1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/video/cyber2000fb.c
4 *
5 * Copyright (C) 1998-2002 Russell King
6 *
7 * MIPS and 50xx clock support
8 * Copyright (C) 2001 Bradley D. LaRonde <brad@ltc.com>
9 *
10 * 32 bit support, text color and panning fixes for modes != 8 bit
11 * Copyright (C) 2002 Denis Oliver Kropp <dok@directfb.org>
12 *
13 * Integraphics CyberPro 2000, 2010 and 5000 frame buffer device
14 *
15 * Based on cyberfb.c.
16 *
17 * Note that we now use the new fbcon fix, var and cmap scheme. We do
18 * still have to check which console is the currently displayed one
19 * however, especially for the colourmap stuff.
20 *
21 * We also use the new hotplug PCI subsystem. I'm not sure if there
22 * are any such cards, but I'm erring on the side of caution. We don't
23 * want to go pop just because someone does have one.
24 *
25 * Note that this doesn't work fully in the case of multiple CyberPro
26 * cards with grabbers. We currently can only attach to the first
27 * CyberPro card found.
28 *
29 * When we're in truecolour mode, we power down the LUT RAM as a power
30 * saving feature. Also, when we enter any of the powersaving modes
31 * (except soft blanking) we power down the RAMDACs. This saves about
32 * 1W, which is roughly 8% of the power consumption of a NetWinder
33 * (which, incidentally, is about the same saving as a 2.5in hard disk
34 * entering standby mode.)
35 */
36 #include <linux/aperture.h>
37 #include <linux/module.h>
38 #include <linux/kernel.h>
39 #include <linux/errno.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/slab.h>
43 #include <linux/delay.h>
44 #include <linux/fb.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/io.h>
48 #include <linux/i2c.h>
49 #include <linux/i2c-algo-bit.h>
50
51 #ifdef __arm__
52 #include <asm/mach-types.h>
53 #endif
54
55 #include "cyber2000fb.h"
56
57 struct cfb_info {
58 struct fb_info fb;
59 struct display_switch *dispsw;
60 unsigned char __iomem *region;
61 unsigned char __iomem *regs;
62 u_int id;
63 u_int irq;
64 int func_use_count;
65 u_long ref_ps;
66
67 /*
68 * Clock divisors
69 */
70 u_int divisors[4];
71
72 struct {
73 u8 red, green, blue;
74 } palette[NR_PALETTE];
75
76 u_char mem_ctl1;
77 u_char mem_ctl2;
78 u_char mclk_mult;
79 u_char mclk_div;
80 /*
81 * RAMDAC control register is both of these or'ed together
82 */
83 u_char ramdac_ctrl;
84 u_char ramdac_powerdown;
85
86 u32 pseudo_palette[16];
87
88 spinlock_t reg_b0_lock;
89
90 #ifdef CONFIG_FB_CYBER2000_DDC
91 bool ddc_registered;
92 struct i2c_adapter ddc_adapter;
93 struct i2c_algo_bit_data ddc_algo;
94 #endif
95
96 #ifdef CONFIG_FB_CYBER2000_I2C
97 struct i2c_adapter i2c_adapter;
98 struct i2c_algo_bit_data i2c_algo;
99 #endif
100 };
101
102 static char *default_font = "Acorn8x8";
103 module_param(default_font, charp, 0);
104 MODULE_PARM_DESC(default_font, "Default font name");
105
106 /*
107 * Our access methods.
108 */
109 #define cyber2000fb_writel(val, reg, cfb) writel(val, (cfb)->regs + (reg))
110 #define cyber2000fb_writew(val, reg, cfb) writew(val, (cfb)->regs + (reg))
111 #define cyber2000fb_writeb(val, reg, cfb) writeb(val, (cfb)->regs + (reg))
112
113 #define cyber2000fb_readb(reg, cfb) readb((cfb)->regs + (reg))
114
115 static inline void
cyber2000_crtcw(unsigned int reg,unsigned int val,struct cfb_info * cfb)116 cyber2000_crtcw(unsigned int reg, unsigned int val, struct cfb_info *cfb)
117 {
118 cyber2000fb_writew((reg & 255) | val << 8, 0x3d4, cfb);
119 }
120
121 static inline void
cyber2000_grphw(unsigned int reg,unsigned int val,struct cfb_info * cfb)122 cyber2000_grphw(unsigned int reg, unsigned int val, struct cfb_info *cfb)
123 {
124 cyber2000fb_writew((reg & 255) | val << 8, 0x3ce, cfb);
125 }
126
127 static inline unsigned int
cyber2000_grphr(unsigned int reg,struct cfb_info * cfb)128 cyber2000_grphr(unsigned int reg, struct cfb_info *cfb)
129 {
130 cyber2000fb_writeb(reg, 0x3ce, cfb);
131 return cyber2000fb_readb(0x3cf, cfb);
132 }
133
134 static inline void
cyber2000_attrw(unsigned int reg,unsigned int val,struct cfb_info * cfb)135 cyber2000_attrw(unsigned int reg, unsigned int val, struct cfb_info *cfb)
136 {
137 cyber2000fb_readb(0x3da, cfb);
138 cyber2000fb_writeb(reg, 0x3c0, cfb);
139 cyber2000fb_readb(0x3c1, cfb);
140 cyber2000fb_writeb(val, 0x3c0, cfb);
141 }
142
143 static inline void
cyber2000_seqw(unsigned int reg,unsigned int val,struct cfb_info * cfb)144 cyber2000_seqw(unsigned int reg, unsigned int val, struct cfb_info *cfb)
145 {
146 cyber2000fb_writew((reg & 255) | val << 8, 0x3c4, cfb);
147 }
148
149 /* -------------------- Hardware specific routines ------------------------- */
150
151 /*
152 * Hardware Cyber2000 Acceleration
153 */
154 static void
cyber2000fb_fillrect(struct fb_info * info,const struct fb_fillrect * rect)155 cyber2000fb_fillrect(struct fb_info *info, const struct fb_fillrect *rect)
156 {
157 struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
158 unsigned long dst, col;
159
160 if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT)) {
161 cfb_fillrect(info, rect);
162 return;
163 }
164
165 cyber2000fb_writeb(0, CO_REG_CONTROL, cfb);
166 cyber2000fb_writew(rect->width - 1, CO_REG_PIXWIDTH, cfb);
167 cyber2000fb_writew(rect->height - 1, CO_REG_PIXHEIGHT, cfb);
168
169 col = rect->color;
170 if (cfb->fb.var.bits_per_pixel > 8)
171 col = ((u32 *)cfb->fb.pseudo_palette)[col];
172 cyber2000fb_writel(col, CO_REG_FGCOLOUR, cfb);
173
174 dst = rect->dx + rect->dy * cfb->fb.var.xres_virtual;
175 if (cfb->fb.var.bits_per_pixel == 24) {
176 cyber2000fb_writeb(dst, CO_REG_X_PHASE, cfb);
177 dst *= 3;
178 }
179
180 cyber2000fb_writel(dst, CO_REG_DEST_PTR, cfb);
181 cyber2000fb_writeb(CO_FG_MIX_SRC, CO_REG_FGMIX, cfb);
182 cyber2000fb_writew(CO_CMD_L_PATTERN_FGCOL, CO_REG_CMD_L, cfb);
183 cyber2000fb_writew(CO_CMD_H_BLITTER, CO_REG_CMD_H, cfb);
184 }
185
186 static void
cyber2000fb_copyarea(struct fb_info * info,const struct fb_copyarea * region)187 cyber2000fb_copyarea(struct fb_info *info, const struct fb_copyarea *region)
188 {
189 struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
190 unsigned int cmd = CO_CMD_L_PATTERN_FGCOL;
191 unsigned long src, dst;
192
193 if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT)) {
194 cfb_copyarea(info, region);
195 return;
196 }
197
198 cyber2000fb_writeb(0, CO_REG_CONTROL, cfb);
199 cyber2000fb_writew(region->width - 1, CO_REG_PIXWIDTH, cfb);
200 cyber2000fb_writew(region->height - 1, CO_REG_PIXHEIGHT, cfb);
201
202 src = region->sx + region->sy * cfb->fb.var.xres_virtual;
203 dst = region->dx + region->dy * cfb->fb.var.xres_virtual;
204
205 if (region->sx < region->dx) {
206 src += region->width - 1;
207 dst += region->width - 1;
208 cmd |= CO_CMD_L_INC_LEFT;
209 }
210
211 if (region->sy < region->dy) {
212 src += (region->height - 1) * cfb->fb.var.xres_virtual;
213 dst += (region->height - 1) * cfb->fb.var.xres_virtual;
214 cmd |= CO_CMD_L_INC_UP;
215 }
216
217 if (cfb->fb.var.bits_per_pixel == 24) {
218 cyber2000fb_writeb(dst, CO_REG_X_PHASE, cfb);
219 src *= 3;
220 dst *= 3;
221 }
222 cyber2000fb_writel(src, CO_REG_SRC1_PTR, cfb);
223 cyber2000fb_writel(dst, CO_REG_DEST_PTR, cfb);
224 cyber2000fb_writew(CO_FG_MIX_SRC, CO_REG_FGMIX, cfb);
225 cyber2000fb_writew(cmd, CO_REG_CMD_L, cfb);
226 cyber2000fb_writew(CO_CMD_H_FGSRCMAP | CO_CMD_H_BLITTER,
227 CO_REG_CMD_H, cfb);
228 }
229
cyber2000fb_sync(struct fb_info * info)230 static int cyber2000fb_sync(struct fb_info *info)
231 {
232 struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
233 int count = 100000;
234
235 if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT))
236 return 0;
237
238 while (cyber2000fb_readb(CO_REG_CONTROL, cfb) & CO_CTRL_BUSY) {
239 if (!count--) {
240 debug_printf("accel_wait timed out\n");
241 cyber2000fb_writeb(0, CO_REG_CONTROL, cfb);
242 break;
243 }
244 udelay(1);
245 }
246 return 0;
247 }
248
249 /*
250 * ===========================================================================
251 */
252
convert_bitfield(u_int val,struct fb_bitfield * bf)253 static inline u32 convert_bitfield(u_int val, struct fb_bitfield *bf)
254 {
255 u_int mask = (1 << bf->length) - 1;
256
257 return (val >> (16 - bf->length) & mask) << bf->offset;
258 }
259
260 /*
261 * Set a single color register. Return != 0 for invalid regno.
262 */
263 static int
cyber2000fb_setcolreg(u_int regno,u_int red,u_int green,u_int blue,u_int transp,struct fb_info * info)264 cyber2000fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
265 u_int transp, struct fb_info *info)
266 {
267 struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
268 struct fb_var_screeninfo *var = &cfb->fb.var;
269 u32 pseudo_val;
270 int ret = 1;
271
272 switch (cfb->fb.fix.visual) {
273 default:
274 return 1;
275
276 /*
277 * Pseudocolour:
278 * 8 8
279 * pixel --/--+--/--> red lut --> red dac
280 * | 8
281 * +--/--> green lut --> green dac
282 * | 8
283 * +--/--> blue lut --> blue dac
284 */
285 case FB_VISUAL_PSEUDOCOLOR:
286 if (regno >= NR_PALETTE)
287 return 1;
288
289 red >>= 8;
290 green >>= 8;
291 blue >>= 8;
292
293 cfb->palette[regno].red = red;
294 cfb->palette[regno].green = green;
295 cfb->palette[regno].blue = blue;
296
297 cyber2000fb_writeb(regno, 0x3c8, cfb);
298 cyber2000fb_writeb(red, 0x3c9, cfb);
299 cyber2000fb_writeb(green, 0x3c9, cfb);
300 cyber2000fb_writeb(blue, 0x3c9, cfb);
301 return 0;
302
303 /*
304 * Direct colour:
305 * n rl
306 * pixel --/--+--/--> red lut --> red dac
307 * | gl
308 * +--/--> green lut --> green dac
309 * | bl
310 * +--/--> blue lut --> blue dac
311 * n = bpp, rl = red length, gl = green length, bl = blue length
312 */
313 case FB_VISUAL_DIRECTCOLOR:
314 red >>= 8;
315 green >>= 8;
316 blue >>= 8;
317
318 if (var->green.length == 6 && regno < 64) {
319 cfb->palette[regno << 2].green = green;
320
321 /*
322 * The 6 bits of the green component are applied
323 * to the high 6 bits of the LUT.
324 */
325 cyber2000fb_writeb(regno << 2, 0x3c8, cfb);
326 cyber2000fb_writeb(cfb->palette[regno >> 1].red,
327 0x3c9, cfb);
328 cyber2000fb_writeb(green, 0x3c9, cfb);
329 cyber2000fb_writeb(cfb->palette[regno >> 1].blue,
330 0x3c9, cfb);
331
332 green = cfb->palette[regno << 3].green;
333
334 ret = 0;
335 }
336
337 if (var->green.length >= 5 && regno < 32) {
338 cfb->palette[regno << 3].red = red;
339 cfb->palette[regno << 3].green = green;
340 cfb->palette[regno << 3].blue = blue;
341
342 /*
343 * The 5 bits of each colour component are
344 * applied to the high 5 bits of the LUT.
345 */
346 cyber2000fb_writeb(regno << 3, 0x3c8, cfb);
347 cyber2000fb_writeb(red, 0x3c9, cfb);
348 cyber2000fb_writeb(green, 0x3c9, cfb);
349 cyber2000fb_writeb(blue, 0x3c9, cfb);
350 ret = 0;
351 }
352
353 if (var->green.length == 4 && regno < 16) {
354 cfb->palette[regno << 4].red = red;
355 cfb->palette[regno << 4].green = green;
356 cfb->palette[regno << 4].blue = blue;
357
358 /*
359 * The 5 bits of each colour component are
360 * applied to the high 5 bits of the LUT.
361 */
362 cyber2000fb_writeb(regno << 4, 0x3c8, cfb);
363 cyber2000fb_writeb(red, 0x3c9, cfb);
364 cyber2000fb_writeb(green, 0x3c9, cfb);
365 cyber2000fb_writeb(blue, 0x3c9, cfb);
366 ret = 0;
367 }
368
369 /*
370 * Since this is only used for the first 16 colours, we
371 * don't have to care about overflowing for regno >= 32
372 */
373 pseudo_val = regno << var->red.offset |
374 regno << var->green.offset |
375 regno << var->blue.offset;
376 break;
377
378 /*
379 * True colour:
380 * n rl
381 * pixel --/--+--/--> red dac
382 * | gl
383 * +--/--> green dac
384 * | bl
385 * +--/--> blue dac
386 * n = bpp, rl = red length, gl = green length, bl = blue length
387 */
388 case FB_VISUAL_TRUECOLOR:
389 pseudo_val = convert_bitfield(transp ^ 0xffff, &var->transp);
390 pseudo_val |= convert_bitfield(red, &var->red);
391 pseudo_val |= convert_bitfield(green, &var->green);
392 pseudo_val |= convert_bitfield(blue, &var->blue);
393 ret = 0;
394 break;
395 }
396
397 /*
398 * Now set our pseudo palette for the CFB16/24/32 drivers.
399 */
400 if (regno < 16)
401 ((u32 *)cfb->fb.pseudo_palette)[regno] = pseudo_val;
402
403 return ret;
404 }
405
406 struct par_info {
407 /*
408 * Hardware
409 */
410 u_char clock_mult;
411 u_char clock_div;
412 u_char extseqmisc;
413 u_char co_pixfmt;
414 u_char crtc_ofl;
415 u_char crtc[19];
416 u_int width;
417 u_int pitch;
418 u_int fetch;
419
420 /*
421 * Other
422 */
423 u_char ramdac;
424 };
425
426 static const u_char crtc_idx[] = {
427 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
428 0x08, 0x09,
429 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18
430 };
431
cyber2000fb_write_ramdac_ctrl(struct cfb_info * cfb)432 static void cyber2000fb_write_ramdac_ctrl(struct cfb_info *cfb)
433 {
434 unsigned int i;
435 unsigned int val = cfb->ramdac_ctrl | cfb->ramdac_powerdown;
436
437 cyber2000fb_writeb(0x56, 0x3ce, cfb);
438 i = cyber2000fb_readb(0x3cf, cfb);
439 cyber2000fb_writeb(i | 4, 0x3cf, cfb);
440 cyber2000fb_writeb(val, 0x3c6, cfb);
441 cyber2000fb_writeb(i, 0x3cf, cfb);
442 /* prevent card lock-up observed on x86 with CyberPro 2000 */
443 cyber2000fb_readb(0x3cf, cfb);
444 }
445
cyber2000fb_set_timing(struct cfb_info * cfb,struct par_info * hw)446 static void cyber2000fb_set_timing(struct cfb_info *cfb, struct par_info *hw)
447 {
448 u_int i;
449
450 /*
451 * Blank palette
452 */
453 for (i = 0; i < NR_PALETTE; i++) {
454 cyber2000fb_writeb(i, 0x3c8, cfb);
455 cyber2000fb_writeb(0, 0x3c9, cfb);
456 cyber2000fb_writeb(0, 0x3c9, cfb);
457 cyber2000fb_writeb(0, 0x3c9, cfb);
458 }
459
460 cyber2000fb_writeb(0xef, 0x3c2, cfb);
461 cyber2000_crtcw(0x11, 0x0b, cfb);
462 cyber2000_attrw(0x11, 0x00, cfb);
463
464 cyber2000_seqw(0x00, 0x01, cfb);
465 cyber2000_seqw(0x01, 0x01, cfb);
466 cyber2000_seqw(0x02, 0x0f, cfb);
467 cyber2000_seqw(0x03, 0x00, cfb);
468 cyber2000_seqw(0x04, 0x0e, cfb);
469 cyber2000_seqw(0x00, 0x03, cfb);
470
471 for (i = 0; i < sizeof(crtc_idx); i++)
472 cyber2000_crtcw(crtc_idx[i], hw->crtc[i], cfb);
473
474 for (i = 0x0a; i < 0x10; i++)
475 cyber2000_crtcw(i, 0, cfb);
476
477 cyber2000_grphw(EXT_CRT_VRTOFL, hw->crtc_ofl, cfb);
478 cyber2000_grphw(0x00, 0x00, cfb);
479 cyber2000_grphw(0x01, 0x00, cfb);
480 cyber2000_grphw(0x02, 0x00, cfb);
481 cyber2000_grphw(0x03, 0x00, cfb);
482 cyber2000_grphw(0x04, 0x00, cfb);
483 cyber2000_grphw(0x05, 0x60, cfb);
484 cyber2000_grphw(0x06, 0x05, cfb);
485 cyber2000_grphw(0x07, 0x0f, cfb);
486 cyber2000_grphw(0x08, 0xff, cfb);
487
488 /* Attribute controller registers */
489 for (i = 0; i < 16; i++)
490 cyber2000_attrw(i, i, cfb);
491
492 cyber2000_attrw(0x10, 0x01, cfb);
493 cyber2000_attrw(0x11, 0x00, cfb);
494 cyber2000_attrw(0x12, 0x0f, cfb);
495 cyber2000_attrw(0x13, 0x00, cfb);
496 cyber2000_attrw(0x14, 0x00, cfb);
497
498 /* PLL registers */
499 spin_lock(&cfb->reg_b0_lock);
500 cyber2000_grphw(EXT_DCLK_MULT, hw->clock_mult, cfb);
501 cyber2000_grphw(EXT_DCLK_DIV, hw->clock_div, cfb);
502 cyber2000_grphw(EXT_MCLK_MULT, cfb->mclk_mult, cfb);
503 cyber2000_grphw(EXT_MCLK_DIV, cfb->mclk_div, cfb);
504 cyber2000_grphw(0x90, 0x01, cfb);
505 cyber2000_grphw(0xb9, 0x80, cfb);
506 cyber2000_grphw(0xb9, 0x00, cfb);
507 spin_unlock(&cfb->reg_b0_lock);
508
509 cfb->ramdac_ctrl = hw->ramdac;
510 cyber2000fb_write_ramdac_ctrl(cfb);
511
512 cyber2000fb_writeb(0x20, 0x3c0, cfb);
513 cyber2000fb_writeb(0xff, 0x3c6, cfb);
514
515 cyber2000_grphw(0x14, hw->fetch, cfb);
516 cyber2000_grphw(0x15, ((hw->fetch >> 8) & 0x03) |
517 ((hw->pitch >> 4) & 0x30), cfb);
518 cyber2000_grphw(EXT_SEQ_MISC, hw->extseqmisc, cfb);
519
520 /*
521 * Set up accelerator registers
522 */
523 cyber2000fb_writew(hw->width, CO_REG_SRC_WIDTH, cfb);
524 cyber2000fb_writew(hw->width, CO_REG_DEST_WIDTH, cfb);
525 cyber2000fb_writeb(hw->co_pixfmt, CO_REG_PIXFMT, cfb);
526 }
527
528 static inline int
cyber2000fb_update_start(struct cfb_info * cfb,struct fb_var_screeninfo * var)529 cyber2000fb_update_start(struct cfb_info *cfb, struct fb_var_screeninfo *var)
530 {
531 u_int base = var->yoffset * var->xres_virtual + var->xoffset;
532
533 base *= var->bits_per_pixel;
534
535 /*
536 * Convert to bytes and shift two extra bits because DAC
537 * can only start on 4 byte aligned data.
538 */
539 base >>= 5;
540
541 if (base >= 1 << 20)
542 return -EINVAL;
543
544 cyber2000_grphw(0x10, base >> 16 | 0x10, cfb);
545 cyber2000_crtcw(0x0c, base >> 8, cfb);
546 cyber2000_crtcw(0x0d, base, cfb);
547
548 return 0;
549 }
550
551 static int
cyber2000fb_decode_crtc(struct par_info * hw,struct cfb_info * cfb,struct fb_var_screeninfo * var)552 cyber2000fb_decode_crtc(struct par_info *hw, struct cfb_info *cfb,
553 struct fb_var_screeninfo *var)
554 {
555 u_int Htotal, Hblankend, Hsyncend;
556 u_int Vtotal, Vdispend, Vblankstart, Vblankend, Vsyncstart, Vsyncend;
557 #define ENCODE_BIT(v, b1, m, b2) ((((v) >> (b1)) & (m)) << (b2))
558
559 hw->crtc[13] = hw->pitch;
560 hw->crtc[17] = 0xe3;
561 hw->crtc[14] = 0;
562 hw->crtc[8] = 0;
563
564 Htotal = var->xres + var->right_margin +
565 var->hsync_len + var->left_margin;
566
567 if (Htotal > 2080)
568 return -EINVAL;
569
570 hw->crtc[0] = (Htotal >> 3) - 5;
571 hw->crtc[1] = (var->xres >> 3) - 1;
572 hw->crtc[2] = var->xres >> 3;
573 hw->crtc[4] = (var->xres + var->right_margin) >> 3;
574
575 Hblankend = (Htotal - 4 * 8) >> 3;
576
577 hw->crtc[3] = ENCODE_BIT(Hblankend, 0, 0x1f, 0) |
578 ENCODE_BIT(1, 0, 0x01, 7);
579
580 Hsyncend = (var->xres + var->right_margin + var->hsync_len) >> 3;
581
582 hw->crtc[5] = ENCODE_BIT(Hsyncend, 0, 0x1f, 0) |
583 ENCODE_BIT(Hblankend, 5, 0x01, 7);
584
585 Vdispend = var->yres - 1;
586 Vsyncstart = var->yres + var->lower_margin;
587 Vsyncend = var->yres + var->lower_margin + var->vsync_len;
588 Vtotal = var->yres + var->lower_margin + var->vsync_len +
589 var->upper_margin - 2;
590
591 if (Vtotal > 2047)
592 return -EINVAL;
593
594 Vblankstart = var->yres + 6;
595 Vblankend = Vtotal - 10;
596
597 hw->crtc[6] = Vtotal;
598 hw->crtc[7] = ENCODE_BIT(Vtotal, 8, 0x01, 0) |
599 ENCODE_BIT(Vdispend, 8, 0x01, 1) |
600 ENCODE_BIT(Vsyncstart, 8, 0x01, 2) |
601 ENCODE_BIT(Vblankstart, 8, 0x01, 3) |
602 ENCODE_BIT(1, 0, 0x01, 4) |
603 ENCODE_BIT(Vtotal, 9, 0x01, 5) |
604 ENCODE_BIT(Vdispend, 9, 0x01, 6) |
605 ENCODE_BIT(Vsyncstart, 9, 0x01, 7);
606 hw->crtc[9] = ENCODE_BIT(0, 0, 0x1f, 0) |
607 ENCODE_BIT(Vblankstart, 9, 0x01, 5) |
608 ENCODE_BIT(1, 0, 0x01, 6);
609 hw->crtc[10] = Vsyncstart;
610 hw->crtc[11] = ENCODE_BIT(Vsyncend, 0, 0x0f, 0) |
611 ENCODE_BIT(1, 0, 0x01, 7);
612 hw->crtc[12] = Vdispend;
613 hw->crtc[15] = Vblankstart;
614 hw->crtc[16] = Vblankend;
615 hw->crtc[18] = 0xff;
616
617 /*
618 * overflow - graphics reg 0x11
619 * 0=VTOTAL:10 1=VDEND:10 2=VRSTART:10 3=VBSTART:10
620 * 4=LINECOMP:10 5-IVIDEO 6=FIXCNT
621 */
622 hw->crtc_ofl =
623 ENCODE_BIT(Vtotal, 10, 0x01, 0) |
624 ENCODE_BIT(Vdispend, 10, 0x01, 1) |
625 ENCODE_BIT(Vsyncstart, 10, 0x01, 2) |
626 ENCODE_BIT(Vblankstart, 10, 0x01, 3) |
627 EXT_CRT_VRTOFL_LINECOMP10;
628
629 /* woody: set the interlaced bit... */
630 /* FIXME: what about doublescan? */
631 if ((var->vmode & FB_VMODE_MASK) == FB_VMODE_INTERLACED)
632 hw->crtc_ofl |= EXT_CRT_VRTOFL_INTERLACE;
633
634 return 0;
635 }
636
637 /*
638 * The following was discovered by a good monitor, bit twiddling, theorising
639 * and but mostly luck. Strangely, it looks like everyone elses' PLL!
640 *
641 * Clock registers:
642 * fclock = fpll / div2
643 * fpll = fref * mult / div1
644 * where:
645 * fref = 14.318MHz (69842ps)
646 * mult = reg0xb0.7:0
647 * div1 = (reg0xb1.5:0 + 1)
648 * div2 = 2^(reg0xb1.7:6)
649 * fpll should be between 115 and 260 MHz
650 * (8696ps and 3846ps)
651 */
652 static int
cyber2000fb_decode_clock(struct par_info * hw,struct cfb_info * cfb,struct fb_var_screeninfo * var)653 cyber2000fb_decode_clock(struct par_info *hw, struct cfb_info *cfb,
654 struct fb_var_screeninfo *var)
655 {
656 u_long pll_ps = var->pixclock;
657 const u_long ref_ps = cfb->ref_ps;
658 u_int div2, t_div1, best_div1, best_mult;
659 int best_diff;
660 int vco;
661
662 /*
663 * Step 1:
664 * find div2 such that 115MHz < fpll < 260MHz
665 * and 0 <= div2 < 4
666 */
667 for (div2 = 0; div2 < 4; div2++) {
668 u_long new_pll;
669
670 new_pll = pll_ps / cfb->divisors[div2];
671 if (8696 > new_pll && new_pll > 3846) {
672 pll_ps = new_pll;
673 break;
674 }
675 }
676
677 if (div2 == 4)
678 return -EINVAL;
679
680 /*
681 * Step 2:
682 * Given pll_ps and ref_ps, find:
683 * pll_ps * 0.995 < pll_ps_calc < pll_ps * 1.005
684 * where { 1 < best_div1 < 32, 1 < best_mult < 256 }
685 * pll_ps_calc = best_div1 / (ref_ps * best_mult)
686 */
687 best_diff = 0x7fffffff;
688 best_mult = 2;
689 best_div1 = 32;
690 for (t_div1 = 2; t_div1 < 32; t_div1 += 1) {
691 u_int rr, t_mult, t_pll_ps;
692 int diff;
693
694 /*
695 * Find the multiplier for this divisor
696 */
697 rr = ref_ps * t_div1;
698 t_mult = (rr + pll_ps / 2) / pll_ps;
699
700 /*
701 * Is the multiplier within the correct range?
702 */
703 if (t_mult > 256 || t_mult < 2)
704 continue;
705
706 /*
707 * Calculate the actual clock period from this multiplier
708 * and divisor, and estimate the error.
709 */
710 t_pll_ps = (rr + t_mult / 2) / t_mult;
711 diff = pll_ps - t_pll_ps;
712 if (diff < 0)
713 diff = -diff;
714
715 if (diff < best_diff) {
716 best_diff = diff;
717 best_mult = t_mult;
718 best_div1 = t_div1;
719 }
720
721 /*
722 * If we hit an exact value, there is no point in continuing.
723 */
724 if (diff == 0)
725 break;
726 }
727
728 /*
729 * Step 3:
730 * combine values
731 */
732 hw->clock_mult = best_mult - 1;
733 hw->clock_div = div2 << 6 | (best_div1 - 1);
734
735 vco = ref_ps * best_div1 / best_mult;
736 if ((ref_ps == 40690) && (vco < 5556))
737 /* Set VFSEL when VCO > 180MHz (5.556 ps). */
738 hw->clock_div |= EXT_DCLK_DIV_VFSEL;
739
740 return 0;
741 }
742
743 /*
744 * Set the User Defined Part of the Display
745 */
746 static int
cyber2000fb_check_var(struct fb_var_screeninfo * var,struct fb_info * info)747 cyber2000fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
748 {
749 struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
750 struct par_info hw;
751 unsigned int mem;
752 int err;
753
754 var->transp.msb_right = 0;
755 var->red.msb_right = 0;
756 var->green.msb_right = 0;
757 var->blue.msb_right = 0;
758 var->transp.offset = 0;
759 var->transp.length = 0;
760
761 switch (var->bits_per_pixel) {
762 case 8: /* PSEUDOCOLOUR, 256 */
763 var->red.offset = 0;
764 var->red.length = 8;
765 var->green.offset = 0;
766 var->green.length = 8;
767 var->blue.offset = 0;
768 var->blue.length = 8;
769 break;
770
771 case 16:/* DIRECTCOLOUR, 64k or 32k */
772 switch (var->green.length) {
773 case 6: /* RGB565, 64k */
774 var->red.offset = 11;
775 var->red.length = 5;
776 var->green.offset = 5;
777 var->green.length = 6;
778 var->blue.offset = 0;
779 var->blue.length = 5;
780 break;
781
782 default:
783 case 5: /* RGB555, 32k */
784 var->red.offset = 10;
785 var->red.length = 5;
786 var->green.offset = 5;
787 var->green.length = 5;
788 var->blue.offset = 0;
789 var->blue.length = 5;
790 break;
791
792 case 4: /* RGB444, 4k + transparency? */
793 var->transp.offset = 12;
794 var->transp.length = 4;
795 var->red.offset = 8;
796 var->red.length = 4;
797 var->green.offset = 4;
798 var->green.length = 4;
799 var->blue.offset = 0;
800 var->blue.length = 4;
801 break;
802 }
803 break;
804
805 case 24:/* TRUECOLOUR, 16m */
806 var->red.offset = 16;
807 var->red.length = 8;
808 var->green.offset = 8;
809 var->green.length = 8;
810 var->blue.offset = 0;
811 var->blue.length = 8;
812 break;
813
814 case 32:/* TRUECOLOUR, 16m */
815 var->transp.offset = 24;
816 var->transp.length = 8;
817 var->red.offset = 16;
818 var->red.length = 8;
819 var->green.offset = 8;
820 var->green.length = 8;
821 var->blue.offset = 0;
822 var->blue.length = 8;
823 break;
824
825 default:
826 return -EINVAL;
827 }
828
829 mem = var->xres_virtual * var->yres_virtual * (var->bits_per_pixel / 8);
830 if (mem > cfb->fb.fix.smem_len)
831 var->yres_virtual = cfb->fb.fix.smem_len * 8 /
832 (var->bits_per_pixel * var->xres_virtual);
833
834 if (var->yres > var->yres_virtual)
835 var->yres = var->yres_virtual;
836 if (var->xres > var->xres_virtual)
837 var->xres = var->xres_virtual;
838
839 err = cyber2000fb_decode_clock(&hw, cfb, var);
840 if (err)
841 return err;
842
843 err = cyber2000fb_decode_crtc(&hw, cfb, var);
844 if (err)
845 return err;
846
847 return 0;
848 }
849
cyber2000fb_set_par(struct fb_info * info)850 static int cyber2000fb_set_par(struct fb_info *info)
851 {
852 struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
853 struct fb_var_screeninfo *var = &cfb->fb.var;
854 struct par_info hw;
855 unsigned int mem;
856
857 hw.width = var->xres_virtual;
858 hw.ramdac = RAMDAC_VREFEN | RAMDAC_DAC8BIT;
859
860 switch (var->bits_per_pixel) {
861 case 8:
862 hw.co_pixfmt = CO_PIXFMT_8BPP;
863 hw.pitch = hw.width >> 3;
864 hw.extseqmisc = EXT_SEQ_MISC_8;
865 break;
866
867 case 16:
868 hw.co_pixfmt = CO_PIXFMT_16BPP;
869 hw.pitch = hw.width >> 2;
870
871 switch (var->green.length) {
872 case 6: /* RGB565, 64k */
873 hw.extseqmisc = EXT_SEQ_MISC_16_RGB565;
874 break;
875 case 5: /* RGB555, 32k */
876 hw.extseqmisc = EXT_SEQ_MISC_16_RGB555;
877 break;
878 case 4: /* RGB444, 4k + transparency? */
879 hw.extseqmisc = EXT_SEQ_MISC_16_RGB444;
880 break;
881 default:
882 BUG();
883 }
884 break;
885
886 case 24:/* TRUECOLOUR, 16m */
887 hw.co_pixfmt = CO_PIXFMT_24BPP;
888 hw.width *= 3;
889 hw.pitch = hw.width >> 3;
890 hw.ramdac |= (RAMDAC_BYPASS | RAMDAC_RAMPWRDN);
891 hw.extseqmisc = EXT_SEQ_MISC_24_RGB888;
892 break;
893
894 case 32:/* TRUECOLOUR, 16m */
895 hw.co_pixfmt = CO_PIXFMT_32BPP;
896 hw.pitch = hw.width >> 1;
897 hw.ramdac |= (RAMDAC_BYPASS | RAMDAC_RAMPWRDN);
898 hw.extseqmisc = EXT_SEQ_MISC_32;
899 break;
900
901 default:
902 BUG();
903 }
904
905 /*
906 * Sigh, this is absolutely disgusting, but caused by
907 * the way the fbcon developers want to separate out
908 * the "checking" and the "setting" of the video mode.
909 *
910 * If the mode is not suitable for the hardware here,
911 * we can't prevent it being set by returning an error.
912 *
913 * In theory, since NetWinders contain just one VGA card,
914 * we should never end up hitting this problem.
915 */
916 BUG_ON(cyber2000fb_decode_clock(&hw, cfb, var) != 0);
917 BUG_ON(cyber2000fb_decode_crtc(&hw, cfb, var) != 0);
918
919 hw.width -= 1;
920 hw.fetch = hw.pitch;
921 if (!(cfb->mem_ctl2 & MEM_CTL2_64BIT))
922 hw.fetch <<= 1;
923 hw.fetch += 1;
924
925 cfb->fb.fix.line_length = var->xres_virtual * var->bits_per_pixel / 8;
926
927 /*
928 * Same here - if the size of the video mode exceeds the
929 * available RAM, we can't prevent this mode being set.
930 *
931 * In theory, since NetWinders contain just one VGA card,
932 * we should never end up hitting this problem.
933 */
934 mem = cfb->fb.fix.line_length * var->yres_virtual;
935 BUG_ON(mem > cfb->fb.fix.smem_len);
936
937 /*
938 * 8bpp displays are always pseudo colour. 16bpp and above
939 * are direct colour or true colour, depending on whether
940 * the RAMDAC palettes are bypassed. (Direct colour has
941 * palettes, true colour does not.)
942 */
943 if (var->bits_per_pixel == 8)
944 cfb->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
945 else if (hw.ramdac & RAMDAC_BYPASS)
946 cfb->fb.fix.visual = FB_VISUAL_TRUECOLOR;
947 else
948 cfb->fb.fix.visual = FB_VISUAL_DIRECTCOLOR;
949
950 cyber2000fb_set_timing(cfb, &hw);
951 cyber2000fb_update_start(cfb, var);
952
953 return 0;
954 }
955
956 /*
957 * Pan or Wrap the Display
958 */
959 static int
cyber2000fb_pan_display(struct fb_var_screeninfo * var,struct fb_info * info)960 cyber2000fb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
961 {
962 struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
963
964 if (cyber2000fb_update_start(cfb, var))
965 return -EINVAL;
966
967 cfb->fb.var.xoffset = var->xoffset;
968 cfb->fb.var.yoffset = var->yoffset;
969
970 if (var->vmode & FB_VMODE_YWRAP) {
971 cfb->fb.var.vmode |= FB_VMODE_YWRAP;
972 } else {
973 cfb->fb.var.vmode &= ~FB_VMODE_YWRAP;
974 }
975
976 return 0;
977 }
978
979 /*
980 * (Un)Blank the display.
981 *
982 * Blank the screen if blank_mode != 0, else unblank. If
983 * blank == NULL then the caller blanks by setting the CLUT
984 * (Color Look Up Table) to all black. Return 0 if blanking
985 * succeeded, != 0 if un-/blanking failed due to e.g. a
986 * video mode which doesn't support it. Implements VESA
987 * suspend and powerdown modes on hardware that supports
988 * disabling hsync/vsync:
989 * blank_mode == 2: suspend vsync
990 * blank_mode == 3: suspend hsync
991 * blank_mode == 4: powerdown
992 *
993 * wms...Enable VESA DMPS compatible powerdown mode
994 * run "setterm -powersave powerdown" to take advantage
995 */
cyber2000fb_blank(int blank,struct fb_info * info)996 static int cyber2000fb_blank(int blank, struct fb_info *info)
997 {
998 struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
999 unsigned int sync = 0;
1000 int i;
1001
1002 switch (blank) {
1003 case FB_BLANK_POWERDOWN: /* powerdown - both sync lines down */
1004 sync = EXT_SYNC_CTL_VS_0 | EXT_SYNC_CTL_HS_0;
1005 break;
1006 case FB_BLANK_HSYNC_SUSPEND: /* hsync off */
1007 sync = EXT_SYNC_CTL_VS_NORMAL | EXT_SYNC_CTL_HS_0;
1008 break;
1009 case FB_BLANK_VSYNC_SUSPEND: /* vsync off */
1010 sync = EXT_SYNC_CTL_VS_0 | EXT_SYNC_CTL_HS_NORMAL;
1011 break;
1012 case FB_BLANK_NORMAL: /* soft blank */
1013 default: /* unblank */
1014 break;
1015 }
1016
1017 cyber2000_grphw(EXT_SYNC_CTL, sync, cfb);
1018
1019 if (blank <= 1) {
1020 /* turn on ramdacs */
1021 cfb->ramdac_powerdown &= ~(RAMDAC_DACPWRDN | RAMDAC_BYPASS |
1022 RAMDAC_RAMPWRDN);
1023 cyber2000fb_write_ramdac_ctrl(cfb);
1024 }
1025
1026 /*
1027 * Soft blank/unblank the display.
1028 */
1029 if (blank) { /* soft blank */
1030 for (i = 0; i < NR_PALETTE; i++) {
1031 cyber2000fb_writeb(i, 0x3c8, cfb);
1032 cyber2000fb_writeb(0, 0x3c9, cfb);
1033 cyber2000fb_writeb(0, 0x3c9, cfb);
1034 cyber2000fb_writeb(0, 0x3c9, cfb);
1035 }
1036 } else { /* unblank */
1037 for (i = 0; i < NR_PALETTE; i++) {
1038 cyber2000fb_writeb(i, 0x3c8, cfb);
1039 cyber2000fb_writeb(cfb->palette[i].red, 0x3c9, cfb);
1040 cyber2000fb_writeb(cfb->palette[i].green, 0x3c9, cfb);
1041 cyber2000fb_writeb(cfb->palette[i].blue, 0x3c9, cfb);
1042 }
1043 }
1044
1045 if (blank >= 2) {
1046 /* turn off ramdacs */
1047 cfb->ramdac_powerdown |= RAMDAC_DACPWRDN | RAMDAC_BYPASS |
1048 RAMDAC_RAMPWRDN;
1049 cyber2000fb_write_ramdac_ctrl(cfb);
1050 }
1051
1052 return 0;
1053 }
1054
1055 static const struct fb_ops cyber2000fb_ops = {
1056 .owner = THIS_MODULE,
1057 __FB_DEFAULT_IOMEM_OPS_RDWR,
1058 .fb_check_var = cyber2000fb_check_var,
1059 .fb_set_par = cyber2000fb_set_par,
1060 .fb_setcolreg = cyber2000fb_setcolreg,
1061 .fb_blank = cyber2000fb_blank,
1062 .fb_pan_display = cyber2000fb_pan_display,
1063 .fb_fillrect = cyber2000fb_fillrect,
1064 .fb_copyarea = cyber2000fb_copyarea,
1065 .fb_imageblit = cfb_imageblit,
1066 .fb_sync = cyber2000fb_sync,
1067 __FB_DEFAULT_IOMEM_OPS_MMAP,
1068 };
1069
1070 /*
1071 * This is the only "static" reference to the internal data structures
1072 * of this driver. It is here solely at the moment to support the other
1073 * CyberPro modules external to this driver.
1074 */
1075 static struct cfb_info *int_cfb_info;
1076
1077 /*
1078 * Enable access to the extended registers
1079 */
cyber2000fb_enable_extregs(struct cfb_info * cfb)1080 void cyber2000fb_enable_extregs(struct cfb_info *cfb)
1081 {
1082 cfb->func_use_count += 1;
1083
1084 if (cfb->func_use_count == 1) {
1085 int old;
1086
1087 old = cyber2000_grphr(EXT_FUNC_CTL, cfb);
1088 old |= EXT_FUNC_CTL_EXTREGENBL;
1089 cyber2000_grphw(EXT_FUNC_CTL, old, cfb);
1090 }
1091 }
1092 EXPORT_SYMBOL(cyber2000fb_enable_extregs);
1093
1094 /*
1095 * Disable access to the extended registers
1096 */
cyber2000fb_disable_extregs(struct cfb_info * cfb)1097 void cyber2000fb_disable_extregs(struct cfb_info *cfb)
1098 {
1099 if (cfb->func_use_count == 1) {
1100 int old;
1101
1102 old = cyber2000_grphr(EXT_FUNC_CTL, cfb);
1103 old &= ~EXT_FUNC_CTL_EXTREGENBL;
1104 cyber2000_grphw(EXT_FUNC_CTL, old, cfb);
1105 }
1106
1107 if (cfb->func_use_count == 0)
1108 printk(KERN_ERR "disable_extregs: count = 0\n");
1109 else
1110 cfb->func_use_count -= 1;
1111 }
1112 EXPORT_SYMBOL(cyber2000fb_disable_extregs);
1113
1114 /*
1115 * Attach a capture/tv driver to the core CyberX0X0 driver.
1116 */
cyber2000fb_attach(struct cyberpro_info * info,int idx)1117 int cyber2000fb_attach(struct cyberpro_info *info, int idx)
1118 {
1119 if (int_cfb_info != NULL) {
1120 info->dev = int_cfb_info->fb.device;
1121 #ifdef CONFIG_FB_CYBER2000_I2C
1122 info->i2c = &int_cfb_info->i2c_adapter;
1123 #else
1124 info->i2c = NULL;
1125 #endif
1126 info->regs = int_cfb_info->regs;
1127 info->irq = int_cfb_info->irq;
1128 info->fb = int_cfb_info->fb.screen_base;
1129 info->fb_size = int_cfb_info->fb.fix.smem_len;
1130 info->info = int_cfb_info;
1131
1132 strscpy(info->dev_name, int_cfb_info->fb.fix.id,
1133 sizeof(info->dev_name));
1134 }
1135
1136 return int_cfb_info != NULL;
1137 }
1138 EXPORT_SYMBOL(cyber2000fb_attach);
1139
1140 /*
1141 * Detach a capture/tv driver from the core CyberX0X0 driver.
1142 */
cyber2000fb_detach(int idx)1143 void cyber2000fb_detach(int idx)
1144 {
1145 }
1146 EXPORT_SYMBOL(cyber2000fb_detach);
1147
1148 #ifdef CONFIG_FB_CYBER2000_DDC
1149
1150 #define DDC_REG 0xb0
1151 #define DDC_SCL_OUT (1 << 0)
1152 #define DDC_SDA_OUT (1 << 4)
1153 #define DDC_SCL_IN (1 << 2)
1154 #define DDC_SDA_IN (1 << 6)
1155
cyber2000fb_enable_ddc(struct cfb_info * cfb)1156 static void cyber2000fb_enable_ddc(struct cfb_info *cfb)
1157 __acquires(&cfb->reg_b0_lock)
1158 {
1159 spin_lock(&cfb->reg_b0_lock);
1160 cyber2000fb_writew(0x1bf, 0x3ce, cfb);
1161 }
1162
cyber2000fb_disable_ddc(struct cfb_info * cfb)1163 static void cyber2000fb_disable_ddc(struct cfb_info *cfb)
1164 __releases(&cfb->reg_b0_lock)
1165 {
1166 cyber2000fb_writew(0x0bf, 0x3ce, cfb);
1167 spin_unlock(&cfb->reg_b0_lock);
1168 }
1169
1170
cyber2000fb_ddc_setscl(void * data,int val)1171 static void cyber2000fb_ddc_setscl(void *data, int val)
1172 {
1173 struct cfb_info *cfb = data;
1174 unsigned char reg;
1175
1176 cyber2000fb_enable_ddc(cfb);
1177 reg = cyber2000_grphr(DDC_REG, cfb);
1178 if (!val) /* bit is inverted */
1179 reg |= DDC_SCL_OUT;
1180 else
1181 reg &= ~DDC_SCL_OUT;
1182 cyber2000_grphw(DDC_REG, reg, cfb);
1183 cyber2000fb_disable_ddc(cfb);
1184 }
1185
cyber2000fb_ddc_setsda(void * data,int val)1186 static void cyber2000fb_ddc_setsda(void *data, int val)
1187 {
1188 struct cfb_info *cfb = data;
1189 unsigned char reg;
1190
1191 cyber2000fb_enable_ddc(cfb);
1192 reg = cyber2000_grphr(DDC_REG, cfb);
1193 if (!val) /* bit is inverted */
1194 reg |= DDC_SDA_OUT;
1195 else
1196 reg &= ~DDC_SDA_OUT;
1197 cyber2000_grphw(DDC_REG, reg, cfb);
1198 cyber2000fb_disable_ddc(cfb);
1199 }
1200
cyber2000fb_ddc_getscl(void * data)1201 static int cyber2000fb_ddc_getscl(void *data)
1202 {
1203 struct cfb_info *cfb = data;
1204 int retval;
1205
1206 cyber2000fb_enable_ddc(cfb);
1207 retval = !!(cyber2000_grphr(DDC_REG, cfb) & DDC_SCL_IN);
1208 cyber2000fb_disable_ddc(cfb);
1209
1210 return retval;
1211 }
1212
cyber2000fb_ddc_getsda(void * data)1213 static int cyber2000fb_ddc_getsda(void *data)
1214 {
1215 struct cfb_info *cfb = data;
1216 int retval;
1217
1218 cyber2000fb_enable_ddc(cfb);
1219 retval = !!(cyber2000_grphr(DDC_REG, cfb) & DDC_SDA_IN);
1220 cyber2000fb_disable_ddc(cfb);
1221
1222 return retval;
1223 }
1224
cyber2000fb_setup_ddc_bus(struct cfb_info * cfb)1225 static int cyber2000fb_setup_ddc_bus(struct cfb_info *cfb)
1226 {
1227 strscpy(cfb->ddc_adapter.name, cfb->fb.fix.id,
1228 sizeof(cfb->ddc_adapter.name));
1229 cfb->ddc_adapter.owner = THIS_MODULE;
1230 cfb->ddc_adapter.algo_data = &cfb->ddc_algo;
1231 cfb->ddc_adapter.dev.parent = cfb->fb.device;
1232 cfb->ddc_algo.setsda = cyber2000fb_ddc_setsda;
1233 cfb->ddc_algo.setscl = cyber2000fb_ddc_setscl;
1234 cfb->ddc_algo.getsda = cyber2000fb_ddc_getsda;
1235 cfb->ddc_algo.getscl = cyber2000fb_ddc_getscl;
1236 cfb->ddc_algo.udelay = 10;
1237 cfb->ddc_algo.timeout = 20;
1238 cfb->ddc_algo.data = cfb;
1239
1240 i2c_set_adapdata(&cfb->ddc_adapter, cfb);
1241
1242 return i2c_bit_add_bus(&cfb->ddc_adapter);
1243 }
1244 #endif /* CONFIG_FB_CYBER2000_DDC */
1245
1246 #ifdef CONFIG_FB_CYBER2000_I2C
cyber2000fb_i2c_setsda(void * data,int state)1247 static void cyber2000fb_i2c_setsda(void *data, int state)
1248 {
1249 struct cfb_info *cfb = data;
1250 unsigned int latch2;
1251
1252 spin_lock(&cfb->reg_b0_lock);
1253 latch2 = cyber2000_grphr(EXT_LATCH2, cfb);
1254 latch2 &= EXT_LATCH2_I2C_CLKEN;
1255 if (state)
1256 latch2 |= EXT_LATCH2_I2C_DATEN;
1257 cyber2000_grphw(EXT_LATCH2, latch2, cfb);
1258 spin_unlock(&cfb->reg_b0_lock);
1259 }
1260
cyber2000fb_i2c_setscl(void * data,int state)1261 static void cyber2000fb_i2c_setscl(void *data, int state)
1262 {
1263 struct cfb_info *cfb = data;
1264 unsigned int latch2;
1265
1266 spin_lock(&cfb->reg_b0_lock);
1267 latch2 = cyber2000_grphr(EXT_LATCH2, cfb);
1268 latch2 &= EXT_LATCH2_I2C_DATEN;
1269 if (state)
1270 latch2 |= EXT_LATCH2_I2C_CLKEN;
1271 cyber2000_grphw(EXT_LATCH2, latch2, cfb);
1272 spin_unlock(&cfb->reg_b0_lock);
1273 }
1274
cyber2000fb_i2c_getsda(void * data)1275 static int cyber2000fb_i2c_getsda(void *data)
1276 {
1277 struct cfb_info *cfb = data;
1278 int ret;
1279
1280 spin_lock(&cfb->reg_b0_lock);
1281 ret = !!(cyber2000_grphr(EXT_LATCH2, cfb) & EXT_LATCH2_I2C_DAT);
1282 spin_unlock(&cfb->reg_b0_lock);
1283
1284 return ret;
1285 }
1286
cyber2000fb_i2c_getscl(void * data)1287 static int cyber2000fb_i2c_getscl(void *data)
1288 {
1289 struct cfb_info *cfb = data;
1290 int ret;
1291
1292 spin_lock(&cfb->reg_b0_lock);
1293 ret = !!(cyber2000_grphr(EXT_LATCH2, cfb) & EXT_LATCH2_I2C_CLK);
1294 spin_unlock(&cfb->reg_b0_lock);
1295
1296 return ret;
1297 }
1298
cyber2000fb_i2c_register(struct cfb_info * cfb)1299 static int cyber2000fb_i2c_register(struct cfb_info *cfb)
1300 {
1301 strscpy(cfb->i2c_adapter.name, cfb->fb.fix.id,
1302 sizeof(cfb->i2c_adapter.name));
1303 cfb->i2c_adapter.owner = THIS_MODULE;
1304 cfb->i2c_adapter.algo_data = &cfb->i2c_algo;
1305 cfb->i2c_adapter.dev.parent = cfb->fb.device;
1306 cfb->i2c_algo.setsda = cyber2000fb_i2c_setsda;
1307 cfb->i2c_algo.setscl = cyber2000fb_i2c_setscl;
1308 cfb->i2c_algo.getsda = cyber2000fb_i2c_getsda;
1309 cfb->i2c_algo.getscl = cyber2000fb_i2c_getscl;
1310 cfb->i2c_algo.udelay = 5;
1311 cfb->i2c_algo.timeout = msecs_to_jiffies(100);
1312 cfb->i2c_algo.data = cfb;
1313
1314 return i2c_bit_add_bus(&cfb->i2c_adapter);
1315 }
1316
cyber2000fb_i2c_unregister(struct cfb_info * cfb)1317 static void cyber2000fb_i2c_unregister(struct cfb_info *cfb)
1318 {
1319 i2c_del_adapter(&cfb->i2c_adapter);
1320 }
1321 #else
1322 #define cyber2000fb_i2c_register(cfb) (0)
1323 #define cyber2000fb_i2c_unregister(cfb) do { } while (0)
1324 #endif
1325
1326 /*
1327 * These parameters give
1328 * 640x480, hsync 31.5kHz, vsync 60Hz
1329 */
1330 static const struct fb_videomode cyber2000fb_default_mode = {
1331 .refresh = 60,
1332 .xres = 640,
1333 .yres = 480,
1334 .pixclock = 39722,
1335 .left_margin = 56,
1336 .right_margin = 16,
1337 .upper_margin = 34,
1338 .lower_margin = 9,
1339 .hsync_len = 88,
1340 .vsync_len = 2,
1341 .sync = FB_SYNC_COMP_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
1342 .vmode = FB_VMODE_NONINTERLACED
1343 };
1344
1345 static char igs_regs[] = {
1346 EXT_CRT_IRQ, 0,
1347 EXT_CRT_TEST, 0,
1348 EXT_SYNC_CTL, 0,
1349 EXT_SEG_WRITE_PTR, 0,
1350 EXT_SEG_READ_PTR, 0,
1351 EXT_BIU_MISC, EXT_BIU_MISC_LIN_ENABLE |
1352 EXT_BIU_MISC_COP_ENABLE |
1353 EXT_BIU_MISC_COP_BFC,
1354 EXT_FUNC_CTL, 0,
1355 CURS_H_START, 0,
1356 CURS_H_START + 1, 0,
1357 CURS_H_PRESET, 0,
1358 CURS_V_START, 0,
1359 CURS_V_START + 1, 0,
1360 CURS_V_PRESET, 0,
1361 CURS_CTL, 0,
1362 EXT_ATTRIB_CTL, EXT_ATTRIB_CTL_EXT,
1363 EXT_OVERSCAN_RED, 0,
1364 EXT_OVERSCAN_GREEN, 0,
1365 EXT_OVERSCAN_BLUE, 0,
1366
1367 /* some of these are questionable when we have a BIOS */
1368 EXT_MEM_CTL0, EXT_MEM_CTL0_7CLK |
1369 EXT_MEM_CTL0_RAS_1 |
1370 EXT_MEM_CTL0_MULTCAS,
1371 EXT_HIDDEN_CTL1, 0x30,
1372 EXT_FIFO_CTL, 0x0b,
1373 EXT_FIFO_CTL + 1, 0x17,
1374 0x76, 0x00,
1375 EXT_HIDDEN_CTL4, 0xc8
1376 };
1377
1378 /*
1379 * Initialise the CyberPro hardware. On the CyberPro5XXXX,
1380 * ensure that we're using the correct PLL (5XXX's may be
1381 * programmed to use an additional set of PLLs.)
1382 */
cyberpro_init_hw(struct cfb_info * cfb)1383 static void cyberpro_init_hw(struct cfb_info *cfb)
1384 {
1385 int i;
1386
1387 for (i = 0; i < sizeof(igs_regs); i += 2)
1388 cyber2000_grphw(igs_regs[i], igs_regs[i + 1], cfb);
1389
1390 if (cfb->id == ID_CYBERPRO_5000) {
1391 unsigned char val;
1392 cyber2000fb_writeb(0xba, 0x3ce, cfb);
1393 val = cyber2000fb_readb(0x3cf, cfb) & 0x80;
1394 cyber2000fb_writeb(val, 0x3cf, cfb);
1395 }
1396 }
1397
cyberpro_alloc_fb_info(unsigned int id,char * name)1398 static struct cfb_info *cyberpro_alloc_fb_info(unsigned int id, char *name)
1399 {
1400 struct cfb_info *cfb;
1401
1402 cfb = kzalloc(sizeof(struct cfb_info), GFP_KERNEL);
1403 if (!cfb)
1404 return NULL;
1405
1406
1407 cfb->id = id;
1408
1409 if (id == ID_CYBERPRO_5000)
1410 cfb->ref_ps = 40690; /* 24.576 MHz */
1411 else
1412 cfb->ref_ps = 69842; /* 14.31818 MHz (69841?) */
1413
1414 cfb->divisors[0] = 1;
1415 cfb->divisors[1] = 2;
1416 cfb->divisors[2] = 4;
1417
1418 if (id == ID_CYBERPRO_2000)
1419 cfb->divisors[3] = 8;
1420 else
1421 cfb->divisors[3] = 6;
1422
1423 strcpy(cfb->fb.fix.id, name);
1424
1425 cfb->fb.fix.type = FB_TYPE_PACKED_PIXELS;
1426 cfb->fb.fix.type_aux = 0;
1427 cfb->fb.fix.xpanstep = 0;
1428 cfb->fb.fix.ypanstep = 1;
1429 cfb->fb.fix.ywrapstep = 0;
1430
1431 switch (id) {
1432 case ID_IGA_1682:
1433 cfb->fb.fix.accel = 0;
1434 break;
1435
1436 case ID_CYBERPRO_2000:
1437 cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER2000;
1438 break;
1439
1440 case ID_CYBERPRO_2010:
1441 cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER2010;
1442 break;
1443
1444 case ID_CYBERPRO_5000:
1445 cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER5000;
1446 break;
1447 }
1448
1449 cfb->fb.var.nonstd = 0;
1450 cfb->fb.var.activate = FB_ACTIVATE_NOW;
1451 cfb->fb.var.height = -1;
1452 cfb->fb.var.width = -1;
1453 cfb->fb.var.accel_flags = FB_ACCELF_TEXT;
1454
1455 cfb->fb.fbops = &cyber2000fb_ops;
1456 cfb->fb.flags = FBINFO_HWACCEL_YPAN;
1457 cfb->fb.pseudo_palette = cfb->pseudo_palette;
1458
1459 spin_lock_init(&cfb->reg_b0_lock);
1460
1461 fb_alloc_cmap(&cfb->fb.cmap, NR_PALETTE, 0);
1462
1463 return cfb;
1464 }
1465
cyberpro_free_fb_info(struct cfb_info * cfb)1466 static void cyberpro_free_fb_info(struct cfb_info *cfb)
1467 {
1468 if (cfb) {
1469 /*
1470 * Free the colourmap
1471 */
1472 fb_alloc_cmap(&cfb->fb.cmap, 0, 0);
1473
1474 kfree(cfb);
1475 }
1476 }
1477
1478 /*
1479 * Parse Cyber2000fb options. Usage:
1480 * video=cyber2000:font:fontname
1481 */
1482 #ifndef MODULE
cyber2000fb_setup(char * options)1483 static int cyber2000fb_setup(char *options)
1484 {
1485 char *opt;
1486
1487 if (!options || !*options)
1488 return 0;
1489
1490 while ((opt = strsep(&options, ",")) != NULL) {
1491 if (!*opt)
1492 continue;
1493
1494 if (strncmp(opt, "font:", 5) == 0) {
1495 static char default_font_storage[40];
1496
1497 strscpy(default_font_storage, opt + 5,
1498 sizeof(default_font_storage));
1499 default_font = default_font_storage;
1500 continue;
1501 }
1502
1503 printk(KERN_ERR "CyberPro20x0: unknown parameter: %s\n", opt);
1504 }
1505 return 0;
1506 }
1507 #endif /* MODULE */
1508
1509 /*
1510 * The CyberPro chips can be placed on many different bus types.
1511 * This probe function is common to all bus types. The bus-specific
1512 * probe function is expected to have:
1513 * - enabled access to the linear memory region
1514 * - memory mapped access to the registers
1515 * - initialised mem_ctl1 and mem_ctl2 appropriately.
1516 */
cyberpro_common_probe(struct cfb_info * cfb)1517 static int cyberpro_common_probe(struct cfb_info *cfb)
1518 {
1519 u_long smem_size;
1520 u_int h_sync, v_sync;
1521 int err;
1522
1523 cyberpro_init_hw(cfb);
1524
1525 /*
1526 * Get the video RAM size and width from the VGA register.
1527 * This should have been already initialised by the BIOS,
1528 * but if it's garbage, claim default 1MB VRAM (woody)
1529 */
1530 cfb->mem_ctl1 = cyber2000_grphr(EXT_MEM_CTL1, cfb);
1531 cfb->mem_ctl2 = cyber2000_grphr(EXT_MEM_CTL2, cfb);
1532
1533 /*
1534 * Determine the size of the memory.
1535 */
1536 switch (cfb->mem_ctl2 & MEM_CTL2_SIZE_MASK) {
1537 case MEM_CTL2_SIZE_4MB:
1538 smem_size = 0x00400000;
1539 break;
1540 case MEM_CTL2_SIZE_2MB:
1541 smem_size = 0x00200000;
1542 break;
1543 case MEM_CTL2_SIZE_1MB:
1544 smem_size = 0x00100000;
1545 break;
1546 default:
1547 smem_size = 0x00100000;
1548 break;
1549 }
1550
1551 cfb->fb.fix.smem_len = smem_size;
1552 cfb->fb.fix.mmio_len = MMIO_SIZE;
1553 cfb->fb.screen_base = cfb->region;
1554
1555 #ifdef CONFIG_FB_CYBER2000_DDC
1556 if (cyber2000fb_setup_ddc_bus(cfb) == 0)
1557 cfb->ddc_registered = true;
1558 #endif
1559
1560 err = -EINVAL;
1561 if (!fb_find_mode(&cfb->fb.var, &cfb->fb, NULL, NULL, 0,
1562 &cyber2000fb_default_mode, 8)) {
1563 printk(KERN_ERR "%s: no valid mode found\n", cfb->fb.fix.id);
1564 goto failed;
1565 }
1566
1567 cfb->fb.var.yres_virtual = cfb->fb.fix.smem_len * 8 /
1568 (cfb->fb.var.bits_per_pixel * cfb->fb.var.xres_virtual);
1569
1570 if (cfb->fb.var.yres_virtual < cfb->fb.var.yres)
1571 cfb->fb.var.yres_virtual = cfb->fb.var.yres;
1572
1573 /* fb_set_var(&cfb->fb.var, -1, &cfb->fb); */
1574
1575 /*
1576 * Calculate the hsync and vsync frequencies. Note that
1577 * we split the 1e12 constant up so that we can preserve
1578 * the precision and fit the results into 32-bit registers.
1579 * (1953125000 * 512 = 1e12)
1580 */
1581 h_sync = 1953125000 / cfb->fb.var.pixclock;
1582 h_sync = h_sync * 512 / (cfb->fb.var.xres + cfb->fb.var.left_margin +
1583 cfb->fb.var.right_margin + cfb->fb.var.hsync_len);
1584 v_sync = h_sync / (cfb->fb.var.yres + cfb->fb.var.upper_margin +
1585 cfb->fb.var.lower_margin + cfb->fb.var.vsync_len);
1586
1587 printk(KERN_INFO "%s: %dKiB VRAM, using %dx%d, %d.%03dkHz, %dHz\n",
1588 cfb->fb.fix.id, cfb->fb.fix.smem_len >> 10,
1589 cfb->fb.var.xres, cfb->fb.var.yres,
1590 h_sync / 1000, h_sync % 1000, v_sync);
1591
1592 err = cyber2000fb_i2c_register(cfb);
1593 if (err)
1594 goto failed;
1595
1596 err = register_framebuffer(&cfb->fb);
1597 if (err)
1598 cyber2000fb_i2c_unregister(cfb);
1599
1600 failed:
1601 #ifdef CONFIG_FB_CYBER2000_DDC
1602 if (err && cfb->ddc_registered)
1603 i2c_del_adapter(&cfb->ddc_adapter);
1604 #endif
1605 return err;
1606 }
1607
cyberpro_common_remove(struct cfb_info * cfb)1608 static void cyberpro_common_remove(struct cfb_info *cfb)
1609 {
1610 unregister_framebuffer(&cfb->fb);
1611 #ifdef CONFIG_FB_CYBER2000_DDC
1612 if (cfb->ddc_registered)
1613 i2c_del_adapter(&cfb->ddc_adapter);
1614 #endif
1615 cyber2000fb_i2c_unregister(cfb);
1616 }
1617
cyberpro_common_resume(struct cfb_info * cfb)1618 static void cyberpro_common_resume(struct cfb_info *cfb)
1619 {
1620 cyberpro_init_hw(cfb);
1621
1622 /*
1623 * Reprogram the MEM_CTL1 and MEM_CTL2 registers
1624 */
1625 cyber2000_grphw(EXT_MEM_CTL1, cfb->mem_ctl1, cfb);
1626 cyber2000_grphw(EXT_MEM_CTL2, cfb->mem_ctl2, cfb);
1627
1628 /*
1629 * Restore the old video mode and the palette.
1630 * We also need to tell fbcon to redraw the console.
1631 */
1632 cyber2000fb_set_par(&cfb->fb);
1633 }
1634
1635 /*
1636 * We need to wake up the CyberPro, and make sure its in linear memory
1637 * mode. Unfortunately, this is specific to the platform and card that
1638 * we are running on.
1639 *
1640 * On x86 and ARM, should we be initialising the CyberPro first via the
1641 * IO registers, and then the MMIO registers to catch all cases? Can we
1642 * end up in the situation where the chip is in MMIO mode, but not awake
1643 * on an x86 system?
1644 */
cyberpro_pci_enable_mmio(struct cfb_info * cfb)1645 static int cyberpro_pci_enable_mmio(struct cfb_info *cfb)
1646 {
1647 unsigned char val;
1648
1649 #if defined(__sparc_v9__)
1650 #error "You lose, consult DaveM."
1651 #elif defined(__sparc__)
1652 /*
1653 * SPARC does not have an "outb" instruction, so we generate
1654 * I/O cycles storing into a reserved memory space at
1655 * physical address 0x3000000
1656 */
1657 unsigned char __iomem *iop;
1658
1659 iop = ioremap(0x3000000, 0x5000);
1660 if (iop == NULL) {
1661 printk(KERN_ERR "iga5000: cannot map I/O\n");
1662 return -ENOMEM;
1663 }
1664
1665 writeb(0x18, iop + 0x46e8);
1666 writeb(0x01, iop + 0x102);
1667 writeb(0x08, iop + 0x46e8);
1668 writeb(EXT_BIU_MISC, iop + 0x3ce);
1669 writeb(EXT_BIU_MISC_LIN_ENABLE, iop + 0x3cf);
1670
1671 iounmap(iop);
1672 #else
1673 /*
1674 * Most other machine types are "normal", so
1675 * we use the standard IO-based wakeup.
1676 */
1677 outb(0x18, 0x46e8);
1678 outb(0x01, 0x102);
1679 outb(0x08, 0x46e8);
1680 outb(EXT_BIU_MISC, 0x3ce);
1681 outb(EXT_BIU_MISC_LIN_ENABLE, 0x3cf);
1682 #endif
1683
1684 /*
1685 * Allow the CyberPro to accept PCI burst accesses
1686 */
1687 if (cfb->id == ID_CYBERPRO_2010) {
1688 printk(KERN_INFO "%s: NOT enabling PCI bursts\n",
1689 cfb->fb.fix.id);
1690 } else {
1691 val = cyber2000_grphr(EXT_BUS_CTL, cfb);
1692 if (!(val & EXT_BUS_CTL_PCIBURST_WRITE)) {
1693 printk(KERN_INFO "%s: enabling PCI bursts\n",
1694 cfb->fb.fix.id);
1695
1696 val |= EXT_BUS_CTL_PCIBURST_WRITE;
1697
1698 if (cfb->id == ID_CYBERPRO_5000)
1699 val |= EXT_BUS_CTL_PCIBURST_READ;
1700
1701 cyber2000_grphw(EXT_BUS_CTL, val, cfb);
1702 }
1703 }
1704
1705 return 0;
1706 }
1707
cyberpro_pci_probe(struct pci_dev * dev,const struct pci_device_id * id)1708 static int cyberpro_pci_probe(struct pci_dev *dev,
1709 const struct pci_device_id *id)
1710 {
1711 struct cfb_info *cfb;
1712 char name[16];
1713 int err;
1714
1715 sprintf(name, "CyberPro%4X", id->device);
1716
1717 err = aperture_remove_conflicting_pci_devices(dev, name);
1718 if (err)
1719 return err;
1720
1721 err = pci_enable_device(dev);
1722 if (err)
1723 return err;
1724
1725 err = -ENOMEM;
1726 cfb = cyberpro_alloc_fb_info(id->driver_data, name);
1727 if (!cfb)
1728 goto failed_release;
1729
1730 err = pci_request_regions(dev, cfb->fb.fix.id);
1731 if (err)
1732 goto failed_regions;
1733
1734 cfb->irq = dev->irq;
1735 cfb->region = pci_ioremap_bar(dev, 0);
1736 if (!cfb->region) {
1737 err = -ENOMEM;
1738 goto failed_ioremap;
1739 }
1740
1741 cfb->regs = cfb->region + MMIO_OFFSET;
1742 cfb->fb.device = &dev->dev;
1743 cfb->fb.fix.mmio_start = pci_resource_start(dev, 0) + MMIO_OFFSET;
1744 cfb->fb.fix.smem_start = pci_resource_start(dev, 0);
1745
1746 /*
1747 * Bring up the hardware. This is expected to enable access
1748 * to the linear memory region, and allow access to the memory
1749 * mapped registers. Also, mem_ctl1 and mem_ctl2 must be
1750 * initialised.
1751 */
1752 err = cyberpro_pci_enable_mmio(cfb);
1753 if (err)
1754 goto failed;
1755
1756 /*
1757 * Use MCLK from BIOS. FIXME: what about hotplug?
1758 */
1759 cfb->mclk_mult = cyber2000_grphr(EXT_MCLK_MULT, cfb);
1760 cfb->mclk_div = cyber2000_grphr(EXT_MCLK_DIV, cfb);
1761
1762 #ifdef __arm__
1763 /*
1764 * MCLK on the NetWinder and the Shark is fixed at 75MHz
1765 */
1766 if (machine_is_netwinder()) {
1767 cfb->mclk_mult = 0xdb;
1768 cfb->mclk_div = 0x54;
1769 }
1770 #endif
1771
1772 err = cyberpro_common_probe(cfb);
1773 if (err)
1774 goto failed;
1775
1776 /*
1777 * Our driver data
1778 */
1779 pci_set_drvdata(dev, cfb);
1780 if (int_cfb_info == NULL)
1781 int_cfb_info = cfb;
1782
1783 return 0;
1784
1785 failed:
1786 iounmap(cfb->region);
1787 failed_ioremap:
1788 pci_release_regions(dev);
1789 failed_regions:
1790 cyberpro_free_fb_info(cfb);
1791 failed_release:
1792 pci_disable_device(dev);
1793 return err;
1794 }
1795
cyberpro_pci_remove(struct pci_dev * dev)1796 static void cyberpro_pci_remove(struct pci_dev *dev)
1797 {
1798 struct cfb_info *cfb = pci_get_drvdata(dev);
1799
1800 if (cfb) {
1801 cyberpro_common_remove(cfb);
1802 iounmap(cfb->region);
1803 cyberpro_free_fb_info(cfb);
1804
1805 if (cfb == int_cfb_info)
1806 int_cfb_info = NULL;
1807
1808 pci_release_regions(dev);
1809 pci_disable_device(dev);
1810 }
1811 }
1812
cyberpro_pci_suspend(struct device * dev)1813 static int __maybe_unused cyberpro_pci_suspend(struct device *dev)
1814 {
1815 return 0;
1816 }
1817
1818 /*
1819 * Re-initialise the CyberPro hardware
1820 */
cyberpro_pci_resume(struct device * dev)1821 static int __maybe_unused cyberpro_pci_resume(struct device *dev)
1822 {
1823 struct cfb_info *cfb = dev_get_drvdata(dev);
1824
1825 if (cfb) {
1826 cyberpro_pci_enable_mmio(cfb);
1827 cyberpro_common_resume(cfb);
1828 }
1829
1830 return 0;
1831 }
1832
1833 static struct pci_device_id cyberpro_pci_table[] = {
1834 /* Not yet
1835 * { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_1682,
1836 * PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_IGA_1682 },
1837 */
1838 { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_2000,
1839 PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_2000 },
1840 { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_2010,
1841 PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_2010 },
1842 { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_5000,
1843 PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_5000 },
1844 { 0, }
1845 };
1846
1847 MODULE_DEVICE_TABLE(pci, cyberpro_pci_table);
1848
1849 static SIMPLE_DEV_PM_OPS(cyberpro_pci_pm_ops,
1850 cyberpro_pci_suspend,
1851 cyberpro_pci_resume);
1852
1853 static struct pci_driver cyberpro_driver = {
1854 .name = "CyberPro",
1855 .probe = cyberpro_pci_probe,
1856 .remove = cyberpro_pci_remove,
1857 .driver.pm = &cyberpro_pci_pm_ops,
1858 .id_table = cyberpro_pci_table
1859 };
1860
1861 /*
1862 * I don't think we can use the "module_init" stuff here because
1863 * the fbcon stuff may not be initialised yet. Hence the #ifdef
1864 * around module_init.
1865 *
1866 * Tony: "module_init" is now required
1867 */
cyber2000fb_init(void)1868 static int __init cyber2000fb_init(void)
1869 {
1870 int ret = -1, err;
1871
1872 #ifndef MODULE
1873 char *option = NULL;
1874 #endif
1875
1876 if (fb_modesetting_disabled("CyberPro"))
1877 return -ENODEV;
1878
1879 #ifndef MODULE
1880 if (fb_get_options("cyber2000fb", &option))
1881 return -ENODEV;
1882 cyber2000fb_setup(option);
1883 #endif
1884
1885 err = pci_register_driver(&cyberpro_driver);
1886 if (!err)
1887 ret = 0;
1888
1889 return ret ? err : 0;
1890 }
1891 module_init(cyber2000fb_init);
1892
cyberpro_exit(void)1893 static void __exit cyberpro_exit(void)
1894 {
1895 pci_unregister_driver(&cyberpro_driver);
1896 }
1897 module_exit(cyberpro_exit);
1898
1899 MODULE_AUTHOR("Russell King");
1900 MODULE_DESCRIPTION("CyberPro 2000, 2010 and 5000 framebuffer driver");
1901 MODULE_LICENSE("GPL");
1902