1 /* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
2 /*
3 * Copyright(c) 2016 - 2020 Intel Corporation.
4 */
5
6 #ifndef DEF_RDMAVT_INCQP_H
7 #define DEF_RDMAVT_INCQP_H
8
9 #include <rdma/rdma_vt.h>
10 #include <rdma/ib_pack.h>
11 #include <rdma/ib_verbs.h>
12 #include <rdma/rdmavt_cq.h>
13 #include <rdma/rvt-abi.h>
14 #include <linux/vmalloc.h>
15 /*
16 * Atomic bit definitions for r_aflags.
17 */
18 #define RVT_R_WRID_VALID 0
19 #define RVT_R_REWIND_SGE 1
20
21 /*
22 * Bit definitions for r_flags.
23 */
24 #define RVT_R_REUSE_SGE 0x01
25 #define RVT_R_RDMAR_SEQ 0x02
26 #define RVT_R_RSP_NAK 0x04
27 #define RVT_R_RSP_SEND 0x08
28 #define RVT_R_COMM_EST 0x10
29
30 /*
31 * If a packet's QP[23:16] bits match this value, then it is
32 * a PSM packet and the hardware will expect a KDETH header
33 * following the BTH.
34 */
35 #define RVT_KDETH_QP_PREFIX 0x80
36 #define RVT_KDETH_QP_SUFFIX 0xffff
37 #define RVT_KDETH_QP_PREFIX_MASK 0x00ff0000
38 #define RVT_KDETH_QP_PREFIX_SHIFT 16
39 #define RVT_KDETH_QP_BASE (u32)(RVT_KDETH_QP_PREFIX << \
40 RVT_KDETH_QP_PREFIX_SHIFT)
41 #define RVT_KDETH_QP_MAX (u32)(RVT_KDETH_QP_BASE + RVT_KDETH_QP_SUFFIX)
42
43 /*
44 * If a packet's LNH == BTH and DEST QPN[23:16] in the BTH match this
45 * prefix value, then it is an AIP packet with a DETH containing the entropy
46 * value in byte 4 following the BTH.
47 */
48 #define RVT_AIP_QP_PREFIX 0x81
49 #define RVT_AIP_QP_SUFFIX 0xffff
50 #define RVT_AIP_QP_PREFIX_MASK 0x00ff0000
51 #define RVT_AIP_QP_PREFIX_SHIFT 16
52 #define RVT_AIP_QP_BASE (u32)(RVT_AIP_QP_PREFIX << \
53 RVT_AIP_QP_PREFIX_SHIFT)
54 #define RVT_AIP_QPN_MAX BIT(RVT_AIP_QP_PREFIX_SHIFT)
55 #define RVT_AIP_QP_MAX (u32)(RVT_AIP_QP_BASE + RVT_AIP_QPN_MAX - 1)
56
57 /*
58 * Bit definitions for s_flags.
59 *
60 * RVT_S_SIGNAL_REQ_WR - set if QP send WRs contain completion signaled
61 * RVT_S_BUSY - send tasklet is processing the QP
62 * RVT_S_TIMER - the RC retry timer is active
63 * RVT_S_ACK_PENDING - an ACK is waiting to be sent after RDMA read/atomics
64 * RVT_S_WAIT_FENCE - waiting for all prior RDMA read or atomic SWQEs
65 * before processing the next SWQE
66 * RVT_S_WAIT_RDMAR - waiting for a RDMA read or atomic SWQE to complete
67 * before processing the next SWQE
68 * RVT_S_WAIT_RNR - waiting for RNR timeout
69 * RVT_S_WAIT_SSN_CREDIT - waiting for RC credits to process next SWQE
70 * RVT_S_WAIT_DMA - waiting for send DMA queue to drain before generating
71 * next send completion entry not via send DMA
72 * RVT_S_WAIT_PIO - waiting for a send buffer to be available
73 * RVT_S_WAIT_TX - waiting for a struct verbs_txreq to be available
74 * RVT_S_WAIT_DMA_DESC - waiting for DMA descriptors to be available
75 * RVT_S_WAIT_KMEM - waiting for kernel memory to be available
76 * RVT_S_WAIT_PSN - waiting for a packet to exit the send DMA queue
77 * RVT_S_WAIT_ACK - waiting for an ACK packet before sending more requests
78 * RVT_S_SEND_ONE - send one packet, request ACK, then wait for ACK
79 * RVT_S_ECN - a BECN was queued to the send engine
80 * RVT_S_MAX_BIT_MASK - The max bit that can be used by rdmavt
81 */
82 #define RVT_S_SIGNAL_REQ_WR 0x0001
83 #define RVT_S_BUSY 0x0002
84 #define RVT_S_TIMER 0x0004
85 #define RVT_S_RESP_PENDING 0x0008
86 #define RVT_S_ACK_PENDING 0x0010
87 #define RVT_S_WAIT_FENCE 0x0020
88 #define RVT_S_WAIT_RDMAR 0x0040
89 #define RVT_S_WAIT_RNR 0x0080
90 #define RVT_S_WAIT_SSN_CREDIT 0x0100
91 #define RVT_S_WAIT_DMA 0x0200
92 #define RVT_S_WAIT_PIO 0x0400
93 #define RVT_S_WAIT_TX 0x0800
94 #define RVT_S_WAIT_DMA_DESC 0x1000
95 #define RVT_S_WAIT_KMEM 0x2000
96 #define RVT_S_WAIT_PSN 0x4000
97 #define RVT_S_WAIT_ACK 0x8000
98 #define RVT_S_SEND_ONE 0x10000
99 #define RVT_S_UNLIMITED_CREDIT 0x20000
100 #define RVT_S_ECN 0x40000
101 #define RVT_S_MAX_BIT_MASK 0x800000
102
103 /*
104 * Drivers should use s_flags starting with bit 31 down to the bit next to
105 * RVT_S_MAX_BIT_MASK
106 */
107
108 /*
109 * Wait flags that would prevent any packet type from being sent.
110 */
111 #define RVT_S_ANY_WAIT_IO \
112 (RVT_S_WAIT_PIO | RVT_S_WAIT_TX | \
113 RVT_S_WAIT_DMA_DESC | RVT_S_WAIT_KMEM)
114
115 /*
116 * Wait flags that would prevent send work requests from making progress.
117 */
118 #define RVT_S_ANY_WAIT_SEND (RVT_S_WAIT_FENCE | RVT_S_WAIT_RDMAR | \
119 RVT_S_WAIT_RNR | RVT_S_WAIT_SSN_CREDIT | RVT_S_WAIT_DMA | \
120 RVT_S_WAIT_PSN | RVT_S_WAIT_ACK)
121
122 #define RVT_S_ANY_WAIT (RVT_S_ANY_WAIT_IO | RVT_S_ANY_WAIT_SEND)
123
124 /* Number of bits to pay attention to in the opcode for checking qp type */
125 #define RVT_OPCODE_QP_MASK 0xE0
126
127 /* Flags for checking QP state (see ib_rvt_state_ops[]) */
128 #define RVT_POST_SEND_OK 0x01
129 #define RVT_POST_RECV_OK 0x02
130 #define RVT_PROCESS_RECV_OK 0x04
131 #define RVT_PROCESS_SEND_OK 0x08
132 #define RVT_PROCESS_NEXT_SEND_OK 0x10
133 #define RVT_FLUSH_SEND 0x20
134 #define RVT_FLUSH_RECV 0x40
135 #define RVT_PROCESS_OR_FLUSH_SEND \
136 (RVT_PROCESS_SEND_OK | RVT_FLUSH_SEND)
137 #define RVT_SEND_OR_FLUSH_OR_RECV_OK \
138 (RVT_PROCESS_SEND_OK | RVT_FLUSH_SEND | RVT_PROCESS_RECV_OK)
139
140 /*
141 * Internal send flags
142 */
143 #define RVT_SEND_RESERVE_USED IB_SEND_RESERVED_START
144 #define RVT_SEND_COMPLETION_ONLY (IB_SEND_RESERVED_START << 1)
145
146 /**
147 * struct rvt_ud_wr - IB UD work plus AH cache
148 * @wr: valid IB work request
149 * @attr: pointer to an allocated AH attribute
150 *
151 * Special case the UD WR so we can keep track of the AH attributes.
152 *
153 * NOTE: This data structure is stricly ordered wr then attr. I.e the attr
154 * MUST come after wr. The ib_ud_wr is sized and copied in rvt_post_one_wr.
155 * The copy assumes that wr is first.
156 */
157 struct rvt_ud_wr {
158 struct ib_ud_wr wr;
159 struct rdma_ah_attr *attr;
160 };
161
162 /*
163 * Send work request queue entry.
164 * The size of the sg_list is determined when the QP is created and stored
165 * in qp->s_max_sge.
166 */
167 struct rvt_swqe {
168 union {
169 struct ib_send_wr wr; /* don't use wr.sg_list */
170 struct rvt_ud_wr ud_wr;
171 struct ib_reg_wr reg_wr;
172 struct ib_rdma_wr rdma_wr;
173 struct ib_atomic_wr atomic_wr;
174 };
175 u32 psn; /* first packet sequence number */
176 u32 lpsn; /* last packet sequence number */
177 u32 ssn; /* send sequence number */
178 u32 length; /* total length of data in sg_list */
179 void *priv; /* driver dependent field */
180 struct rvt_sge sg_list[];
181 };
182
183 /**
184 * struct rvt_krwq - kernel struct receive work request
185 * @p_lock: lock to protect producer of the kernel buffer
186 * @head: index of next entry to fill
187 * @c_lock: lock to protect consumer of the kernel buffer
188 * @tail: index of next entry to pull
189 * @count: count is approximate of total receive entries posted
190 * @curr_wq: struct of receive work request queue entry
191 *
192 * This structure is used to contain the head pointer,
193 * tail pointer and receive work queue entries for kernel
194 * mode user.
195 */
196 struct rvt_krwq {
197 spinlock_t p_lock; /* protect producer */
198 u32 head; /* new work requests posted to the head */
199
200 /* protect consumer */
201 spinlock_t c_lock ____cacheline_aligned_in_smp;
202 u32 tail; /* receives pull requests from here. */
203 u32 count; /* approx count of receive entries posted */
204 struct rvt_rwqe *curr_wq;
205 struct rvt_rwqe wq[];
206 };
207
208 /*
209 * rvt_get_swqe_ah - Return the pointer to the struct rvt_ah
210 * @swqe: valid Send WQE
211 *
212 */
rvt_get_swqe_ah(struct rvt_swqe * swqe)213 static inline struct rvt_ah *rvt_get_swqe_ah(struct rvt_swqe *swqe)
214 {
215 return ibah_to_rvtah(swqe->ud_wr.wr.ah);
216 }
217
218 /**
219 * rvt_get_swqe_ah_attr - Return the cached ah attribute information
220 * @swqe: valid Send WQE
221 *
222 */
rvt_get_swqe_ah_attr(struct rvt_swqe * swqe)223 static inline struct rdma_ah_attr *rvt_get_swqe_ah_attr(struct rvt_swqe *swqe)
224 {
225 return swqe->ud_wr.attr;
226 }
227
228 /**
229 * rvt_get_swqe_remote_qpn - Access the remote QPN value
230 * @swqe: valid Send WQE
231 *
232 */
rvt_get_swqe_remote_qpn(struct rvt_swqe * swqe)233 static inline u32 rvt_get_swqe_remote_qpn(struct rvt_swqe *swqe)
234 {
235 return swqe->ud_wr.wr.remote_qpn;
236 }
237
238 /**
239 * rvt_get_swqe_remote_qkey - Acces the remote qkey value
240 * @swqe: valid Send WQE
241 *
242 */
rvt_get_swqe_remote_qkey(struct rvt_swqe * swqe)243 static inline u32 rvt_get_swqe_remote_qkey(struct rvt_swqe *swqe)
244 {
245 return swqe->ud_wr.wr.remote_qkey;
246 }
247
248 /**
249 * rvt_get_swqe_pkey_index - Access the pkey index
250 * @swqe: valid Send WQE
251 *
252 */
rvt_get_swqe_pkey_index(struct rvt_swqe * swqe)253 static inline u16 rvt_get_swqe_pkey_index(struct rvt_swqe *swqe)
254 {
255 return swqe->ud_wr.wr.pkey_index;
256 }
257
258 struct rvt_rq {
259 struct rvt_rwq *wq;
260 struct rvt_krwq *kwq;
261 u32 size; /* size of RWQE array */
262 u8 max_sge;
263 /* protect changes in this struct */
264 spinlock_t lock ____cacheline_aligned_in_smp;
265 };
266
267 /**
268 * rvt_get_rq_count - count numbers of request work queue entries
269 * in circular buffer
270 * @rq: data structure for request queue entry
271 * @head: head indices of the circular buffer
272 * @tail: tail indices of the circular buffer
273 *
274 * Return - total number of entries in the Receive Queue
275 */
276
rvt_get_rq_count(struct rvt_rq * rq,u32 head,u32 tail)277 static inline u32 rvt_get_rq_count(struct rvt_rq *rq, u32 head, u32 tail)
278 {
279 u32 count = head - tail;
280
281 if ((s32)count < 0)
282 count += rq->size;
283 return count;
284 }
285
286 /*
287 * This structure holds the information that the send tasklet needs
288 * to send a RDMA read response or atomic operation.
289 */
290 struct rvt_ack_entry {
291 struct rvt_sge rdma_sge;
292 u64 atomic_data;
293 u32 psn;
294 u32 lpsn;
295 u8 opcode;
296 u8 sent;
297 void *priv;
298 };
299
300 #define RC_QP_SCALING_INTERVAL 5
301
302 #define RVT_OPERATION_PRIV 0x00000001
303 #define RVT_OPERATION_ATOMIC 0x00000002
304 #define RVT_OPERATION_ATOMIC_SGE 0x00000004
305 #define RVT_OPERATION_LOCAL 0x00000008
306 #define RVT_OPERATION_USE_RESERVE 0x00000010
307 #define RVT_OPERATION_IGN_RNR_CNT 0x00000020
308
309 #define RVT_OPERATION_MAX (IB_WR_RESERVED10 + 1)
310
311 /**
312 * struct rvt_operation_params - op table entry
313 * @length: the length to copy into the swqe entry
314 * @qpt_support: a bit mask indicating QP type support
315 * @flags: RVT_OPERATION flags (see above)
316 *
317 * This supports table driven post send so that
318 * the driver can have differing an potentially
319 * different sets of operations.
320 *
321 **/
322
323 struct rvt_operation_params {
324 size_t length;
325 u32 qpt_support;
326 u32 flags;
327 };
328
329 /*
330 * Common variables are protected by both r_rq.lock and s_lock in that order
331 * which only happens in modify_qp() or changing the QP 'state'.
332 */
333 struct rvt_qp {
334 struct ib_qp ibqp;
335 void *priv; /* Driver private data */
336 /* read mostly fields above and below */
337 struct rdma_ah_attr remote_ah_attr;
338 struct rdma_ah_attr alt_ah_attr;
339 struct rvt_qp __rcu *next; /* link list for QPN hash table */
340 struct rvt_swqe *s_wq; /* send work queue */
341 struct rvt_mmap_info *ip;
342
343 unsigned long timeout_jiffies; /* computed from timeout */
344
345 int srate_mbps; /* s_srate (below) converted to Mbit/s */
346 pid_t pid; /* pid for user mode QPs */
347 u32 remote_qpn;
348 u32 qkey; /* QKEY for this QP (for UD or RD) */
349 u32 s_size; /* send work queue size */
350
351 u16 pmtu; /* decoded from path_mtu */
352 u8 log_pmtu; /* shift for pmtu */
353 u8 state; /* QP state */
354 u8 allowed_ops; /* high order bits of allowed opcodes */
355 u8 qp_access_flags;
356 u8 alt_timeout; /* Alternate path timeout for this QP */
357 u8 timeout; /* Timeout for this QP */
358 u8 s_srate;
359 u8 s_mig_state;
360 u8 port_num;
361 u8 s_pkey_index; /* PKEY index to use */
362 u8 s_alt_pkey_index; /* Alternate path PKEY index to use */
363 u8 r_max_rd_atomic; /* max number of RDMA read/atomic to receive */
364 u8 s_max_rd_atomic; /* max number of RDMA read/atomic to send */
365 u8 s_retry_cnt; /* number of times to retry */
366 u8 s_rnr_retry_cnt;
367 u8 r_min_rnr_timer; /* retry timeout value for RNR NAKs */
368 u8 s_max_sge; /* size of s_wq->sg_list */
369 u8 s_draining;
370
371 /* start of read/write fields */
372 atomic_t refcount ____cacheline_aligned_in_smp;
373 wait_queue_head_t wait;
374
375 struct rvt_ack_entry *s_ack_queue;
376 struct rvt_sge_state s_rdma_read_sge;
377
378 spinlock_t r_lock ____cacheline_aligned_in_smp; /* used for APM */
379 u32 r_psn; /* expected rcv packet sequence number */
380 unsigned long r_aflags;
381 u64 r_wr_id; /* ID for current receive WQE */
382 u32 r_ack_psn; /* PSN for next ACK or atomic ACK */
383 u32 r_len; /* total length of r_sge */
384 u32 r_rcv_len; /* receive data len processed */
385 u32 r_msn; /* message sequence number */
386
387 u8 r_state; /* opcode of last packet received */
388 u8 r_flags;
389 u8 r_head_ack_queue; /* index into s_ack_queue[] */
390 u8 r_adefered; /* defered ack count */
391
392 struct list_head rspwait; /* link for waiting to respond */
393
394 struct rvt_sge_state r_sge; /* current receive data */
395 struct rvt_rq r_rq; /* receive work queue */
396
397 /* post send line */
398 spinlock_t s_hlock ____cacheline_aligned_in_smp;
399 u32 s_head; /* new entries added here */
400 u32 s_next_psn; /* PSN for next request */
401 u32 s_avail; /* number of entries avail */
402 u32 s_ssn; /* SSN of tail entry */
403 atomic_t s_reserved_used; /* reserved entries in use */
404
405 spinlock_t s_lock ____cacheline_aligned_in_smp;
406 u32 s_flags;
407 struct rvt_sge_state *s_cur_sge;
408 struct rvt_swqe *s_wqe;
409 struct rvt_sge_state s_sge; /* current send request data */
410 struct rvt_mregion *s_rdma_mr;
411 u32 s_len; /* total length of s_sge */
412 u32 s_rdma_read_len; /* total length of s_rdma_read_sge */
413 u32 s_last_psn; /* last response PSN processed */
414 u32 s_sending_psn; /* lowest PSN that is being sent */
415 u32 s_sending_hpsn; /* highest PSN that is being sent */
416 u32 s_psn; /* current packet sequence number */
417 u32 s_ack_rdma_psn; /* PSN for sending RDMA read responses */
418 u32 s_ack_psn; /* PSN for acking sends and RDMA writes */
419 u32 s_tail; /* next entry to process */
420 u32 s_cur; /* current work queue entry */
421 u32 s_acked; /* last un-ACK'ed entry */
422 u32 s_last; /* last completed entry */
423 u32 s_lsn; /* limit sequence number (credit) */
424 u32 s_ahgpsn; /* set to the psn in the copy of the header */
425 u16 s_cur_size; /* size of send packet in bytes */
426 u16 s_rdma_ack_cnt;
427 u8 s_hdrwords; /* size of s_hdr in 32 bit words */
428 s8 s_ahgidx;
429 u8 s_state; /* opcode of last packet sent */
430 u8 s_ack_state; /* opcode of packet to ACK */
431 u8 s_nak_state; /* non-zero if NAK is pending */
432 u8 r_nak_state; /* non-zero if NAK is pending */
433 u8 s_retry; /* requester retry counter */
434 u8 s_rnr_retry; /* requester RNR retry counter */
435 u8 s_num_rd_atomic; /* number of RDMA read/atomic pending */
436 u8 s_tail_ack_queue; /* index into s_ack_queue[] */
437 u8 s_acked_ack_queue; /* index into s_ack_queue[] */
438
439 struct rvt_sge_state s_ack_rdma_sge;
440 struct timer_list s_timer;
441 struct hrtimer s_rnr_timer;
442
443 atomic_t local_ops_pending; /* number of fast_reg/local_inv reqs */
444
445 /*
446 * This sge list MUST be last. Do not add anything below here.
447 */
448 struct rvt_sge *r_sg_list /* verified SGEs */
449 ____cacheline_aligned_in_smp;
450 };
451
452 struct rvt_srq {
453 struct ib_srq ibsrq;
454 struct rvt_rq rq;
455 struct rvt_mmap_info *ip;
456 /* send signal when number of RWQEs < limit */
457 u32 limit;
458 };
459
ibsrq_to_rvtsrq(struct ib_srq * ibsrq)460 static inline struct rvt_srq *ibsrq_to_rvtsrq(struct ib_srq *ibsrq)
461 {
462 return container_of(ibsrq, struct rvt_srq, ibsrq);
463 }
464
ibqp_to_rvtqp(struct ib_qp * ibqp)465 static inline struct rvt_qp *ibqp_to_rvtqp(struct ib_qp *ibqp)
466 {
467 return container_of(ibqp, struct rvt_qp, ibqp);
468 }
469
470 #define RVT_QPN_MAX BIT(24)
471 #define RVT_QPNMAP_ENTRIES (RVT_QPN_MAX / PAGE_SIZE / BITS_PER_BYTE)
472 #define RVT_BITS_PER_PAGE (PAGE_SIZE * BITS_PER_BYTE)
473 #define RVT_BITS_PER_PAGE_MASK (RVT_BITS_PER_PAGE - 1)
474 #define RVT_QPN_MASK IB_QPN_MASK
475
476 /*
477 * QPN-map pages start out as NULL, they get allocated upon
478 * first use and are never deallocated. This way,
479 * large bitmaps are not allocated unless large numbers of QPs are used.
480 */
481 struct rvt_qpn_map {
482 void *page;
483 };
484
485 struct rvt_qpn_table {
486 spinlock_t lock; /* protect changes to the qp table */
487 unsigned flags; /* flags for QP0/1 allocated for each port */
488 u32 last; /* last QP number allocated */
489 u32 nmaps; /* size of the map table */
490 u16 limit;
491 u8 incr;
492 /* bit map of free QP numbers other than 0/1 */
493 struct rvt_qpn_map map[RVT_QPNMAP_ENTRIES];
494 };
495
496 struct rvt_qp_ibdev {
497 u32 qp_table_size;
498 u32 qp_table_bits;
499 struct rvt_qp __rcu **qp_table;
500 spinlock_t qpt_lock; /* qptable lock */
501 struct rvt_qpn_table qpn_table;
502 };
503
504 /*
505 * There is one struct rvt_mcast for each multicast GID.
506 * All attached QPs are then stored as a list of
507 * struct rvt_mcast_qp.
508 */
509 struct rvt_mcast_qp {
510 struct list_head list;
511 struct rvt_qp *qp;
512 };
513
514 struct rvt_mcast_addr {
515 union ib_gid mgid;
516 u16 lid;
517 };
518
519 struct rvt_mcast {
520 struct rb_node rb_node;
521 struct rvt_mcast_addr mcast_addr;
522 struct list_head qp_list;
523 wait_queue_head_t wait;
524 atomic_t refcount;
525 int n_attached;
526 };
527
528 /*
529 * Since struct rvt_swqe is not a fixed size, we can't simply index into
530 * struct rvt_qp.s_wq. This function does the array index computation.
531 */
rvt_get_swqe_ptr(struct rvt_qp * qp,unsigned n)532 static inline struct rvt_swqe *rvt_get_swqe_ptr(struct rvt_qp *qp,
533 unsigned n)
534 {
535 return (struct rvt_swqe *)((char *)qp->s_wq +
536 (sizeof(struct rvt_swqe) +
537 qp->s_max_sge *
538 sizeof(struct rvt_sge)) * n);
539 }
540
541 /*
542 * Since struct rvt_rwqe is not a fixed size, we can't simply index into
543 * struct rvt_rwq.wq. This function does the array index computation.
544 */
rvt_get_rwqe_ptr(struct rvt_rq * rq,unsigned n)545 static inline struct rvt_rwqe *rvt_get_rwqe_ptr(struct rvt_rq *rq, unsigned n)
546 {
547 return (struct rvt_rwqe *)
548 ((char *)rq->kwq->curr_wq +
549 (sizeof(struct rvt_rwqe) +
550 rq->max_sge * sizeof(struct ib_sge)) * n);
551 }
552
553 /**
554 * rvt_is_user_qp - return if this is user mode QP
555 * @qp: the target QP
556 */
rvt_is_user_qp(struct rvt_qp * qp)557 static inline bool rvt_is_user_qp(struct rvt_qp *qp)
558 {
559 return !!qp->pid;
560 }
561
562 /**
563 * rvt_get_qp - get a QP reference
564 * @qp: the QP to hold
565 */
rvt_get_qp(struct rvt_qp * qp)566 static inline void rvt_get_qp(struct rvt_qp *qp)
567 {
568 atomic_inc(&qp->refcount);
569 }
570
571 /**
572 * rvt_put_qp - release a QP reference
573 * @qp: the QP to release
574 */
rvt_put_qp(struct rvt_qp * qp)575 static inline void rvt_put_qp(struct rvt_qp *qp)
576 {
577 if (qp && atomic_dec_and_test(&qp->refcount))
578 wake_up(&qp->wait);
579 }
580
581 /**
582 * rvt_put_swqe - drop mr refs held by swqe
583 * @wqe: the send wqe
584 *
585 * This drops any mr references held by the swqe
586 */
rvt_put_swqe(struct rvt_swqe * wqe)587 static inline void rvt_put_swqe(struct rvt_swqe *wqe)
588 {
589 int i;
590
591 for (i = 0; i < wqe->wr.num_sge; i++) {
592 struct rvt_sge *sge = &wqe->sg_list[i];
593
594 rvt_put_mr(sge->mr);
595 }
596 }
597
598 /**
599 * rvt_qp_wqe_reserve - reserve operation
600 * @qp: the rvt qp
601 * @wqe: the send wqe
602 *
603 * This routine used in post send to record
604 * a wqe relative reserved operation use.
605 */
rvt_qp_wqe_reserve(struct rvt_qp * qp,struct rvt_swqe * wqe)606 static inline void rvt_qp_wqe_reserve(
607 struct rvt_qp *qp,
608 struct rvt_swqe *wqe)
609 {
610 atomic_inc(&qp->s_reserved_used);
611 }
612
613 /**
614 * rvt_qp_wqe_unreserve - clean reserved operation
615 * @qp: the rvt qp
616 * @flags: send wqe flags
617 *
618 * This decrements the reserve use count.
619 *
620 * This call MUST precede the change to
621 * s_last to insure that post send sees a stable
622 * s_avail.
623 *
624 * An smp_mp__after_atomic() is used to insure
625 * the compiler does not juggle the order of the s_last
626 * ring index and the decrementing of s_reserved_used.
627 */
rvt_qp_wqe_unreserve(struct rvt_qp * qp,int flags)628 static inline void rvt_qp_wqe_unreserve(struct rvt_qp *qp, int flags)
629 {
630 if (unlikely(flags & RVT_SEND_RESERVE_USED)) {
631 atomic_dec(&qp->s_reserved_used);
632 /* insure no compiler re-order up to s_last change */
633 smp_mb__after_atomic();
634 }
635 }
636
637 extern const enum ib_wc_opcode ib_rvt_wc_opcode[];
638
639 /*
640 * Compare the lower 24 bits of the msn values.
641 * Returns an integer <, ==, or > than zero.
642 */
rvt_cmp_msn(u32 a,u32 b)643 static inline int rvt_cmp_msn(u32 a, u32 b)
644 {
645 return (((int)a) - ((int)b)) << 8;
646 }
647
648 __be32 rvt_compute_aeth(struct rvt_qp *qp);
649
650 void rvt_get_credit(struct rvt_qp *qp, u32 aeth);
651
652 u32 rvt_restart_sge(struct rvt_sge_state *ss, struct rvt_swqe *wqe, u32 len);
653
654 /**
655 * rvt_div_round_up_mtu - round up divide
656 * @qp: the qp pair
657 * @len: the length
658 *
659 * Perform a shift based mtu round up divide
660 */
rvt_div_round_up_mtu(struct rvt_qp * qp,u32 len)661 static inline u32 rvt_div_round_up_mtu(struct rvt_qp *qp, u32 len)
662 {
663 return (len + qp->pmtu - 1) >> qp->log_pmtu;
664 }
665
666 /**
667 * rvt_div_mtu - shift-based divide
668 * @qp: the qp pair
669 * @len: the length
670 *
671 * Perform a shift based mtu divide
672 */
rvt_div_mtu(struct rvt_qp * qp,u32 len)673 static inline u32 rvt_div_mtu(struct rvt_qp *qp, u32 len)
674 {
675 return len >> qp->log_pmtu;
676 }
677
678 /**
679 * rvt_timeout_to_jiffies - Convert a ULP timeout input into jiffies
680 * @timeout: timeout input(0 - 31).
681 *
682 * Return a timeout value in jiffies.
683 */
rvt_timeout_to_jiffies(u8 timeout)684 static inline unsigned long rvt_timeout_to_jiffies(u8 timeout)
685 {
686 if (timeout > 31)
687 timeout = 31;
688
689 return usecs_to_jiffies(1U << timeout) * 4096UL / 1000UL;
690 }
691
692 /**
693 * rvt_lookup_qpn - return the QP with the given QPN
694 * @rdi: rvt device info structure
695 * @rvp: the ibport
696 * @qpn: the QP number to look up
697 *
698 * The caller must hold the rcu_read_lock(), and keep the lock until
699 * the returned qp is no longer in use.
700 */
rvt_lookup_qpn(struct rvt_dev_info * rdi,struct rvt_ibport * rvp,u32 qpn)701 static inline struct rvt_qp *rvt_lookup_qpn(struct rvt_dev_info *rdi,
702 struct rvt_ibport *rvp,
703 u32 qpn) __must_hold(RCU)
704 {
705 struct rvt_qp *qp = NULL;
706
707 if (unlikely(qpn <= 1)) {
708 qp = rcu_dereference(rvp->qp[qpn]);
709 } else {
710 u32 n = hash_32(qpn, rdi->qp_dev->qp_table_bits);
711
712 for (qp = rcu_dereference(rdi->qp_dev->qp_table[n]); qp;
713 qp = rcu_dereference(qp->next))
714 if (qp->ibqp.qp_num == qpn)
715 break;
716 }
717 return qp;
718 }
719
720 /**
721 * rvt_mod_retry_timer_ext - mod a retry timer
722 * @qp: the QP
723 * @shift: timeout shift to wait for multiple packets
724 * Modify a potentially already running retry timer
725 */
rvt_mod_retry_timer_ext(struct rvt_qp * qp,u8 shift)726 static inline void rvt_mod_retry_timer_ext(struct rvt_qp *qp, u8 shift)
727 {
728 struct ib_qp *ibqp = &qp->ibqp;
729 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
730
731 lockdep_assert_held(&qp->s_lock);
732 qp->s_flags |= RVT_S_TIMER;
733 /* 4.096 usec. * (1 << qp->timeout) */
734 mod_timer(&qp->s_timer, jiffies + rdi->busy_jiffies +
735 (qp->timeout_jiffies << shift));
736 }
737
rvt_mod_retry_timer(struct rvt_qp * qp)738 static inline void rvt_mod_retry_timer(struct rvt_qp *qp)
739 {
740 return rvt_mod_retry_timer_ext(qp, 0);
741 }
742
743 /**
744 * rvt_put_qp_swqe - drop refs held by swqe
745 * @qp: the send qp
746 * @wqe: the send wqe
747 *
748 * This drops any references held by the swqe
749 */
rvt_put_qp_swqe(struct rvt_qp * qp,struct rvt_swqe * wqe)750 static inline void rvt_put_qp_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
751 {
752 rvt_put_swqe(wqe);
753 if (qp->allowed_ops == IB_OPCODE_UD)
754 rdma_destroy_ah_attr(wqe->ud_wr.attr);
755 }
756
757 /**
758 * rvt_qp_swqe_incr - increment ring index
759 * @qp: the qp
760 * @val: the starting value
761 *
762 * Return: the new value wrapping as appropriate
763 */
764 static inline u32
rvt_qp_swqe_incr(struct rvt_qp * qp,u32 val)765 rvt_qp_swqe_incr(struct rvt_qp *qp, u32 val)
766 {
767 if (++val >= qp->s_size)
768 val = 0;
769 return val;
770 }
771
772 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err);
773
774 /**
775 * rvt_recv_cq - add a new entry to completion queue
776 * by receive queue
777 * @qp: receive queue
778 * @wc: work completion entry to add
779 * @solicited: true if @entry is solicited
780 *
781 * This is wrapper function for rvt_enter_cq function call by
782 * receive queue. If rvt_cq_enter return false, it means cq is
783 * full and the qp is put into error state.
784 */
rvt_recv_cq(struct rvt_qp * qp,struct ib_wc * wc,bool solicited)785 static inline void rvt_recv_cq(struct rvt_qp *qp, struct ib_wc *wc,
786 bool solicited)
787 {
788 struct rvt_cq *cq = ibcq_to_rvtcq(qp->ibqp.recv_cq);
789
790 if (unlikely(!rvt_cq_enter(cq, wc, solicited)))
791 rvt_error_qp(qp, IB_WC_LOC_QP_OP_ERR);
792 }
793
794 /**
795 * rvt_send_cq - add a new entry to completion queue
796 * by send queue
797 * @qp: send queue
798 * @wc: work completion entry to add
799 * @solicited: true if @entry is solicited
800 *
801 * This is wrapper function for rvt_enter_cq function call by
802 * send queue. If rvt_cq_enter return false, it means cq is
803 * full and the qp is put into error state.
804 */
rvt_send_cq(struct rvt_qp * qp,struct ib_wc * wc,bool solicited)805 static inline void rvt_send_cq(struct rvt_qp *qp, struct ib_wc *wc,
806 bool solicited)
807 {
808 struct rvt_cq *cq = ibcq_to_rvtcq(qp->ibqp.send_cq);
809
810 if (unlikely(!rvt_cq_enter(cq, wc, solicited)))
811 rvt_error_qp(qp, IB_WC_LOC_QP_OP_ERR);
812 }
813
814 /**
815 * rvt_qp_complete_swqe - insert send completion
816 * @qp: the qp
817 * @wqe: the send wqe
818 * @opcode: wc operation (driver dependent)
819 * @status: completion status
820 *
821 * Update the s_last information, and then insert a send
822 * completion into the completion
823 * queue if the qp indicates it should be done.
824 *
825 * See IBTA 10.7.3.1 for info on completion
826 * control.
827 *
828 * Return: new last
829 */
830 static inline u32
rvt_qp_complete_swqe(struct rvt_qp * qp,struct rvt_swqe * wqe,enum ib_wc_opcode opcode,enum ib_wc_status status)831 rvt_qp_complete_swqe(struct rvt_qp *qp,
832 struct rvt_swqe *wqe,
833 enum ib_wc_opcode opcode,
834 enum ib_wc_status status)
835 {
836 bool need_completion;
837 u64 wr_id;
838 u32 byte_len, last;
839 int flags = wqe->wr.send_flags;
840
841 rvt_qp_wqe_unreserve(qp, flags);
842 rvt_put_qp_swqe(qp, wqe);
843
844 need_completion =
845 !(flags & RVT_SEND_RESERVE_USED) &&
846 (!(qp->s_flags & RVT_S_SIGNAL_REQ_WR) ||
847 (flags & IB_SEND_SIGNALED) ||
848 status != IB_WC_SUCCESS);
849 if (need_completion) {
850 wr_id = wqe->wr.wr_id;
851 byte_len = wqe->length;
852 /* above fields required before writing s_last */
853 }
854 last = rvt_qp_swqe_incr(qp, qp->s_last);
855 /* see rvt_qp_is_avail() */
856 smp_store_release(&qp->s_last, last);
857 if (need_completion) {
858 struct ib_wc w = {
859 .wr_id = wr_id,
860 .status = status,
861 .opcode = opcode,
862 .qp = &qp->ibqp,
863 .byte_len = byte_len,
864 };
865 rvt_send_cq(qp, &w, status != IB_WC_SUCCESS);
866 }
867 return last;
868 }
869
870 extern const int ib_rvt_state_ops[];
871
872 struct rvt_dev_info;
873 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only);
874 void rvt_comm_est(struct rvt_qp *qp);
875 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err);
876 unsigned long rvt_rnr_tbl_to_usec(u32 index);
877 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t);
878 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth);
879 void rvt_del_timers_sync(struct rvt_qp *qp);
880 void rvt_stop_rc_timers(struct rvt_qp *qp);
881 void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift);
rvt_add_retry_timer(struct rvt_qp * qp)882 static inline void rvt_add_retry_timer(struct rvt_qp *qp)
883 {
884 rvt_add_retry_timer_ext(qp, 0);
885 }
886
887 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss,
888 void *data, u32 length,
889 bool release, bool copy_last);
890 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe,
891 enum ib_wc_status status);
892 void rvt_ruc_loopback(struct rvt_qp *qp);
893
894 /**
895 * struct rvt_qp_iter - the iterator for QPs
896 * @qp: the current QP
897 *
898 * This structure defines the current iterator
899 * state for sequenced access to all QPs relative
900 * to an rvt_dev_info.
901 */
902 struct rvt_qp_iter {
903 struct rvt_qp *qp;
904 /* private: backpointer */
905 struct rvt_dev_info *rdi;
906 /* private: callback routine */
907 void (*cb)(struct rvt_qp *qp, u64 v);
908 /* private: for arg to callback routine */
909 u64 v;
910 /* private: number of SMI,GSI QPs for device */
911 int specials;
912 /* private: current iterator index */
913 int n;
914 };
915
916 /**
917 * ib_cq_tail - Return tail index of cq buffer
918 * @send_cq: The cq for send
919 *
920 * This is called in qp_iter_print to get tail
921 * of cq buffer.
922 */
ib_cq_tail(struct ib_cq * send_cq)923 static inline u32 ib_cq_tail(struct ib_cq *send_cq)
924 {
925 struct rvt_cq *cq = ibcq_to_rvtcq(send_cq);
926
927 return ibcq_to_rvtcq(send_cq)->ip ?
928 RDMA_READ_UAPI_ATOMIC(cq->queue->tail) :
929 ibcq_to_rvtcq(send_cq)->kqueue->tail;
930 }
931
932 /**
933 * ib_cq_head - Return head index of cq buffer
934 * @send_cq: The cq for send
935 *
936 * This is called in qp_iter_print to get head
937 * of cq buffer.
938 */
ib_cq_head(struct ib_cq * send_cq)939 static inline u32 ib_cq_head(struct ib_cq *send_cq)
940 {
941 struct rvt_cq *cq = ibcq_to_rvtcq(send_cq);
942
943 return ibcq_to_rvtcq(send_cq)->ip ?
944 RDMA_READ_UAPI_ATOMIC(cq->queue->head) :
945 ibcq_to_rvtcq(send_cq)->kqueue->head;
946 }
947
948 /**
949 * rvt_free_rq - free memory allocated for rvt_rq struct
950 * @rq: request queue data structure
951 *
952 * This function should only be called if the rvt_mmap_info()
953 * has not succeeded.
954 */
rvt_free_rq(struct rvt_rq * rq)955 static inline void rvt_free_rq(struct rvt_rq *rq)
956 {
957 kvfree(rq->kwq);
958 rq->kwq = NULL;
959 vfree(rq->wq);
960 rq->wq = NULL;
961 }
962
963 /**
964 * rvt_to_iport - Get the ibport pointer
965 * @qp: the qp pointer
966 *
967 * This function returns the ibport pointer from the qp pointer.
968 */
rvt_to_iport(struct rvt_qp * qp)969 static inline struct rvt_ibport *rvt_to_iport(struct rvt_qp *qp)
970 {
971 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
972
973 return rdi->ports[qp->port_num - 1];
974 }
975
976 /**
977 * rvt_rc_credit_avail - Check if there are enough RC credits for the request
978 * @qp: the qp
979 * @wqe: the request
980 *
981 * This function returns false when there are not enough credits for the given
982 * request and true otherwise.
983 */
rvt_rc_credit_avail(struct rvt_qp * qp,struct rvt_swqe * wqe)984 static inline bool rvt_rc_credit_avail(struct rvt_qp *qp, struct rvt_swqe *wqe)
985 {
986 lockdep_assert_held(&qp->s_lock);
987 if (!(qp->s_flags & RVT_S_UNLIMITED_CREDIT) &&
988 rvt_cmp_msn(wqe->ssn, qp->s_lsn + 1) > 0) {
989 struct rvt_ibport *rvp = rvt_to_iport(qp);
990
991 qp->s_flags |= RVT_S_WAIT_SSN_CREDIT;
992 rvp->n_rc_crwaits++;
993 return false;
994 }
995 return true;
996 }
997
998 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
999 u64 v,
1000 void (*cb)(struct rvt_qp *qp, u64 v));
1001 int rvt_qp_iter_next(struct rvt_qp_iter *iter);
1002 void rvt_qp_iter(struct rvt_dev_info *rdi,
1003 u64 v,
1004 void (*cb)(struct rvt_qp *qp, u64 v));
1005 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey);
1006 #endif /* DEF_RDMAVT_INCQP_H */
1007