1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Common code for Intel Running Average Power Limit (RAPL) support.
4 * Copyright (c) 2019, Intel Corporation.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/bitmap.h>
9 #include <linux/cleanup.h>
10 #include <linux/cpu.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/intel_rapl.h>
14 #include <linux/kernel.h>
15 #include <linux/list.h>
16 #include <linux/log2.h>
17 #include <linux/module.h>
18 #include <linux/nospec.h>
19 #include <linux/perf_event.h>
20 #include <linux/platform_device.h>
21 #include <linux/powercap.h>
22 #include <linux/processor.h>
23 #include <linux/slab.h>
24 #include <linux/suspend.h>
25 #include <linux/sysfs.h>
26 #include <linux/types.h>
27
28 #include <asm/cpu_device_id.h>
29 #include <asm/intel-family.h>
30 #include <asm/iosf_mbi.h>
31
32 /* bitmasks for RAPL MSRs, used by primitive access functions */
33 #define ENERGY_STATUS_MASK 0xffffffff
34
35 #define POWER_LIMIT1_MASK 0x7FFF
36 #define POWER_LIMIT1_ENABLE BIT(15)
37 #define POWER_LIMIT1_CLAMP BIT(16)
38
39 #define POWER_LIMIT2_MASK (0x7FFFULL<<32)
40 #define POWER_LIMIT2_ENABLE BIT_ULL(47)
41 #define POWER_LIMIT2_CLAMP BIT_ULL(48)
42 #define POWER_HIGH_LOCK BIT_ULL(63)
43 #define POWER_LOW_LOCK BIT(31)
44
45 #define POWER_LIMIT4_MASK 0x1FFF
46
47 #define TIME_WINDOW1_MASK (0x7FULL<<17)
48 #define TIME_WINDOW2_MASK (0x7FULL<<49)
49
50 #define POWER_UNIT_OFFSET 0
51 #define POWER_UNIT_MASK 0x0F
52
53 #define ENERGY_UNIT_OFFSET 0x08
54 #define ENERGY_UNIT_MASK 0x1F00
55
56 #define TIME_UNIT_OFFSET 0x10
57 #define TIME_UNIT_MASK 0xF0000
58
59 #define POWER_INFO_MAX_MASK (0x7fffULL<<32)
60 #define POWER_INFO_MIN_MASK (0x7fffULL<<16)
61 #define POWER_INFO_MAX_TIME_WIN_MASK (0x3fULL<<48)
62 #define POWER_INFO_THERMAL_SPEC_MASK 0x7fff
63
64 #define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
65 #define PP_POLICY_MASK 0x1F
66
67 /*
68 * SPR has different layout for Psys Domain PowerLimit registers.
69 * There are 17 bits of PL1 and PL2 instead of 15 bits.
70 * The Enable bits and TimeWindow bits are also shifted as a result.
71 */
72 #define PSYS_POWER_LIMIT1_MASK 0x1FFFF
73 #define PSYS_POWER_LIMIT1_ENABLE BIT(17)
74
75 #define PSYS_POWER_LIMIT2_MASK (0x1FFFFULL<<32)
76 #define PSYS_POWER_LIMIT2_ENABLE BIT_ULL(49)
77
78 #define PSYS_TIME_WINDOW1_MASK (0x7FULL<<19)
79 #define PSYS_TIME_WINDOW2_MASK (0x7FULL<<51)
80
81 /* bitmasks for RAPL TPMI, used by primitive access functions */
82 #define TPMI_POWER_LIMIT_MASK 0x3FFFF
83 #define TPMI_POWER_LIMIT_ENABLE BIT_ULL(62)
84 #define TPMI_TIME_WINDOW_MASK (0x7FULL<<18)
85 #define TPMI_INFO_SPEC_MASK 0x3FFFF
86 #define TPMI_INFO_MIN_MASK (0x3FFFFULL << 18)
87 #define TPMI_INFO_MAX_MASK (0x3FFFFULL << 36)
88 #define TPMI_INFO_MAX_TIME_WIN_MASK (0x7FULL << 54)
89
90 /* Non HW constants */
91 #define RAPL_PRIMITIVE_DERIVED BIT(1) /* not from raw data */
92 #define RAPL_PRIMITIVE_DUMMY BIT(2)
93
94 #define TIME_WINDOW_MAX_MSEC 40000
95 #define TIME_WINDOW_MIN_MSEC 250
96 #define ENERGY_UNIT_SCALE 1000 /* scale from driver unit to powercap unit */
97 enum unit_type {
98 ARBITRARY_UNIT, /* no translation */
99 POWER_UNIT,
100 ENERGY_UNIT,
101 TIME_UNIT,
102 };
103
104 /* per domain data, some are optional */
105 #define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
106
107 #define DOMAIN_STATE_INACTIVE BIT(0)
108 #define DOMAIN_STATE_POWER_LIMIT_SET BIT(1)
109
110 static const char *pl_names[NR_POWER_LIMITS] = {
111 [POWER_LIMIT1] = "long_term",
112 [POWER_LIMIT2] = "short_term",
113 [POWER_LIMIT4] = "peak_power",
114 };
115
116 enum pl_prims {
117 PL_ENABLE,
118 PL_CLAMP,
119 PL_LIMIT,
120 PL_TIME_WINDOW,
121 PL_MAX_POWER,
122 PL_LOCK,
123 };
124
is_pl_valid(struct rapl_domain * rd,int pl)125 static bool is_pl_valid(struct rapl_domain *rd, int pl)
126 {
127 if (pl < POWER_LIMIT1 || pl > POWER_LIMIT4)
128 return false;
129 return rd->rpl[pl].name ? true : false;
130 }
131
get_pl_lock_prim(struct rapl_domain * rd,int pl)132 static int get_pl_lock_prim(struct rapl_domain *rd, int pl)
133 {
134 if (rd->rp->priv->type == RAPL_IF_TPMI) {
135 if (pl == POWER_LIMIT1)
136 return PL1_LOCK;
137 if (pl == POWER_LIMIT2)
138 return PL2_LOCK;
139 if (pl == POWER_LIMIT4)
140 return PL4_LOCK;
141 }
142
143 /* MSR/MMIO Interface doesn't have Lock bit for PL4 */
144 if (pl == POWER_LIMIT4)
145 return -EINVAL;
146
147 /*
148 * Power Limit register that supports two power limits has a different
149 * bit position for the Lock bit.
150 */
151 if (rd->rp->priv->limits[rd->id] & BIT(POWER_LIMIT2))
152 return FW_HIGH_LOCK;
153 return FW_LOCK;
154 }
155
get_pl_prim(struct rapl_domain * rd,int pl,enum pl_prims prim)156 static int get_pl_prim(struct rapl_domain *rd, int pl, enum pl_prims prim)
157 {
158 switch (pl) {
159 case POWER_LIMIT1:
160 if (prim == PL_ENABLE)
161 return PL1_ENABLE;
162 if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI)
163 return PL1_CLAMP;
164 if (prim == PL_LIMIT)
165 return POWER_LIMIT1;
166 if (prim == PL_TIME_WINDOW)
167 return TIME_WINDOW1;
168 if (prim == PL_MAX_POWER)
169 return THERMAL_SPEC_POWER;
170 if (prim == PL_LOCK)
171 return get_pl_lock_prim(rd, pl);
172 return -EINVAL;
173 case POWER_LIMIT2:
174 if (prim == PL_ENABLE)
175 return PL2_ENABLE;
176 if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI)
177 return PL2_CLAMP;
178 if (prim == PL_LIMIT)
179 return POWER_LIMIT2;
180 if (prim == PL_TIME_WINDOW)
181 return TIME_WINDOW2;
182 if (prim == PL_MAX_POWER)
183 return MAX_POWER;
184 if (prim == PL_LOCK)
185 return get_pl_lock_prim(rd, pl);
186 return -EINVAL;
187 case POWER_LIMIT4:
188 if (prim == PL_LIMIT)
189 return POWER_LIMIT4;
190 if (prim == PL_ENABLE)
191 return PL4_ENABLE;
192 /* PL4 would be around two times PL2, use same prim as PL2. */
193 if (prim == PL_MAX_POWER)
194 return MAX_POWER;
195 if (prim == PL_LOCK)
196 return get_pl_lock_prim(rd, pl);
197 return -EINVAL;
198 default:
199 return -EINVAL;
200 }
201 }
202
203 #define power_zone_to_rapl_domain(_zone) \
204 container_of(_zone, struct rapl_domain, power_zone)
205
206 struct rapl_defaults {
207 u8 floor_freq_reg_addr;
208 int (*check_unit)(struct rapl_domain *rd);
209 void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
210 u64 (*compute_time_window)(struct rapl_domain *rd, u64 val,
211 bool to_raw);
212 unsigned int dram_domain_energy_unit;
213 unsigned int psys_domain_energy_unit;
214 bool spr_psys_bits;
215 };
216 static struct rapl_defaults *defaults_msr;
217 static const struct rapl_defaults defaults_tpmi;
218
get_defaults(struct rapl_package * rp)219 static struct rapl_defaults *get_defaults(struct rapl_package *rp)
220 {
221 return rp->priv->defaults;
222 }
223
224 /* Sideband MBI registers */
225 #define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
226 #define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
227
228 #define PACKAGE_PLN_INT_SAVED BIT(0)
229 #define MAX_PRIM_NAME (32)
230
231 /* per domain data. used to describe individual knobs such that access function
232 * can be consolidated into one instead of many inline functions.
233 */
234 struct rapl_primitive_info {
235 const char *name;
236 u64 mask;
237 int shift;
238 enum rapl_domain_reg_id id;
239 enum unit_type unit;
240 u32 flag;
241 };
242
243 #define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) { \
244 .name = #p, \
245 .mask = m, \
246 .shift = s, \
247 .id = i, \
248 .unit = u, \
249 .flag = f \
250 }
251
252 static void rapl_init_domains(struct rapl_package *rp);
253 static int rapl_read_data_raw(struct rapl_domain *rd,
254 enum rapl_primitives prim,
255 bool xlate, u64 *data);
256 static int rapl_write_data_raw(struct rapl_domain *rd,
257 enum rapl_primitives prim,
258 unsigned long long value);
259 static int rapl_read_pl_data(struct rapl_domain *rd, int pl,
260 enum pl_prims pl_prim,
261 bool xlate, u64 *data);
262 static int rapl_write_pl_data(struct rapl_domain *rd, int pl,
263 enum pl_prims pl_prim,
264 unsigned long long value);
265 static u64 rapl_unit_xlate(struct rapl_domain *rd,
266 enum unit_type type, u64 value, int to_raw);
267 static void package_power_limit_irq_save(struct rapl_package *rp);
268
269 static LIST_HEAD(rapl_packages); /* guarded by CPU hotplug lock */
270
271 static const char *const rapl_domain_names[] = {
272 "package",
273 "core",
274 "uncore",
275 "dram",
276 "psys",
277 };
278
get_energy_counter(struct powercap_zone * power_zone,u64 * energy_raw)279 static int get_energy_counter(struct powercap_zone *power_zone,
280 u64 *energy_raw)
281 {
282 struct rapl_domain *rd;
283 u64 energy_now;
284
285 /* prevent CPU hotplug, make sure the RAPL domain does not go
286 * away while reading the counter.
287 */
288 cpus_read_lock();
289 rd = power_zone_to_rapl_domain(power_zone);
290
291 if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
292 *energy_raw = energy_now;
293 cpus_read_unlock();
294
295 return 0;
296 }
297 cpus_read_unlock();
298
299 return -EIO;
300 }
301
get_max_energy_counter(struct powercap_zone * pcd_dev,u64 * energy)302 static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
303 {
304 struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
305
306 *energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
307 return 0;
308 }
309
release_zone(struct powercap_zone * power_zone)310 static int release_zone(struct powercap_zone *power_zone)
311 {
312 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
313 struct rapl_package *rp = rd->rp;
314
315 /* package zone is the last zone of a package, we can free
316 * memory here since all children has been unregistered.
317 */
318 if (rd->id == RAPL_DOMAIN_PACKAGE) {
319 kfree(rd);
320 rp->domains = NULL;
321 }
322
323 return 0;
324
325 }
326
find_nr_power_limit(struct rapl_domain * rd)327 static int find_nr_power_limit(struct rapl_domain *rd)
328 {
329 int i, nr_pl = 0;
330
331 for (i = 0; i < NR_POWER_LIMITS; i++) {
332 if (is_pl_valid(rd, i))
333 nr_pl++;
334 }
335
336 return nr_pl;
337 }
338
set_domain_enable(struct powercap_zone * power_zone,bool mode)339 static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
340 {
341 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
342 struct rapl_defaults *defaults = get_defaults(rd->rp);
343 int ret;
344
345 cpus_read_lock();
346 ret = rapl_write_pl_data(rd, POWER_LIMIT1, PL_ENABLE, mode);
347 if (!ret && defaults->set_floor_freq)
348 defaults->set_floor_freq(rd, mode);
349 cpus_read_unlock();
350
351 return ret;
352 }
353
get_domain_enable(struct powercap_zone * power_zone,bool * mode)354 static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
355 {
356 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
357 u64 val;
358 int ret;
359
360 if (rd->rpl[POWER_LIMIT1].locked) {
361 *mode = false;
362 return 0;
363 }
364 cpus_read_lock();
365 ret = rapl_read_pl_data(rd, POWER_LIMIT1, PL_ENABLE, true, &val);
366 if (!ret)
367 *mode = val;
368 cpus_read_unlock();
369
370 return ret;
371 }
372
373 /* per RAPL domain ops, in the order of rapl_domain_type */
374 static const struct powercap_zone_ops zone_ops[] = {
375 /* RAPL_DOMAIN_PACKAGE */
376 {
377 .get_energy_uj = get_energy_counter,
378 .get_max_energy_range_uj = get_max_energy_counter,
379 .release = release_zone,
380 .set_enable = set_domain_enable,
381 .get_enable = get_domain_enable,
382 },
383 /* RAPL_DOMAIN_PP0 */
384 {
385 .get_energy_uj = get_energy_counter,
386 .get_max_energy_range_uj = get_max_energy_counter,
387 .release = release_zone,
388 .set_enable = set_domain_enable,
389 .get_enable = get_domain_enable,
390 },
391 /* RAPL_DOMAIN_PP1 */
392 {
393 .get_energy_uj = get_energy_counter,
394 .get_max_energy_range_uj = get_max_energy_counter,
395 .release = release_zone,
396 .set_enable = set_domain_enable,
397 .get_enable = get_domain_enable,
398 },
399 /* RAPL_DOMAIN_DRAM */
400 {
401 .get_energy_uj = get_energy_counter,
402 .get_max_energy_range_uj = get_max_energy_counter,
403 .release = release_zone,
404 .set_enable = set_domain_enable,
405 .get_enable = get_domain_enable,
406 },
407 /* RAPL_DOMAIN_PLATFORM */
408 {
409 .get_energy_uj = get_energy_counter,
410 .get_max_energy_range_uj = get_max_energy_counter,
411 .release = release_zone,
412 .set_enable = set_domain_enable,
413 .get_enable = get_domain_enable,
414 },
415 };
416
417 /*
418 * Constraint index used by powercap can be different than power limit (PL)
419 * index in that some PLs maybe missing due to non-existent MSRs. So we
420 * need to convert here by finding the valid PLs only (name populated).
421 */
contraint_to_pl(struct rapl_domain * rd,int cid)422 static int contraint_to_pl(struct rapl_domain *rd, int cid)
423 {
424 int i, j;
425
426 for (i = POWER_LIMIT1, j = 0; i < NR_POWER_LIMITS; i++) {
427 if (is_pl_valid(rd, i) && j++ == cid) {
428 pr_debug("%s: index %d\n", __func__, i);
429 return i;
430 }
431 }
432 pr_err("Cannot find matching power limit for constraint %d\n", cid);
433
434 return -EINVAL;
435 }
436
set_power_limit(struct powercap_zone * power_zone,int cid,u64 power_limit)437 static int set_power_limit(struct powercap_zone *power_zone, int cid,
438 u64 power_limit)
439 {
440 struct rapl_domain *rd;
441 struct rapl_package *rp;
442 int ret = 0;
443 int id;
444
445 cpus_read_lock();
446 rd = power_zone_to_rapl_domain(power_zone);
447 id = contraint_to_pl(rd, cid);
448 rp = rd->rp;
449
450 ret = rapl_write_pl_data(rd, id, PL_LIMIT, power_limit);
451 if (!ret)
452 package_power_limit_irq_save(rp);
453 cpus_read_unlock();
454 return ret;
455 }
456
get_current_power_limit(struct powercap_zone * power_zone,int cid,u64 * data)457 static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
458 u64 *data)
459 {
460 struct rapl_domain *rd;
461 u64 val;
462 int ret = 0;
463 int id;
464
465 cpus_read_lock();
466 rd = power_zone_to_rapl_domain(power_zone);
467 id = contraint_to_pl(rd, cid);
468
469 ret = rapl_read_pl_data(rd, id, PL_LIMIT, true, &val);
470 if (!ret)
471 *data = val;
472
473 cpus_read_unlock();
474
475 return ret;
476 }
477
set_time_window(struct powercap_zone * power_zone,int cid,u64 window)478 static int set_time_window(struct powercap_zone *power_zone, int cid,
479 u64 window)
480 {
481 struct rapl_domain *rd;
482 int ret = 0;
483 int id;
484
485 cpus_read_lock();
486 rd = power_zone_to_rapl_domain(power_zone);
487 id = contraint_to_pl(rd, cid);
488
489 ret = rapl_write_pl_data(rd, id, PL_TIME_WINDOW, window);
490
491 cpus_read_unlock();
492 return ret;
493 }
494
get_time_window(struct powercap_zone * power_zone,int cid,u64 * data)495 static int get_time_window(struct powercap_zone *power_zone, int cid,
496 u64 *data)
497 {
498 struct rapl_domain *rd;
499 u64 val;
500 int ret = 0;
501 int id;
502
503 cpus_read_lock();
504 rd = power_zone_to_rapl_domain(power_zone);
505 id = contraint_to_pl(rd, cid);
506
507 ret = rapl_read_pl_data(rd, id, PL_TIME_WINDOW, true, &val);
508 if (!ret)
509 *data = val;
510
511 cpus_read_unlock();
512
513 return ret;
514 }
515
get_constraint_name(struct powercap_zone * power_zone,int cid)516 static const char *get_constraint_name(struct powercap_zone *power_zone,
517 int cid)
518 {
519 struct rapl_domain *rd;
520 int id;
521
522 rd = power_zone_to_rapl_domain(power_zone);
523 id = contraint_to_pl(rd, cid);
524 if (id >= 0)
525 return rd->rpl[id].name;
526
527 return NULL;
528 }
529
get_max_power(struct powercap_zone * power_zone,int cid,u64 * data)530 static int get_max_power(struct powercap_zone *power_zone, int cid, u64 *data)
531 {
532 struct rapl_domain *rd;
533 u64 val;
534 int ret = 0;
535 int id;
536
537 cpus_read_lock();
538 rd = power_zone_to_rapl_domain(power_zone);
539 id = contraint_to_pl(rd, cid);
540
541 ret = rapl_read_pl_data(rd, id, PL_MAX_POWER, true, &val);
542 if (!ret)
543 *data = val;
544
545 /* As a generalization rule, PL4 would be around two times PL2. */
546 if (id == POWER_LIMIT4)
547 *data = *data * 2;
548
549 cpus_read_unlock();
550
551 return ret;
552 }
553
554 static const struct powercap_zone_constraint_ops constraint_ops = {
555 .set_power_limit_uw = set_power_limit,
556 .get_power_limit_uw = get_current_power_limit,
557 .set_time_window_us = set_time_window,
558 .get_time_window_us = get_time_window,
559 .get_max_power_uw = get_max_power,
560 .get_name = get_constraint_name,
561 };
562
563 /* Return the id used for read_raw/write_raw callback */
get_rid(struct rapl_package * rp)564 static int get_rid(struct rapl_package *rp)
565 {
566 return rp->lead_cpu >= 0 ? rp->lead_cpu : rp->id;
567 }
568
569 /* called after domain detection and package level data are set */
rapl_init_domains(struct rapl_package * rp)570 static void rapl_init_domains(struct rapl_package *rp)
571 {
572 enum rapl_domain_type i;
573 enum rapl_domain_reg_id j;
574 struct rapl_domain *rd = rp->domains;
575
576 for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
577 unsigned int mask = rp->domain_map & (1 << i);
578 int t;
579
580 if (!mask)
581 continue;
582
583 rd->rp = rp;
584
585 if (i == RAPL_DOMAIN_PLATFORM && rp->id > 0) {
586 snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "psys-%d",
587 rp->lead_cpu >= 0 ? topology_physical_package_id(rp->lead_cpu) :
588 rp->id);
589 } else {
590 snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "%s",
591 rapl_domain_names[i]);
592 }
593
594 rd->id = i;
595
596 /* PL1 is supported by default */
597 rp->priv->limits[i] |= BIT(POWER_LIMIT1);
598
599 for (t = POWER_LIMIT1; t < NR_POWER_LIMITS; t++) {
600 if (rp->priv->limits[i] & BIT(t))
601 rd->rpl[t].name = pl_names[t];
602 }
603
604 for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++)
605 rd->regs[j] = rp->priv->regs[i][j];
606
607 rd++;
608 }
609 }
610
rapl_unit_xlate(struct rapl_domain * rd,enum unit_type type,u64 value,int to_raw)611 static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
612 u64 value, int to_raw)
613 {
614 u64 units = 1;
615 struct rapl_defaults *defaults = get_defaults(rd->rp);
616 u64 scale = 1;
617
618 switch (type) {
619 case POWER_UNIT:
620 units = rd->power_unit;
621 break;
622 case ENERGY_UNIT:
623 scale = ENERGY_UNIT_SCALE;
624 units = rd->energy_unit;
625 break;
626 case TIME_UNIT:
627 return defaults->compute_time_window(rd, value, to_raw);
628 case ARBITRARY_UNIT:
629 default:
630 return value;
631 }
632
633 if (to_raw)
634 return div64_u64(value, units) * scale;
635
636 value *= units;
637
638 return div64_u64(value, scale);
639 }
640
641 /* RAPL primitives for MSR and MMIO I/F */
642 static struct rapl_primitive_info rpi_msr[NR_RAPL_PRIMITIVES] = {
643 /* name, mask, shift, msr index, unit divisor */
644 [POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
645 RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
646 [POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
647 RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
648 [POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, POWER_LIMIT4_MASK, 0,
649 RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
650 [ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
651 RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
652 [FW_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31,
653 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
654 [FW_HIGH_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_HIGH_LOCK, 63,
655 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
656 [PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
657 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
658 [PL1_CLAMP] = PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
659 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
660 [PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
661 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
662 [PL2_CLAMP] = PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
663 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
664 [TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
665 RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
666 [TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
667 RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
668 [THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
669 0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
670 [MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
671 RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
672 [MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
673 RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
674 [MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
675 RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
676 [THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
677 RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
678 [PRIORITY_LEVEL] = PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
679 RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0),
680 [PSYS_POWER_LIMIT1] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT1, PSYS_POWER_LIMIT1_MASK, 0,
681 RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
682 [PSYS_POWER_LIMIT2] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT2, PSYS_POWER_LIMIT2_MASK, 32,
683 RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
684 [PSYS_PL1_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL1_ENABLE, PSYS_POWER_LIMIT1_ENABLE, 17,
685 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
686 [PSYS_PL2_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL2_ENABLE, PSYS_POWER_LIMIT2_ENABLE, 49,
687 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
688 [PSYS_TIME_WINDOW1] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW1, PSYS_TIME_WINDOW1_MASK, 19,
689 RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
690 [PSYS_TIME_WINDOW2] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW2, PSYS_TIME_WINDOW2_MASK, 51,
691 RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
692 /* non-hardware */
693 [AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
694 RAPL_PRIMITIVE_DERIVED),
695 };
696
697 /* RAPL primitives for TPMI I/F */
698 static struct rapl_primitive_info rpi_tpmi[NR_RAPL_PRIMITIVES] = {
699 /* name, mask, shift, msr index, unit divisor */
700 [POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, TPMI_POWER_LIMIT_MASK, 0,
701 RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
702 [POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, TPMI_POWER_LIMIT_MASK, 0,
703 RAPL_DOMAIN_REG_PL2, POWER_UNIT, 0),
704 [POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, TPMI_POWER_LIMIT_MASK, 0,
705 RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
706 [ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
707 RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
708 [PL1_LOCK] = PRIMITIVE_INFO_INIT(PL1_LOCK, POWER_HIGH_LOCK, 63,
709 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
710 [PL2_LOCK] = PRIMITIVE_INFO_INIT(PL2_LOCK, POWER_HIGH_LOCK, 63,
711 RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0),
712 [PL4_LOCK] = PRIMITIVE_INFO_INIT(PL4_LOCK, POWER_HIGH_LOCK, 63,
713 RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
714 [PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
715 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
716 [PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
717 RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0),
718 [PL4_ENABLE] = PRIMITIVE_INFO_INIT(PL4_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
719 RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
720 [TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TPMI_TIME_WINDOW_MASK, 18,
721 RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
722 [TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TPMI_TIME_WINDOW_MASK, 18,
723 RAPL_DOMAIN_REG_PL2, TIME_UNIT, 0),
724 [THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, TPMI_INFO_SPEC_MASK, 0,
725 RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
726 [MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, TPMI_INFO_MAX_MASK, 36,
727 RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
728 [MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, TPMI_INFO_MIN_MASK, 18,
729 RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
730 [MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, TPMI_INFO_MAX_TIME_WIN_MASK, 54,
731 RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
732 [THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
733 RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
734 /* non-hardware */
735 [AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0,
736 POWER_UNIT, RAPL_PRIMITIVE_DERIVED),
737 };
738
get_rpi(struct rapl_package * rp,int prim)739 static struct rapl_primitive_info *get_rpi(struct rapl_package *rp, int prim)
740 {
741 struct rapl_primitive_info *rpi = rp->priv->rpi;
742
743 if (prim < 0 || prim >= NR_RAPL_PRIMITIVES || !rpi)
744 return NULL;
745
746 return &rpi[prim];
747 }
748
rapl_config(struct rapl_package * rp)749 static int rapl_config(struct rapl_package *rp)
750 {
751 switch (rp->priv->type) {
752 /* MMIO I/F shares the same register layout as MSR registers */
753 case RAPL_IF_MMIO:
754 case RAPL_IF_MSR:
755 rp->priv->defaults = (void *)defaults_msr;
756 rp->priv->rpi = (void *)rpi_msr;
757 break;
758 case RAPL_IF_TPMI:
759 rp->priv->defaults = (void *)&defaults_tpmi;
760 rp->priv->rpi = (void *)rpi_tpmi;
761 break;
762 default:
763 return -EINVAL;
764 }
765
766 /* defaults_msr can be NULL on unsupported platforms */
767 if (!rp->priv->defaults || !rp->priv->rpi)
768 return -ENODEV;
769
770 return 0;
771 }
772
773 static enum rapl_primitives
prim_fixups(struct rapl_domain * rd,enum rapl_primitives prim)774 prim_fixups(struct rapl_domain *rd, enum rapl_primitives prim)
775 {
776 struct rapl_defaults *defaults = get_defaults(rd->rp);
777
778 if (!defaults->spr_psys_bits)
779 return prim;
780
781 if (rd->id != RAPL_DOMAIN_PLATFORM)
782 return prim;
783
784 switch (prim) {
785 case POWER_LIMIT1:
786 return PSYS_POWER_LIMIT1;
787 case POWER_LIMIT2:
788 return PSYS_POWER_LIMIT2;
789 case PL1_ENABLE:
790 return PSYS_PL1_ENABLE;
791 case PL2_ENABLE:
792 return PSYS_PL2_ENABLE;
793 case TIME_WINDOW1:
794 return PSYS_TIME_WINDOW1;
795 case TIME_WINDOW2:
796 return PSYS_TIME_WINDOW2;
797 default:
798 return prim;
799 }
800 }
801
802 /* Read primitive data based on its related struct rapl_primitive_info.
803 * if xlate flag is set, return translated data based on data units, i.e.
804 * time, energy, and power.
805 * RAPL MSRs are non-architectual and are laid out not consistently across
806 * domains. Here we use primitive info to allow writing consolidated access
807 * functions.
808 * For a given primitive, it is processed by MSR mask and shift. Unit conversion
809 * is pre-assigned based on RAPL unit MSRs read at init time.
810 * 63-------------------------- 31--------------------------- 0
811 * | xxxxx (mask) |
812 * | |<- shift ----------------|
813 * 63-------------------------- 31--------------------------- 0
814 */
rapl_read_data_raw(struct rapl_domain * rd,enum rapl_primitives prim,bool xlate,u64 * data)815 static int rapl_read_data_raw(struct rapl_domain *rd,
816 enum rapl_primitives prim, bool xlate, u64 *data)
817 {
818 u64 value;
819 enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
820 struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed);
821 struct reg_action ra;
822
823 if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY)
824 return -EINVAL;
825
826 ra.reg = rd->regs[rpi->id];
827 if (!ra.reg.val)
828 return -EINVAL;
829
830 /* non-hardware data are collected by the polling thread */
831 if (rpi->flag & RAPL_PRIMITIVE_DERIVED) {
832 *data = rd->rdd.primitives[prim];
833 return 0;
834 }
835
836 ra.mask = rpi->mask;
837
838 if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
839 pr_debug("failed to read reg 0x%llx for %s:%s\n", ra.reg.val, rd->rp->name, rd->name);
840 return -EIO;
841 }
842
843 value = ra.value >> rpi->shift;
844
845 if (xlate)
846 *data = rapl_unit_xlate(rd, rpi->unit, value, 0);
847 else
848 *data = value;
849
850 return 0;
851 }
852
853 /* Similar use of primitive info in the read counterpart */
rapl_write_data_raw(struct rapl_domain * rd,enum rapl_primitives prim,unsigned long long value)854 static int rapl_write_data_raw(struct rapl_domain *rd,
855 enum rapl_primitives prim,
856 unsigned long long value)
857 {
858 enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
859 struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed);
860 u64 bits;
861 struct reg_action ra;
862 int ret;
863
864 if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY)
865 return -EINVAL;
866
867 bits = rapl_unit_xlate(rd, rpi->unit, value, 1);
868 bits <<= rpi->shift;
869 bits &= rpi->mask;
870
871 memset(&ra, 0, sizeof(ra));
872
873 ra.reg = rd->regs[rpi->id];
874 ra.mask = rpi->mask;
875 ra.value = bits;
876
877 ret = rd->rp->priv->write_raw(get_rid(rd->rp), &ra);
878
879 return ret;
880 }
881
rapl_read_pl_data(struct rapl_domain * rd,int pl,enum pl_prims pl_prim,bool xlate,u64 * data)882 static int rapl_read_pl_data(struct rapl_domain *rd, int pl,
883 enum pl_prims pl_prim, bool xlate, u64 *data)
884 {
885 enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim);
886
887 if (!is_pl_valid(rd, pl))
888 return -EINVAL;
889
890 return rapl_read_data_raw(rd, prim, xlate, data);
891 }
892
rapl_write_pl_data(struct rapl_domain * rd,int pl,enum pl_prims pl_prim,unsigned long long value)893 static int rapl_write_pl_data(struct rapl_domain *rd, int pl,
894 enum pl_prims pl_prim,
895 unsigned long long value)
896 {
897 enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim);
898
899 if (!is_pl_valid(rd, pl))
900 return -EINVAL;
901
902 if (rd->rpl[pl].locked) {
903 pr_debug("%s:%s:%s locked by BIOS\n", rd->rp->name, rd->name, pl_names[pl]);
904 return -EACCES;
905 }
906
907 return rapl_write_data_raw(rd, prim, value);
908 }
909 /*
910 * Raw RAPL data stored in MSRs are in certain scales. We need to
911 * convert them into standard units based on the units reported in
912 * the RAPL unit MSRs. This is specific to CPUs as the method to
913 * calculate units differ on different CPUs.
914 * We convert the units to below format based on CPUs.
915 * i.e.
916 * energy unit: picoJoules : Represented in picoJoules by default
917 * power unit : microWatts : Represented in milliWatts by default
918 * time unit : microseconds: Represented in seconds by default
919 */
rapl_check_unit_core(struct rapl_domain * rd)920 static int rapl_check_unit_core(struct rapl_domain *rd)
921 {
922 struct reg_action ra;
923 u32 value;
924
925 ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
926 ra.mask = ~0;
927 if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
928 pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
929 ra.reg.val, rd->rp->name, rd->name);
930 return -ENODEV;
931 }
932
933 value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
934 rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
935
936 value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
937 rd->power_unit = 1000000 / (1 << value);
938
939 value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
940 rd->time_unit = 1000000 / (1 << value);
941
942 pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n",
943 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
944
945 return 0;
946 }
947
rapl_check_unit_atom(struct rapl_domain * rd)948 static int rapl_check_unit_atom(struct rapl_domain *rd)
949 {
950 struct reg_action ra;
951 u32 value;
952
953 ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
954 ra.mask = ~0;
955 if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
956 pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
957 ra.reg.val, rd->rp->name, rd->name);
958 return -ENODEV;
959 }
960
961 value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
962 rd->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
963
964 value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
965 rd->power_unit = (1 << value) * 1000;
966
967 value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
968 rd->time_unit = 1000000 / (1 << value);
969
970 pr_debug("Atom %s:%s energy=%dpJ, time=%dus, power=%duW\n",
971 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
972
973 return 0;
974 }
975
power_limit_irq_save_cpu(void * info)976 static void power_limit_irq_save_cpu(void *info)
977 {
978 u32 l, h = 0;
979 struct rapl_package *rp = (struct rapl_package *)info;
980
981 /* save the state of PLN irq mask bit before disabling it */
982 rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
983 if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
984 rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
985 rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
986 }
987 l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
988 wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
989 }
990
991 /* REVISIT:
992 * When package power limit is set artificially low by RAPL, LVT
993 * thermal interrupt for package power limit should be ignored
994 * since we are not really exceeding the real limit. The intention
995 * is to avoid excessive interrupts while we are trying to save power.
996 * A useful feature might be routing the package_power_limit interrupt
997 * to userspace via eventfd. once we have a usecase, this is simple
998 * to do by adding an atomic notifier.
999 */
1000
package_power_limit_irq_save(struct rapl_package * rp)1001 static void package_power_limit_irq_save(struct rapl_package *rp)
1002 {
1003 if (rp->lead_cpu < 0)
1004 return;
1005
1006 if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
1007 return;
1008
1009 smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
1010 }
1011
1012 /*
1013 * Restore per package power limit interrupt enable state. Called from cpu
1014 * hotplug code on package removal.
1015 */
package_power_limit_irq_restore(struct rapl_package * rp)1016 static void package_power_limit_irq_restore(struct rapl_package *rp)
1017 {
1018 u32 l, h;
1019
1020 if (rp->lead_cpu < 0)
1021 return;
1022
1023 if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
1024 return;
1025
1026 /* irq enable state not saved, nothing to restore */
1027 if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
1028 return;
1029
1030 rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
1031
1032 if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
1033 l |= PACKAGE_THERM_INT_PLN_ENABLE;
1034 else
1035 l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
1036
1037 wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
1038 }
1039
set_floor_freq_default(struct rapl_domain * rd,bool mode)1040 static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
1041 {
1042 int i;
1043
1044 /* always enable clamp such that p-state can go below OS requested
1045 * range. power capping priority over guranteed frequency.
1046 */
1047 rapl_write_pl_data(rd, POWER_LIMIT1, PL_CLAMP, mode);
1048
1049 for (i = POWER_LIMIT2; i < NR_POWER_LIMITS; i++) {
1050 rapl_write_pl_data(rd, i, PL_ENABLE, mode);
1051 rapl_write_pl_data(rd, i, PL_CLAMP, mode);
1052 }
1053 }
1054
set_floor_freq_atom(struct rapl_domain * rd,bool enable)1055 static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
1056 {
1057 static u32 power_ctrl_orig_val;
1058 struct rapl_defaults *defaults = get_defaults(rd->rp);
1059 u32 mdata;
1060
1061 if (!defaults->floor_freq_reg_addr) {
1062 pr_err("Invalid floor frequency config register\n");
1063 return;
1064 }
1065
1066 if (!power_ctrl_orig_val)
1067 iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
1068 defaults->floor_freq_reg_addr,
1069 &power_ctrl_orig_val);
1070 mdata = power_ctrl_orig_val;
1071 if (enable) {
1072 mdata &= ~(0x7f << 8);
1073 mdata |= 1 << 8;
1074 }
1075 iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
1076 defaults->floor_freq_reg_addr, mdata);
1077 }
1078
rapl_compute_time_window_core(struct rapl_domain * rd,u64 value,bool to_raw)1079 static u64 rapl_compute_time_window_core(struct rapl_domain *rd, u64 value,
1080 bool to_raw)
1081 {
1082 u64 f, y; /* fraction and exp. used for time unit */
1083
1084 /*
1085 * Special processing based on 2^Y*(1+F/4), refer
1086 * to Intel Software Developer's manual Vol.3B: CH 14.9.3.
1087 */
1088 if (!to_raw) {
1089 f = (value & 0x60) >> 5;
1090 y = value & 0x1f;
1091 value = (1 << y) * (4 + f) * rd->time_unit / 4;
1092 } else {
1093 if (value < rd->time_unit)
1094 return 0;
1095
1096 do_div(value, rd->time_unit);
1097 y = ilog2(value);
1098
1099 /*
1100 * The target hardware field is 7 bits wide, so return all ones
1101 * if the exponent is too large.
1102 */
1103 if (y > 0x1f)
1104 return 0x7f;
1105
1106 f = div64_u64(4 * (value - (1ULL << y)), 1ULL << y);
1107 value = (y & 0x1f) | ((f & 0x3) << 5);
1108 }
1109 return value;
1110 }
1111
rapl_compute_time_window_atom(struct rapl_domain * rd,u64 value,bool to_raw)1112 static u64 rapl_compute_time_window_atom(struct rapl_domain *rd, u64 value,
1113 bool to_raw)
1114 {
1115 /*
1116 * Atom time unit encoding is straight forward val * time_unit,
1117 * where time_unit is default to 1 sec. Never 0.
1118 */
1119 if (!to_raw)
1120 return (value) ? value * rd->time_unit : rd->time_unit;
1121
1122 value = div64_u64(value, rd->time_unit);
1123
1124 return value;
1125 }
1126
1127 /* TPMI Unit register has different layout */
1128 #define TPMI_POWER_UNIT_OFFSET POWER_UNIT_OFFSET
1129 #define TPMI_POWER_UNIT_MASK POWER_UNIT_MASK
1130 #define TPMI_ENERGY_UNIT_OFFSET 0x06
1131 #define TPMI_ENERGY_UNIT_MASK 0x7C0
1132 #define TPMI_TIME_UNIT_OFFSET 0x0C
1133 #define TPMI_TIME_UNIT_MASK 0xF000
1134
rapl_check_unit_tpmi(struct rapl_domain * rd)1135 static int rapl_check_unit_tpmi(struct rapl_domain *rd)
1136 {
1137 struct reg_action ra;
1138 u32 value;
1139
1140 ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
1141 ra.mask = ~0;
1142 if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
1143 pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
1144 ra.reg.val, rd->rp->name, rd->name);
1145 return -ENODEV;
1146 }
1147
1148 value = (ra.value & TPMI_ENERGY_UNIT_MASK) >> TPMI_ENERGY_UNIT_OFFSET;
1149 rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
1150
1151 value = (ra.value & TPMI_POWER_UNIT_MASK) >> TPMI_POWER_UNIT_OFFSET;
1152 rd->power_unit = 1000000 / (1 << value);
1153
1154 value = (ra.value & TPMI_TIME_UNIT_MASK) >> TPMI_TIME_UNIT_OFFSET;
1155 rd->time_unit = 1000000 / (1 << value);
1156
1157 pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n",
1158 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
1159
1160 return 0;
1161 }
1162
1163 static const struct rapl_defaults defaults_tpmi = {
1164 .check_unit = rapl_check_unit_tpmi,
1165 /* Reuse existing logic, ignore the PL_CLAMP failures and enable all Power Limits */
1166 .set_floor_freq = set_floor_freq_default,
1167 .compute_time_window = rapl_compute_time_window_core,
1168 };
1169
1170 static const struct rapl_defaults rapl_defaults_core = {
1171 .floor_freq_reg_addr = 0,
1172 .check_unit = rapl_check_unit_core,
1173 .set_floor_freq = set_floor_freq_default,
1174 .compute_time_window = rapl_compute_time_window_core,
1175 };
1176
1177 static const struct rapl_defaults rapl_defaults_hsw_server = {
1178 .check_unit = rapl_check_unit_core,
1179 .set_floor_freq = set_floor_freq_default,
1180 .compute_time_window = rapl_compute_time_window_core,
1181 .dram_domain_energy_unit = 15300,
1182 };
1183
1184 static const struct rapl_defaults rapl_defaults_spr_server = {
1185 .check_unit = rapl_check_unit_core,
1186 .set_floor_freq = set_floor_freq_default,
1187 .compute_time_window = rapl_compute_time_window_core,
1188 .psys_domain_energy_unit = 1000000000,
1189 .spr_psys_bits = true,
1190 };
1191
1192 static const struct rapl_defaults rapl_defaults_byt = {
1193 .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
1194 .check_unit = rapl_check_unit_atom,
1195 .set_floor_freq = set_floor_freq_atom,
1196 .compute_time_window = rapl_compute_time_window_atom,
1197 };
1198
1199 static const struct rapl_defaults rapl_defaults_tng = {
1200 .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
1201 .check_unit = rapl_check_unit_atom,
1202 .set_floor_freq = set_floor_freq_atom,
1203 .compute_time_window = rapl_compute_time_window_atom,
1204 };
1205
1206 static const struct rapl_defaults rapl_defaults_ann = {
1207 .floor_freq_reg_addr = 0,
1208 .check_unit = rapl_check_unit_atom,
1209 .set_floor_freq = NULL,
1210 .compute_time_window = rapl_compute_time_window_atom,
1211 };
1212
1213 static const struct rapl_defaults rapl_defaults_cht = {
1214 .floor_freq_reg_addr = 0,
1215 .check_unit = rapl_check_unit_atom,
1216 .set_floor_freq = NULL,
1217 .compute_time_window = rapl_compute_time_window_atom,
1218 };
1219
1220 static const struct rapl_defaults rapl_defaults_amd = {
1221 .check_unit = rapl_check_unit_core,
1222 };
1223
1224 static const struct x86_cpu_id rapl_ids[] __initconst = {
1225 X86_MATCH_VFM(INTEL_SANDYBRIDGE, &rapl_defaults_core),
1226 X86_MATCH_VFM(INTEL_SANDYBRIDGE_X, &rapl_defaults_core),
1227
1228 X86_MATCH_VFM(INTEL_IVYBRIDGE, &rapl_defaults_core),
1229 X86_MATCH_VFM(INTEL_IVYBRIDGE_X, &rapl_defaults_core),
1230
1231 X86_MATCH_VFM(INTEL_HASWELL, &rapl_defaults_core),
1232 X86_MATCH_VFM(INTEL_HASWELL_L, &rapl_defaults_core),
1233 X86_MATCH_VFM(INTEL_HASWELL_G, &rapl_defaults_core),
1234 X86_MATCH_VFM(INTEL_HASWELL_X, &rapl_defaults_hsw_server),
1235
1236 X86_MATCH_VFM(INTEL_BROADWELL, &rapl_defaults_core),
1237 X86_MATCH_VFM(INTEL_BROADWELL_G, &rapl_defaults_core),
1238 X86_MATCH_VFM(INTEL_BROADWELL_D, &rapl_defaults_core),
1239 X86_MATCH_VFM(INTEL_BROADWELL_X, &rapl_defaults_hsw_server),
1240
1241 X86_MATCH_VFM(INTEL_SKYLAKE, &rapl_defaults_core),
1242 X86_MATCH_VFM(INTEL_SKYLAKE_L, &rapl_defaults_core),
1243 X86_MATCH_VFM(INTEL_SKYLAKE_X, &rapl_defaults_hsw_server),
1244 X86_MATCH_VFM(INTEL_KABYLAKE_L, &rapl_defaults_core),
1245 X86_MATCH_VFM(INTEL_KABYLAKE, &rapl_defaults_core),
1246 X86_MATCH_VFM(INTEL_CANNONLAKE_L, &rapl_defaults_core),
1247 X86_MATCH_VFM(INTEL_ICELAKE_L, &rapl_defaults_core),
1248 X86_MATCH_VFM(INTEL_ICELAKE, &rapl_defaults_core),
1249 X86_MATCH_VFM(INTEL_ICELAKE_NNPI, &rapl_defaults_core),
1250 X86_MATCH_VFM(INTEL_ICELAKE_X, &rapl_defaults_hsw_server),
1251 X86_MATCH_VFM(INTEL_ICELAKE_D, &rapl_defaults_hsw_server),
1252 X86_MATCH_VFM(INTEL_COMETLAKE_L, &rapl_defaults_core),
1253 X86_MATCH_VFM(INTEL_COMETLAKE, &rapl_defaults_core),
1254 X86_MATCH_VFM(INTEL_TIGERLAKE_L, &rapl_defaults_core),
1255 X86_MATCH_VFM(INTEL_TIGERLAKE, &rapl_defaults_core),
1256 X86_MATCH_VFM(INTEL_ROCKETLAKE, &rapl_defaults_core),
1257 X86_MATCH_VFM(INTEL_ALDERLAKE, &rapl_defaults_core),
1258 X86_MATCH_VFM(INTEL_ALDERLAKE_L, &rapl_defaults_core),
1259 X86_MATCH_VFM(INTEL_ATOM_GRACEMONT, &rapl_defaults_core),
1260 X86_MATCH_VFM(INTEL_RAPTORLAKE, &rapl_defaults_core),
1261 X86_MATCH_VFM(INTEL_RAPTORLAKE_P, &rapl_defaults_core),
1262 X86_MATCH_VFM(INTEL_RAPTORLAKE_S, &rapl_defaults_core),
1263 X86_MATCH_VFM(INTEL_METEORLAKE, &rapl_defaults_core),
1264 X86_MATCH_VFM(INTEL_METEORLAKE_L, &rapl_defaults_core),
1265 X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, &rapl_defaults_spr_server),
1266 X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, &rapl_defaults_spr_server),
1267 X86_MATCH_VFM(INTEL_LUNARLAKE_M, &rapl_defaults_core),
1268 X86_MATCH_VFM(INTEL_ARROWLAKE_H, &rapl_defaults_core),
1269 X86_MATCH_VFM(INTEL_ARROWLAKE, &rapl_defaults_core),
1270 X86_MATCH_VFM(INTEL_ARROWLAKE_U, &rapl_defaults_core),
1271 X86_MATCH_VFM(INTEL_LAKEFIELD, &rapl_defaults_core),
1272
1273 X86_MATCH_VFM(INTEL_ATOM_SILVERMONT, &rapl_defaults_byt),
1274 X86_MATCH_VFM(INTEL_ATOM_AIRMONT, &rapl_defaults_cht),
1275 X86_MATCH_VFM(INTEL_ATOM_SILVERMONT_MID, &rapl_defaults_tng),
1276 X86_MATCH_VFM(INTEL_ATOM_AIRMONT_MID, &rapl_defaults_ann),
1277 X86_MATCH_VFM(INTEL_ATOM_GOLDMONT, &rapl_defaults_core),
1278 X86_MATCH_VFM(INTEL_ATOM_GOLDMONT_PLUS, &rapl_defaults_core),
1279 X86_MATCH_VFM(INTEL_ATOM_GOLDMONT_D, &rapl_defaults_core),
1280 X86_MATCH_VFM(INTEL_ATOM_TREMONT, &rapl_defaults_core),
1281 X86_MATCH_VFM(INTEL_ATOM_TREMONT_D, &rapl_defaults_core),
1282 X86_MATCH_VFM(INTEL_ATOM_TREMONT_L, &rapl_defaults_core),
1283
1284 X86_MATCH_VFM(INTEL_XEON_PHI_KNL, &rapl_defaults_hsw_server),
1285 X86_MATCH_VFM(INTEL_XEON_PHI_KNM, &rapl_defaults_hsw_server),
1286
1287 X86_MATCH_VENDOR_FAM(AMD, 0x17, &rapl_defaults_amd),
1288 X86_MATCH_VENDOR_FAM(AMD, 0x19, &rapl_defaults_amd),
1289 X86_MATCH_VENDOR_FAM(AMD, 0x1A, &rapl_defaults_amd),
1290 X86_MATCH_VENDOR_FAM(HYGON, 0x18, &rapl_defaults_amd),
1291 {}
1292 };
1293 MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
1294
1295 /* Read once for all raw primitive data for domains */
rapl_update_domain_data(struct rapl_package * rp)1296 static void rapl_update_domain_data(struct rapl_package *rp)
1297 {
1298 int dmn, prim;
1299 u64 val;
1300
1301 for (dmn = 0; dmn < rp->nr_domains; dmn++) {
1302 pr_debug("update %s domain %s data\n", rp->name,
1303 rp->domains[dmn].name);
1304 /* exclude non-raw primitives */
1305 for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
1306 struct rapl_primitive_info *rpi = get_rpi(rp, prim);
1307
1308 if (!rapl_read_data_raw(&rp->domains[dmn], prim,
1309 rpi->unit, &val))
1310 rp->domains[dmn].rdd.primitives[prim] = val;
1311 }
1312 }
1313
1314 }
1315
rapl_package_register_powercap(struct rapl_package * rp)1316 static int rapl_package_register_powercap(struct rapl_package *rp)
1317 {
1318 struct rapl_domain *rd;
1319 struct powercap_zone *power_zone = NULL;
1320 int nr_pl, ret;
1321
1322 /* Update the domain data of the new package */
1323 rapl_update_domain_data(rp);
1324
1325 /* first we register package domain as the parent zone */
1326 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1327 if (rd->id == RAPL_DOMAIN_PACKAGE) {
1328 nr_pl = find_nr_power_limit(rd);
1329 pr_debug("register package domain %s\n", rp->name);
1330 power_zone = powercap_register_zone(&rd->power_zone,
1331 rp->priv->control_type, rp->name,
1332 NULL, &zone_ops[rd->id], nr_pl,
1333 &constraint_ops);
1334 if (IS_ERR(power_zone)) {
1335 pr_debug("failed to register power zone %s\n",
1336 rp->name);
1337 return PTR_ERR(power_zone);
1338 }
1339 /* track parent zone in per package/socket data */
1340 rp->power_zone = power_zone;
1341 /* done, only one package domain per socket */
1342 break;
1343 }
1344 }
1345 if (!power_zone) {
1346 pr_err("no package domain found, unknown topology!\n");
1347 return -ENODEV;
1348 }
1349 /* now register domains as children of the socket/package */
1350 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1351 struct powercap_zone *parent = rp->power_zone;
1352
1353 if (rd->id == RAPL_DOMAIN_PACKAGE)
1354 continue;
1355 if (rd->id == RAPL_DOMAIN_PLATFORM)
1356 parent = NULL;
1357 /* number of power limits per domain varies */
1358 nr_pl = find_nr_power_limit(rd);
1359 power_zone = powercap_register_zone(&rd->power_zone,
1360 rp->priv->control_type,
1361 rd->name, parent,
1362 &zone_ops[rd->id], nr_pl,
1363 &constraint_ops);
1364
1365 if (IS_ERR(power_zone)) {
1366 pr_debug("failed to register power_zone, %s:%s\n",
1367 rp->name, rd->name);
1368 ret = PTR_ERR(power_zone);
1369 goto err_cleanup;
1370 }
1371 }
1372 return 0;
1373
1374 err_cleanup:
1375 /*
1376 * Clean up previously initialized domains within the package if we
1377 * failed after the first domain setup.
1378 */
1379 while (--rd >= rp->domains) {
1380 pr_debug("unregister %s domain %s\n", rp->name, rd->name);
1381 powercap_unregister_zone(rp->priv->control_type,
1382 &rd->power_zone);
1383 }
1384
1385 return ret;
1386 }
1387
rapl_check_domain(int domain,struct rapl_package * rp)1388 static int rapl_check_domain(int domain, struct rapl_package *rp)
1389 {
1390 struct reg_action ra;
1391
1392 switch (domain) {
1393 case RAPL_DOMAIN_PACKAGE:
1394 case RAPL_DOMAIN_PP0:
1395 case RAPL_DOMAIN_PP1:
1396 case RAPL_DOMAIN_DRAM:
1397 case RAPL_DOMAIN_PLATFORM:
1398 ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS];
1399 break;
1400 default:
1401 pr_err("invalid domain id %d\n", domain);
1402 return -EINVAL;
1403 }
1404 /* make sure domain counters are available and contains non-zero
1405 * values, otherwise skip it.
1406 */
1407
1408 ra.mask = ENERGY_STATUS_MASK;
1409 if (rp->priv->read_raw(get_rid(rp), &ra) || !ra.value)
1410 return -ENODEV;
1411
1412 return 0;
1413 }
1414
1415 /*
1416 * Get per domain energy/power/time unit.
1417 * RAPL Interfaces without per domain unit register will use the package
1418 * scope unit register to set per domain units.
1419 */
rapl_get_domain_unit(struct rapl_domain * rd)1420 static int rapl_get_domain_unit(struct rapl_domain *rd)
1421 {
1422 struct rapl_defaults *defaults = get_defaults(rd->rp);
1423 int ret;
1424
1425 if (!rd->regs[RAPL_DOMAIN_REG_UNIT].val) {
1426 if (!rd->rp->priv->reg_unit.val) {
1427 pr_err("No valid Unit register found\n");
1428 return -ENODEV;
1429 }
1430 rd->regs[RAPL_DOMAIN_REG_UNIT] = rd->rp->priv->reg_unit;
1431 }
1432
1433 if (!defaults->check_unit) {
1434 pr_err("missing .check_unit() callback\n");
1435 return -ENODEV;
1436 }
1437
1438 ret = defaults->check_unit(rd);
1439 if (ret)
1440 return ret;
1441
1442 if (rd->id == RAPL_DOMAIN_DRAM && defaults->dram_domain_energy_unit)
1443 rd->energy_unit = defaults->dram_domain_energy_unit;
1444 if (rd->id == RAPL_DOMAIN_PLATFORM && defaults->psys_domain_energy_unit)
1445 rd->energy_unit = defaults->psys_domain_energy_unit;
1446 return 0;
1447 }
1448
1449 /*
1450 * Check if power limits are available. Two cases when they are not available:
1451 * 1. Locked by BIOS, in this case we still provide read-only access so that
1452 * users can see what limit is set by the BIOS.
1453 * 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
1454 * exist at all. In this case, we do not show the constraints in powercap.
1455 *
1456 * Called after domains are detected and initialized.
1457 */
rapl_detect_powerlimit(struct rapl_domain * rd)1458 static void rapl_detect_powerlimit(struct rapl_domain *rd)
1459 {
1460 u64 val64;
1461 int i;
1462
1463 for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
1464 if (!rapl_read_pl_data(rd, i, PL_LOCK, false, &val64)) {
1465 if (val64) {
1466 rd->rpl[i].locked = true;
1467 pr_info("%s:%s:%s locked by BIOS\n",
1468 rd->rp->name, rd->name, pl_names[i]);
1469 }
1470 }
1471
1472 if (rapl_read_pl_data(rd, i, PL_LIMIT, false, &val64))
1473 rd->rpl[i].name = NULL;
1474 }
1475 }
1476
1477 /* Detect active and valid domains for the given CPU, caller must
1478 * ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
1479 */
rapl_detect_domains(struct rapl_package * rp)1480 static int rapl_detect_domains(struct rapl_package *rp)
1481 {
1482 struct rapl_domain *rd;
1483 int i;
1484
1485 for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
1486 /* use physical package id to read counters */
1487 if (!rapl_check_domain(i, rp)) {
1488 rp->domain_map |= 1 << i;
1489 pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
1490 }
1491 }
1492 rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
1493 if (!rp->nr_domains) {
1494 pr_debug("no valid rapl domains found in %s\n", rp->name);
1495 return -ENODEV;
1496 }
1497 pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name);
1498
1499 rp->domains = kcalloc(rp->nr_domains, sizeof(struct rapl_domain),
1500 GFP_KERNEL);
1501 if (!rp->domains)
1502 return -ENOMEM;
1503
1504 rapl_init_domains(rp);
1505
1506 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1507 rapl_get_domain_unit(rd);
1508 rapl_detect_powerlimit(rd);
1509 }
1510
1511 return 0;
1512 }
1513
1514 #ifdef CONFIG_PERF_EVENTS
1515
1516 /*
1517 * Support for RAPL PMU
1518 *
1519 * Register a PMU if any of the registered RAPL Packages have the requirement
1520 * of exposing its energy counters via Perf PMU.
1521 *
1522 * PMU Name:
1523 * power
1524 *
1525 * Events:
1526 * Name Event id RAPL Domain
1527 * energy_cores 0x01 RAPL_DOMAIN_PP0
1528 * energy_pkg 0x02 RAPL_DOMAIN_PACKAGE
1529 * energy_ram 0x03 RAPL_DOMAIN_DRAM
1530 * energy_gpu 0x04 RAPL_DOMAIN_PP1
1531 * energy_psys 0x05 RAPL_DOMAIN_PLATFORM
1532 *
1533 * Unit:
1534 * Joules
1535 *
1536 * Scale:
1537 * 2.3283064365386962890625e-10
1538 * The same RAPL domain in different RAPL Packages may have different
1539 * energy units. Use 2.3283064365386962890625e-10 (2^-32) Joules as
1540 * the fixed unit for all energy counters, and covert each hardware
1541 * counter increase to N times of PMU event counter increases.
1542 *
1543 * This is fully compatible with the current MSR RAPL PMU. This means that
1544 * userspace programs like turbostat can use the same code to handle RAPL Perf
1545 * PMU, no matter what RAPL Interface driver (MSR/TPMI, etc) is running
1546 * underlying on the platform.
1547 *
1548 * Note that RAPL Packages can be probed/removed dynamically, and the events
1549 * supported by each TPMI RAPL device can be different. Thus the RAPL PMU
1550 * support is done on demand, which means
1551 * 1. PMU is registered only if it is needed by a RAPL Package. PMU events for
1552 * unsupported counters are not exposed.
1553 * 2. PMU is unregistered and registered when a new RAPL Package is probed and
1554 * supports new counters that are not supported by current PMU.
1555 * 3. PMU is unregistered when all registered RAPL Packages don't need PMU.
1556 */
1557
1558 struct rapl_pmu {
1559 struct pmu pmu; /* Perf PMU structure */
1560 u64 timer_ms; /* Maximum expiration time to avoid counter overflow */
1561 unsigned long domain_map; /* Events supported by current registered PMU */
1562 bool registered; /* Whether the PMU has been registered or not */
1563 };
1564
1565 static struct rapl_pmu rapl_pmu;
1566
1567 /* PMU helpers */
1568
get_pmu_cpu(struct rapl_package * rp)1569 static int get_pmu_cpu(struct rapl_package *rp)
1570 {
1571 int cpu;
1572
1573 if (!rp->has_pmu)
1574 return nr_cpu_ids;
1575
1576 /* Only TPMI RAPL is supported for now */
1577 if (rp->priv->type != RAPL_IF_TPMI)
1578 return nr_cpu_ids;
1579
1580 /* TPMI RAPL uses any CPU in the package for PMU */
1581 for_each_online_cpu(cpu)
1582 if (topology_physical_package_id(cpu) == rp->id)
1583 return cpu;
1584
1585 return nr_cpu_ids;
1586 }
1587
is_rp_pmu_cpu(struct rapl_package * rp,int cpu)1588 static bool is_rp_pmu_cpu(struct rapl_package *rp, int cpu)
1589 {
1590 if (!rp->has_pmu)
1591 return false;
1592
1593 /* Only TPMI RAPL is supported for now */
1594 if (rp->priv->type != RAPL_IF_TPMI)
1595 return false;
1596
1597 /* TPMI RAPL uses any CPU in the package for PMU */
1598 return topology_physical_package_id(cpu) == rp->id;
1599 }
1600
event_to_pmu_data(struct perf_event * event)1601 static struct rapl_package_pmu_data *event_to_pmu_data(struct perf_event *event)
1602 {
1603 struct rapl_package *rp = event->pmu_private;
1604
1605 return &rp->pmu_data;
1606 }
1607
1608 /* PMU event callbacks */
1609
event_read_counter(struct perf_event * event)1610 static u64 event_read_counter(struct perf_event *event)
1611 {
1612 struct rapl_package *rp = event->pmu_private;
1613 u64 val;
1614 int ret;
1615
1616 /* Return 0 for unsupported events */
1617 if (event->hw.idx < 0)
1618 return 0;
1619
1620 ret = rapl_read_data_raw(&rp->domains[event->hw.idx], ENERGY_COUNTER, false, &val);
1621
1622 /* Return 0 for failed read */
1623 if (ret)
1624 return 0;
1625
1626 return val;
1627 }
1628
__rapl_pmu_event_start(struct perf_event * event)1629 static void __rapl_pmu_event_start(struct perf_event *event)
1630 {
1631 struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1632
1633 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1634 return;
1635
1636 event->hw.state = 0;
1637
1638 list_add_tail(&event->active_entry, &data->active_list);
1639
1640 local64_set(&event->hw.prev_count, event_read_counter(event));
1641 if (++data->n_active == 1)
1642 hrtimer_start(&data->hrtimer, data->timer_interval,
1643 HRTIMER_MODE_REL_PINNED);
1644 }
1645
rapl_pmu_event_start(struct perf_event * event,int mode)1646 static void rapl_pmu_event_start(struct perf_event *event, int mode)
1647 {
1648 struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1649 unsigned long flags;
1650
1651 raw_spin_lock_irqsave(&data->lock, flags);
1652 __rapl_pmu_event_start(event);
1653 raw_spin_unlock_irqrestore(&data->lock, flags);
1654 }
1655
rapl_event_update(struct perf_event * event)1656 static u64 rapl_event_update(struct perf_event *event)
1657 {
1658 struct hw_perf_event *hwc = &event->hw;
1659 struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1660 u64 prev_raw_count, new_raw_count;
1661 s64 delta, sdelta;
1662
1663 /*
1664 * Follow the generic code to drain hwc->prev_count.
1665 * The loop is not expected to run for multiple times.
1666 */
1667 prev_raw_count = local64_read(&hwc->prev_count);
1668 do {
1669 new_raw_count = event_read_counter(event);
1670 } while (!local64_try_cmpxchg(&hwc->prev_count,
1671 &prev_raw_count, new_raw_count));
1672
1673
1674 /*
1675 * Now we have the new raw value and have updated the prev
1676 * timestamp already. We can now calculate the elapsed delta
1677 * (event-)time and add that to the generic event.
1678 */
1679 delta = new_raw_count - prev_raw_count;
1680
1681 /*
1682 * Scale delta to smallest unit (2^-32)
1683 * users must then scale back: count * 1/(1e9*2^32) to get Joules
1684 * or use ldexp(count, -32).
1685 * Watts = Joules/Time delta
1686 */
1687 sdelta = delta * data->scale[event->hw.flags];
1688
1689 local64_add(sdelta, &event->count);
1690
1691 return new_raw_count;
1692 }
1693
rapl_pmu_event_stop(struct perf_event * event,int mode)1694 static void rapl_pmu_event_stop(struct perf_event *event, int mode)
1695 {
1696 struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1697 struct hw_perf_event *hwc = &event->hw;
1698 unsigned long flags;
1699
1700 raw_spin_lock_irqsave(&data->lock, flags);
1701
1702 /* Mark event as deactivated and stopped */
1703 if (!(hwc->state & PERF_HES_STOPPED)) {
1704 WARN_ON_ONCE(data->n_active <= 0);
1705 if (--data->n_active == 0)
1706 hrtimer_cancel(&data->hrtimer);
1707
1708 list_del(&event->active_entry);
1709
1710 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1711 hwc->state |= PERF_HES_STOPPED;
1712 }
1713
1714 /* Check if update of sw counter is necessary */
1715 if ((mode & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1716 /*
1717 * Drain the remaining delta count out of a event
1718 * that we are disabling:
1719 */
1720 rapl_event_update(event);
1721 hwc->state |= PERF_HES_UPTODATE;
1722 }
1723
1724 raw_spin_unlock_irqrestore(&data->lock, flags);
1725 }
1726
rapl_pmu_event_add(struct perf_event * event,int mode)1727 static int rapl_pmu_event_add(struct perf_event *event, int mode)
1728 {
1729 struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1730 struct hw_perf_event *hwc = &event->hw;
1731 unsigned long flags;
1732
1733 raw_spin_lock_irqsave(&data->lock, flags);
1734
1735 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1736
1737 if (mode & PERF_EF_START)
1738 __rapl_pmu_event_start(event);
1739
1740 raw_spin_unlock_irqrestore(&data->lock, flags);
1741
1742 return 0;
1743 }
1744
rapl_pmu_event_del(struct perf_event * event,int flags)1745 static void rapl_pmu_event_del(struct perf_event *event, int flags)
1746 {
1747 rapl_pmu_event_stop(event, PERF_EF_UPDATE);
1748 }
1749
1750 /* RAPL PMU event ids, same as shown in sysfs */
1751 enum perf_rapl_events {
1752 PERF_RAPL_PP0 = 1, /* all cores */
1753 PERF_RAPL_PKG, /* entire package */
1754 PERF_RAPL_RAM, /* DRAM */
1755 PERF_RAPL_PP1, /* gpu */
1756 PERF_RAPL_PSYS, /* psys */
1757 PERF_RAPL_MAX
1758 };
1759 #define RAPL_EVENT_MASK GENMASK(7, 0)
1760
1761 static const int event_to_domain[PERF_RAPL_MAX] = {
1762 [PERF_RAPL_PP0] = RAPL_DOMAIN_PP0,
1763 [PERF_RAPL_PKG] = RAPL_DOMAIN_PACKAGE,
1764 [PERF_RAPL_RAM] = RAPL_DOMAIN_DRAM,
1765 [PERF_RAPL_PP1] = RAPL_DOMAIN_PP1,
1766 [PERF_RAPL_PSYS] = RAPL_DOMAIN_PLATFORM,
1767 };
1768
rapl_pmu_event_init(struct perf_event * event)1769 static int rapl_pmu_event_init(struct perf_event *event)
1770 {
1771 struct rapl_package *pos, *rp = NULL;
1772 u64 cfg = event->attr.config & RAPL_EVENT_MASK;
1773 int domain, idx;
1774
1775 /* Only look at RAPL events */
1776 if (event->attr.type != event->pmu->type)
1777 return -ENOENT;
1778
1779 /* Check for supported events only */
1780 if (!cfg || cfg >= PERF_RAPL_MAX)
1781 return -EINVAL;
1782
1783 if (event->cpu < 0)
1784 return -EINVAL;
1785
1786 /* Find out which Package the event belongs to */
1787 list_for_each_entry(pos, &rapl_packages, plist) {
1788 if (is_rp_pmu_cpu(pos, event->cpu)) {
1789 rp = pos;
1790 break;
1791 }
1792 }
1793 if (!rp)
1794 return -ENODEV;
1795
1796 /* Find out which RAPL Domain the event belongs to */
1797 domain = event_to_domain[cfg];
1798
1799 event->event_caps |= PERF_EV_CAP_READ_ACTIVE_PKG;
1800 event->pmu_private = rp; /* Which package */
1801 event->hw.flags = domain; /* Which domain */
1802
1803 event->hw.idx = -1;
1804 /* Find out the index in rp->domains[] to get domain pointer */
1805 for (idx = 0; idx < rp->nr_domains; idx++) {
1806 if (rp->domains[idx].id == domain) {
1807 event->hw.idx = idx;
1808 break;
1809 }
1810 }
1811
1812 return 0;
1813 }
1814
rapl_pmu_event_read(struct perf_event * event)1815 static void rapl_pmu_event_read(struct perf_event *event)
1816 {
1817 rapl_event_update(event);
1818 }
1819
rapl_hrtimer_handle(struct hrtimer * hrtimer)1820 static enum hrtimer_restart rapl_hrtimer_handle(struct hrtimer *hrtimer)
1821 {
1822 struct rapl_package_pmu_data *data =
1823 container_of(hrtimer, struct rapl_package_pmu_data, hrtimer);
1824 struct perf_event *event;
1825 unsigned long flags;
1826
1827 if (!data->n_active)
1828 return HRTIMER_NORESTART;
1829
1830 raw_spin_lock_irqsave(&data->lock, flags);
1831
1832 list_for_each_entry(event, &data->active_list, active_entry)
1833 rapl_event_update(event);
1834
1835 raw_spin_unlock_irqrestore(&data->lock, flags);
1836
1837 hrtimer_forward_now(hrtimer, data->timer_interval);
1838
1839 return HRTIMER_RESTART;
1840 }
1841
1842 /* PMU sysfs attributes */
1843
1844 /*
1845 * There are no default events, but we need to create "events" group (with
1846 * empty attrs) before updating it with detected events.
1847 */
1848 static struct attribute *attrs_empty[] = {
1849 NULL,
1850 };
1851
1852 static struct attribute_group pmu_events_group = {
1853 .name = "events",
1854 .attrs = attrs_empty,
1855 };
1856
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)1857 static ssize_t cpumask_show(struct device *dev,
1858 struct device_attribute *attr, char *buf)
1859 {
1860 struct rapl_package *rp;
1861 cpumask_var_t cpu_mask;
1862 int cpu;
1863 int ret;
1864
1865 if (!alloc_cpumask_var(&cpu_mask, GFP_KERNEL))
1866 return -ENOMEM;
1867
1868 cpus_read_lock();
1869
1870 cpumask_clear(cpu_mask);
1871
1872 /* Choose a cpu for each RAPL Package */
1873 list_for_each_entry(rp, &rapl_packages, plist) {
1874 cpu = get_pmu_cpu(rp);
1875 if (cpu < nr_cpu_ids)
1876 cpumask_set_cpu(cpu, cpu_mask);
1877 }
1878 cpus_read_unlock();
1879
1880 ret = cpumap_print_to_pagebuf(true, buf, cpu_mask);
1881
1882 free_cpumask_var(cpu_mask);
1883
1884 return ret;
1885 }
1886
1887 static DEVICE_ATTR_RO(cpumask);
1888
1889 static struct attribute *pmu_cpumask_attrs[] = {
1890 &dev_attr_cpumask.attr,
1891 NULL
1892 };
1893
1894 static struct attribute_group pmu_cpumask_group = {
1895 .attrs = pmu_cpumask_attrs,
1896 };
1897
1898 PMU_FORMAT_ATTR(event, "config:0-7");
1899 static struct attribute *pmu_format_attr[] = {
1900 &format_attr_event.attr,
1901 NULL
1902 };
1903
1904 static struct attribute_group pmu_format_group = {
1905 .name = "format",
1906 .attrs = pmu_format_attr,
1907 };
1908
1909 static const struct attribute_group *pmu_attr_groups[] = {
1910 &pmu_events_group,
1911 &pmu_cpumask_group,
1912 &pmu_format_group,
1913 NULL
1914 };
1915
1916 #define RAPL_EVENT_ATTR_STR(_name, v, str) \
1917 static struct perf_pmu_events_attr event_attr_##v = { \
1918 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1919 .event_str = str, \
1920 }
1921
1922 RAPL_EVENT_ATTR_STR(energy-cores, rapl_cores, "event=0x01");
1923 RAPL_EVENT_ATTR_STR(energy-pkg, rapl_pkg, "event=0x02");
1924 RAPL_EVENT_ATTR_STR(energy-ram, rapl_ram, "event=0x03");
1925 RAPL_EVENT_ATTR_STR(energy-gpu, rapl_gpu, "event=0x04");
1926 RAPL_EVENT_ATTR_STR(energy-psys, rapl_psys, "event=0x05");
1927
1928 RAPL_EVENT_ATTR_STR(energy-cores.unit, rapl_unit_cores, "Joules");
1929 RAPL_EVENT_ATTR_STR(energy-pkg.unit, rapl_unit_pkg, "Joules");
1930 RAPL_EVENT_ATTR_STR(energy-ram.unit, rapl_unit_ram, "Joules");
1931 RAPL_EVENT_ATTR_STR(energy-gpu.unit, rapl_unit_gpu, "Joules");
1932 RAPL_EVENT_ATTR_STR(energy-psys.unit, rapl_unit_psys, "Joules");
1933
1934 RAPL_EVENT_ATTR_STR(energy-cores.scale, rapl_scale_cores, "2.3283064365386962890625e-10");
1935 RAPL_EVENT_ATTR_STR(energy-pkg.scale, rapl_scale_pkg, "2.3283064365386962890625e-10");
1936 RAPL_EVENT_ATTR_STR(energy-ram.scale, rapl_scale_ram, "2.3283064365386962890625e-10");
1937 RAPL_EVENT_ATTR_STR(energy-gpu.scale, rapl_scale_gpu, "2.3283064365386962890625e-10");
1938 RAPL_EVENT_ATTR_STR(energy-psys.scale, rapl_scale_psys, "2.3283064365386962890625e-10");
1939
1940 #define RAPL_EVENT_GROUP(_name, domain) \
1941 static struct attribute *pmu_attr_##_name[] = { \
1942 &event_attr_rapl_##_name.attr.attr, \
1943 &event_attr_rapl_unit_##_name.attr.attr, \
1944 &event_attr_rapl_scale_##_name.attr.attr, \
1945 NULL \
1946 }; \
1947 static umode_t is_visible_##_name(struct kobject *kobj, struct attribute *attr, int event) \
1948 { \
1949 return rapl_pmu.domain_map & BIT(domain) ? attr->mode : 0; \
1950 } \
1951 static struct attribute_group pmu_group_##_name = { \
1952 .name = "events", \
1953 .attrs = pmu_attr_##_name, \
1954 .is_visible = is_visible_##_name, \
1955 }
1956
1957 RAPL_EVENT_GROUP(cores, RAPL_DOMAIN_PP0);
1958 RAPL_EVENT_GROUP(pkg, RAPL_DOMAIN_PACKAGE);
1959 RAPL_EVENT_GROUP(ram, RAPL_DOMAIN_DRAM);
1960 RAPL_EVENT_GROUP(gpu, RAPL_DOMAIN_PP1);
1961 RAPL_EVENT_GROUP(psys, RAPL_DOMAIN_PLATFORM);
1962
1963 static const struct attribute_group *pmu_attr_update[] = {
1964 &pmu_group_cores,
1965 &pmu_group_pkg,
1966 &pmu_group_ram,
1967 &pmu_group_gpu,
1968 &pmu_group_psys,
1969 NULL
1970 };
1971
rapl_pmu_update(struct rapl_package * rp)1972 static int rapl_pmu_update(struct rapl_package *rp)
1973 {
1974 int ret = 0;
1975
1976 /* Return if PMU already covers all events supported by current RAPL Package */
1977 if (rapl_pmu.registered && !(rp->domain_map & (~rapl_pmu.domain_map)))
1978 goto end;
1979
1980 /* Unregister previous registered PMU */
1981 if (rapl_pmu.registered)
1982 perf_pmu_unregister(&rapl_pmu.pmu);
1983
1984 rapl_pmu.registered = false;
1985 rapl_pmu.domain_map |= rp->domain_map;
1986
1987 memset(&rapl_pmu.pmu, 0, sizeof(struct pmu));
1988 rapl_pmu.pmu.attr_groups = pmu_attr_groups;
1989 rapl_pmu.pmu.attr_update = pmu_attr_update;
1990 rapl_pmu.pmu.task_ctx_nr = perf_invalid_context;
1991 rapl_pmu.pmu.event_init = rapl_pmu_event_init;
1992 rapl_pmu.pmu.add = rapl_pmu_event_add;
1993 rapl_pmu.pmu.del = rapl_pmu_event_del;
1994 rapl_pmu.pmu.start = rapl_pmu_event_start;
1995 rapl_pmu.pmu.stop = rapl_pmu_event_stop;
1996 rapl_pmu.pmu.read = rapl_pmu_event_read;
1997 rapl_pmu.pmu.module = THIS_MODULE;
1998 rapl_pmu.pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE | PERF_PMU_CAP_NO_INTERRUPT;
1999 ret = perf_pmu_register(&rapl_pmu.pmu, "power", -1);
2000 if (ret) {
2001 pr_info("Failed to register PMU\n");
2002 return ret;
2003 }
2004
2005 rapl_pmu.registered = true;
2006 end:
2007 rp->has_pmu = true;
2008 return ret;
2009 }
2010
rapl_package_add_pmu(struct rapl_package * rp)2011 int rapl_package_add_pmu(struct rapl_package *rp)
2012 {
2013 struct rapl_package_pmu_data *data = &rp->pmu_data;
2014 int idx;
2015
2016 if (rp->has_pmu)
2017 return -EEXIST;
2018
2019 guard(cpus_read_lock)();
2020
2021 for (idx = 0; idx < rp->nr_domains; idx++) {
2022 struct rapl_domain *rd = &rp->domains[idx];
2023 int domain = rd->id;
2024 u64 val;
2025
2026 if (!test_bit(domain, &rp->domain_map))
2027 continue;
2028
2029 /*
2030 * The RAPL PMU granularity is 2^-32 Joules
2031 * data->scale[]: times of 2^-32 Joules for each ENERGY COUNTER increase
2032 */
2033 val = rd->energy_unit * (1ULL << 32);
2034 do_div(val, ENERGY_UNIT_SCALE * 1000000);
2035 data->scale[domain] = val;
2036
2037 if (!rapl_pmu.timer_ms) {
2038 struct rapl_primitive_info *rpi = get_rpi(rp, ENERGY_COUNTER);
2039
2040 /*
2041 * Calculate the timer rate:
2042 * Use reference of 200W for scaling the timeout to avoid counter
2043 * overflows.
2044 *
2045 * max_count = rpi->mask >> rpi->shift + 1
2046 * max_energy_pj = max_count * rd->energy_unit
2047 * max_time_sec = (max_energy_pj / 1000000000) / 200w
2048 *
2049 * rapl_pmu.timer_ms = max_time_sec * 1000 / 2
2050 */
2051 val = (rpi->mask >> rpi->shift) + 1;
2052 val *= rd->energy_unit;
2053 do_div(val, 1000000 * 200 * 2);
2054 rapl_pmu.timer_ms = val;
2055
2056 pr_debug("%llu ms overflow timer\n", rapl_pmu.timer_ms);
2057 }
2058
2059 pr_debug("Domain %s: hw unit %lld * 2^-32 Joules\n", rd->name, data->scale[domain]);
2060 }
2061
2062 /* Initialize per package PMU data */
2063 raw_spin_lock_init(&data->lock);
2064 INIT_LIST_HEAD(&data->active_list);
2065 data->timer_interval = ms_to_ktime(rapl_pmu.timer_ms);
2066 hrtimer_init(&data->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2067 data->hrtimer.function = rapl_hrtimer_handle;
2068
2069 return rapl_pmu_update(rp);
2070 }
2071 EXPORT_SYMBOL_GPL(rapl_package_add_pmu);
2072
rapl_package_remove_pmu(struct rapl_package * rp)2073 void rapl_package_remove_pmu(struct rapl_package *rp)
2074 {
2075 struct rapl_package *pos;
2076
2077 if (!rp->has_pmu)
2078 return;
2079
2080 guard(cpus_read_lock)();
2081
2082 list_for_each_entry(pos, &rapl_packages, plist) {
2083 /* PMU is still needed */
2084 if (pos->has_pmu && pos != rp)
2085 return;
2086 }
2087
2088 perf_pmu_unregister(&rapl_pmu.pmu);
2089 memset(&rapl_pmu, 0, sizeof(struct rapl_pmu));
2090 }
2091 EXPORT_SYMBOL_GPL(rapl_package_remove_pmu);
2092 #endif
2093
2094 /* called from CPU hotplug notifier, hotplug lock held */
rapl_remove_package_cpuslocked(struct rapl_package * rp)2095 void rapl_remove_package_cpuslocked(struct rapl_package *rp)
2096 {
2097 struct rapl_domain *rd, *rd_package = NULL;
2098
2099 package_power_limit_irq_restore(rp);
2100
2101 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
2102 int i;
2103
2104 for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
2105 rapl_write_pl_data(rd, i, PL_ENABLE, 0);
2106 rapl_write_pl_data(rd, i, PL_CLAMP, 0);
2107 }
2108
2109 if (rd->id == RAPL_DOMAIN_PACKAGE) {
2110 rd_package = rd;
2111 continue;
2112 }
2113 pr_debug("remove package, undo power limit on %s: %s\n",
2114 rp->name, rd->name);
2115 powercap_unregister_zone(rp->priv->control_type,
2116 &rd->power_zone);
2117 }
2118 /* do parent zone last */
2119 powercap_unregister_zone(rp->priv->control_type,
2120 &rd_package->power_zone);
2121 list_del(&rp->plist);
2122 kfree(rp);
2123 }
2124 EXPORT_SYMBOL_GPL(rapl_remove_package_cpuslocked);
2125
rapl_remove_package(struct rapl_package * rp)2126 void rapl_remove_package(struct rapl_package *rp)
2127 {
2128 guard(cpus_read_lock)();
2129 rapl_remove_package_cpuslocked(rp);
2130 }
2131 EXPORT_SYMBOL_GPL(rapl_remove_package);
2132
2133 /*
2134 * RAPL Package energy counter scope:
2135 * 1. AMD/HYGON platforms use per-PKG package energy counter
2136 * 2. For Intel platforms
2137 * 2.1 CLX-AP platform has per-DIE package energy counter
2138 * 2.2 Other platforms that uses MSR RAPL are single die systems so the
2139 * package energy counter can be considered as per-PKG/per-DIE,
2140 * here it is considered as per-DIE.
2141 * 2.3 New platforms that use TPMI RAPL doesn't care about the
2142 * scope because they are not MSR/CPU based.
2143 */
2144 #define rapl_msrs_are_pkg_scope() \
2145 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD || \
2146 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
2147
2148 /* caller to ensure CPU hotplug lock is held */
rapl_find_package_domain_cpuslocked(int id,struct rapl_if_priv * priv,bool id_is_cpu)2149 struct rapl_package *rapl_find_package_domain_cpuslocked(int id, struct rapl_if_priv *priv,
2150 bool id_is_cpu)
2151 {
2152 struct rapl_package *rp;
2153 int uid;
2154
2155 if (id_is_cpu) {
2156 uid = rapl_msrs_are_pkg_scope() ?
2157 topology_physical_package_id(id) : topology_logical_die_id(id);
2158 if (uid < 0) {
2159 pr_err("topology_logical_(package/die)_id() returned a negative value");
2160 return NULL;
2161 }
2162 }
2163 else
2164 uid = id;
2165
2166 list_for_each_entry(rp, &rapl_packages, plist) {
2167 if (rp->id == uid
2168 && rp->priv->control_type == priv->control_type)
2169 return rp;
2170 }
2171
2172 return NULL;
2173 }
2174 EXPORT_SYMBOL_GPL(rapl_find_package_domain_cpuslocked);
2175
rapl_find_package_domain(int id,struct rapl_if_priv * priv,bool id_is_cpu)2176 struct rapl_package *rapl_find_package_domain(int id, struct rapl_if_priv *priv, bool id_is_cpu)
2177 {
2178 guard(cpus_read_lock)();
2179 return rapl_find_package_domain_cpuslocked(id, priv, id_is_cpu);
2180 }
2181 EXPORT_SYMBOL_GPL(rapl_find_package_domain);
2182
2183 /* called from CPU hotplug notifier, hotplug lock held */
rapl_add_package_cpuslocked(int id,struct rapl_if_priv * priv,bool id_is_cpu)2184 struct rapl_package *rapl_add_package_cpuslocked(int id, struct rapl_if_priv *priv, bool id_is_cpu)
2185 {
2186 struct rapl_package *rp;
2187 int ret;
2188
2189 rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
2190 if (!rp)
2191 return ERR_PTR(-ENOMEM);
2192
2193 if (id_is_cpu) {
2194 rp->id = rapl_msrs_are_pkg_scope() ?
2195 topology_physical_package_id(id) : topology_logical_die_id(id);
2196 if ((int)(rp->id) < 0) {
2197 pr_err("topology_logical_(package/die)_id() returned a negative value");
2198 return ERR_PTR(-EINVAL);
2199 }
2200 rp->lead_cpu = id;
2201 if (!rapl_msrs_are_pkg_scope() && topology_max_dies_per_package() > 1)
2202 snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d-die-%d",
2203 topology_physical_package_id(id), topology_die_id(id));
2204 else
2205 snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d",
2206 topology_physical_package_id(id));
2207 } else {
2208 rp->id = id;
2209 rp->lead_cpu = -1;
2210 snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d", id);
2211 }
2212
2213 rp->priv = priv;
2214 ret = rapl_config(rp);
2215 if (ret)
2216 goto err_free_package;
2217
2218 /* check if the package contains valid domains */
2219 if (rapl_detect_domains(rp)) {
2220 ret = -ENODEV;
2221 goto err_free_package;
2222 }
2223 ret = rapl_package_register_powercap(rp);
2224 if (!ret) {
2225 INIT_LIST_HEAD(&rp->plist);
2226 list_add(&rp->plist, &rapl_packages);
2227 return rp;
2228 }
2229
2230 err_free_package:
2231 kfree(rp->domains);
2232 kfree(rp);
2233 return ERR_PTR(ret);
2234 }
2235 EXPORT_SYMBOL_GPL(rapl_add_package_cpuslocked);
2236
rapl_add_package(int id,struct rapl_if_priv * priv,bool id_is_cpu)2237 struct rapl_package *rapl_add_package(int id, struct rapl_if_priv *priv, bool id_is_cpu)
2238 {
2239 guard(cpus_read_lock)();
2240 return rapl_add_package_cpuslocked(id, priv, id_is_cpu);
2241 }
2242 EXPORT_SYMBOL_GPL(rapl_add_package);
2243
power_limit_state_save(void)2244 static void power_limit_state_save(void)
2245 {
2246 struct rapl_package *rp;
2247 struct rapl_domain *rd;
2248 int ret, i;
2249
2250 cpus_read_lock();
2251 list_for_each_entry(rp, &rapl_packages, plist) {
2252 if (!rp->power_zone)
2253 continue;
2254 rd = power_zone_to_rapl_domain(rp->power_zone);
2255 for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
2256 ret = rapl_read_pl_data(rd, i, PL_LIMIT, true,
2257 &rd->rpl[i].last_power_limit);
2258 if (ret)
2259 rd->rpl[i].last_power_limit = 0;
2260 }
2261 }
2262 cpus_read_unlock();
2263 }
2264
power_limit_state_restore(void)2265 static void power_limit_state_restore(void)
2266 {
2267 struct rapl_package *rp;
2268 struct rapl_domain *rd;
2269 int i;
2270
2271 cpus_read_lock();
2272 list_for_each_entry(rp, &rapl_packages, plist) {
2273 if (!rp->power_zone)
2274 continue;
2275 rd = power_zone_to_rapl_domain(rp->power_zone);
2276 for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++)
2277 if (rd->rpl[i].last_power_limit)
2278 rapl_write_pl_data(rd, i, PL_LIMIT,
2279 rd->rpl[i].last_power_limit);
2280 }
2281 cpus_read_unlock();
2282 }
2283
rapl_pm_callback(struct notifier_block * nb,unsigned long mode,void * _unused)2284 static int rapl_pm_callback(struct notifier_block *nb,
2285 unsigned long mode, void *_unused)
2286 {
2287 switch (mode) {
2288 case PM_SUSPEND_PREPARE:
2289 power_limit_state_save();
2290 break;
2291 case PM_POST_SUSPEND:
2292 power_limit_state_restore();
2293 break;
2294 }
2295 return NOTIFY_OK;
2296 }
2297
2298 static struct notifier_block rapl_pm_notifier = {
2299 .notifier_call = rapl_pm_callback,
2300 };
2301
2302 static struct platform_device *rapl_msr_platdev;
2303
rapl_init(void)2304 static int __init rapl_init(void)
2305 {
2306 const struct x86_cpu_id *id;
2307 int ret;
2308
2309 id = x86_match_cpu(rapl_ids);
2310 if (id) {
2311 defaults_msr = (struct rapl_defaults *)id->driver_data;
2312
2313 rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0);
2314 if (!rapl_msr_platdev)
2315 return -ENOMEM;
2316
2317 ret = platform_device_add(rapl_msr_platdev);
2318 if (ret) {
2319 platform_device_put(rapl_msr_platdev);
2320 return ret;
2321 }
2322 }
2323
2324 ret = register_pm_notifier(&rapl_pm_notifier);
2325 if (ret && rapl_msr_platdev) {
2326 platform_device_del(rapl_msr_platdev);
2327 platform_device_put(rapl_msr_platdev);
2328 }
2329
2330 return ret;
2331 }
2332
rapl_exit(void)2333 static void __exit rapl_exit(void)
2334 {
2335 platform_device_unregister(rapl_msr_platdev);
2336 unregister_pm_notifier(&rapl_pm_notifier);
2337 }
2338
2339 fs_initcall(rapl_init);
2340 module_exit(rapl_exit);
2341
2342 MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code");
2343 MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
2344 MODULE_LICENSE("GPL v2");
2345