1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Generic ring buffer
4 *
5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/cacheflush.h>
13 #include <linux/trace_seq.h>
14 #include <linux/spinlock.h>
15 #include <linux/irq_work.h>
16 #include <linux/security.h>
17 #include <linux/uaccess.h>
18 #include <linux/hardirq.h>
19 #include <linux/kthread.h> /* for self test */
20 #include <linux/module.h>
21 #include <linux/percpu.h>
22 #include <linux/mutex.h>
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/list.h>
28 #include <linux/cpu.h>
29 #include <linux/oom.h>
30 #include <linux/mm.h>
31
32 #include <asm/local64.h>
33 #include <asm/local.h>
34
35 #include "trace.h"
36
37 /*
38 * The "absolute" timestamp in the buffer is only 59 bits.
39 * If a clock has the 5 MSBs set, it needs to be saved and
40 * reinserted.
41 */
42 #define TS_MSB (0xf8ULL << 56)
43 #define ABS_TS_MASK (~TS_MSB)
44
45 static void update_pages_handler(struct work_struct *work);
46
47 #define RING_BUFFER_META_MAGIC 0xBADFEED
48
49 struct ring_buffer_meta {
50 int magic;
51 int struct_size;
52 unsigned long text_addr;
53 unsigned long data_addr;
54 unsigned long first_buffer;
55 unsigned long head_buffer;
56 unsigned long commit_buffer;
57 __u32 subbuf_size;
58 __u32 nr_subbufs;
59 int buffers[];
60 };
61
62 /*
63 * The ring buffer header is special. We must manually up keep it.
64 */
ring_buffer_print_entry_header(struct trace_seq * s)65 int ring_buffer_print_entry_header(struct trace_seq *s)
66 {
67 trace_seq_puts(s, "# compressed entry header\n");
68 trace_seq_puts(s, "\ttype_len : 5 bits\n");
69 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
70 trace_seq_puts(s, "\tarray : 32 bits\n");
71 trace_seq_putc(s, '\n');
72 trace_seq_printf(s, "\tpadding : type == %d\n",
73 RINGBUF_TYPE_PADDING);
74 trace_seq_printf(s, "\ttime_extend : type == %d\n",
75 RINGBUF_TYPE_TIME_EXTEND);
76 trace_seq_printf(s, "\ttime_stamp : type == %d\n",
77 RINGBUF_TYPE_TIME_STAMP);
78 trace_seq_printf(s, "\tdata max type_len == %d\n",
79 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
80
81 return !trace_seq_has_overflowed(s);
82 }
83
84 /*
85 * The ring buffer is made up of a list of pages. A separate list of pages is
86 * allocated for each CPU. A writer may only write to a buffer that is
87 * associated with the CPU it is currently executing on. A reader may read
88 * from any per cpu buffer.
89 *
90 * The reader is special. For each per cpu buffer, the reader has its own
91 * reader page. When a reader has read the entire reader page, this reader
92 * page is swapped with another page in the ring buffer.
93 *
94 * Now, as long as the writer is off the reader page, the reader can do what
95 * ever it wants with that page. The writer will never write to that page
96 * again (as long as it is out of the ring buffer).
97 *
98 * Here's some silly ASCII art.
99 *
100 * +------+
101 * |reader| RING BUFFER
102 * |page |
103 * +------+ +---+ +---+ +---+
104 * | |-->| |-->| |
105 * +---+ +---+ +---+
106 * ^ |
107 * | |
108 * +---------------+
109 *
110 *
111 * +------+
112 * |reader| RING BUFFER
113 * |page |------------------v
114 * +------+ +---+ +---+ +---+
115 * | |-->| |-->| |
116 * +---+ +---+ +---+
117 * ^ |
118 * | |
119 * +---------------+
120 *
121 *
122 * +------+
123 * |reader| RING BUFFER
124 * |page |------------------v
125 * +------+ +---+ +---+ +---+
126 * ^ | |-->| |-->| |
127 * | +---+ +---+ +---+
128 * | |
129 * | |
130 * +------------------------------+
131 *
132 *
133 * +------+
134 * |buffer| RING BUFFER
135 * |page |------------------v
136 * +------+ +---+ +---+ +---+
137 * ^ | | | |-->| |
138 * | New +---+ +---+ +---+
139 * | Reader------^ |
140 * | page |
141 * +------------------------------+
142 *
143 *
144 * After we make this swap, the reader can hand this page off to the splice
145 * code and be done with it. It can even allocate a new page if it needs to
146 * and swap that into the ring buffer.
147 *
148 * We will be using cmpxchg soon to make all this lockless.
149 *
150 */
151
152 /* Used for individual buffers (after the counter) */
153 #define RB_BUFFER_OFF (1 << 20)
154
155 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
156
157 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
158 #define RB_ALIGNMENT 4U
159 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
160 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
161
162 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
163 # define RB_FORCE_8BYTE_ALIGNMENT 0
164 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
165 #else
166 # define RB_FORCE_8BYTE_ALIGNMENT 1
167 # define RB_ARCH_ALIGNMENT 8U
168 #endif
169
170 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
171
172 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
173 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
174
175 enum {
176 RB_LEN_TIME_EXTEND = 8,
177 RB_LEN_TIME_STAMP = 8,
178 };
179
180 #define skip_time_extend(event) \
181 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
182
183 #define extended_time(event) \
184 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
185
rb_null_event(struct ring_buffer_event * event)186 static inline bool rb_null_event(struct ring_buffer_event *event)
187 {
188 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
189 }
190
rb_event_set_padding(struct ring_buffer_event * event)191 static void rb_event_set_padding(struct ring_buffer_event *event)
192 {
193 /* padding has a NULL time_delta */
194 event->type_len = RINGBUF_TYPE_PADDING;
195 event->time_delta = 0;
196 }
197
198 static unsigned
rb_event_data_length(struct ring_buffer_event * event)199 rb_event_data_length(struct ring_buffer_event *event)
200 {
201 unsigned length;
202
203 if (event->type_len)
204 length = event->type_len * RB_ALIGNMENT;
205 else
206 length = event->array[0];
207 return length + RB_EVNT_HDR_SIZE;
208 }
209
210 /*
211 * Return the length of the given event. Will return
212 * the length of the time extend if the event is a
213 * time extend.
214 */
215 static inline unsigned
rb_event_length(struct ring_buffer_event * event)216 rb_event_length(struct ring_buffer_event *event)
217 {
218 switch (event->type_len) {
219 case RINGBUF_TYPE_PADDING:
220 if (rb_null_event(event))
221 /* undefined */
222 return -1;
223 return event->array[0] + RB_EVNT_HDR_SIZE;
224
225 case RINGBUF_TYPE_TIME_EXTEND:
226 return RB_LEN_TIME_EXTEND;
227
228 case RINGBUF_TYPE_TIME_STAMP:
229 return RB_LEN_TIME_STAMP;
230
231 case RINGBUF_TYPE_DATA:
232 return rb_event_data_length(event);
233 default:
234 WARN_ON_ONCE(1);
235 }
236 /* not hit */
237 return 0;
238 }
239
240 /*
241 * Return total length of time extend and data,
242 * or just the event length for all other events.
243 */
244 static inline unsigned
rb_event_ts_length(struct ring_buffer_event * event)245 rb_event_ts_length(struct ring_buffer_event *event)
246 {
247 unsigned len = 0;
248
249 if (extended_time(event)) {
250 /* time extends include the data event after it */
251 len = RB_LEN_TIME_EXTEND;
252 event = skip_time_extend(event);
253 }
254 return len + rb_event_length(event);
255 }
256
257 /**
258 * ring_buffer_event_length - return the length of the event
259 * @event: the event to get the length of
260 *
261 * Returns the size of the data load of a data event.
262 * If the event is something other than a data event, it
263 * returns the size of the event itself. With the exception
264 * of a TIME EXTEND, where it still returns the size of the
265 * data load of the data event after it.
266 */
ring_buffer_event_length(struct ring_buffer_event * event)267 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
268 {
269 unsigned length;
270
271 if (extended_time(event))
272 event = skip_time_extend(event);
273
274 length = rb_event_length(event);
275 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
276 return length;
277 length -= RB_EVNT_HDR_SIZE;
278 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
279 length -= sizeof(event->array[0]);
280 return length;
281 }
282 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
283
284 /* inline for ring buffer fast paths */
285 static __always_inline void *
rb_event_data(struct ring_buffer_event * event)286 rb_event_data(struct ring_buffer_event *event)
287 {
288 if (extended_time(event))
289 event = skip_time_extend(event);
290 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
291 /* If length is in len field, then array[0] has the data */
292 if (event->type_len)
293 return (void *)&event->array[0];
294 /* Otherwise length is in array[0] and array[1] has the data */
295 return (void *)&event->array[1];
296 }
297
298 /**
299 * ring_buffer_event_data - return the data of the event
300 * @event: the event to get the data from
301 */
ring_buffer_event_data(struct ring_buffer_event * event)302 void *ring_buffer_event_data(struct ring_buffer_event *event)
303 {
304 return rb_event_data(event);
305 }
306 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
307
308 #define for_each_buffer_cpu(buffer, cpu) \
309 for_each_cpu(cpu, buffer->cpumask)
310
311 #define for_each_online_buffer_cpu(buffer, cpu) \
312 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
313
314 #define TS_SHIFT 27
315 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
316 #define TS_DELTA_TEST (~TS_MASK)
317
rb_event_time_stamp(struct ring_buffer_event * event)318 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
319 {
320 u64 ts;
321
322 ts = event->array[0];
323 ts <<= TS_SHIFT;
324 ts += event->time_delta;
325
326 return ts;
327 }
328
329 /* Flag when events were overwritten */
330 #define RB_MISSED_EVENTS (1 << 31)
331 /* Missed count stored at end */
332 #define RB_MISSED_STORED (1 << 30)
333
334 #define RB_MISSED_MASK (3 << 30)
335
336 struct buffer_data_page {
337 u64 time_stamp; /* page time stamp */
338 local_t commit; /* write committed index */
339 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
340 };
341
342 struct buffer_data_read_page {
343 unsigned order; /* order of the page */
344 struct buffer_data_page *data; /* actual data, stored in this page */
345 };
346
347 /*
348 * Note, the buffer_page list must be first. The buffer pages
349 * are allocated in cache lines, which means that each buffer
350 * page will be at the beginning of a cache line, and thus
351 * the least significant bits will be zero. We use this to
352 * add flags in the list struct pointers, to make the ring buffer
353 * lockless.
354 */
355 struct buffer_page {
356 struct list_head list; /* list of buffer pages */
357 local_t write; /* index for next write */
358 unsigned read; /* index for next read */
359 local_t entries; /* entries on this page */
360 unsigned long real_end; /* real end of data */
361 unsigned order; /* order of the page */
362 u32 id:30; /* ID for external mapping */
363 u32 range:1; /* Mapped via a range */
364 struct buffer_data_page *page; /* Actual data page */
365 };
366
367 /*
368 * The buffer page counters, write and entries, must be reset
369 * atomically when crossing page boundaries. To synchronize this
370 * update, two counters are inserted into the number. One is
371 * the actual counter for the write position or count on the page.
372 *
373 * The other is a counter of updaters. Before an update happens
374 * the update partition of the counter is incremented. This will
375 * allow the updater to update the counter atomically.
376 *
377 * The counter is 20 bits, and the state data is 12.
378 */
379 #define RB_WRITE_MASK 0xfffff
380 #define RB_WRITE_INTCNT (1 << 20)
381
rb_init_page(struct buffer_data_page * bpage)382 static void rb_init_page(struct buffer_data_page *bpage)
383 {
384 local_set(&bpage->commit, 0);
385 }
386
rb_page_commit(struct buffer_page * bpage)387 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
388 {
389 return local_read(&bpage->page->commit);
390 }
391
free_buffer_page(struct buffer_page * bpage)392 static void free_buffer_page(struct buffer_page *bpage)
393 {
394 /* Range pages are not to be freed */
395 if (!bpage->range)
396 free_pages((unsigned long)bpage->page, bpage->order);
397 kfree(bpage);
398 }
399
400 /*
401 * We need to fit the time_stamp delta into 27 bits.
402 */
test_time_stamp(u64 delta)403 static inline bool test_time_stamp(u64 delta)
404 {
405 return !!(delta & TS_DELTA_TEST);
406 }
407
408 struct rb_irq_work {
409 struct irq_work work;
410 wait_queue_head_t waiters;
411 wait_queue_head_t full_waiters;
412 atomic_t seq;
413 bool waiters_pending;
414 bool full_waiters_pending;
415 bool wakeup_full;
416 };
417
418 /*
419 * Structure to hold event state and handle nested events.
420 */
421 struct rb_event_info {
422 u64 ts;
423 u64 delta;
424 u64 before;
425 u64 after;
426 unsigned long length;
427 struct buffer_page *tail_page;
428 int add_timestamp;
429 };
430
431 /*
432 * Used for the add_timestamp
433 * NONE
434 * EXTEND - wants a time extend
435 * ABSOLUTE - the buffer requests all events to have absolute time stamps
436 * FORCE - force a full time stamp.
437 */
438 enum {
439 RB_ADD_STAMP_NONE = 0,
440 RB_ADD_STAMP_EXTEND = BIT(1),
441 RB_ADD_STAMP_ABSOLUTE = BIT(2),
442 RB_ADD_STAMP_FORCE = BIT(3)
443 };
444 /*
445 * Used for which event context the event is in.
446 * TRANSITION = 0
447 * NMI = 1
448 * IRQ = 2
449 * SOFTIRQ = 3
450 * NORMAL = 4
451 *
452 * See trace_recursive_lock() comment below for more details.
453 */
454 enum {
455 RB_CTX_TRANSITION,
456 RB_CTX_NMI,
457 RB_CTX_IRQ,
458 RB_CTX_SOFTIRQ,
459 RB_CTX_NORMAL,
460 RB_CTX_MAX
461 };
462
463 struct rb_time_struct {
464 local64_t time;
465 };
466 typedef struct rb_time_struct rb_time_t;
467
468 #define MAX_NEST 5
469
470 /*
471 * head_page == tail_page && head == tail then buffer is empty.
472 */
473 struct ring_buffer_per_cpu {
474 int cpu;
475 atomic_t record_disabled;
476 atomic_t resize_disabled;
477 struct trace_buffer *buffer;
478 raw_spinlock_t reader_lock; /* serialize readers */
479 arch_spinlock_t lock;
480 struct lock_class_key lock_key;
481 struct buffer_data_page *free_page;
482 unsigned long nr_pages;
483 unsigned int current_context;
484 struct list_head *pages;
485 /* pages generation counter, incremented when the list changes */
486 unsigned long cnt;
487 struct buffer_page *head_page; /* read from head */
488 struct buffer_page *tail_page; /* write to tail */
489 struct buffer_page *commit_page; /* committed pages */
490 struct buffer_page *reader_page;
491 unsigned long lost_events;
492 unsigned long last_overrun;
493 unsigned long nest;
494 local_t entries_bytes;
495 local_t entries;
496 local_t overrun;
497 local_t commit_overrun;
498 local_t dropped_events;
499 local_t committing;
500 local_t commits;
501 local_t pages_touched;
502 local_t pages_lost;
503 local_t pages_read;
504 long last_pages_touch;
505 size_t shortest_full;
506 unsigned long read;
507 unsigned long read_bytes;
508 rb_time_t write_stamp;
509 rb_time_t before_stamp;
510 u64 event_stamp[MAX_NEST];
511 u64 read_stamp;
512 /* pages removed since last reset */
513 unsigned long pages_removed;
514
515 unsigned int mapped;
516 unsigned int user_mapped; /* user space mapping */
517 struct mutex mapping_lock;
518 unsigned long *subbuf_ids; /* ID to subbuf VA */
519 struct trace_buffer_meta *meta_page;
520 struct ring_buffer_meta *ring_meta;
521
522 /* ring buffer pages to update, > 0 to add, < 0 to remove */
523 long nr_pages_to_update;
524 struct list_head new_pages; /* new pages to add */
525 struct work_struct update_pages_work;
526 struct completion update_done;
527
528 struct rb_irq_work irq_work;
529 };
530
531 struct trace_buffer {
532 unsigned flags;
533 int cpus;
534 atomic_t record_disabled;
535 atomic_t resizing;
536 cpumask_var_t cpumask;
537
538 struct lock_class_key *reader_lock_key;
539
540 struct mutex mutex;
541
542 struct ring_buffer_per_cpu **buffers;
543
544 struct hlist_node node;
545 u64 (*clock)(void);
546
547 struct rb_irq_work irq_work;
548 bool time_stamp_abs;
549
550 unsigned long range_addr_start;
551 unsigned long range_addr_end;
552
553 long last_text_delta;
554 long last_data_delta;
555
556 unsigned int subbuf_size;
557 unsigned int subbuf_order;
558 unsigned int max_data_size;
559 };
560
561 struct ring_buffer_iter {
562 struct ring_buffer_per_cpu *cpu_buffer;
563 unsigned long head;
564 unsigned long next_event;
565 struct buffer_page *head_page;
566 struct buffer_page *cache_reader_page;
567 unsigned long cache_read;
568 unsigned long cache_pages_removed;
569 u64 read_stamp;
570 u64 page_stamp;
571 struct ring_buffer_event *event;
572 size_t event_size;
573 int missed_events;
574 };
575
ring_buffer_print_page_header(struct trace_buffer * buffer,struct trace_seq * s)576 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
577 {
578 struct buffer_data_page field;
579
580 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
581 "offset:0;\tsize:%u;\tsigned:%u;\n",
582 (unsigned int)sizeof(field.time_stamp),
583 (unsigned int)is_signed_type(u64));
584
585 trace_seq_printf(s, "\tfield: local_t commit;\t"
586 "offset:%u;\tsize:%u;\tsigned:%u;\n",
587 (unsigned int)offsetof(typeof(field), commit),
588 (unsigned int)sizeof(field.commit),
589 (unsigned int)is_signed_type(long));
590
591 trace_seq_printf(s, "\tfield: int overwrite;\t"
592 "offset:%u;\tsize:%u;\tsigned:%u;\n",
593 (unsigned int)offsetof(typeof(field), commit),
594 1,
595 (unsigned int)is_signed_type(long));
596
597 trace_seq_printf(s, "\tfield: char data;\t"
598 "offset:%u;\tsize:%u;\tsigned:%u;\n",
599 (unsigned int)offsetof(typeof(field), data),
600 (unsigned int)buffer->subbuf_size,
601 (unsigned int)is_signed_type(char));
602
603 return !trace_seq_has_overflowed(s);
604 }
605
rb_time_read(rb_time_t * t,u64 * ret)606 static inline void rb_time_read(rb_time_t *t, u64 *ret)
607 {
608 *ret = local64_read(&t->time);
609 }
rb_time_set(rb_time_t * t,u64 val)610 static void rb_time_set(rb_time_t *t, u64 val)
611 {
612 local64_set(&t->time, val);
613 }
614
615 /*
616 * Enable this to make sure that the event passed to
617 * ring_buffer_event_time_stamp() is not committed and also
618 * is on the buffer that it passed in.
619 */
620 //#define RB_VERIFY_EVENT
621 #ifdef RB_VERIFY_EVENT
622 static struct list_head *rb_list_head(struct list_head *list);
verify_event(struct ring_buffer_per_cpu * cpu_buffer,void * event)623 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
624 void *event)
625 {
626 struct buffer_page *page = cpu_buffer->commit_page;
627 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
628 struct list_head *next;
629 long commit, write;
630 unsigned long addr = (unsigned long)event;
631 bool done = false;
632 int stop = 0;
633
634 /* Make sure the event exists and is not committed yet */
635 do {
636 if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
637 done = true;
638 commit = local_read(&page->page->commit);
639 write = local_read(&page->write);
640 if (addr >= (unsigned long)&page->page->data[commit] &&
641 addr < (unsigned long)&page->page->data[write])
642 return;
643
644 next = rb_list_head(page->list.next);
645 page = list_entry(next, struct buffer_page, list);
646 } while (!done);
647 WARN_ON_ONCE(1);
648 }
649 #else
verify_event(struct ring_buffer_per_cpu * cpu_buffer,void * event)650 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
651 void *event)
652 {
653 }
654 #endif
655
656 /*
657 * The absolute time stamp drops the 5 MSBs and some clocks may
658 * require them. The rb_fix_abs_ts() will take a previous full
659 * time stamp, and add the 5 MSB of that time stamp on to the
660 * saved absolute time stamp. Then they are compared in case of
661 * the unlikely event that the latest time stamp incremented
662 * the 5 MSB.
663 */
rb_fix_abs_ts(u64 abs,u64 save_ts)664 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
665 {
666 if (save_ts & TS_MSB) {
667 abs |= save_ts & TS_MSB;
668 /* Check for overflow */
669 if (unlikely(abs < save_ts))
670 abs += 1ULL << 59;
671 }
672 return abs;
673 }
674
675 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
676
677 /**
678 * ring_buffer_event_time_stamp - return the event's current time stamp
679 * @buffer: The buffer that the event is on
680 * @event: the event to get the time stamp of
681 *
682 * Note, this must be called after @event is reserved, and before it is
683 * committed to the ring buffer. And must be called from the same
684 * context where the event was reserved (normal, softirq, irq, etc).
685 *
686 * Returns the time stamp associated with the current event.
687 * If the event has an extended time stamp, then that is used as
688 * the time stamp to return.
689 * In the highly unlikely case that the event was nested more than
690 * the max nesting, then the write_stamp of the buffer is returned,
691 * otherwise current time is returned, but that really neither of
692 * the last two cases should ever happen.
693 */
ring_buffer_event_time_stamp(struct trace_buffer * buffer,struct ring_buffer_event * event)694 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
695 struct ring_buffer_event *event)
696 {
697 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
698 unsigned int nest;
699 u64 ts;
700
701 /* If the event includes an absolute time, then just use that */
702 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
703 ts = rb_event_time_stamp(event);
704 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
705 }
706
707 nest = local_read(&cpu_buffer->committing);
708 verify_event(cpu_buffer, event);
709 if (WARN_ON_ONCE(!nest))
710 goto fail;
711
712 /* Read the current saved nesting level time stamp */
713 if (likely(--nest < MAX_NEST))
714 return cpu_buffer->event_stamp[nest];
715
716 /* Shouldn't happen, warn if it does */
717 WARN_ONCE(1, "nest (%d) greater than max", nest);
718
719 fail:
720 rb_time_read(&cpu_buffer->write_stamp, &ts);
721
722 return ts;
723 }
724
725 /**
726 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
727 * @buffer: The ring_buffer to get the number of pages from
728 * @cpu: The cpu of the ring_buffer to get the number of pages from
729 *
730 * Returns the number of pages that have content in the ring buffer.
731 */
ring_buffer_nr_dirty_pages(struct trace_buffer * buffer,int cpu)732 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
733 {
734 size_t read;
735 size_t lost;
736 size_t cnt;
737
738 read = local_read(&buffer->buffers[cpu]->pages_read);
739 lost = local_read(&buffer->buffers[cpu]->pages_lost);
740 cnt = local_read(&buffer->buffers[cpu]->pages_touched);
741
742 if (WARN_ON_ONCE(cnt < lost))
743 return 0;
744
745 cnt -= lost;
746
747 /* The reader can read an empty page, but not more than that */
748 if (cnt < read) {
749 WARN_ON_ONCE(read > cnt + 1);
750 return 0;
751 }
752
753 return cnt - read;
754 }
755
full_hit(struct trace_buffer * buffer,int cpu,int full)756 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
757 {
758 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
759 size_t nr_pages;
760 size_t dirty;
761
762 nr_pages = cpu_buffer->nr_pages;
763 if (!nr_pages || !full)
764 return true;
765
766 /*
767 * Add one as dirty will never equal nr_pages, as the sub-buffer
768 * that the writer is on is not counted as dirty.
769 * This is needed if "buffer_percent" is set to 100.
770 */
771 dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
772
773 return (dirty * 100) >= (full * nr_pages);
774 }
775
776 /*
777 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
778 *
779 * Schedules a delayed work to wake up any task that is blocked on the
780 * ring buffer waiters queue.
781 */
rb_wake_up_waiters(struct irq_work * work)782 static void rb_wake_up_waiters(struct irq_work *work)
783 {
784 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
785
786 /* For waiters waiting for the first wake up */
787 (void)atomic_fetch_inc_release(&rbwork->seq);
788
789 wake_up_all(&rbwork->waiters);
790 if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
791 /* Only cpu_buffer sets the above flags */
792 struct ring_buffer_per_cpu *cpu_buffer =
793 container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
794
795 /* Called from interrupt context */
796 raw_spin_lock(&cpu_buffer->reader_lock);
797 rbwork->wakeup_full = false;
798 rbwork->full_waiters_pending = false;
799
800 /* Waking up all waiters, they will reset the shortest full */
801 cpu_buffer->shortest_full = 0;
802 raw_spin_unlock(&cpu_buffer->reader_lock);
803
804 wake_up_all(&rbwork->full_waiters);
805 }
806 }
807
808 /**
809 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
810 * @buffer: The ring buffer to wake waiters on
811 * @cpu: The CPU buffer to wake waiters on
812 *
813 * In the case of a file that represents a ring buffer is closing,
814 * it is prudent to wake up any waiters that are on this.
815 */
ring_buffer_wake_waiters(struct trace_buffer * buffer,int cpu)816 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
817 {
818 struct ring_buffer_per_cpu *cpu_buffer;
819 struct rb_irq_work *rbwork;
820
821 if (!buffer)
822 return;
823
824 if (cpu == RING_BUFFER_ALL_CPUS) {
825
826 /* Wake up individual ones too. One level recursion */
827 for_each_buffer_cpu(buffer, cpu)
828 ring_buffer_wake_waiters(buffer, cpu);
829
830 rbwork = &buffer->irq_work;
831 } else {
832 if (WARN_ON_ONCE(!buffer->buffers))
833 return;
834 if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
835 return;
836
837 cpu_buffer = buffer->buffers[cpu];
838 /* The CPU buffer may not have been initialized yet */
839 if (!cpu_buffer)
840 return;
841 rbwork = &cpu_buffer->irq_work;
842 }
843
844 /* This can be called in any context */
845 irq_work_queue(&rbwork->work);
846 }
847
rb_watermark_hit(struct trace_buffer * buffer,int cpu,int full)848 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
849 {
850 struct ring_buffer_per_cpu *cpu_buffer;
851 bool ret = false;
852
853 /* Reads of all CPUs always waits for any data */
854 if (cpu == RING_BUFFER_ALL_CPUS)
855 return !ring_buffer_empty(buffer);
856
857 cpu_buffer = buffer->buffers[cpu];
858
859 if (!ring_buffer_empty_cpu(buffer, cpu)) {
860 unsigned long flags;
861 bool pagebusy;
862
863 if (!full)
864 return true;
865
866 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
867 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
868 ret = !pagebusy && full_hit(buffer, cpu, full);
869
870 if (!ret && (!cpu_buffer->shortest_full ||
871 cpu_buffer->shortest_full > full)) {
872 cpu_buffer->shortest_full = full;
873 }
874 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
875 }
876 return ret;
877 }
878
879 static inline bool
rb_wait_cond(struct rb_irq_work * rbwork,struct trace_buffer * buffer,int cpu,int full,ring_buffer_cond_fn cond,void * data)880 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer,
881 int cpu, int full, ring_buffer_cond_fn cond, void *data)
882 {
883 if (rb_watermark_hit(buffer, cpu, full))
884 return true;
885
886 if (cond(data))
887 return true;
888
889 /*
890 * The events can happen in critical sections where
891 * checking a work queue can cause deadlocks.
892 * After adding a task to the queue, this flag is set
893 * only to notify events to try to wake up the queue
894 * using irq_work.
895 *
896 * We don't clear it even if the buffer is no longer
897 * empty. The flag only causes the next event to run
898 * irq_work to do the work queue wake up. The worse
899 * that can happen if we race with !trace_empty() is that
900 * an event will cause an irq_work to try to wake up
901 * an empty queue.
902 *
903 * There's no reason to protect this flag either, as
904 * the work queue and irq_work logic will do the necessary
905 * synchronization for the wake ups. The only thing
906 * that is necessary is that the wake up happens after
907 * a task has been queued. It's OK for spurious wake ups.
908 */
909 if (full)
910 rbwork->full_waiters_pending = true;
911 else
912 rbwork->waiters_pending = true;
913
914 return false;
915 }
916
917 struct rb_wait_data {
918 struct rb_irq_work *irq_work;
919 int seq;
920 };
921
922 /*
923 * The default wait condition for ring_buffer_wait() is to just to exit the
924 * wait loop the first time it is woken up.
925 */
rb_wait_once(void * data)926 static bool rb_wait_once(void *data)
927 {
928 struct rb_wait_data *rdata = data;
929 struct rb_irq_work *rbwork = rdata->irq_work;
930
931 return atomic_read_acquire(&rbwork->seq) != rdata->seq;
932 }
933
934 /**
935 * ring_buffer_wait - wait for input to the ring buffer
936 * @buffer: buffer to wait on
937 * @cpu: the cpu buffer to wait on
938 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
939 * @cond: condition function to break out of wait (NULL to run once)
940 * @data: the data to pass to @cond.
941 *
942 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
943 * as data is added to any of the @buffer's cpu buffers. Otherwise
944 * it will wait for data to be added to a specific cpu buffer.
945 */
ring_buffer_wait(struct trace_buffer * buffer,int cpu,int full,ring_buffer_cond_fn cond,void * data)946 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full,
947 ring_buffer_cond_fn cond, void *data)
948 {
949 struct ring_buffer_per_cpu *cpu_buffer;
950 struct wait_queue_head *waitq;
951 struct rb_irq_work *rbwork;
952 struct rb_wait_data rdata;
953 int ret = 0;
954
955 /*
956 * Depending on what the caller is waiting for, either any
957 * data in any cpu buffer, or a specific buffer, put the
958 * caller on the appropriate wait queue.
959 */
960 if (cpu == RING_BUFFER_ALL_CPUS) {
961 rbwork = &buffer->irq_work;
962 /* Full only makes sense on per cpu reads */
963 full = 0;
964 } else {
965 if (!cpumask_test_cpu(cpu, buffer->cpumask))
966 return -ENODEV;
967 cpu_buffer = buffer->buffers[cpu];
968 rbwork = &cpu_buffer->irq_work;
969 }
970
971 if (full)
972 waitq = &rbwork->full_waiters;
973 else
974 waitq = &rbwork->waiters;
975
976 /* Set up to exit loop as soon as it is woken */
977 if (!cond) {
978 cond = rb_wait_once;
979 rdata.irq_work = rbwork;
980 rdata.seq = atomic_read_acquire(&rbwork->seq);
981 data = &rdata;
982 }
983
984 ret = wait_event_interruptible((*waitq),
985 rb_wait_cond(rbwork, buffer, cpu, full, cond, data));
986
987 return ret;
988 }
989
990 /**
991 * ring_buffer_poll_wait - poll on buffer input
992 * @buffer: buffer to wait on
993 * @cpu: the cpu buffer to wait on
994 * @filp: the file descriptor
995 * @poll_table: The poll descriptor
996 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
997 *
998 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
999 * as data is added to any of the @buffer's cpu buffers. Otherwise
1000 * it will wait for data to be added to a specific cpu buffer.
1001 *
1002 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1003 * zero otherwise.
1004 */
ring_buffer_poll_wait(struct trace_buffer * buffer,int cpu,struct file * filp,poll_table * poll_table,int full)1005 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1006 struct file *filp, poll_table *poll_table, int full)
1007 {
1008 struct ring_buffer_per_cpu *cpu_buffer;
1009 struct rb_irq_work *rbwork;
1010
1011 if (cpu == RING_BUFFER_ALL_CPUS) {
1012 rbwork = &buffer->irq_work;
1013 full = 0;
1014 } else {
1015 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1016 return EPOLLERR;
1017
1018 cpu_buffer = buffer->buffers[cpu];
1019 rbwork = &cpu_buffer->irq_work;
1020 }
1021
1022 if (full) {
1023 poll_wait(filp, &rbwork->full_waiters, poll_table);
1024
1025 if (rb_watermark_hit(buffer, cpu, full))
1026 return EPOLLIN | EPOLLRDNORM;
1027 /*
1028 * Only allow full_waiters_pending update to be seen after
1029 * the shortest_full is set (in rb_watermark_hit). If the
1030 * writer sees the full_waiters_pending flag set, it will
1031 * compare the amount in the ring buffer to shortest_full.
1032 * If the amount in the ring buffer is greater than the
1033 * shortest_full percent, it will call the irq_work handler
1034 * to wake up this list. The irq_handler will reset shortest_full
1035 * back to zero. That's done under the reader_lock, but
1036 * the below smp_mb() makes sure that the update to
1037 * full_waiters_pending doesn't leak up into the above.
1038 */
1039 smp_mb();
1040 rbwork->full_waiters_pending = true;
1041 return 0;
1042 }
1043
1044 poll_wait(filp, &rbwork->waiters, poll_table);
1045 rbwork->waiters_pending = true;
1046
1047 /*
1048 * There's a tight race between setting the waiters_pending and
1049 * checking if the ring buffer is empty. Once the waiters_pending bit
1050 * is set, the next event will wake the task up, but we can get stuck
1051 * if there's only a single event in.
1052 *
1053 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1054 * but adding a memory barrier to all events will cause too much of a
1055 * performance hit in the fast path. We only need a memory barrier when
1056 * the buffer goes from empty to having content. But as this race is
1057 * extremely small, and it's not a problem if another event comes in, we
1058 * will fix it later.
1059 */
1060 smp_mb();
1061
1062 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1063 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1064 return EPOLLIN | EPOLLRDNORM;
1065 return 0;
1066 }
1067
1068 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1069 #define RB_WARN_ON(b, cond) \
1070 ({ \
1071 int _____ret = unlikely(cond); \
1072 if (_____ret) { \
1073 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1074 struct ring_buffer_per_cpu *__b = \
1075 (void *)b; \
1076 atomic_inc(&__b->buffer->record_disabled); \
1077 } else \
1078 atomic_inc(&b->record_disabled); \
1079 WARN_ON(1); \
1080 } \
1081 _____ret; \
1082 })
1083
1084 /* Up this if you want to test the TIME_EXTENTS and normalization */
1085 #define DEBUG_SHIFT 0
1086
rb_time_stamp(struct trace_buffer * buffer)1087 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1088 {
1089 u64 ts;
1090
1091 /* Skip retpolines :-( */
1092 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1093 ts = trace_clock_local();
1094 else
1095 ts = buffer->clock();
1096
1097 /* shift to debug/test normalization and TIME_EXTENTS */
1098 return ts << DEBUG_SHIFT;
1099 }
1100
ring_buffer_time_stamp(struct trace_buffer * buffer)1101 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1102 {
1103 u64 time;
1104
1105 preempt_disable_notrace();
1106 time = rb_time_stamp(buffer);
1107 preempt_enable_notrace();
1108
1109 return time;
1110 }
1111 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1112
ring_buffer_normalize_time_stamp(struct trace_buffer * buffer,int cpu,u64 * ts)1113 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1114 int cpu, u64 *ts)
1115 {
1116 /* Just stupid testing the normalize function and deltas */
1117 *ts >>= DEBUG_SHIFT;
1118 }
1119 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1120
1121 /*
1122 * Making the ring buffer lockless makes things tricky.
1123 * Although writes only happen on the CPU that they are on,
1124 * and they only need to worry about interrupts. Reads can
1125 * happen on any CPU.
1126 *
1127 * The reader page is always off the ring buffer, but when the
1128 * reader finishes with a page, it needs to swap its page with
1129 * a new one from the buffer. The reader needs to take from
1130 * the head (writes go to the tail). But if a writer is in overwrite
1131 * mode and wraps, it must push the head page forward.
1132 *
1133 * Here lies the problem.
1134 *
1135 * The reader must be careful to replace only the head page, and
1136 * not another one. As described at the top of the file in the
1137 * ASCII art, the reader sets its old page to point to the next
1138 * page after head. It then sets the page after head to point to
1139 * the old reader page. But if the writer moves the head page
1140 * during this operation, the reader could end up with the tail.
1141 *
1142 * We use cmpxchg to help prevent this race. We also do something
1143 * special with the page before head. We set the LSB to 1.
1144 *
1145 * When the writer must push the page forward, it will clear the
1146 * bit that points to the head page, move the head, and then set
1147 * the bit that points to the new head page.
1148 *
1149 * We also don't want an interrupt coming in and moving the head
1150 * page on another writer. Thus we use the second LSB to catch
1151 * that too. Thus:
1152 *
1153 * head->list->prev->next bit 1 bit 0
1154 * ------- -------
1155 * Normal page 0 0
1156 * Points to head page 0 1
1157 * New head page 1 0
1158 *
1159 * Note we can not trust the prev pointer of the head page, because:
1160 *
1161 * +----+ +-----+ +-----+
1162 * | |------>| T |---X--->| N |
1163 * | |<------| | | |
1164 * +----+ +-----+ +-----+
1165 * ^ ^ |
1166 * | +-----+ | |
1167 * +----------| R |----------+ |
1168 * | |<-----------+
1169 * +-----+
1170 *
1171 * Key: ---X--> HEAD flag set in pointer
1172 * T Tail page
1173 * R Reader page
1174 * N Next page
1175 *
1176 * (see __rb_reserve_next() to see where this happens)
1177 *
1178 * What the above shows is that the reader just swapped out
1179 * the reader page with a page in the buffer, but before it
1180 * could make the new header point back to the new page added
1181 * it was preempted by a writer. The writer moved forward onto
1182 * the new page added by the reader and is about to move forward
1183 * again.
1184 *
1185 * You can see, it is legitimate for the previous pointer of
1186 * the head (or any page) not to point back to itself. But only
1187 * temporarily.
1188 */
1189
1190 #define RB_PAGE_NORMAL 0UL
1191 #define RB_PAGE_HEAD 1UL
1192 #define RB_PAGE_UPDATE 2UL
1193
1194
1195 #define RB_FLAG_MASK 3UL
1196
1197 /* PAGE_MOVED is not part of the mask */
1198 #define RB_PAGE_MOVED 4UL
1199
1200 /*
1201 * rb_list_head - remove any bit
1202 */
rb_list_head(struct list_head * list)1203 static struct list_head *rb_list_head(struct list_head *list)
1204 {
1205 unsigned long val = (unsigned long)list;
1206
1207 return (struct list_head *)(val & ~RB_FLAG_MASK);
1208 }
1209
1210 /*
1211 * rb_is_head_page - test if the given page is the head page
1212 *
1213 * Because the reader may move the head_page pointer, we can
1214 * not trust what the head page is (it may be pointing to
1215 * the reader page). But if the next page is a header page,
1216 * its flags will be non zero.
1217 */
1218 static inline int
rb_is_head_page(struct buffer_page * page,struct list_head * list)1219 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1220 {
1221 unsigned long val;
1222
1223 val = (unsigned long)list->next;
1224
1225 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1226 return RB_PAGE_MOVED;
1227
1228 return val & RB_FLAG_MASK;
1229 }
1230
1231 /*
1232 * rb_is_reader_page
1233 *
1234 * The unique thing about the reader page, is that, if the
1235 * writer is ever on it, the previous pointer never points
1236 * back to the reader page.
1237 */
rb_is_reader_page(struct buffer_page * page)1238 static bool rb_is_reader_page(struct buffer_page *page)
1239 {
1240 struct list_head *list = page->list.prev;
1241
1242 return rb_list_head(list->next) != &page->list;
1243 }
1244
1245 /*
1246 * rb_set_list_to_head - set a list_head to be pointing to head.
1247 */
rb_set_list_to_head(struct list_head * list)1248 static void rb_set_list_to_head(struct list_head *list)
1249 {
1250 unsigned long *ptr;
1251
1252 ptr = (unsigned long *)&list->next;
1253 *ptr |= RB_PAGE_HEAD;
1254 *ptr &= ~RB_PAGE_UPDATE;
1255 }
1256
1257 /*
1258 * rb_head_page_activate - sets up head page
1259 */
rb_head_page_activate(struct ring_buffer_per_cpu * cpu_buffer)1260 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1261 {
1262 struct buffer_page *head;
1263
1264 head = cpu_buffer->head_page;
1265 if (!head)
1266 return;
1267
1268 /*
1269 * Set the previous list pointer to have the HEAD flag.
1270 */
1271 rb_set_list_to_head(head->list.prev);
1272
1273 if (cpu_buffer->ring_meta) {
1274 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1275 meta->head_buffer = (unsigned long)head->page;
1276 }
1277 }
1278
rb_list_head_clear(struct list_head * list)1279 static void rb_list_head_clear(struct list_head *list)
1280 {
1281 unsigned long *ptr = (unsigned long *)&list->next;
1282
1283 *ptr &= ~RB_FLAG_MASK;
1284 }
1285
1286 /*
1287 * rb_head_page_deactivate - clears head page ptr (for free list)
1288 */
1289 static void
rb_head_page_deactivate(struct ring_buffer_per_cpu * cpu_buffer)1290 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1291 {
1292 struct list_head *hd;
1293
1294 /* Go through the whole list and clear any pointers found. */
1295 rb_list_head_clear(cpu_buffer->pages);
1296
1297 list_for_each(hd, cpu_buffer->pages)
1298 rb_list_head_clear(hd);
1299 }
1300
rb_head_page_set(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag,int new_flag)1301 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1302 struct buffer_page *head,
1303 struct buffer_page *prev,
1304 int old_flag, int new_flag)
1305 {
1306 struct list_head *list;
1307 unsigned long val = (unsigned long)&head->list;
1308 unsigned long ret;
1309
1310 list = &prev->list;
1311
1312 val &= ~RB_FLAG_MASK;
1313
1314 ret = cmpxchg((unsigned long *)&list->next,
1315 val | old_flag, val | new_flag);
1316
1317 /* check if the reader took the page */
1318 if ((ret & ~RB_FLAG_MASK) != val)
1319 return RB_PAGE_MOVED;
1320
1321 return ret & RB_FLAG_MASK;
1322 }
1323
rb_head_page_set_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1324 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1325 struct buffer_page *head,
1326 struct buffer_page *prev,
1327 int old_flag)
1328 {
1329 return rb_head_page_set(cpu_buffer, head, prev,
1330 old_flag, RB_PAGE_UPDATE);
1331 }
1332
rb_head_page_set_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1333 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1334 struct buffer_page *head,
1335 struct buffer_page *prev,
1336 int old_flag)
1337 {
1338 return rb_head_page_set(cpu_buffer, head, prev,
1339 old_flag, RB_PAGE_HEAD);
1340 }
1341
rb_head_page_set_normal(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1342 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1343 struct buffer_page *head,
1344 struct buffer_page *prev,
1345 int old_flag)
1346 {
1347 return rb_head_page_set(cpu_buffer, head, prev,
1348 old_flag, RB_PAGE_NORMAL);
1349 }
1350
rb_inc_page(struct buffer_page ** bpage)1351 static inline void rb_inc_page(struct buffer_page **bpage)
1352 {
1353 struct list_head *p = rb_list_head((*bpage)->list.next);
1354
1355 *bpage = list_entry(p, struct buffer_page, list);
1356 }
1357
1358 static struct buffer_page *
rb_set_head_page(struct ring_buffer_per_cpu * cpu_buffer)1359 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1360 {
1361 struct buffer_page *head;
1362 struct buffer_page *page;
1363 struct list_head *list;
1364 int i;
1365
1366 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1367 return NULL;
1368
1369 /* sanity check */
1370 list = cpu_buffer->pages;
1371 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1372 return NULL;
1373
1374 page = head = cpu_buffer->head_page;
1375 /*
1376 * It is possible that the writer moves the header behind
1377 * where we started, and we miss in one loop.
1378 * A second loop should grab the header, but we'll do
1379 * three loops just because I'm paranoid.
1380 */
1381 for (i = 0; i < 3; i++) {
1382 do {
1383 if (rb_is_head_page(page, page->list.prev)) {
1384 cpu_buffer->head_page = page;
1385 return page;
1386 }
1387 rb_inc_page(&page);
1388 } while (page != head);
1389 }
1390
1391 RB_WARN_ON(cpu_buffer, 1);
1392
1393 return NULL;
1394 }
1395
rb_head_page_replace(struct buffer_page * old,struct buffer_page * new)1396 static bool rb_head_page_replace(struct buffer_page *old,
1397 struct buffer_page *new)
1398 {
1399 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1400 unsigned long val;
1401
1402 val = *ptr & ~RB_FLAG_MASK;
1403 val |= RB_PAGE_HEAD;
1404
1405 return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1406 }
1407
1408 /*
1409 * rb_tail_page_update - move the tail page forward
1410 */
rb_tail_page_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)1411 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1412 struct buffer_page *tail_page,
1413 struct buffer_page *next_page)
1414 {
1415 unsigned long old_entries;
1416 unsigned long old_write;
1417
1418 /*
1419 * The tail page now needs to be moved forward.
1420 *
1421 * We need to reset the tail page, but without messing
1422 * with possible erasing of data brought in by interrupts
1423 * that have moved the tail page and are currently on it.
1424 *
1425 * We add a counter to the write field to denote this.
1426 */
1427 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1428 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1429
1430 /*
1431 * Just make sure we have seen our old_write and synchronize
1432 * with any interrupts that come in.
1433 */
1434 barrier();
1435
1436 /*
1437 * If the tail page is still the same as what we think
1438 * it is, then it is up to us to update the tail
1439 * pointer.
1440 */
1441 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1442 /* Zero the write counter */
1443 unsigned long val = old_write & ~RB_WRITE_MASK;
1444 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1445
1446 /*
1447 * This will only succeed if an interrupt did
1448 * not come in and change it. In which case, we
1449 * do not want to modify it.
1450 *
1451 * We add (void) to let the compiler know that we do not care
1452 * about the return value of these functions. We use the
1453 * cmpxchg to only update if an interrupt did not already
1454 * do it for us. If the cmpxchg fails, we don't care.
1455 */
1456 (void)local_cmpxchg(&next_page->write, old_write, val);
1457 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1458
1459 /*
1460 * No need to worry about races with clearing out the commit.
1461 * it only can increment when a commit takes place. But that
1462 * only happens in the outer most nested commit.
1463 */
1464 local_set(&next_page->page->commit, 0);
1465
1466 /* Either we update tail_page or an interrupt does */
1467 if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page))
1468 local_inc(&cpu_buffer->pages_touched);
1469 }
1470 }
1471
rb_check_bpage(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)1472 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1473 struct buffer_page *bpage)
1474 {
1475 unsigned long val = (unsigned long)bpage;
1476
1477 RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1478 }
1479
rb_check_links(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)1480 static bool rb_check_links(struct ring_buffer_per_cpu *cpu_buffer,
1481 struct list_head *list)
1482 {
1483 if (RB_WARN_ON(cpu_buffer,
1484 rb_list_head(rb_list_head(list->next)->prev) != list))
1485 return false;
1486
1487 if (RB_WARN_ON(cpu_buffer,
1488 rb_list_head(rb_list_head(list->prev)->next) != list))
1489 return false;
1490
1491 return true;
1492 }
1493
1494 /**
1495 * rb_check_pages - integrity check of buffer pages
1496 * @cpu_buffer: CPU buffer with pages to test
1497 *
1498 * As a safety measure we check to make sure the data pages have not
1499 * been corrupted.
1500 */
rb_check_pages(struct ring_buffer_per_cpu * cpu_buffer)1501 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1502 {
1503 struct list_head *head, *tmp;
1504 unsigned long buffer_cnt;
1505 unsigned long flags;
1506 int nr_loops = 0;
1507
1508 /*
1509 * Walk the linked list underpinning the ring buffer and validate all
1510 * its next and prev links.
1511 *
1512 * The check acquires the reader_lock to avoid concurrent processing
1513 * with code that could be modifying the list. However, the lock cannot
1514 * be held for the entire duration of the walk, as this would make the
1515 * time when interrupts are disabled non-deterministic, dependent on the
1516 * ring buffer size. Therefore, the code releases and re-acquires the
1517 * lock after checking each page. The ring_buffer_per_cpu.cnt variable
1518 * is then used to detect if the list was modified while the lock was
1519 * not held, in which case the check needs to be restarted.
1520 *
1521 * The code attempts to perform the check at most three times before
1522 * giving up. This is acceptable because this is only a self-validation
1523 * to detect problems early on. In practice, the list modification
1524 * operations are fairly spaced, and so this check typically succeeds at
1525 * most on the second try.
1526 */
1527 again:
1528 if (++nr_loops > 3)
1529 return;
1530
1531 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1532 head = rb_list_head(cpu_buffer->pages);
1533 if (!rb_check_links(cpu_buffer, head))
1534 goto out_locked;
1535 buffer_cnt = cpu_buffer->cnt;
1536 tmp = head;
1537 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1538
1539 while (true) {
1540 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1541
1542 if (buffer_cnt != cpu_buffer->cnt) {
1543 /* The list was updated, try again. */
1544 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1545 goto again;
1546 }
1547
1548 tmp = rb_list_head(tmp->next);
1549 if (tmp == head)
1550 /* The iteration circled back, all is done. */
1551 goto out_locked;
1552
1553 if (!rb_check_links(cpu_buffer, tmp))
1554 goto out_locked;
1555
1556 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1557 }
1558
1559 out_locked:
1560 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1561 }
1562
1563 /*
1564 * Take an address, add the meta data size as well as the array of
1565 * array subbuffer indexes, then align it to a subbuffer size.
1566 *
1567 * This is used to help find the next per cpu subbuffer within a mapped range.
1568 */
1569 static unsigned long
rb_range_align_subbuf(unsigned long addr,int subbuf_size,int nr_subbufs)1570 rb_range_align_subbuf(unsigned long addr, int subbuf_size, int nr_subbufs)
1571 {
1572 addr += sizeof(struct ring_buffer_meta) +
1573 sizeof(int) * nr_subbufs;
1574 return ALIGN(addr, subbuf_size);
1575 }
1576
1577 /*
1578 * Return the ring_buffer_meta for a given @cpu.
1579 */
rb_range_meta(struct trace_buffer * buffer,int nr_pages,int cpu)1580 static void *rb_range_meta(struct trace_buffer *buffer, int nr_pages, int cpu)
1581 {
1582 int subbuf_size = buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
1583 unsigned long ptr = buffer->range_addr_start;
1584 struct ring_buffer_meta *meta;
1585 int nr_subbufs;
1586
1587 if (!ptr)
1588 return NULL;
1589
1590 /* When nr_pages passed in is zero, the first meta has already been initialized */
1591 if (!nr_pages) {
1592 meta = (struct ring_buffer_meta *)ptr;
1593 nr_subbufs = meta->nr_subbufs;
1594 } else {
1595 meta = NULL;
1596 /* Include the reader page */
1597 nr_subbufs = nr_pages + 1;
1598 }
1599
1600 /*
1601 * The first chunk may not be subbuffer aligned, where as
1602 * the rest of the chunks are.
1603 */
1604 if (cpu) {
1605 ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1606 ptr += subbuf_size * nr_subbufs;
1607
1608 /* We can use multiplication to find chunks greater than 1 */
1609 if (cpu > 1) {
1610 unsigned long size;
1611 unsigned long p;
1612
1613 /* Save the beginning of this CPU chunk */
1614 p = ptr;
1615 ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1616 ptr += subbuf_size * nr_subbufs;
1617
1618 /* Now all chunks after this are the same size */
1619 size = ptr - p;
1620 ptr += size * (cpu - 2);
1621 }
1622 }
1623 return (void *)ptr;
1624 }
1625
1626 /* Return the start of subbufs given the meta pointer */
rb_subbufs_from_meta(struct ring_buffer_meta * meta)1627 static void *rb_subbufs_from_meta(struct ring_buffer_meta *meta)
1628 {
1629 int subbuf_size = meta->subbuf_size;
1630 unsigned long ptr;
1631
1632 ptr = (unsigned long)meta;
1633 ptr = rb_range_align_subbuf(ptr, subbuf_size, meta->nr_subbufs);
1634
1635 return (void *)ptr;
1636 }
1637
1638 /*
1639 * Return a specific sub-buffer for a given @cpu defined by @idx.
1640 */
rb_range_buffer(struct ring_buffer_per_cpu * cpu_buffer,int idx)1641 static void *rb_range_buffer(struct ring_buffer_per_cpu *cpu_buffer, int idx)
1642 {
1643 struct ring_buffer_meta *meta;
1644 unsigned long ptr;
1645 int subbuf_size;
1646
1647 meta = rb_range_meta(cpu_buffer->buffer, 0, cpu_buffer->cpu);
1648 if (!meta)
1649 return NULL;
1650
1651 if (WARN_ON_ONCE(idx >= meta->nr_subbufs))
1652 return NULL;
1653
1654 subbuf_size = meta->subbuf_size;
1655
1656 /* Map this buffer to the order that's in meta->buffers[] */
1657 idx = meta->buffers[idx];
1658
1659 ptr = (unsigned long)rb_subbufs_from_meta(meta);
1660
1661 ptr += subbuf_size * idx;
1662 if (ptr + subbuf_size > cpu_buffer->buffer->range_addr_end)
1663 return NULL;
1664
1665 return (void *)ptr;
1666 }
1667
1668 /*
1669 * See if the existing memory contains valid ring buffer data.
1670 * As the previous kernel must be the same as this kernel, all
1671 * the calculations (size of buffers and number of buffers)
1672 * must be the same.
1673 */
rb_meta_valid(struct ring_buffer_meta * meta,int cpu,struct trace_buffer * buffer,int nr_pages)1674 static bool rb_meta_valid(struct ring_buffer_meta *meta, int cpu,
1675 struct trace_buffer *buffer, int nr_pages)
1676 {
1677 int subbuf_size = PAGE_SIZE;
1678 struct buffer_data_page *subbuf;
1679 unsigned long buffers_start;
1680 unsigned long buffers_end;
1681 int i;
1682
1683 /* Check the meta magic and meta struct size */
1684 if (meta->magic != RING_BUFFER_META_MAGIC ||
1685 meta->struct_size != sizeof(*meta)) {
1686 pr_info("Ring buffer boot meta[%d] mismatch of magic or struct size\n", cpu);
1687 return false;
1688 }
1689
1690 /* The subbuffer's size and number of subbuffers must match */
1691 if (meta->subbuf_size != subbuf_size ||
1692 meta->nr_subbufs != nr_pages + 1) {
1693 pr_info("Ring buffer boot meta [%d] mismatch of subbuf_size/nr_pages\n", cpu);
1694 return false;
1695 }
1696
1697 buffers_start = meta->first_buffer;
1698 buffers_end = meta->first_buffer + (subbuf_size * meta->nr_subbufs);
1699
1700 /* Is the head and commit buffers within the range of buffers? */
1701 if (meta->head_buffer < buffers_start ||
1702 meta->head_buffer >= buffers_end) {
1703 pr_info("Ring buffer boot meta [%d] head buffer out of range\n", cpu);
1704 return false;
1705 }
1706
1707 if (meta->commit_buffer < buffers_start ||
1708 meta->commit_buffer >= buffers_end) {
1709 pr_info("Ring buffer boot meta [%d] commit buffer out of range\n", cpu);
1710 return false;
1711 }
1712
1713 subbuf = rb_subbufs_from_meta(meta);
1714
1715 /* Is the meta buffers and the subbufs themselves have correct data? */
1716 for (i = 0; i < meta->nr_subbufs; i++) {
1717 if (meta->buffers[i] < 0 ||
1718 meta->buffers[i] >= meta->nr_subbufs) {
1719 pr_info("Ring buffer boot meta [%d] array out of range\n", cpu);
1720 return false;
1721 }
1722
1723 if ((unsigned)local_read(&subbuf->commit) > subbuf_size) {
1724 pr_info("Ring buffer boot meta [%d] buffer invalid commit\n", cpu);
1725 return false;
1726 }
1727
1728 subbuf = (void *)subbuf + subbuf_size;
1729 }
1730
1731 return true;
1732 }
1733
1734 static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf);
1735
rb_read_data_buffer(struct buffer_data_page * dpage,int tail,int cpu,unsigned long long * timestamp,u64 * delta_ptr)1736 static int rb_read_data_buffer(struct buffer_data_page *dpage, int tail, int cpu,
1737 unsigned long long *timestamp, u64 *delta_ptr)
1738 {
1739 struct ring_buffer_event *event;
1740 u64 ts, delta;
1741 int events = 0;
1742 int e;
1743
1744 *delta_ptr = 0;
1745 *timestamp = 0;
1746
1747 ts = dpage->time_stamp;
1748
1749 for (e = 0; e < tail; e += rb_event_length(event)) {
1750
1751 event = (struct ring_buffer_event *)(dpage->data + e);
1752
1753 switch (event->type_len) {
1754
1755 case RINGBUF_TYPE_TIME_EXTEND:
1756 delta = rb_event_time_stamp(event);
1757 ts += delta;
1758 break;
1759
1760 case RINGBUF_TYPE_TIME_STAMP:
1761 delta = rb_event_time_stamp(event);
1762 delta = rb_fix_abs_ts(delta, ts);
1763 if (delta < ts) {
1764 *delta_ptr = delta;
1765 *timestamp = ts;
1766 return -1;
1767 }
1768 ts = delta;
1769 break;
1770
1771 case RINGBUF_TYPE_PADDING:
1772 if (event->time_delta == 1)
1773 break;
1774 fallthrough;
1775 case RINGBUF_TYPE_DATA:
1776 events++;
1777 ts += event->time_delta;
1778 break;
1779
1780 default:
1781 return -1;
1782 }
1783 }
1784 *timestamp = ts;
1785 return events;
1786 }
1787
rb_validate_buffer(struct buffer_data_page * dpage,int cpu)1788 static int rb_validate_buffer(struct buffer_data_page *dpage, int cpu)
1789 {
1790 unsigned long long ts;
1791 u64 delta;
1792 int tail;
1793
1794 tail = local_read(&dpage->commit);
1795 return rb_read_data_buffer(dpage, tail, cpu, &ts, &delta);
1796 }
1797
1798 /* If the meta data has been validated, now validate the events */
rb_meta_validate_events(struct ring_buffer_per_cpu * cpu_buffer)1799 static void rb_meta_validate_events(struct ring_buffer_per_cpu *cpu_buffer)
1800 {
1801 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1802 struct buffer_page *head_page;
1803 unsigned long entry_bytes = 0;
1804 unsigned long entries = 0;
1805 int ret;
1806 int i;
1807
1808 if (!meta || !meta->head_buffer)
1809 return;
1810
1811 /* Do the reader page first */
1812 ret = rb_validate_buffer(cpu_buffer->reader_page->page, cpu_buffer->cpu);
1813 if (ret < 0) {
1814 pr_info("Ring buffer reader page is invalid\n");
1815 goto invalid;
1816 }
1817 entries += ret;
1818 entry_bytes += local_read(&cpu_buffer->reader_page->page->commit);
1819 local_set(&cpu_buffer->reader_page->entries, ret);
1820
1821 head_page = cpu_buffer->head_page;
1822
1823 /* If both the head and commit are on the reader_page then we are done. */
1824 if (head_page == cpu_buffer->reader_page &&
1825 head_page == cpu_buffer->commit_page)
1826 goto done;
1827
1828 /* Iterate until finding the commit page */
1829 for (i = 0; i < meta->nr_subbufs + 1; i++, rb_inc_page(&head_page)) {
1830
1831 /* Reader page has already been done */
1832 if (head_page == cpu_buffer->reader_page)
1833 continue;
1834
1835 ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu);
1836 if (ret < 0) {
1837 pr_info("Ring buffer meta [%d] invalid buffer page\n",
1838 cpu_buffer->cpu);
1839 goto invalid;
1840 }
1841 entries += ret;
1842 entry_bytes += local_read(&head_page->page->commit);
1843 local_set(&cpu_buffer->head_page->entries, ret);
1844
1845 if (head_page == cpu_buffer->commit_page)
1846 break;
1847 }
1848
1849 if (head_page != cpu_buffer->commit_page) {
1850 pr_info("Ring buffer meta [%d] commit page not found\n",
1851 cpu_buffer->cpu);
1852 goto invalid;
1853 }
1854 done:
1855 local_set(&cpu_buffer->entries, entries);
1856 local_set(&cpu_buffer->entries_bytes, entry_bytes);
1857
1858 pr_info("Ring buffer meta [%d] is from previous boot!\n", cpu_buffer->cpu);
1859 return;
1860
1861 invalid:
1862 /* The content of the buffers are invalid, reset the meta data */
1863 meta->head_buffer = 0;
1864 meta->commit_buffer = 0;
1865
1866 /* Reset the reader page */
1867 local_set(&cpu_buffer->reader_page->entries, 0);
1868 local_set(&cpu_buffer->reader_page->page->commit, 0);
1869
1870 /* Reset all the subbuffers */
1871 for (i = 0; i < meta->nr_subbufs - 1; i++, rb_inc_page(&head_page)) {
1872 local_set(&head_page->entries, 0);
1873 local_set(&head_page->page->commit, 0);
1874 }
1875 }
1876
1877 /* Used to calculate data delta */
1878 static char rb_data_ptr[] = "";
1879
1880 #define THIS_TEXT_PTR ((unsigned long)rb_meta_init_text_addr)
1881 #define THIS_DATA_PTR ((unsigned long)rb_data_ptr)
1882
rb_meta_init_text_addr(struct ring_buffer_meta * meta)1883 static void rb_meta_init_text_addr(struct ring_buffer_meta *meta)
1884 {
1885 meta->text_addr = THIS_TEXT_PTR;
1886 meta->data_addr = THIS_DATA_PTR;
1887 }
1888
rb_range_meta_init(struct trace_buffer * buffer,int nr_pages)1889 static void rb_range_meta_init(struct trace_buffer *buffer, int nr_pages)
1890 {
1891 struct ring_buffer_meta *meta;
1892 unsigned long delta;
1893 void *subbuf;
1894 int cpu;
1895 int i;
1896
1897 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1898 void *next_meta;
1899
1900 meta = rb_range_meta(buffer, nr_pages, cpu);
1901
1902 if (rb_meta_valid(meta, cpu, buffer, nr_pages)) {
1903 /* Make the mappings match the current address */
1904 subbuf = rb_subbufs_from_meta(meta);
1905 delta = (unsigned long)subbuf - meta->first_buffer;
1906 meta->first_buffer += delta;
1907 meta->head_buffer += delta;
1908 meta->commit_buffer += delta;
1909 buffer->last_text_delta = THIS_TEXT_PTR - meta->text_addr;
1910 buffer->last_data_delta = THIS_DATA_PTR - meta->data_addr;
1911 continue;
1912 }
1913
1914 if (cpu < nr_cpu_ids - 1)
1915 next_meta = rb_range_meta(buffer, nr_pages, cpu + 1);
1916 else
1917 next_meta = (void *)buffer->range_addr_end;
1918
1919 memset(meta, 0, next_meta - (void *)meta);
1920
1921 meta->magic = RING_BUFFER_META_MAGIC;
1922 meta->struct_size = sizeof(*meta);
1923
1924 meta->nr_subbufs = nr_pages + 1;
1925 meta->subbuf_size = PAGE_SIZE;
1926
1927 subbuf = rb_subbufs_from_meta(meta);
1928
1929 meta->first_buffer = (unsigned long)subbuf;
1930 rb_meta_init_text_addr(meta);
1931
1932 /*
1933 * The buffers[] array holds the order of the sub-buffers
1934 * that are after the meta data. The sub-buffers may
1935 * be swapped out when read and inserted into a different
1936 * location of the ring buffer. Although their addresses
1937 * remain the same, the buffers[] array contains the
1938 * index into the sub-buffers holding their actual order.
1939 */
1940 for (i = 0; i < meta->nr_subbufs; i++) {
1941 meta->buffers[i] = i;
1942 rb_init_page(subbuf);
1943 subbuf += meta->subbuf_size;
1944 }
1945 }
1946 }
1947
rbm_start(struct seq_file * m,loff_t * pos)1948 static void *rbm_start(struct seq_file *m, loff_t *pos)
1949 {
1950 struct ring_buffer_per_cpu *cpu_buffer = m->private;
1951 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1952 unsigned long val;
1953
1954 if (!meta)
1955 return NULL;
1956
1957 if (*pos > meta->nr_subbufs)
1958 return NULL;
1959
1960 val = *pos;
1961 val++;
1962
1963 return (void *)val;
1964 }
1965
rbm_next(struct seq_file * m,void * v,loff_t * pos)1966 static void *rbm_next(struct seq_file *m, void *v, loff_t *pos)
1967 {
1968 (*pos)++;
1969
1970 return rbm_start(m, pos);
1971 }
1972
rbm_show(struct seq_file * m,void * v)1973 static int rbm_show(struct seq_file *m, void *v)
1974 {
1975 struct ring_buffer_per_cpu *cpu_buffer = m->private;
1976 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1977 unsigned long val = (unsigned long)v;
1978
1979 if (val == 1) {
1980 seq_printf(m, "head_buffer: %d\n",
1981 rb_meta_subbuf_idx(meta, (void *)meta->head_buffer));
1982 seq_printf(m, "commit_buffer: %d\n",
1983 rb_meta_subbuf_idx(meta, (void *)meta->commit_buffer));
1984 seq_printf(m, "subbuf_size: %d\n", meta->subbuf_size);
1985 seq_printf(m, "nr_subbufs: %d\n", meta->nr_subbufs);
1986 return 0;
1987 }
1988
1989 val -= 2;
1990 seq_printf(m, "buffer[%ld]: %d\n", val, meta->buffers[val]);
1991
1992 return 0;
1993 }
1994
rbm_stop(struct seq_file * m,void * p)1995 static void rbm_stop(struct seq_file *m, void *p)
1996 {
1997 }
1998
1999 static const struct seq_operations rb_meta_seq_ops = {
2000 .start = rbm_start,
2001 .next = rbm_next,
2002 .show = rbm_show,
2003 .stop = rbm_stop,
2004 };
2005
ring_buffer_meta_seq_init(struct file * file,struct trace_buffer * buffer,int cpu)2006 int ring_buffer_meta_seq_init(struct file *file, struct trace_buffer *buffer, int cpu)
2007 {
2008 struct seq_file *m;
2009 int ret;
2010
2011 ret = seq_open(file, &rb_meta_seq_ops);
2012 if (ret)
2013 return ret;
2014
2015 m = file->private_data;
2016 m->private = buffer->buffers[cpu];
2017
2018 return 0;
2019 }
2020
2021 /* Map the buffer_pages to the previous head and commit pages */
rb_meta_buffer_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)2022 static void rb_meta_buffer_update(struct ring_buffer_per_cpu *cpu_buffer,
2023 struct buffer_page *bpage)
2024 {
2025 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
2026
2027 if (meta->head_buffer == (unsigned long)bpage->page)
2028 cpu_buffer->head_page = bpage;
2029
2030 if (meta->commit_buffer == (unsigned long)bpage->page) {
2031 cpu_buffer->commit_page = bpage;
2032 cpu_buffer->tail_page = bpage;
2033 }
2034 }
2035
__rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,long nr_pages,struct list_head * pages)2036 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2037 long nr_pages, struct list_head *pages)
2038 {
2039 struct trace_buffer *buffer = cpu_buffer->buffer;
2040 struct ring_buffer_meta *meta = NULL;
2041 struct buffer_page *bpage, *tmp;
2042 bool user_thread = current->mm != NULL;
2043 gfp_t mflags;
2044 long i;
2045
2046 /*
2047 * Check if the available memory is there first.
2048 * Note, si_mem_available() only gives us a rough estimate of available
2049 * memory. It may not be accurate. But we don't care, we just want
2050 * to prevent doing any allocation when it is obvious that it is
2051 * not going to succeed.
2052 */
2053 i = si_mem_available();
2054 if (i < nr_pages)
2055 return -ENOMEM;
2056
2057 /*
2058 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
2059 * gracefully without invoking oom-killer and the system is not
2060 * destabilized.
2061 */
2062 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
2063
2064 /*
2065 * If a user thread allocates too much, and si_mem_available()
2066 * reports there's enough memory, even though there is not.
2067 * Make sure the OOM killer kills this thread. This can happen
2068 * even with RETRY_MAYFAIL because another task may be doing
2069 * an allocation after this task has taken all memory.
2070 * This is the task the OOM killer needs to take out during this
2071 * loop, even if it was triggered by an allocation somewhere else.
2072 */
2073 if (user_thread)
2074 set_current_oom_origin();
2075
2076 if (buffer->range_addr_start)
2077 meta = rb_range_meta(buffer, nr_pages, cpu_buffer->cpu);
2078
2079 for (i = 0; i < nr_pages; i++) {
2080 struct page *page;
2081
2082 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2083 mflags, cpu_to_node(cpu_buffer->cpu));
2084 if (!bpage)
2085 goto free_pages;
2086
2087 rb_check_bpage(cpu_buffer, bpage);
2088
2089 /*
2090 * Append the pages as for mapped buffers we want to keep
2091 * the order
2092 */
2093 list_add_tail(&bpage->list, pages);
2094
2095 if (meta) {
2096 /* A range was given. Use that for the buffer page */
2097 bpage->page = rb_range_buffer(cpu_buffer, i + 1);
2098 if (!bpage->page)
2099 goto free_pages;
2100 /* If this is valid from a previous boot */
2101 if (meta->head_buffer)
2102 rb_meta_buffer_update(cpu_buffer, bpage);
2103 bpage->range = 1;
2104 bpage->id = i + 1;
2105 } else {
2106 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
2107 mflags | __GFP_COMP | __GFP_ZERO,
2108 cpu_buffer->buffer->subbuf_order);
2109 if (!page)
2110 goto free_pages;
2111 bpage->page = page_address(page);
2112 rb_init_page(bpage->page);
2113 }
2114 bpage->order = cpu_buffer->buffer->subbuf_order;
2115
2116 if (user_thread && fatal_signal_pending(current))
2117 goto free_pages;
2118 }
2119 if (user_thread)
2120 clear_current_oom_origin();
2121
2122 return 0;
2123
2124 free_pages:
2125 list_for_each_entry_safe(bpage, tmp, pages, list) {
2126 list_del_init(&bpage->list);
2127 free_buffer_page(bpage);
2128 }
2129 if (user_thread)
2130 clear_current_oom_origin();
2131
2132 return -ENOMEM;
2133 }
2134
rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)2135 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2136 unsigned long nr_pages)
2137 {
2138 LIST_HEAD(pages);
2139
2140 WARN_ON(!nr_pages);
2141
2142 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
2143 return -ENOMEM;
2144
2145 /*
2146 * The ring buffer page list is a circular list that does not
2147 * start and end with a list head. All page list items point to
2148 * other pages.
2149 */
2150 cpu_buffer->pages = pages.next;
2151 list_del(&pages);
2152
2153 cpu_buffer->nr_pages = nr_pages;
2154
2155 rb_check_pages(cpu_buffer);
2156
2157 return 0;
2158 }
2159
2160 static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct trace_buffer * buffer,long nr_pages,int cpu)2161 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
2162 {
2163 struct ring_buffer_per_cpu *cpu_buffer;
2164 struct ring_buffer_meta *meta;
2165 struct buffer_page *bpage;
2166 struct page *page;
2167 int ret;
2168
2169 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
2170 GFP_KERNEL, cpu_to_node(cpu));
2171 if (!cpu_buffer)
2172 return NULL;
2173
2174 cpu_buffer->cpu = cpu;
2175 cpu_buffer->buffer = buffer;
2176 raw_spin_lock_init(&cpu_buffer->reader_lock);
2177 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
2178 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
2179 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
2180 init_completion(&cpu_buffer->update_done);
2181 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
2182 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
2183 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
2184 mutex_init(&cpu_buffer->mapping_lock);
2185
2186 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2187 GFP_KERNEL, cpu_to_node(cpu));
2188 if (!bpage)
2189 goto fail_free_buffer;
2190
2191 rb_check_bpage(cpu_buffer, bpage);
2192
2193 cpu_buffer->reader_page = bpage;
2194
2195 if (buffer->range_addr_start) {
2196 /*
2197 * Range mapped buffers have the same restrictions as memory
2198 * mapped ones do.
2199 */
2200 cpu_buffer->mapped = 1;
2201 cpu_buffer->ring_meta = rb_range_meta(buffer, nr_pages, cpu);
2202 bpage->page = rb_range_buffer(cpu_buffer, 0);
2203 if (!bpage->page)
2204 goto fail_free_reader;
2205 if (cpu_buffer->ring_meta->head_buffer)
2206 rb_meta_buffer_update(cpu_buffer, bpage);
2207 bpage->range = 1;
2208 } else {
2209 page = alloc_pages_node(cpu_to_node(cpu),
2210 GFP_KERNEL | __GFP_COMP | __GFP_ZERO,
2211 cpu_buffer->buffer->subbuf_order);
2212 if (!page)
2213 goto fail_free_reader;
2214 bpage->page = page_address(page);
2215 rb_init_page(bpage->page);
2216 }
2217
2218 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2219 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2220
2221 ret = rb_allocate_pages(cpu_buffer, nr_pages);
2222 if (ret < 0)
2223 goto fail_free_reader;
2224
2225 rb_meta_validate_events(cpu_buffer);
2226
2227 /* If the boot meta was valid then this has already been updated */
2228 meta = cpu_buffer->ring_meta;
2229 if (!meta || !meta->head_buffer ||
2230 !cpu_buffer->head_page || !cpu_buffer->commit_page || !cpu_buffer->tail_page) {
2231 if (meta && meta->head_buffer &&
2232 (cpu_buffer->head_page || cpu_buffer->commit_page || cpu_buffer->tail_page)) {
2233 pr_warn("Ring buffer meta buffers not all mapped\n");
2234 if (!cpu_buffer->head_page)
2235 pr_warn(" Missing head_page\n");
2236 if (!cpu_buffer->commit_page)
2237 pr_warn(" Missing commit_page\n");
2238 if (!cpu_buffer->tail_page)
2239 pr_warn(" Missing tail_page\n");
2240 }
2241
2242 cpu_buffer->head_page
2243 = list_entry(cpu_buffer->pages, struct buffer_page, list);
2244 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
2245
2246 rb_head_page_activate(cpu_buffer);
2247
2248 if (cpu_buffer->ring_meta)
2249 meta->commit_buffer = meta->head_buffer;
2250 } else {
2251 /* The valid meta buffer still needs to activate the head page */
2252 rb_head_page_activate(cpu_buffer);
2253 }
2254
2255 return cpu_buffer;
2256
2257 fail_free_reader:
2258 free_buffer_page(cpu_buffer->reader_page);
2259
2260 fail_free_buffer:
2261 kfree(cpu_buffer);
2262 return NULL;
2263 }
2264
rb_free_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)2265 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
2266 {
2267 struct list_head *head = cpu_buffer->pages;
2268 struct buffer_page *bpage, *tmp;
2269
2270 irq_work_sync(&cpu_buffer->irq_work.work);
2271
2272 free_buffer_page(cpu_buffer->reader_page);
2273
2274 if (head) {
2275 rb_head_page_deactivate(cpu_buffer);
2276
2277 list_for_each_entry_safe(bpage, tmp, head, list) {
2278 list_del_init(&bpage->list);
2279 free_buffer_page(bpage);
2280 }
2281 bpage = list_entry(head, struct buffer_page, list);
2282 free_buffer_page(bpage);
2283 }
2284
2285 free_page((unsigned long)cpu_buffer->free_page);
2286
2287 kfree(cpu_buffer);
2288 }
2289
alloc_buffer(unsigned long size,unsigned flags,int order,unsigned long start,unsigned long end,struct lock_class_key * key)2290 static struct trace_buffer *alloc_buffer(unsigned long size, unsigned flags,
2291 int order, unsigned long start,
2292 unsigned long end,
2293 struct lock_class_key *key)
2294 {
2295 struct trace_buffer *buffer;
2296 long nr_pages;
2297 int subbuf_size;
2298 int bsize;
2299 int cpu;
2300 int ret;
2301
2302 /* keep it in its own cache line */
2303 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
2304 GFP_KERNEL);
2305 if (!buffer)
2306 return NULL;
2307
2308 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
2309 goto fail_free_buffer;
2310
2311 buffer->subbuf_order = order;
2312 subbuf_size = (PAGE_SIZE << order);
2313 buffer->subbuf_size = subbuf_size - BUF_PAGE_HDR_SIZE;
2314
2315 /* Max payload is buffer page size - header (8bytes) */
2316 buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
2317
2318 buffer->flags = flags;
2319 buffer->clock = trace_clock_local;
2320 buffer->reader_lock_key = key;
2321
2322 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
2323 init_waitqueue_head(&buffer->irq_work.waiters);
2324
2325 buffer->cpus = nr_cpu_ids;
2326
2327 bsize = sizeof(void *) * nr_cpu_ids;
2328 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
2329 GFP_KERNEL);
2330 if (!buffer->buffers)
2331 goto fail_free_cpumask;
2332
2333 /* If start/end are specified, then that overrides size */
2334 if (start && end) {
2335 unsigned long ptr;
2336 int n;
2337
2338 size = end - start;
2339 size = size / nr_cpu_ids;
2340
2341 /*
2342 * The number of sub-buffers (nr_pages) is determined by the
2343 * total size allocated minus the meta data size.
2344 * Then that is divided by the number of per CPU buffers
2345 * needed, plus account for the integer array index that
2346 * will be appended to the meta data.
2347 */
2348 nr_pages = (size - sizeof(struct ring_buffer_meta)) /
2349 (subbuf_size + sizeof(int));
2350 /* Need at least two pages plus the reader page */
2351 if (nr_pages < 3)
2352 goto fail_free_buffers;
2353
2354 again:
2355 /* Make sure that the size fits aligned */
2356 for (n = 0, ptr = start; n < nr_cpu_ids; n++) {
2357 ptr += sizeof(struct ring_buffer_meta) +
2358 sizeof(int) * nr_pages;
2359 ptr = ALIGN(ptr, subbuf_size);
2360 ptr += subbuf_size * nr_pages;
2361 }
2362 if (ptr > end) {
2363 if (nr_pages <= 3)
2364 goto fail_free_buffers;
2365 nr_pages--;
2366 goto again;
2367 }
2368
2369 /* nr_pages should not count the reader page */
2370 nr_pages--;
2371 buffer->range_addr_start = start;
2372 buffer->range_addr_end = end;
2373
2374 rb_range_meta_init(buffer, nr_pages);
2375 } else {
2376
2377 /* need at least two pages */
2378 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2379 if (nr_pages < 2)
2380 nr_pages = 2;
2381 }
2382
2383 cpu = raw_smp_processor_id();
2384 cpumask_set_cpu(cpu, buffer->cpumask);
2385 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
2386 if (!buffer->buffers[cpu])
2387 goto fail_free_buffers;
2388
2389 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2390 if (ret < 0)
2391 goto fail_free_buffers;
2392
2393 mutex_init(&buffer->mutex);
2394
2395 return buffer;
2396
2397 fail_free_buffers:
2398 for_each_buffer_cpu(buffer, cpu) {
2399 if (buffer->buffers[cpu])
2400 rb_free_cpu_buffer(buffer->buffers[cpu]);
2401 }
2402 kfree(buffer->buffers);
2403
2404 fail_free_cpumask:
2405 free_cpumask_var(buffer->cpumask);
2406
2407 fail_free_buffer:
2408 kfree(buffer);
2409 return NULL;
2410 }
2411
2412 /**
2413 * __ring_buffer_alloc - allocate a new ring_buffer
2414 * @size: the size in bytes per cpu that is needed.
2415 * @flags: attributes to set for the ring buffer.
2416 * @key: ring buffer reader_lock_key.
2417 *
2418 * Currently the only flag that is available is the RB_FL_OVERWRITE
2419 * flag. This flag means that the buffer will overwrite old data
2420 * when the buffer wraps. If this flag is not set, the buffer will
2421 * drop data when the tail hits the head.
2422 */
__ring_buffer_alloc(unsigned long size,unsigned flags,struct lock_class_key * key)2423 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
2424 struct lock_class_key *key)
2425 {
2426 /* Default buffer page size - one system page */
2427 return alloc_buffer(size, flags, 0, 0, 0,key);
2428
2429 }
2430 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
2431
2432 /**
2433 * __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory
2434 * @size: the size in bytes per cpu that is needed.
2435 * @flags: attributes to set for the ring buffer.
2436 * @order: sub-buffer order
2437 * @start: start of allocated range
2438 * @range_size: size of allocated range
2439 * @key: ring buffer reader_lock_key.
2440 *
2441 * Currently the only flag that is available is the RB_FL_OVERWRITE
2442 * flag. This flag means that the buffer will overwrite old data
2443 * when the buffer wraps. If this flag is not set, the buffer will
2444 * drop data when the tail hits the head.
2445 */
__ring_buffer_alloc_range(unsigned long size,unsigned flags,int order,unsigned long start,unsigned long range_size,struct lock_class_key * key)2446 struct trace_buffer *__ring_buffer_alloc_range(unsigned long size, unsigned flags,
2447 int order, unsigned long start,
2448 unsigned long range_size,
2449 struct lock_class_key *key)
2450 {
2451 return alloc_buffer(size, flags, order, start, start + range_size, key);
2452 }
2453
2454 /**
2455 * ring_buffer_last_boot_delta - return the delta offset from last boot
2456 * @buffer: The buffer to return the delta from
2457 * @text: Return text delta
2458 * @data: Return data delta
2459 *
2460 * Returns: The true if the delta is non zero
2461 */
ring_buffer_last_boot_delta(struct trace_buffer * buffer,long * text,long * data)2462 bool ring_buffer_last_boot_delta(struct trace_buffer *buffer, long *text,
2463 long *data)
2464 {
2465 if (!buffer)
2466 return false;
2467
2468 if (!buffer->last_text_delta)
2469 return false;
2470
2471 *text = buffer->last_text_delta;
2472 *data = buffer->last_data_delta;
2473
2474 return true;
2475 }
2476
2477 /**
2478 * ring_buffer_free - free a ring buffer.
2479 * @buffer: the buffer to free.
2480 */
2481 void
ring_buffer_free(struct trace_buffer * buffer)2482 ring_buffer_free(struct trace_buffer *buffer)
2483 {
2484 int cpu;
2485
2486 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2487
2488 irq_work_sync(&buffer->irq_work.work);
2489
2490 for_each_buffer_cpu(buffer, cpu)
2491 rb_free_cpu_buffer(buffer->buffers[cpu]);
2492
2493 kfree(buffer->buffers);
2494 free_cpumask_var(buffer->cpumask);
2495
2496 kfree(buffer);
2497 }
2498 EXPORT_SYMBOL_GPL(ring_buffer_free);
2499
ring_buffer_set_clock(struct trace_buffer * buffer,u64 (* clock)(void))2500 void ring_buffer_set_clock(struct trace_buffer *buffer,
2501 u64 (*clock)(void))
2502 {
2503 buffer->clock = clock;
2504 }
2505
ring_buffer_set_time_stamp_abs(struct trace_buffer * buffer,bool abs)2506 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
2507 {
2508 buffer->time_stamp_abs = abs;
2509 }
2510
ring_buffer_time_stamp_abs(struct trace_buffer * buffer)2511 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
2512 {
2513 return buffer->time_stamp_abs;
2514 }
2515
rb_page_entries(struct buffer_page * bpage)2516 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
2517 {
2518 return local_read(&bpage->entries) & RB_WRITE_MASK;
2519 }
2520
rb_page_write(struct buffer_page * bpage)2521 static inline unsigned long rb_page_write(struct buffer_page *bpage)
2522 {
2523 return local_read(&bpage->write) & RB_WRITE_MASK;
2524 }
2525
2526 static bool
rb_remove_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)2527 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
2528 {
2529 struct list_head *tail_page, *to_remove, *next_page;
2530 struct buffer_page *to_remove_page, *tmp_iter_page;
2531 struct buffer_page *last_page, *first_page;
2532 unsigned long nr_removed;
2533 unsigned long head_bit;
2534 int page_entries;
2535
2536 head_bit = 0;
2537
2538 raw_spin_lock_irq(&cpu_buffer->reader_lock);
2539 atomic_inc(&cpu_buffer->record_disabled);
2540 /*
2541 * We don't race with the readers since we have acquired the reader
2542 * lock. We also don't race with writers after disabling recording.
2543 * This makes it easy to figure out the first and the last page to be
2544 * removed from the list. We unlink all the pages in between including
2545 * the first and last pages. This is done in a busy loop so that we
2546 * lose the least number of traces.
2547 * The pages are freed after we restart recording and unlock readers.
2548 */
2549 tail_page = &cpu_buffer->tail_page->list;
2550
2551 /*
2552 * tail page might be on reader page, we remove the next page
2553 * from the ring buffer
2554 */
2555 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2556 tail_page = rb_list_head(tail_page->next);
2557 to_remove = tail_page;
2558
2559 /* start of pages to remove */
2560 first_page = list_entry(rb_list_head(to_remove->next),
2561 struct buffer_page, list);
2562
2563 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
2564 to_remove = rb_list_head(to_remove)->next;
2565 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
2566 }
2567 /* Read iterators need to reset themselves when some pages removed */
2568 cpu_buffer->pages_removed += nr_removed;
2569
2570 next_page = rb_list_head(to_remove)->next;
2571
2572 /*
2573 * Now we remove all pages between tail_page and next_page.
2574 * Make sure that we have head_bit value preserved for the
2575 * next page
2576 */
2577 tail_page->next = (struct list_head *)((unsigned long)next_page |
2578 head_bit);
2579 next_page = rb_list_head(next_page);
2580 next_page->prev = tail_page;
2581
2582 /* make sure pages points to a valid page in the ring buffer */
2583 cpu_buffer->pages = next_page;
2584 cpu_buffer->cnt++;
2585
2586 /* update head page */
2587 if (head_bit)
2588 cpu_buffer->head_page = list_entry(next_page,
2589 struct buffer_page, list);
2590
2591 /* pages are removed, resume tracing and then free the pages */
2592 atomic_dec(&cpu_buffer->record_disabled);
2593 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2594
2595 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
2596
2597 /* last buffer page to remove */
2598 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2599 list);
2600 tmp_iter_page = first_page;
2601
2602 do {
2603 cond_resched();
2604
2605 to_remove_page = tmp_iter_page;
2606 rb_inc_page(&tmp_iter_page);
2607
2608 /* update the counters */
2609 page_entries = rb_page_entries(to_remove_page);
2610 if (page_entries) {
2611 /*
2612 * If something was added to this page, it was full
2613 * since it is not the tail page. So we deduct the
2614 * bytes consumed in ring buffer from here.
2615 * Increment overrun to account for the lost events.
2616 */
2617 local_add(page_entries, &cpu_buffer->overrun);
2618 local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
2619 local_inc(&cpu_buffer->pages_lost);
2620 }
2621
2622 /*
2623 * We have already removed references to this list item, just
2624 * free up the buffer_page and its page
2625 */
2626 free_buffer_page(to_remove_page);
2627 nr_removed--;
2628
2629 } while (to_remove_page != last_page);
2630
2631 RB_WARN_ON(cpu_buffer, nr_removed);
2632
2633 return nr_removed == 0;
2634 }
2635
2636 static bool
rb_insert_pages(struct ring_buffer_per_cpu * cpu_buffer)2637 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2638 {
2639 struct list_head *pages = &cpu_buffer->new_pages;
2640 unsigned long flags;
2641 bool success;
2642 int retries;
2643
2644 /* Can be called at early boot up, where interrupts must not been enabled */
2645 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2646 /*
2647 * We are holding the reader lock, so the reader page won't be swapped
2648 * in the ring buffer. Now we are racing with the writer trying to
2649 * move head page and the tail page.
2650 * We are going to adapt the reader page update process where:
2651 * 1. We first splice the start and end of list of new pages between
2652 * the head page and its previous page.
2653 * 2. We cmpxchg the prev_page->next to point from head page to the
2654 * start of new pages list.
2655 * 3. Finally, we update the head->prev to the end of new list.
2656 *
2657 * We will try this process 10 times, to make sure that we don't keep
2658 * spinning.
2659 */
2660 retries = 10;
2661 success = false;
2662 while (retries--) {
2663 struct list_head *head_page, *prev_page;
2664 struct list_head *last_page, *first_page;
2665 struct list_head *head_page_with_bit;
2666 struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2667
2668 if (!hpage)
2669 break;
2670 head_page = &hpage->list;
2671 prev_page = head_page->prev;
2672
2673 first_page = pages->next;
2674 last_page = pages->prev;
2675
2676 head_page_with_bit = (struct list_head *)
2677 ((unsigned long)head_page | RB_PAGE_HEAD);
2678
2679 last_page->next = head_page_with_bit;
2680 first_page->prev = prev_page;
2681
2682 /* caution: head_page_with_bit gets updated on cmpxchg failure */
2683 if (try_cmpxchg(&prev_page->next,
2684 &head_page_with_bit, first_page)) {
2685 /*
2686 * yay, we replaced the page pointer to our new list,
2687 * now, we just have to update to head page's prev
2688 * pointer to point to end of list
2689 */
2690 head_page->prev = last_page;
2691 cpu_buffer->cnt++;
2692 success = true;
2693 break;
2694 }
2695 }
2696
2697 if (success)
2698 INIT_LIST_HEAD(pages);
2699 /*
2700 * If we weren't successful in adding in new pages, warn and stop
2701 * tracing
2702 */
2703 RB_WARN_ON(cpu_buffer, !success);
2704 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2705
2706 /* free pages if they weren't inserted */
2707 if (!success) {
2708 struct buffer_page *bpage, *tmp;
2709 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2710 list) {
2711 list_del_init(&bpage->list);
2712 free_buffer_page(bpage);
2713 }
2714 }
2715 return success;
2716 }
2717
rb_update_pages(struct ring_buffer_per_cpu * cpu_buffer)2718 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2719 {
2720 bool success;
2721
2722 if (cpu_buffer->nr_pages_to_update > 0)
2723 success = rb_insert_pages(cpu_buffer);
2724 else
2725 success = rb_remove_pages(cpu_buffer,
2726 -cpu_buffer->nr_pages_to_update);
2727
2728 if (success)
2729 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2730 }
2731
update_pages_handler(struct work_struct * work)2732 static void update_pages_handler(struct work_struct *work)
2733 {
2734 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2735 struct ring_buffer_per_cpu, update_pages_work);
2736 rb_update_pages(cpu_buffer);
2737 complete(&cpu_buffer->update_done);
2738 }
2739
2740 /**
2741 * ring_buffer_resize - resize the ring buffer
2742 * @buffer: the buffer to resize.
2743 * @size: the new size.
2744 * @cpu_id: the cpu buffer to resize
2745 *
2746 * Minimum size is 2 * buffer->subbuf_size.
2747 *
2748 * Returns 0 on success and < 0 on failure.
2749 */
ring_buffer_resize(struct trace_buffer * buffer,unsigned long size,int cpu_id)2750 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2751 int cpu_id)
2752 {
2753 struct ring_buffer_per_cpu *cpu_buffer;
2754 unsigned long nr_pages;
2755 int cpu, err;
2756
2757 /*
2758 * Always succeed at resizing a non-existent buffer:
2759 */
2760 if (!buffer)
2761 return 0;
2762
2763 /* Make sure the requested buffer exists */
2764 if (cpu_id != RING_BUFFER_ALL_CPUS &&
2765 !cpumask_test_cpu(cpu_id, buffer->cpumask))
2766 return 0;
2767
2768 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2769
2770 /* we need a minimum of two pages */
2771 if (nr_pages < 2)
2772 nr_pages = 2;
2773
2774 /* prevent another thread from changing buffer sizes */
2775 mutex_lock(&buffer->mutex);
2776 atomic_inc(&buffer->resizing);
2777
2778 if (cpu_id == RING_BUFFER_ALL_CPUS) {
2779 /*
2780 * Don't succeed if resizing is disabled, as a reader might be
2781 * manipulating the ring buffer and is expecting a sane state while
2782 * this is true.
2783 */
2784 for_each_buffer_cpu(buffer, cpu) {
2785 cpu_buffer = buffer->buffers[cpu];
2786 if (atomic_read(&cpu_buffer->resize_disabled)) {
2787 err = -EBUSY;
2788 goto out_err_unlock;
2789 }
2790 }
2791
2792 /* calculate the pages to update */
2793 for_each_buffer_cpu(buffer, cpu) {
2794 cpu_buffer = buffer->buffers[cpu];
2795
2796 cpu_buffer->nr_pages_to_update = nr_pages -
2797 cpu_buffer->nr_pages;
2798 /*
2799 * nothing more to do for removing pages or no update
2800 */
2801 if (cpu_buffer->nr_pages_to_update <= 0)
2802 continue;
2803 /*
2804 * to add pages, make sure all new pages can be
2805 * allocated without receiving ENOMEM
2806 */
2807 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2808 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2809 &cpu_buffer->new_pages)) {
2810 /* not enough memory for new pages */
2811 err = -ENOMEM;
2812 goto out_err;
2813 }
2814
2815 cond_resched();
2816 }
2817
2818 cpus_read_lock();
2819 /*
2820 * Fire off all the required work handlers
2821 * We can't schedule on offline CPUs, but it's not necessary
2822 * since we can change their buffer sizes without any race.
2823 */
2824 for_each_buffer_cpu(buffer, cpu) {
2825 cpu_buffer = buffer->buffers[cpu];
2826 if (!cpu_buffer->nr_pages_to_update)
2827 continue;
2828
2829 /* Can't run something on an offline CPU. */
2830 if (!cpu_online(cpu)) {
2831 rb_update_pages(cpu_buffer);
2832 cpu_buffer->nr_pages_to_update = 0;
2833 } else {
2834 /* Run directly if possible. */
2835 migrate_disable();
2836 if (cpu != smp_processor_id()) {
2837 migrate_enable();
2838 schedule_work_on(cpu,
2839 &cpu_buffer->update_pages_work);
2840 } else {
2841 update_pages_handler(&cpu_buffer->update_pages_work);
2842 migrate_enable();
2843 }
2844 }
2845 }
2846
2847 /* wait for all the updates to complete */
2848 for_each_buffer_cpu(buffer, cpu) {
2849 cpu_buffer = buffer->buffers[cpu];
2850 if (!cpu_buffer->nr_pages_to_update)
2851 continue;
2852
2853 if (cpu_online(cpu))
2854 wait_for_completion(&cpu_buffer->update_done);
2855 cpu_buffer->nr_pages_to_update = 0;
2856 }
2857
2858 cpus_read_unlock();
2859 } else {
2860 cpu_buffer = buffer->buffers[cpu_id];
2861
2862 if (nr_pages == cpu_buffer->nr_pages)
2863 goto out;
2864
2865 /*
2866 * Don't succeed if resizing is disabled, as a reader might be
2867 * manipulating the ring buffer and is expecting a sane state while
2868 * this is true.
2869 */
2870 if (atomic_read(&cpu_buffer->resize_disabled)) {
2871 err = -EBUSY;
2872 goto out_err_unlock;
2873 }
2874
2875 cpu_buffer->nr_pages_to_update = nr_pages -
2876 cpu_buffer->nr_pages;
2877
2878 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2879 if (cpu_buffer->nr_pages_to_update > 0 &&
2880 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2881 &cpu_buffer->new_pages)) {
2882 err = -ENOMEM;
2883 goto out_err;
2884 }
2885
2886 cpus_read_lock();
2887
2888 /* Can't run something on an offline CPU. */
2889 if (!cpu_online(cpu_id))
2890 rb_update_pages(cpu_buffer);
2891 else {
2892 /* Run directly if possible. */
2893 migrate_disable();
2894 if (cpu_id == smp_processor_id()) {
2895 rb_update_pages(cpu_buffer);
2896 migrate_enable();
2897 } else {
2898 migrate_enable();
2899 schedule_work_on(cpu_id,
2900 &cpu_buffer->update_pages_work);
2901 wait_for_completion(&cpu_buffer->update_done);
2902 }
2903 }
2904
2905 cpu_buffer->nr_pages_to_update = 0;
2906 cpus_read_unlock();
2907 }
2908
2909 out:
2910 /*
2911 * The ring buffer resize can happen with the ring buffer
2912 * enabled, so that the update disturbs the tracing as little
2913 * as possible. But if the buffer is disabled, we do not need
2914 * to worry about that, and we can take the time to verify
2915 * that the buffer is not corrupt.
2916 */
2917 if (atomic_read(&buffer->record_disabled)) {
2918 atomic_inc(&buffer->record_disabled);
2919 /*
2920 * Even though the buffer was disabled, we must make sure
2921 * that it is truly disabled before calling rb_check_pages.
2922 * There could have been a race between checking
2923 * record_disable and incrementing it.
2924 */
2925 synchronize_rcu();
2926 for_each_buffer_cpu(buffer, cpu) {
2927 cpu_buffer = buffer->buffers[cpu];
2928 rb_check_pages(cpu_buffer);
2929 }
2930 atomic_dec(&buffer->record_disabled);
2931 }
2932
2933 atomic_dec(&buffer->resizing);
2934 mutex_unlock(&buffer->mutex);
2935 return 0;
2936
2937 out_err:
2938 for_each_buffer_cpu(buffer, cpu) {
2939 struct buffer_page *bpage, *tmp;
2940
2941 cpu_buffer = buffer->buffers[cpu];
2942 cpu_buffer->nr_pages_to_update = 0;
2943
2944 if (list_empty(&cpu_buffer->new_pages))
2945 continue;
2946
2947 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2948 list) {
2949 list_del_init(&bpage->list);
2950 free_buffer_page(bpage);
2951 }
2952 }
2953 out_err_unlock:
2954 atomic_dec(&buffer->resizing);
2955 mutex_unlock(&buffer->mutex);
2956 return err;
2957 }
2958 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2959
ring_buffer_change_overwrite(struct trace_buffer * buffer,int val)2960 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2961 {
2962 mutex_lock(&buffer->mutex);
2963 if (val)
2964 buffer->flags |= RB_FL_OVERWRITE;
2965 else
2966 buffer->flags &= ~RB_FL_OVERWRITE;
2967 mutex_unlock(&buffer->mutex);
2968 }
2969 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2970
__rb_page_index(struct buffer_page * bpage,unsigned index)2971 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2972 {
2973 return bpage->page->data + index;
2974 }
2975
2976 static __always_inline struct ring_buffer_event *
rb_reader_event(struct ring_buffer_per_cpu * cpu_buffer)2977 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2978 {
2979 return __rb_page_index(cpu_buffer->reader_page,
2980 cpu_buffer->reader_page->read);
2981 }
2982
2983 static struct ring_buffer_event *
rb_iter_head_event(struct ring_buffer_iter * iter)2984 rb_iter_head_event(struct ring_buffer_iter *iter)
2985 {
2986 struct ring_buffer_event *event;
2987 struct buffer_page *iter_head_page = iter->head_page;
2988 unsigned long commit;
2989 unsigned length;
2990
2991 if (iter->head != iter->next_event)
2992 return iter->event;
2993
2994 /*
2995 * When the writer goes across pages, it issues a cmpxchg which
2996 * is a mb(), which will synchronize with the rmb here.
2997 * (see rb_tail_page_update() and __rb_reserve_next())
2998 */
2999 commit = rb_page_commit(iter_head_page);
3000 smp_rmb();
3001
3002 /* An event needs to be at least 8 bytes in size */
3003 if (iter->head > commit - 8)
3004 goto reset;
3005
3006 event = __rb_page_index(iter_head_page, iter->head);
3007 length = rb_event_length(event);
3008
3009 /*
3010 * READ_ONCE() doesn't work on functions and we don't want the
3011 * compiler doing any crazy optimizations with length.
3012 */
3013 barrier();
3014
3015 if ((iter->head + length) > commit || length > iter->event_size)
3016 /* Writer corrupted the read? */
3017 goto reset;
3018
3019 memcpy(iter->event, event, length);
3020 /*
3021 * If the page stamp is still the same after this rmb() then the
3022 * event was safely copied without the writer entering the page.
3023 */
3024 smp_rmb();
3025
3026 /* Make sure the page didn't change since we read this */
3027 if (iter->page_stamp != iter_head_page->page->time_stamp ||
3028 commit > rb_page_commit(iter_head_page))
3029 goto reset;
3030
3031 iter->next_event = iter->head + length;
3032 return iter->event;
3033 reset:
3034 /* Reset to the beginning */
3035 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3036 iter->head = 0;
3037 iter->next_event = 0;
3038 iter->missed_events = 1;
3039 return NULL;
3040 }
3041
3042 /* Size is determined by what has been committed */
rb_page_size(struct buffer_page * bpage)3043 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
3044 {
3045 return rb_page_commit(bpage) & ~RB_MISSED_MASK;
3046 }
3047
3048 static __always_inline unsigned
rb_commit_index(struct ring_buffer_per_cpu * cpu_buffer)3049 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
3050 {
3051 return rb_page_commit(cpu_buffer->commit_page);
3052 }
3053
3054 static __always_inline unsigned
rb_event_index(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3055 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
3056 {
3057 unsigned long addr = (unsigned long)event;
3058
3059 addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
3060
3061 return addr - BUF_PAGE_HDR_SIZE;
3062 }
3063
rb_inc_iter(struct ring_buffer_iter * iter)3064 static void rb_inc_iter(struct ring_buffer_iter *iter)
3065 {
3066 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3067
3068 /*
3069 * The iterator could be on the reader page (it starts there).
3070 * But the head could have moved, since the reader was
3071 * found. Check for this case and assign the iterator
3072 * to the head page instead of next.
3073 */
3074 if (iter->head_page == cpu_buffer->reader_page)
3075 iter->head_page = rb_set_head_page(cpu_buffer);
3076 else
3077 rb_inc_page(&iter->head_page);
3078
3079 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3080 iter->head = 0;
3081 iter->next_event = 0;
3082 }
3083
3084 /* Return the index into the sub-buffers for a given sub-buffer */
rb_meta_subbuf_idx(struct ring_buffer_meta * meta,void * subbuf)3085 static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf)
3086 {
3087 void *subbuf_array;
3088
3089 subbuf_array = (void *)meta + sizeof(int) * meta->nr_subbufs;
3090 subbuf_array = (void *)ALIGN((unsigned long)subbuf_array, meta->subbuf_size);
3091 return (subbuf - subbuf_array) / meta->subbuf_size;
3092 }
3093
rb_update_meta_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * next_page)3094 static void rb_update_meta_head(struct ring_buffer_per_cpu *cpu_buffer,
3095 struct buffer_page *next_page)
3096 {
3097 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3098 unsigned long old_head = (unsigned long)next_page->page;
3099 unsigned long new_head;
3100
3101 rb_inc_page(&next_page);
3102 new_head = (unsigned long)next_page->page;
3103
3104 /*
3105 * Only move it forward once, if something else came in and
3106 * moved it forward, then we don't want to touch it.
3107 */
3108 (void)cmpxchg(&meta->head_buffer, old_head, new_head);
3109 }
3110
rb_update_meta_reader(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * reader)3111 static void rb_update_meta_reader(struct ring_buffer_per_cpu *cpu_buffer,
3112 struct buffer_page *reader)
3113 {
3114 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3115 void *old_reader = cpu_buffer->reader_page->page;
3116 void *new_reader = reader->page;
3117 int id;
3118
3119 id = reader->id;
3120 cpu_buffer->reader_page->id = id;
3121 reader->id = 0;
3122
3123 meta->buffers[0] = rb_meta_subbuf_idx(meta, new_reader);
3124 meta->buffers[id] = rb_meta_subbuf_idx(meta, old_reader);
3125
3126 /* The head pointer is the one after the reader */
3127 rb_update_meta_head(cpu_buffer, reader);
3128 }
3129
3130 /*
3131 * rb_handle_head_page - writer hit the head page
3132 *
3133 * Returns: +1 to retry page
3134 * 0 to continue
3135 * -1 on error
3136 */
3137 static int
rb_handle_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)3138 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
3139 struct buffer_page *tail_page,
3140 struct buffer_page *next_page)
3141 {
3142 struct buffer_page *new_head;
3143 int entries;
3144 int type;
3145 int ret;
3146
3147 entries = rb_page_entries(next_page);
3148
3149 /*
3150 * The hard part is here. We need to move the head
3151 * forward, and protect against both readers on
3152 * other CPUs and writers coming in via interrupts.
3153 */
3154 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
3155 RB_PAGE_HEAD);
3156
3157 /*
3158 * type can be one of four:
3159 * NORMAL - an interrupt already moved it for us
3160 * HEAD - we are the first to get here.
3161 * UPDATE - we are the interrupt interrupting
3162 * a current move.
3163 * MOVED - a reader on another CPU moved the next
3164 * pointer to its reader page. Give up
3165 * and try again.
3166 */
3167
3168 switch (type) {
3169 case RB_PAGE_HEAD:
3170 /*
3171 * We changed the head to UPDATE, thus
3172 * it is our responsibility to update
3173 * the counters.
3174 */
3175 local_add(entries, &cpu_buffer->overrun);
3176 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
3177 local_inc(&cpu_buffer->pages_lost);
3178
3179 if (cpu_buffer->ring_meta)
3180 rb_update_meta_head(cpu_buffer, next_page);
3181 /*
3182 * The entries will be zeroed out when we move the
3183 * tail page.
3184 */
3185
3186 /* still more to do */
3187 break;
3188
3189 case RB_PAGE_UPDATE:
3190 /*
3191 * This is an interrupt that interrupt the
3192 * previous update. Still more to do.
3193 */
3194 break;
3195 case RB_PAGE_NORMAL:
3196 /*
3197 * An interrupt came in before the update
3198 * and processed this for us.
3199 * Nothing left to do.
3200 */
3201 return 1;
3202 case RB_PAGE_MOVED:
3203 /*
3204 * The reader is on another CPU and just did
3205 * a swap with our next_page.
3206 * Try again.
3207 */
3208 return 1;
3209 default:
3210 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
3211 return -1;
3212 }
3213
3214 /*
3215 * Now that we are here, the old head pointer is
3216 * set to UPDATE. This will keep the reader from
3217 * swapping the head page with the reader page.
3218 * The reader (on another CPU) will spin till
3219 * we are finished.
3220 *
3221 * We just need to protect against interrupts
3222 * doing the job. We will set the next pointer
3223 * to HEAD. After that, we set the old pointer
3224 * to NORMAL, but only if it was HEAD before.
3225 * otherwise we are an interrupt, and only
3226 * want the outer most commit to reset it.
3227 */
3228 new_head = next_page;
3229 rb_inc_page(&new_head);
3230
3231 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
3232 RB_PAGE_NORMAL);
3233
3234 /*
3235 * Valid returns are:
3236 * HEAD - an interrupt came in and already set it.
3237 * NORMAL - One of two things:
3238 * 1) We really set it.
3239 * 2) A bunch of interrupts came in and moved
3240 * the page forward again.
3241 */
3242 switch (ret) {
3243 case RB_PAGE_HEAD:
3244 case RB_PAGE_NORMAL:
3245 /* OK */
3246 break;
3247 default:
3248 RB_WARN_ON(cpu_buffer, 1);
3249 return -1;
3250 }
3251
3252 /*
3253 * It is possible that an interrupt came in,
3254 * set the head up, then more interrupts came in
3255 * and moved it again. When we get back here,
3256 * the page would have been set to NORMAL but we
3257 * just set it back to HEAD.
3258 *
3259 * How do you detect this? Well, if that happened
3260 * the tail page would have moved.
3261 */
3262 if (ret == RB_PAGE_NORMAL) {
3263 struct buffer_page *buffer_tail_page;
3264
3265 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
3266 /*
3267 * If the tail had moved passed next, then we need
3268 * to reset the pointer.
3269 */
3270 if (buffer_tail_page != tail_page &&
3271 buffer_tail_page != next_page)
3272 rb_head_page_set_normal(cpu_buffer, new_head,
3273 next_page,
3274 RB_PAGE_HEAD);
3275 }
3276
3277 /*
3278 * If this was the outer most commit (the one that
3279 * changed the original pointer from HEAD to UPDATE),
3280 * then it is up to us to reset it to NORMAL.
3281 */
3282 if (type == RB_PAGE_HEAD) {
3283 ret = rb_head_page_set_normal(cpu_buffer, next_page,
3284 tail_page,
3285 RB_PAGE_UPDATE);
3286 if (RB_WARN_ON(cpu_buffer,
3287 ret != RB_PAGE_UPDATE))
3288 return -1;
3289 }
3290
3291 return 0;
3292 }
3293
3294 static inline void
rb_reset_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)3295 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
3296 unsigned long tail, struct rb_event_info *info)
3297 {
3298 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
3299 struct buffer_page *tail_page = info->tail_page;
3300 struct ring_buffer_event *event;
3301 unsigned long length = info->length;
3302
3303 /*
3304 * Only the event that crossed the page boundary
3305 * must fill the old tail_page with padding.
3306 */
3307 if (tail >= bsize) {
3308 /*
3309 * If the page was filled, then we still need
3310 * to update the real_end. Reset it to zero
3311 * and the reader will ignore it.
3312 */
3313 if (tail == bsize)
3314 tail_page->real_end = 0;
3315
3316 local_sub(length, &tail_page->write);
3317 return;
3318 }
3319
3320 event = __rb_page_index(tail_page, tail);
3321
3322 /*
3323 * Save the original length to the meta data.
3324 * This will be used by the reader to add lost event
3325 * counter.
3326 */
3327 tail_page->real_end = tail;
3328
3329 /*
3330 * If this event is bigger than the minimum size, then
3331 * we need to be careful that we don't subtract the
3332 * write counter enough to allow another writer to slip
3333 * in on this page.
3334 * We put in a discarded commit instead, to make sure
3335 * that this space is not used again, and this space will
3336 * not be accounted into 'entries_bytes'.
3337 *
3338 * If we are less than the minimum size, we don't need to
3339 * worry about it.
3340 */
3341 if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
3342 /* No room for any events */
3343
3344 /* Mark the rest of the page with padding */
3345 rb_event_set_padding(event);
3346
3347 /* Make sure the padding is visible before the write update */
3348 smp_wmb();
3349
3350 /* Set the write back to the previous setting */
3351 local_sub(length, &tail_page->write);
3352 return;
3353 }
3354
3355 /* Put in a discarded event */
3356 event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
3357 event->type_len = RINGBUF_TYPE_PADDING;
3358 /* time delta must be non zero */
3359 event->time_delta = 1;
3360
3361 /* account for padding bytes */
3362 local_add(bsize - tail, &cpu_buffer->entries_bytes);
3363
3364 /* Make sure the padding is visible before the tail_page->write update */
3365 smp_wmb();
3366
3367 /* Set write to end of buffer */
3368 length = (tail + length) - bsize;
3369 local_sub(length, &tail_page->write);
3370 }
3371
3372 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
3373
3374 /*
3375 * This is the slow path, force gcc not to inline it.
3376 */
3377 static noinline struct ring_buffer_event *
rb_move_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)3378 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
3379 unsigned long tail, struct rb_event_info *info)
3380 {
3381 struct buffer_page *tail_page = info->tail_page;
3382 struct buffer_page *commit_page = cpu_buffer->commit_page;
3383 struct trace_buffer *buffer = cpu_buffer->buffer;
3384 struct buffer_page *next_page;
3385 int ret;
3386
3387 next_page = tail_page;
3388
3389 rb_inc_page(&next_page);
3390
3391 /*
3392 * If for some reason, we had an interrupt storm that made
3393 * it all the way around the buffer, bail, and warn
3394 * about it.
3395 */
3396 if (unlikely(next_page == commit_page)) {
3397 local_inc(&cpu_buffer->commit_overrun);
3398 goto out_reset;
3399 }
3400
3401 /*
3402 * This is where the fun begins!
3403 *
3404 * We are fighting against races between a reader that
3405 * could be on another CPU trying to swap its reader
3406 * page with the buffer head.
3407 *
3408 * We are also fighting against interrupts coming in and
3409 * moving the head or tail on us as well.
3410 *
3411 * If the next page is the head page then we have filled
3412 * the buffer, unless the commit page is still on the
3413 * reader page.
3414 */
3415 if (rb_is_head_page(next_page, &tail_page->list)) {
3416
3417 /*
3418 * If the commit is not on the reader page, then
3419 * move the header page.
3420 */
3421 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
3422 /*
3423 * If we are not in overwrite mode,
3424 * this is easy, just stop here.
3425 */
3426 if (!(buffer->flags & RB_FL_OVERWRITE)) {
3427 local_inc(&cpu_buffer->dropped_events);
3428 goto out_reset;
3429 }
3430
3431 ret = rb_handle_head_page(cpu_buffer,
3432 tail_page,
3433 next_page);
3434 if (ret < 0)
3435 goto out_reset;
3436 if (ret)
3437 goto out_again;
3438 } else {
3439 /*
3440 * We need to be careful here too. The
3441 * commit page could still be on the reader
3442 * page. We could have a small buffer, and
3443 * have filled up the buffer with events
3444 * from interrupts and such, and wrapped.
3445 *
3446 * Note, if the tail page is also on the
3447 * reader_page, we let it move out.
3448 */
3449 if (unlikely((cpu_buffer->commit_page !=
3450 cpu_buffer->tail_page) &&
3451 (cpu_buffer->commit_page ==
3452 cpu_buffer->reader_page))) {
3453 local_inc(&cpu_buffer->commit_overrun);
3454 goto out_reset;
3455 }
3456 }
3457 }
3458
3459 rb_tail_page_update(cpu_buffer, tail_page, next_page);
3460
3461 out_again:
3462
3463 rb_reset_tail(cpu_buffer, tail, info);
3464
3465 /* Commit what we have for now. */
3466 rb_end_commit(cpu_buffer);
3467 /* rb_end_commit() decs committing */
3468 local_inc(&cpu_buffer->committing);
3469
3470 /* fail and let the caller try again */
3471 return ERR_PTR(-EAGAIN);
3472
3473 out_reset:
3474 /* reset write */
3475 rb_reset_tail(cpu_buffer, tail, info);
3476
3477 return NULL;
3478 }
3479
3480 /* Slow path */
3481 static struct ring_buffer_event *
rb_add_time_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,u64 delta,bool abs)3482 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3483 struct ring_buffer_event *event, u64 delta, bool abs)
3484 {
3485 if (abs)
3486 event->type_len = RINGBUF_TYPE_TIME_STAMP;
3487 else
3488 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
3489
3490 /* Not the first event on the page, or not delta? */
3491 if (abs || rb_event_index(cpu_buffer, event)) {
3492 event->time_delta = delta & TS_MASK;
3493 event->array[0] = delta >> TS_SHIFT;
3494 } else {
3495 /* nope, just zero it */
3496 event->time_delta = 0;
3497 event->array[0] = 0;
3498 }
3499
3500 return skip_time_extend(event);
3501 }
3502
3503 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
sched_clock_stable(void)3504 static inline bool sched_clock_stable(void)
3505 {
3506 return true;
3507 }
3508 #endif
3509
3510 static void
rb_check_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)3511 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3512 struct rb_event_info *info)
3513 {
3514 u64 write_stamp;
3515
3516 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
3517 (unsigned long long)info->delta,
3518 (unsigned long long)info->ts,
3519 (unsigned long long)info->before,
3520 (unsigned long long)info->after,
3521 (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
3522 sched_clock_stable() ? "" :
3523 "If you just came from a suspend/resume,\n"
3524 "please switch to the trace global clock:\n"
3525 " echo global > /sys/kernel/tracing/trace_clock\n"
3526 "or add trace_clock=global to the kernel command line\n");
3527 }
3528
rb_add_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event ** event,struct rb_event_info * info,u64 * delta,unsigned int * length)3529 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3530 struct ring_buffer_event **event,
3531 struct rb_event_info *info,
3532 u64 *delta,
3533 unsigned int *length)
3534 {
3535 bool abs = info->add_timestamp &
3536 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
3537
3538 if (unlikely(info->delta > (1ULL << 59))) {
3539 /*
3540 * Some timers can use more than 59 bits, and when a timestamp
3541 * is added to the buffer, it will lose those bits.
3542 */
3543 if (abs && (info->ts & TS_MSB)) {
3544 info->delta &= ABS_TS_MASK;
3545
3546 /* did the clock go backwards */
3547 } else if (info->before == info->after && info->before > info->ts) {
3548 /* not interrupted */
3549 static int once;
3550
3551 /*
3552 * This is possible with a recalibrating of the TSC.
3553 * Do not produce a call stack, but just report it.
3554 */
3555 if (!once) {
3556 once++;
3557 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
3558 info->before, info->ts);
3559 }
3560 } else
3561 rb_check_timestamp(cpu_buffer, info);
3562 if (!abs)
3563 info->delta = 0;
3564 }
3565 *event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
3566 *length -= RB_LEN_TIME_EXTEND;
3567 *delta = 0;
3568 }
3569
3570 /**
3571 * rb_update_event - update event type and data
3572 * @cpu_buffer: The per cpu buffer of the @event
3573 * @event: the event to update
3574 * @info: The info to update the @event with (contains length and delta)
3575 *
3576 * Update the type and data fields of the @event. The length
3577 * is the actual size that is written to the ring buffer,
3578 * and with this, we can determine what to place into the
3579 * data field.
3580 */
3581 static void
rb_update_event(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,struct rb_event_info * info)3582 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
3583 struct ring_buffer_event *event,
3584 struct rb_event_info *info)
3585 {
3586 unsigned length = info->length;
3587 u64 delta = info->delta;
3588 unsigned int nest = local_read(&cpu_buffer->committing) - 1;
3589
3590 if (!WARN_ON_ONCE(nest >= MAX_NEST))
3591 cpu_buffer->event_stamp[nest] = info->ts;
3592
3593 /*
3594 * If we need to add a timestamp, then we
3595 * add it to the start of the reserved space.
3596 */
3597 if (unlikely(info->add_timestamp))
3598 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
3599
3600 event->time_delta = delta;
3601 length -= RB_EVNT_HDR_SIZE;
3602 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
3603 event->type_len = 0;
3604 event->array[0] = length;
3605 } else
3606 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
3607 }
3608
rb_calculate_event_length(unsigned length)3609 static unsigned rb_calculate_event_length(unsigned length)
3610 {
3611 struct ring_buffer_event event; /* Used only for sizeof array */
3612
3613 /* zero length can cause confusions */
3614 if (!length)
3615 length++;
3616
3617 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
3618 length += sizeof(event.array[0]);
3619
3620 length += RB_EVNT_HDR_SIZE;
3621 length = ALIGN(length, RB_ARCH_ALIGNMENT);
3622
3623 /*
3624 * In case the time delta is larger than the 27 bits for it
3625 * in the header, we need to add a timestamp. If another
3626 * event comes in when trying to discard this one to increase
3627 * the length, then the timestamp will be added in the allocated
3628 * space of this event. If length is bigger than the size needed
3629 * for the TIME_EXTEND, then padding has to be used. The events
3630 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
3631 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
3632 * As length is a multiple of 4, we only need to worry if it
3633 * is 12 (RB_LEN_TIME_EXTEND + 4).
3634 */
3635 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
3636 length += RB_ALIGNMENT;
3637
3638 return length;
3639 }
3640
3641 static inline bool
rb_try_to_discard(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3642 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3643 struct ring_buffer_event *event)
3644 {
3645 unsigned long new_index, old_index;
3646 struct buffer_page *bpage;
3647 unsigned long addr;
3648
3649 new_index = rb_event_index(cpu_buffer, event);
3650 old_index = new_index + rb_event_ts_length(event);
3651 addr = (unsigned long)event;
3652 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3653
3654 bpage = READ_ONCE(cpu_buffer->tail_page);
3655
3656 /*
3657 * Make sure the tail_page is still the same and
3658 * the next write location is the end of this event
3659 */
3660 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3661 unsigned long write_mask =
3662 local_read(&bpage->write) & ~RB_WRITE_MASK;
3663 unsigned long event_length = rb_event_length(event);
3664
3665 /*
3666 * For the before_stamp to be different than the write_stamp
3667 * to make sure that the next event adds an absolute
3668 * value and does not rely on the saved write stamp, which
3669 * is now going to be bogus.
3670 *
3671 * By setting the before_stamp to zero, the next event
3672 * is not going to use the write_stamp and will instead
3673 * create an absolute timestamp. This means there's no
3674 * reason to update the wirte_stamp!
3675 */
3676 rb_time_set(&cpu_buffer->before_stamp, 0);
3677
3678 /*
3679 * If an event were to come in now, it would see that the
3680 * write_stamp and the before_stamp are different, and assume
3681 * that this event just added itself before updating
3682 * the write stamp. The interrupting event will fix the
3683 * write stamp for us, and use an absolute timestamp.
3684 */
3685
3686 /*
3687 * This is on the tail page. It is possible that
3688 * a write could come in and move the tail page
3689 * and write to the next page. That is fine
3690 * because we just shorten what is on this page.
3691 */
3692 old_index += write_mask;
3693 new_index += write_mask;
3694
3695 /* caution: old_index gets updated on cmpxchg failure */
3696 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3697 /* update counters */
3698 local_sub(event_length, &cpu_buffer->entries_bytes);
3699 return true;
3700 }
3701 }
3702
3703 /* could not discard */
3704 return false;
3705 }
3706
rb_start_commit(struct ring_buffer_per_cpu * cpu_buffer)3707 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3708 {
3709 local_inc(&cpu_buffer->committing);
3710 local_inc(&cpu_buffer->commits);
3711 }
3712
3713 static __always_inline void
rb_set_commit_to_write(struct ring_buffer_per_cpu * cpu_buffer)3714 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3715 {
3716 unsigned long max_count;
3717
3718 /*
3719 * We only race with interrupts and NMIs on this CPU.
3720 * If we own the commit event, then we can commit
3721 * all others that interrupted us, since the interruptions
3722 * are in stack format (they finish before they come
3723 * back to us). This allows us to do a simple loop to
3724 * assign the commit to the tail.
3725 */
3726 again:
3727 max_count = cpu_buffer->nr_pages * 100;
3728
3729 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3730 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3731 return;
3732 if (RB_WARN_ON(cpu_buffer,
3733 rb_is_reader_page(cpu_buffer->tail_page)))
3734 return;
3735 /*
3736 * No need for a memory barrier here, as the update
3737 * of the tail_page did it for this page.
3738 */
3739 local_set(&cpu_buffer->commit_page->page->commit,
3740 rb_page_write(cpu_buffer->commit_page));
3741 rb_inc_page(&cpu_buffer->commit_page);
3742 if (cpu_buffer->ring_meta) {
3743 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3744 meta->commit_buffer = (unsigned long)cpu_buffer->commit_page->page;
3745 }
3746 /* add barrier to keep gcc from optimizing too much */
3747 barrier();
3748 }
3749 while (rb_commit_index(cpu_buffer) !=
3750 rb_page_write(cpu_buffer->commit_page)) {
3751
3752 /* Make sure the readers see the content of what is committed. */
3753 smp_wmb();
3754 local_set(&cpu_buffer->commit_page->page->commit,
3755 rb_page_write(cpu_buffer->commit_page));
3756 RB_WARN_ON(cpu_buffer,
3757 local_read(&cpu_buffer->commit_page->page->commit) &
3758 ~RB_WRITE_MASK);
3759 barrier();
3760 }
3761
3762 /* again, keep gcc from optimizing */
3763 barrier();
3764
3765 /*
3766 * If an interrupt came in just after the first while loop
3767 * and pushed the tail page forward, we will be left with
3768 * a dangling commit that will never go forward.
3769 */
3770 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3771 goto again;
3772 }
3773
rb_end_commit(struct ring_buffer_per_cpu * cpu_buffer)3774 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3775 {
3776 unsigned long commits;
3777
3778 if (RB_WARN_ON(cpu_buffer,
3779 !local_read(&cpu_buffer->committing)))
3780 return;
3781
3782 again:
3783 commits = local_read(&cpu_buffer->commits);
3784 /* synchronize with interrupts */
3785 barrier();
3786 if (local_read(&cpu_buffer->committing) == 1)
3787 rb_set_commit_to_write(cpu_buffer);
3788
3789 local_dec(&cpu_buffer->committing);
3790
3791 /* synchronize with interrupts */
3792 barrier();
3793
3794 /*
3795 * Need to account for interrupts coming in between the
3796 * updating of the commit page and the clearing of the
3797 * committing counter.
3798 */
3799 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3800 !local_read(&cpu_buffer->committing)) {
3801 local_inc(&cpu_buffer->committing);
3802 goto again;
3803 }
3804 }
3805
rb_event_discard(struct ring_buffer_event * event)3806 static inline void rb_event_discard(struct ring_buffer_event *event)
3807 {
3808 if (extended_time(event))
3809 event = skip_time_extend(event);
3810
3811 /* array[0] holds the actual length for the discarded event */
3812 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3813 event->type_len = RINGBUF_TYPE_PADDING;
3814 /* time delta must be non zero */
3815 if (!event->time_delta)
3816 event->time_delta = 1;
3817 }
3818
rb_commit(struct ring_buffer_per_cpu * cpu_buffer)3819 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3820 {
3821 local_inc(&cpu_buffer->entries);
3822 rb_end_commit(cpu_buffer);
3823 }
3824
3825 static __always_inline void
rb_wakeups(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer)3826 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3827 {
3828 if (buffer->irq_work.waiters_pending) {
3829 buffer->irq_work.waiters_pending = false;
3830 /* irq_work_queue() supplies it's own memory barriers */
3831 irq_work_queue(&buffer->irq_work.work);
3832 }
3833
3834 if (cpu_buffer->irq_work.waiters_pending) {
3835 cpu_buffer->irq_work.waiters_pending = false;
3836 /* irq_work_queue() supplies it's own memory barriers */
3837 irq_work_queue(&cpu_buffer->irq_work.work);
3838 }
3839
3840 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3841 return;
3842
3843 if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3844 return;
3845
3846 if (!cpu_buffer->irq_work.full_waiters_pending)
3847 return;
3848
3849 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3850
3851 if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3852 return;
3853
3854 cpu_buffer->irq_work.wakeup_full = true;
3855 cpu_buffer->irq_work.full_waiters_pending = false;
3856 /* irq_work_queue() supplies it's own memory barriers */
3857 irq_work_queue(&cpu_buffer->irq_work.work);
3858 }
3859
3860 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3861 # define do_ring_buffer_record_recursion() \
3862 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3863 #else
3864 # define do_ring_buffer_record_recursion() do { } while (0)
3865 #endif
3866
3867 /*
3868 * The lock and unlock are done within a preempt disable section.
3869 * The current_context per_cpu variable can only be modified
3870 * by the current task between lock and unlock. But it can
3871 * be modified more than once via an interrupt. To pass this
3872 * information from the lock to the unlock without having to
3873 * access the 'in_interrupt()' functions again (which do show
3874 * a bit of overhead in something as critical as function tracing,
3875 * we use a bitmask trick.
3876 *
3877 * bit 1 = NMI context
3878 * bit 2 = IRQ context
3879 * bit 3 = SoftIRQ context
3880 * bit 4 = normal context.
3881 *
3882 * This works because this is the order of contexts that can
3883 * preempt other contexts. A SoftIRQ never preempts an IRQ
3884 * context.
3885 *
3886 * When the context is determined, the corresponding bit is
3887 * checked and set (if it was set, then a recursion of that context
3888 * happened).
3889 *
3890 * On unlock, we need to clear this bit. To do so, just subtract
3891 * 1 from the current_context and AND it to itself.
3892 *
3893 * (binary)
3894 * 101 - 1 = 100
3895 * 101 & 100 = 100 (clearing bit zero)
3896 *
3897 * 1010 - 1 = 1001
3898 * 1010 & 1001 = 1000 (clearing bit 1)
3899 *
3900 * The least significant bit can be cleared this way, and it
3901 * just so happens that it is the same bit corresponding to
3902 * the current context.
3903 *
3904 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3905 * is set when a recursion is detected at the current context, and if
3906 * the TRANSITION bit is already set, it will fail the recursion.
3907 * This is needed because there's a lag between the changing of
3908 * interrupt context and updating the preempt count. In this case,
3909 * a false positive will be found. To handle this, one extra recursion
3910 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3911 * bit is already set, then it is considered a recursion and the function
3912 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3913 *
3914 * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3915 * to be cleared. Even if it wasn't the context that set it. That is,
3916 * if an interrupt comes in while NORMAL bit is set and the ring buffer
3917 * is called before preempt_count() is updated, since the check will
3918 * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3919 * NMI then comes in, it will set the NMI bit, but when the NMI code
3920 * does the trace_recursive_unlock() it will clear the TRANSITION bit
3921 * and leave the NMI bit set. But this is fine, because the interrupt
3922 * code that set the TRANSITION bit will then clear the NMI bit when it
3923 * calls trace_recursive_unlock(). If another NMI comes in, it will
3924 * set the TRANSITION bit and continue.
3925 *
3926 * Note: The TRANSITION bit only handles a single transition between context.
3927 */
3928
3929 static __always_inline bool
trace_recursive_lock(struct ring_buffer_per_cpu * cpu_buffer)3930 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3931 {
3932 unsigned int val = cpu_buffer->current_context;
3933 int bit = interrupt_context_level();
3934
3935 bit = RB_CTX_NORMAL - bit;
3936
3937 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3938 /*
3939 * It is possible that this was called by transitioning
3940 * between interrupt context, and preempt_count() has not
3941 * been updated yet. In this case, use the TRANSITION bit.
3942 */
3943 bit = RB_CTX_TRANSITION;
3944 if (val & (1 << (bit + cpu_buffer->nest))) {
3945 do_ring_buffer_record_recursion();
3946 return true;
3947 }
3948 }
3949
3950 val |= (1 << (bit + cpu_buffer->nest));
3951 cpu_buffer->current_context = val;
3952
3953 return false;
3954 }
3955
3956 static __always_inline void
trace_recursive_unlock(struct ring_buffer_per_cpu * cpu_buffer)3957 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3958 {
3959 cpu_buffer->current_context &=
3960 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3961 }
3962
3963 /* The recursive locking above uses 5 bits */
3964 #define NESTED_BITS 5
3965
3966 /**
3967 * ring_buffer_nest_start - Allow to trace while nested
3968 * @buffer: The ring buffer to modify
3969 *
3970 * The ring buffer has a safety mechanism to prevent recursion.
3971 * But there may be a case where a trace needs to be done while
3972 * tracing something else. In this case, calling this function
3973 * will allow this function to nest within a currently active
3974 * ring_buffer_lock_reserve().
3975 *
3976 * Call this function before calling another ring_buffer_lock_reserve() and
3977 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3978 */
ring_buffer_nest_start(struct trace_buffer * buffer)3979 void ring_buffer_nest_start(struct trace_buffer *buffer)
3980 {
3981 struct ring_buffer_per_cpu *cpu_buffer;
3982 int cpu;
3983
3984 /* Enabled by ring_buffer_nest_end() */
3985 preempt_disable_notrace();
3986 cpu = raw_smp_processor_id();
3987 cpu_buffer = buffer->buffers[cpu];
3988 /* This is the shift value for the above recursive locking */
3989 cpu_buffer->nest += NESTED_BITS;
3990 }
3991
3992 /**
3993 * ring_buffer_nest_end - Allow to trace while nested
3994 * @buffer: The ring buffer to modify
3995 *
3996 * Must be called after ring_buffer_nest_start() and after the
3997 * ring_buffer_unlock_commit().
3998 */
ring_buffer_nest_end(struct trace_buffer * buffer)3999 void ring_buffer_nest_end(struct trace_buffer *buffer)
4000 {
4001 struct ring_buffer_per_cpu *cpu_buffer;
4002 int cpu;
4003
4004 /* disabled by ring_buffer_nest_start() */
4005 cpu = raw_smp_processor_id();
4006 cpu_buffer = buffer->buffers[cpu];
4007 /* This is the shift value for the above recursive locking */
4008 cpu_buffer->nest -= NESTED_BITS;
4009 preempt_enable_notrace();
4010 }
4011
4012 /**
4013 * ring_buffer_unlock_commit - commit a reserved
4014 * @buffer: The buffer to commit to
4015 *
4016 * This commits the data to the ring buffer, and releases any locks held.
4017 *
4018 * Must be paired with ring_buffer_lock_reserve.
4019 */
ring_buffer_unlock_commit(struct trace_buffer * buffer)4020 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
4021 {
4022 struct ring_buffer_per_cpu *cpu_buffer;
4023 int cpu = raw_smp_processor_id();
4024
4025 cpu_buffer = buffer->buffers[cpu];
4026
4027 rb_commit(cpu_buffer);
4028
4029 rb_wakeups(buffer, cpu_buffer);
4030
4031 trace_recursive_unlock(cpu_buffer);
4032
4033 preempt_enable_notrace();
4034
4035 return 0;
4036 }
4037 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
4038
4039 /* Special value to validate all deltas on a page. */
4040 #define CHECK_FULL_PAGE 1L
4041
4042 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
4043
show_irq_str(int bits)4044 static const char *show_irq_str(int bits)
4045 {
4046 const char *type[] = {
4047 ".", // 0
4048 "s", // 1
4049 "h", // 2
4050 "Hs", // 3
4051 "n", // 4
4052 "Ns", // 5
4053 "Nh", // 6
4054 "NHs", // 7
4055 };
4056
4057 return type[bits];
4058 }
4059
4060 /* Assume this is a trace event */
show_flags(struct ring_buffer_event * event)4061 static const char *show_flags(struct ring_buffer_event *event)
4062 {
4063 struct trace_entry *entry;
4064 int bits = 0;
4065
4066 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4067 return "X";
4068
4069 entry = ring_buffer_event_data(event);
4070
4071 if (entry->flags & TRACE_FLAG_SOFTIRQ)
4072 bits |= 1;
4073
4074 if (entry->flags & TRACE_FLAG_HARDIRQ)
4075 bits |= 2;
4076
4077 if (entry->flags & TRACE_FLAG_NMI)
4078 bits |= 4;
4079
4080 return show_irq_str(bits);
4081 }
4082
show_irq(struct ring_buffer_event * event)4083 static const char *show_irq(struct ring_buffer_event *event)
4084 {
4085 struct trace_entry *entry;
4086
4087 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4088 return "";
4089
4090 entry = ring_buffer_event_data(event);
4091 if (entry->flags & TRACE_FLAG_IRQS_OFF)
4092 return "d";
4093 return "";
4094 }
4095
show_interrupt_level(void)4096 static const char *show_interrupt_level(void)
4097 {
4098 unsigned long pc = preempt_count();
4099 unsigned char level = 0;
4100
4101 if (pc & SOFTIRQ_OFFSET)
4102 level |= 1;
4103
4104 if (pc & HARDIRQ_MASK)
4105 level |= 2;
4106
4107 if (pc & NMI_MASK)
4108 level |= 4;
4109
4110 return show_irq_str(level);
4111 }
4112
dump_buffer_page(struct buffer_data_page * bpage,struct rb_event_info * info,unsigned long tail)4113 static void dump_buffer_page(struct buffer_data_page *bpage,
4114 struct rb_event_info *info,
4115 unsigned long tail)
4116 {
4117 struct ring_buffer_event *event;
4118 u64 ts, delta;
4119 int e;
4120
4121 ts = bpage->time_stamp;
4122 pr_warn(" [%lld] PAGE TIME STAMP\n", ts);
4123
4124 for (e = 0; e < tail; e += rb_event_length(event)) {
4125
4126 event = (struct ring_buffer_event *)(bpage->data + e);
4127
4128 switch (event->type_len) {
4129
4130 case RINGBUF_TYPE_TIME_EXTEND:
4131 delta = rb_event_time_stamp(event);
4132 ts += delta;
4133 pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
4134 e, ts, delta);
4135 break;
4136
4137 case RINGBUF_TYPE_TIME_STAMP:
4138 delta = rb_event_time_stamp(event);
4139 ts = rb_fix_abs_ts(delta, ts);
4140 pr_warn(" 0x%x: [%lld] absolute:%lld TIME STAMP\n",
4141 e, ts, delta);
4142 break;
4143
4144 case RINGBUF_TYPE_PADDING:
4145 ts += event->time_delta;
4146 pr_warn(" 0x%x: [%lld] delta:%d PADDING\n",
4147 e, ts, event->time_delta);
4148 break;
4149
4150 case RINGBUF_TYPE_DATA:
4151 ts += event->time_delta;
4152 pr_warn(" 0x%x: [%lld] delta:%d %s%s\n",
4153 e, ts, event->time_delta,
4154 show_flags(event), show_irq(event));
4155 break;
4156
4157 default:
4158 break;
4159 }
4160 }
4161 pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
4162 }
4163
4164 static DEFINE_PER_CPU(atomic_t, checking);
4165 static atomic_t ts_dump;
4166
4167 #define buffer_warn_return(fmt, ...) \
4168 do { \
4169 /* If another report is happening, ignore this one */ \
4170 if (atomic_inc_return(&ts_dump) != 1) { \
4171 atomic_dec(&ts_dump); \
4172 goto out; \
4173 } \
4174 atomic_inc(&cpu_buffer->record_disabled); \
4175 pr_warn(fmt, ##__VA_ARGS__); \
4176 dump_buffer_page(bpage, info, tail); \
4177 atomic_dec(&ts_dump); \
4178 /* There's some cases in boot up that this can happen */ \
4179 if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING)) \
4180 /* Do not re-enable checking */ \
4181 return; \
4182 } while (0)
4183
4184 /*
4185 * Check if the current event time stamp matches the deltas on
4186 * the buffer page.
4187 */
check_buffer(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info,unsigned long tail)4188 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4189 struct rb_event_info *info,
4190 unsigned long tail)
4191 {
4192 struct buffer_data_page *bpage;
4193 u64 ts, delta;
4194 bool full = false;
4195 int ret;
4196
4197 bpage = info->tail_page->page;
4198
4199 if (tail == CHECK_FULL_PAGE) {
4200 full = true;
4201 tail = local_read(&bpage->commit);
4202 } else if (info->add_timestamp &
4203 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
4204 /* Ignore events with absolute time stamps */
4205 return;
4206 }
4207
4208 /*
4209 * Do not check the first event (skip possible extends too).
4210 * Also do not check if previous events have not been committed.
4211 */
4212 if (tail <= 8 || tail > local_read(&bpage->commit))
4213 return;
4214
4215 /*
4216 * If this interrupted another event,
4217 */
4218 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
4219 goto out;
4220
4221 ret = rb_read_data_buffer(bpage, tail, cpu_buffer->cpu, &ts, &delta);
4222 if (ret < 0) {
4223 if (delta < ts) {
4224 buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
4225 cpu_buffer->cpu, ts, delta);
4226 goto out;
4227 }
4228 }
4229 if ((full && ts > info->ts) ||
4230 (!full && ts + info->delta != info->ts)) {
4231 buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
4232 cpu_buffer->cpu,
4233 ts + info->delta, info->ts, info->delta,
4234 info->before, info->after,
4235 full ? " (full)" : "", show_interrupt_level());
4236 }
4237 out:
4238 atomic_dec(this_cpu_ptr(&checking));
4239 }
4240 #else
check_buffer(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info,unsigned long tail)4241 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4242 struct rb_event_info *info,
4243 unsigned long tail)
4244 {
4245 }
4246 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
4247
4248 static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)4249 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
4250 struct rb_event_info *info)
4251 {
4252 struct ring_buffer_event *event;
4253 struct buffer_page *tail_page;
4254 unsigned long tail, write, w;
4255
4256 /* Don't let the compiler play games with cpu_buffer->tail_page */
4257 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
4258
4259 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK;
4260 barrier();
4261 rb_time_read(&cpu_buffer->before_stamp, &info->before);
4262 rb_time_read(&cpu_buffer->write_stamp, &info->after);
4263 barrier();
4264 info->ts = rb_time_stamp(cpu_buffer->buffer);
4265
4266 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
4267 info->delta = info->ts;
4268 } else {
4269 /*
4270 * If interrupting an event time update, we may need an
4271 * absolute timestamp.
4272 * Don't bother if this is the start of a new page (w == 0).
4273 */
4274 if (!w) {
4275 /* Use the sub-buffer timestamp */
4276 info->delta = 0;
4277 } else if (unlikely(info->before != info->after)) {
4278 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
4279 info->length += RB_LEN_TIME_EXTEND;
4280 } else {
4281 info->delta = info->ts - info->after;
4282 if (unlikely(test_time_stamp(info->delta))) {
4283 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
4284 info->length += RB_LEN_TIME_EXTEND;
4285 }
4286 }
4287 }
4288
4289 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts);
4290
4291 /*C*/ write = local_add_return(info->length, &tail_page->write);
4292
4293 /* set write to only the index of the write */
4294 write &= RB_WRITE_MASK;
4295
4296 tail = write - info->length;
4297
4298 /* See if we shot pass the end of this buffer page */
4299 if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
4300 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
4301 return rb_move_tail(cpu_buffer, tail, info);
4302 }
4303
4304 if (likely(tail == w)) {
4305 /* Nothing interrupted us between A and C */
4306 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts);
4307 /*
4308 * If something came in between C and D, the write stamp
4309 * may now not be in sync. But that's fine as the before_stamp
4310 * will be different and then next event will just be forced
4311 * to use an absolute timestamp.
4312 */
4313 if (likely(!(info->add_timestamp &
4314 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4315 /* This did not interrupt any time update */
4316 info->delta = info->ts - info->after;
4317 else
4318 /* Just use full timestamp for interrupting event */
4319 info->delta = info->ts;
4320 check_buffer(cpu_buffer, info, tail);
4321 } else {
4322 u64 ts;
4323 /* SLOW PATH - Interrupted between A and C */
4324
4325 /* Save the old before_stamp */
4326 rb_time_read(&cpu_buffer->before_stamp, &info->before);
4327
4328 /*
4329 * Read a new timestamp and update the before_stamp to make
4330 * the next event after this one force using an absolute
4331 * timestamp. This is in case an interrupt were to come in
4332 * between E and F.
4333 */
4334 ts = rb_time_stamp(cpu_buffer->buffer);
4335 rb_time_set(&cpu_buffer->before_stamp, ts);
4336
4337 barrier();
4338 /*E*/ rb_time_read(&cpu_buffer->write_stamp, &info->after);
4339 barrier();
4340 /*F*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
4341 info->after == info->before && info->after < ts) {
4342 /*
4343 * Nothing came after this event between C and F, it is
4344 * safe to use info->after for the delta as it
4345 * matched info->before and is still valid.
4346 */
4347 info->delta = ts - info->after;
4348 } else {
4349 /*
4350 * Interrupted between C and F:
4351 * Lost the previous events time stamp. Just set the
4352 * delta to zero, and this will be the same time as
4353 * the event this event interrupted. And the events that
4354 * came after this will still be correct (as they would
4355 * have built their delta on the previous event.
4356 */
4357 info->delta = 0;
4358 }
4359 info->ts = ts;
4360 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
4361 }
4362
4363 /*
4364 * If this is the first commit on the page, then it has the same
4365 * timestamp as the page itself.
4366 */
4367 if (unlikely(!tail && !(info->add_timestamp &
4368 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4369 info->delta = 0;
4370
4371 /* We reserved something on the buffer */
4372
4373 event = __rb_page_index(tail_page, tail);
4374 rb_update_event(cpu_buffer, event, info);
4375
4376 local_inc(&tail_page->entries);
4377
4378 /*
4379 * If this is the first commit on the page, then update
4380 * its timestamp.
4381 */
4382 if (unlikely(!tail))
4383 tail_page->page->time_stamp = info->ts;
4384
4385 /* account for these added bytes */
4386 local_add(info->length, &cpu_buffer->entries_bytes);
4387
4388 return event;
4389 }
4390
4391 static __always_inline struct ring_buffer_event *
rb_reserve_next_event(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer,unsigned long length)4392 rb_reserve_next_event(struct trace_buffer *buffer,
4393 struct ring_buffer_per_cpu *cpu_buffer,
4394 unsigned long length)
4395 {
4396 struct ring_buffer_event *event;
4397 struct rb_event_info info;
4398 int nr_loops = 0;
4399 int add_ts_default;
4400
4401 /* ring buffer does cmpxchg, make sure it is safe in NMI context */
4402 if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) &&
4403 (unlikely(in_nmi()))) {
4404 return NULL;
4405 }
4406
4407 rb_start_commit(cpu_buffer);
4408 /* The commit page can not change after this */
4409
4410 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4411 /*
4412 * Due to the ability to swap a cpu buffer from a buffer
4413 * it is possible it was swapped before we committed.
4414 * (committing stops a swap). We check for it here and
4415 * if it happened, we have to fail the write.
4416 */
4417 barrier();
4418 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
4419 local_dec(&cpu_buffer->committing);
4420 local_dec(&cpu_buffer->commits);
4421 return NULL;
4422 }
4423 #endif
4424
4425 info.length = rb_calculate_event_length(length);
4426
4427 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
4428 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
4429 info.length += RB_LEN_TIME_EXTEND;
4430 if (info.length > cpu_buffer->buffer->max_data_size)
4431 goto out_fail;
4432 } else {
4433 add_ts_default = RB_ADD_STAMP_NONE;
4434 }
4435
4436 again:
4437 info.add_timestamp = add_ts_default;
4438 info.delta = 0;
4439
4440 /*
4441 * We allow for interrupts to reenter here and do a trace.
4442 * If one does, it will cause this original code to loop
4443 * back here. Even with heavy interrupts happening, this
4444 * should only happen a few times in a row. If this happens
4445 * 1000 times in a row, there must be either an interrupt
4446 * storm or we have something buggy.
4447 * Bail!
4448 */
4449 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
4450 goto out_fail;
4451
4452 event = __rb_reserve_next(cpu_buffer, &info);
4453
4454 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
4455 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
4456 info.length -= RB_LEN_TIME_EXTEND;
4457 goto again;
4458 }
4459
4460 if (likely(event))
4461 return event;
4462 out_fail:
4463 rb_end_commit(cpu_buffer);
4464 return NULL;
4465 }
4466
4467 /**
4468 * ring_buffer_lock_reserve - reserve a part of the buffer
4469 * @buffer: the ring buffer to reserve from
4470 * @length: the length of the data to reserve (excluding event header)
4471 *
4472 * Returns a reserved event on the ring buffer to copy directly to.
4473 * The user of this interface will need to get the body to write into
4474 * and can use the ring_buffer_event_data() interface.
4475 *
4476 * The length is the length of the data needed, not the event length
4477 * which also includes the event header.
4478 *
4479 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
4480 * If NULL is returned, then nothing has been allocated or locked.
4481 */
4482 struct ring_buffer_event *
ring_buffer_lock_reserve(struct trace_buffer * buffer,unsigned long length)4483 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
4484 {
4485 struct ring_buffer_per_cpu *cpu_buffer;
4486 struct ring_buffer_event *event;
4487 int cpu;
4488
4489 /* If we are tracing schedule, we don't want to recurse */
4490 preempt_disable_notrace();
4491
4492 if (unlikely(atomic_read(&buffer->record_disabled)))
4493 goto out;
4494
4495 cpu = raw_smp_processor_id();
4496
4497 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
4498 goto out;
4499
4500 cpu_buffer = buffer->buffers[cpu];
4501
4502 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
4503 goto out;
4504
4505 if (unlikely(length > buffer->max_data_size))
4506 goto out;
4507
4508 if (unlikely(trace_recursive_lock(cpu_buffer)))
4509 goto out;
4510
4511 event = rb_reserve_next_event(buffer, cpu_buffer, length);
4512 if (!event)
4513 goto out_unlock;
4514
4515 return event;
4516
4517 out_unlock:
4518 trace_recursive_unlock(cpu_buffer);
4519 out:
4520 preempt_enable_notrace();
4521 return NULL;
4522 }
4523 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
4524
4525 /*
4526 * Decrement the entries to the page that an event is on.
4527 * The event does not even need to exist, only the pointer
4528 * to the page it is on. This may only be called before the commit
4529 * takes place.
4530 */
4531 static inline void
rb_decrement_entry(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)4532 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
4533 struct ring_buffer_event *event)
4534 {
4535 unsigned long addr = (unsigned long)event;
4536 struct buffer_page *bpage = cpu_buffer->commit_page;
4537 struct buffer_page *start;
4538
4539 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
4540
4541 /* Do the likely case first */
4542 if (likely(bpage->page == (void *)addr)) {
4543 local_dec(&bpage->entries);
4544 return;
4545 }
4546
4547 /*
4548 * Because the commit page may be on the reader page we
4549 * start with the next page and check the end loop there.
4550 */
4551 rb_inc_page(&bpage);
4552 start = bpage;
4553 do {
4554 if (bpage->page == (void *)addr) {
4555 local_dec(&bpage->entries);
4556 return;
4557 }
4558 rb_inc_page(&bpage);
4559 } while (bpage != start);
4560
4561 /* commit not part of this buffer?? */
4562 RB_WARN_ON(cpu_buffer, 1);
4563 }
4564
4565 /**
4566 * ring_buffer_discard_commit - discard an event that has not been committed
4567 * @buffer: the ring buffer
4568 * @event: non committed event to discard
4569 *
4570 * Sometimes an event that is in the ring buffer needs to be ignored.
4571 * This function lets the user discard an event in the ring buffer
4572 * and then that event will not be read later.
4573 *
4574 * This function only works if it is called before the item has been
4575 * committed. It will try to free the event from the ring buffer
4576 * if another event has not been added behind it.
4577 *
4578 * If another event has been added behind it, it will set the event
4579 * up as discarded, and perform the commit.
4580 *
4581 * If this function is called, do not call ring_buffer_unlock_commit on
4582 * the event.
4583 */
ring_buffer_discard_commit(struct trace_buffer * buffer,struct ring_buffer_event * event)4584 void ring_buffer_discard_commit(struct trace_buffer *buffer,
4585 struct ring_buffer_event *event)
4586 {
4587 struct ring_buffer_per_cpu *cpu_buffer;
4588 int cpu;
4589
4590 /* The event is discarded regardless */
4591 rb_event_discard(event);
4592
4593 cpu = smp_processor_id();
4594 cpu_buffer = buffer->buffers[cpu];
4595
4596 /*
4597 * This must only be called if the event has not been
4598 * committed yet. Thus we can assume that preemption
4599 * is still disabled.
4600 */
4601 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
4602
4603 rb_decrement_entry(cpu_buffer, event);
4604 if (rb_try_to_discard(cpu_buffer, event))
4605 goto out;
4606
4607 out:
4608 rb_end_commit(cpu_buffer);
4609
4610 trace_recursive_unlock(cpu_buffer);
4611
4612 preempt_enable_notrace();
4613
4614 }
4615 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
4616
4617 /**
4618 * ring_buffer_write - write data to the buffer without reserving
4619 * @buffer: The ring buffer to write to.
4620 * @length: The length of the data being written (excluding the event header)
4621 * @data: The data to write to the buffer.
4622 *
4623 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
4624 * one function. If you already have the data to write to the buffer, it
4625 * may be easier to simply call this function.
4626 *
4627 * Note, like ring_buffer_lock_reserve, the length is the length of the data
4628 * and not the length of the event which would hold the header.
4629 */
ring_buffer_write(struct trace_buffer * buffer,unsigned long length,void * data)4630 int ring_buffer_write(struct trace_buffer *buffer,
4631 unsigned long length,
4632 void *data)
4633 {
4634 struct ring_buffer_per_cpu *cpu_buffer;
4635 struct ring_buffer_event *event;
4636 void *body;
4637 int ret = -EBUSY;
4638 int cpu;
4639
4640 preempt_disable_notrace();
4641
4642 if (atomic_read(&buffer->record_disabled))
4643 goto out;
4644
4645 cpu = raw_smp_processor_id();
4646
4647 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4648 goto out;
4649
4650 cpu_buffer = buffer->buffers[cpu];
4651
4652 if (atomic_read(&cpu_buffer->record_disabled))
4653 goto out;
4654
4655 if (length > buffer->max_data_size)
4656 goto out;
4657
4658 if (unlikely(trace_recursive_lock(cpu_buffer)))
4659 goto out;
4660
4661 event = rb_reserve_next_event(buffer, cpu_buffer, length);
4662 if (!event)
4663 goto out_unlock;
4664
4665 body = rb_event_data(event);
4666
4667 memcpy(body, data, length);
4668
4669 rb_commit(cpu_buffer);
4670
4671 rb_wakeups(buffer, cpu_buffer);
4672
4673 ret = 0;
4674
4675 out_unlock:
4676 trace_recursive_unlock(cpu_buffer);
4677
4678 out:
4679 preempt_enable_notrace();
4680
4681 return ret;
4682 }
4683 EXPORT_SYMBOL_GPL(ring_buffer_write);
4684
rb_per_cpu_empty(struct ring_buffer_per_cpu * cpu_buffer)4685 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
4686 {
4687 struct buffer_page *reader = cpu_buffer->reader_page;
4688 struct buffer_page *head = rb_set_head_page(cpu_buffer);
4689 struct buffer_page *commit = cpu_buffer->commit_page;
4690
4691 /* In case of error, head will be NULL */
4692 if (unlikely(!head))
4693 return true;
4694
4695 /* Reader should exhaust content in reader page */
4696 if (reader->read != rb_page_size(reader))
4697 return false;
4698
4699 /*
4700 * If writers are committing on the reader page, knowing all
4701 * committed content has been read, the ring buffer is empty.
4702 */
4703 if (commit == reader)
4704 return true;
4705
4706 /*
4707 * If writers are committing on a page other than reader page
4708 * and head page, there should always be content to read.
4709 */
4710 if (commit != head)
4711 return false;
4712
4713 /*
4714 * Writers are committing on the head page, we just need
4715 * to care about there're committed data, and the reader will
4716 * swap reader page with head page when it is to read data.
4717 */
4718 return rb_page_commit(commit) == 0;
4719 }
4720
4721 /**
4722 * ring_buffer_record_disable - stop all writes into the buffer
4723 * @buffer: The ring buffer to stop writes to.
4724 *
4725 * This prevents all writes to the buffer. Any attempt to write
4726 * to the buffer after this will fail and return NULL.
4727 *
4728 * The caller should call synchronize_rcu() after this.
4729 */
ring_buffer_record_disable(struct trace_buffer * buffer)4730 void ring_buffer_record_disable(struct trace_buffer *buffer)
4731 {
4732 atomic_inc(&buffer->record_disabled);
4733 }
4734 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4735
4736 /**
4737 * ring_buffer_record_enable - enable writes to the buffer
4738 * @buffer: The ring buffer to enable writes
4739 *
4740 * Note, multiple disables will need the same number of enables
4741 * to truly enable the writing (much like preempt_disable).
4742 */
ring_buffer_record_enable(struct trace_buffer * buffer)4743 void ring_buffer_record_enable(struct trace_buffer *buffer)
4744 {
4745 atomic_dec(&buffer->record_disabled);
4746 }
4747 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4748
4749 /**
4750 * ring_buffer_record_off - stop all writes into the buffer
4751 * @buffer: The ring buffer to stop writes to.
4752 *
4753 * This prevents all writes to the buffer. Any attempt to write
4754 * to the buffer after this will fail and return NULL.
4755 *
4756 * This is different than ring_buffer_record_disable() as
4757 * it works like an on/off switch, where as the disable() version
4758 * must be paired with a enable().
4759 */
ring_buffer_record_off(struct trace_buffer * buffer)4760 void ring_buffer_record_off(struct trace_buffer *buffer)
4761 {
4762 unsigned int rd;
4763 unsigned int new_rd;
4764
4765 rd = atomic_read(&buffer->record_disabled);
4766 do {
4767 new_rd = rd | RB_BUFFER_OFF;
4768 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4769 }
4770 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4771
4772 /**
4773 * ring_buffer_record_on - restart writes into the buffer
4774 * @buffer: The ring buffer to start writes to.
4775 *
4776 * This enables all writes to the buffer that was disabled by
4777 * ring_buffer_record_off().
4778 *
4779 * This is different than ring_buffer_record_enable() as
4780 * it works like an on/off switch, where as the enable() version
4781 * must be paired with a disable().
4782 */
ring_buffer_record_on(struct trace_buffer * buffer)4783 void ring_buffer_record_on(struct trace_buffer *buffer)
4784 {
4785 unsigned int rd;
4786 unsigned int new_rd;
4787
4788 rd = atomic_read(&buffer->record_disabled);
4789 do {
4790 new_rd = rd & ~RB_BUFFER_OFF;
4791 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4792 }
4793 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4794
4795 /**
4796 * ring_buffer_record_is_on - return true if the ring buffer can write
4797 * @buffer: The ring buffer to see if write is enabled
4798 *
4799 * Returns true if the ring buffer is in a state that it accepts writes.
4800 */
ring_buffer_record_is_on(struct trace_buffer * buffer)4801 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4802 {
4803 return !atomic_read(&buffer->record_disabled);
4804 }
4805
4806 /**
4807 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4808 * @buffer: The ring buffer to see if write is set enabled
4809 *
4810 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4811 * Note that this does NOT mean it is in a writable state.
4812 *
4813 * It may return true when the ring buffer has been disabled by
4814 * ring_buffer_record_disable(), as that is a temporary disabling of
4815 * the ring buffer.
4816 */
ring_buffer_record_is_set_on(struct trace_buffer * buffer)4817 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4818 {
4819 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4820 }
4821
4822 /**
4823 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4824 * @buffer: The ring buffer to stop writes to.
4825 * @cpu: The CPU buffer to stop
4826 *
4827 * This prevents all writes to the buffer. Any attempt to write
4828 * to the buffer after this will fail and return NULL.
4829 *
4830 * The caller should call synchronize_rcu() after this.
4831 */
ring_buffer_record_disable_cpu(struct trace_buffer * buffer,int cpu)4832 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4833 {
4834 struct ring_buffer_per_cpu *cpu_buffer;
4835
4836 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4837 return;
4838
4839 cpu_buffer = buffer->buffers[cpu];
4840 atomic_inc(&cpu_buffer->record_disabled);
4841 }
4842 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4843
4844 /**
4845 * ring_buffer_record_enable_cpu - enable writes to the buffer
4846 * @buffer: The ring buffer to enable writes
4847 * @cpu: The CPU to enable.
4848 *
4849 * Note, multiple disables will need the same number of enables
4850 * to truly enable the writing (much like preempt_disable).
4851 */
ring_buffer_record_enable_cpu(struct trace_buffer * buffer,int cpu)4852 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4853 {
4854 struct ring_buffer_per_cpu *cpu_buffer;
4855
4856 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4857 return;
4858
4859 cpu_buffer = buffer->buffers[cpu];
4860 atomic_dec(&cpu_buffer->record_disabled);
4861 }
4862 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4863
4864 /*
4865 * The total entries in the ring buffer is the running counter
4866 * of entries entered into the ring buffer, minus the sum of
4867 * the entries read from the ring buffer and the number of
4868 * entries that were overwritten.
4869 */
4870 static inline unsigned long
rb_num_of_entries(struct ring_buffer_per_cpu * cpu_buffer)4871 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4872 {
4873 return local_read(&cpu_buffer->entries) -
4874 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4875 }
4876
4877 /**
4878 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4879 * @buffer: The ring buffer
4880 * @cpu: The per CPU buffer to read from.
4881 */
ring_buffer_oldest_event_ts(struct trace_buffer * buffer,int cpu)4882 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4883 {
4884 unsigned long flags;
4885 struct ring_buffer_per_cpu *cpu_buffer;
4886 struct buffer_page *bpage;
4887 u64 ret = 0;
4888
4889 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4890 return 0;
4891
4892 cpu_buffer = buffer->buffers[cpu];
4893 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4894 /*
4895 * if the tail is on reader_page, oldest time stamp is on the reader
4896 * page
4897 */
4898 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4899 bpage = cpu_buffer->reader_page;
4900 else
4901 bpage = rb_set_head_page(cpu_buffer);
4902 if (bpage)
4903 ret = bpage->page->time_stamp;
4904 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4905
4906 return ret;
4907 }
4908 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4909
4910 /**
4911 * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4912 * @buffer: The ring buffer
4913 * @cpu: The per CPU buffer to read from.
4914 */
ring_buffer_bytes_cpu(struct trace_buffer * buffer,int cpu)4915 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4916 {
4917 struct ring_buffer_per_cpu *cpu_buffer;
4918 unsigned long ret;
4919
4920 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4921 return 0;
4922
4923 cpu_buffer = buffer->buffers[cpu];
4924 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4925
4926 return ret;
4927 }
4928 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4929
4930 /**
4931 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4932 * @buffer: The ring buffer
4933 * @cpu: The per CPU buffer to get the entries from.
4934 */
ring_buffer_entries_cpu(struct trace_buffer * buffer,int cpu)4935 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4936 {
4937 struct ring_buffer_per_cpu *cpu_buffer;
4938
4939 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4940 return 0;
4941
4942 cpu_buffer = buffer->buffers[cpu];
4943
4944 return rb_num_of_entries(cpu_buffer);
4945 }
4946 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4947
4948 /**
4949 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4950 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4951 * @buffer: The ring buffer
4952 * @cpu: The per CPU buffer to get the number of overruns from
4953 */
ring_buffer_overrun_cpu(struct trace_buffer * buffer,int cpu)4954 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4955 {
4956 struct ring_buffer_per_cpu *cpu_buffer;
4957 unsigned long ret;
4958
4959 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4960 return 0;
4961
4962 cpu_buffer = buffer->buffers[cpu];
4963 ret = local_read(&cpu_buffer->overrun);
4964
4965 return ret;
4966 }
4967 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4968
4969 /**
4970 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4971 * commits failing due to the buffer wrapping around while there are uncommitted
4972 * events, such as during an interrupt storm.
4973 * @buffer: The ring buffer
4974 * @cpu: The per CPU buffer to get the number of overruns from
4975 */
4976 unsigned long
ring_buffer_commit_overrun_cpu(struct trace_buffer * buffer,int cpu)4977 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4978 {
4979 struct ring_buffer_per_cpu *cpu_buffer;
4980 unsigned long ret;
4981
4982 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4983 return 0;
4984
4985 cpu_buffer = buffer->buffers[cpu];
4986 ret = local_read(&cpu_buffer->commit_overrun);
4987
4988 return ret;
4989 }
4990 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4991
4992 /**
4993 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4994 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4995 * @buffer: The ring buffer
4996 * @cpu: The per CPU buffer to get the number of overruns from
4997 */
4998 unsigned long
ring_buffer_dropped_events_cpu(struct trace_buffer * buffer,int cpu)4999 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
5000 {
5001 struct ring_buffer_per_cpu *cpu_buffer;
5002 unsigned long ret;
5003
5004 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5005 return 0;
5006
5007 cpu_buffer = buffer->buffers[cpu];
5008 ret = local_read(&cpu_buffer->dropped_events);
5009
5010 return ret;
5011 }
5012 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
5013
5014 /**
5015 * ring_buffer_read_events_cpu - get the number of events successfully read
5016 * @buffer: The ring buffer
5017 * @cpu: The per CPU buffer to get the number of events read
5018 */
5019 unsigned long
ring_buffer_read_events_cpu(struct trace_buffer * buffer,int cpu)5020 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
5021 {
5022 struct ring_buffer_per_cpu *cpu_buffer;
5023
5024 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5025 return 0;
5026
5027 cpu_buffer = buffer->buffers[cpu];
5028 return cpu_buffer->read;
5029 }
5030 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
5031
5032 /**
5033 * ring_buffer_entries - get the number of entries in a buffer
5034 * @buffer: The ring buffer
5035 *
5036 * Returns the total number of entries in the ring buffer
5037 * (all CPU entries)
5038 */
ring_buffer_entries(struct trace_buffer * buffer)5039 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
5040 {
5041 struct ring_buffer_per_cpu *cpu_buffer;
5042 unsigned long entries = 0;
5043 int cpu;
5044
5045 /* if you care about this being correct, lock the buffer */
5046 for_each_buffer_cpu(buffer, cpu) {
5047 cpu_buffer = buffer->buffers[cpu];
5048 entries += rb_num_of_entries(cpu_buffer);
5049 }
5050
5051 return entries;
5052 }
5053 EXPORT_SYMBOL_GPL(ring_buffer_entries);
5054
5055 /**
5056 * ring_buffer_overruns - get the number of overruns in buffer
5057 * @buffer: The ring buffer
5058 *
5059 * Returns the total number of overruns in the ring buffer
5060 * (all CPU entries)
5061 */
ring_buffer_overruns(struct trace_buffer * buffer)5062 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
5063 {
5064 struct ring_buffer_per_cpu *cpu_buffer;
5065 unsigned long overruns = 0;
5066 int cpu;
5067
5068 /* if you care about this being correct, lock the buffer */
5069 for_each_buffer_cpu(buffer, cpu) {
5070 cpu_buffer = buffer->buffers[cpu];
5071 overruns += local_read(&cpu_buffer->overrun);
5072 }
5073
5074 return overruns;
5075 }
5076 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
5077
rb_iter_reset(struct ring_buffer_iter * iter)5078 static void rb_iter_reset(struct ring_buffer_iter *iter)
5079 {
5080 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5081
5082 /* Iterator usage is expected to have record disabled */
5083 iter->head_page = cpu_buffer->reader_page;
5084 iter->head = cpu_buffer->reader_page->read;
5085 iter->next_event = iter->head;
5086
5087 iter->cache_reader_page = iter->head_page;
5088 iter->cache_read = cpu_buffer->read;
5089 iter->cache_pages_removed = cpu_buffer->pages_removed;
5090
5091 if (iter->head) {
5092 iter->read_stamp = cpu_buffer->read_stamp;
5093 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
5094 } else {
5095 iter->read_stamp = iter->head_page->page->time_stamp;
5096 iter->page_stamp = iter->read_stamp;
5097 }
5098 }
5099
5100 /**
5101 * ring_buffer_iter_reset - reset an iterator
5102 * @iter: The iterator to reset
5103 *
5104 * Resets the iterator, so that it will start from the beginning
5105 * again.
5106 */
ring_buffer_iter_reset(struct ring_buffer_iter * iter)5107 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
5108 {
5109 struct ring_buffer_per_cpu *cpu_buffer;
5110 unsigned long flags;
5111
5112 if (!iter)
5113 return;
5114
5115 cpu_buffer = iter->cpu_buffer;
5116
5117 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5118 rb_iter_reset(iter);
5119 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5120 }
5121 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
5122
5123 /**
5124 * ring_buffer_iter_empty - check if an iterator has no more to read
5125 * @iter: The iterator to check
5126 */
ring_buffer_iter_empty(struct ring_buffer_iter * iter)5127 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
5128 {
5129 struct ring_buffer_per_cpu *cpu_buffer;
5130 struct buffer_page *reader;
5131 struct buffer_page *head_page;
5132 struct buffer_page *commit_page;
5133 struct buffer_page *curr_commit_page;
5134 unsigned commit;
5135 u64 curr_commit_ts;
5136 u64 commit_ts;
5137
5138 cpu_buffer = iter->cpu_buffer;
5139 reader = cpu_buffer->reader_page;
5140 head_page = cpu_buffer->head_page;
5141 commit_page = READ_ONCE(cpu_buffer->commit_page);
5142 commit_ts = commit_page->page->time_stamp;
5143
5144 /*
5145 * When the writer goes across pages, it issues a cmpxchg which
5146 * is a mb(), which will synchronize with the rmb here.
5147 * (see rb_tail_page_update())
5148 */
5149 smp_rmb();
5150 commit = rb_page_commit(commit_page);
5151 /* We want to make sure that the commit page doesn't change */
5152 smp_rmb();
5153
5154 /* Make sure commit page didn't change */
5155 curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
5156 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
5157
5158 /* If the commit page changed, then there's more data */
5159 if (curr_commit_page != commit_page ||
5160 curr_commit_ts != commit_ts)
5161 return 0;
5162
5163 /* Still racy, as it may return a false positive, but that's OK */
5164 return ((iter->head_page == commit_page && iter->head >= commit) ||
5165 (iter->head_page == reader && commit_page == head_page &&
5166 head_page->read == commit &&
5167 iter->head == rb_page_size(cpu_buffer->reader_page)));
5168 }
5169 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
5170
5171 static void
rb_update_read_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)5172 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
5173 struct ring_buffer_event *event)
5174 {
5175 u64 delta;
5176
5177 switch (event->type_len) {
5178 case RINGBUF_TYPE_PADDING:
5179 return;
5180
5181 case RINGBUF_TYPE_TIME_EXTEND:
5182 delta = rb_event_time_stamp(event);
5183 cpu_buffer->read_stamp += delta;
5184 return;
5185
5186 case RINGBUF_TYPE_TIME_STAMP:
5187 delta = rb_event_time_stamp(event);
5188 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
5189 cpu_buffer->read_stamp = delta;
5190 return;
5191
5192 case RINGBUF_TYPE_DATA:
5193 cpu_buffer->read_stamp += event->time_delta;
5194 return;
5195
5196 default:
5197 RB_WARN_ON(cpu_buffer, 1);
5198 }
5199 }
5200
5201 static void
rb_update_iter_read_stamp(struct ring_buffer_iter * iter,struct ring_buffer_event * event)5202 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
5203 struct ring_buffer_event *event)
5204 {
5205 u64 delta;
5206
5207 switch (event->type_len) {
5208 case RINGBUF_TYPE_PADDING:
5209 return;
5210
5211 case RINGBUF_TYPE_TIME_EXTEND:
5212 delta = rb_event_time_stamp(event);
5213 iter->read_stamp += delta;
5214 return;
5215
5216 case RINGBUF_TYPE_TIME_STAMP:
5217 delta = rb_event_time_stamp(event);
5218 delta = rb_fix_abs_ts(delta, iter->read_stamp);
5219 iter->read_stamp = delta;
5220 return;
5221
5222 case RINGBUF_TYPE_DATA:
5223 iter->read_stamp += event->time_delta;
5224 return;
5225
5226 default:
5227 RB_WARN_ON(iter->cpu_buffer, 1);
5228 }
5229 }
5230
5231 static struct buffer_page *
rb_get_reader_page(struct ring_buffer_per_cpu * cpu_buffer)5232 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
5233 {
5234 struct buffer_page *reader = NULL;
5235 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
5236 unsigned long overwrite;
5237 unsigned long flags;
5238 int nr_loops = 0;
5239 bool ret;
5240
5241 local_irq_save(flags);
5242 arch_spin_lock(&cpu_buffer->lock);
5243
5244 again:
5245 /*
5246 * This should normally only loop twice. But because the
5247 * start of the reader inserts an empty page, it causes
5248 * a case where we will loop three times. There should be no
5249 * reason to loop four times (that I know of).
5250 */
5251 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
5252 reader = NULL;
5253 goto out;
5254 }
5255
5256 reader = cpu_buffer->reader_page;
5257
5258 /* If there's more to read, return this page */
5259 if (cpu_buffer->reader_page->read < rb_page_size(reader))
5260 goto out;
5261
5262 /* Never should we have an index greater than the size */
5263 if (RB_WARN_ON(cpu_buffer,
5264 cpu_buffer->reader_page->read > rb_page_size(reader)))
5265 goto out;
5266
5267 /* check if we caught up to the tail */
5268 reader = NULL;
5269 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
5270 goto out;
5271
5272 /* Don't bother swapping if the ring buffer is empty */
5273 if (rb_num_of_entries(cpu_buffer) == 0)
5274 goto out;
5275
5276 /*
5277 * Reset the reader page to size zero.
5278 */
5279 local_set(&cpu_buffer->reader_page->write, 0);
5280 local_set(&cpu_buffer->reader_page->entries, 0);
5281 local_set(&cpu_buffer->reader_page->page->commit, 0);
5282 cpu_buffer->reader_page->real_end = 0;
5283
5284 spin:
5285 /*
5286 * Splice the empty reader page into the list around the head.
5287 */
5288 reader = rb_set_head_page(cpu_buffer);
5289 if (!reader)
5290 goto out;
5291 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
5292 cpu_buffer->reader_page->list.prev = reader->list.prev;
5293
5294 /*
5295 * cpu_buffer->pages just needs to point to the buffer, it
5296 * has no specific buffer page to point to. Lets move it out
5297 * of our way so we don't accidentally swap it.
5298 */
5299 cpu_buffer->pages = reader->list.prev;
5300
5301 /* The reader page will be pointing to the new head */
5302 rb_set_list_to_head(&cpu_buffer->reader_page->list);
5303
5304 /*
5305 * We want to make sure we read the overruns after we set up our
5306 * pointers to the next object. The writer side does a
5307 * cmpxchg to cross pages which acts as the mb on the writer
5308 * side. Note, the reader will constantly fail the swap
5309 * while the writer is updating the pointers, so this
5310 * guarantees that the overwrite recorded here is the one we
5311 * want to compare with the last_overrun.
5312 */
5313 smp_mb();
5314 overwrite = local_read(&(cpu_buffer->overrun));
5315
5316 /*
5317 * Here's the tricky part.
5318 *
5319 * We need to move the pointer past the header page.
5320 * But we can only do that if a writer is not currently
5321 * moving it. The page before the header page has the
5322 * flag bit '1' set if it is pointing to the page we want.
5323 * but if the writer is in the process of moving it
5324 * than it will be '2' or already moved '0'.
5325 */
5326
5327 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
5328
5329 /*
5330 * If we did not convert it, then we must try again.
5331 */
5332 if (!ret)
5333 goto spin;
5334
5335 if (cpu_buffer->ring_meta)
5336 rb_update_meta_reader(cpu_buffer, reader);
5337
5338 /*
5339 * Yay! We succeeded in replacing the page.
5340 *
5341 * Now make the new head point back to the reader page.
5342 */
5343 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
5344 rb_inc_page(&cpu_buffer->head_page);
5345
5346 cpu_buffer->cnt++;
5347 local_inc(&cpu_buffer->pages_read);
5348
5349 /* Finally update the reader page to the new head */
5350 cpu_buffer->reader_page = reader;
5351 cpu_buffer->reader_page->read = 0;
5352
5353 if (overwrite != cpu_buffer->last_overrun) {
5354 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
5355 cpu_buffer->last_overrun = overwrite;
5356 }
5357
5358 goto again;
5359
5360 out:
5361 /* Update the read_stamp on the first event */
5362 if (reader && reader->read == 0)
5363 cpu_buffer->read_stamp = reader->page->time_stamp;
5364
5365 arch_spin_unlock(&cpu_buffer->lock);
5366 local_irq_restore(flags);
5367
5368 /*
5369 * The writer has preempt disable, wait for it. But not forever
5370 * Although, 1 second is pretty much "forever"
5371 */
5372 #define USECS_WAIT 1000000
5373 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
5374 /* If the write is past the end of page, a writer is still updating it */
5375 if (likely(!reader || rb_page_write(reader) <= bsize))
5376 break;
5377
5378 udelay(1);
5379
5380 /* Get the latest version of the reader write value */
5381 smp_rmb();
5382 }
5383
5384 /* The writer is not moving forward? Something is wrong */
5385 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
5386 reader = NULL;
5387
5388 /*
5389 * Make sure we see any padding after the write update
5390 * (see rb_reset_tail()).
5391 *
5392 * In addition, a writer may be writing on the reader page
5393 * if the page has not been fully filled, so the read barrier
5394 * is also needed to make sure we see the content of what is
5395 * committed by the writer (see rb_set_commit_to_write()).
5396 */
5397 smp_rmb();
5398
5399
5400 return reader;
5401 }
5402
rb_advance_reader(struct ring_buffer_per_cpu * cpu_buffer)5403 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
5404 {
5405 struct ring_buffer_event *event;
5406 struct buffer_page *reader;
5407 unsigned length;
5408
5409 reader = rb_get_reader_page(cpu_buffer);
5410
5411 /* This function should not be called when buffer is empty */
5412 if (RB_WARN_ON(cpu_buffer, !reader))
5413 return;
5414
5415 event = rb_reader_event(cpu_buffer);
5416
5417 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
5418 cpu_buffer->read++;
5419
5420 rb_update_read_stamp(cpu_buffer, event);
5421
5422 length = rb_event_length(event);
5423 cpu_buffer->reader_page->read += length;
5424 cpu_buffer->read_bytes += length;
5425 }
5426
rb_advance_iter(struct ring_buffer_iter * iter)5427 static void rb_advance_iter(struct ring_buffer_iter *iter)
5428 {
5429 struct ring_buffer_per_cpu *cpu_buffer;
5430
5431 cpu_buffer = iter->cpu_buffer;
5432
5433 /* If head == next_event then we need to jump to the next event */
5434 if (iter->head == iter->next_event) {
5435 /* If the event gets overwritten again, there's nothing to do */
5436 if (rb_iter_head_event(iter) == NULL)
5437 return;
5438 }
5439
5440 iter->head = iter->next_event;
5441
5442 /*
5443 * Check if we are at the end of the buffer.
5444 */
5445 if (iter->next_event >= rb_page_size(iter->head_page)) {
5446 /* discarded commits can make the page empty */
5447 if (iter->head_page == cpu_buffer->commit_page)
5448 return;
5449 rb_inc_iter(iter);
5450 return;
5451 }
5452
5453 rb_update_iter_read_stamp(iter, iter->event);
5454 }
5455
rb_lost_events(struct ring_buffer_per_cpu * cpu_buffer)5456 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
5457 {
5458 return cpu_buffer->lost_events;
5459 }
5460
5461 static struct ring_buffer_event *
rb_buffer_peek(struct ring_buffer_per_cpu * cpu_buffer,u64 * ts,unsigned long * lost_events)5462 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
5463 unsigned long *lost_events)
5464 {
5465 struct ring_buffer_event *event;
5466 struct buffer_page *reader;
5467 int nr_loops = 0;
5468
5469 if (ts)
5470 *ts = 0;
5471 again:
5472 /*
5473 * We repeat when a time extend is encountered.
5474 * Since the time extend is always attached to a data event,
5475 * we should never loop more than once.
5476 * (We never hit the following condition more than twice).
5477 */
5478 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
5479 return NULL;
5480
5481 reader = rb_get_reader_page(cpu_buffer);
5482 if (!reader)
5483 return NULL;
5484
5485 event = rb_reader_event(cpu_buffer);
5486
5487 switch (event->type_len) {
5488 case RINGBUF_TYPE_PADDING:
5489 if (rb_null_event(event))
5490 RB_WARN_ON(cpu_buffer, 1);
5491 /*
5492 * Because the writer could be discarding every
5493 * event it creates (which would probably be bad)
5494 * if we were to go back to "again" then we may never
5495 * catch up, and will trigger the warn on, or lock
5496 * the box. Return the padding, and we will release
5497 * the current locks, and try again.
5498 */
5499 return event;
5500
5501 case RINGBUF_TYPE_TIME_EXTEND:
5502 /* Internal data, OK to advance */
5503 rb_advance_reader(cpu_buffer);
5504 goto again;
5505
5506 case RINGBUF_TYPE_TIME_STAMP:
5507 if (ts) {
5508 *ts = rb_event_time_stamp(event);
5509 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
5510 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5511 cpu_buffer->cpu, ts);
5512 }
5513 /* Internal data, OK to advance */
5514 rb_advance_reader(cpu_buffer);
5515 goto again;
5516
5517 case RINGBUF_TYPE_DATA:
5518 if (ts && !(*ts)) {
5519 *ts = cpu_buffer->read_stamp + event->time_delta;
5520 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5521 cpu_buffer->cpu, ts);
5522 }
5523 if (lost_events)
5524 *lost_events = rb_lost_events(cpu_buffer);
5525 return event;
5526
5527 default:
5528 RB_WARN_ON(cpu_buffer, 1);
5529 }
5530
5531 return NULL;
5532 }
5533 EXPORT_SYMBOL_GPL(ring_buffer_peek);
5534
5535 static struct ring_buffer_event *
rb_iter_peek(struct ring_buffer_iter * iter,u64 * ts)5536 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5537 {
5538 struct trace_buffer *buffer;
5539 struct ring_buffer_per_cpu *cpu_buffer;
5540 struct ring_buffer_event *event;
5541 int nr_loops = 0;
5542
5543 if (ts)
5544 *ts = 0;
5545
5546 cpu_buffer = iter->cpu_buffer;
5547 buffer = cpu_buffer->buffer;
5548
5549 /*
5550 * Check if someone performed a consuming read to the buffer
5551 * or removed some pages from the buffer. In these cases,
5552 * iterator was invalidated and we need to reset it.
5553 */
5554 if (unlikely(iter->cache_read != cpu_buffer->read ||
5555 iter->cache_reader_page != cpu_buffer->reader_page ||
5556 iter->cache_pages_removed != cpu_buffer->pages_removed))
5557 rb_iter_reset(iter);
5558
5559 again:
5560 if (ring_buffer_iter_empty(iter))
5561 return NULL;
5562
5563 /*
5564 * As the writer can mess with what the iterator is trying
5565 * to read, just give up if we fail to get an event after
5566 * three tries. The iterator is not as reliable when reading
5567 * the ring buffer with an active write as the consumer is.
5568 * Do not warn if the three failures is reached.
5569 */
5570 if (++nr_loops > 3)
5571 return NULL;
5572
5573 if (rb_per_cpu_empty(cpu_buffer))
5574 return NULL;
5575
5576 if (iter->head >= rb_page_size(iter->head_page)) {
5577 rb_inc_iter(iter);
5578 goto again;
5579 }
5580
5581 event = rb_iter_head_event(iter);
5582 if (!event)
5583 goto again;
5584
5585 switch (event->type_len) {
5586 case RINGBUF_TYPE_PADDING:
5587 if (rb_null_event(event)) {
5588 rb_inc_iter(iter);
5589 goto again;
5590 }
5591 rb_advance_iter(iter);
5592 return event;
5593
5594 case RINGBUF_TYPE_TIME_EXTEND:
5595 /* Internal data, OK to advance */
5596 rb_advance_iter(iter);
5597 goto again;
5598
5599 case RINGBUF_TYPE_TIME_STAMP:
5600 if (ts) {
5601 *ts = rb_event_time_stamp(event);
5602 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
5603 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5604 cpu_buffer->cpu, ts);
5605 }
5606 /* Internal data, OK to advance */
5607 rb_advance_iter(iter);
5608 goto again;
5609
5610 case RINGBUF_TYPE_DATA:
5611 if (ts && !(*ts)) {
5612 *ts = iter->read_stamp + event->time_delta;
5613 ring_buffer_normalize_time_stamp(buffer,
5614 cpu_buffer->cpu, ts);
5615 }
5616 return event;
5617
5618 default:
5619 RB_WARN_ON(cpu_buffer, 1);
5620 }
5621
5622 return NULL;
5623 }
5624 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
5625
rb_reader_lock(struct ring_buffer_per_cpu * cpu_buffer)5626 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
5627 {
5628 if (likely(!in_nmi())) {
5629 raw_spin_lock(&cpu_buffer->reader_lock);
5630 return true;
5631 }
5632
5633 /*
5634 * If an NMI die dumps out the content of the ring buffer
5635 * trylock must be used to prevent a deadlock if the NMI
5636 * preempted a task that holds the ring buffer locks. If
5637 * we get the lock then all is fine, if not, then continue
5638 * to do the read, but this can corrupt the ring buffer,
5639 * so it must be permanently disabled from future writes.
5640 * Reading from NMI is a oneshot deal.
5641 */
5642 if (raw_spin_trylock(&cpu_buffer->reader_lock))
5643 return true;
5644
5645 /* Continue without locking, but disable the ring buffer */
5646 atomic_inc(&cpu_buffer->record_disabled);
5647 return false;
5648 }
5649
5650 static inline void
rb_reader_unlock(struct ring_buffer_per_cpu * cpu_buffer,bool locked)5651 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
5652 {
5653 if (likely(locked))
5654 raw_spin_unlock(&cpu_buffer->reader_lock);
5655 }
5656
5657 /**
5658 * ring_buffer_peek - peek at the next event to be read
5659 * @buffer: The ring buffer to read
5660 * @cpu: The cpu to peak at
5661 * @ts: The timestamp counter of this event.
5662 * @lost_events: a variable to store if events were lost (may be NULL)
5663 *
5664 * This will return the event that will be read next, but does
5665 * not consume the data.
5666 */
5667 struct ring_buffer_event *
ring_buffer_peek(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)5668 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
5669 unsigned long *lost_events)
5670 {
5671 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5672 struct ring_buffer_event *event;
5673 unsigned long flags;
5674 bool dolock;
5675
5676 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5677 return NULL;
5678
5679 again:
5680 local_irq_save(flags);
5681 dolock = rb_reader_lock(cpu_buffer);
5682 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5683 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5684 rb_advance_reader(cpu_buffer);
5685 rb_reader_unlock(cpu_buffer, dolock);
5686 local_irq_restore(flags);
5687
5688 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5689 goto again;
5690
5691 return event;
5692 }
5693
5694 /** ring_buffer_iter_dropped - report if there are dropped events
5695 * @iter: The ring buffer iterator
5696 *
5697 * Returns true if there was dropped events since the last peek.
5698 */
ring_buffer_iter_dropped(struct ring_buffer_iter * iter)5699 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5700 {
5701 bool ret = iter->missed_events != 0;
5702
5703 iter->missed_events = 0;
5704 return ret;
5705 }
5706 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5707
5708 /**
5709 * ring_buffer_iter_peek - peek at the next event to be read
5710 * @iter: The ring buffer iterator
5711 * @ts: The timestamp counter of this event.
5712 *
5713 * This will return the event that will be read next, but does
5714 * not increment the iterator.
5715 */
5716 struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter * iter,u64 * ts)5717 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5718 {
5719 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5720 struct ring_buffer_event *event;
5721 unsigned long flags;
5722
5723 again:
5724 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5725 event = rb_iter_peek(iter, ts);
5726 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5727
5728 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5729 goto again;
5730
5731 return event;
5732 }
5733
5734 /**
5735 * ring_buffer_consume - return an event and consume it
5736 * @buffer: The ring buffer to get the next event from
5737 * @cpu: the cpu to read the buffer from
5738 * @ts: a variable to store the timestamp (may be NULL)
5739 * @lost_events: a variable to store if events were lost (may be NULL)
5740 *
5741 * Returns the next event in the ring buffer, and that event is consumed.
5742 * Meaning, that sequential reads will keep returning a different event,
5743 * and eventually empty the ring buffer if the producer is slower.
5744 */
5745 struct ring_buffer_event *
ring_buffer_consume(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)5746 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5747 unsigned long *lost_events)
5748 {
5749 struct ring_buffer_per_cpu *cpu_buffer;
5750 struct ring_buffer_event *event = NULL;
5751 unsigned long flags;
5752 bool dolock;
5753
5754 again:
5755 /* might be called in atomic */
5756 preempt_disable();
5757
5758 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5759 goto out;
5760
5761 cpu_buffer = buffer->buffers[cpu];
5762 local_irq_save(flags);
5763 dolock = rb_reader_lock(cpu_buffer);
5764
5765 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5766 if (event) {
5767 cpu_buffer->lost_events = 0;
5768 rb_advance_reader(cpu_buffer);
5769 }
5770
5771 rb_reader_unlock(cpu_buffer, dolock);
5772 local_irq_restore(flags);
5773
5774 out:
5775 preempt_enable();
5776
5777 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5778 goto again;
5779
5780 return event;
5781 }
5782 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5783
5784 /**
5785 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5786 * @buffer: The ring buffer to read from
5787 * @cpu: The cpu buffer to iterate over
5788 * @flags: gfp flags to use for memory allocation
5789 *
5790 * This performs the initial preparations necessary to iterate
5791 * through the buffer. Memory is allocated, buffer resizing
5792 * is disabled, and the iterator pointer is returned to the caller.
5793 *
5794 * After a sequence of ring_buffer_read_prepare calls, the user is
5795 * expected to make at least one call to ring_buffer_read_prepare_sync.
5796 * Afterwards, ring_buffer_read_start is invoked to get things going
5797 * for real.
5798 *
5799 * This overall must be paired with ring_buffer_read_finish.
5800 */
5801 struct ring_buffer_iter *
ring_buffer_read_prepare(struct trace_buffer * buffer,int cpu,gfp_t flags)5802 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5803 {
5804 struct ring_buffer_per_cpu *cpu_buffer;
5805 struct ring_buffer_iter *iter;
5806
5807 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5808 return NULL;
5809
5810 iter = kzalloc(sizeof(*iter), flags);
5811 if (!iter)
5812 return NULL;
5813
5814 /* Holds the entire event: data and meta data */
5815 iter->event_size = buffer->subbuf_size;
5816 iter->event = kmalloc(iter->event_size, flags);
5817 if (!iter->event) {
5818 kfree(iter);
5819 return NULL;
5820 }
5821
5822 cpu_buffer = buffer->buffers[cpu];
5823
5824 iter->cpu_buffer = cpu_buffer;
5825
5826 atomic_inc(&cpu_buffer->resize_disabled);
5827
5828 return iter;
5829 }
5830 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5831
5832 /**
5833 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5834 *
5835 * All previously invoked ring_buffer_read_prepare calls to prepare
5836 * iterators will be synchronized. Afterwards, read_buffer_read_start
5837 * calls on those iterators are allowed.
5838 */
5839 void
ring_buffer_read_prepare_sync(void)5840 ring_buffer_read_prepare_sync(void)
5841 {
5842 synchronize_rcu();
5843 }
5844 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5845
5846 /**
5847 * ring_buffer_read_start - start a non consuming read of the buffer
5848 * @iter: The iterator returned by ring_buffer_read_prepare
5849 *
5850 * This finalizes the startup of an iteration through the buffer.
5851 * The iterator comes from a call to ring_buffer_read_prepare and
5852 * an intervening ring_buffer_read_prepare_sync must have been
5853 * performed.
5854 *
5855 * Must be paired with ring_buffer_read_finish.
5856 */
5857 void
ring_buffer_read_start(struct ring_buffer_iter * iter)5858 ring_buffer_read_start(struct ring_buffer_iter *iter)
5859 {
5860 struct ring_buffer_per_cpu *cpu_buffer;
5861 unsigned long flags;
5862
5863 if (!iter)
5864 return;
5865
5866 cpu_buffer = iter->cpu_buffer;
5867
5868 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5869 arch_spin_lock(&cpu_buffer->lock);
5870 rb_iter_reset(iter);
5871 arch_spin_unlock(&cpu_buffer->lock);
5872 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5873 }
5874 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5875
5876 /**
5877 * ring_buffer_read_finish - finish reading the iterator of the buffer
5878 * @iter: The iterator retrieved by ring_buffer_start
5879 *
5880 * This re-enables resizing of the buffer, and frees the iterator.
5881 */
5882 void
ring_buffer_read_finish(struct ring_buffer_iter * iter)5883 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5884 {
5885 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5886
5887 /* Use this opportunity to check the integrity of the ring buffer. */
5888 rb_check_pages(cpu_buffer);
5889
5890 atomic_dec(&cpu_buffer->resize_disabled);
5891 kfree(iter->event);
5892 kfree(iter);
5893 }
5894 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5895
5896 /**
5897 * ring_buffer_iter_advance - advance the iterator to the next location
5898 * @iter: The ring buffer iterator
5899 *
5900 * Move the location of the iterator such that the next read will
5901 * be the next location of the iterator.
5902 */
ring_buffer_iter_advance(struct ring_buffer_iter * iter)5903 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5904 {
5905 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5906 unsigned long flags;
5907
5908 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5909
5910 rb_advance_iter(iter);
5911
5912 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5913 }
5914 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5915
5916 /**
5917 * ring_buffer_size - return the size of the ring buffer (in bytes)
5918 * @buffer: The ring buffer.
5919 * @cpu: The CPU to get ring buffer size from.
5920 */
ring_buffer_size(struct trace_buffer * buffer,int cpu)5921 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5922 {
5923 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5924 return 0;
5925
5926 return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
5927 }
5928 EXPORT_SYMBOL_GPL(ring_buffer_size);
5929
5930 /**
5931 * ring_buffer_max_event_size - return the max data size of an event
5932 * @buffer: The ring buffer.
5933 *
5934 * Returns the maximum size an event can be.
5935 */
ring_buffer_max_event_size(struct trace_buffer * buffer)5936 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
5937 {
5938 /* If abs timestamp is requested, events have a timestamp too */
5939 if (ring_buffer_time_stamp_abs(buffer))
5940 return buffer->max_data_size - RB_LEN_TIME_EXTEND;
5941 return buffer->max_data_size;
5942 }
5943 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
5944
rb_clear_buffer_page(struct buffer_page * page)5945 static void rb_clear_buffer_page(struct buffer_page *page)
5946 {
5947 local_set(&page->write, 0);
5948 local_set(&page->entries, 0);
5949 rb_init_page(page->page);
5950 page->read = 0;
5951 }
5952
rb_update_meta_page(struct ring_buffer_per_cpu * cpu_buffer)5953 static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
5954 {
5955 struct trace_buffer_meta *meta = cpu_buffer->meta_page;
5956
5957 if (!meta)
5958 return;
5959
5960 meta->reader.read = cpu_buffer->reader_page->read;
5961 meta->reader.id = cpu_buffer->reader_page->id;
5962 meta->reader.lost_events = cpu_buffer->lost_events;
5963
5964 meta->entries = local_read(&cpu_buffer->entries);
5965 meta->overrun = local_read(&cpu_buffer->overrun);
5966 meta->read = cpu_buffer->read;
5967
5968 /* Some archs do not have data cache coherency between kernel and user-space */
5969 flush_dcache_folio(virt_to_folio(cpu_buffer->meta_page));
5970 }
5971
5972 static void
rb_reset_cpu(struct ring_buffer_per_cpu * cpu_buffer)5973 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5974 {
5975 struct buffer_page *page;
5976
5977 rb_head_page_deactivate(cpu_buffer);
5978
5979 cpu_buffer->head_page
5980 = list_entry(cpu_buffer->pages, struct buffer_page, list);
5981 rb_clear_buffer_page(cpu_buffer->head_page);
5982 list_for_each_entry(page, cpu_buffer->pages, list) {
5983 rb_clear_buffer_page(page);
5984 }
5985
5986 cpu_buffer->tail_page = cpu_buffer->head_page;
5987 cpu_buffer->commit_page = cpu_buffer->head_page;
5988
5989 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5990 INIT_LIST_HEAD(&cpu_buffer->new_pages);
5991 rb_clear_buffer_page(cpu_buffer->reader_page);
5992
5993 local_set(&cpu_buffer->entries_bytes, 0);
5994 local_set(&cpu_buffer->overrun, 0);
5995 local_set(&cpu_buffer->commit_overrun, 0);
5996 local_set(&cpu_buffer->dropped_events, 0);
5997 local_set(&cpu_buffer->entries, 0);
5998 local_set(&cpu_buffer->committing, 0);
5999 local_set(&cpu_buffer->commits, 0);
6000 local_set(&cpu_buffer->pages_touched, 0);
6001 local_set(&cpu_buffer->pages_lost, 0);
6002 local_set(&cpu_buffer->pages_read, 0);
6003 cpu_buffer->last_pages_touch = 0;
6004 cpu_buffer->shortest_full = 0;
6005 cpu_buffer->read = 0;
6006 cpu_buffer->read_bytes = 0;
6007
6008 rb_time_set(&cpu_buffer->write_stamp, 0);
6009 rb_time_set(&cpu_buffer->before_stamp, 0);
6010
6011 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
6012
6013 cpu_buffer->lost_events = 0;
6014 cpu_buffer->last_overrun = 0;
6015
6016 rb_head_page_activate(cpu_buffer);
6017 cpu_buffer->pages_removed = 0;
6018
6019 if (cpu_buffer->mapped) {
6020 rb_update_meta_page(cpu_buffer);
6021 if (cpu_buffer->ring_meta) {
6022 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
6023 meta->commit_buffer = meta->head_buffer;
6024 }
6025 }
6026 }
6027
6028 /* Must have disabled the cpu buffer then done a synchronize_rcu */
reset_disabled_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)6029 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6030 {
6031 unsigned long flags;
6032
6033 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6034
6035 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
6036 goto out;
6037
6038 arch_spin_lock(&cpu_buffer->lock);
6039
6040 rb_reset_cpu(cpu_buffer);
6041
6042 arch_spin_unlock(&cpu_buffer->lock);
6043
6044 out:
6045 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6046 }
6047
6048 /**
6049 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
6050 * @buffer: The ring buffer to reset a per cpu buffer of
6051 * @cpu: The CPU buffer to be reset
6052 */
ring_buffer_reset_cpu(struct trace_buffer * buffer,int cpu)6053 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
6054 {
6055 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6056 struct ring_buffer_meta *meta;
6057
6058 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6059 return;
6060
6061 /* prevent another thread from changing buffer sizes */
6062 mutex_lock(&buffer->mutex);
6063
6064 atomic_inc(&cpu_buffer->resize_disabled);
6065 atomic_inc(&cpu_buffer->record_disabled);
6066
6067 /* Make sure all commits have finished */
6068 synchronize_rcu();
6069
6070 reset_disabled_cpu_buffer(cpu_buffer);
6071
6072 atomic_dec(&cpu_buffer->record_disabled);
6073 atomic_dec(&cpu_buffer->resize_disabled);
6074
6075 /* Make sure persistent meta now uses this buffer's addresses */
6076 meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6077 if (meta)
6078 rb_meta_init_text_addr(meta);
6079
6080 mutex_unlock(&buffer->mutex);
6081 }
6082 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
6083
6084 /* Flag to ensure proper resetting of atomic variables */
6085 #define RESET_BIT (1 << 30)
6086
6087 /**
6088 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
6089 * @buffer: The ring buffer to reset a per cpu buffer of
6090 */
ring_buffer_reset_online_cpus(struct trace_buffer * buffer)6091 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
6092 {
6093 struct ring_buffer_per_cpu *cpu_buffer;
6094 struct ring_buffer_meta *meta;
6095 int cpu;
6096
6097 /* prevent another thread from changing buffer sizes */
6098 mutex_lock(&buffer->mutex);
6099
6100 for_each_online_buffer_cpu(buffer, cpu) {
6101 cpu_buffer = buffer->buffers[cpu];
6102
6103 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
6104 atomic_inc(&cpu_buffer->record_disabled);
6105 }
6106
6107 /* Make sure all commits have finished */
6108 synchronize_rcu();
6109
6110 for_each_buffer_cpu(buffer, cpu) {
6111 cpu_buffer = buffer->buffers[cpu];
6112
6113 /*
6114 * If a CPU came online during the synchronize_rcu(), then
6115 * ignore it.
6116 */
6117 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
6118 continue;
6119
6120 reset_disabled_cpu_buffer(cpu_buffer);
6121
6122 /* Make sure persistent meta now uses this buffer's addresses */
6123 meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6124 if (meta)
6125 rb_meta_init_text_addr(meta);
6126
6127 atomic_dec(&cpu_buffer->record_disabled);
6128 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
6129 }
6130
6131 mutex_unlock(&buffer->mutex);
6132 }
6133
6134 /**
6135 * ring_buffer_reset - reset a ring buffer
6136 * @buffer: The ring buffer to reset all cpu buffers
6137 */
ring_buffer_reset(struct trace_buffer * buffer)6138 void ring_buffer_reset(struct trace_buffer *buffer)
6139 {
6140 struct ring_buffer_per_cpu *cpu_buffer;
6141 int cpu;
6142
6143 /* prevent another thread from changing buffer sizes */
6144 mutex_lock(&buffer->mutex);
6145
6146 for_each_buffer_cpu(buffer, cpu) {
6147 cpu_buffer = buffer->buffers[cpu];
6148
6149 atomic_inc(&cpu_buffer->resize_disabled);
6150 atomic_inc(&cpu_buffer->record_disabled);
6151 }
6152
6153 /* Make sure all commits have finished */
6154 synchronize_rcu();
6155
6156 for_each_buffer_cpu(buffer, cpu) {
6157 cpu_buffer = buffer->buffers[cpu];
6158
6159 reset_disabled_cpu_buffer(cpu_buffer);
6160
6161 atomic_dec(&cpu_buffer->record_disabled);
6162 atomic_dec(&cpu_buffer->resize_disabled);
6163 }
6164
6165 mutex_unlock(&buffer->mutex);
6166 }
6167 EXPORT_SYMBOL_GPL(ring_buffer_reset);
6168
6169 /**
6170 * ring_buffer_empty - is the ring buffer empty?
6171 * @buffer: The ring buffer to test
6172 */
ring_buffer_empty(struct trace_buffer * buffer)6173 bool ring_buffer_empty(struct trace_buffer *buffer)
6174 {
6175 struct ring_buffer_per_cpu *cpu_buffer;
6176 unsigned long flags;
6177 bool dolock;
6178 bool ret;
6179 int cpu;
6180
6181 /* yes this is racy, but if you don't like the race, lock the buffer */
6182 for_each_buffer_cpu(buffer, cpu) {
6183 cpu_buffer = buffer->buffers[cpu];
6184 local_irq_save(flags);
6185 dolock = rb_reader_lock(cpu_buffer);
6186 ret = rb_per_cpu_empty(cpu_buffer);
6187 rb_reader_unlock(cpu_buffer, dolock);
6188 local_irq_restore(flags);
6189
6190 if (!ret)
6191 return false;
6192 }
6193
6194 return true;
6195 }
6196 EXPORT_SYMBOL_GPL(ring_buffer_empty);
6197
6198 /**
6199 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
6200 * @buffer: The ring buffer
6201 * @cpu: The CPU buffer to test
6202 */
ring_buffer_empty_cpu(struct trace_buffer * buffer,int cpu)6203 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
6204 {
6205 struct ring_buffer_per_cpu *cpu_buffer;
6206 unsigned long flags;
6207 bool dolock;
6208 bool ret;
6209
6210 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6211 return true;
6212
6213 cpu_buffer = buffer->buffers[cpu];
6214 local_irq_save(flags);
6215 dolock = rb_reader_lock(cpu_buffer);
6216 ret = rb_per_cpu_empty(cpu_buffer);
6217 rb_reader_unlock(cpu_buffer, dolock);
6218 local_irq_restore(flags);
6219
6220 return ret;
6221 }
6222 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
6223
6224 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
6225 /**
6226 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
6227 * @buffer_a: One buffer to swap with
6228 * @buffer_b: The other buffer to swap with
6229 * @cpu: the CPU of the buffers to swap
6230 *
6231 * This function is useful for tracers that want to take a "snapshot"
6232 * of a CPU buffer and has another back up buffer lying around.
6233 * it is expected that the tracer handles the cpu buffer not being
6234 * used at the moment.
6235 */
ring_buffer_swap_cpu(struct trace_buffer * buffer_a,struct trace_buffer * buffer_b,int cpu)6236 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
6237 struct trace_buffer *buffer_b, int cpu)
6238 {
6239 struct ring_buffer_per_cpu *cpu_buffer_a;
6240 struct ring_buffer_per_cpu *cpu_buffer_b;
6241 int ret = -EINVAL;
6242
6243 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
6244 !cpumask_test_cpu(cpu, buffer_b->cpumask))
6245 goto out;
6246
6247 cpu_buffer_a = buffer_a->buffers[cpu];
6248 cpu_buffer_b = buffer_b->buffers[cpu];
6249
6250 /* It's up to the callers to not try to swap mapped buffers */
6251 if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped)) {
6252 ret = -EBUSY;
6253 goto out;
6254 }
6255
6256 /* At least make sure the two buffers are somewhat the same */
6257 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
6258 goto out;
6259
6260 if (buffer_a->subbuf_order != buffer_b->subbuf_order)
6261 goto out;
6262
6263 ret = -EAGAIN;
6264
6265 if (atomic_read(&buffer_a->record_disabled))
6266 goto out;
6267
6268 if (atomic_read(&buffer_b->record_disabled))
6269 goto out;
6270
6271 if (atomic_read(&cpu_buffer_a->record_disabled))
6272 goto out;
6273
6274 if (atomic_read(&cpu_buffer_b->record_disabled))
6275 goto out;
6276
6277 /*
6278 * We can't do a synchronize_rcu here because this
6279 * function can be called in atomic context.
6280 * Normally this will be called from the same CPU as cpu.
6281 * If not it's up to the caller to protect this.
6282 */
6283 atomic_inc(&cpu_buffer_a->record_disabled);
6284 atomic_inc(&cpu_buffer_b->record_disabled);
6285
6286 ret = -EBUSY;
6287 if (local_read(&cpu_buffer_a->committing))
6288 goto out_dec;
6289 if (local_read(&cpu_buffer_b->committing))
6290 goto out_dec;
6291
6292 /*
6293 * When resize is in progress, we cannot swap it because
6294 * it will mess the state of the cpu buffer.
6295 */
6296 if (atomic_read(&buffer_a->resizing))
6297 goto out_dec;
6298 if (atomic_read(&buffer_b->resizing))
6299 goto out_dec;
6300
6301 buffer_a->buffers[cpu] = cpu_buffer_b;
6302 buffer_b->buffers[cpu] = cpu_buffer_a;
6303
6304 cpu_buffer_b->buffer = buffer_a;
6305 cpu_buffer_a->buffer = buffer_b;
6306
6307 ret = 0;
6308
6309 out_dec:
6310 atomic_dec(&cpu_buffer_a->record_disabled);
6311 atomic_dec(&cpu_buffer_b->record_disabled);
6312 out:
6313 return ret;
6314 }
6315 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
6316 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
6317
6318 /**
6319 * ring_buffer_alloc_read_page - allocate a page to read from buffer
6320 * @buffer: the buffer to allocate for.
6321 * @cpu: the cpu buffer to allocate.
6322 *
6323 * This function is used in conjunction with ring_buffer_read_page.
6324 * When reading a full page from the ring buffer, these functions
6325 * can be used to speed up the process. The calling function should
6326 * allocate a few pages first with this function. Then when it
6327 * needs to get pages from the ring buffer, it passes the result
6328 * of this function into ring_buffer_read_page, which will swap
6329 * the page that was allocated, with the read page of the buffer.
6330 *
6331 * Returns:
6332 * The page allocated, or ERR_PTR
6333 */
6334 struct buffer_data_read_page *
ring_buffer_alloc_read_page(struct trace_buffer * buffer,int cpu)6335 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
6336 {
6337 struct ring_buffer_per_cpu *cpu_buffer;
6338 struct buffer_data_read_page *bpage = NULL;
6339 unsigned long flags;
6340 struct page *page;
6341
6342 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6343 return ERR_PTR(-ENODEV);
6344
6345 bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
6346 if (!bpage)
6347 return ERR_PTR(-ENOMEM);
6348
6349 bpage->order = buffer->subbuf_order;
6350 cpu_buffer = buffer->buffers[cpu];
6351 local_irq_save(flags);
6352 arch_spin_lock(&cpu_buffer->lock);
6353
6354 if (cpu_buffer->free_page) {
6355 bpage->data = cpu_buffer->free_page;
6356 cpu_buffer->free_page = NULL;
6357 }
6358
6359 arch_spin_unlock(&cpu_buffer->lock);
6360 local_irq_restore(flags);
6361
6362 if (bpage->data)
6363 goto out;
6364
6365 page = alloc_pages_node(cpu_to_node(cpu),
6366 GFP_KERNEL | __GFP_NORETRY | __GFP_COMP | __GFP_ZERO,
6367 cpu_buffer->buffer->subbuf_order);
6368 if (!page) {
6369 kfree(bpage);
6370 return ERR_PTR(-ENOMEM);
6371 }
6372
6373 bpage->data = page_address(page);
6374
6375 out:
6376 rb_init_page(bpage->data);
6377
6378 return bpage;
6379 }
6380 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
6381
6382 /**
6383 * ring_buffer_free_read_page - free an allocated read page
6384 * @buffer: the buffer the page was allocate for
6385 * @cpu: the cpu buffer the page came from
6386 * @data_page: the page to free
6387 *
6388 * Free a page allocated from ring_buffer_alloc_read_page.
6389 */
ring_buffer_free_read_page(struct trace_buffer * buffer,int cpu,struct buffer_data_read_page * data_page)6390 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
6391 struct buffer_data_read_page *data_page)
6392 {
6393 struct ring_buffer_per_cpu *cpu_buffer;
6394 struct buffer_data_page *bpage = data_page->data;
6395 struct page *page = virt_to_page(bpage);
6396 unsigned long flags;
6397
6398 if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
6399 return;
6400
6401 cpu_buffer = buffer->buffers[cpu];
6402
6403 /*
6404 * If the page is still in use someplace else, or order of the page
6405 * is different from the subbuffer order of the buffer -
6406 * we can't reuse it
6407 */
6408 if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
6409 goto out;
6410
6411 local_irq_save(flags);
6412 arch_spin_lock(&cpu_buffer->lock);
6413
6414 if (!cpu_buffer->free_page) {
6415 cpu_buffer->free_page = bpage;
6416 bpage = NULL;
6417 }
6418
6419 arch_spin_unlock(&cpu_buffer->lock);
6420 local_irq_restore(flags);
6421
6422 out:
6423 free_pages((unsigned long)bpage, data_page->order);
6424 kfree(data_page);
6425 }
6426 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
6427
6428 /**
6429 * ring_buffer_read_page - extract a page from the ring buffer
6430 * @buffer: buffer to extract from
6431 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
6432 * @len: amount to extract
6433 * @cpu: the cpu of the buffer to extract
6434 * @full: should the extraction only happen when the page is full.
6435 *
6436 * This function will pull out a page from the ring buffer and consume it.
6437 * @data_page must be the address of the variable that was returned
6438 * from ring_buffer_alloc_read_page. This is because the page might be used
6439 * to swap with a page in the ring buffer.
6440 *
6441 * for example:
6442 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
6443 * if (IS_ERR(rpage))
6444 * return PTR_ERR(rpage);
6445 * ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
6446 * if (ret >= 0)
6447 * process_page(ring_buffer_read_page_data(rpage), ret);
6448 * ring_buffer_free_read_page(buffer, cpu, rpage);
6449 *
6450 * When @full is set, the function will not return true unless
6451 * the writer is off the reader page.
6452 *
6453 * Note: it is up to the calling functions to handle sleeps and wakeups.
6454 * The ring buffer can be used anywhere in the kernel and can not
6455 * blindly call wake_up. The layer that uses the ring buffer must be
6456 * responsible for that.
6457 *
6458 * Returns:
6459 * >=0 if data has been transferred, returns the offset of consumed data.
6460 * <0 if no data has been transferred.
6461 */
ring_buffer_read_page(struct trace_buffer * buffer,struct buffer_data_read_page * data_page,size_t len,int cpu,int full)6462 int ring_buffer_read_page(struct trace_buffer *buffer,
6463 struct buffer_data_read_page *data_page,
6464 size_t len, int cpu, int full)
6465 {
6466 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6467 struct ring_buffer_event *event;
6468 struct buffer_data_page *bpage;
6469 struct buffer_page *reader;
6470 unsigned long missed_events;
6471 unsigned long flags;
6472 unsigned int commit;
6473 unsigned int read;
6474 u64 save_timestamp;
6475 int ret = -1;
6476
6477 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6478 goto out;
6479
6480 /*
6481 * If len is not big enough to hold the page header, then
6482 * we can not copy anything.
6483 */
6484 if (len <= BUF_PAGE_HDR_SIZE)
6485 goto out;
6486
6487 len -= BUF_PAGE_HDR_SIZE;
6488
6489 if (!data_page || !data_page->data)
6490 goto out;
6491 if (data_page->order != buffer->subbuf_order)
6492 goto out;
6493
6494 bpage = data_page->data;
6495 if (!bpage)
6496 goto out;
6497
6498 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6499
6500 reader = rb_get_reader_page(cpu_buffer);
6501 if (!reader)
6502 goto out_unlock;
6503
6504 event = rb_reader_event(cpu_buffer);
6505
6506 read = reader->read;
6507 commit = rb_page_size(reader);
6508
6509 /* Check if any events were dropped */
6510 missed_events = cpu_buffer->lost_events;
6511
6512 /*
6513 * If this page has been partially read or
6514 * if len is not big enough to read the rest of the page or
6515 * a writer is still on the page, then
6516 * we must copy the data from the page to the buffer.
6517 * Otherwise, we can simply swap the page with the one passed in.
6518 */
6519 if (read || (len < (commit - read)) ||
6520 cpu_buffer->reader_page == cpu_buffer->commit_page ||
6521 cpu_buffer->mapped) {
6522 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
6523 unsigned int rpos = read;
6524 unsigned int pos = 0;
6525 unsigned int size;
6526
6527 /*
6528 * If a full page is expected, this can still be returned
6529 * if there's been a previous partial read and the
6530 * rest of the page can be read and the commit page is off
6531 * the reader page.
6532 */
6533 if (full &&
6534 (!read || (len < (commit - read)) ||
6535 cpu_buffer->reader_page == cpu_buffer->commit_page))
6536 goto out_unlock;
6537
6538 if (len > (commit - read))
6539 len = (commit - read);
6540
6541 /* Always keep the time extend and data together */
6542 size = rb_event_ts_length(event);
6543
6544 if (len < size)
6545 goto out_unlock;
6546
6547 /* save the current timestamp, since the user will need it */
6548 save_timestamp = cpu_buffer->read_stamp;
6549
6550 /* Need to copy one event at a time */
6551 do {
6552 /* We need the size of one event, because
6553 * rb_advance_reader only advances by one event,
6554 * whereas rb_event_ts_length may include the size of
6555 * one or two events.
6556 * We have already ensured there's enough space if this
6557 * is a time extend. */
6558 size = rb_event_length(event);
6559 memcpy(bpage->data + pos, rpage->data + rpos, size);
6560
6561 len -= size;
6562
6563 rb_advance_reader(cpu_buffer);
6564 rpos = reader->read;
6565 pos += size;
6566
6567 if (rpos >= commit)
6568 break;
6569
6570 event = rb_reader_event(cpu_buffer);
6571 /* Always keep the time extend and data together */
6572 size = rb_event_ts_length(event);
6573 } while (len >= size);
6574
6575 /* update bpage */
6576 local_set(&bpage->commit, pos);
6577 bpage->time_stamp = save_timestamp;
6578
6579 /* we copied everything to the beginning */
6580 read = 0;
6581 } else {
6582 /* update the entry counter */
6583 cpu_buffer->read += rb_page_entries(reader);
6584 cpu_buffer->read_bytes += rb_page_size(reader);
6585
6586 /* swap the pages */
6587 rb_init_page(bpage);
6588 bpage = reader->page;
6589 reader->page = data_page->data;
6590 local_set(&reader->write, 0);
6591 local_set(&reader->entries, 0);
6592 reader->read = 0;
6593 data_page->data = bpage;
6594
6595 /*
6596 * Use the real_end for the data size,
6597 * This gives us a chance to store the lost events
6598 * on the page.
6599 */
6600 if (reader->real_end)
6601 local_set(&bpage->commit, reader->real_end);
6602 }
6603 ret = read;
6604
6605 cpu_buffer->lost_events = 0;
6606
6607 commit = local_read(&bpage->commit);
6608 /*
6609 * Set a flag in the commit field if we lost events
6610 */
6611 if (missed_events) {
6612 /* If there is room at the end of the page to save the
6613 * missed events, then record it there.
6614 */
6615 if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
6616 memcpy(&bpage->data[commit], &missed_events,
6617 sizeof(missed_events));
6618 local_add(RB_MISSED_STORED, &bpage->commit);
6619 commit += sizeof(missed_events);
6620 }
6621 local_add(RB_MISSED_EVENTS, &bpage->commit);
6622 }
6623
6624 /*
6625 * This page may be off to user land. Zero it out here.
6626 */
6627 if (commit < buffer->subbuf_size)
6628 memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
6629
6630 out_unlock:
6631 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6632
6633 out:
6634 return ret;
6635 }
6636 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
6637
6638 /**
6639 * ring_buffer_read_page_data - get pointer to the data in the page.
6640 * @page: the page to get the data from
6641 *
6642 * Returns pointer to the actual data in this page.
6643 */
ring_buffer_read_page_data(struct buffer_data_read_page * page)6644 void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
6645 {
6646 return page->data;
6647 }
6648 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
6649
6650 /**
6651 * ring_buffer_subbuf_size_get - get size of the sub buffer.
6652 * @buffer: the buffer to get the sub buffer size from
6653 *
6654 * Returns size of the sub buffer, in bytes.
6655 */
ring_buffer_subbuf_size_get(struct trace_buffer * buffer)6656 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
6657 {
6658 return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6659 }
6660 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
6661
6662 /**
6663 * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
6664 * @buffer: The ring_buffer to get the system sub page order from
6665 *
6666 * By default, one ring buffer sub page equals to one system page. This parameter
6667 * is configurable, per ring buffer. The size of the ring buffer sub page can be
6668 * extended, but must be an order of system page size.
6669 *
6670 * Returns the order of buffer sub page size, in system pages:
6671 * 0 means the sub buffer size is 1 system page and so forth.
6672 * In case of an error < 0 is returned.
6673 */
ring_buffer_subbuf_order_get(struct trace_buffer * buffer)6674 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
6675 {
6676 if (!buffer)
6677 return -EINVAL;
6678
6679 return buffer->subbuf_order;
6680 }
6681 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
6682
6683 /**
6684 * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
6685 * @buffer: The ring_buffer to set the new page size.
6686 * @order: Order of the system pages in one sub buffer page
6687 *
6688 * By default, one ring buffer pages equals to one system page. This API can be
6689 * used to set new size of the ring buffer page. The size must be order of
6690 * system page size, that's why the input parameter @order is the order of
6691 * system pages that are allocated for one ring buffer page:
6692 * 0 - 1 system page
6693 * 1 - 2 system pages
6694 * 3 - 4 system pages
6695 * ...
6696 *
6697 * Returns 0 on success or < 0 in case of an error.
6698 */
ring_buffer_subbuf_order_set(struct trace_buffer * buffer,int order)6699 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
6700 {
6701 struct ring_buffer_per_cpu *cpu_buffer;
6702 struct buffer_page *bpage, *tmp;
6703 int old_order, old_size;
6704 int nr_pages;
6705 int psize;
6706 int err;
6707 int cpu;
6708
6709 if (!buffer || order < 0)
6710 return -EINVAL;
6711
6712 if (buffer->subbuf_order == order)
6713 return 0;
6714
6715 psize = (1 << order) * PAGE_SIZE;
6716 if (psize <= BUF_PAGE_HDR_SIZE)
6717 return -EINVAL;
6718
6719 /* Size of a subbuf cannot be greater than the write counter */
6720 if (psize > RB_WRITE_MASK + 1)
6721 return -EINVAL;
6722
6723 old_order = buffer->subbuf_order;
6724 old_size = buffer->subbuf_size;
6725
6726 /* prevent another thread from changing buffer sizes */
6727 mutex_lock(&buffer->mutex);
6728 atomic_inc(&buffer->record_disabled);
6729
6730 /* Make sure all commits have finished */
6731 synchronize_rcu();
6732
6733 buffer->subbuf_order = order;
6734 buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
6735
6736 /* Make sure all new buffers are allocated, before deleting the old ones */
6737 for_each_buffer_cpu(buffer, cpu) {
6738
6739 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6740 continue;
6741
6742 cpu_buffer = buffer->buffers[cpu];
6743
6744 if (cpu_buffer->mapped) {
6745 err = -EBUSY;
6746 goto error;
6747 }
6748
6749 /* Update the number of pages to match the new size */
6750 nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
6751 nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
6752
6753 /* we need a minimum of two pages */
6754 if (nr_pages < 2)
6755 nr_pages = 2;
6756
6757 cpu_buffer->nr_pages_to_update = nr_pages;
6758
6759 /* Include the reader page */
6760 nr_pages++;
6761
6762 /* Allocate the new size buffer */
6763 INIT_LIST_HEAD(&cpu_buffer->new_pages);
6764 if (__rb_allocate_pages(cpu_buffer, nr_pages,
6765 &cpu_buffer->new_pages)) {
6766 /* not enough memory for new pages */
6767 err = -ENOMEM;
6768 goto error;
6769 }
6770 }
6771
6772 for_each_buffer_cpu(buffer, cpu) {
6773 struct buffer_data_page *old_free_data_page;
6774 struct list_head old_pages;
6775 unsigned long flags;
6776
6777 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6778 continue;
6779
6780 cpu_buffer = buffer->buffers[cpu];
6781
6782 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6783
6784 /* Clear the head bit to make the link list normal to read */
6785 rb_head_page_deactivate(cpu_buffer);
6786
6787 /*
6788 * Collect buffers from the cpu_buffer pages list and the
6789 * reader_page on old_pages, so they can be freed later when not
6790 * under a spinlock. The pages list is a linked list with no
6791 * head, adding old_pages turns it into a regular list with
6792 * old_pages being the head.
6793 */
6794 list_add(&old_pages, cpu_buffer->pages);
6795 list_add(&cpu_buffer->reader_page->list, &old_pages);
6796
6797 /* One page was allocated for the reader page */
6798 cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
6799 struct buffer_page, list);
6800 list_del_init(&cpu_buffer->reader_page->list);
6801
6802 /* Install the new pages, remove the head from the list */
6803 cpu_buffer->pages = cpu_buffer->new_pages.next;
6804 list_del_init(&cpu_buffer->new_pages);
6805 cpu_buffer->cnt++;
6806
6807 cpu_buffer->head_page
6808 = list_entry(cpu_buffer->pages, struct buffer_page, list);
6809 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
6810
6811 cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
6812 cpu_buffer->nr_pages_to_update = 0;
6813
6814 old_free_data_page = cpu_buffer->free_page;
6815 cpu_buffer->free_page = NULL;
6816
6817 rb_head_page_activate(cpu_buffer);
6818
6819 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6820
6821 /* Free old sub buffers */
6822 list_for_each_entry_safe(bpage, tmp, &old_pages, list) {
6823 list_del_init(&bpage->list);
6824 free_buffer_page(bpage);
6825 }
6826 free_pages((unsigned long)old_free_data_page, old_order);
6827
6828 rb_check_pages(cpu_buffer);
6829 }
6830
6831 atomic_dec(&buffer->record_disabled);
6832 mutex_unlock(&buffer->mutex);
6833
6834 return 0;
6835
6836 error:
6837 buffer->subbuf_order = old_order;
6838 buffer->subbuf_size = old_size;
6839
6840 atomic_dec(&buffer->record_disabled);
6841 mutex_unlock(&buffer->mutex);
6842
6843 for_each_buffer_cpu(buffer, cpu) {
6844 cpu_buffer = buffer->buffers[cpu];
6845
6846 if (!cpu_buffer->nr_pages_to_update)
6847 continue;
6848
6849 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
6850 list_del_init(&bpage->list);
6851 free_buffer_page(bpage);
6852 }
6853 }
6854
6855 return err;
6856 }
6857 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
6858
rb_alloc_meta_page(struct ring_buffer_per_cpu * cpu_buffer)6859 static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6860 {
6861 struct page *page;
6862
6863 if (cpu_buffer->meta_page)
6864 return 0;
6865
6866 page = alloc_page(GFP_USER | __GFP_ZERO);
6867 if (!page)
6868 return -ENOMEM;
6869
6870 cpu_buffer->meta_page = page_to_virt(page);
6871
6872 return 0;
6873 }
6874
rb_free_meta_page(struct ring_buffer_per_cpu * cpu_buffer)6875 static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6876 {
6877 unsigned long addr = (unsigned long)cpu_buffer->meta_page;
6878
6879 free_page(addr);
6880 cpu_buffer->meta_page = NULL;
6881 }
6882
rb_setup_ids_meta_page(struct ring_buffer_per_cpu * cpu_buffer,unsigned long * subbuf_ids)6883 static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer,
6884 unsigned long *subbuf_ids)
6885 {
6886 struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6887 unsigned int nr_subbufs = cpu_buffer->nr_pages + 1;
6888 struct buffer_page *first_subbuf, *subbuf;
6889 int id = 0;
6890
6891 subbuf_ids[id] = (unsigned long)cpu_buffer->reader_page->page;
6892 cpu_buffer->reader_page->id = id++;
6893
6894 first_subbuf = subbuf = rb_set_head_page(cpu_buffer);
6895 do {
6896 if (WARN_ON(id >= nr_subbufs))
6897 break;
6898
6899 subbuf_ids[id] = (unsigned long)subbuf->page;
6900 subbuf->id = id;
6901
6902 rb_inc_page(&subbuf);
6903 id++;
6904 } while (subbuf != first_subbuf);
6905
6906 /* install subbuf ID to kern VA translation */
6907 cpu_buffer->subbuf_ids = subbuf_ids;
6908
6909 meta->meta_struct_len = sizeof(*meta);
6910 meta->nr_subbufs = nr_subbufs;
6911 meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6912 meta->meta_page_size = meta->subbuf_size;
6913
6914 rb_update_meta_page(cpu_buffer);
6915 }
6916
6917 static struct ring_buffer_per_cpu *
rb_get_mapped_buffer(struct trace_buffer * buffer,int cpu)6918 rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu)
6919 {
6920 struct ring_buffer_per_cpu *cpu_buffer;
6921
6922 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6923 return ERR_PTR(-EINVAL);
6924
6925 cpu_buffer = buffer->buffers[cpu];
6926
6927 mutex_lock(&cpu_buffer->mapping_lock);
6928
6929 if (!cpu_buffer->user_mapped) {
6930 mutex_unlock(&cpu_buffer->mapping_lock);
6931 return ERR_PTR(-ENODEV);
6932 }
6933
6934 return cpu_buffer;
6935 }
6936
rb_put_mapped_buffer(struct ring_buffer_per_cpu * cpu_buffer)6937 static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6938 {
6939 mutex_unlock(&cpu_buffer->mapping_lock);
6940 }
6941
6942 /*
6943 * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need
6944 * to be set-up or torn-down.
6945 */
__rb_inc_dec_mapped(struct ring_buffer_per_cpu * cpu_buffer,bool inc)6946 static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer,
6947 bool inc)
6948 {
6949 unsigned long flags;
6950
6951 lockdep_assert_held(&cpu_buffer->mapping_lock);
6952
6953 /* mapped is always greater or equal to user_mapped */
6954 if (WARN_ON(cpu_buffer->mapped < cpu_buffer->user_mapped))
6955 return -EINVAL;
6956
6957 if (inc && cpu_buffer->mapped == UINT_MAX)
6958 return -EBUSY;
6959
6960 if (WARN_ON(!inc && cpu_buffer->user_mapped == 0))
6961 return -EINVAL;
6962
6963 mutex_lock(&cpu_buffer->buffer->mutex);
6964 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6965
6966 if (inc) {
6967 cpu_buffer->user_mapped++;
6968 cpu_buffer->mapped++;
6969 } else {
6970 cpu_buffer->user_mapped--;
6971 cpu_buffer->mapped--;
6972 }
6973
6974 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6975 mutex_unlock(&cpu_buffer->buffer->mutex);
6976
6977 return 0;
6978 }
6979
6980 /*
6981 * +--------------+ pgoff == 0
6982 * | meta page |
6983 * +--------------+ pgoff == 1
6984 * | subbuffer 0 |
6985 * | |
6986 * +--------------+ pgoff == (1 + (1 << subbuf_order))
6987 * | subbuffer 1 |
6988 * | |
6989 * ...
6990 */
6991 #ifdef CONFIG_MMU
__rb_map_vma(struct ring_buffer_per_cpu * cpu_buffer,struct vm_area_struct * vma)6992 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
6993 struct vm_area_struct *vma)
6994 {
6995 unsigned long nr_subbufs, nr_pages, nr_vma_pages, pgoff = vma->vm_pgoff;
6996 unsigned int subbuf_pages, subbuf_order;
6997 struct page **pages;
6998 int p = 0, s = 0;
6999 int err;
7000
7001 /* Refuse MP_PRIVATE or writable mappings */
7002 if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC ||
7003 !(vma->vm_flags & VM_MAYSHARE))
7004 return -EPERM;
7005
7006 subbuf_order = cpu_buffer->buffer->subbuf_order;
7007 subbuf_pages = 1 << subbuf_order;
7008
7009 if (subbuf_order && pgoff % subbuf_pages)
7010 return -EINVAL;
7011
7012 /*
7013 * Make sure the mapping cannot become writable later. Also tell the VM
7014 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND).
7015 */
7016 vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP,
7017 VM_MAYWRITE);
7018
7019 lockdep_assert_held(&cpu_buffer->mapping_lock);
7020
7021 nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */
7022 nr_pages = ((nr_subbufs + 1) << subbuf_order); /* + meta-page */
7023 if (nr_pages <= pgoff)
7024 return -EINVAL;
7025
7026 nr_pages -= pgoff;
7027
7028 nr_vma_pages = vma_pages(vma);
7029 if (!nr_vma_pages || nr_vma_pages > nr_pages)
7030 return -EINVAL;
7031
7032 nr_pages = nr_vma_pages;
7033
7034 pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL);
7035 if (!pages)
7036 return -ENOMEM;
7037
7038 if (!pgoff) {
7039 unsigned long meta_page_padding;
7040
7041 pages[p++] = virt_to_page(cpu_buffer->meta_page);
7042
7043 /*
7044 * Pad with the zero-page to align the meta-page with the
7045 * sub-buffers.
7046 */
7047 meta_page_padding = subbuf_pages - 1;
7048 while (meta_page_padding-- && p < nr_pages) {
7049 unsigned long __maybe_unused zero_addr =
7050 vma->vm_start + (PAGE_SIZE * p);
7051
7052 pages[p++] = ZERO_PAGE(zero_addr);
7053 }
7054 } else {
7055 /* Skip the meta-page */
7056 pgoff -= subbuf_pages;
7057
7058 s += pgoff / subbuf_pages;
7059 }
7060
7061 while (p < nr_pages) {
7062 struct page *page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]);
7063 int off = 0;
7064
7065 if (WARN_ON_ONCE(s >= nr_subbufs)) {
7066 err = -EINVAL;
7067 goto out;
7068 }
7069
7070 for (; off < (1 << (subbuf_order)); off++, page++) {
7071 if (p >= nr_pages)
7072 break;
7073
7074 pages[p++] = page;
7075 }
7076 s++;
7077 }
7078
7079 err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
7080
7081 out:
7082 kfree(pages);
7083
7084 return err;
7085 }
7086 #else
__rb_map_vma(struct ring_buffer_per_cpu * cpu_buffer,struct vm_area_struct * vma)7087 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7088 struct vm_area_struct *vma)
7089 {
7090 return -EOPNOTSUPP;
7091 }
7092 #endif
7093
ring_buffer_map(struct trace_buffer * buffer,int cpu,struct vm_area_struct * vma)7094 int ring_buffer_map(struct trace_buffer *buffer, int cpu,
7095 struct vm_area_struct *vma)
7096 {
7097 struct ring_buffer_per_cpu *cpu_buffer;
7098 unsigned long flags, *subbuf_ids;
7099 int err = 0;
7100
7101 if (!cpumask_test_cpu(cpu, buffer->cpumask))
7102 return -EINVAL;
7103
7104 cpu_buffer = buffer->buffers[cpu];
7105
7106 mutex_lock(&cpu_buffer->mapping_lock);
7107
7108 if (cpu_buffer->user_mapped) {
7109 err = __rb_map_vma(cpu_buffer, vma);
7110 if (!err)
7111 err = __rb_inc_dec_mapped(cpu_buffer, true);
7112 mutex_unlock(&cpu_buffer->mapping_lock);
7113 return err;
7114 }
7115
7116 /* prevent another thread from changing buffer/sub-buffer sizes */
7117 mutex_lock(&buffer->mutex);
7118
7119 err = rb_alloc_meta_page(cpu_buffer);
7120 if (err)
7121 goto unlock;
7122
7123 /* subbuf_ids include the reader while nr_pages does not */
7124 subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL);
7125 if (!subbuf_ids) {
7126 rb_free_meta_page(cpu_buffer);
7127 err = -ENOMEM;
7128 goto unlock;
7129 }
7130
7131 atomic_inc(&cpu_buffer->resize_disabled);
7132
7133 /*
7134 * Lock all readers to block any subbuf swap until the subbuf IDs are
7135 * assigned.
7136 */
7137 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7138 rb_setup_ids_meta_page(cpu_buffer, subbuf_ids);
7139
7140 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7141
7142 err = __rb_map_vma(cpu_buffer, vma);
7143 if (!err) {
7144 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7145 /* This is the first time it is mapped by user */
7146 cpu_buffer->mapped++;
7147 cpu_buffer->user_mapped = 1;
7148 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7149 } else {
7150 kfree(cpu_buffer->subbuf_ids);
7151 cpu_buffer->subbuf_ids = NULL;
7152 rb_free_meta_page(cpu_buffer);
7153 }
7154
7155 unlock:
7156 mutex_unlock(&buffer->mutex);
7157 mutex_unlock(&cpu_buffer->mapping_lock);
7158
7159 return err;
7160 }
7161
ring_buffer_unmap(struct trace_buffer * buffer,int cpu)7162 int ring_buffer_unmap(struct trace_buffer *buffer, int cpu)
7163 {
7164 struct ring_buffer_per_cpu *cpu_buffer;
7165 unsigned long flags;
7166 int err = 0;
7167
7168 if (!cpumask_test_cpu(cpu, buffer->cpumask))
7169 return -EINVAL;
7170
7171 cpu_buffer = buffer->buffers[cpu];
7172
7173 mutex_lock(&cpu_buffer->mapping_lock);
7174
7175 if (!cpu_buffer->user_mapped) {
7176 err = -ENODEV;
7177 goto out;
7178 } else if (cpu_buffer->user_mapped > 1) {
7179 __rb_inc_dec_mapped(cpu_buffer, false);
7180 goto out;
7181 }
7182
7183 mutex_lock(&buffer->mutex);
7184 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7185
7186 /* This is the last user space mapping */
7187 if (!WARN_ON_ONCE(cpu_buffer->mapped < cpu_buffer->user_mapped))
7188 cpu_buffer->mapped--;
7189 cpu_buffer->user_mapped = 0;
7190
7191 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7192
7193 kfree(cpu_buffer->subbuf_ids);
7194 cpu_buffer->subbuf_ids = NULL;
7195 rb_free_meta_page(cpu_buffer);
7196 atomic_dec(&cpu_buffer->resize_disabled);
7197
7198 mutex_unlock(&buffer->mutex);
7199
7200 out:
7201 mutex_unlock(&cpu_buffer->mapping_lock);
7202
7203 return err;
7204 }
7205
ring_buffer_map_get_reader(struct trace_buffer * buffer,int cpu)7206 int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu)
7207 {
7208 struct ring_buffer_per_cpu *cpu_buffer;
7209 struct buffer_page *reader;
7210 unsigned long missed_events;
7211 unsigned long reader_size;
7212 unsigned long flags;
7213
7214 cpu_buffer = rb_get_mapped_buffer(buffer, cpu);
7215 if (IS_ERR(cpu_buffer))
7216 return (int)PTR_ERR(cpu_buffer);
7217
7218 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7219
7220 consume:
7221 if (rb_per_cpu_empty(cpu_buffer))
7222 goto out;
7223
7224 reader_size = rb_page_size(cpu_buffer->reader_page);
7225
7226 /*
7227 * There are data to be read on the current reader page, we can
7228 * return to the caller. But before that, we assume the latter will read
7229 * everything. Let's update the kernel reader accordingly.
7230 */
7231 if (cpu_buffer->reader_page->read < reader_size) {
7232 while (cpu_buffer->reader_page->read < reader_size)
7233 rb_advance_reader(cpu_buffer);
7234 goto out;
7235 }
7236
7237 reader = rb_get_reader_page(cpu_buffer);
7238 if (WARN_ON(!reader))
7239 goto out;
7240
7241 /* Check if any events were dropped */
7242 missed_events = cpu_buffer->lost_events;
7243
7244 if (cpu_buffer->reader_page != cpu_buffer->commit_page) {
7245 if (missed_events) {
7246 struct buffer_data_page *bpage = reader->page;
7247 unsigned int commit;
7248 /*
7249 * Use the real_end for the data size,
7250 * This gives us a chance to store the lost events
7251 * on the page.
7252 */
7253 if (reader->real_end)
7254 local_set(&bpage->commit, reader->real_end);
7255 /*
7256 * If there is room at the end of the page to save the
7257 * missed events, then record it there.
7258 */
7259 commit = rb_page_size(reader);
7260 if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
7261 memcpy(&bpage->data[commit], &missed_events,
7262 sizeof(missed_events));
7263 local_add(RB_MISSED_STORED, &bpage->commit);
7264 }
7265 local_add(RB_MISSED_EVENTS, &bpage->commit);
7266 }
7267 } else {
7268 /*
7269 * There really shouldn't be any missed events if the commit
7270 * is on the reader page.
7271 */
7272 WARN_ON_ONCE(missed_events);
7273 }
7274
7275 cpu_buffer->lost_events = 0;
7276
7277 goto consume;
7278
7279 out:
7280 /* Some archs do not have data cache coherency between kernel and user-space */
7281 flush_dcache_folio(virt_to_folio(cpu_buffer->reader_page->page));
7282
7283 rb_update_meta_page(cpu_buffer);
7284
7285 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7286 rb_put_mapped_buffer(cpu_buffer);
7287
7288 return 0;
7289 }
7290
7291 /*
7292 * We only allocate new buffers, never free them if the CPU goes down.
7293 * If we were to free the buffer, then the user would lose any trace that was in
7294 * the buffer.
7295 */
trace_rb_cpu_prepare(unsigned int cpu,struct hlist_node * node)7296 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
7297 {
7298 struct trace_buffer *buffer;
7299 long nr_pages_same;
7300 int cpu_i;
7301 unsigned long nr_pages;
7302
7303 buffer = container_of(node, struct trace_buffer, node);
7304 if (cpumask_test_cpu(cpu, buffer->cpumask))
7305 return 0;
7306
7307 nr_pages = 0;
7308 nr_pages_same = 1;
7309 /* check if all cpu sizes are same */
7310 for_each_buffer_cpu(buffer, cpu_i) {
7311 /* fill in the size from first enabled cpu */
7312 if (nr_pages == 0)
7313 nr_pages = buffer->buffers[cpu_i]->nr_pages;
7314 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
7315 nr_pages_same = 0;
7316 break;
7317 }
7318 }
7319 /* allocate minimum pages, user can later expand it */
7320 if (!nr_pages_same)
7321 nr_pages = 2;
7322 buffer->buffers[cpu] =
7323 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7324 if (!buffer->buffers[cpu]) {
7325 WARN(1, "failed to allocate ring buffer on CPU %u\n",
7326 cpu);
7327 return -ENOMEM;
7328 }
7329 smp_wmb();
7330 cpumask_set_cpu(cpu, buffer->cpumask);
7331 return 0;
7332 }
7333
7334 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
7335 /*
7336 * This is a basic integrity check of the ring buffer.
7337 * Late in the boot cycle this test will run when configured in.
7338 * It will kick off a thread per CPU that will go into a loop
7339 * writing to the per cpu ring buffer various sizes of data.
7340 * Some of the data will be large items, some small.
7341 *
7342 * Another thread is created that goes into a spin, sending out
7343 * IPIs to the other CPUs to also write into the ring buffer.
7344 * this is to test the nesting ability of the buffer.
7345 *
7346 * Basic stats are recorded and reported. If something in the
7347 * ring buffer should happen that's not expected, a big warning
7348 * is displayed and all ring buffers are disabled.
7349 */
7350 static struct task_struct *rb_threads[NR_CPUS] __initdata;
7351
7352 struct rb_test_data {
7353 struct trace_buffer *buffer;
7354 unsigned long events;
7355 unsigned long bytes_written;
7356 unsigned long bytes_alloc;
7357 unsigned long bytes_dropped;
7358 unsigned long events_nested;
7359 unsigned long bytes_written_nested;
7360 unsigned long bytes_alloc_nested;
7361 unsigned long bytes_dropped_nested;
7362 int min_size_nested;
7363 int max_size_nested;
7364 int max_size;
7365 int min_size;
7366 int cpu;
7367 int cnt;
7368 };
7369
7370 static struct rb_test_data rb_data[NR_CPUS] __initdata;
7371
7372 /* 1 meg per cpu */
7373 #define RB_TEST_BUFFER_SIZE 1048576
7374
7375 static char rb_string[] __initdata =
7376 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
7377 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
7378 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
7379
7380 static bool rb_test_started __initdata;
7381
7382 struct rb_item {
7383 int size;
7384 char str[];
7385 };
7386
rb_write_something(struct rb_test_data * data,bool nested)7387 static __init int rb_write_something(struct rb_test_data *data, bool nested)
7388 {
7389 struct ring_buffer_event *event;
7390 struct rb_item *item;
7391 bool started;
7392 int event_len;
7393 int size;
7394 int len;
7395 int cnt;
7396
7397 /* Have nested writes different that what is written */
7398 cnt = data->cnt + (nested ? 27 : 0);
7399
7400 /* Multiply cnt by ~e, to make some unique increment */
7401 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
7402
7403 len = size + sizeof(struct rb_item);
7404
7405 started = rb_test_started;
7406 /* read rb_test_started before checking buffer enabled */
7407 smp_rmb();
7408
7409 event = ring_buffer_lock_reserve(data->buffer, len);
7410 if (!event) {
7411 /* Ignore dropped events before test starts. */
7412 if (started) {
7413 if (nested)
7414 data->bytes_dropped += len;
7415 else
7416 data->bytes_dropped_nested += len;
7417 }
7418 return len;
7419 }
7420
7421 event_len = ring_buffer_event_length(event);
7422
7423 if (RB_WARN_ON(data->buffer, event_len < len))
7424 goto out;
7425
7426 item = ring_buffer_event_data(event);
7427 item->size = size;
7428 memcpy(item->str, rb_string, size);
7429
7430 if (nested) {
7431 data->bytes_alloc_nested += event_len;
7432 data->bytes_written_nested += len;
7433 data->events_nested++;
7434 if (!data->min_size_nested || len < data->min_size_nested)
7435 data->min_size_nested = len;
7436 if (len > data->max_size_nested)
7437 data->max_size_nested = len;
7438 } else {
7439 data->bytes_alloc += event_len;
7440 data->bytes_written += len;
7441 data->events++;
7442 if (!data->min_size || len < data->min_size)
7443 data->max_size = len;
7444 if (len > data->max_size)
7445 data->max_size = len;
7446 }
7447
7448 out:
7449 ring_buffer_unlock_commit(data->buffer);
7450
7451 return 0;
7452 }
7453
rb_test(void * arg)7454 static __init int rb_test(void *arg)
7455 {
7456 struct rb_test_data *data = arg;
7457
7458 while (!kthread_should_stop()) {
7459 rb_write_something(data, false);
7460 data->cnt++;
7461
7462 set_current_state(TASK_INTERRUPTIBLE);
7463 /* Now sleep between a min of 100-300us and a max of 1ms */
7464 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
7465 }
7466
7467 return 0;
7468 }
7469
rb_ipi(void * ignore)7470 static __init void rb_ipi(void *ignore)
7471 {
7472 struct rb_test_data *data;
7473 int cpu = smp_processor_id();
7474
7475 data = &rb_data[cpu];
7476 rb_write_something(data, true);
7477 }
7478
rb_hammer_test(void * arg)7479 static __init int rb_hammer_test(void *arg)
7480 {
7481 while (!kthread_should_stop()) {
7482
7483 /* Send an IPI to all cpus to write data! */
7484 smp_call_function(rb_ipi, NULL, 1);
7485 /* No sleep, but for non preempt, let others run */
7486 schedule();
7487 }
7488
7489 return 0;
7490 }
7491
test_ringbuffer(void)7492 static __init int test_ringbuffer(void)
7493 {
7494 struct task_struct *rb_hammer;
7495 struct trace_buffer *buffer;
7496 int cpu;
7497 int ret = 0;
7498
7499 if (security_locked_down(LOCKDOWN_TRACEFS)) {
7500 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
7501 return 0;
7502 }
7503
7504 pr_info("Running ring buffer tests...\n");
7505
7506 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
7507 if (WARN_ON(!buffer))
7508 return 0;
7509
7510 /* Disable buffer so that threads can't write to it yet */
7511 ring_buffer_record_off(buffer);
7512
7513 for_each_online_cpu(cpu) {
7514 rb_data[cpu].buffer = buffer;
7515 rb_data[cpu].cpu = cpu;
7516 rb_data[cpu].cnt = cpu;
7517 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
7518 cpu, "rbtester/%u");
7519 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
7520 pr_cont("FAILED\n");
7521 ret = PTR_ERR(rb_threads[cpu]);
7522 goto out_free;
7523 }
7524 }
7525
7526 /* Now create the rb hammer! */
7527 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
7528 if (WARN_ON(IS_ERR(rb_hammer))) {
7529 pr_cont("FAILED\n");
7530 ret = PTR_ERR(rb_hammer);
7531 goto out_free;
7532 }
7533
7534 ring_buffer_record_on(buffer);
7535 /*
7536 * Show buffer is enabled before setting rb_test_started.
7537 * Yes there's a small race window where events could be
7538 * dropped and the thread wont catch it. But when a ring
7539 * buffer gets enabled, there will always be some kind of
7540 * delay before other CPUs see it. Thus, we don't care about
7541 * those dropped events. We care about events dropped after
7542 * the threads see that the buffer is active.
7543 */
7544 smp_wmb();
7545 rb_test_started = true;
7546
7547 set_current_state(TASK_INTERRUPTIBLE);
7548 /* Just run for 10 seconds */;
7549 schedule_timeout(10 * HZ);
7550
7551 kthread_stop(rb_hammer);
7552
7553 out_free:
7554 for_each_online_cpu(cpu) {
7555 if (!rb_threads[cpu])
7556 break;
7557 kthread_stop(rb_threads[cpu]);
7558 }
7559 if (ret) {
7560 ring_buffer_free(buffer);
7561 return ret;
7562 }
7563
7564 /* Report! */
7565 pr_info("finished\n");
7566 for_each_online_cpu(cpu) {
7567 struct ring_buffer_event *event;
7568 struct rb_test_data *data = &rb_data[cpu];
7569 struct rb_item *item;
7570 unsigned long total_events;
7571 unsigned long total_dropped;
7572 unsigned long total_written;
7573 unsigned long total_alloc;
7574 unsigned long total_read = 0;
7575 unsigned long total_size = 0;
7576 unsigned long total_len = 0;
7577 unsigned long total_lost = 0;
7578 unsigned long lost;
7579 int big_event_size;
7580 int small_event_size;
7581
7582 ret = -1;
7583
7584 total_events = data->events + data->events_nested;
7585 total_written = data->bytes_written + data->bytes_written_nested;
7586 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
7587 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
7588
7589 big_event_size = data->max_size + data->max_size_nested;
7590 small_event_size = data->min_size + data->min_size_nested;
7591
7592 pr_info("CPU %d:\n", cpu);
7593 pr_info(" events: %ld\n", total_events);
7594 pr_info(" dropped bytes: %ld\n", total_dropped);
7595 pr_info(" alloced bytes: %ld\n", total_alloc);
7596 pr_info(" written bytes: %ld\n", total_written);
7597 pr_info(" biggest event: %d\n", big_event_size);
7598 pr_info(" smallest event: %d\n", small_event_size);
7599
7600 if (RB_WARN_ON(buffer, total_dropped))
7601 break;
7602
7603 ret = 0;
7604
7605 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
7606 total_lost += lost;
7607 item = ring_buffer_event_data(event);
7608 total_len += ring_buffer_event_length(event);
7609 total_size += item->size + sizeof(struct rb_item);
7610 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
7611 pr_info("FAILED!\n");
7612 pr_info("buffer had: %.*s\n", item->size, item->str);
7613 pr_info("expected: %.*s\n", item->size, rb_string);
7614 RB_WARN_ON(buffer, 1);
7615 ret = -1;
7616 break;
7617 }
7618 total_read++;
7619 }
7620 if (ret)
7621 break;
7622
7623 ret = -1;
7624
7625 pr_info(" read events: %ld\n", total_read);
7626 pr_info(" lost events: %ld\n", total_lost);
7627 pr_info(" total events: %ld\n", total_lost + total_read);
7628 pr_info(" recorded len bytes: %ld\n", total_len);
7629 pr_info(" recorded size bytes: %ld\n", total_size);
7630 if (total_lost) {
7631 pr_info(" With dropped events, record len and size may not match\n"
7632 " alloced and written from above\n");
7633 } else {
7634 if (RB_WARN_ON(buffer, total_len != total_alloc ||
7635 total_size != total_written))
7636 break;
7637 }
7638 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
7639 break;
7640
7641 ret = 0;
7642 }
7643 if (!ret)
7644 pr_info("Ring buffer PASSED!\n");
7645
7646 ring_buffer_free(buffer);
7647 return 0;
7648 }
7649
7650 late_initcall(test_ringbuffer);
7651 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
7652