xref: /linux/drivers/gpu/drm/radeon/radeon_fence.c (revision c6d732c3bd41375d176447b043274396268aa6ab)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Dave Airlie
30  */
31 
32 #include <linux/atomic.h>
33 #include <linux/debugfs.h>
34 #include <linux/firmware.h>
35 #include <linux/kref.h>
36 #include <linux/sched/signal.h>
37 #include <linux/seq_file.h>
38 #include <linux/slab.h>
39 #include <linux/wait.h>
40 
41 #include <drm/drm_device.h>
42 #include <drm/drm_file.h>
43 
44 #include "radeon.h"
45 #include "radeon_reg.h"
46 #include "radeon_trace.h"
47 
48 /*
49  * Fences mark an event in the GPUs pipeline and are used
50  * for GPU/CPU synchronization.  When the fence is written,
51  * it is expected that all buffers associated with that fence
52  * are no longer in use by the associated ring on the GPU and
53  * that the relevant GPU caches have been flushed.  Whether
54  * we use a scratch register or memory location depends on the asic
55  * and whether writeback is enabled.
56  */
57 
58 /**
59  * radeon_fence_write - write a fence value
60  *
61  * @rdev: radeon_device pointer
62  * @seq: sequence number to write
63  * @ring: ring index the fence is associated with
64  *
65  * Writes a fence value to memory or a scratch register (all asics).
66  */
radeon_fence_write(struct radeon_device * rdev,u32 seq,int ring)67 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring)
68 {
69 	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
70 
71 	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
72 		if (drv->cpu_addr)
73 			*drv->cpu_addr = cpu_to_le32(seq);
74 	} else {
75 		WREG32(drv->scratch_reg, seq);
76 	}
77 }
78 
79 /**
80  * radeon_fence_read - read a fence value
81  *
82  * @rdev: radeon_device pointer
83  * @ring: ring index the fence is associated with
84  *
85  * Reads a fence value from memory or a scratch register (all asics).
86  * Returns the value of the fence read from memory or register.
87  */
radeon_fence_read(struct radeon_device * rdev,int ring)88 static u32 radeon_fence_read(struct radeon_device *rdev, int ring)
89 {
90 	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
91 	u32 seq = 0;
92 
93 	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
94 		if (drv->cpu_addr)
95 			seq = le32_to_cpu(*drv->cpu_addr);
96 		else
97 			seq = lower_32_bits(atomic64_read(&drv->last_seq));
98 	} else {
99 		seq = RREG32(drv->scratch_reg);
100 	}
101 	return seq;
102 }
103 
104 /**
105  * radeon_fence_schedule_check - schedule lockup check
106  *
107  * @rdev: radeon_device pointer
108  * @ring: ring index we should work with
109  *
110  * Queues a delayed work item to check for lockups.
111  */
radeon_fence_schedule_check(struct radeon_device * rdev,int ring)112 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring)
113 {
114 	/*
115 	 * Do not reset the timer here with mod_delayed_work,
116 	 * this can livelock in an interaction with TTM delayed destroy.
117 	 */
118 	queue_delayed_work(system_power_efficient_wq,
119 			   &rdev->fence_drv[ring].lockup_work,
120 			   RADEON_FENCE_JIFFIES_TIMEOUT);
121 }
122 
123 /**
124  * radeon_fence_emit - emit a fence on the requested ring
125  *
126  * @rdev: radeon_device pointer
127  * @fence: radeon fence object
128  * @ring: ring index the fence is associated with
129  *
130  * Emits a fence command on the requested ring (all asics).
131  * Returns 0 on success, -ENOMEM on failure.
132  */
radeon_fence_emit(struct radeon_device * rdev,struct radeon_fence ** fence,int ring)133 int radeon_fence_emit(struct radeon_device *rdev,
134 		      struct radeon_fence **fence,
135 		      int ring)
136 {
137 	u64 seq;
138 
139 	/* we are protected by the ring emission mutex */
140 	*fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL);
141 	if ((*fence) == NULL)
142 		return -ENOMEM;
143 
144 	(*fence)->rdev = rdev;
145 	(*fence)->seq = seq = ++rdev->fence_drv[ring].sync_seq[ring];
146 	(*fence)->ring = ring;
147 	(*fence)->is_vm_update = false;
148 	dma_fence_init(&(*fence)->base, &radeon_fence_ops,
149 		       &rdev->fence_queue.lock,
150 		       rdev->fence_context + ring,
151 		       seq);
152 	radeon_fence_ring_emit(rdev, ring, *fence);
153 	trace_radeon_fence_emit(rdev_to_drm(rdev), ring, (*fence)->seq);
154 	radeon_fence_schedule_check(rdev, ring);
155 	return 0;
156 }
157 
158 /*
159  * radeon_fence_check_signaled - callback from fence_queue
160  *
161  * this function is called with fence_queue lock held, which is also used
162  * for the fence locking itself, so unlocked variants are used for
163  * fence_signal, and remove_wait_queue.
164  */
radeon_fence_check_signaled(wait_queue_entry_t * wait,unsigned int mode,int flags,void * key)165 static int radeon_fence_check_signaled(wait_queue_entry_t *wait,
166 				       unsigned int mode, int flags, void *key)
167 {
168 	struct radeon_fence *fence;
169 	u64 seq;
170 
171 	fence = container_of(wait, struct radeon_fence, fence_wake);
172 
173 	/*
174 	 * We cannot use radeon_fence_process here because we're already
175 	 * in the waitqueue, in a call from wake_up_all.
176 	 */
177 	seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq);
178 	if (seq >= fence->seq) {
179 		dma_fence_signal_locked(&fence->base);
180 		radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring);
181 		__remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake);
182 		dma_fence_put(&fence->base);
183 	}
184 	return 0;
185 }
186 
187 /**
188  * radeon_fence_activity - check for fence activity
189  *
190  * @rdev: radeon_device pointer
191  * @ring: ring index the fence is associated with
192  *
193  * Checks the current fence value and calculates the last
194  * signalled fence value. Returns true if activity occured
195  * on the ring, and the fence_queue should be waken up.
196  */
radeon_fence_activity(struct radeon_device * rdev,int ring)197 static bool radeon_fence_activity(struct radeon_device *rdev, int ring)
198 {
199 	uint64_t seq, last_seq, last_emitted;
200 	unsigned int count_loop = 0;
201 	bool wake = false;
202 
203 	/* Note there is a scenario here for an infinite loop but it's
204 	 * very unlikely to happen. For it to happen, the current polling
205 	 * process need to be interrupted by another process and another
206 	 * process needs to update the last_seq btw the atomic read and
207 	 * xchg of the current process.
208 	 *
209 	 * More over for this to go in infinite loop there need to be
210 	 * continuously new fence signaled ie radeon_fence_read needs
211 	 * to return a different value each time for both the currently
212 	 * polling process and the other process that xchg the last_seq
213 	 * btw atomic read and xchg of the current process. And the
214 	 * value the other process set as last seq must be higher than
215 	 * the seq value we just read. Which means that current process
216 	 * need to be interrupted after radeon_fence_read and before
217 	 * atomic xchg.
218 	 *
219 	 * To be even more safe we count the number of time we loop and
220 	 * we bail after 10 loop just accepting the fact that we might
221 	 * have temporarly set the last_seq not to the true real last
222 	 * seq but to an older one.
223 	 */
224 	last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq);
225 	do {
226 		last_emitted = rdev->fence_drv[ring].sync_seq[ring];
227 		seq = radeon_fence_read(rdev, ring);
228 		seq |= last_seq & 0xffffffff00000000LL;
229 		if (seq < last_seq) {
230 			seq &= 0xffffffff;
231 			seq |= last_emitted & 0xffffffff00000000LL;
232 		}
233 
234 		if (seq <= last_seq || seq > last_emitted)
235 			break;
236 
237 		/* If we loop over we don't want to return without
238 		 * checking if a fence is signaled as it means that the
239 		 * seq we just read is different from the previous on.
240 		 */
241 		wake = true;
242 		last_seq = seq;
243 		if ((count_loop++) > 10) {
244 			/* We looped over too many time leave with the
245 			 * fact that we might have set an older fence
246 			 * seq then the current real last seq as signaled
247 			 * by the hw.
248 			 */
249 			break;
250 		}
251 	} while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq);
252 
253 	if (seq < last_emitted)
254 		radeon_fence_schedule_check(rdev, ring);
255 
256 	return wake;
257 }
258 
259 /**
260  * radeon_fence_check_lockup - check for hardware lockup
261  *
262  * @work: delayed work item
263  *
264  * Checks for fence activity and if there is none probe
265  * the hardware if a lockup occured.
266  */
radeon_fence_check_lockup(struct work_struct * work)267 static void radeon_fence_check_lockup(struct work_struct *work)
268 {
269 	struct radeon_fence_driver *fence_drv;
270 	struct radeon_device *rdev;
271 	int ring;
272 
273 	fence_drv = container_of(work, struct radeon_fence_driver,
274 				 lockup_work.work);
275 	rdev = fence_drv->rdev;
276 	ring = fence_drv - &rdev->fence_drv[0];
277 
278 	if (!down_read_trylock(&rdev->exclusive_lock)) {
279 		/* just reschedule the check if a reset is going on */
280 		radeon_fence_schedule_check(rdev, ring);
281 		return;
282 	}
283 
284 	if (fence_drv->delayed_irq && rdev->irq.installed) {
285 		unsigned long irqflags;
286 
287 		fence_drv->delayed_irq = false;
288 		spin_lock_irqsave(&rdev->irq.lock, irqflags);
289 		radeon_irq_set(rdev);
290 		spin_unlock_irqrestore(&rdev->irq.lock, irqflags);
291 	}
292 
293 	if (radeon_fence_activity(rdev, ring))
294 		wake_up_all(&rdev->fence_queue);
295 
296 	else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) {
297 
298 		/* good news we believe it's a lockup */
299 		dev_warn(rdev->dev, "GPU lockup (current fence id 0x%016llx last fence id 0x%016llx on ring %d)\n",
300 			 (uint64_t)atomic64_read(&fence_drv->last_seq),
301 			 fence_drv->sync_seq[ring], ring);
302 
303 		/* remember that we need an reset */
304 		rdev->needs_reset = true;
305 		wake_up_all(&rdev->fence_queue);
306 	}
307 	up_read(&rdev->exclusive_lock);
308 }
309 
310 /**
311  * radeon_fence_process - process a fence
312  *
313  * @rdev: radeon_device pointer
314  * @ring: ring index the fence is associated with
315  *
316  * Checks the current fence value and wakes the fence queue
317  * if the sequence number has increased (all asics).
318  */
radeon_fence_process(struct radeon_device * rdev,int ring)319 void radeon_fence_process(struct radeon_device *rdev, int ring)
320 {
321 	if (radeon_fence_activity(rdev, ring))
322 		wake_up_all(&rdev->fence_queue);
323 }
324 
325 /**
326  * radeon_fence_seq_signaled - check if a fence sequence number has signaled
327  *
328  * @rdev: radeon device pointer
329  * @seq: sequence number
330  * @ring: ring index the fence is associated with
331  *
332  * Check if the last signaled fence sequnce number is >= the requested
333  * sequence number (all asics).
334  * Returns true if the fence has signaled (current fence value
335  * is >= requested value) or false if it has not (current fence
336  * value is < the requested value.  Helper function for
337  * radeon_fence_signaled().
338  */
radeon_fence_seq_signaled(struct radeon_device * rdev,u64 seq,unsigned int ring)339 static bool radeon_fence_seq_signaled(struct radeon_device *rdev,
340 				      u64 seq, unsigned int ring)
341 {
342 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq)
343 		return true;
344 
345 	/* poll new last sequence at least once */
346 	radeon_fence_process(rdev, ring);
347 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq)
348 		return true;
349 
350 	return false;
351 }
352 
radeon_fence_is_signaled(struct dma_fence * f)353 static bool radeon_fence_is_signaled(struct dma_fence *f)
354 {
355 	struct radeon_fence *fence = to_radeon_fence(f);
356 	struct radeon_device *rdev = fence->rdev;
357 	unsigned int ring = fence->ring;
358 	u64 seq = fence->seq;
359 
360 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq)
361 		return true;
362 
363 	return false;
364 }
365 
366 /**
367  * radeon_fence_enable_signaling - enable signalling on fence
368  * @f: fence
369  *
370  * This function is called with fence_queue lock held, and adds a callback
371  * to fence_queue that checks if this fence is signaled, and if so it
372  * signals the fence and removes itself.
373  */
radeon_fence_enable_signaling(struct dma_fence * f)374 static bool radeon_fence_enable_signaling(struct dma_fence *f)
375 {
376 	struct radeon_fence *fence = to_radeon_fence(f);
377 	struct radeon_device *rdev = fence->rdev;
378 
379 	if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq)
380 		return false;
381 
382 	if (down_read_trylock(&rdev->exclusive_lock)) {
383 		radeon_irq_kms_sw_irq_get(rdev, fence->ring);
384 
385 		if (radeon_fence_activity(rdev, fence->ring))
386 			wake_up_all_locked(&rdev->fence_queue);
387 
388 		/* did fence get signaled after we enabled the sw irq? */
389 		if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) {
390 			radeon_irq_kms_sw_irq_put(rdev, fence->ring);
391 			up_read(&rdev->exclusive_lock);
392 			return false;
393 		}
394 
395 		up_read(&rdev->exclusive_lock);
396 	} else {
397 		/* we're probably in a lockup, lets not fiddle too much */
398 		if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring))
399 			rdev->fence_drv[fence->ring].delayed_irq = true;
400 		radeon_fence_schedule_check(rdev, fence->ring);
401 	}
402 
403 	fence->fence_wake.flags = 0;
404 	fence->fence_wake.private = NULL;
405 	fence->fence_wake.func = radeon_fence_check_signaled;
406 	__add_wait_queue(&rdev->fence_queue, &fence->fence_wake);
407 	dma_fence_get(f);
408 	return true;
409 }
410 
411 /**
412  * radeon_fence_signaled - check if a fence has signaled
413  *
414  * @fence: radeon fence object
415  *
416  * Check if the requested fence has signaled (all asics).
417  * Returns true if the fence has signaled or false if it has not.
418  */
radeon_fence_signaled(struct radeon_fence * fence)419 bool radeon_fence_signaled(struct radeon_fence *fence)
420 {
421 	if (!fence)
422 		return true;
423 
424 	if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) {
425 		dma_fence_signal(&fence->base);
426 		return true;
427 	}
428 	return false;
429 }
430 
431 /**
432  * radeon_fence_any_seq_signaled - check if any sequence number is signaled
433  *
434  * @rdev: radeon device pointer
435  * @seq: sequence numbers
436  *
437  * Check if the last signaled fence sequnce number is >= the requested
438  * sequence number (all asics).
439  * Returns true if any has signaled (current value is >= requested value)
440  * or false if it has not. Helper function for radeon_fence_wait_seq.
441  */
radeon_fence_any_seq_signaled(struct radeon_device * rdev,u64 * seq)442 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq)
443 {
444 	unsigned int i;
445 
446 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
447 		if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i))
448 			return true;
449 	}
450 	return false;
451 }
452 
453 /**
454  * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers
455  *
456  * @rdev: radeon device pointer
457  * @target_seq: sequence number(s) we want to wait for
458  * @intr: use interruptable sleep
459  * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
460  *
461  * Wait for the requested sequence number(s) to be written by any ring
462  * (all asics).  Sequnce number array is indexed by ring id.
463  * @intr selects whether to use interruptable (true) or non-interruptable
464  * (false) sleep when waiting for the sequence number.  Helper function
465  * for radeon_fence_wait_*().
466  * Returns remaining time if the sequence number has passed, 0 when
467  * the wait timeout, or an error for all other cases.
468  * -EDEADLK is returned when a GPU lockup has been detected.
469  */
radeon_fence_wait_seq_timeout(struct radeon_device * rdev,u64 * target_seq,bool intr,long timeout)470 static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev,
471 					  u64 *target_seq, bool intr,
472 					  long timeout)
473 {
474 	long r;
475 	int i;
476 
477 	if (radeon_fence_any_seq_signaled(rdev, target_seq))
478 		return timeout;
479 
480 	/* enable IRQs and tracing */
481 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
482 		if (!target_seq[i])
483 			continue;
484 
485 		trace_radeon_fence_wait_begin(rdev_to_drm(rdev), i, target_seq[i]);
486 		radeon_irq_kms_sw_irq_get(rdev, i);
487 	}
488 
489 	if (intr) {
490 		r = wait_event_interruptible_timeout(rdev->fence_queue, (
491 			radeon_fence_any_seq_signaled(rdev, target_seq)
492 			 || rdev->needs_reset), timeout);
493 	} else {
494 		r = wait_event_timeout(rdev->fence_queue, (
495 			radeon_fence_any_seq_signaled(rdev, target_seq)
496 			 || rdev->needs_reset), timeout);
497 	}
498 
499 	if (rdev->needs_reset)
500 		r = -EDEADLK;
501 
502 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
503 		if (!target_seq[i])
504 			continue;
505 
506 		radeon_irq_kms_sw_irq_put(rdev, i);
507 		trace_radeon_fence_wait_end(rdev_to_drm(rdev), i, target_seq[i]);
508 	}
509 
510 	return r;
511 }
512 
513 /**
514  * radeon_fence_wait_timeout - wait for a fence to signal with timeout
515  *
516  * @fence: radeon fence object
517  * @intr: use interruptible sleep
518  *
519  * Wait for the requested fence to signal (all asics).
520  * @intr selects whether to use interruptable (true) or non-interruptable
521  * (false) sleep when waiting for the fence.
522  * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
523  * Returns remaining time if the sequence number has passed, 0 when
524  * the wait timeout, or an error for all other cases.
525  */
radeon_fence_wait_timeout(struct radeon_fence * fence,bool intr,long timeout)526 long radeon_fence_wait_timeout(struct radeon_fence *fence, bool intr, long timeout)
527 {
528 	uint64_t seq[RADEON_NUM_RINGS] = {};
529 	long r;
530 
531 	/*
532 	 * This function should not be called on !radeon fences.
533 	 * If this is the case, it would mean this function can
534 	 * also be called on radeon fences belonging to another card.
535 	 * exclusive_lock is not held in that case.
536 	 */
537 	if (WARN_ON_ONCE(!to_radeon_fence(&fence->base)))
538 		return dma_fence_wait(&fence->base, intr);
539 
540 	seq[fence->ring] = fence->seq;
541 	r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, timeout);
542 	if (r <= 0)
543 		return r;
544 
545 	dma_fence_signal(&fence->base);
546 	return r;
547 }
548 
549 /**
550  * radeon_fence_wait - wait for a fence to signal
551  *
552  * @fence: radeon fence object
553  * @intr: use interruptible sleep
554  *
555  * Wait for the requested fence to signal (all asics).
556  * @intr selects whether to use interruptable (true) or non-interruptable
557  * (false) sleep when waiting for the fence.
558  * Returns 0 if the fence has passed, error for all other cases.
559  */
radeon_fence_wait(struct radeon_fence * fence,bool intr)560 int radeon_fence_wait(struct radeon_fence *fence, bool intr)
561 {
562 	long r = radeon_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT);
563 
564 	if (r > 0)
565 		return 0;
566 	else
567 		return r;
568 }
569 
570 /**
571  * radeon_fence_wait_next - wait for the next fence to signal
572  *
573  * @rdev: radeon device pointer
574  * @ring: ring index the fence is associated with
575  *
576  * Wait for the next fence on the requested ring to signal (all asics).
577  * Returns 0 if the next fence has passed, error for all other cases.
578  * Caller must hold ring lock.
579  */
radeon_fence_wait_next(struct radeon_device * rdev,int ring)580 int radeon_fence_wait_next(struct radeon_device *rdev, int ring)
581 {
582 	uint64_t seq[RADEON_NUM_RINGS] = {};
583 	long r;
584 
585 	seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL;
586 	if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) {
587 		/* nothing to wait for, last_seq is already
588 		 * the last emited fence
589 		 */
590 		return -ENOENT;
591 	}
592 
593 	r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
594 	if (r < 0)
595 		return r;
596 
597 	return 0;
598 }
599 
600 /**
601  * radeon_fence_wait_empty - wait for all fences to signal
602  *
603  * @rdev: radeon device pointer
604  * @ring: ring index the fence is associated with
605  *
606  * Wait for all fences on the requested ring to signal (all asics).
607  * Returns 0 if the fences have passed, error for all other cases.
608  * Caller must hold ring lock.
609  */
radeon_fence_wait_empty(struct radeon_device * rdev,int ring)610 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring)
611 {
612 	uint64_t seq[RADEON_NUM_RINGS] = {};
613 	long r;
614 
615 	seq[ring] = rdev->fence_drv[ring].sync_seq[ring];
616 	if (!seq[ring])
617 		return 0;
618 
619 	r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
620 	if (r < 0) {
621 		if (r == -EDEADLK)
622 			return -EDEADLK;
623 
624 		dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n",
625 			ring, r);
626 	}
627 	return 0;
628 }
629 
630 /**
631  * radeon_fence_ref - take a ref on a fence
632  *
633  * @fence: radeon fence object
634  *
635  * Take a reference on a fence (all asics).
636  * Returns the fence.
637  */
radeon_fence_ref(struct radeon_fence * fence)638 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence)
639 {
640 	dma_fence_get(&fence->base);
641 	return fence;
642 }
643 
644 /**
645  * radeon_fence_unref - remove a ref on a fence
646  *
647  * @fence: radeon fence object
648  *
649  * Remove a reference on a fence (all asics).
650  */
radeon_fence_unref(struct radeon_fence ** fence)651 void radeon_fence_unref(struct radeon_fence **fence)
652 {
653 	struct radeon_fence *tmp = *fence;
654 
655 	*fence = NULL;
656 	if (tmp)
657 		dma_fence_put(&tmp->base);
658 }
659 
660 /**
661  * radeon_fence_count_emitted - get the count of emitted fences
662  *
663  * @rdev: radeon device pointer
664  * @ring: ring index the fence is associated with
665  *
666  * Get the number of fences emitted on the requested ring (all asics).
667  * Returns the number of emitted fences on the ring.  Used by the
668  * dynpm code to ring track activity.
669  */
radeon_fence_count_emitted(struct radeon_device * rdev,int ring)670 unsigned int radeon_fence_count_emitted(struct radeon_device *rdev, int ring)
671 {
672 	uint64_t emitted;
673 
674 	/* We are not protected by ring lock when reading the last sequence
675 	 * but it's ok to report slightly wrong fence count here.
676 	 */
677 	radeon_fence_process(rdev, ring);
678 	emitted = rdev->fence_drv[ring].sync_seq[ring]
679 		- atomic64_read(&rdev->fence_drv[ring].last_seq);
680 	/* to avoid 32bits warp around */
681 	if (emitted > 0x10000000)
682 		emitted = 0x10000000;
683 
684 	return (unsigned int)emitted;
685 }
686 
687 /**
688  * radeon_fence_need_sync - do we need a semaphore
689  *
690  * @fence: radeon fence object
691  * @dst_ring: which ring to check against
692  *
693  * Check if the fence needs to be synced against another ring
694  * (all asics).  If so, we need to emit a semaphore.
695  * Returns true if we need to sync with another ring, false if
696  * not.
697  */
radeon_fence_need_sync(struct radeon_fence * fence,int dst_ring)698 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring)
699 {
700 	struct radeon_fence_driver *fdrv;
701 
702 	if (!fence)
703 		return false;
704 
705 	if (fence->ring == dst_ring)
706 		return false;
707 
708 	/* we are protected by the ring mutex */
709 	fdrv = &fence->rdev->fence_drv[dst_ring];
710 	if (fence->seq <= fdrv->sync_seq[fence->ring])
711 		return false;
712 
713 	return true;
714 }
715 
716 /**
717  * radeon_fence_note_sync - record the sync point
718  *
719  * @fence: radeon fence object
720  * @dst_ring: which ring to check against
721  *
722  * Note the sequence number at which point the fence will
723  * be synced with the requested ring (all asics).
724  */
radeon_fence_note_sync(struct radeon_fence * fence,int dst_ring)725 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring)
726 {
727 	struct radeon_fence_driver *dst, *src;
728 	unsigned int i;
729 
730 	if (!fence)
731 		return;
732 
733 	if (fence->ring == dst_ring)
734 		return;
735 
736 	/* we are protected by the ring mutex */
737 	src = &fence->rdev->fence_drv[fence->ring];
738 	dst = &fence->rdev->fence_drv[dst_ring];
739 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
740 		if (i == dst_ring)
741 			continue;
742 
743 		dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]);
744 	}
745 }
746 
747 /**
748  * radeon_fence_driver_start_ring - make the fence driver
749  * ready for use on the requested ring.
750  *
751  * @rdev: radeon device pointer
752  * @ring: ring index to start the fence driver on
753  *
754  * Make the fence driver ready for processing (all asics).
755  * Not all asics have all rings, so each asic will only
756  * start the fence driver on the rings it has.
757  * Returns 0 for success, errors for failure.
758  */
radeon_fence_driver_start_ring(struct radeon_device * rdev,int ring)759 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring)
760 {
761 	uint64_t index;
762 	int r;
763 
764 	radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
765 	if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) {
766 		rdev->fence_drv[ring].scratch_reg = 0;
767 		if (ring != R600_RING_TYPE_UVD_INDEX) {
768 			index = R600_WB_EVENT_OFFSET + ring * 4;
769 			rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
770 			rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr +
771 							 index;
772 
773 		} else {
774 			/* put fence directly behind firmware */
775 			index = ALIGN(rdev->uvd_fw->size, 8);
776 			rdev->fence_drv[ring].cpu_addr = rdev->uvd.cpu_addr + index;
777 			rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index;
778 		}
779 
780 	} else {
781 		r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg);
782 		if (r) {
783 			dev_err(rdev->dev, "fence failed to get scratch register\n");
784 			return r;
785 		}
786 		index = RADEON_WB_SCRATCH_OFFSET +
787 			rdev->fence_drv[ring].scratch_reg -
788 			rdev->scratch.reg_base;
789 		rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
790 		rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index;
791 	}
792 	radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring);
793 	rdev->fence_drv[ring].initialized = true;
794 	dev_info(rdev->dev, "fence driver on ring %d uses gpu addr 0x%016llx\n",
795 		 ring, rdev->fence_drv[ring].gpu_addr);
796 	return 0;
797 }
798 
799 /**
800  * radeon_fence_driver_init_ring - init the fence driver
801  * for the requested ring.
802  *
803  * @rdev: radeon device pointer
804  * @ring: ring index to start the fence driver on
805  *
806  * Init the fence driver for the requested ring (all asics).
807  * Helper function for radeon_fence_driver_init().
808  */
radeon_fence_driver_init_ring(struct radeon_device * rdev,int ring)809 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring)
810 {
811 	int i;
812 
813 	rdev->fence_drv[ring].scratch_reg = -1;
814 	rdev->fence_drv[ring].cpu_addr = NULL;
815 	rdev->fence_drv[ring].gpu_addr = 0;
816 	for (i = 0; i < RADEON_NUM_RINGS; ++i)
817 		rdev->fence_drv[ring].sync_seq[i] = 0;
818 	atomic64_set(&rdev->fence_drv[ring].last_seq, 0);
819 	rdev->fence_drv[ring].initialized = false;
820 	INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work,
821 			  radeon_fence_check_lockup);
822 	rdev->fence_drv[ring].rdev = rdev;
823 }
824 
825 /**
826  * radeon_fence_driver_init - init the fence driver
827  * for all possible rings.
828  *
829  * @rdev: radeon device pointer
830  *
831  * Init the fence driver for all possible rings (all asics).
832  * Not all asics have all rings, so each asic will only
833  * start the fence driver on the rings it has using
834  * radeon_fence_driver_start_ring().
835  */
radeon_fence_driver_init(struct radeon_device * rdev)836 void radeon_fence_driver_init(struct radeon_device *rdev)
837 {
838 	int ring;
839 
840 	init_waitqueue_head(&rdev->fence_queue);
841 	for (ring = 0; ring < RADEON_NUM_RINGS; ring++)
842 		radeon_fence_driver_init_ring(rdev, ring);
843 
844 	radeon_debugfs_fence_init(rdev);
845 }
846 
847 /**
848  * radeon_fence_driver_fini - tear down the fence driver
849  * for all possible rings.
850  *
851  * @rdev: radeon device pointer
852  *
853  * Tear down the fence driver for all possible rings (all asics).
854  */
radeon_fence_driver_fini(struct radeon_device * rdev)855 void radeon_fence_driver_fini(struct radeon_device *rdev)
856 {
857 	int ring, r;
858 
859 	mutex_lock(&rdev->ring_lock);
860 	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
861 		if (!rdev->fence_drv[ring].initialized)
862 			continue;
863 		r = radeon_fence_wait_empty(rdev, ring);
864 		if (r) {
865 			/* no need to trigger GPU reset as we are unloading */
866 			radeon_fence_driver_force_completion(rdev, ring);
867 		}
868 		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
869 		wake_up_all(&rdev->fence_queue);
870 		radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
871 		rdev->fence_drv[ring].initialized = false;
872 	}
873 	mutex_unlock(&rdev->ring_lock);
874 }
875 
876 /**
877  * radeon_fence_driver_force_completion - force all fence waiter to complete
878  *
879  * @rdev: radeon device pointer
880  * @ring: the ring to complete
881  *
882  * In case of GPU reset failure make sure no process keep waiting on fence
883  * that will never complete.
884  */
radeon_fence_driver_force_completion(struct radeon_device * rdev,int ring)885 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring)
886 {
887 	if (rdev->fence_drv[ring].initialized) {
888 		radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring);
889 		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
890 	}
891 }
892 
893 
894 /*
895  * Fence debugfs
896  */
897 #if defined(CONFIG_DEBUG_FS)
radeon_debugfs_fence_info_show(struct seq_file * m,void * data)898 static int radeon_debugfs_fence_info_show(struct seq_file *m, void *data)
899 {
900 	struct radeon_device *rdev = m->private;
901 	int i, j;
902 
903 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
904 		if (!rdev->fence_drv[i].initialized)
905 			continue;
906 
907 		radeon_fence_process(rdev, i);
908 
909 		seq_printf(m, "--- ring %d ---\n", i);
910 		seq_printf(m, "Last signaled fence 0x%016llx\n",
911 			   (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq));
912 		seq_printf(m, "Last emitted        0x%016llx\n",
913 			   rdev->fence_drv[i].sync_seq[i]);
914 
915 		for (j = 0; j < RADEON_NUM_RINGS; ++j) {
916 			if (i != j && rdev->fence_drv[j].initialized)
917 				seq_printf(m, "Last sync to ring %d 0x%016llx\n",
918 					   j, rdev->fence_drv[i].sync_seq[j]);
919 		}
920 	}
921 	return 0;
922 }
923 
924 /*
925  * radeon_debugfs_gpu_reset - manually trigger a gpu reset
926  *
927  * Manually trigger a gpu reset at the next fence wait.
928  */
radeon_debugfs_gpu_reset(void * data,u64 * val)929 static int radeon_debugfs_gpu_reset(void *data, u64 *val)
930 {
931 	struct radeon_device *rdev = (struct radeon_device *)data;
932 
933 	down_read(&rdev->exclusive_lock);
934 	*val = rdev->needs_reset;
935 	rdev->needs_reset = true;
936 	wake_up_all(&rdev->fence_queue);
937 	up_read(&rdev->exclusive_lock);
938 
939 	return 0;
940 }
941 DEFINE_SHOW_ATTRIBUTE(radeon_debugfs_fence_info);
942 DEFINE_DEBUGFS_ATTRIBUTE(radeon_debugfs_gpu_reset_fops,
943 			 radeon_debugfs_gpu_reset, NULL, "%lld\n");
944 #endif
945 
radeon_debugfs_fence_init(struct radeon_device * rdev)946 void radeon_debugfs_fence_init(struct radeon_device *rdev)
947 {
948 #if defined(CONFIG_DEBUG_FS)
949 	struct dentry *root = rdev_to_drm(rdev)->primary->debugfs_root;
950 
951 	debugfs_create_file("radeon_gpu_reset", 0444, root, rdev,
952 			    &radeon_debugfs_gpu_reset_fops);
953 	debugfs_create_file("radeon_fence_info", 0444, root, rdev,
954 			    &radeon_debugfs_fence_info_fops);
955 
956 
957 #endif
958 }
959 
radeon_fence_get_driver_name(struct dma_fence * fence)960 static const char *radeon_fence_get_driver_name(struct dma_fence *fence)
961 {
962 	return "radeon";
963 }
964 
radeon_fence_get_timeline_name(struct dma_fence * f)965 static const char *radeon_fence_get_timeline_name(struct dma_fence *f)
966 {
967 	struct radeon_fence *fence = to_radeon_fence(f);
968 
969 	switch (fence->ring) {
970 	case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx";
971 	case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1";
972 	case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2";
973 	case R600_RING_TYPE_DMA_INDEX: return "radeon.dma";
974 	case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1";
975 	case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd";
976 	case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1";
977 	case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2";
978 	default:
979 		WARN_ON_ONCE(1);
980 		return "radeon.unk";
981 	}
982 }
983 
radeon_test_signaled(struct radeon_fence * fence)984 static inline bool radeon_test_signaled(struct radeon_fence *fence)
985 {
986 	return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->base.flags);
987 }
988 
989 struct radeon_wait_cb {
990 	struct dma_fence_cb base;
991 	struct task_struct *task;
992 };
993 
994 static void
radeon_fence_wait_cb(struct dma_fence * fence,struct dma_fence_cb * cb)995 radeon_fence_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
996 {
997 	struct radeon_wait_cb *wait =
998 		container_of(cb, struct radeon_wait_cb, base);
999 
1000 	wake_up_process(wait->task);
1001 }
1002 
radeon_fence_default_wait(struct dma_fence * f,bool intr,signed long t)1003 static signed long radeon_fence_default_wait(struct dma_fence *f, bool intr,
1004 					     signed long t)
1005 {
1006 	struct radeon_fence *fence = to_radeon_fence(f);
1007 	struct radeon_device *rdev = fence->rdev;
1008 	struct radeon_wait_cb cb;
1009 
1010 	cb.task = current;
1011 
1012 	if (dma_fence_add_callback(f, &cb.base, radeon_fence_wait_cb))
1013 		return t;
1014 
1015 	while (t > 0) {
1016 		if (intr)
1017 			set_current_state(TASK_INTERRUPTIBLE);
1018 		else
1019 			set_current_state(TASK_UNINTERRUPTIBLE);
1020 
1021 		/*
1022 		 * radeon_test_signaled must be called after
1023 		 * set_current_state to prevent a race with wake_up_process
1024 		 */
1025 		if (radeon_test_signaled(fence))
1026 			break;
1027 
1028 		if (rdev->needs_reset) {
1029 			t = -EDEADLK;
1030 			break;
1031 		}
1032 
1033 		t = schedule_timeout(t);
1034 
1035 		if (t > 0 && intr && signal_pending(current))
1036 			t = -ERESTARTSYS;
1037 	}
1038 
1039 	__set_current_state(TASK_RUNNING);
1040 	dma_fence_remove_callback(f, &cb.base);
1041 
1042 	return t;
1043 }
1044 
1045 const struct dma_fence_ops radeon_fence_ops = {
1046 	.get_driver_name = radeon_fence_get_driver_name,
1047 	.get_timeline_name = radeon_fence_get_timeline_name,
1048 	.enable_signaling = radeon_fence_enable_signaling,
1049 	.signaled = radeon_fence_is_signaled,
1050 	.wait = radeon_fence_default_wait,
1051 	.release = NULL,
1052 };
1053