205
6206 rb_head_page_activate(cpu_buffer);
6207 cpu_buffer->pages_removed = 0;
6208
6209 if (cpu_buffer->mapped) {
6210 rb_update_meta_page(cpu_buffer);
6211 if (cpu_buffer->ring_meta) {
6212 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
6213 meta->commit_buffer = meta->head_buffer;
6214 }
6215 }
6216 }
6217
6218 /* Must have disabled the cpu buffer then done a synchronize_rcu */
reset_disabled_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)6219 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6220 {
6221 guard(raw_spinlock_irqsave)(&cpu_buffer->reader_lock);
6222
6223 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
6224 return;
6225
6226 arch_spin_lock(&cpu_buffer->lock);
6227
6228 rb_reset_cpu(cpu_buffer);
6229
6230 arch_spin_unlock(&cpu_buffer->lock);
6231 }
6232
6233 /**
6234 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
6235 * @buffer: The ring buffer to reset a per cpu buffer of
6236 * @cpu: The CPU buffer to be reset
6237 */
ring_buffer_reset_cpu(struct trace_buffer * buffer,int cpu)6238 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
6239 {
6240 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6241
6242 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6243 return;
6244
6245 /* prevent another thread from changing buffer sizes */
6246 mutex_lock(&buffer->mutex);
6247
6248 atomic_inc(&cpu_buffer->resize_disabled);
6249 atomic_inc(&cpu_buffer->record_disabled);
6250
6251 /* Make sure all commits have finished */
6252 synchronize_rcu();
6253
6254 reset_disabled_cpu_buffer(cpu_buffer);
6255
6256 atomic_dec(&cpu_buffer->record_disabled);
6257 atomic_dec(&cpu_buffer->resize_disabled);
6258
6259 mutex_unlock(&buffer->mutex);
6260 }
6261 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
6262
6263 /* Flag to ensure proper resetting of atomic variables */
6264 #define RESET_BIT (1 << 30)
6265
6266 /**
6267 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
6268 * @buffer: The ring buffer to reset a per cpu buffer of
6269 */
ring_buffer_reset_online_cpus(struct trace_buffer * buffer)6270 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
6271 {
6272 struct ring_buffer_per_cpu *cpu_buffer;
6273 int cpu;
6274
6275 /* prevent another thread from changing buffer sizes */
6276 mutex_lock(&buffer->mutex);
6277
6278 for_each_online_buffer_cpu(buffer, cpu) {
6279 cpu_buffer = buffer->buffers[cpu];
6280
6281 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
6282 atomic_inc(&cpu_buffer->record_disabled);
6283 }
6284
6285 /* Make sure all commits have finished */
6286 synchronize_rcu();
6287
6288 for_each_buffer_cpu(buffer, cpu) {
6289 cpu_buffer = buffer->buffers[cpu];
6290
6291 /*
6292 * If a CPU came online during the synchronize_rcu(), then
6293 * ignore it.
6294 */
6295 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
6296 continue;
6297
6298 reset_disabled_cpu_buffer(cpu_buffer);
6299
6300 atomic_dec(&cpu_buffer->record_disabled);
6301 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
6302 }
6303
6304 mutex_unlock(&buffer->mutex);
6305 }
6306
6307 /**
6308 * ring_buffer_reset - reset a ring buffer
6309 * @buffer: The ring buffer to reset all cpu buffers
6310 */
ring_buffer_reset(struct trace_buffer * buffer)6311 void ring_buffer_reset(struct trace_buffer *buffer)
6312 {
6313 struct ring_buffer_per_cpu *cpu_buffer;
6314 int cpu;
6315
6316 /* prevent another thread from changing buffer sizes */
6317 mutex_lock(&buffer->mutex);
6318
6319 for_each_buffer_cpu(buffer, cpu) {
6320 cpu_buffer = buffer->buffers[cpu];
6321
6322 atomic_inc(&cpu_buffer->resize_disabled);
6323 atomic_inc(&cpu_buffer->record_disabled);
6324 }
6325
6326 /* Make sure all commits have finished */
6327 synchronize_rcu();
6328
6329 for_each_buffer_cpu(buffer, cpu) {
6330 cpu_buffer = buffer->buffers[cpu];
6331
6332 reset_disabled_cpu_buffer(cpu_buffer);
6333
6334 atomic_dec(&cpu_buffer->record_disabled);
6335 atomic_dec(&cpu_buffer->resize_disabled);
6336 }
6337
6338 mutex_unlock(&buffer->mutex);
6339 }
6340 EXPORT_SYMBOL_GPL(ring_buffer_reset);
6341
6342 /**
6343 * ring_buffer_empty - is the ring buffer empty?
6344 * @buffer: The ring buffer to test
6345 */
ring_buffer_empty(struct trace_buffer * buffer)6346 bool ring_buffer_empty(struct trace_buffer *buffer)
6347 {
6348 struct ring_buffer_per_cpu *cpu_buffer;
6349 unsigned long flags;
6350 bool dolock;
6351 bool ret;
6352 int cpu;
6353
6354 /* yes this is racy, but if you don't like the race, lock the buffer */
6355 for_each_buffer_cpu(buffer, cpu) {
6356 cpu_buffer = buffer->buffers[cpu];
6357 local_irq_save(flags);
6358 dolock = rb_reader_lock(cpu_buffer);
6359 ret = rb_per_cpu_empty(cpu_buffer);
6360 rb_reader_unlock(cpu_buffer, dolock);
6361 local_irq_restore(flags);
6362
6363 if (!ret)
6364 return false;
6365 }
6366
6367 return true;
6368 }
6369 EXPORT_SYMBOL_GPL(ring_buffer_empty);
6370
6371 /**
6372 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
6373 * @buffer: The ring buffer
6374 * @cpu: The CPU buffer to test
6375 */
ring_buffer_empty_cpu(struct trace_buffer * buffer,int cpu)6376 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
6377 {
6378 struct ring_buffer_per_cpu *cpu_buffer;
6379 unsigned long flags;
6380 bool dolock;
6381 bool ret;
6382
6383 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6384 return true;
6385
6386 cpu_buffer = buffer->buffers[cpu];
6387 local_irq_save(flags);
6388 dolock = rb_reader_lock(cpu_buffer);
6389 ret = rb_per_cpu_empty(cpu_buffer);
6390 rb_reader_unlock(cpu_buffer, dolock);
6391 local_irq_restore(flags);
6392
6393 return ret;
6394 }
6395 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
6396
6397 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
6398 /**
6399 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
6400 * @buffer_a: One buffer to swap with
6401 * @buffer_b: The other buffer to swap with
6402 * @cpu: the CPU of the buffers to swap
6403 *
6404 * This function is useful for tracers that want to take a "snapshot"
6405 * of a CPU buffer and has another back up buffer lying around.
6406 * it is expected that the tracer handles the cpu buffer not being
6407 * used at the moment.
6408 */
ring_buffer_swap_cpu(struct trace_buffer * buffer_a,struct trace_buffer * buffer_b,int cpu)6409 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
6410 struct trace_buffer *buffer_b, int cpu)
6411 {
6412 struct ring_buffer_per_cpu *cpu_buffer_a;
6413 struct ring_buffer_per_cpu *cpu_buffer_b;
6414 int ret = -EINVAL;
6415
6416 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
6417 !cpumask_test_cpu(cpu, buffer_b->cpumask))
6418 return -EINVAL;
6419
6420 cpu_buffer_a = buffer_a->buffers[cpu];
6421 cpu_buffer_b = buffer_b->buffers[cpu];
6422
6423 /* It's up to the callers to not try to swap mapped buffers */
6424 if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped))
6425 return -EBUSY;
6426
6427 /* At least make sure the two buffers are somewhat the same */
6428 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
6429 return -EINVAL;
6430
6431 if (buffer_a->subbuf_order != buffer_b->subbuf_order)
6432 return -EINVAL;
6433
6434 if (atomic_read(&buffer_a->record_disabled))
6435 return -EAGAIN;
6436
6437 if (atomic_read(&buffer_b->record_disabled))
6438 return -EAGAIN;
6439
6440 if (atomic_read(&cpu_buffer_a->record_disabled))
6441 return -EAGAIN;
6442
6443 if (atomic_read(&cpu_buffer_b->record_disabled))
6444 return -EAGAIN;
6445
6446 /*
6447 * We can't do a synchronize_rcu here because this
6448 * function can be called in atomic context.
6449 * Normally this will be called from the same CPU as cpu.
6450 * If not it's up to the caller to protect this.
6451 */
6452 atomic_inc(&cpu_buffer_a->record_disabled);
6453 atomic_inc(&cpu_buffer_b->record_disabled);
6454
6455 ret = -EBUSY;
6456 if (local_read(&cpu_buffer_a->committing))
6457 goto out_dec;
6458 if (local_read(&cpu_buffer_b->committing))
6459 goto out_dec;
6460
6461 /*
6462 * When resize is in progress, we cannot swap it because
6463 * it will mess the state of the cpu buffer.
6464 */
6465 if (atomic_read(&buffer_a->resizing))
6466 goto out_dec;
6467 if (atomic_read(&buffer_b->resizing))
6468 goto out_dec;
6469
6470 buffer_a->buffers[cpu] = cpu_buffer_b;
6471 buffer_b->buffers[cpu] = cpu_buffer_a;
6472
6473 cpu_buffer_b->buffer = buffer_a;
6474 cpu_buffer_a->buffer = buffer_b;
6475
6476 ret = 0;
6477
6478 out_dec:
6479 atomic_dec(&cpu_buffer_a->record_disabled);
6480 atomic_dec(&cpu_buffer_b->record_disabled);
6481 return ret;
6482 }
6483 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
6484 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
6485
6486 /**
6487 * ring_buffer_alloc_read_page - allocate a page to read from buffer
6488 * @buffer: the buffer to allocate for.
6489 * @cpu: the cpu buffer to allocate.
6490 *
6491 * This function is used in conjunction with ring_buffer_read_page.
6492 * When reading a full page from the ring buffer, these functions
6493 * can be used to speed up the process. The calling function should
6494 * allocate a few pages first with this function. Then when it
6495 * needs to get pages from the ring buffer, it passes the result
6496 * of this function into ring_buffer_read_page, which will swap
6497 * the page that was allocated, with the read page of the buffer.
6498 *
6499 * Returns:
6500 * The page allocated, or ERR_PTR
6501 */
6502 struct buffer_data_read_page *
ring_buffer_alloc_read_page(struct trace_buffer * buffer,int cpu)6503 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
6504 {
6505 struct ring_buffer_per_cpu *cpu_buffer;
6506 struct buffer_data_read_page *bpage = NULL;
6507 unsigned long flags;
6508
6509 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6510 return ERR_PTR(-ENODEV);
6511
6512 bpage = kzalloc_obj(*bpage, GFP_KERNEL);
6513 if (!bpage)
6514 return ERR_PTR(-ENOMEM);
6515
6516 bpage->order = buffer->subbuf_order;
6517 cpu_buffer = buffer->buffers[cpu];
6518 local_irq_save(flags);
6519 arch_spin_lock(&cpu_buffer->lock);
6520
6521 if (cpu_buffer->free_page) {
6522 bpage->data = cpu_buffer->free_page;
6523 cpu_buffer->free_page = NULL;
6524 }
6525
6526 arch_spin_unlock(&cpu_buffer->lock);
6527 local_irq_restore(flags);
6528
6529 if (bpage->data) {
6530 rb_init_page(bpage->data);
6531 } else {
6532 bpage->data = alloc_cpu_data(cpu, cpu_buffer->buffer->subbuf_order);
6533 if (!bpage->data) {
6534 kfree(bpage);
6535 return ERR_PTR(-ENOMEM);
6536 }
6537 }
6538
6539 return bpage;
6540 }
6541 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
6542
6543 /**
6544 * ring_buffer_free_read_page - free an allocated read page
6545 * @buffer: the buffer the page was allocate for
6546 * @cpu: the cpu buffer the page came from
6547 * @data_page: the page to free
6548 *
6549 * Free a page allocated from ring_buffer_alloc_read_page.
6550 */
ring_buffer_free_read_page(struct trace_buffer * buffer,int cpu,struct buffer_data_read_page * data_page)6551 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
6552 struct buffer_data_read_page *data_page)
6553 {
6554 struct ring_buffer_per_cpu *cpu_buffer;
6555 struct buffer_data_page *bpage = data_page->data;
6556 struct page *page = virt_to_page(bpage);
6557 unsigned long flags;
6558
6559 if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
6560 return;
6561
6562 cpu_buffer = buffer->buffers[cpu];
6563
6564 /*
6565 * If the page is still in use someplace else, or order of the page
6566 * is different from the subbuffer order of the buffer -
6567 * we can't reuse it
6568 */
6569 if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
6570 goto out;
6571
6572 local_irq_save(flags);
6573 arch_spin_lock(&cpu_buffer->lock);
6574
6575 if (!cpu_buffer->free_page) {
6576 cpu_buffer->free_page = bpage;
6577 bpage = NULL;
6578 }
6579
6580 arch_spin_unlock(&cpu_buffer->lock);
6581 local_irq_restore(flags);
6582
6583 out:
6584 free_pages((unsigned long)bpage, data_page->order);
6585 kfree(data_page);
6586 }
6587 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
6588
6589 /**
6590 * ring_buffer_read_page - extract a page from the ring buffer
6591 * @buffer: buffer to extract from
6592 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
6593 * @len: amount to extract
6594 * @cpu: the cpu of the buffer to extract
6595 * @full: should the extraction only happen when the page is full.
6596 *
6597 * This function will pull out a page from the ring buffer and consume it.
6598 * @data_page must be the address of the variable that was returned
6599 * from ring_buffer_alloc_read_page. This is because the page might be used
6600 * to swap with a page in the ring buffer.
6601 *
6602 * for example:
6603 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
6604 * if (IS_ERR(rpage))
6605 * return PTR_ERR(rpage);
6606 * ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
6607 * if (ret >= 0)
6608 * process_page(ring_buffer_read_page_data(rpage), ret);
6609 * ring_buffer_free_read_page(buffer, cpu, rpage);
6610 *
6611 * When @full is set, the function will not return true unless
6612 * the writer is off the reader page.
6613 *
6614 * Note: it is up to the calling functions to handle sleeps and wakeups.
6615 * The ring buffer can be used anywhere in the kernel and can not
6616 * blindly call wake_up. The layer that uses the ring buffer must be
6617 * responsible for that.
6618 *
6619 * Returns:
6620 * >=0 if data has been transferred, returns the offset of consumed data.
6621 * <0 if no data has been transferred.
6622 */
ring_buffer_read_page(struct trace_buffer * buffer,struct buffer_data_read_page * data_page,size_t len,int cpu,int full)6623 int ring_buffer_read_page(struct trace_buffer *buffer,
6624 struct buffer_data_read_page *data_page,
6625 size_t len, int cpu, int full)
6626 {
6627 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6628 struct ring_buffer_event *event;
6629 struct buffer_data_page *bpage;
6630 struct buffer_page *reader;
6631 unsigned long missed_events;
6632 unsigned int commit;
6633 unsigned int read;
6634 u64 save_timestamp;
6635
6636 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6637 return -1;
6638
6639 /*
6640 * If len is not big enough to hold the page header, then
6641 * we can not copy anything.
6642 */
6643 if (len <= BUF_PAGE_HDR_SIZE)
6644 return -1;
6645
6646 len -= BUF_PAGE_HDR_SIZE;
6647
6648 if (!data_page || !data_page->data)
6649 return -1;
6650
6651 if (data_page->order != buffer->subbuf_order)
6652 return -1;
6653
6654 bpage = data_page->data;
6655 if (!bpage)
6656 return -1;
6657
6658 guard(raw_spinlock_irqsave)(&cpu_buffer->reader_lock);
6659
6660 reader = rb_get_reader_page(cpu_buffer);
6661 if (!reader)
6662 return -1;
6663
6664 event = rb_reader_event(cpu_buffer);
6665
6666 read = reader->read;
6667 commit = rb_page_size(reader);
6668
6669 /* Check if any events were dropped */
6670 missed_events = cpu_buffer->lost_events;
6671
6672 /*
6673 * If this page has been partially read or
6674 * if len is not big enough to read the rest of the page or
6675 * a writer is still on the page, then
6676 * we must copy the data from the page to the buffer.
6677 * Otherwise, we can simply swap the page with the one passed in.
6678 */
6679 if (read || (len < (commit - read)) ||
6680 cpu_buffer->reader_page == cpu_buffer->commit_page ||
6681 cpu_buffer->mapped) {
6682 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
6683 unsigned int rpos = read;
6684 unsigned int pos = 0;
6685 unsigned int size;
6686
6687 /*
6688 * If a full page is expected, this can still be returned
6689 * if there's been a previous partial read and the
6690 * rest of the page can be read and the commit page is off
6691 * the reader page.
6692 */
6693 if (full &&
6694 (!read || (len < (commit - read)) ||
6695 cpu_buffer->reader_page == cpu_buffer->commit_page))
6696 return -1;
6697
6698 if (len > (commit - read))
6699 len = (commit - read);
6700
6701 /* Always keep the time extend and data together */
6702 size = rb_event_ts_length(event);
6703
6704 if (len < size)
6705 return -1;
6706
6707 /* save the current timestamp, since the user will need it */
6708 save_timestamp = cpu_buffer->read_stamp;
6709
6710 /* Need to copy one event at a time */
6711 do {
6712 /* We need the size of one event, because
6713 * rb_advance_reader only advances by one event,
6714 * whereas rb_event_ts_length may include the size of
6715 * one or two events.
6716 * We have already ensured there's enough space if this
6717 * is a time extend. */
6718 size = rb_event_length(event);
6719 memcpy(bpage->data + pos, rpage->data + rpos, size);
6720
6721 len -= size;
6722
6723 rb_advance_reader(cpu_buffer);
6724 rpos = reader->read;
6725 pos += size;
6726
6727 if (rpos >= commit)
6728 break;
6729
6730 event = rb_reader_event(cpu_buffer);
6731 /* Always keep the time extend and data together */
6732 size = rb_event_ts_length(event);
6733 } while (len >= size);
6734
6735 /* update bpage */
6736 local_set(&bpage->commit, pos);
6737 bpage->time_stamp = save_timestamp;
6738
6739 /* we copied everything to the beginning */
6740 read = 0;
6741 } else {
6742 /* update the entry counter */
6743 cpu_buffer->read += rb_page_entries(reader);
6744 cpu_buffer->read_bytes += rb_page_size(reader);
6745
6746 /* swap the pages */
6747 rb_init_page(bpage);
6748 bpage = reader->page;
6749 reader->page = data_page->data;
6750 local_set(&reader->write, 0);
6751 local_set(&reader->entries, 0);
6752 reader->read = 0;
6753 data_page->data = bpage;
6754
6755 /*
6756 * Use the real_end for the data size,
6757 * This gives us a chance to store the lost events
6758 * on the page.
6759 */
6760 if (reader->real_end)
6761 local_set(&bpage->commit, reader->real_end);
6762 }
6763
6764 cpu_buffer->lost_events = 0;
6765
6766 commit = local_read(&bpage->commit);
6767 /*
6768 * Set a flag in the commit field if we lost events
6769 */
6770 if (missed_events) {
6771 /* If there is room at the end of the page to save the
6772 * missed events, then record it there.
6773 */
6774 if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
6775 memcpy(&bpage->data[commit], &missed_events,
6776 sizeof(missed_events));
6777 local_add(RB_MISSED_STORED, &bpage->commit);
6778 commit += sizeof(missed_events);
6779 }
6780 local_add(RB_MISSED_EVENTS, &bpage->commit);
6781 }
6782
6783 /*
6784 * This page may be off to user land. Zero it out here.
6785 */
6786 if (commit < buffer->subbuf_size)
6787 memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
6788
6789 return read;
6790 }
6791 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
6792
6793 /**
6794 * ring_buffer_read_page_data - get pointer to the data in the page.
6795 * @page: the page to get the data from
6796 *
6797 * Returns pointer to the actual data in this page.
6798 */
ring_buffer_read_page_data(struct buffer_data_read_page * page)6799 void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
6800 {
6801 return page->data;
6802 }
6803 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
6804
6805 /**
6806 * ring_buffer_subbuf_size_get - get size of the sub buffer.
6807 * @buffer: the buffer to get the sub buffer size from
6808 *
6809 * Returns size of the sub buffer, in bytes.
6810 */
ring_buffer_subbuf_size_get(struct trace_buffer * buffer)6811 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
6812 {
6813 return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6814 }
6815 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
6816
6817 /**
6818 * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
6819 * @buffer: The ring_buffer to get the system sub page order from
6820 *
6821 * By default, one ring buffer sub page equals to one system page. This parameter
6822 * is configurable, per ring buffer. The size of the ring buffer sub page can be
6823 * extended, but must be an order of system page size.
6824 *
6825 * Returns the order of buffer sub page size, in system pages:
6826 * 0 means the sub buffer size is 1 system page and so forth.
6827 * In case of an error < 0 is returned.
6828 */
ring_buffer_subbuf_order_get(struct trace_buffer * buffer)6829 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
6830 {
6831 if (!buffer)
6832 return -EINVAL;
6833
6834 return buffer->subbuf_order;
6835 }
6836 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
6837
6838 /**
6839 * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
6840 * @buffer: The ring_buffer to set the new page size.
6841 * @order: Order of the system pages in one sub buffer page
6842 *
6843 * By default, one ring buffer pages equals to one system page. This API can be
6844 * used to set new size of the ring buffer page. The size must be order of
6845 * system page size, that's why the input parameter @order is the order of
6846 * system pages that are allocated for one ring buffer page:
6847 * 0 - 1 system page
6848 * 1 - 2 system pages
6849 * 3 - 4 system pages
6850 * ...
6851 *
6852 * Returns 0 on success or < 0 in case of an error.
6853 */
ring_buffer_subbuf_order_set(struct trace_buffer * buffer,int order)6854 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
6855 {
6856 struct ring_buffer_per_cpu *cpu_buffer;
6857 struct buffer_page *bpage, *tmp;
6858 int old_order, old_size;
6859 int nr_pages;
6860 int psize;
6861 int err;
6862 int cpu;
6863
6864 if (!buffer || order < 0)
6865 return -EINVAL;
6866
6867 if (buffer->subbuf_order == order)
6868 return 0;
6869
6870 psize = (1 << order) * PAGE_SIZE;
6871 if (psize <= BUF_PAGE_HDR_SIZE)
6872 return -EINVAL;
6873
6874 /* Size of a subbuf cannot be greater than the write counter */
6875 if (psize > RB_WRITE_MASK + 1)
6876 return -EINVAL;
6877
6878 old_order = buffer->subbuf_order;
6879 old_size = buffer->subbuf_size;
6880
6881 /* prevent another thread from changing buffer sizes */
6882 guard(mutex)(&buffer->mutex);
6883 atomic_inc(&buffer->record_disabled);
6884
6885 /* Make sure all commits have finished */
6886 synchronize_rcu();
6887
6888 buffer->subbuf_order = order;
6889 buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
6890
6891 /* Make sure all new buffers are allocated, before deleting the old ones */
6892 for_each_buffer_cpu(buffer, cpu) {
6893
6894 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6895 continue;
6896
6897 cpu_buffer = buffer->buffers[cpu];
6898
6899 if (cpu_buffer->mapped) {
6900 err = -EBUSY;
6901 goto error;
6902 }
6903
6904 /* Update the number of pages to match the new size */
6905 nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
6906 nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
6907
6908 /* we need a minimum of two pages */
6909 if (nr_pages < 2)
6910 nr_pages = 2;
6911
6912 cpu_buffer->nr_pages_to_update = nr_pages;
6913
6914 /* Include the reader page */
6915 nr_pages++;
6916
6917 /* Allocate the new size buffer */
6918 INIT_LIST_HEAD(&cpu_buffer->new_pages);
6919 if (__rb_allocate_pages(cpu_buffer, nr_pages,
6920 &cpu_buffer->new_pages)) {
6921 /* not enough memory for new pages */
6922 err = -ENOMEM;
6923 goto error;
6924 }
6925 }
6926
6927 for_each_buffer_cpu(buffer, cpu) {
6928 struct buffer_data_page *old_free_data_page;
6929 struct list_head old_pages;
6930 unsigned long flags;
6931
6932 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6933 continue;
6934
6935 cpu_buffer = buffer->buffers[cpu];
6936
6937 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6938
6939 /* Clear the head bit to make the link list normal to read */
6940 rb_head_page_deactivate(cpu_buffer);
6941
6942 /*
6943 * Collect buffers from the cpu_buffer pages list and the
6944 * reader_page on old_pages, so they can be freed later when not
6945 * under a spinlock. The pages list is a linked list with no
6946 * head, adding old_pages turns it into a regular list with
6947 * old_pages being the head.
6948 */
6949 list_add(&old_pages, cpu_buffer->pages);
6950 list_add(&cpu_buffer->reader_page->list, &old_pages);
6951
6952 /* One page was allocated for the reader page */
6953 cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
6954 struct buffer_page, list);
6955 list_del_init(&cpu_buffer->reader_page->list);
6956
6957 /* Install the new pages, remove the head from the list */
6958 cpu_buffer->pages = cpu_buffer->new_pages.next;
6959 list_del_init(&cpu_buffer->new_pages);
6960 cpu_buffer->cnt++;
6961
6962 cpu_buffer->head_page
6963 = list_entry(cpu_buffer->pages, struct buffer_page, list);
6964 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
6965
6966 cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
6967 cpu_buffer->nr_pages_to_update = 0;
6968
6969 old_free_data_page = cpu_buffer->free_page;
6970 cpu_buffer->free_page = NULL;
6971
6972 rb_head_page_activate(cpu_buffer);
6973
6974 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6975
6976 /* Free old sub buffers */
6977 list_for_each_entry_safe(bpage, tmp, &old_pages, list) {
6978 list_del_init(&bpage->list);
6979 free_buffer_page(bpage);
6980 }
6981 free_pages((unsigned long)old_free_data_page, old_order);
6982
6983 rb_check_pages(cpu_buffer);
6984 }
6985
6986 atomic_dec(&buffer->record_disabled);
6987
6988 return 0;
6989
6990 error:
6991 buffer->subbuf_order = old_order;
6992 buffer->subbuf_size = old_size;
6993
6994 atomic_dec(&buffer->record_disabled);
6995
6996 for_each_buffer_cpu(buffer, cpu) {
6997 cpu_buffer = buffer->buffers[cpu];
6998
6999 if (!cpu_buffer->nr_pages_to_update)
7000 continue;
7001
7002 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
7003 list_del_init(&bpage->list);
7004 free_buffer_page(bpage);
7005 }
7006 }
7007
7008 return err;
7009 }
7010 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
7011
rb_alloc_meta_page(struct ring_buffer_per_cpu * cpu_buffer)7012 static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
7013 {
7014 struct page *page;
7015
7016 if (cpu_buffer->meta_page)
7017 return 0;
7018
7019 page = alloc_page(GFP_USER | __GFP_ZERO);
7020 if (!page)
7021 return -ENOMEM;
7022
7023 cpu_buffer->meta_page = page_to_virt(page);
7024
7025 return 0;
7026 }
7027
rb_free_meta_page(struct ring_buffer_per_cpu * cpu_buffer)7028 static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
7029 {
7030 unsigned long addr = (unsigned long)cpu_buffer->meta_page;
7031
7032 free_page(addr);
7033 cpu_buffer->meta_page = NULL;
7034 }
7035
rb_setup_ids_meta_page(struct ring_buffer_per_cpu * cpu_buffer,unsigned long * subbuf_ids)7036 static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer,
7037 unsigned long *subbuf_ids)
7038 {
7039 struct trace_buffer_meta *meta = cpu_buffer->meta_page;
7040 unsigned int nr_subbufs = cpu_buffer->nr_pages + 1;
7041 struct buffer_page *first_subbuf, *subbuf;
7042 int cnt = 0;
7043 int id = 0;
7044
7045 id = rb_page_id(cpu_buffer, cpu_buffer->reader_page, id);
7046 subbuf_ids[id++] = (unsigned long)cpu_buffer->reader_page->page;
7047 cnt++;
7048
7049 first_subbuf = subbuf = rb_set_head_page(cpu_buffer);
7050 do {
7051 id = rb_page_id(cpu_buffer, subbuf, id);
7052
7053 if (WARN_ON(id >= nr_subbufs))
7054 break;
7055
7056 subbuf_ids[id] = (unsigned long)subbuf->page;
7057
7058 rb_inc_page(&subbuf);
7059 id++;
7060 cnt++;
7061 } while (subbuf != first_subbuf);
7062
7063 WARN_ON(cnt != nr_subbufs);
7064
7065 /* install subbuf ID to kern VA translation */
7066 cpu_buffer->subbuf_ids = subbuf_ids;
7067
7068 meta->meta_struct_len = sizeof(*meta);
7069 meta->nr_subbufs = nr_subbufs;
7070 meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
7071 meta->meta_page_size = meta->subbuf_size;
7072
7073 rb_update_meta_page(cpu_buffer);
7074 }
7075
7076 static struct ring_buffer_per_cpu *
rb_get_mapped_buffer(struct trace_buffer * buffer,int cpu)7077 rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu)
7078 {
7079 struct ring_buffer_per_cpu *cpu_buffer;
7080
7081 if (!cpumask_test_cpu(cpu, buffer->cpumask))
7082 return ERR_PTR(-EINVAL);
7083
7084 cpu_buffer = buffer->buffers[cpu];
7085
7086 mutex_lock(&cpu_buffer->mapping_lock);
7087
7088 if (!cpu_buffer->user_mapped) {
7089 mutex_unlock(&cpu_buffer->mapping_lock);
7090 return ERR_PTR(-ENODEV);
7091 }
7092
7093 return cpu_buffer;
7094 }
7095
rb_put_mapped_buffer(struct ring_buffer_per_cpu * cpu_buffer)7096 static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer)
7097 {
7098 mutex_unlock(&cpu_buffer->mapping_lock);
7099 }
7100
7101 /*
7102 * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need
7103 * to be set-up or torn-down.
7104 */
__rb_inc_dec_mapped(struct ring_buffer_per_cpu * cpu_buffer,bool inc)7105 static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer,
7106 bool inc)
7107 {
7108 unsigned long flags;
7109
7110 lockdep_assert_held(&cpu_buffer->mapping_lock);
7111
7112 /* mapped is always greater or equal to user_mapped */
7113 if (WARN_ON(cpu_buffer->mapped < cpu_buffer->user_mapped))
7114 return -EINVAL;
7115
7116 if (inc && cpu_buffer->mapped == UINT_MAX)
7117 return -EBUSY;
7118
7119 if (WARN_ON(!inc && cpu_buffer->user_mapped == 0))
7120 return -EINVAL;
7121
7122 mutex_lock(&cpu_buffer->buffer->mutex);
7123 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7124
7125 if (inc) {
7126 cpu_buffer->user_mapped++;
7127 cpu_buffer->mapped++;
7128 } else {
7129 cpu_buffer->user_mapped--;
7130 cpu_buffer->mapped--;
7131 }
7132
7133 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7134 mutex_unlock(&cpu_buffer->buffer->mutex);
7135
7136 return 0;
7137 }
7138
7139 /*
7140 * +--------------+ pgoff == 0
7141 * | meta page |
7142 * +--------------+ pgoff == 1
7143 * | subbuffer 0 |
7144 * | |
7145 * +--------------+ pgoff == (1 + (1 << subbuf_order))
7146 * | subbuffer 1 |
7147 * | |
7148 * ...
7149 */
7150 #ifdef CONFIG_MMU
__rb_map_vma(struct ring_buffer_per_cpu * cpu_buffer,struct vm_area_struct * vma)7151 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7152 struct vm_area_struct *vma)
7153 {
7154 unsigned long nr_subbufs, nr_pages, nr_vma_pages, pgoff = vma->vm_pgoff;
7155 unsigned int subbuf_pages, subbuf_order;
7156 struct page **pages __free(kfree) = NULL;
7157 int p = 0, s = 0;
7158 int err;
7159
7160 /* Refuse MP_PRIVATE or writable mappings */
7161 if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC ||
7162 !(vma->vm_flags & VM_MAYSHARE))
7163 return -EPERM;
7164
7165 subbuf_order = cpu_buffer->buffer->subbuf_order;
7166 subbuf_pages = 1 << subbuf_order;
7167
7168 if (subbuf_order && pgoff % subbuf_pages)
7169 return -EINVAL;
7170
7171 /*
7172 * Make sure the mapping cannot become writable later. Also tell the VM
7173 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND).
7174 */
7175 vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP,
7176 VM_MAYWRITE);
7177
7178 lockdep_assert_held(&cpu_buffer->mapping_lock);
7179
7180 nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */
7181 nr_pages = ((nr_subbufs + 1) << subbuf_order); /* + meta-page */
7182 if (nr_pages <= pgoff)
7183 return -EINVAL;
7184
7185 nr_pages -= pgoff;
7186
7187 nr_vma_pages = vma_pages(vma);
7188 if (!nr_vma_pages || nr_vma_pages > nr_pages)
7189 return -EINVAL;
7190
7191 nr_pages = nr_vma_pages;
7192
7193 pages = kzalloc_objs(*pages, nr_pages, GFP_KERNEL);
7194 if (!pages)
7195 return -ENOMEM;
7196
7197 if (!pgoff) {
7198 unsigned long meta_page_padding;
7199
7200 pages[p++] = virt_to_page(cpu_buffer->meta_page);
7201
7202 /*
7203 * Pad with the zero-page to align the meta-page with the
7204 * sub-buffers.
7205 */
7206 meta_page_padding = subbuf_pages - 1;
7207 while (meta_page_padding-- && p < nr_pages) {
7208 unsigned long __maybe_unused zero_addr =
7209 vma->vm_start + (PAGE_SIZE * p);
7210
7211 pages[p++] = ZERO_PAGE(zero_addr);
7212 }
7213 } else {
7214 /* Skip the meta-page */
7215 pgoff -= subbuf_pages;
7216
7217 s += pgoff / subbuf_pages;
7218 }
7219
7220 while (p < nr_pages) {
7221 struct page *page;
7222 int off = 0;
7223
7224 if (WARN_ON_ONCE(s >= nr_subbufs))
7225 return -EINVAL;
7226
7227 page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]);
7228
7229 for (; off < (1 << (subbuf_order)); off++, page++) {
7230 if (p >= nr_pages)
7231 break;
7232
7233 pages[p++] = page;
7234 }
7235 s++;
7236 }
7237
7238 err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
7239
7240 return err;
7241 }
7242 #else
__rb_map_vma(struct ring_buffer_per_cpu * cpu_buffer,struct vm_area_struct * vma)7243 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7244 struct vm_area_struct *vma)
7245 {
7246 return -EOPNOTSUPP;
7247 }
7248 #endif
7249
ring_buffer_map(struct trace_buffer * buffer,int cpu,struct vm_area_struct * vma)7250 int ring_buffer_map(struct trace_buffer *buffer, int cpu,
7251 struct vm_area_struct *vma)
7252 {
7253 struct ring_buffer_per_cpu *cpu_buffer;
7254 unsigned long flags, *subbuf_ids;
7255 int err;
7256
7257 if (!cpumask_test_cpu(cpu, buffer->cpumask))
7258 return -EINVAL;
7259
7260 cpu_buffer = buffer->buffers[cpu];
7261
7262 guard(mutex)(&cpu_buffer->mapping_lock);
7263
7264 if (cpu_buffer->user_mapped) {
7265 err = __rb_map_vma(cpu_buffer, vma);
7266 if (!err)
7267 err = __rb_inc_dec_mapped(cpu_buffer, true);
7268 return err;
7269 }
7270
7271 /* prevent another thread from changing buffer/sub-buffer sizes */
7272 guard(mutex)(&buffer->mutex);
7273
7274 err = rb_alloc_meta_page(cpu_buffer);
7275 if (err)
7276 return err;
7277
7278 /* subbuf_ids include the reader while nr_pages does not */
7279 subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL);
7280 if (!subbuf_ids) {
7281 rb_free_meta_page(cpu_buffer);
7282 return -ENOMEM;
7283 }
7284
7285 atomic_inc(&cpu_buffer->resize_disabled);
7286
7287 /*
7288 * Lock all readers to block any subbuf swap until the subbuf IDs are
7289 * assigned.
7290 */
7291 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7292 rb_setup_ids_meta_page(cpu_buffer, subbuf_ids);
7293
7294 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7295
7296 err = __rb_map_vma(cpu_buffer, vma);
7297 if (!err) {
7298 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7299 /* This is the first time it is mapped by user */
7300 cpu_buffer->mapped++;
7301 cpu_buffer->user_mapped = 1;
7302 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7303 } else {
7304 kfree(cpu_buffer->subbuf_ids);
7305 cpu_buffer->subbuf_ids = NULL;
7306 rb_free_meta_page(cpu_buffer);
7307 atomic_dec(&cpu_buffer->resize_disabled);
7308 }
7309
7310 return err;
7311 }
7312
ring_buffer_unmap(struct trace_buffer * buffer,int cpu)7313 int ring_buffer_unmap(struct trace_buffer *buffer, int cpu)
7314 {
7315 struct ring_buffer_per_cpu *cpu_buffer;
7316 unsigned long flags;
7317
7318 if (!cpumask_test_cpu(cpu, buffer->cpumask))
7319 return -EINVAL;
7320
7321 cpu_buffer = buffer->buffers[cpu];
7322
7323 guard(mutex)(&cpu_buffer->mapping_lock);
7324
7325 if (!cpu_buffer->user_mapped) {
7326 return -ENODEV;
7327 } else if (cpu_buffer->user_mapped > 1) {
7328 __rb_inc_dec_mapped(cpu_buffer, false);
7329 return 0;
7330 }
7331
7332 guard(mutex)(&buffer->mutex);
7333 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7334
7335 /* This is the last user space mapping */
7336 if (!WARN_ON_ONCE(cpu_buffer->mapped < cpu_buffer->user_mapped))
7337 cpu_buffer->mapped--;
7338 cpu_buffer->user_mapped = 0;
7339
7340 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7341
7342 kfree(cpu_buffer->subbuf_ids);
7343 cpu_buffer->subbuf_ids = NULL;
7344 rb_free_meta_page(cpu_buffer);
7345 atomic_dec(&cpu_buffer->resize_disabled);
7346
7347 return 0;
7348 }
7349
ring_buffer_map_get_reader(struct trace_buffer * buffer,int cpu)7350 int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu)
7351 {
7352 struct ring_buffer_per_cpu *cpu_buffer;
7353 struct buffer_page *reader;
7354 unsigned long missed_events;
7355 unsigned long reader_size;
7356 unsigned long flags;
7357
7358 cpu_buffer = rb_get_mapped_buffer(buffer, cpu);
7359 if (IS_ERR(cpu_buffer))
7360 return (int)PTR_ERR(cpu_buffer);
7361
7362 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7363
7364 consume:
7365 if (rb_per_cpu_empty(cpu_buffer))
7366 goto out;
7367
7368 reader_size = rb_page_size(cpu_buffer->reader_page);
7369
7370 /*
7371 * There are data to be read on the current reader page, we can
7372 * return to the caller. But before that, we assume the latter will read
7373 * everything. Let's update the kernel reader accordingly.
7374 */
7375 if (cpu_buffer->reader_page->read < reader_size) {
7376 while (cpu_buffer->reader_page->read < reader_size)
7377 rb_advance_reader(cpu_buffer);
7378 goto out;
7379 }
7380
7381 /* Did the reader catch up with the writer? */
7382 if (cpu_buffer->reader_page == cpu_buffer->commit_page)
7383 goto out;
7384
7385 reader = rb_get_reader_page(cpu_buffer);
7386 if (WARN_ON(!reader))
7387 goto out;
7388
7389 /* Check if any events were dropped */
7390 missed_events = cpu_buffer->lost_events;
7391
7392 if (missed_events) {
7393 if (cpu_buffer->reader_page != cpu_buffer->commit_page) {
7394 struct buffer_data_page *bpage = reader->page;
7395 unsigned int commit;
7396 /*
7397 * Use the real_end for the data size,
7398 * This gives us a chance to store the lost events
7399 * on the page.
7400 */
7401 if (reader->real_end)
7402 local_set(&bpage->commit, reader->real_end);
7403 /*
7404 * If there is room at the end of the page to save the
7405 * missed events, then record it there.
7406 */
7407 commit = rb_page_size(reader);
7408 if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
7409 memcpy(&bpage->data[commit], &missed_events,
7410 sizeof(missed_events));
7411 local_add(RB_MISSED_STORED, &bpage->commit);
7412 }
7413 local_add(RB_MISSED_EVENTS, &bpage->commit);
7414 } else if (!WARN_ONCE(cpu_buffer->reader_page == cpu_buffer->tail_page,
7415 "Reader on commit with %ld missed events",
7416 missed_events)) {
7417 /*
7418 * There shouldn't be any missed events if the tail_page
7419 * is on the reader page. But if the tail page is not on the
7420 * reader page and the commit_page is, that would mean that
7421 * there's a commit_overrun (an interrupt preempted an
7422 * addition of an event and then filled the buffer
7423 * with new events). In this case it's not an
7424 * error, but it should still be reported.
7425 *
7426 * TODO: Add missed events to the page for user space to know.
7427 */
7428 pr_info("Ring buffer [%d] commit overrun lost %ld events at timestamp:%lld\n",
7429 cpu, missed_events, cpu_buffer->reader_page->page->time_stamp);
7430 }
7431 }
7432
7433 cpu_buffer->lost_events = 0;
7434
7435 goto consume;
7436
7437 out:
7438 /* Some archs do not have data cache coherency between kernel and user-space */
7439 flush_kernel_vmap_range(cpu_buffer->reader_page->page,
7440 buffer->subbuf_size + BUF_PAGE_HDR_SIZE);
7441
7442 rb_update_meta_page(cpu_buffer);
7443
7444 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7445 rb_put_mapped_buffer(cpu_buffer);
7446
7447 return 0;
7448 }
7449
7450 /*
7451 * We only allocate new buffers, never free them if the CPU goes down.
7452 * If we were to free the buffer, then the user would lose any trace that was in
7453 * the buffer.
7454 */
trace_rb_cpu_prepare(unsigned int cpu,struct hlist_node * node)7455 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
7456 {
7457 struct trace_buffer *buffer;
7458 long nr_pages_same;
7459 int cpu_i;
7460 unsigned long nr_pages;
7461
7462 buffer = container_of(node, struct trace_buffer, node);
7463 if (cpumask_test_cpu(cpu, buffer->cpumask))
7464 return 0;
7465
7466 nr_pages = 0;
7467 nr_pages_same = 1;
7468 /* check if all cpu sizes are same */
7469 for_each_buffer_cpu(buffer, cpu_i) {
7470 /* fill in the size from first enabled cpu */
7471 if (nr_pages == 0)
7472 nr_pages = buffer->buffers[cpu_i]->nr_pages;
7473 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
7474 nr_pages_same = 0;
7475 break;
7476 }
7477 }
7478 /* allocate minimum pages, user can later expand it */
7479 if (!nr_pages_same)
7480 nr_pages = 2;
7481 buffer->buffers[cpu] =
7482 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7483 if (!buffer->buffers[cpu]) {
7484 WARN(1, "failed to allocate ring buffer on CPU %u\n",
7485 cpu);
7486 return -ENOMEM;
7487 }
7488 smp_wmb();
7489 cpumask_set_cpu(cpu, buffer->cpumask);
7490 return 0;
7491 }
7492
7493 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
7494 /*
7495 * This is a basic integrity check of the ring buffer.
7496 * Late in the boot cycle this test will run when configured in.
7497 * It will kick off a thread per CPU that will go into a loop
7498 * writing to the per cpu ring buffer various sizes of data.
7499 * Some of the data will be large items, some small.
7500 *
7501 * Another thread is created that goes into a spin, sending out
7502 * IPIs to the other CPUs to also write into the ring buffer.
7503 * this is to test the nesting ability of the buffer.
7504 *
7505 * Basic stats are recorded and reported. If something in the
7506 * ring buffer should happen that's not expected, a big warning
7507 * is displayed and all ring buffers are disabled.
7508 */
7509 static struct task_struct *rb_threads[NR_CPUS] __initdata;
7510
7511 struct rb_test_data {
7512 struct trace_buffer *buffer;
7513 unsigned long events;
7514 unsigned long bytes_written;
7515 unsigned long bytes_alloc;
7516 unsigned long bytes_dropped;
7517 unsigned long events_nested;
7518 unsigned long bytes_written_nested;
7519 unsigned long bytes_alloc_nested;
7520 unsigned long bytes_dropped_nested;
7521 int min_size_nested;
7522 int max_size_nested;
7523 int max_size;
7524 int min_size;
7525 int cpu;
7526 int cnt;
7527 };
7528
7529 static struct rb_test_data rb_data[NR_CPUS] __initdata;
7530
7531 /* 1 meg per cpu */
7532 #define RB_TEST_BUFFER_SIZE 1048576
7533
7534 static char rb_string[] __initdata =
7535 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
7536 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
7537 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
7538
7539 static bool rb_test_started __initdata;
7540
7541 struct rb_item {
7542 int size;
7543 char str[];
7544 };
7545
rb_write_something(struct rb_test_data * data,bool nested)7546 static __init int rb_write_something(struct rb_test_data *data, bool nested)
7547 {
7548 struct ring_buffer_event *event;
7549 struct rb_item *item;
7550 bool started;
7551 int event_len;
7552 int size;
7553 int len;
7554 int cnt;
7555
7556 /* Have nested writes different that what is written */
7557 cnt = data->cnt + (nested ? 27 : 0);
7558
7559 /* Multiply cnt by ~e, to make some unique increment */
7560 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
7561
7562 len = size + sizeof(struct rb_item);
7563
7564 started = rb_test_started;
7565 /* read rb_test_started before checking buffer enabled */
7566 smp_rmb();
7567
7568 event = ring_buffer_lock_reserve(data->buffer, len);
7569 if (!event) {
7570 /* Ignore dropped events before test starts. */
7571 if (started) {
7572 if (nested)
7573 data->bytes_dropped_nested += len;
7574 else
7575 data->bytes_dropped += len;
7576 }
7577 return len;
7578 }
7579
7580 event_len = ring_buffer_event_length(event);
7581
7582 if (RB_WARN_ON(data->buffer, event_len < len))
7583 goto out;
7584
7585 item = ring_buffer_event_data(event);
7586 item->size = size;
7587 memcpy(item->str, rb_string, size);
7588
7589 if (nested) {
7590 data->bytes_alloc_nested += event_len;
7591 data->bytes_written_nested += len;
7592 data->events_nested++;
7593 if (!data->min_size_nested || len < data->min_size_nested)
7594 data->min_size_nested = len;
7595 if (len > data->max_size_nested)
7596 data->max_size_nested = len;
7597 } else {
7598 data->bytes_alloc += event_len;
7599 data->bytes_written += len;
7600 data->events++;
7601 if (!data->min_size || len < data->min_size)
7602 data->max_size = len;
7603 if (len > data->max_size)
7604 data->max_size = len;
7605 }
7606
7607 out:
7608 ring_buffer_unlock_commit(data->buffer);
7609
7610 return 0;
7611 }
7612
rb_test(void * arg)7613 static __init int rb_test(void *arg)
7614 {
7615 struct rb_test_data *data = arg;
7616
7617 while (!kthread_should_stop()) {
7618 rb_write_something(data, false);
7619 data->cnt++;
7620
7621 set_current_state(TASK_INTERRUPTIBLE);
7622 /* Now sleep between a min of 100-300us and a max of 1ms */
7623 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
7624 }
7625
7626 return 0;
7627 }
7628
rb_ipi(void * ignore)7629 static __init void rb_ipi(void *ignore)
7630 {
7631 struct rb_test_data *data;
7632 int cpu = smp_processor_id();
7633
7634 data = &rb_data[cpu];
7635 rb_write_something(data, true);
7636 }
7637
rb_hammer_test(void * arg)7638 static __init int rb_hammer_test(void *arg)
7639 {
7640 while (!kthread_should_stop()) {
7641
7642 /* Send an IPI to all cpus to write data! */
7643 smp_call_function(rb_ipi, NULL, 1);
7644 /* No sleep, but for non preempt, let others run */
7645 schedule();
7646 }
7647
7648 return 0;
7649 }
7650
test_ringbuffer(void)7651 static __init int test_ringbuffer(void)
7652 {
7653 struct task_struct *rb_hammer;
7654 struct trace_buffer *buffer;
7655 int cpu;
7656 int ret = 0;
7657
7658 if (security_locked_down(LOCKDOWN_TRACEFS)) {
7659 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
7660 return 0;
7661 }
7662
7663 pr_info("Running ring buffer tests...\n");
7664
7665 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
7666 if (WARN_ON(!buffer))
7667 return 0;
7668
7669 /* Disable buffer so that threads can't write to it yet */
7670 ring_buffer_record_off(buffer);
7671
7672 for_each_online_cpu(cpu) {
7673 rb_data[cpu].buffer = buffer;
7674 rb_data[cpu].cpu = cpu;
7675 rb_data[cpu].cnt = cpu;
7676 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
7677 cpu, "rbtester/%u");
7678 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
7679 pr_cont("FAILED\n");
7680 ret = PTR_ERR(rb_threads[cpu]);
7681 goto out_free;
7682 }
7683 }
7684
7685 /* Now create the rb hammer! */
7686 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
7687 if (WARN_ON(IS_ERR(rb_hammer))) {
7688 pr_cont("FAILED\n");
7689 ret = PTR_ERR(rb_hammer);
7690 goto out_free;
7691 }
7692
7693 ring_buffer_record_on(buffer);
7694 /*
7695 * Show buffer is enabled before setting rb_test_started.
7696 * Yes there's a small race window where events could be
7697 * dropped and the thread won't catch it. But when a ring
7698 * buffer gets enabled, there will always be some kind of
7699 * delay before other CPUs see it. Thus, we don't care about
7700 * those dropped events. We care about events dropped after
7701 * the threads see that the buffer is active.
7702 */
7703 smp_wmb();
7704 rb_test_started = true;
7705
7706 set_current_state(TASK_INTERRUPTIBLE);
7707 /* Just run for 10 seconds */
7708 schedule_timeout(10 * HZ);
7709
7710 kthread_stop(rb_hammer);
7711
7712 out_free:
7713 for_each_online_cpu(cpu) {
7714 if (!rb_threads[cpu])
7715 break;
7716 kthread_stop(rb_threads[cpu]);
7717 }
7718 if (ret) {
7719 ring_buffer_free(buffer);
7720 return ret;
7721 }
7722
7723 /* Report! */
7724 pr_info("finished\n");
7725 for_each_online_cpu(cpu) {
7726 struct ring_buffer_event *event;
7727 struct rb_test_data *data = &rb_data[cpu];
7728 struct rb_item *item;
7729 unsigned long total_events;
7730 unsigned long total_dropped;
7731 unsigned long total_written;
7732 unsigned long total_alloc;
7733 unsigned long total_read = 0;
7734 unsigned long total_size = 0;
7735 unsigned long total_len = 0;
7736 unsigned long total_lost = 0;
7737 unsigned long lost;
7738 int big_event_size;
7739 int small_event_size;
7740
7741 ret = -1;
7742
7743 total_events = data->events + data->events_nested;
7744 total_written = data->bytes_written + data->bytes_written_nested;
7745 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
7746 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
7747
7748 big_event_size = data->max_size + data->max_size_nested;
7749 small_event_size = data->min_size + data->min_size_nested;
7750
7751 pr_info("CPU %d:\n", cpu);
7752 pr_info(" events: %ld\n", total_events);
7753 pr_info(" dropped bytes: %ld\n", total_dropped);
7754 pr_info(" alloced bytes: %ld\n", total_alloc);
7755 pr_info(" written bytes: %ld\n", total_written);
7756 pr_info(" biggest event: %d\n", big_event_size);
7757 pr_info(" smallest event: %d\n", small_event_size);
7758
7759 if (RB_WARN_ON(buffer, total_dropped))
7760 break;
7761
7762 ret = 0;
7763
7764 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
7765 total_lost += lost;
7766 item = ring_buffer_event_data(event);
7767 total_len += ring_buffer_event_length(event);
7768 total_size += item->size + sizeof(struct rb_item);
7769 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
7770 pr_info("FAILED!\n");
7771 pr_info("buffer had: %.*s\n", item->size, item->str);
7772 pr_info("expected: %.*s\n", item->size, rb_string);
7773 RB_WARN_ON(buffer, 1);
7774 ret = -1;
7775 break;
7776 }
7777 total_read++;
7778 }
7779 if (ret)
7780 break;
7781
7782 ret = -1;
7783
7784 pr_info(" read events: %ld\n", total_read);
7785 pr_info(" lost events: %ld\n", total_lost);
7786 pr_info(" total events: %ld\n", total_lost + total_read);
7787 pr_info(" recorded len bytes: %ld\n", total_len);
7788 pr_info(" recorded size bytes: %ld\n", total_size);
7789 if (total_lost) {
7790 pr_info(" With dropped events, record len and size may not match\n"
7791 " alloced and written from above\n");
7792 } else {
7793 if (RB_WARN_ON(buffer, total_len != total_alloc ||
7794 total_size != total_written))
7795 break;
7796 }
7797 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
7798 break;
7799
7800 ret = 0;
7801 }
7802 if (!ret)
7803 pr_info("Ring buffer PASSED!\n");
7804
7805 ring_buffer_free(buffer);
7806 return 0;
7807 }
7808
7809 late_initcall(test_ringbuffer);
7810 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
7811