xref: /linux/kernel/workqueue.c (revision 257a8be4e9a6fc3e821c337275256416750afa5b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/signal.h>
34 #include <linux/completion.h>
35 #include <linux/workqueue.h>
36 #include <linux/slab.h>
37 #include <linux/cpu.h>
38 #include <linux/notifier.h>
39 #include <linux/kthread.h>
40 #include <linux/hardirq.h>
41 #include <linux/mempolicy.h>
42 #include <linux/freezer.h>
43 #include <linux/debug_locks.h>
44 #include <linux/lockdep.h>
45 #include <linux/idr.h>
46 #include <linux/jhash.h>
47 #include <linux/hashtable.h>
48 #include <linux/rculist.h>
49 #include <linux/nodemask.h>
50 #include <linux/moduleparam.h>
51 #include <linux/uaccess.h>
52 #include <linux/sched/isolation.h>
53 #include <linux/sched/debug.h>
54 #include <linux/nmi.h>
55 #include <linux/kvm_para.h>
56 #include <linux/delay.h>
57 #include <linux/irq_work.h>
58 
59 #include "workqueue_internal.h"
60 
61 enum worker_pool_flags {
62 	/*
63 	 * worker_pool flags
64 	 *
65 	 * A bound pool is either associated or disassociated with its CPU.
66 	 * While associated (!DISASSOCIATED), all workers are bound to the
67 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
68 	 * is in effect.
69 	 *
70 	 * While DISASSOCIATED, the cpu may be offline and all workers have
71 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
72 	 * be executing on any CPU.  The pool behaves as an unbound one.
73 	 *
74 	 * Note that DISASSOCIATED should be flipped only while holding
75 	 * wq_pool_attach_mutex to avoid changing binding state while
76 	 * worker_attach_to_pool() is in progress.
77 	 *
78 	 * As there can only be one concurrent BH execution context per CPU, a
79 	 * BH pool is per-CPU and always DISASSOCIATED.
80 	 */
81 	POOL_BH			= 1 << 0,	/* is a BH pool */
82 	POOL_MANAGER_ACTIVE	= 1 << 1,	/* being managed */
83 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
84 	POOL_BH_DRAINING	= 1 << 3,	/* draining after CPU offline */
85 };
86 
87 enum worker_flags {
88 	/* worker flags */
89 	WORKER_DIE		= 1 << 1,	/* die die die */
90 	WORKER_IDLE		= 1 << 2,	/* is idle */
91 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
92 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
93 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
94 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
95 
96 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
97 				  WORKER_UNBOUND | WORKER_REBOUND,
98 };
99 
100 enum work_cancel_flags {
101 	WORK_CANCEL_DELAYED	= 1 << 0,	/* canceling a delayed_work */
102 	WORK_CANCEL_DISABLE	= 1 << 1,	/* canceling to disable */
103 };
104 
105 enum wq_internal_consts {
106 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
107 
108 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
109 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
110 
111 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
112 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
113 
114 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
115 						/* call for help after 10ms
116 						   (min two ticks) */
117 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
118 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
119 
120 	/*
121 	 * Rescue workers are used only on emergencies and shared by
122 	 * all cpus.  Give MIN_NICE.
123 	 */
124 	RESCUER_NICE_LEVEL	= MIN_NICE,
125 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
126 
127 	WQ_NAME_LEN		= 32,
128 	WORKER_ID_LEN		= 10 + WQ_NAME_LEN, /* "kworker/R-" + WQ_NAME_LEN */
129 };
130 
131 /*
132  * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
133  * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
134  * msecs_to_jiffies() can't be an initializer.
135  */
136 #define BH_WORKER_JIFFIES	msecs_to_jiffies(2)
137 #define BH_WORKER_RESTARTS	10
138 
139 /*
140  * Structure fields follow one of the following exclusion rules.
141  *
142  * I: Modifiable by initialization/destruction paths and read-only for
143  *    everyone else.
144  *
145  * P: Preemption protected.  Disabling preemption is enough and should
146  *    only be modified and accessed from the local cpu.
147  *
148  * L: pool->lock protected.  Access with pool->lock held.
149  *
150  * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
151  *     reads.
152  *
153  * K: Only modified by worker while holding pool->lock. Can be safely read by
154  *    self, while holding pool->lock or from IRQ context if %current is the
155  *    kworker.
156  *
157  * S: Only modified by worker self.
158  *
159  * A: wq_pool_attach_mutex protected.
160  *
161  * PL: wq_pool_mutex protected.
162  *
163  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
164  *
165  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
166  *
167  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
168  *      RCU for reads.
169  *
170  * WQ: wq->mutex protected.
171  *
172  * WR: wq->mutex protected for writes.  RCU protected for reads.
173  *
174  * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
175  *     with READ_ONCE() without locking.
176  *
177  * MD: wq_mayday_lock protected.
178  *
179  * WD: Used internally by the watchdog.
180  */
181 
182 /* struct worker is defined in workqueue_internal.h */
183 
184 struct worker_pool {
185 	raw_spinlock_t		lock;		/* the pool lock */
186 	int			cpu;		/* I: the associated cpu */
187 	int			node;		/* I: the associated node ID */
188 	int			id;		/* I: pool ID */
189 	unsigned int		flags;		/* L: flags */
190 
191 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
192 	bool			cpu_stall;	/* WD: stalled cpu bound pool */
193 
194 	/*
195 	 * The counter is incremented in a process context on the associated CPU
196 	 * w/ preemption disabled, and decremented or reset in the same context
197 	 * but w/ pool->lock held. The readers grab pool->lock and are
198 	 * guaranteed to see if the counter reached zero.
199 	 */
200 	int			nr_running;
201 
202 	struct list_head	worklist;	/* L: list of pending works */
203 
204 	int			nr_workers;	/* L: total number of workers */
205 	int			nr_idle;	/* L: currently idle workers */
206 
207 	struct list_head	idle_list;	/* L: list of idle workers */
208 	struct timer_list	idle_timer;	/* L: worker idle timeout */
209 	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
210 
211 	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
212 
213 	/* a workers is either on busy_hash or idle_list, or the manager */
214 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
215 						/* L: hash of busy workers */
216 
217 	struct worker		*manager;	/* L: purely informational */
218 	struct list_head	workers;	/* A: attached workers */
219 
220 	struct ida		worker_ida;	/* worker IDs for task name */
221 
222 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
223 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
224 	int			refcnt;		/* PL: refcnt for unbound pools */
225 
226 	/*
227 	 * Destruction of pool is RCU protected to allow dereferences
228 	 * from get_work_pool().
229 	 */
230 	struct rcu_head		rcu;
231 };
232 
233 /*
234  * Per-pool_workqueue statistics. These can be monitored using
235  * tools/workqueue/wq_monitor.py.
236  */
237 enum pool_workqueue_stats {
238 	PWQ_STAT_STARTED,	/* work items started execution */
239 	PWQ_STAT_COMPLETED,	/* work items completed execution */
240 	PWQ_STAT_CPU_TIME,	/* total CPU time consumed */
241 	PWQ_STAT_CPU_INTENSIVE,	/* wq_cpu_intensive_thresh_us violations */
242 	PWQ_STAT_CM_WAKEUP,	/* concurrency-management worker wakeups */
243 	PWQ_STAT_REPATRIATED,	/* unbound workers brought back into scope */
244 	PWQ_STAT_MAYDAY,	/* maydays to rescuer */
245 	PWQ_STAT_RESCUED,	/* linked work items executed by rescuer */
246 
247 	PWQ_NR_STATS,
248 };
249 
250 /*
251  * The per-pool workqueue.  While queued, bits below WORK_PWQ_SHIFT
252  * of work_struct->data are used for flags and the remaining high bits
253  * point to the pwq; thus, pwqs need to be aligned at two's power of the
254  * number of flag bits.
255  */
256 struct pool_workqueue {
257 	struct worker_pool	*pool;		/* I: the associated pool */
258 	struct workqueue_struct *wq;		/* I: the owning workqueue */
259 	int			work_color;	/* L: current color */
260 	int			flush_color;	/* L: flushing color */
261 	int			refcnt;		/* L: reference count */
262 	int			nr_in_flight[WORK_NR_COLORS];
263 						/* L: nr of in_flight works */
264 	bool			plugged;	/* L: execution suspended */
265 
266 	/*
267 	 * nr_active management and WORK_STRUCT_INACTIVE:
268 	 *
269 	 * When pwq->nr_active >= max_active, new work item is queued to
270 	 * pwq->inactive_works instead of pool->worklist and marked with
271 	 * WORK_STRUCT_INACTIVE.
272 	 *
273 	 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
274 	 * nr_active and all work items in pwq->inactive_works are marked with
275 	 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
276 	 * in pwq->inactive_works. Some of them are ready to run in
277 	 * pool->worklist or worker->scheduled. Those work itmes are only struct
278 	 * wq_barrier which is used for flush_work() and should not participate
279 	 * in nr_active. For non-barrier work item, it is marked with
280 	 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
281 	 */
282 	int			nr_active;	/* L: nr of active works */
283 	struct list_head	inactive_works;	/* L: inactive works */
284 	struct list_head	pending_node;	/* LN: node on wq_node_nr_active->pending_pwqs */
285 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
286 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
287 
288 	u64			stats[PWQ_NR_STATS];
289 
290 	/*
291 	 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
292 	 * and pwq_release_workfn() for details. pool_workqueue itself is also
293 	 * RCU protected so that the first pwq can be determined without
294 	 * grabbing wq->mutex.
295 	 */
296 	struct kthread_work	release_work;
297 	struct rcu_head		rcu;
298 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT);
299 
300 /*
301  * Structure used to wait for workqueue flush.
302  */
303 struct wq_flusher {
304 	struct list_head	list;		/* WQ: list of flushers */
305 	int			flush_color;	/* WQ: flush color waiting for */
306 	struct completion	done;		/* flush completion */
307 };
308 
309 struct wq_device;
310 
311 /*
312  * Unlike in a per-cpu workqueue where max_active limits its concurrency level
313  * on each CPU, in an unbound workqueue, max_active applies to the whole system.
314  * As sharing a single nr_active across multiple sockets can be very expensive,
315  * the counting and enforcement is per NUMA node.
316  *
317  * The following struct is used to enforce per-node max_active. When a pwq wants
318  * to start executing a work item, it should increment ->nr using
319  * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
320  * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
321  * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
322  * round-robin order.
323  */
324 struct wq_node_nr_active {
325 	int			max;		/* per-node max_active */
326 	atomic_t		nr;		/* per-node nr_active */
327 	raw_spinlock_t		lock;		/* nests inside pool locks */
328 	struct list_head	pending_pwqs;	/* LN: pwqs with inactive works */
329 };
330 
331 /*
332  * The externally visible workqueue.  It relays the issued work items to
333  * the appropriate worker_pool through its pool_workqueues.
334  */
335 struct workqueue_struct {
336 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
337 	struct list_head	list;		/* PR: list of all workqueues */
338 
339 	struct mutex		mutex;		/* protects this wq */
340 	int			work_color;	/* WQ: current work color */
341 	int			flush_color;	/* WQ: current flush color */
342 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
343 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
344 	struct list_head	flusher_queue;	/* WQ: flush waiters */
345 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
346 
347 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
348 	struct worker		*rescuer;	/* MD: rescue worker */
349 
350 	int			nr_drainers;	/* WQ: drain in progress */
351 
352 	/* See alloc_workqueue() function comment for info on min/max_active */
353 	int			max_active;	/* WO: max active works */
354 	int			min_active;	/* WO: min active works */
355 	int			saved_max_active; /* WQ: saved max_active */
356 	int			saved_min_active; /* WQ: saved min_active */
357 
358 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
359 	struct pool_workqueue __rcu *dfl_pwq;   /* PW: only for unbound wqs */
360 
361 #ifdef CONFIG_SYSFS
362 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
363 #endif
364 #ifdef CONFIG_LOCKDEP
365 	char			*lock_name;
366 	struct lock_class_key	key;
367 	struct lockdep_map	__lockdep_map;
368 	struct lockdep_map	*lockdep_map;
369 #endif
370 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
371 
372 	/*
373 	 * Destruction of workqueue_struct is RCU protected to allow walking
374 	 * the workqueues list without grabbing wq_pool_mutex.
375 	 * This is used to dump all workqueues from sysrq.
376 	 */
377 	struct rcu_head		rcu;
378 
379 	/* hot fields used during command issue, aligned to cacheline */
380 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
381 	struct pool_workqueue __rcu * __percpu *cpu_pwq; /* I: per-cpu pwqs */
382 	struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
383 };
384 
385 /*
386  * Each pod type describes how CPUs should be grouped for unbound workqueues.
387  * See the comment above workqueue_attrs->affn_scope.
388  */
389 struct wq_pod_type {
390 	int			nr_pods;	/* number of pods */
391 	cpumask_var_t		*pod_cpus;	/* pod -> cpus */
392 	int			*pod_node;	/* pod -> node */
393 	int			*cpu_pod;	/* cpu -> pod */
394 };
395 
396 struct work_offq_data {
397 	u32			pool_id;
398 	u32			disable;
399 	u32			flags;
400 };
401 
402 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
403 	[WQ_AFFN_DFL]		= "default",
404 	[WQ_AFFN_CPU]		= "cpu",
405 	[WQ_AFFN_SMT]		= "smt",
406 	[WQ_AFFN_CACHE]		= "cache",
407 	[WQ_AFFN_NUMA]		= "numa",
408 	[WQ_AFFN_SYSTEM]	= "system",
409 };
410 
411 /*
412  * Per-cpu work items which run for longer than the following threshold are
413  * automatically considered CPU intensive and excluded from concurrency
414  * management to prevent them from noticeably delaying other per-cpu work items.
415  * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
416  * The actual value is initialized in wq_cpu_intensive_thresh_init().
417  */
418 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
419 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
420 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
421 static unsigned int wq_cpu_intensive_warning_thresh = 4;
422 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644);
423 #endif
424 
425 /* see the comment above the definition of WQ_POWER_EFFICIENT */
426 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
427 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
428 
429 static bool wq_online;			/* can kworkers be created yet? */
430 static bool wq_topo_initialized __read_mostly = false;
431 
432 static struct kmem_cache *pwq_cache;
433 
434 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
435 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
436 
437 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
438 static struct workqueue_attrs *unbound_wq_update_pwq_attrs_buf;
439 
440 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
441 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
442 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
443 /* wait for manager to go away */
444 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
445 
446 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
447 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
448 
449 /* PL: mirror the cpu_online_mask excluding the CPU in the midst of hotplugging */
450 static cpumask_var_t wq_online_cpumask;
451 
452 /* PL&A: allowable cpus for unbound wqs and work items */
453 static cpumask_var_t wq_unbound_cpumask;
454 
455 /* PL: user requested unbound cpumask via sysfs */
456 static cpumask_var_t wq_requested_unbound_cpumask;
457 
458 /* PL: isolated cpumask to be excluded from unbound cpumask */
459 static cpumask_var_t wq_isolated_cpumask;
460 
461 /* for further constrain wq_unbound_cpumask by cmdline parameter*/
462 static struct cpumask wq_cmdline_cpumask __initdata;
463 
464 /* CPU where unbound work was last round robin scheduled from this CPU */
465 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
466 
467 /*
468  * Local execution of unbound work items is no longer guaranteed.  The
469  * following always forces round-robin CPU selection on unbound work items
470  * to uncover usages which depend on it.
471  */
472 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
473 static bool wq_debug_force_rr_cpu = true;
474 #else
475 static bool wq_debug_force_rr_cpu = false;
476 #endif
477 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
478 
479 /* to raise softirq for the BH worker pools on other CPUs */
480 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS], bh_pool_irq_works);
481 
482 /* the BH worker pools */
483 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], bh_worker_pools);
484 
485 /* the per-cpu worker pools */
486 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
487 
488 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
489 
490 /* PL: hash of all unbound pools keyed by pool->attrs */
491 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
492 
493 /* I: attributes used when instantiating standard unbound pools on demand */
494 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
495 
496 /* I: attributes used when instantiating ordered pools on demand */
497 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
498 
499 /*
500  * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
501  * process context while holding a pool lock. Bounce to a dedicated kthread
502  * worker to avoid A-A deadlocks.
503  */
504 static struct kthread_worker *pwq_release_worker __ro_after_init;
505 
506 struct workqueue_struct *system_wq __ro_after_init;
507 EXPORT_SYMBOL(system_wq);
508 struct workqueue_struct *system_highpri_wq __ro_after_init;
509 EXPORT_SYMBOL_GPL(system_highpri_wq);
510 struct workqueue_struct *system_long_wq __ro_after_init;
511 EXPORT_SYMBOL_GPL(system_long_wq);
512 struct workqueue_struct *system_unbound_wq __ro_after_init;
513 EXPORT_SYMBOL_GPL(system_unbound_wq);
514 struct workqueue_struct *system_freezable_wq __ro_after_init;
515 EXPORT_SYMBOL_GPL(system_freezable_wq);
516 struct workqueue_struct *system_power_efficient_wq __ro_after_init;
517 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
518 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
519 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
520 struct workqueue_struct *system_bh_wq;
521 EXPORT_SYMBOL_GPL(system_bh_wq);
522 struct workqueue_struct *system_bh_highpri_wq;
523 EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
524 
525 static int worker_thread(void *__worker);
526 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
527 static void show_pwq(struct pool_workqueue *pwq);
528 static void show_one_worker_pool(struct worker_pool *pool);
529 
530 #define CREATE_TRACE_POINTS
531 #include <trace/events/workqueue.h>
532 
533 #define assert_rcu_or_pool_mutex()					\
534 	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
535 			 !lockdep_is_held(&wq_pool_mutex),		\
536 			 "RCU or wq_pool_mutex should be held")
537 
538 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
539 	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
540 			 !lockdep_is_held(&wq->mutex) &&		\
541 			 !lockdep_is_held(&wq_pool_mutex),		\
542 			 "RCU, wq->mutex or wq_pool_mutex should be held")
543 
544 #define for_each_bh_worker_pool(pool, cpu)				\
545 	for ((pool) = &per_cpu(bh_worker_pools, cpu)[0];		\
546 	     (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
547 	     (pool)++)
548 
549 #define for_each_cpu_worker_pool(pool, cpu)				\
550 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
551 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
552 	     (pool)++)
553 
554 /**
555  * for_each_pool - iterate through all worker_pools in the system
556  * @pool: iteration cursor
557  * @pi: integer used for iteration
558  *
559  * This must be called either with wq_pool_mutex held or RCU read
560  * locked.  If the pool needs to be used beyond the locking in effect, the
561  * caller is responsible for guaranteeing that the pool stays online.
562  *
563  * The if/else clause exists only for the lockdep assertion and can be
564  * ignored.
565  */
566 #define for_each_pool(pool, pi)						\
567 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
568 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
569 		else
570 
571 /**
572  * for_each_pool_worker - iterate through all workers of a worker_pool
573  * @worker: iteration cursor
574  * @pool: worker_pool to iterate workers of
575  *
576  * This must be called with wq_pool_attach_mutex.
577  *
578  * The if/else clause exists only for the lockdep assertion and can be
579  * ignored.
580  */
581 #define for_each_pool_worker(worker, pool)				\
582 	list_for_each_entry((worker), &(pool)->workers, node)		\
583 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
584 		else
585 
586 /**
587  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
588  * @pwq: iteration cursor
589  * @wq: the target workqueue
590  *
591  * This must be called either with wq->mutex held or RCU read locked.
592  * If the pwq needs to be used beyond the locking in effect, the caller is
593  * responsible for guaranteeing that the pwq stays online.
594  *
595  * The if/else clause exists only for the lockdep assertion and can be
596  * ignored.
597  */
598 #define for_each_pwq(pwq, wq)						\
599 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
600 				 lockdep_is_held(&(wq->mutex)))
601 
602 #ifdef CONFIG_DEBUG_OBJECTS_WORK
603 
604 static const struct debug_obj_descr work_debug_descr;
605 
work_debug_hint(void * addr)606 static void *work_debug_hint(void *addr)
607 {
608 	return ((struct work_struct *) addr)->func;
609 }
610 
work_is_static_object(void * addr)611 static bool work_is_static_object(void *addr)
612 {
613 	struct work_struct *work = addr;
614 
615 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
616 }
617 
618 /*
619  * fixup_init is called when:
620  * - an active object is initialized
621  */
work_fixup_init(void * addr,enum debug_obj_state state)622 static bool work_fixup_init(void *addr, enum debug_obj_state state)
623 {
624 	struct work_struct *work = addr;
625 
626 	switch (state) {
627 	case ODEBUG_STATE_ACTIVE:
628 		cancel_work_sync(work);
629 		debug_object_init(work, &work_debug_descr);
630 		return true;
631 	default:
632 		return false;
633 	}
634 }
635 
636 /*
637  * fixup_free is called when:
638  * - an active object is freed
639  */
work_fixup_free(void * addr,enum debug_obj_state state)640 static bool work_fixup_free(void *addr, enum debug_obj_state state)
641 {
642 	struct work_struct *work = addr;
643 
644 	switch (state) {
645 	case ODEBUG_STATE_ACTIVE:
646 		cancel_work_sync(work);
647 		debug_object_free(work, &work_debug_descr);
648 		return true;
649 	default:
650 		return false;
651 	}
652 }
653 
654 static const struct debug_obj_descr work_debug_descr = {
655 	.name		= "work_struct",
656 	.debug_hint	= work_debug_hint,
657 	.is_static_object = work_is_static_object,
658 	.fixup_init	= work_fixup_init,
659 	.fixup_free	= work_fixup_free,
660 };
661 
debug_work_activate(struct work_struct * work)662 static inline void debug_work_activate(struct work_struct *work)
663 {
664 	debug_object_activate(work, &work_debug_descr);
665 }
666 
debug_work_deactivate(struct work_struct * work)667 static inline void debug_work_deactivate(struct work_struct *work)
668 {
669 	debug_object_deactivate(work, &work_debug_descr);
670 }
671 
__init_work(struct work_struct * work,int onstack)672 void __init_work(struct work_struct *work, int onstack)
673 {
674 	if (onstack)
675 		debug_object_init_on_stack(work, &work_debug_descr);
676 	else
677 		debug_object_init(work, &work_debug_descr);
678 }
679 EXPORT_SYMBOL_GPL(__init_work);
680 
destroy_work_on_stack(struct work_struct * work)681 void destroy_work_on_stack(struct work_struct *work)
682 {
683 	debug_object_free(work, &work_debug_descr);
684 }
685 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
686 
destroy_delayed_work_on_stack(struct delayed_work * work)687 void destroy_delayed_work_on_stack(struct delayed_work *work)
688 {
689 	destroy_timer_on_stack(&work->timer);
690 	debug_object_free(&work->work, &work_debug_descr);
691 }
692 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
693 
694 #else
debug_work_activate(struct work_struct * work)695 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)696 static inline void debug_work_deactivate(struct work_struct *work) { }
697 #endif
698 
699 /**
700  * worker_pool_assign_id - allocate ID and assign it to @pool
701  * @pool: the pool pointer of interest
702  *
703  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
704  * successfully, -errno on failure.
705  */
worker_pool_assign_id(struct worker_pool * pool)706 static int worker_pool_assign_id(struct worker_pool *pool)
707 {
708 	int ret;
709 
710 	lockdep_assert_held(&wq_pool_mutex);
711 
712 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
713 			GFP_KERNEL);
714 	if (ret >= 0) {
715 		pool->id = ret;
716 		return 0;
717 	}
718 	return ret;
719 }
720 
721 static struct pool_workqueue __rcu **
unbound_pwq_slot(struct workqueue_struct * wq,int cpu)722 unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
723 {
724        if (cpu >= 0)
725                return per_cpu_ptr(wq->cpu_pwq, cpu);
726        else
727                return &wq->dfl_pwq;
728 }
729 
730 /* @cpu < 0 for dfl_pwq */
unbound_pwq(struct workqueue_struct * wq,int cpu)731 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
732 {
733 	return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
734 				     lockdep_is_held(&wq_pool_mutex) ||
735 				     lockdep_is_held(&wq->mutex));
736 }
737 
738 /**
739  * unbound_effective_cpumask - effective cpumask of an unbound workqueue
740  * @wq: workqueue of interest
741  *
742  * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
743  * is masked with wq_unbound_cpumask to determine the effective cpumask. The
744  * default pwq is always mapped to the pool with the current effective cpumask.
745  */
unbound_effective_cpumask(struct workqueue_struct * wq)746 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
747 {
748 	return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
749 }
750 
work_color_to_flags(int color)751 static unsigned int work_color_to_flags(int color)
752 {
753 	return color << WORK_STRUCT_COLOR_SHIFT;
754 }
755 
get_work_color(unsigned long work_data)756 static int get_work_color(unsigned long work_data)
757 {
758 	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
759 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
760 }
761 
work_next_color(int color)762 static int work_next_color(int color)
763 {
764 	return (color + 1) % WORK_NR_COLORS;
765 }
766 
pool_offq_flags(struct worker_pool * pool)767 static unsigned long pool_offq_flags(struct worker_pool *pool)
768 {
769 	return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0;
770 }
771 
772 /*
773  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
774  * contain the pointer to the queued pwq.  Once execution starts, the flag
775  * is cleared and the high bits contain OFFQ flags and pool ID.
776  *
777  * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling()
778  * can be used to set the pwq, pool or clear work->data. These functions should
779  * only be called while the work is owned - ie. while the PENDING bit is set.
780  *
781  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
782  * corresponding to a work.  Pool is available once the work has been
783  * queued anywhere after initialization until it is sync canceled.  pwq is
784  * available only while the work item is queued.
785  */
set_work_data(struct work_struct * work,unsigned long data)786 static inline void set_work_data(struct work_struct *work, unsigned long data)
787 {
788 	WARN_ON_ONCE(!work_pending(work));
789 	atomic_long_set(&work->data, data | work_static(work));
790 }
791 
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long flags)792 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
793 			 unsigned long flags)
794 {
795 	set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING |
796 		      WORK_STRUCT_PWQ | flags);
797 }
798 
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id,unsigned long flags)799 static void set_work_pool_and_keep_pending(struct work_struct *work,
800 					   int pool_id, unsigned long flags)
801 {
802 	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
803 		      WORK_STRUCT_PENDING | flags);
804 }
805 
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id,unsigned long flags)806 static void set_work_pool_and_clear_pending(struct work_struct *work,
807 					    int pool_id, unsigned long flags)
808 {
809 	/*
810 	 * The following wmb is paired with the implied mb in
811 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
812 	 * here are visible to and precede any updates by the next PENDING
813 	 * owner.
814 	 */
815 	smp_wmb();
816 	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
817 		      flags);
818 	/*
819 	 * The following mb guarantees that previous clear of a PENDING bit
820 	 * will not be reordered with any speculative LOADS or STORES from
821 	 * work->current_func, which is executed afterwards.  This possible
822 	 * reordering can lead to a missed execution on attempt to queue
823 	 * the same @work.  E.g. consider this case:
824 	 *
825 	 *   CPU#0                         CPU#1
826 	 *   ----------------------------  --------------------------------
827 	 *
828 	 * 1  STORE event_indicated
829 	 * 2  queue_work_on() {
830 	 * 3    test_and_set_bit(PENDING)
831 	 * 4 }                             set_..._and_clear_pending() {
832 	 * 5                                 set_work_data() # clear bit
833 	 * 6                                 smp_mb()
834 	 * 7                               work->current_func() {
835 	 * 8				      LOAD event_indicated
836 	 *				   }
837 	 *
838 	 * Without an explicit full barrier speculative LOAD on line 8 can
839 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
840 	 * CPU#0 observes the PENDING bit is still set and new execution of
841 	 * a @work is not queued in a hope, that CPU#1 will eventually
842 	 * finish the queued @work.  Meanwhile CPU#1 does not see
843 	 * event_indicated is set, because speculative LOAD was executed
844 	 * before actual STORE.
845 	 */
846 	smp_mb();
847 }
848 
work_struct_pwq(unsigned long data)849 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
850 {
851 	return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK);
852 }
853 
get_work_pwq(struct work_struct * work)854 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
855 {
856 	unsigned long data = atomic_long_read(&work->data);
857 
858 	if (data & WORK_STRUCT_PWQ)
859 		return work_struct_pwq(data);
860 	else
861 		return NULL;
862 }
863 
864 /**
865  * get_work_pool - return the worker_pool a given work was associated with
866  * @work: the work item of interest
867  *
868  * Pools are created and destroyed under wq_pool_mutex, and allows read
869  * access under RCU read lock.  As such, this function should be
870  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
871  *
872  * All fields of the returned pool are accessible as long as the above
873  * mentioned locking is in effect.  If the returned pool needs to be used
874  * beyond the critical section, the caller is responsible for ensuring the
875  * returned pool is and stays online.
876  *
877  * Return: The worker_pool @work was last associated with.  %NULL if none.
878  */
get_work_pool(struct work_struct * work)879 static struct worker_pool *get_work_pool(struct work_struct *work)
880 {
881 	unsigned long data = atomic_long_read(&work->data);
882 	int pool_id;
883 
884 	assert_rcu_or_pool_mutex();
885 
886 	if (data & WORK_STRUCT_PWQ)
887 		return work_struct_pwq(data)->pool;
888 
889 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
890 	if (pool_id == WORK_OFFQ_POOL_NONE)
891 		return NULL;
892 
893 	return idr_find(&worker_pool_idr, pool_id);
894 }
895 
shift_and_mask(unsigned long v,u32 shift,u32 bits)896 static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits)
897 {
898 	return (v >> shift) & ((1U << bits) - 1);
899 }
900 
work_offqd_unpack(struct work_offq_data * offqd,unsigned long data)901 static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data)
902 {
903 	WARN_ON_ONCE(data & WORK_STRUCT_PWQ);
904 
905 	offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT,
906 					WORK_OFFQ_POOL_BITS);
907 	offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT,
908 					WORK_OFFQ_DISABLE_BITS);
909 	offqd->flags = data & WORK_OFFQ_FLAG_MASK;
910 }
911 
work_offqd_pack_flags(struct work_offq_data * offqd)912 static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd)
913 {
914 	return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) |
915 		((unsigned long)offqd->flags);
916 }
917 
918 /*
919  * Policy functions.  These define the policies on how the global worker
920  * pools are managed.  Unless noted otherwise, these functions assume that
921  * they're being called with pool->lock held.
922  */
923 
924 /*
925  * Need to wake up a worker?  Called from anything but currently
926  * running workers.
927  *
928  * Note that, because unbound workers never contribute to nr_running, this
929  * function will always return %true for unbound pools as long as the
930  * worklist isn't empty.
931  */
need_more_worker(struct worker_pool * pool)932 static bool need_more_worker(struct worker_pool *pool)
933 {
934 	return !list_empty(&pool->worklist) && !pool->nr_running;
935 }
936 
937 /* Can I start working?  Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)938 static bool may_start_working(struct worker_pool *pool)
939 {
940 	return pool->nr_idle;
941 }
942 
943 /* Do I need to keep working?  Called from currently running workers. */
keep_working(struct worker_pool * pool)944 static bool keep_working(struct worker_pool *pool)
945 {
946 	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
947 }
948 
949 /* Do we need a new worker?  Called from manager. */
need_to_create_worker(struct worker_pool * pool)950 static bool need_to_create_worker(struct worker_pool *pool)
951 {
952 	return need_more_worker(pool) && !may_start_working(pool);
953 }
954 
955 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)956 static bool too_many_workers(struct worker_pool *pool)
957 {
958 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
959 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
960 	int nr_busy = pool->nr_workers - nr_idle;
961 
962 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
963 }
964 
965 /**
966  * worker_set_flags - set worker flags and adjust nr_running accordingly
967  * @worker: self
968  * @flags: flags to set
969  *
970  * Set @flags in @worker->flags and adjust nr_running accordingly.
971  */
worker_set_flags(struct worker * worker,unsigned int flags)972 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
973 {
974 	struct worker_pool *pool = worker->pool;
975 
976 	lockdep_assert_held(&pool->lock);
977 
978 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
979 	if ((flags & WORKER_NOT_RUNNING) &&
980 	    !(worker->flags & WORKER_NOT_RUNNING)) {
981 		pool->nr_running--;
982 	}
983 
984 	worker->flags |= flags;
985 }
986 
987 /**
988  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
989  * @worker: self
990  * @flags: flags to clear
991  *
992  * Clear @flags in @worker->flags and adjust nr_running accordingly.
993  */
worker_clr_flags(struct worker * worker,unsigned int flags)994 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
995 {
996 	struct worker_pool *pool = worker->pool;
997 	unsigned int oflags = worker->flags;
998 
999 	lockdep_assert_held(&pool->lock);
1000 
1001 	worker->flags &= ~flags;
1002 
1003 	/*
1004 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1005 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1006 	 * of multiple flags, not a single flag.
1007 	 */
1008 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1009 		if (!(worker->flags & WORKER_NOT_RUNNING))
1010 			pool->nr_running++;
1011 }
1012 
1013 /* Return the first idle worker.  Called with pool->lock held. */
first_idle_worker(struct worker_pool * pool)1014 static struct worker *first_idle_worker(struct worker_pool *pool)
1015 {
1016 	if (unlikely(list_empty(&pool->idle_list)))
1017 		return NULL;
1018 
1019 	return list_first_entry(&pool->idle_list, struct worker, entry);
1020 }
1021 
1022 /**
1023  * worker_enter_idle - enter idle state
1024  * @worker: worker which is entering idle state
1025  *
1026  * @worker is entering idle state.  Update stats and idle timer if
1027  * necessary.
1028  *
1029  * LOCKING:
1030  * raw_spin_lock_irq(pool->lock).
1031  */
worker_enter_idle(struct worker * worker)1032 static void worker_enter_idle(struct worker *worker)
1033 {
1034 	struct worker_pool *pool = worker->pool;
1035 
1036 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1037 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1038 			 (worker->hentry.next || worker->hentry.pprev)))
1039 		return;
1040 
1041 	/* can't use worker_set_flags(), also called from create_worker() */
1042 	worker->flags |= WORKER_IDLE;
1043 	pool->nr_idle++;
1044 	worker->last_active = jiffies;
1045 
1046 	/* idle_list is LIFO */
1047 	list_add(&worker->entry, &pool->idle_list);
1048 
1049 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1050 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1051 
1052 	/* Sanity check nr_running. */
1053 	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1054 }
1055 
1056 /**
1057  * worker_leave_idle - leave idle state
1058  * @worker: worker which is leaving idle state
1059  *
1060  * @worker is leaving idle state.  Update stats.
1061  *
1062  * LOCKING:
1063  * raw_spin_lock_irq(pool->lock).
1064  */
worker_leave_idle(struct worker * worker)1065 static void worker_leave_idle(struct worker *worker)
1066 {
1067 	struct worker_pool *pool = worker->pool;
1068 
1069 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1070 		return;
1071 	worker_clr_flags(worker, WORKER_IDLE);
1072 	pool->nr_idle--;
1073 	list_del_init(&worker->entry);
1074 }
1075 
1076 /**
1077  * find_worker_executing_work - find worker which is executing a work
1078  * @pool: pool of interest
1079  * @work: work to find worker for
1080  *
1081  * Find a worker which is executing @work on @pool by searching
1082  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1083  * to match, its current execution should match the address of @work and
1084  * its work function.  This is to avoid unwanted dependency between
1085  * unrelated work executions through a work item being recycled while still
1086  * being executed.
1087  *
1088  * This is a bit tricky.  A work item may be freed once its execution
1089  * starts and nothing prevents the freed area from being recycled for
1090  * another work item.  If the same work item address ends up being reused
1091  * before the original execution finishes, workqueue will identify the
1092  * recycled work item as currently executing and make it wait until the
1093  * current execution finishes, introducing an unwanted dependency.
1094  *
1095  * This function checks the work item address and work function to avoid
1096  * false positives.  Note that this isn't complete as one may construct a
1097  * work function which can introduce dependency onto itself through a
1098  * recycled work item.  Well, if somebody wants to shoot oneself in the
1099  * foot that badly, there's only so much we can do, and if such deadlock
1100  * actually occurs, it should be easy to locate the culprit work function.
1101  *
1102  * CONTEXT:
1103  * raw_spin_lock_irq(pool->lock).
1104  *
1105  * Return:
1106  * Pointer to worker which is executing @work if found, %NULL
1107  * otherwise.
1108  */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1109 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1110 						 struct work_struct *work)
1111 {
1112 	struct worker *worker;
1113 
1114 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1115 			       (unsigned long)work)
1116 		if (worker->current_work == work &&
1117 		    worker->current_func == work->func)
1118 			return worker;
1119 
1120 	return NULL;
1121 }
1122 
1123 /**
1124  * move_linked_works - move linked works to a list
1125  * @work: start of series of works to be scheduled
1126  * @head: target list to append @work to
1127  * @nextp: out parameter for nested worklist walking
1128  *
1129  * Schedule linked works starting from @work to @head. Work series to be
1130  * scheduled starts at @work and includes any consecutive work with
1131  * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1132  * @nextp.
1133  *
1134  * CONTEXT:
1135  * raw_spin_lock_irq(pool->lock).
1136  */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1137 static void move_linked_works(struct work_struct *work, struct list_head *head,
1138 			      struct work_struct **nextp)
1139 {
1140 	struct work_struct *n;
1141 
1142 	/*
1143 	 * Linked worklist will always end before the end of the list,
1144 	 * use NULL for list head.
1145 	 */
1146 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1147 		list_move_tail(&work->entry, head);
1148 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1149 			break;
1150 	}
1151 
1152 	/*
1153 	 * If we're already inside safe list traversal and have moved
1154 	 * multiple works to the scheduled queue, the next position
1155 	 * needs to be updated.
1156 	 */
1157 	if (nextp)
1158 		*nextp = n;
1159 }
1160 
1161 /**
1162  * assign_work - assign a work item and its linked work items to a worker
1163  * @work: work to assign
1164  * @worker: worker to assign to
1165  * @nextp: out parameter for nested worklist walking
1166  *
1167  * Assign @work and its linked work items to @worker. If @work is already being
1168  * executed by another worker in the same pool, it'll be punted there.
1169  *
1170  * If @nextp is not NULL, it's updated to point to the next work of the last
1171  * scheduled work. This allows assign_work() to be nested inside
1172  * list_for_each_entry_safe().
1173  *
1174  * Returns %true if @work was successfully assigned to @worker. %false if @work
1175  * was punted to another worker already executing it.
1176  */
assign_work(struct work_struct * work,struct worker * worker,struct work_struct ** nextp)1177 static bool assign_work(struct work_struct *work, struct worker *worker,
1178 			struct work_struct **nextp)
1179 {
1180 	struct worker_pool *pool = worker->pool;
1181 	struct worker *collision;
1182 
1183 	lockdep_assert_held(&pool->lock);
1184 
1185 	/*
1186 	 * A single work shouldn't be executed concurrently by multiple workers.
1187 	 * __queue_work() ensures that @work doesn't jump to a different pool
1188 	 * while still running in the previous pool. Here, we should ensure that
1189 	 * @work is not executed concurrently by multiple workers from the same
1190 	 * pool. Check whether anyone is already processing the work. If so,
1191 	 * defer the work to the currently executing one.
1192 	 */
1193 	collision = find_worker_executing_work(pool, work);
1194 	if (unlikely(collision)) {
1195 		move_linked_works(work, &collision->scheduled, nextp);
1196 		return false;
1197 	}
1198 
1199 	move_linked_works(work, &worker->scheduled, nextp);
1200 	return true;
1201 }
1202 
bh_pool_irq_work(struct worker_pool * pool)1203 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool)
1204 {
1205 	int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0;
1206 
1207 	return &per_cpu(bh_pool_irq_works, pool->cpu)[high];
1208 }
1209 
kick_bh_pool(struct worker_pool * pool)1210 static void kick_bh_pool(struct worker_pool *pool)
1211 {
1212 #ifdef CONFIG_SMP
1213 	/* see drain_dead_softirq_workfn() for BH_DRAINING */
1214 	if (unlikely(pool->cpu != smp_processor_id() &&
1215 		     !(pool->flags & POOL_BH_DRAINING))) {
1216 		irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu);
1217 		return;
1218 	}
1219 #endif
1220 	if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
1221 		raise_softirq_irqoff(HI_SOFTIRQ);
1222 	else
1223 		raise_softirq_irqoff(TASKLET_SOFTIRQ);
1224 }
1225 
1226 /**
1227  * kick_pool - wake up an idle worker if necessary
1228  * @pool: pool to kick
1229  *
1230  * @pool may have pending work items. Wake up worker if necessary. Returns
1231  * whether a worker was woken up.
1232  */
kick_pool(struct worker_pool * pool)1233 static bool kick_pool(struct worker_pool *pool)
1234 {
1235 	struct worker *worker = first_idle_worker(pool);
1236 	struct task_struct *p;
1237 
1238 	lockdep_assert_held(&pool->lock);
1239 
1240 	if (!need_more_worker(pool) || !worker)
1241 		return false;
1242 
1243 	if (pool->flags & POOL_BH) {
1244 		kick_bh_pool(pool);
1245 		return true;
1246 	}
1247 
1248 	p = worker->task;
1249 
1250 #ifdef CONFIG_SMP
1251 	/*
1252 	 * Idle @worker is about to execute @work and waking up provides an
1253 	 * opportunity to migrate @worker at a lower cost by setting the task's
1254 	 * wake_cpu field. Let's see if we want to move @worker to improve
1255 	 * execution locality.
1256 	 *
1257 	 * We're waking the worker that went idle the latest and there's some
1258 	 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1259 	 * so, setting the wake_cpu won't do anything. As this is a best-effort
1260 	 * optimization and the race window is narrow, let's leave as-is for
1261 	 * now. If this becomes pronounced, we can skip over workers which are
1262 	 * still on cpu when picking an idle worker.
1263 	 *
1264 	 * If @pool has non-strict affinity, @worker might have ended up outside
1265 	 * its affinity scope. Repatriate.
1266 	 */
1267 	if (!pool->attrs->affn_strict &&
1268 	    !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1269 		struct work_struct *work = list_first_entry(&pool->worklist,
1270 						struct work_struct, entry);
1271 		int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask,
1272 							  cpu_online_mask);
1273 		if (wake_cpu < nr_cpu_ids) {
1274 			p->wake_cpu = wake_cpu;
1275 			get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1276 		}
1277 	}
1278 #endif
1279 	wake_up_process(p);
1280 	return true;
1281 }
1282 
1283 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1284 
1285 /*
1286  * Concurrency-managed per-cpu work items that hog CPU for longer than
1287  * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1288  * which prevents them from stalling other concurrency-managed work items. If a
1289  * work function keeps triggering this mechanism, it's likely that the work item
1290  * should be using an unbound workqueue instead.
1291  *
1292  * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1293  * and report them so that they can be examined and converted to use unbound
1294  * workqueues as appropriate. To avoid flooding the console, each violating work
1295  * function is tracked and reported with exponential backoff.
1296  */
1297 #define WCI_MAX_ENTS 128
1298 
1299 struct wci_ent {
1300 	work_func_t		func;
1301 	atomic64_t		cnt;
1302 	struct hlist_node	hash_node;
1303 };
1304 
1305 static struct wci_ent wci_ents[WCI_MAX_ENTS];
1306 static int wci_nr_ents;
1307 static DEFINE_RAW_SPINLOCK(wci_lock);
1308 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1309 
wci_find_ent(work_func_t func)1310 static struct wci_ent *wci_find_ent(work_func_t func)
1311 {
1312 	struct wci_ent *ent;
1313 
1314 	hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1315 				   (unsigned long)func) {
1316 		if (ent->func == func)
1317 			return ent;
1318 	}
1319 	return NULL;
1320 }
1321 
wq_cpu_intensive_report(work_func_t func)1322 static void wq_cpu_intensive_report(work_func_t func)
1323 {
1324 	struct wci_ent *ent;
1325 
1326 restart:
1327 	ent = wci_find_ent(func);
1328 	if (ent) {
1329 		u64 cnt;
1330 
1331 		/*
1332 		 * Start reporting from the warning_thresh and back off
1333 		 * exponentially.
1334 		 */
1335 		cnt = atomic64_inc_return_relaxed(&ent->cnt);
1336 		if (wq_cpu_intensive_warning_thresh &&
1337 		    cnt >= wq_cpu_intensive_warning_thresh &&
1338 		    is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh))
1339 			printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1340 					ent->func, wq_cpu_intensive_thresh_us,
1341 					atomic64_read(&ent->cnt));
1342 		return;
1343 	}
1344 
1345 	/*
1346 	 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1347 	 * is exhausted, something went really wrong and we probably made enough
1348 	 * noise already.
1349 	 */
1350 	if (wci_nr_ents >= WCI_MAX_ENTS)
1351 		return;
1352 
1353 	raw_spin_lock(&wci_lock);
1354 
1355 	if (wci_nr_ents >= WCI_MAX_ENTS) {
1356 		raw_spin_unlock(&wci_lock);
1357 		return;
1358 	}
1359 
1360 	if (wci_find_ent(func)) {
1361 		raw_spin_unlock(&wci_lock);
1362 		goto restart;
1363 	}
1364 
1365 	ent = &wci_ents[wci_nr_ents++];
1366 	ent->func = func;
1367 	atomic64_set(&ent->cnt, 0);
1368 	hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1369 
1370 	raw_spin_unlock(&wci_lock);
1371 
1372 	goto restart;
1373 }
1374 
1375 #else	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
wq_cpu_intensive_report(work_func_t func)1376 static void wq_cpu_intensive_report(work_func_t func) {}
1377 #endif	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1378 
1379 /**
1380  * wq_worker_running - a worker is running again
1381  * @task: task waking up
1382  *
1383  * This function is called when a worker returns from schedule()
1384  */
wq_worker_running(struct task_struct * task)1385 void wq_worker_running(struct task_struct *task)
1386 {
1387 	struct worker *worker = kthread_data(task);
1388 
1389 	if (!READ_ONCE(worker->sleeping))
1390 		return;
1391 
1392 	/*
1393 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1394 	 * and the nr_running increment below, we may ruin the nr_running reset
1395 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1396 	 * pool. Protect against such race.
1397 	 */
1398 	preempt_disable();
1399 	if (!(worker->flags & WORKER_NOT_RUNNING))
1400 		worker->pool->nr_running++;
1401 	preempt_enable();
1402 
1403 	/*
1404 	 * CPU intensive auto-detection cares about how long a work item hogged
1405 	 * CPU without sleeping. Reset the starting timestamp on wakeup.
1406 	 */
1407 	worker->current_at = worker->task->se.sum_exec_runtime;
1408 
1409 	WRITE_ONCE(worker->sleeping, 0);
1410 }
1411 
1412 /**
1413  * wq_worker_sleeping - a worker is going to sleep
1414  * @task: task going to sleep
1415  *
1416  * This function is called from schedule() when a busy worker is
1417  * going to sleep.
1418  */
wq_worker_sleeping(struct task_struct * task)1419 void wq_worker_sleeping(struct task_struct *task)
1420 {
1421 	struct worker *worker = kthread_data(task);
1422 	struct worker_pool *pool;
1423 
1424 	/*
1425 	 * Rescuers, which may not have all the fields set up like normal
1426 	 * workers, also reach here, let's not access anything before
1427 	 * checking NOT_RUNNING.
1428 	 */
1429 	if (worker->flags & WORKER_NOT_RUNNING)
1430 		return;
1431 
1432 	pool = worker->pool;
1433 
1434 	/* Return if preempted before wq_worker_running() was reached */
1435 	if (READ_ONCE(worker->sleeping))
1436 		return;
1437 
1438 	WRITE_ONCE(worker->sleeping, 1);
1439 	raw_spin_lock_irq(&pool->lock);
1440 
1441 	/*
1442 	 * Recheck in case unbind_workers() preempted us. We don't
1443 	 * want to decrement nr_running after the worker is unbound
1444 	 * and nr_running has been reset.
1445 	 */
1446 	if (worker->flags & WORKER_NOT_RUNNING) {
1447 		raw_spin_unlock_irq(&pool->lock);
1448 		return;
1449 	}
1450 
1451 	pool->nr_running--;
1452 	if (kick_pool(pool))
1453 		worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1454 
1455 	raw_spin_unlock_irq(&pool->lock);
1456 }
1457 
1458 /**
1459  * wq_worker_tick - a scheduler tick occurred while a kworker is running
1460  * @task: task currently running
1461  *
1462  * Called from sched_tick(). We're in the IRQ context and the current
1463  * worker's fields which follow the 'K' locking rule can be accessed safely.
1464  */
wq_worker_tick(struct task_struct * task)1465 void wq_worker_tick(struct task_struct *task)
1466 {
1467 	struct worker *worker = kthread_data(task);
1468 	struct pool_workqueue *pwq = worker->current_pwq;
1469 	struct worker_pool *pool = worker->pool;
1470 
1471 	if (!pwq)
1472 		return;
1473 
1474 	pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1475 
1476 	if (!wq_cpu_intensive_thresh_us)
1477 		return;
1478 
1479 	/*
1480 	 * If the current worker is concurrency managed and hogged the CPU for
1481 	 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1482 	 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1483 	 *
1484 	 * Set @worker->sleeping means that @worker is in the process of
1485 	 * switching out voluntarily and won't be contributing to
1486 	 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1487 	 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1488 	 * double decrements. The task is releasing the CPU anyway. Let's skip.
1489 	 * We probably want to make this prettier in the future.
1490 	 */
1491 	if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1492 	    worker->task->se.sum_exec_runtime - worker->current_at <
1493 	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1494 		return;
1495 
1496 	raw_spin_lock(&pool->lock);
1497 
1498 	worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1499 	wq_cpu_intensive_report(worker->current_func);
1500 	pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1501 
1502 	if (kick_pool(pool))
1503 		pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1504 
1505 	raw_spin_unlock(&pool->lock);
1506 }
1507 
1508 /**
1509  * wq_worker_last_func - retrieve worker's last work function
1510  * @task: Task to retrieve last work function of.
1511  *
1512  * Determine the last function a worker executed. This is called from
1513  * the scheduler to get a worker's last known identity.
1514  *
1515  * CONTEXT:
1516  * raw_spin_lock_irq(rq->lock)
1517  *
1518  * This function is called during schedule() when a kworker is going
1519  * to sleep. It's used by psi to identify aggregation workers during
1520  * dequeuing, to allow periodic aggregation to shut-off when that
1521  * worker is the last task in the system or cgroup to go to sleep.
1522  *
1523  * As this function doesn't involve any workqueue-related locking, it
1524  * only returns stable values when called from inside the scheduler's
1525  * queuing and dequeuing paths, when @task, which must be a kworker,
1526  * is guaranteed to not be processing any works.
1527  *
1528  * Return:
1529  * The last work function %current executed as a worker, NULL if it
1530  * hasn't executed any work yet.
1531  */
wq_worker_last_func(struct task_struct * task)1532 work_func_t wq_worker_last_func(struct task_struct *task)
1533 {
1534 	struct worker *worker = kthread_data(task);
1535 
1536 	return worker->last_func;
1537 }
1538 
1539 /**
1540  * wq_node_nr_active - Determine wq_node_nr_active to use
1541  * @wq: workqueue of interest
1542  * @node: NUMA node, can be %NUMA_NO_NODE
1543  *
1544  * Determine wq_node_nr_active to use for @wq on @node. Returns:
1545  *
1546  * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1547  *
1548  * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1549  *
1550  * - Otherwise, node_nr_active[@node].
1551  */
wq_node_nr_active(struct workqueue_struct * wq,int node)1552 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1553 						   int node)
1554 {
1555 	if (!(wq->flags & WQ_UNBOUND))
1556 		return NULL;
1557 
1558 	if (node == NUMA_NO_NODE)
1559 		node = nr_node_ids;
1560 
1561 	return wq->node_nr_active[node];
1562 }
1563 
1564 /**
1565  * wq_update_node_max_active - Update per-node max_actives to use
1566  * @wq: workqueue to update
1567  * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1568  *
1569  * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1570  * distributed among nodes according to the proportions of numbers of online
1571  * cpus. The result is always between @wq->min_active and max_active.
1572  */
wq_update_node_max_active(struct workqueue_struct * wq,int off_cpu)1573 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1574 {
1575 	struct cpumask *effective = unbound_effective_cpumask(wq);
1576 	int min_active = READ_ONCE(wq->min_active);
1577 	int max_active = READ_ONCE(wq->max_active);
1578 	int total_cpus, node;
1579 
1580 	lockdep_assert_held(&wq->mutex);
1581 
1582 	if (!wq_topo_initialized)
1583 		return;
1584 
1585 	if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
1586 		off_cpu = -1;
1587 
1588 	total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1589 	if (off_cpu >= 0)
1590 		total_cpus--;
1591 
1592 	/* If all CPUs of the wq get offline, use the default values */
1593 	if (unlikely(!total_cpus)) {
1594 		for_each_node(node)
1595 			wq_node_nr_active(wq, node)->max = min_active;
1596 
1597 		wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1598 		return;
1599 	}
1600 
1601 	for_each_node(node) {
1602 		int node_cpus;
1603 
1604 		node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1605 		if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1606 			node_cpus--;
1607 
1608 		wq_node_nr_active(wq, node)->max =
1609 			clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1610 			      min_active, max_active);
1611 	}
1612 
1613 	wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1614 }
1615 
1616 /**
1617  * get_pwq - get an extra reference on the specified pool_workqueue
1618  * @pwq: pool_workqueue to get
1619  *
1620  * Obtain an extra reference on @pwq.  The caller should guarantee that
1621  * @pwq has positive refcnt and be holding the matching pool->lock.
1622  */
get_pwq(struct pool_workqueue * pwq)1623 static void get_pwq(struct pool_workqueue *pwq)
1624 {
1625 	lockdep_assert_held(&pwq->pool->lock);
1626 	WARN_ON_ONCE(pwq->refcnt <= 0);
1627 	pwq->refcnt++;
1628 }
1629 
1630 /**
1631  * put_pwq - put a pool_workqueue reference
1632  * @pwq: pool_workqueue to put
1633  *
1634  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1635  * destruction.  The caller should be holding the matching pool->lock.
1636  */
put_pwq(struct pool_workqueue * pwq)1637 static void put_pwq(struct pool_workqueue *pwq)
1638 {
1639 	lockdep_assert_held(&pwq->pool->lock);
1640 	if (likely(--pwq->refcnt))
1641 		return;
1642 	/*
1643 	 * @pwq can't be released under pool->lock, bounce to a dedicated
1644 	 * kthread_worker to avoid A-A deadlocks.
1645 	 */
1646 	kthread_queue_work(pwq_release_worker, &pwq->release_work);
1647 }
1648 
1649 /**
1650  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1651  * @pwq: pool_workqueue to put (can be %NULL)
1652  *
1653  * put_pwq() with locking.  This function also allows %NULL @pwq.
1654  */
put_pwq_unlocked(struct pool_workqueue * pwq)1655 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1656 {
1657 	if (pwq) {
1658 		/*
1659 		 * As both pwqs and pools are RCU protected, the
1660 		 * following lock operations are safe.
1661 		 */
1662 		raw_spin_lock_irq(&pwq->pool->lock);
1663 		put_pwq(pwq);
1664 		raw_spin_unlock_irq(&pwq->pool->lock);
1665 	}
1666 }
1667 
pwq_is_empty(struct pool_workqueue * pwq)1668 static bool pwq_is_empty(struct pool_workqueue *pwq)
1669 {
1670 	return !pwq->nr_active && list_empty(&pwq->inactive_works);
1671 }
1672 
__pwq_activate_work(struct pool_workqueue * pwq,struct work_struct * work)1673 static void __pwq_activate_work(struct pool_workqueue *pwq,
1674 				struct work_struct *work)
1675 {
1676 	unsigned long *wdb = work_data_bits(work);
1677 
1678 	WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
1679 	trace_workqueue_activate_work(work);
1680 	if (list_empty(&pwq->pool->worklist))
1681 		pwq->pool->watchdog_ts = jiffies;
1682 	move_linked_works(work, &pwq->pool->worklist, NULL);
1683 	__clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
1684 }
1685 
tryinc_node_nr_active(struct wq_node_nr_active * nna)1686 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1687 {
1688 	int max = READ_ONCE(nna->max);
1689 
1690 	while (true) {
1691 		int old, tmp;
1692 
1693 		old = atomic_read(&nna->nr);
1694 		if (old >= max)
1695 			return false;
1696 		tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1);
1697 		if (tmp == old)
1698 			return true;
1699 	}
1700 }
1701 
1702 /**
1703  * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1704  * @pwq: pool_workqueue of interest
1705  * @fill: max_active may have increased, try to increase concurrency level
1706  *
1707  * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1708  * successfully obtained. %false otherwise.
1709  */
pwq_tryinc_nr_active(struct pool_workqueue * pwq,bool fill)1710 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1711 {
1712 	struct workqueue_struct *wq = pwq->wq;
1713 	struct worker_pool *pool = pwq->pool;
1714 	struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
1715 	bool obtained = false;
1716 
1717 	lockdep_assert_held(&pool->lock);
1718 
1719 	if (!nna) {
1720 		/* BH or per-cpu workqueue, pwq->nr_active is sufficient */
1721 		obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1722 		goto out;
1723 	}
1724 
1725 	if (unlikely(pwq->plugged))
1726 		return false;
1727 
1728 	/*
1729 	 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1730 	 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1731 	 * concurrency level. Don't jump the line.
1732 	 *
1733 	 * We need to ignore the pending test after max_active has increased as
1734 	 * pwq_dec_nr_active() can only maintain the concurrency level but not
1735 	 * increase it. This is indicated by @fill.
1736 	 */
1737 	if (!list_empty(&pwq->pending_node) && likely(!fill))
1738 		goto out;
1739 
1740 	obtained = tryinc_node_nr_active(nna);
1741 	if (obtained)
1742 		goto out;
1743 
1744 	/*
1745 	 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1746 	 * and try again. The smp_mb() is paired with the implied memory barrier
1747 	 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1748 	 * we see the decremented $nna->nr or they see non-empty
1749 	 * $nna->pending_pwqs.
1750 	 */
1751 	raw_spin_lock(&nna->lock);
1752 
1753 	if (list_empty(&pwq->pending_node))
1754 		list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1755 	else if (likely(!fill))
1756 		goto out_unlock;
1757 
1758 	smp_mb();
1759 
1760 	obtained = tryinc_node_nr_active(nna);
1761 
1762 	/*
1763 	 * If @fill, @pwq might have already been pending. Being spuriously
1764 	 * pending in cold paths doesn't affect anything. Let's leave it be.
1765 	 */
1766 	if (obtained && likely(!fill))
1767 		list_del_init(&pwq->pending_node);
1768 
1769 out_unlock:
1770 	raw_spin_unlock(&nna->lock);
1771 out:
1772 	if (obtained)
1773 		pwq->nr_active++;
1774 	return obtained;
1775 }
1776 
1777 /**
1778  * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1779  * @pwq: pool_workqueue of interest
1780  * @fill: max_active may have increased, try to increase concurrency level
1781  *
1782  * Activate the first inactive work item of @pwq if available and allowed by
1783  * max_active limit.
1784  *
1785  * Returns %true if an inactive work item has been activated. %false if no
1786  * inactive work item is found or max_active limit is reached.
1787  */
pwq_activate_first_inactive(struct pool_workqueue * pwq,bool fill)1788 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1789 {
1790 	struct work_struct *work =
1791 		list_first_entry_or_null(&pwq->inactive_works,
1792 					 struct work_struct, entry);
1793 
1794 	if (work && pwq_tryinc_nr_active(pwq, fill)) {
1795 		__pwq_activate_work(pwq, work);
1796 		return true;
1797 	} else {
1798 		return false;
1799 	}
1800 }
1801 
1802 /**
1803  * unplug_oldest_pwq - unplug the oldest pool_workqueue
1804  * @wq: workqueue_struct where its oldest pwq is to be unplugged
1805  *
1806  * This function should only be called for ordered workqueues where only the
1807  * oldest pwq is unplugged, the others are plugged to suspend execution to
1808  * ensure proper work item ordering::
1809  *
1810  *    dfl_pwq --------------+     [P] - plugged
1811  *                          |
1812  *                          v
1813  *    pwqs -> A -> B [P] -> C [P] (newest)
1814  *            |    |        |
1815  *            1    3        5
1816  *            |    |        |
1817  *            2    4        6
1818  *
1819  * When the oldest pwq is drained and removed, this function should be called
1820  * to unplug the next oldest one to start its work item execution. Note that
1821  * pwq's are linked into wq->pwqs with the oldest first, so the first one in
1822  * the list is the oldest.
1823  */
unplug_oldest_pwq(struct workqueue_struct * wq)1824 static void unplug_oldest_pwq(struct workqueue_struct *wq)
1825 {
1826 	struct pool_workqueue *pwq;
1827 
1828 	lockdep_assert_held(&wq->mutex);
1829 
1830 	/* Caller should make sure that pwqs isn't empty before calling */
1831 	pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue,
1832 				       pwqs_node);
1833 	raw_spin_lock_irq(&pwq->pool->lock);
1834 	if (pwq->plugged) {
1835 		pwq->plugged = false;
1836 		if (pwq_activate_first_inactive(pwq, true))
1837 			kick_pool(pwq->pool);
1838 	}
1839 	raw_spin_unlock_irq(&pwq->pool->lock);
1840 }
1841 
1842 /**
1843  * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1844  * @nna: wq_node_nr_active to activate a pending pwq for
1845  * @caller_pool: worker_pool the caller is locking
1846  *
1847  * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1848  * @caller_pool may be unlocked and relocked to lock other worker_pools.
1849  */
node_activate_pending_pwq(struct wq_node_nr_active * nna,struct worker_pool * caller_pool)1850 static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1851 				      struct worker_pool *caller_pool)
1852 {
1853 	struct worker_pool *locked_pool = caller_pool;
1854 	struct pool_workqueue *pwq;
1855 	struct work_struct *work;
1856 
1857 	lockdep_assert_held(&caller_pool->lock);
1858 
1859 	raw_spin_lock(&nna->lock);
1860 retry:
1861 	pwq = list_first_entry_or_null(&nna->pending_pwqs,
1862 				       struct pool_workqueue, pending_node);
1863 	if (!pwq)
1864 		goto out_unlock;
1865 
1866 	/*
1867 	 * If @pwq is for a different pool than @locked_pool, we need to lock
1868 	 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1869 	 * / lock dance. For that, we also need to release @nna->lock as it's
1870 	 * nested inside pool locks.
1871 	 */
1872 	if (pwq->pool != locked_pool) {
1873 		raw_spin_unlock(&locked_pool->lock);
1874 		locked_pool = pwq->pool;
1875 		if (!raw_spin_trylock(&locked_pool->lock)) {
1876 			raw_spin_unlock(&nna->lock);
1877 			raw_spin_lock(&locked_pool->lock);
1878 			raw_spin_lock(&nna->lock);
1879 			goto retry;
1880 		}
1881 	}
1882 
1883 	/*
1884 	 * $pwq may not have any inactive work items due to e.g. cancellations.
1885 	 * Drop it from pending_pwqs and see if there's another one.
1886 	 */
1887 	work = list_first_entry_or_null(&pwq->inactive_works,
1888 					struct work_struct, entry);
1889 	if (!work) {
1890 		list_del_init(&pwq->pending_node);
1891 		goto retry;
1892 	}
1893 
1894 	/*
1895 	 * Acquire an nr_active count and activate the inactive work item. If
1896 	 * $pwq still has inactive work items, rotate it to the end of the
1897 	 * pending_pwqs so that we round-robin through them. This means that
1898 	 * inactive work items are not activated in queueing order which is fine
1899 	 * given that there has never been any ordering across different pwqs.
1900 	 */
1901 	if (likely(tryinc_node_nr_active(nna))) {
1902 		pwq->nr_active++;
1903 		__pwq_activate_work(pwq, work);
1904 
1905 		if (list_empty(&pwq->inactive_works))
1906 			list_del_init(&pwq->pending_node);
1907 		else
1908 			list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1909 
1910 		/* if activating a foreign pool, make sure it's running */
1911 		if (pwq->pool != caller_pool)
1912 			kick_pool(pwq->pool);
1913 	}
1914 
1915 out_unlock:
1916 	raw_spin_unlock(&nna->lock);
1917 	if (locked_pool != caller_pool) {
1918 		raw_spin_unlock(&locked_pool->lock);
1919 		raw_spin_lock(&caller_pool->lock);
1920 	}
1921 }
1922 
1923 /**
1924  * pwq_dec_nr_active - Retire an active count
1925  * @pwq: pool_workqueue of interest
1926  *
1927  * Decrement @pwq's nr_active and try to activate the first inactive work item.
1928  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1929  */
pwq_dec_nr_active(struct pool_workqueue * pwq)1930 static void pwq_dec_nr_active(struct pool_workqueue *pwq)
1931 {
1932 	struct worker_pool *pool = pwq->pool;
1933 	struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
1934 
1935 	lockdep_assert_held(&pool->lock);
1936 
1937 	/*
1938 	 * @pwq->nr_active should be decremented for both percpu and unbound
1939 	 * workqueues.
1940 	 */
1941 	pwq->nr_active--;
1942 
1943 	/*
1944 	 * For a percpu workqueue, it's simple. Just need to kick the first
1945 	 * inactive work item on @pwq itself.
1946 	 */
1947 	if (!nna) {
1948 		pwq_activate_first_inactive(pwq, false);
1949 		return;
1950 	}
1951 
1952 	/*
1953 	 * If @pwq is for an unbound workqueue, it's more complicated because
1954 	 * multiple pwqs and pools may be sharing the nr_active count. When a
1955 	 * pwq needs to wait for an nr_active count, it puts itself on
1956 	 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1957 	 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1958 	 * guarantee that either we see non-empty pending_pwqs or they see
1959 	 * decremented $nna->nr.
1960 	 *
1961 	 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1962 	 * max_active gets updated. However, it is guaranteed to be equal to or
1963 	 * larger than @pwq->wq->min_active which is above zero unless freezing.
1964 	 * This maintains the forward progress guarantee.
1965 	 */
1966 	if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
1967 		return;
1968 
1969 	if (!list_empty(&nna->pending_pwqs))
1970 		node_activate_pending_pwq(nna, pool);
1971 }
1972 
1973 /**
1974  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1975  * @pwq: pwq of interest
1976  * @work_data: work_data of work which left the queue
1977  *
1978  * A work either has completed or is removed from pending queue,
1979  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1980  *
1981  * NOTE:
1982  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
1983  * and thus should be called after all other state updates for the in-flight
1984  * work item is complete.
1985  *
1986  * CONTEXT:
1987  * raw_spin_lock_irq(pool->lock).
1988  */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,unsigned long work_data)1989 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1990 {
1991 	int color = get_work_color(work_data);
1992 
1993 	if (!(work_data & WORK_STRUCT_INACTIVE))
1994 		pwq_dec_nr_active(pwq);
1995 
1996 	pwq->nr_in_flight[color]--;
1997 
1998 	/* is flush in progress and are we at the flushing tip? */
1999 	if (likely(pwq->flush_color != color))
2000 		goto out_put;
2001 
2002 	/* are there still in-flight works? */
2003 	if (pwq->nr_in_flight[color])
2004 		goto out_put;
2005 
2006 	/* this pwq is done, clear flush_color */
2007 	pwq->flush_color = -1;
2008 
2009 	/*
2010 	 * If this was the last pwq, wake up the first flusher.  It
2011 	 * will handle the rest.
2012 	 */
2013 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
2014 		complete(&pwq->wq->first_flusher->done);
2015 out_put:
2016 	put_pwq(pwq);
2017 }
2018 
2019 /**
2020  * try_to_grab_pending - steal work item from worklist and disable irq
2021  * @work: work item to steal
2022  * @cflags: %WORK_CANCEL_ flags
2023  * @irq_flags: place to store irq state
2024  *
2025  * Try to grab PENDING bit of @work.  This function can handle @work in any
2026  * stable state - idle, on timer or on worklist.
2027  *
2028  * Return:
2029  *
2030  *  ========	================================================================
2031  *  1		if @work was pending and we successfully stole PENDING
2032  *  0		if @work was idle and we claimed PENDING
2033  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
2034  *  ========	================================================================
2035  *
2036  * Note:
2037  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
2038  * interrupted while holding PENDING and @work off queue, irq must be
2039  * disabled on entry.  This, combined with delayed_work->timer being
2040  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
2041  *
2042  * On successful return, >= 0, irq is disabled and the caller is
2043  * responsible for releasing it using local_irq_restore(*@irq_flags).
2044  *
2045  * This function is safe to call from any context including IRQ handler.
2046  */
try_to_grab_pending(struct work_struct * work,u32 cflags,unsigned long * irq_flags)2047 static int try_to_grab_pending(struct work_struct *work, u32 cflags,
2048 			       unsigned long *irq_flags)
2049 {
2050 	struct worker_pool *pool;
2051 	struct pool_workqueue *pwq;
2052 
2053 	local_irq_save(*irq_flags);
2054 
2055 	/* try to steal the timer if it exists */
2056 	if (cflags & WORK_CANCEL_DELAYED) {
2057 		struct delayed_work *dwork = to_delayed_work(work);
2058 
2059 		/*
2060 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
2061 		 * guaranteed that the timer is not queued anywhere and not
2062 		 * running on the local CPU.
2063 		 */
2064 		if (likely(del_timer(&dwork->timer)))
2065 			return 1;
2066 	}
2067 
2068 	/* try to claim PENDING the normal way */
2069 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2070 		return 0;
2071 
2072 	rcu_read_lock();
2073 	/*
2074 	 * The queueing is in progress, or it is already queued. Try to
2075 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2076 	 */
2077 	pool = get_work_pool(work);
2078 	if (!pool)
2079 		goto fail;
2080 
2081 	raw_spin_lock(&pool->lock);
2082 	/*
2083 	 * work->data is guaranteed to point to pwq only while the work
2084 	 * item is queued on pwq->wq, and both updating work->data to point
2085 	 * to pwq on queueing and to pool on dequeueing are done under
2086 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
2087 	 * points to pwq which is associated with a locked pool, the work
2088 	 * item is currently queued on that pool.
2089 	 */
2090 	pwq = get_work_pwq(work);
2091 	if (pwq && pwq->pool == pool) {
2092 		unsigned long work_data = *work_data_bits(work);
2093 
2094 		debug_work_deactivate(work);
2095 
2096 		/*
2097 		 * A cancelable inactive work item must be in the
2098 		 * pwq->inactive_works since a queued barrier can't be
2099 		 * canceled (see the comments in insert_wq_barrier()).
2100 		 *
2101 		 * An inactive work item cannot be deleted directly because
2102 		 * it might have linked barrier work items which, if left
2103 		 * on the inactive_works list, will confuse pwq->nr_active
2104 		 * management later on and cause stall.  Move the linked
2105 		 * barrier work items to the worklist when deleting the grabbed
2106 		 * item. Also keep WORK_STRUCT_INACTIVE in work_data, so that
2107 		 * it doesn't participate in nr_active management in later
2108 		 * pwq_dec_nr_in_flight().
2109 		 */
2110 		if (work_data & WORK_STRUCT_INACTIVE)
2111 			move_linked_works(work, &pwq->pool->worklist, NULL);
2112 
2113 		list_del_init(&work->entry);
2114 
2115 		/*
2116 		 * work->data points to pwq iff queued. Let's point to pool. As
2117 		 * this destroys work->data needed by the next step, stash it.
2118 		 */
2119 		set_work_pool_and_keep_pending(work, pool->id,
2120 					       pool_offq_flags(pool));
2121 
2122 		/* must be the last step, see the function comment */
2123 		pwq_dec_nr_in_flight(pwq, work_data);
2124 
2125 		raw_spin_unlock(&pool->lock);
2126 		rcu_read_unlock();
2127 		return 1;
2128 	}
2129 	raw_spin_unlock(&pool->lock);
2130 fail:
2131 	rcu_read_unlock();
2132 	local_irq_restore(*irq_flags);
2133 	return -EAGAIN;
2134 }
2135 
2136 /**
2137  * work_grab_pending - steal work item from worklist and disable irq
2138  * @work: work item to steal
2139  * @cflags: %WORK_CANCEL_ flags
2140  * @irq_flags: place to store IRQ state
2141  *
2142  * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer
2143  * or on worklist.
2144  *
2145  * Can be called from any context. IRQ is disabled on return with IRQ state
2146  * stored in *@irq_flags. The caller is responsible for re-enabling it using
2147  * local_irq_restore().
2148  *
2149  * Returns %true if @work was pending. %false if idle.
2150  */
work_grab_pending(struct work_struct * work,u32 cflags,unsigned long * irq_flags)2151 static bool work_grab_pending(struct work_struct *work, u32 cflags,
2152 			      unsigned long *irq_flags)
2153 {
2154 	int ret;
2155 
2156 	while (true) {
2157 		ret = try_to_grab_pending(work, cflags, irq_flags);
2158 		if (ret >= 0)
2159 			return ret;
2160 		cpu_relax();
2161 	}
2162 }
2163 
2164 /**
2165  * insert_work - insert a work into a pool
2166  * @pwq: pwq @work belongs to
2167  * @work: work to insert
2168  * @head: insertion point
2169  * @extra_flags: extra WORK_STRUCT_* flags to set
2170  *
2171  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
2172  * work_struct flags.
2173  *
2174  * CONTEXT:
2175  * raw_spin_lock_irq(pool->lock).
2176  */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)2177 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2178 			struct list_head *head, unsigned int extra_flags)
2179 {
2180 	debug_work_activate(work);
2181 
2182 	/* record the work call stack in order to print it in KASAN reports */
2183 	kasan_record_aux_stack_noalloc(work);
2184 
2185 	/* we own @work, set data and link */
2186 	set_work_pwq(work, pwq, extra_flags);
2187 	list_add_tail(&work->entry, head);
2188 	get_pwq(pwq);
2189 }
2190 
2191 /*
2192  * Test whether @work is being queued from another work executing on the
2193  * same workqueue.
2194  */
is_chained_work(struct workqueue_struct * wq)2195 static bool is_chained_work(struct workqueue_struct *wq)
2196 {
2197 	struct worker *worker;
2198 
2199 	worker = current_wq_worker();
2200 	/*
2201 	 * Return %true iff I'm a worker executing a work item on @wq.  If
2202 	 * I'm @worker, it's safe to dereference it without locking.
2203 	 */
2204 	return worker && worker->current_pwq->wq == wq;
2205 }
2206 
2207 /*
2208  * When queueing an unbound work item to a wq, prefer local CPU if allowed
2209  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
2210  * avoid perturbing sensitive tasks.
2211  */
wq_select_unbound_cpu(int cpu)2212 static int wq_select_unbound_cpu(int cpu)
2213 {
2214 	int new_cpu;
2215 
2216 	if (likely(!wq_debug_force_rr_cpu)) {
2217 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2218 			return cpu;
2219 	} else {
2220 		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
2221 	}
2222 
2223 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
2224 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2225 	if (unlikely(new_cpu >= nr_cpu_ids)) {
2226 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
2227 		if (unlikely(new_cpu >= nr_cpu_ids))
2228 			return cpu;
2229 	}
2230 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
2231 
2232 	return new_cpu;
2233 }
2234 
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)2235 static void __queue_work(int cpu, struct workqueue_struct *wq,
2236 			 struct work_struct *work)
2237 {
2238 	struct pool_workqueue *pwq;
2239 	struct worker_pool *last_pool, *pool;
2240 	unsigned int work_flags;
2241 	unsigned int req_cpu = cpu;
2242 
2243 	/*
2244 	 * While a work item is PENDING && off queue, a task trying to
2245 	 * steal the PENDING will busy-loop waiting for it to either get
2246 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
2247 	 * happen with IRQ disabled.
2248 	 */
2249 	lockdep_assert_irqs_disabled();
2250 
2251 	/*
2252 	 * For a draining wq, only works from the same workqueue are
2253 	 * allowed. The __WQ_DESTROYING helps to spot the issue that
2254 	 * queues a new work item to a wq after destroy_workqueue(wq).
2255 	 */
2256 	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2257 		     WARN_ON_ONCE(!is_chained_work(wq))))
2258 		return;
2259 	rcu_read_lock();
2260 retry:
2261 	/* pwq which will be used unless @work is executing elsewhere */
2262 	if (req_cpu == WORK_CPU_UNBOUND) {
2263 		if (wq->flags & WQ_UNBOUND)
2264 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
2265 		else
2266 			cpu = raw_smp_processor_id();
2267 	}
2268 
2269 	pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
2270 	pool = pwq->pool;
2271 
2272 	/*
2273 	 * If @work was previously on a different pool, it might still be
2274 	 * running there, in which case the work needs to be queued on that
2275 	 * pool to guarantee non-reentrancy.
2276 	 *
2277 	 * For ordered workqueue, work items must be queued on the newest pwq
2278 	 * for accurate order management.  Guaranteed order also guarantees
2279 	 * non-reentrancy.  See the comments above unplug_oldest_pwq().
2280 	 */
2281 	last_pool = get_work_pool(work);
2282 	if (last_pool && last_pool != pool && !(wq->flags & __WQ_ORDERED)) {
2283 		struct worker *worker;
2284 
2285 		raw_spin_lock(&last_pool->lock);
2286 
2287 		worker = find_worker_executing_work(last_pool, work);
2288 
2289 		if (worker && worker->current_pwq->wq == wq) {
2290 			pwq = worker->current_pwq;
2291 			pool = pwq->pool;
2292 			WARN_ON_ONCE(pool != last_pool);
2293 		} else {
2294 			/* meh... not running there, queue here */
2295 			raw_spin_unlock(&last_pool->lock);
2296 			raw_spin_lock(&pool->lock);
2297 		}
2298 	} else {
2299 		raw_spin_lock(&pool->lock);
2300 	}
2301 
2302 	/*
2303 	 * pwq is determined and locked. For unbound pools, we could have raced
2304 	 * with pwq release and it could already be dead. If its refcnt is zero,
2305 	 * repeat pwq selection. Note that unbound pwqs never die without
2306 	 * another pwq replacing it in cpu_pwq or while work items are executing
2307 	 * on it, so the retrying is guaranteed to make forward-progress.
2308 	 */
2309 	if (unlikely(!pwq->refcnt)) {
2310 		if (wq->flags & WQ_UNBOUND) {
2311 			raw_spin_unlock(&pool->lock);
2312 			cpu_relax();
2313 			goto retry;
2314 		}
2315 		/* oops */
2316 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2317 			  wq->name, cpu);
2318 	}
2319 
2320 	/* pwq determined, queue */
2321 	trace_workqueue_queue_work(req_cpu, pwq, work);
2322 
2323 	if (WARN_ON(!list_empty(&work->entry)))
2324 		goto out;
2325 
2326 	pwq->nr_in_flight[pwq->work_color]++;
2327 	work_flags = work_color_to_flags(pwq->work_color);
2328 
2329 	/*
2330 	 * Limit the number of concurrently active work items to max_active.
2331 	 * @work must also queue behind existing inactive work items to maintain
2332 	 * ordering when max_active changes. See wq_adjust_max_active().
2333 	 */
2334 	if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
2335 		if (list_empty(&pool->worklist))
2336 			pool->watchdog_ts = jiffies;
2337 
2338 		trace_workqueue_activate_work(work);
2339 		insert_work(pwq, work, &pool->worklist, work_flags);
2340 		kick_pool(pool);
2341 	} else {
2342 		work_flags |= WORK_STRUCT_INACTIVE;
2343 		insert_work(pwq, work, &pwq->inactive_works, work_flags);
2344 	}
2345 
2346 out:
2347 	raw_spin_unlock(&pool->lock);
2348 	rcu_read_unlock();
2349 }
2350 
clear_pending_if_disabled(struct work_struct * work)2351 static bool clear_pending_if_disabled(struct work_struct *work)
2352 {
2353 	unsigned long data = *work_data_bits(work);
2354 	struct work_offq_data offqd;
2355 
2356 	if (likely((data & WORK_STRUCT_PWQ) ||
2357 		   !(data & WORK_OFFQ_DISABLE_MASK)))
2358 		return false;
2359 
2360 	work_offqd_unpack(&offqd, data);
2361 	set_work_pool_and_clear_pending(work, offqd.pool_id,
2362 					work_offqd_pack_flags(&offqd));
2363 	return true;
2364 }
2365 
2366 /**
2367  * queue_work_on - queue work on specific cpu
2368  * @cpu: CPU number to execute work on
2369  * @wq: workqueue to use
2370  * @work: work to queue
2371  *
2372  * We queue the work to a specific CPU, the caller must ensure it
2373  * can't go away.  Callers that fail to ensure that the specified
2374  * CPU cannot go away will execute on a randomly chosen CPU.
2375  * But note well that callers specifying a CPU that never has been
2376  * online will get a splat.
2377  *
2378  * Return: %false if @work was already on a queue, %true otherwise.
2379  */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)2380 bool queue_work_on(int cpu, struct workqueue_struct *wq,
2381 		   struct work_struct *work)
2382 {
2383 	bool ret = false;
2384 	unsigned long irq_flags;
2385 
2386 	local_irq_save(irq_flags);
2387 
2388 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2389 	    !clear_pending_if_disabled(work)) {
2390 		__queue_work(cpu, wq, work);
2391 		ret = true;
2392 	}
2393 
2394 	local_irq_restore(irq_flags);
2395 	return ret;
2396 }
2397 EXPORT_SYMBOL(queue_work_on);
2398 
2399 /**
2400  * select_numa_node_cpu - Select a CPU based on NUMA node
2401  * @node: NUMA node ID that we want to select a CPU from
2402  *
2403  * This function will attempt to find a "random" cpu available on a given
2404  * node. If there are no CPUs available on the given node it will return
2405  * WORK_CPU_UNBOUND indicating that we should just schedule to any
2406  * available CPU if we need to schedule this work.
2407  */
select_numa_node_cpu(int node)2408 static int select_numa_node_cpu(int node)
2409 {
2410 	int cpu;
2411 
2412 	/* Delay binding to CPU if node is not valid or online */
2413 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2414 		return WORK_CPU_UNBOUND;
2415 
2416 	/* Use local node/cpu if we are already there */
2417 	cpu = raw_smp_processor_id();
2418 	if (node == cpu_to_node(cpu))
2419 		return cpu;
2420 
2421 	/* Use "random" otherwise know as "first" online CPU of node */
2422 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2423 
2424 	/* If CPU is valid return that, otherwise just defer */
2425 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2426 }
2427 
2428 /**
2429  * queue_work_node - queue work on a "random" cpu for a given NUMA node
2430  * @node: NUMA node that we are targeting the work for
2431  * @wq: workqueue to use
2432  * @work: work to queue
2433  *
2434  * We queue the work to a "random" CPU within a given NUMA node. The basic
2435  * idea here is to provide a way to somehow associate work with a given
2436  * NUMA node.
2437  *
2438  * This function will only make a best effort attempt at getting this onto
2439  * the right NUMA node. If no node is requested or the requested node is
2440  * offline then we just fall back to standard queue_work behavior.
2441  *
2442  * Currently the "random" CPU ends up being the first available CPU in the
2443  * intersection of cpu_online_mask and the cpumask of the node, unless we
2444  * are running on the node. In that case we just use the current CPU.
2445  *
2446  * Return: %false if @work was already on a queue, %true otherwise.
2447  */
queue_work_node(int node,struct workqueue_struct * wq,struct work_struct * work)2448 bool queue_work_node(int node, struct workqueue_struct *wq,
2449 		     struct work_struct *work)
2450 {
2451 	unsigned long irq_flags;
2452 	bool ret = false;
2453 
2454 	/*
2455 	 * This current implementation is specific to unbound workqueues.
2456 	 * Specifically we only return the first available CPU for a given
2457 	 * node instead of cycling through individual CPUs within the node.
2458 	 *
2459 	 * If this is used with a per-cpu workqueue then the logic in
2460 	 * workqueue_select_cpu_near would need to be updated to allow for
2461 	 * some round robin type logic.
2462 	 */
2463 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2464 
2465 	local_irq_save(irq_flags);
2466 
2467 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2468 	    !clear_pending_if_disabled(work)) {
2469 		int cpu = select_numa_node_cpu(node);
2470 
2471 		__queue_work(cpu, wq, work);
2472 		ret = true;
2473 	}
2474 
2475 	local_irq_restore(irq_flags);
2476 	return ret;
2477 }
2478 EXPORT_SYMBOL_GPL(queue_work_node);
2479 
delayed_work_timer_fn(struct timer_list * t)2480 void delayed_work_timer_fn(struct timer_list *t)
2481 {
2482 	struct delayed_work *dwork = from_timer(dwork, t, timer);
2483 
2484 	/* should have been called from irqsafe timer with irq already off */
2485 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2486 }
2487 EXPORT_SYMBOL(delayed_work_timer_fn);
2488 
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2489 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2490 				struct delayed_work *dwork, unsigned long delay)
2491 {
2492 	struct timer_list *timer = &dwork->timer;
2493 	struct work_struct *work = &dwork->work;
2494 
2495 	WARN_ON_ONCE(!wq);
2496 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
2497 	WARN_ON_ONCE(timer_pending(timer));
2498 	WARN_ON_ONCE(!list_empty(&work->entry));
2499 
2500 	/*
2501 	 * If @delay is 0, queue @dwork->work immediately.  This is for
2502 	 * both optimization and correctness.  The earliest @timer can
2503 	 * expire is on the closest next tick and delayed_work users depend
2504 	 * on that there's no such delay when @delay is 0.
2505 	 */
2506 	if (!delay) {
2507 		__queue_work(cpu, wq, &dwork->work);
2508 		return;
2509 	}
2510 
2511 	WARN_ON_ONCE(cpu != WORK_CPU_UNBOUND && !cpu_online(cpu));
2512 	dwork->wq = wq;
2513 	dwork->cpu = cpu;
2514 	timer->expires = jiffies + delay;
2515 
2516 	if (housekeeping_enabled(HK_TYPE_TIMER)) {
2517 		/* If the current cpu is a housekeeping cpu, use it. */
2518 		cpu = smp_processor_id();
2519 		if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2520 			cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
2521 		add_timer_on(timer, cpu);
2522 	} else {
2523 		if (likely(cpu == WORK_CPU_UNBOUND))
2524 			add_timer_global(timer);
2525 		else
2526 			add_timer_on(timer, cpu);
2527 	}
2528 }
2529 
2530 /**
2531  * queue_delayed_work_on - queue work on specific CPU after delay
2532  * @cpu: CPU number to execute work on
2533  * @wq: workqueue to use
2534  * @dwork: work to queue
2535  * @delay: number of jiffies to wait before queueing
2536  *
2537  * We queue the delayed_work to a specific CPU, for non-zero delays the
2538  * caller must ensure it is online and can't go away. Callers that fail
2539  * to ensure this, may get @dwork->timer queued to an offlined CPU and
2540  * this will prevent queueing of @dwork->work unless the offlined CPU
2541  * becomes online again.
2542  *
2543  * Return: %false if @work was already on a queue, %true otherwise.  If
2544  * @delay is zero and @dwork is idle, it will be scheduled for immediate
2545  * execution.
2546  */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2547 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2548 			   struct delayed_work *dwork, unsigned long delay)
2549 {
2550 	struct work_struct *work = &dwork->work;
2551 	bool ret = false;
2552 	unsigned long irq_flags;
2553 
2554 	/* read the comment in __queue_work() */
2555 	local_irq_save(irq_flags);
2556 
2557 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2558 	    !clear_pending_if_disabled(work)) {
2559 		__queue_delayed_work(cpu, wq, dwork, delay);
2560 		ret = true;
2561 	}
2562 
2563 	local_irq_restore(irq_flags);
2564 	return ret;
2565 }
2566 EXPORT_SYMBOL(queue_delayed_work_on);
2567 
2568 /**
2569  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2570  * @cpu: CPU number to execute work on
2571  * @wq: workqueue to use
2572  * @dwork: work to queue
2573  * @delay: number of jiffies to wait before queueing
2574  *
2575  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2576  * modify @dwork's timer so that it expires after @delay.  If @delay is
2577  * zero, @work is guaranteed to be scheduled immediately regardless of its
2578  * current state.
2579  *
2580  * Return: %false if @dwork was idle and queued, %true if @dwork was
2581  * pending and its timer was modified.
2582  *
2583  * This function is safe to call from any context including IRQ handler.
2584  * See try_to_grab_pending() for details.
2585  */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2586 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2587 			 struct delayed_work *dwork, unsigned long delay)
2588 {
2589 	unsigned long irq_flags;
2590 	bool ret;
2591 
2592 	ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags);
2593 
2594 	if (!clear_pending_if_disabled(&dwork->work))
2595 		__queue_delayed_work(cpu, wq, dwork, delay);
2596 
2597 	local_irq_restore(irq_flags);
2598 	return ret;
2599 }
2600 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2601 
rcu_work_rcufn(struct rcu_head * rcu)2602 static void rcu_work_rcufn(struct rcu_head *rcu)
2603 {
2604 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2605 
2606 	/* read the comment in __queue_work() */
2607 	local_irq_disable();
2608 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2609 	local_irq_enable();
2610 }
2611 
2612 /**
2613  * queue_rcu_work - queue work after a RCU grace period
2614  * @wq: workqueue to use
2615  * @rwork: work to queue
2616  *
2617  * Return: %false if @rwork was already pending, %true otherwise.  Note
2618  * that a full RCU grace period is guaranteed only after a %true return.
2619  * While @rwork is guaranteed to be executed after a %false return, the
2620  * execution may happen before a full RCU grace period has passed.
2621  */
queue_rcu_work(struct workqueue_struct * wq,struct rcu_work * rwork)2622 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2623 {
2624 	struct work_struct *work = &rwork->work;
2625 
2626 	/*
2627 	 * rcu_work can't be canceled or disabled. Warn if the user reached
2628 	 * inside @rwork and disabled the inner work.
2629 	 */
2630 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2631 	    !WARN_ON_ONCE(clear_pending_if_disabled(work))) {
2632 		rwork->wq = wq;
2633 		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2634 		return true;
2635 	}
2636 
2637 	return false;
2638 }
2639 EXPORT_SYMBOL(queue_rcu_work);
2640 
alloc_worker(int node)2641 static struct worker *alloc_worker(int node)
2642 {
2643 	struct worker *worker;
2644 
2645 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2646 	if (worker) {
2647 		INIT_LIST_HEAD(&worker->entry);
2648 		INIT_LIST_HEAD(&worker->scheduled);
2649 		INIT_LIST_HEAD(&worker->node);
2650 		/* on creation a worker is in !idle && prep state */
2651 		worker->flags = WORKER_PREP;
2652 	}
2653 	return worker;
2654 }
2655 
pool_allowed_cpus(struct worker_pool * pool)2656 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2657 {
2658 	if (pool->cpu < 0 && pool->attrs->affn_strict)
2659 		return pool->attrs->__pod_cpumask;
2660 	else
2661 		return pool->attrs->cpumask;
2662 }
2663 
2664 /**
2665  * worker_attach_to_pool() - attach a worker to a pool
2666  * @worker: worker to be attached
2667  * @pool: the target pool
2668  *
2669  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
2670  * cpu-binding of @worker are kept coordinated with the pool across
2671  * cpu-[un]hotplugs.
2672  */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)2673 static void worker_attach_to_pool(struct worker *worker,
2674 				  struct worker_pool *pool)
2675 {
2676 	mutex_lock(&wq_pool_attach_mutex);
2677 
2678 	/*
2679 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2680 	 * across this function. See the comments above the flag definition for
2681 	 * details. BH workers are, while per-CPU, always DISASSOCIATED.
2682 	 */
2683 	if (pool->flags & POOL_DISASSOCIATED) {
2684 		worker->flags |= WORKER_UNBOUND;
2685 	} else {
2686 		WARN_ON_ONCE(pool->flags & POOL_BH);
2687 		kthread_set_per_cpu(worker->task, pool->cpu);
2688 	}
2689 
2690 	if (worker->rescue_wq)
2691 		set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2692 
2693 	list_add_tail(&worker->node, &pool->workers);
2694 	worker->pool = pool;
2695 
2696 	mutex_unlock(&wq_pool_attach_mutex);
2697 }
2698 
unbind_worker(struct worker * worker)2699 static void unbind_worker(struct worker *worker)
2700 {
2701 	lockdep_assert_held(&wq_pool_attach_mutex);
2702 
2703 	kthread_set_per_cpu(worker->task, -1);
2704 	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2705 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2706 	else
2707 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2708 }
2709 
2710 
detach_worker(struct worker * worker)2711 static void detach_worker(struct worker *worker)
2712 {
2713 	lockdep_assert_held(&wq_pool_attach_mutex);
2714 
2715 	unbind_worker(worker);
2716 	list_del(&worker->node);
2717 }
2718 
2719 /**
2720  * worker_detach_from_pool() - detach a worker from its pool
2721  * @worker: worker which is attached to its pool
2722  *
2723  * Undo the attaching which had been done in worker_attach_to_pool().  The
2724  * caller worker shouldn't access to the pool after detached except it has
2725  * other reference to the pool.
2726  */
worker_detach_from_pool(struct worker * worker)2727 static void worker_detach_from_pool(struct worker *worker)
2728 {
2729 	struct worker_pool *pool = worker->pool;
2730 
2731 	/* there is one permanent BH worker per CPU which should never detach */
2732 	WARN_ON_ONCE(pool->flags & POOL_BH);
2733 
2734 	mutex_lock(&wq_pool_attach_mutex);
2735 	detach_worker(worker);
2736 	worker->pool = NULL;
2737 	mutex_unlock(&wq_pool_attach_mutex);
2738 
2739 	/* clear leftover flags without pool->lock after it is detached */
2740 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2741 }
2742 
format_worker_id(char * buf,size_t size,struct worker * worker,struct worker_pool * pool)2743 static int format_worker_id(char *buf, size_t size, struct worker *worker,
2744 			    struct worker_pool *pool)
2745 {
2746 	if (worker->rescue_wq)
2747 		return scnprintf(buf, size, "kworker/R-%s",
2748 				 worker->rescue_wq->name);
2749 
2750 	if (pool) {
2751 		if (pool->cpu >= 0)
2752 			return scnprintf(buf, size, "kworker/%d:%d%s",
2753 					 pool->cpu, worker->id,
2754 					 pool->attrs->nice < 0  ? "H" : "");
2755 		else
2756 			return scnprintf(buf, size, "kworker/u%d:%d",
2757 					 pool->id, worker->id);
2758 	} else {
2759 		return scnprintf(buf, size, "kworker/dying");
2760 	}
2761 }
2762 
2763 /**
2764  * create_worker - create a new workqueue worker
2765  * @pool: pool the new worker will belong to
2766  *
2767  * Create and start a new worker which is attached to @pool.
2768  *
2769  * CONTEXT:
2770  * Might sleep.  Does GFP_KERNEL allocations.
2771  *
2772  * Return:
2773  * Pointer to the newly created worker.
2774  */
create_worker(struct worker_pool * pool)2775 static struct worker *create_worker(struct worker_pool *pool)
2776 {
2777 	struct worker *worker;
2778 	int id;
2779 
2780 	/* ID is needed to determine kthread name */
2781 	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2782 	if (id < 0) {
2783 		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2784 			    ERR_PTR(id));
2785 		return NULL;
2786 	}
2787 
2788 	worker = alloc_worker(pool->node);
2789 	if (!worker) {
2790 		pr_err_once("workqueue: Failed to allocate a worker\n");
2791 		goto fail;
2792 	}
2793 
2794 	worker->id = id;
2795 
2796 	if (!(pool->flags & POOL_BH)) {
2797 		char id_buf[WORKER_ID_LEN];
2798 
2799 		format_worker_id(id_buf, sizeof(id_buf), worker, pool);
2800 		worker->task = kthread_create_on_node(worker_thread, worker,
2801 						      pool->node, "%s", id_buf);
2802 		if (IS_ERR(worker->task)) {
2803 			if (PTR_ERR(worker->task) == -EINTR) {
2804 				pr_err("workqueue: Interrupted when creating a worker thread \"%s\"\n",
2805 				       id_buf);
2806 			} else {
2807 				pr_err_once("workqueue: Failed to create a worker thread: %pe",
2808 					    worker->task);
2809 			}
2810 			goto fail;
2811 		}
2812 
2813 		set_user_nice(worker->task, pool->attrs->nice);
2814 		kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2815 	}
2816 
2817 	/* successful, attach the worker to the pool */
2818 	worker_attach_to_pool(worker, pool);
2819 
2820 	/* start the newly created worker */
2821 	raw_spin_lock_irq(&pool->lock);
2822 
2823 	worker->pool->nr_workers++;
2824 	worker_enter_idle(worker);
2825 
2826 	/*
2827 	 * @worker is waiting on a completion in kthread() and will trigger hung
2828 	 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2829 	 * wake it up explicitly.
2830 	 */
2831 	if (worker->task)
2832 		wake_up_process(worker->task);
2833 
2834 	raw_spin_unlock_irq(&pool->lock);
2835 
2836 	return worker;
2837 
2838 fail:
2839 	ida_free(&pool->worker_ida, id);
2840 	kfree(worker);
2841 	return NULL;
2842 }
2843 
detach_dying_workers(struct list_head * cull_list)2844 static void detach_dying_workers(struct list_head *cull_list)
2845 {
2846 	struct worker *worker;
2847 
2848 	list_for_each_entry(worker, cull_list, entry)
2849 		detach_worker(worker);
2850 }
2851 
reap_dying_workers(struct list_head * cull_list)2852 static void reap_dying_workers(struct list_head *cull_list)
2853 {
2854 	struct worker *worker, *tmp;
2855 
2856 	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2857 		list_del_init(&worker->entry);
2858 		kthread_stop_put(worker->task);
2859 		kfree(worker);
2860 	}
2861 }
2862 
2863 /**
2864  * set_worker_dying - Tag a worker for destruction
2865  * @worker: worker to be destroyed
2866  * @list: transfer worker away from its pool->idle_list and into list
2867  *
2868  * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2869  * should be idle.
2870  *
2871  * CONTEXT:
2872  * raw_spin_lock_irq(pool->lock).
2873  */
set_worker_dying(struct worker * worker,struct list_head * list)2874 static void set_worker_dying(struct worker *worker, struct list_head *list)
2875 {
2876 	struct worker_pool *pool = worker->pool;
2877 
2878 	lockdep_assert_held(&pool->lock);
2879 	lockdep_assert_held(&wq_pool_attach_mutex);
2880 
2881 	/* sanity check frenzy */
2882 	if (WARN_ON(worker->current_work) ||
2883 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2884 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2885 		return;
2886 
2887 	pool->nr_workers--;
2888 	pool->nr_idle--;
2889 
2890 	worker->flags |= WORKER_DIE;
2891 
2892 	list_move(&worker->entry, list);
2893 
2894 	/* get an extra task struct reference for later kthread_stop_put() */
2895 	get_task_struct(worker->task);
2896 }
2897 
2898 /**
2899  * idle_worker_timeout - check if some idle workers can now be deleted.
2900  * @t: The pool's idle_timer that just expired
2901  *
2902  * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2903  * worker_leave_idle(), as a worker flicking between idle and active while its
2904  * pool is at the too_many_workers() tipping point would cause too much timer
2905  * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2906  * it expire and re-evaluate things from there.
2907  */
idle_worker_timeout(struct timer_list * t)2908 static void idle_worker_timeout(struct timer_list *t)
2909 {
2910 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2911 	bool do_cull = false;
2912 
2913 	if (work_pending(&pool->idle_cull_work))
2914 		return;
2915 
2916 	raw_spin_lock_irq(&pool->lock);
2917 
2918 	if (too_many_workers(pool)) {
2919 		struct worker *worker;
2920 		unsigned long expires;
2921 
2922 		/* idle_list is kept in LIFO order, check the last one */
2923 		worker = list_last_entry(&pool->idle_list, struct worker, entry);
2924 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2925 		do_cull = !time_before(jiffies, expires);
2926 
2927 		if (!do_cull)
2928 			mod_timer(&pool->idle_timer, expires);
2929 	}
2930 	raw_spin_unlock_irq(&pool->lock);
2931 
2932 	if (do_cull)
2933 		queue_work(system_unbound_wq, &pool->idle_cull_work);
2934 }
2935 
2936 /**
2937  * idle_cull_fn - cull workers that have been idle for too long.
2938  * @work: the pool's work for handling these idle workers
2939  *
2940  * This goes through a pool's idle workers and gets rid of those that have been
2941  * idle for at least IDLE_WORKER_TIMEOUT seconds.
2942  *
2943  * We don't want to disturb isolated CPUs because of a pcpu kworker being
2944  * culled, so this also resets worker affinity. This requires a sleepable
2945  * context, hence the split between timer callback and work item.
2946  */
idle_cull_fn(struct work_struct * work)2947 static void idle_cull_fn(struct work_struct *work)
2948 {
2949 	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2950 	LIST_HEAD(cull_list);
2951 
2952 	/*
2953 	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2954 	 * cannot proceed beyong set_pf_worker() in its self-destruct path.
2955 	 * This is required as a previously-preempted worker could run after
2956 	 * set_worker_dying() has happened but before detach_dying_workers() did.
2957 	 */
2958 	mutex_lock(&wq_pool_attach_mutex);
2959 	raw_spin_lock_irq(&pool->lock);
2960 
2961 	while (too_many_workers(pool)) {
2962 		struct worker *worker;
2963 		unsigned long expires;
2964 
2965 		worker = list_last_entry(&pool->idle_list, struct worker, entry);
2966 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2967 
2968 		if (time_before(jiffies, expires)) {
2969 			mod_timer(&pool->idle_timer, expires);
2970 			break;
2971 		}
2972 
2973 		set_worker_dying(worker, &cull_list);
2974 	}
2975 
2976 	raw_spin_unlock_irq(&pool->lock);
2977 	detach_dying_workers(&cull_list);
2978 	mutex_unlock(&wq_pool_attach_mutex);
2979 
2980 	reap_dying_workers(&cull_list);
2981 }
2982 
send_mayday(struct work_struct * work)2983 static void send_mayday(struct work_struct *work)
2984 {
2985 	struct pool_workqueue *pwq = get_work_pwq(work);
2986 	struct workqueue_struct *wq = pwq->wq;
2987 
2988 	lockdep_assert_held(&wq_mayday_lock);
2989 
2990 	if (!wq->rescuer)
2991 		return;
2992 
2993 	/* mayday mayday mayday */
2994 	if (list_empty(&pwq->mayday_node)) {
2995 		/*
2996 		 * If @pwq is for an unbound wq, its base ref may be put at
2997 		 * any time due to an attribute change.  Pin @pwq until the
2998 		 * rescuer is done with it.
2999 		 */
3000 		get_pwq(pwq);
3001 		list_add_tail(&pwq->mayday_node, &wq->maydays);
3002 		wake_up_process(wq->rescuer->task);
3003 		pwq->stats[PWQ_STAT_MAYDAY]++;
3004 	}
3005 }
3006 
pool_mayday_timeout(struct timer_list * t)3007 static void pool_mayday_timeout(struct timer_list *t)
3008 {
3009 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
3010 	struct work_struct *work;
3011 
3012 	raw_spin_lock_irq(&pool->lock);
3013 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
3014 
3015 	if (need_to_create_worker(pool)) {
3016 		/*
3017 		 * We've been trying to create a new worker but
3018 		 * haven't been successful.  We might be hitting an
3019 		 * allocation deadlock.  Send distress signals to
3020 		 * rescuers.
3021 		 */
3022 		list_for_each_entry(work, &pool->worklist, entry)
3023 			send_mayday(work);
3024 	}
3025 
3026 	raw_spin_unlock(&wq_mayday_lock);
3027 	raw_spin_unlock_irq(&pool->lock);
3028 
3029 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
3030 }
3031 
3032 /**
3033  * maybe_create_worker - create a new worker if necessary
3034  * @pool: pool to create a new worker for
3035  *
3036  * Create a new worker for @pool if necessary.  @pool is guaranteed to
3037  * have at least one idle worker on return from this function.  If
3038  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
3039  * sent to all rescuers with works scheduled on @pool to resolve
3040  * possible allocation deadlock.
3041  *
3042  * On return, need_to_create_worker() is guaranteed to be %false and
3043  * may_start_working() %true.
3044  *
3045  * LOCKING:
3046  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3047  * multiple times.  Does GFP_KERNEL allocations.  Called only from
3048  * manager.
3049  */
maybe_create_worker(struct worker_pool * pool)3050 static void maybe_create_worker(struct worker_pool *pool)
3051 __releases(&pool->lock)
3052 __acquires(&pool->lock)
3053 {
3054 restart:
3055 	raw_spin_unlock_irq(&pool->lock);
3056 
3057 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
3058 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
3059 
3060 	while (true) {
3061 		if (create_worker(pool) || !need_to_create_worker(pool))
3062 			break;
3063 
3064 		schedule_timeout_interruptible(CREATE_COOLDOWN);
3065 
3066 		if (!need_to_create_worker(pool))
3067 			break;
3068 	}
3069 
3070 	del_timer_sync(&pool->mayday_timer);
3071 	raw_spin_lock_irq(&pool->lock);
3072 	/*
3073 	 * This is necessary even after a new worker was just successfully
3074 	 * created as @pool->lock was dropped and the new worker might have
3075 	 * already become busy.
3076 	 */
3077 	if (need_to_create_worker(pool))
3078 		goto restart;
3079 }
3080 
3081 /**
3082  * manage_workers - manage worker pool
3083  * @worker: self
3084  *
3085  * Assume the manager role and manage the worker pool @worker belongs
3086  * to.  At any given time, there can be only zero or one manager per
3087  * pool.  The exclusion is handled automatically by this function.
3088  *
3089  * The caller can safely start processing works on false return.  On
3090  * true return, it's guaranteed that need_to_create_worker() is false
3091  * and may_start_working() is true.
3092  *
3093  * CONTEXT:
3094  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3095  * multiple times.  Does GFP_KERNEL allocations.
3096  *
3097  * Return:
3098  * %false if the pool doesn't need management and the caller can safely
3099  * start processing works, %true if management function was performed and
3100  * the conditions that the caller verified before calling the function may
3101  * no longer be true.
3102  */
manage_workers(struct worker * worker)3103 static bool manage_workers(struct worker *worker)
3104 {
3105 	struct worker_pool *pool = worker->pool;
3106 
3107 	if (pool->flags & POOL_MANAGER_ACTIVE)
3108 		return false;
3109 
3110 	pool->flags |= POOL_MANAGER_ACTIVE;
3111 	pool->manager = worker;
3112 
3113 	maybe_create_worker(pool);
3114 
3115 	pool->manager = NULL;
3116 	pool->flags &= ~POOL_MANAGER_ACTIVE;
3117 	rcuwait_wake_up(&manager_wait);
3118 	return true;
3119 }
3120 
3121 /**
3122  * process_one_work - process single work
3123  * @worker: self
3124  * @work: work to process
3125  *
3126  * Process @work.  This function contains all the logics necessary to
3127  * process a single work including synchronization against and
3128  * interaction with other workers on the same cpu, queueing and
3129  * flushing.  As long as context requirement is met, any worker can
3130  * call this function to process a work.
3131  *
3132  * CONTEXT:
3133  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
3134  */
process_one_work(struct worker * worker,struct work_struct * work)3135 static void process_one_work(struct worker *worker, struct work_struct *work)
3136 __releases(&pool->lock)
3137 __acquires(&pool->lock)
3138 {
3139 	struct pool_workqueue *pwq = get_work_pwq(work);
3140 	struct worker_pool *pool = worker->pool;
3141 	unsigned long work_data;
3142 	int lockdep_start_depth, rcu_start_depth;
3143 	bool bh_draining = pool->flags & POOL_BH_DRAINING;
3144 #ifdef CONFIG_LOCKDEP
3145 	/*
3146 	 * It is permissible to free the struct work_struct from
3147 	 * inside the function that is called from it, this we need to
3148 	 * take into account for lockdep too.  To avoid bogus "held
3149 	 * lock freed" warnings as well as problems when looking into
3150 	 * work->lockdep_map, make a copy and use that here.
3151 	 */
3152 	struct lockdep_map lockdep_map;
3153 
3154 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
3155 #endif
3156 	/* ensure we're on the correct CPU */
3157 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
3158 		     raw_smp_processor_id() != pool->cpu);
3159 
3160 	/* claim and dequeue */
3161 	debug_work_deactivate(work);
3162 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
3163 	worker->current_work = work;
3164 	worker->current_func = work->func;
3165 	worker->current_pwq = pwq;
3166 	if (worker->task)
3167 		worker->current_at = worker->task->se.sum_exec_runtime;
3168 	work_data = *work_data_bits(work);
3169 	worker->current_color = get_work_color(work_data);
3170 
3171 	/*
3172 	 * Record wq name for cmdline and debug reporting, may get
3173 	 * overridden through set_worker_desc().
3174 	 */
3175 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
3176 
3177 	list_del_init(&work->entry);
3178 
3179 	/*
3180 	 * CPU intensive works don't participate in concurrency management.
3181 	 * They're the scheduler's responsibility.  This takes @worker out
3182 	 * of concurrency management and the next code block will chain
3183 	 * execution of the pending work items.
3184 	 */
3185 	if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
3186 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
3187 
3188 	/*
3189 	 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3190 	 * since nr_running would always be >= 1 at this point. This is used to
3191 	 * chain execution of the pending work items for WORKER_NOT_RUNNING
3192 	 * workers such as the UNBOUND and CPU_INTENSIVE ones.
3193 	 */
3194 	kick_pool(pool);
3195 
3196 	/*
3197 	 * Record the last pool and clear PENDING which should be the last
3198 	 * update to @work.  Also, do this inside @pool->lock so that
3199 	 * PENDING and queued state changes happen together while IRQ is
3200 	 * disabled.
3201 	 */
3202 	set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool));
3203 
3204 	pwq->stats[PWQ_STAT_STARTED]++;
3205 	raw_spin_unlock_irq(&pool->lock);
3206 
3207 	rcu_start_depth = rcu_preempt_depth();
3208 	lockdep_start_depth = lockdep_depth(current);
3209 	/* see drain_dead_softirq_workfn() */
3210 	if (!bh_draining)
3211 		lock_map_acquire(pwq->wq->lockdep_map);
3212 	lock_map_acquire(&lockdep_map);
3213 	/*
3214 	 * Strictly speaking we should mark the invariant state without holding
3215 	 * any locks, that is, before these two lock_map_acquire()'s.
3216 	 *
3217 	 * However, that would result in:
3218 	 *
3219 	 *   A(W1)
3220 	 *   WFC(C)
3221 	 *		A(W1)
3222 	 *		C(C)
3223 	 *
3224 	 * Which would create W1->C->W1 dependencies, even though there is no
3225 	 * actual deadlock possible. There are two solutions, using a
3226 	 * read-recursive acquire on the work(queue) 'locks', but this will then
3227 	 * hit the lockdep limitation on recursive locks, or simply discard
3228 	 * these locks.
3229 	 *
3230 	 * AFAICT there is no possible deadlock scenario between the
3231 	 * flush_work() and complete() primitives (except for single-threaded
3232 	 * workqueues), so hiding them isn't a problem.
3233 	 */
3234 	lockdep_invariant_state(true);
3235 	trace_workqueue_execute_start(work);
3236 	worker->current_func(work);
3237 	/*
3238 	 * While we must be careful to not use "work" after this, the trace
3239 	 * point will only record its address.
3240 	 */
3241 	trace_workqueue_execute_end(work, worker->current_func);
3242 	pwq->stats[PWQ_STAT_COMPLETED]++;
3243 	lock_map_release(&lockdep_map);
3244 	if (!bh_draining)
3245 		lock_map_release(pwq->wq->lockdep_map);
3246 
3247 	if (unlikely((worker->task && in_atomic()) ||
3248 		     lockdep_depth(current) != lockdep_start_depth ||
3249 		     rcu_preempt_depth() != rcu_start_depth)) {
3250 		pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3251 		       "     preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3252 		       current->comm, task_pid_nr(current), preempt_count(),
3253 		       lockdep_start_depth, lockdep_depth(current),
3254 		       rcu_start_depth, rcu_preempt_depth(),
3255 		       worker->current_func);
3256 		debug_show_held_locks(current);
3257 		dump_stack();
3258 	}
3259 
3260 	/*
3261 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
3262 	 * kernels, where a requeueing work item waiting for something to
3263 	 * happen could deadlock with stop_machine as such work item could
3264 	 * indefinitely requeue itself while all other CPUs are trapped in
3265 	 * stop_machine. At the same time, report a quiescent RCU state so
3266 	 * the same condition doesn't freeze RCU.
3267 	 */
3268 	if (worker->task)
3269 		cond_resched();
3270 
3271 	raw_spin_lock_irq(&pool->lock);
3272 
3273 	/*
3274 	 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3275 	 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3276 	 * wq_cpu_intensive_thresh_us. Clear it.
3277 	 */
3278 	worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
3279 
3280 	/* tag the worker for identification in schedule() */
3281 	worker->last_func = worker->current_func;
3282 
3283 	/* we're done with it, release */
3284 	hash_del(&worker->hentry);
3285 	worker->current_work = NULL;
3286 	worker->current_func = NULL;
3287 	worker->current_pwq = NULL;
3288 	worker->current_color = INT_MAX;
3289 
3290 	/* must be the last step, see the function comment */
3291 	pwq_dec_nr_in_flight(pwq, work_data);
3292 }
3293 
3294 /**
3295  * process_scheduled_works - process scheduled works
3296  * @worker: self
3297  *
3298  * Process all scheduled works.  Please note that the scheduled list
3299  * may change while processing a work, so this function repeatedly
3300  * fetches a work from the top and executes it.
3301  *
3302  * CONTEXT:
3303  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3304  * multiple times.
3305  */
process_scheduled_works(struct worker * worker)3306 static void process_scheduled_works(struct worker *worker)
3307 {
3308 	struct work_struct *work;
3309 	bool first = true;
3310 
3311 	while ((work = list_first_entry_or_null(&worker->scheduled,
3312 						struct work_struct, entry))) {
3313 		if (first) {
3314 			worker->pool->watchdog_ts = jiffies;
3315 			first = false;
3316 		}
3317 		process_one_work(worker, work);
3318 	}
3319 }
3320 
set_pf_worker(bool val)3321 static void set_pf_worker(bool val)
3322 {
3323 	mutex_lock(&wq_pool_attach_mutex);
3324 	if (val)
3325 		current->flags |= PF_WQ_WORKER;
3326 	else
3327 		current->flags &= ~PF_WQ_WORKER;
3328 	mutex_unlock(&wq_pool_attach_mutex);
3329 }
3330 
3331 /**
3332  * worker_thread - the worker thread function
3333  * @__worker: self
3334  *
3335  * The worker thread function.  All workers belong to a worker_pool -
3336  * either a per-cpu one or dynamic unbound one.  These workers process all
3337  * work items regardless of their specific target workqueue.  The only
3338  * exception is work items which belong to workqueues with a rescuer which
3339  * will be explained in rescuer_thread().
3340  *
3341  * Return: 0
3342  */
worker_thread(void * __worker)3343 static int worker_thread(void *__worker)
3344 {
3345 	struct worker *worker = __worker;
3346 	struct worker_pool *pool = worker->pool;
3347 
3348 	/* tell the scheduler that this is a workqueue worker */
3349 	set_pf_worker(true);
3350 woke_up:
3351 	raw_spin_lock_irq(&pool->lock);
3352 
3353 	/* am I supposed to die? */
3354 	if (unlikely(worker->flags & WORKER_DIE)) {
3355 		raw_spin_unlock_irq(&pool->lock);
3356 		set_pf_worker(false);
3357 		/*
3358 		 * The worker is dead and PF_WQ_WORKER is cleared, worker->pool
3359 		 * shouldn't be accessed, reset it to NULL in case otherwise.
3360 		 */
3361 		worker->pool = NULL;
3362 		ida_free(&pool->worker_ida, worker->id);
3363 		return 0;
3364 	}
3365 
3366 	worker_leave_idle(worker);
3367 recheck:
3368 	/* no more worker necessary? */
3369 	if (!need_more_worker(pool))
3370 		goto sleep;
3371 
3372 	/* do we need to manage? */
3373 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
3374 		goto recheck;
3375 
3376 	/*
3377 	 * ->scheduled list can only be filled while a worker is
3378 	 * preparing to process a work or actually processing it.
3379 	 * Make sure nobody diddled with it while I was sleeping.
3380 	 */
3381 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3382 
3383 	/*
3384 	 * Finish PREP stage.  We're guaranteed to have at least one idle
3385 	 * worker or that someone else has already assumed the manager
3386 	 * role.  This is where @worker starts participating in concurrency
3387 	 * management if applicable and concurrency management is restored
3388 	 * after being rebound.  See rebind_workers() for details.
3389 	 */
3390 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3391 
3392 	do {
3393 		struct work_struct *work =
3394 			list_first_entry(&pool->worklist,
3395 					 struct work_struct, entry);
3396 
3397 		if (assign_work(work, worker, NULL))
3398 			process_scheduled_works(worker);
3399 	} while (keep_working(pool));
3400 
3401 	worker_set_flags(worker, WORKER_PREP);
3402 sleep:
3403 	/*
3404 	 * pool->lock is held and there's no work to process and no need to
3405 	 * manage, sleep.  Workers are woken up only while holding
3406 	 * pool->lock or from local cpu, so setting the current state
3407 	 * before releasing pool->lock is enough to prevent losing any
3408 	 * event.
3409 	 */
3410 	worker_enter_idle(worker);
3411 	__set_current_state(TASK_IDLE);
3412 	raw_spin_unlock_irq(&pool->lock);
3413 	schedule();
3414 	goto woke_up;
3415 }
3416 
3417 /**
3418  * rescuer_thread - the rescuer thread function
3419  * @__rescuer: self
3420  *
3421  * Workqueue rescuer thread function.  There's one rescuer for each
3422  * workqueue which has WQ_MEM_RECLAIM set.
3423  *
3424  * Regular work processing on a pool may block trying to create a new
3425  * worker which uses GFP_KERNEL allocation which has slight chance of
3426  * developing into deadlock if some works currently on the same queue
3427  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
3428  * the problem rescuer solves.
3429  *
3430  * When such condition is possible, the pool summons rescuers of all
3431  * workqueues which have works queued on the pool and let them process
3432  * those works so that forward progress can be guaranteed.
3433  *
3434  * This should happen rarely.
3435  *
3436  * Return: 0
3437  */
rescuer_thread(void * __rescuer)3438 static int rescuer_thread(void *__rescuer)
3439 {
3440 	struct worker *rescuer = __rescuer;
3441 	struct workqueue_struct *wq = rescuer->rescue_wq;
3442 	bool should_stop;
3443 
3444 	set_user_nice(current, RESCUER_NICE_LEVEL);
3445 
3446 	/*
3447 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
3448 	 * doesn't participate in concurrency management.
3449 	 */
3450 	set_pf_worker(true);
3451 repeat:
3452 	set_current_state(TASK_IDLE);
3453 
3454 	/*
3455 	 * By the time the rescuer is requested to stop, the workqueue
3456 	 * shouldn't have any work pending, but @wq->maydays may still have
3457 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
3458 	 * all the work items before the rescuer got to them.  Go through
3459 	 * @wq->maydays processing before acting on should_stop so that the
3460 	 * list is always empty on exit.
3461 	 */
3462 	should_stop = kthread_should_stop();
3463 
3464 	/* see whether any pwq is asking for help */
3465 	raw_spin_lock_irq(&wq_mayday_lock);
3466 
3467 	while (!list_empty(&wq->maydays)) {
3468 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3469 					struct pool_workqueue, mayday_node);
3470 		struct worker_pool *pool = pwq->pool;
3471 		struct work_struct *work, *n;
3472 
3473 		__set_current_state(TASK_RUNNING);
3474 		list_del_init(&pwq->mayday_node);
3475 
3476 		raw_spin_unlock_irq(&wq_mayday_lock);
3477 
3478 		worker_attach_to_pool(rescuer, pool);
3479 
3480 		raw_spin_lock_irq(&pool->lock);
3481 
3482 		/*
3483 		 * Slurp in all works issued via this workqueue and
3484 		 * process'em.
3485 		 */
3486 		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
3487 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
3488 			if (get_work_pwq(work) == pwq &&
3489 			    assign_work(work, rescuer, &n))
3490 				pwq->stats[PWQ_STAT_RESCUED]++;
3491 		}
3492 
3493 		if (!list_empty(&rescuer->scheduled)) {
3494 			process_scheduled_works(rescuer);
3495 
3496 			/*
3497 			 * The above execution of rescued work items could
3498 			 * have created more to rescue through
3499 			 * pwq_activate_first_inactive() or chained
3500 			 * queueing.  Let's put @pwq back on mayday list so
3501 			 * that such back-to-back work items, which may be
3502 			 * being used to relieve memory pressure, don't
3503 			 * incur MAYDAY_INTERVAL delay inbetween.
3504 			 */
3505 			if (pwq->nr_active && need_to_create_worker(pool)) {
3506 				raw_spin_lock(&wq_mayday_lock);
3507 				/*
3508 				 * Queue iff we aren't racing destruction
3509 				 * and somebody else hasn't queued it already.
3510 				 */
3511 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3512 					get_pwq(pwq);
3513 					list_add_tail(&pwq->mayday_node, &wq->maydays);
3514 				}
3515 				raw_spin_unlock(&wq_mayday_lock);
3516 			}
3517 		}
3518 
3519 		/*
3520 		 * Put the reference grabbed by send_mayday().  @pool won't
3521 		 * go away while we're still attached to it.
3522 		 */
3523 		put_pwq(pwq);
3524 
3525 		/*
3526 		 * Leave this pool. Notify regular workers; otherwise, we end up
3527 		 * with 0 concurrency and stalling the execution.
3528 		 */
3529 		kick_pool(pool);
3530 
3531 		raw_spin_unlock_irq(&pool->lock);
3532 
3533 		worker_detach_from_pool(rescuer);
3534 
3535 		raw_spin_lock_irq(&wq_mayday_lock);
3536 	}
3537 
3538 	raw_spin_unlock_irq(&wq_mayday_lock);
3539 
3540 	if (should_stop) {
3541 		__set_current_state(TASK_RUNNING);
3542 		set_pf_worker(false);
3543 		return 0;
3544 	}
3545 
3546 	/* rescuers should never participate in concurrency management */
3547 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
3548 	schedule();
3549 	goto repeat;
3550 }
3551 
bh_worker(struct worker * worker)3552 static void bh_worker(struct worker *worker)
3553 {
3554 	struct worker_pool *pool = worker->pool;
3555 	int nr_restarts = BH_WORKER_RESTARTS;
3556 	unsigned long end = jiffies + BH_WORKER_JIFFIES;
3557 
3558 	raw_spin_lock_irq(&pool->lock);
3559 	worker_leave_idle(worker);
3560 
3561 	/*
3562 	 * This function follows the structure of worker_thread(). See there for
3563 	 * explanations on each step.
3564 	 */
3565 	if (!need_more_worker(pool))
3566 		goto done;
3567 
3568 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3569 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3570 
3571 	do {
3572 		struct work_struct *work =
3573 			list_first_entry(&pool->worklist,
3574 					 struct work_struct, entry);
3575 
3576 		if (assign_work(work, worker, NULL))
3577 			process_scheduled_works(worker);
3578 	} while (keep_working(pool) &&
3579 		 --nr_restarts && time_before(jiffies, end));
3580 
3581 	worker_set_flags(worker, WORKER_PREP);
3582 done:
3583 	worker_enter_idle(worker);
3584 	kick_pool(pool);
3585 	raw_spin_unlock_irq(&pool->lock);
3586 }
3587 
3588 /*
3589  * TODO: Convert all tasklet users to workqueue and use softirq directly.
3590  *
3591  * This is currently called from tasklet[_hi]action() and thus is also called
3592  * whenever there are tasklets to run. Let's do an early exit if there's nothing
3593  * queued. Once conversion from tasklet is complete, the need_more_worker() test
3594  * can be dropped.
3595  *
3596  * After full conversion, we'll add worker->softirq_action, directly use the
3597  * softirq action and obtain the worker pointer from the softirq_action pointer.
3598  */
workqueue_softirq_action(bool highpri)3599 void workqueue_softirq_action(bool highpri)
3600 {
3601 	struct worker_pool *pool =
3602 		&per_cpu(bh_worker_pools, smp_processor_id())[highpri];
3603 	if (need_more_worker(pool))
3604 		bh_worker(list_first_entry(&pool->workers, struct worker, node));
3605 }
3606 
3607 struct wq_drain_dead_softirq_work {
3608 	struct work_struct	work;
3609 	struct worker_pool	*pool;
3610 	struct completion	done;
3611 };
3612 
drain_dead_softirq_workfn(struct work_struct * work)3613 static void drain_dead_softirq_workfn(struct work_struct *work)
3614 {
3615 	struct wq_drain_dead_softirq_work *dead_work =
3616 		container_of(work, struct wq_drain_dead_softirq_work, work);
3617 	struct worker_pool *pool = dead_work->pool;
3618 	bool repeat;
3619 
3620 	/*
3621 	 * @pool's CPU is dead and we want to execute its still pending work
3622 	 * items from this BH work item which is running on a different CPU. As
3623 	 * its CPU is dead, @pool can't be kicked and, as work execution path
3624 	 * will be nested, a lockdep annotation needs to be suppressed. Mark
3625 	 * @pool with %POOL_BH_DRAINING for the special treatments.
3626 	 */
3627 	raw_spin_lock_irq(&pool->lock);
3628 	pool->flags |= POOL_BH_DRAINING;
3629 	raw_spin_unlock_irq(&pool->lock);
3630 
3631 	bh_worker(list_first_entry(&pool->workers, struct worker, node));
3632 
3633 	raw_spin_lock_irq(&pool->lock);
3634 	pool->flags &= ~POOL_BH_DRAINING;
3635 	repeat = need_more_worker(pool);
3636 	raw_spin_unlock_irq(&pool->lock);
3637 
3638 	/*
3639 	 * bh_worker() might hit consecutive execution limit and bail. If there
3640 	 * still are pending work items, reschedule self and return so that we
3641 	 * don't hog this CPU's BH.
3642 	 */
3643 	if (repeat) {
3644 		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3645 			queue_work(system_bh_highpri_wq, work);
3646 		else
3647 			queue_work(system_bh_wq, work);
3648 	} else {
3649 		complete(&dead_work->done);
3650 	}
3651 }
3652 
3653 /*
3654  * @cpu is dead. Drain the remaining BH work items on the current CPU. It's
3655  * possible to allocate dead_work per CPU and avoid flushing. However, then we
3656  * have to worry about draining overlapping with CPU coming back online or
3657  * nesting (one CPU's dead_work queued on another CPU which is also dead and so
3658  * on). Let's keep it simple and drain them synchronously. These are BH work
3659  * items which shouldn't be requeued on the same pool. Shouldn't take long.
3660  */
workqueue_softirq_dead(unsigned int cpu)3661 void workqueue_softirq_dead(unsigned int cpu)
3662 {
3663 	int i;
3664 
3665 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
3666 		struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i];
3667 		struct wq_drain_dead_softirq_work dead_work;
3668 
3669 		if (!need_more_worker(pool))
3670 			continue;
3671 
3672 		INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn);
3673 		dead_work.pool = pool;
3674 		init_completion(&dead_work.done);
3675 
3676 		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3677 			queue_work(system_bh_highpri_wq, &dead_work.work);
3678 		else
3679 			queue_work(system_bh_wq, &dead_work.work);
3680 
3681 		wait_for_completion(&dead_work.done);
3682 		destroy_work_on_stack(&dead_work.work);
3683 	}
3684 }
3685 
3686 /**
3687  * check_flush_dependency - check for flush dependency sanity
3688  * @target_wq: workqueue being flushed
3689  * @target_work: work item being flushed (NULL for workqueue flushes)
3690  * @from_cancel: are we called from the work cancel path
3691  *
3692  * %current is trying to flush the whole @target_wq or @target_work on it.
3693  * If this is not the cancel path (which implies work being flushed is either
3694  * already running, or will not be at all), check if @target_wq doesn't have
3695  * %WQ_MEM_RECLAIM and verify that %current is not reclaiming memory or running
3696  * on a workqueue which doesn't have %WQ_MEM_RECLAIM as that can break forward-
3697  * progress guarantee leading to a deadlock.
3698  */
check_flush_dependency(struct workqueue_struct * target_wq,struct work_struct * target_work,bool from_cancel)3699 static void check_flush_dependency(struct workqueue_struct *target_wq,
3700 				   struct work_struct *target_work,
3701 				   bool from_cancel)
3702 {
3703 	work_func_t target_func;
3704 	struct worker *worker;
3705 
3706 	if (from_cancel || target_wq->flags & WQ_MEM_RECLAIM)
3707 		return;
3708 
3709 	worker = current_wq_worker();
3710 	target_func = target_work ? target_work->func : NULL;
3711 
3712 	WARN_ONCE(current->flags & PF_MEMALLOC,
3713 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
3714 		  current->pid, current->comm, target_wq->name, target_func);
3715 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3716 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
3717 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
3718 		  worker->current_pwq->wq->name, worker->current_func,
3719 		  target_wq->name, target_func);
3720 }
3721 
3722 struct wq_barrier {
3723 	struct work_struct	work;
3724 	struct completion	done;
3725 	struct task_struct	*task;	/* purely informational */
3726 };
3727 
wq_barrier_func(struct work_struct * work)3728 static void wq_barrier_func(struct work_struct *work)
3729 {
3730 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3731 	complete(&barr->done);
3732 }
3733 
3734 /**
3735  * insert_wq_barrier - insert a barrier work
3736  * @pwq: pwq to insert barrier into
3737  * @barr: wq_barrier to insert
3738  * @target: target work to attach @barr to
3739  * @worker: worker currently executing @target, NULL if @target is not executing
3740  *
3741  * @barr is linked to @target such that @barr is completed only after
3742  * @target finishes execution.  Please note that the ordering
3743  * guarantee is observed only with respect to @target and on the local
3744  * cpu.
3745  *
3746  * Currently, a queued barrier can't be canceled.  This is because
3747  * try_to_grab_pending() can't determine whether the work to be
3748  * grabbed is at the head of the queue and thus can't clear LINKED
3749  * flag of the previous work while there must be a valid next work
3750  * after a work with LINKED flag set.
3751  *
3752  * Note that when @worker is non-NULL, @target may be modified
3753  * underneath us, so we can't reliably determine pwq from @target.
3754  *
3755  * CONTEXT:
3756  * raw_spin_lock_irq(pool->lock).
3757  */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)3758 static void insert_wq_barrier(struct pool_workqueue *pwq,
3759 			      struct wq_barrier *barr,
3760 			      struct work_struct *target, struct worker *worker)
3761 {
3762 	static __maybe_unused struct lock_class_key bh_key, thr_key;
3763 	unsigned int work_flags = 0;
3764 	unsigned int work_color;
3765 	struct list_head *head;
3766 
3767 	/*
3768 	 * debugobject calls are safe here even with pool->lock locked
3769 	 * as we know for sure that this will not trigger any of the
3770 	 * checks and call back into the fixup functions where we
3771 	 * might deadlock.
3772 	 *
3773 	 * BH and threaded workqueues need separate lockdep keys to avoid
3774 	 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3775 	 * usage".
3776 	 */
3777 	INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
3778 			      (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
3779 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3780 
3781 	init_completion_map(&barr->done, &target->lockdep_map);
3782 
3783 	barr->task = current;
3784 
3785 	/* The barrier work item does not participate in nr_active. */
3786 	work_flags |= WORK_STRUCT_INACTIVE;
3787 
3788 	/*
3789 	 * If @target is currently being executed, schedule the
3790 	 * barrier to the worker; otherwise, put it after @target.
3791 	 */
3792 	if (worker) {
3793 		head = worker->scheduled.next;
3794 		work_color = worker->current_color;
3795 	} else {
3796 		unsigned long *bits = work_data_bits(target);
3797 
3798 		head = target->entry.next;
3799 		/* there can already be other linked works, inherit and set */
3800 		work_flags |= *bits & WORK_STRUCT_LINKED;
3801 		work_color = get_work_color(*bits);
3802 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
3803 	}
3804 
3805 	pwq->nr_in_flight[work_color]++;
3806 	work_flags |= work_color_to_flags(work_color);
3807 
3808 	insert_work(pwq, &barr->work, head, work_flags);
3809 }
3810 
3811 /**
3812  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3813  * @wq: workqueue being flushed
3814  * @flush_color: new flush color, < 0 for no-op
3815  * @work_color: new work color, < 0 for no-op
3816  *
3817  * Prepare pwqs for workqueue flushing.
3818  *
3819  * If @flush_color is non-negative, flush_color on all pwqs should be
3820  * -1.  If no pwq has in-flight commands at the specified color, all
3821  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
3822  * has in flight commands, its pwq->flush_color is set to
3823  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3824  * wakeup logic is armed and %true is returned.
3825  *
3826  * The caller should have initialized @wq->first_flusher prior to
3827  * calling this function with non-negative @flush_color.  If
3828  * @flush_color is negative, no flush color update is done and %false
3829  * is returned.
3830  *
3831  * If @work_color is non-negative, all pwqs should have the same
3832  * work_color which is previous to @work_color and all will be
3833  * advanced to @work_color.
3834  *
3835  * CONTEXT:
3836  * mutex_lock(wq->mutex).
3837  *
3838  * Return:
3839  * %true if @flush_color >= 0 and there's something to flush.  %false
3840  * otherwise.
3841  */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)3842 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3843 				      int flush_color, int work_color)
3844 {
3845 	bool wait = false;
3846 	struct pool_workqueue *pwq;
3847 	struct worker_pool *current_pool = NULL;
3848 
3849 	if (flush_color >= 0) {
3850 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3851 		atomic_set(&wq->nr_pwqs_to_flush, 1);
3852 	}
3853 
3854 	/*
3855 	 * For unbound workqueue, pwqs will map to only a few pools.
3856 	 * Most of the time, pwqs within the same pool will be linked
3857 	 * sequentially to wq->pwqs by cpu index. So in the majority
3858 	 * of pwq iters, the pool is the same, only doing lock/unlock
3859 	 * if the pool has changed. This can largely reduce expensive
3860 	 * lock operations.
3861 	 */
3862 	for_each_pwq(pwq, wq) {
3863 		if (current_pool != pwq->pool) {
3864 			if (likely(current_pool))
3865 				raw_spin_unlock_irq(&current_pool->lock);
3866 			current_pool = pwq->pool;
3867 			raw_spin_lock_irq(&current_pool->lock);
3868 		}
3869 
3870 		if (flush_color >= 0) {
3871 			WARN_ON_ONCE(pwq->flush_color != -1);
3872 
3873 			if (pwq->nr_in_flight[flush_color]) {
3874 				pwq->flush_color = flush_color;
3875 				atomic_inc(&wq->nr_pwqs_to_flush);
3876 				wait = true;
3877 			}
3878 		}
3879 
3880 		if (work_color >= 0) {
3881 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3882 			pwq->work_color = work_color;
3883 		}
3884 
3885 	}
3886 
3887 	if (current_pool)
3888 		raw_spin_unlock_irq(&current_pool->lock);
3889 
3890 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3891 		complete(&wq->first_flusher->done);
3892 
3893 	return wait;
3894 }
3895 
touch_wq_lockdep_map(struct workqueue_struct * wq)3896 static void touch_wq_lockdep_map(struct workqueue_struct *wq)
3897 {
3898 #ifdef CONFIG_LOCKDEP
3899 	if (unlikely(!wq->lockdep_map))
3900 		return;
3901 
3902 	if (wq->flags & WQ_BH)
3903 		local_bh_disable();
3904 
3905 	lock_map_acquire(wq->lockdep_map);
3906 	lock_map_release(wq->lockdep_map);
3907 
3908 	if (wq->flags & WQ_BH)
3909 		local_bh_enable();
3910 #endif
3911 }
3912 
touch_work_lockdep_map(struct work_struct * work,struct workqueue_struct * wq)3913 static void touch_work_lockdep_map(struct work_struct *work,
3914 				   struct workqueue_struct *wq)
3915 {
3916 #ifdef CONFIG_LOCKDEP
3917 	if (wq->flags & WQ_BH)
3918 		local_bh_disable();
3919 
3920 	lock_map_acquire(&work->lockdep_map);
3921 	lock_map_release(&work->lockdep_map);
3922 
3923 	if (wq->flags & WQ_BH)
3924 		local_bh_enable();
3925 #endif
3926 }
3927 
3928 /**
3929  * __flush_workqueue - ensure that any scheduled work has run to completion.
3930  * @wq: workqueue to flush
3931  *
3932  * This function sleeps until all work items which were queued on entry
3933  * have finished execution, but it is not livelocked by new incoming ones.
3934  */
__flush_workqueue(struct workqueue_struct * wq)3935 void __flush_workqueue(struct workqueue_struct *wq)
3936 {
3937 	struct wq_flusher this_flusher = {
3938 		.list = LIST_HEAD_INIT(this_flusher.list),
3939 		.flush_color = -1,
3940 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, (*wq->lockdep_map)),
3941 	};
3942 	int next_color;
3943 
3944 	if (WARN_ON(!wq_online))
3945 		return;
3946 
3947 	touch_wq_lockdep_map(wq);
3948 
3949 	mutex_lock(&wq->mutex);
3950 
3951 	/*
3952 	 * Start-to-wait phase
3953 	 */
3954 	next_color = work_next_color(wq->work_color);
3955 
3956 	if (next_color != wq->flush_color) {
3957 		/*
3958 		 * Color space is not full.  The current work_color
3959 		 * becomes our flush_color and work_color is advanced
3960 		 * by one.
3961 		 */
3962 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3963 		this_flusher.flush_color = wq->work_color;
3964 		wq->work_color = next_color;
3965 
3966 		if (!wq->first_flusher) {
3967 			/* no flush in progress, become the first flusher */
3968 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3969 
3970 			wq->first_flusher = &this_flusher;
3971 
3972 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3973 						       wq->work_color)) {
3974 				/* nothing to flush, done */
3975 				wq->flush_color = next_color;
3976 				wq->first_flusher = NULL;
3977 				goto out_unlock;
3978 			}
3979 		} else {
3980 			/* wait in queue */
3981 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3982 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
3983 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3984 		}
3985 	} else {
3986 		/*
3987 		 * Oops, color space is full, wait on overflow queue.
3988 		 * The next flush completion will assign us
3989 		 * flush_color and transfer to flusher_queue.
3990 		 */
3991 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3992 	}
3993 
3994 	check_flush_dependency(wq, NULL, false);
3995 
3996 	mutex_unlock(&wq->mutex);
3997 
3998 	wait_for_completion(&this_flusher.done);
3999 
4000 	/*
4001 	 * Wake-up-and-cascade phase
4002 	 *
4003 	 * First flushers are responsible for cascading flushes and
4004 	 * handling overflow.  Non-first flushers can simply return.
4005 	 */
4006 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
4007 		return;
4008 
4009 	mutex_lock(&wq->mutex);
4010 
4011 	/* we might have raced, check again with mutex held */
4012 	if (wq->first_flusher != &this_flusher)
4013 		goto out_unlock;
4014 
4015 	WRITE_ONCE(wq->first_flusher, NULL);
4016 
4017 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
4018 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
4019 
4020 	while (true) {
4021 		struct wq_flusher *next, *tmp;
4022 
4023 		/* complete all the flushers sharing the current flush color */
4024 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
4025 			if (next->flush_color != wq->flush_color)
4026 				break;
4027 			list_del_init(&next->list);
4028 			complete(&next->done);
4029 		}
4030 
4031 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
4032 			     wq->flush_color != work_next_color(wq->work_color));
4033 
4034 		/* this flush_color is finished, advance by one */
4035 		wq->flush_color = work_next_color(wq->flush_color);
4036 
4037 		/* one color has been freed, handle overflow queue */
4038 		if (!list_empty(&wq->flusher_overflow)) {
4039 			/*
4040 			 * Assign the same color to all overflowed
4041 			 * flushers, advance work_color and append to
4042 			 * flusher_queue.  This is the start-to-wait
4043 			 * phase for these overflowed flushers.
4044 			 */
4045 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
4046 				tmp->flush_color = wq->work_color;
4047 
4048 			wq->work_color = work_next_color(wq->work_color);
4049 
4050 			list_splice_tail_init(&wq->flusher_overflow,
4051 					      &wq->flusher_queue);
4052 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
4053 		}
4054 
4055 		if (list_empty(&wq->flusher_queue)) {
4056 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
4057 			break;
4058 		}
4059 
4060 		/*
4061 		 * Need to flush more colors.  Make the next flusher
4062 		 * the new first flusher and arm pwqs.
4063 		 */
4064 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
4065 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
4066 
4067 		list_del_init(&next->list);
4068 		wq->first_flusher = next;
4069 
4070 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
4071 			break;
4072 
4073 		/*
4074 		 * Meh... this color is already done, clear first
4075 		 * flusher and repeat cascading.
4076 		 */
4077 		wq->first_flusher = NULL;
4078 	}
4079 
4080 out_unlock:
4081 	mutex_unlock(&wq->mutex);
4082 }
4083 EXPORT_SYMBOL(__flush_workqueue);
4084 
4085 /**
4086  * drain_workqueue - drain a workqueue
4087  * @wq: workqueue to drain
4088  *
4089  * Wait until the workqueue becomes empty.  While draining is in progress,
4090  * only chain queueing is allowed.  IOW, only currently pending or running
4091  * work items on @wq can queue further work items on it.  @wq is flushed
4092  * repeatedly until it becomes empty.  The number of flushing is determined
4093  * by the depth of chaining and should be relatively short.  Whine if it
4094  * takes too long.
4095  */
drain_workqueue(struct workqueue_struct * wq)4096 void drain_workqueue(struct workqueue_struct *wq)
4097 {
4098 	unsigned int flush_cnt = 0;
4099 	struct pool_workqueue *pwq;
4100 
4101 	/*
4102 	 * __queue_work() needs to test whether there are drainers, is much
4103 	 * hotter than drain_workqueue() and already looks at @wq->flags.
4104 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
4105 	 */
4106 	mutex_lock(&wq->mutex);
4107 	if (!wq->nr_drainers++)
4108 		wq->flags |= __WQ_DRAINING;
4109 	mutex_unlock(&wq->mutex);
4110 reflush:
4111 	__flush_workqueue(wq);
4112 
4113 	mutex_lock(&wq->mutex);
4114 
4115 	for_each_pwq(pwq, wq) {
4116 		bool drained;
4117 
4118 		raw_spin_lock_irq(&pwq->pool->lock);
4119 		drained = pwq_is_empty(pwq);
4120 		raw_spin_unlock_irq(&pwq->pool->lock);
4121 
4122 		if (drained)
4123 			continue;
4124 
4125 		if (++flush_cnt == 10 ||
4126 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
4127 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
4128 				wq->name, __func__, flush_cnt);
4129 
4130 		mutex_unlock(&wq->mutex);
4131 		goto reflush;
4132 	}
4133 
4134 	if (!--wq->nr_drainers)
4135 		wq->flags &= ~__WQ_DRAINING;
4136 	mutex_unlock(&wq->mutex);
4137 }
4138 EXPORT_SYMBOL_GPL(drain_workqueue);
4139 
start_flush_work(struct work_struct * work,struct wq_barrier * barr,bool from_cancel)4140 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
4141 			     bool from_cancel)
4142 {
4143 	struct worker *worker = NULL;
4144 	struct worker_pool *pool;
4145 	struct pool_workqueue *pwq;
4146 	struct workqueue_struct *wq;
4147 
4148 	rcu_read_lock();
4149 	pool = get_work_pool(work);
4150 	if (!pool) {
4151 		rcu_read_unlock();
4152 		return false;
4153 	}
4154 
4155 	raw_spin_lock_irq(&pool->lock);
4156 	/* see the comment in try_to_grab_pending() with the same code */
4157 	pwq = get_work_pwq(work);
4158 	if (pwq) {
4159 		if (unlikely(pwq->pool != pool))
4160 			goto already_gone;
4161 	} else {
4162 		worker = find_worker_executing_work(pool, work);
4163 		if (!worker)
4164 			goto already_gone;
4165 		pwq = worker->current_pwq;
4166 	}
4167 
4168 	wq = pwq->wq;
4169 	check_flush_dependency(wq, work, from_cancel);
4170 
4171 	insert_wq_barrier(pwq, barr, work, worker);
4172 	raw_spin_unlock_irq(&pool->lock);
4173 
4174 	touch_work_lockdep_map(work, wq);
4175 
4176 	/*
4177 	 * Force a lock recursion deadlock when using flush_work() inside a
4178 	 * single-threaded or rescuer equipped workqueue.
4179 	 *
4180 	 * For single threaded workqueues the deadlock happens when the work
4181 	 * is after the work issuing the flush_work(). For rescuer equipped
4182 	 * workqueues the deadlock happens when the rescuer stalls, blocking
4183 	 * forward progress.
4184 	 */
4185 	if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
4186 		touch_wq_lockdep_map(wq);
4187 
4188 	rcu_read_unlock();
4189 	return true;
4190 already_gone:
4191 	raw_spin_unlock_irq(&pool->lock);
4192 	rcu_read_unlock();
4193 	return false;
4194 }
4195 
__flush_work(struct work_struct * work,bool from_cancel)4196 static bool __flush_work(struct work_struct *work, bool from_cancel)
4197 {
4198 	struct wq_barrier barr;
4199 
4200 	if (WARN_ON(!wq_online))
4201 		return false;
4202 
4203 	if (WARN_ON(!work->func))
4204 		return false;
4205 
4206 	if (!start_flush_work(work, &barr, from_cancel))
4207 		return false;
4208 
4209 	/*
4210 	 * start_flush_work() returned %true. If @from_cancel is set, we know
4211 	 * that @work must have been executing during start_flush_work() and
4212 	 * can't currently be queued. Its data must contain OFFQ bits. If @work
4213 	 * was queued on a BH workqueue, we also know that it was running in the
4214 	 * BH context and thus can be busy-waited.
4215 	 */
4216 	if (from_cancel) {
4217 		unsigned long data = *work_data_bits(work);
4218 
4219 		if (!WARN_ON_ONCE(data & WORK_STRUCT_PWQ) &&
4220 		    (data & WORK_OFFQ_BH)) {
4221 			/*
4222 			 * On RT, prevent a live lock when %current preempted
4223 			 * soft interrupt processing or prevents ksoftirqd from
4224 			 * running by keeping flipping BH. If the BH work item
4225 			 * runs on a different CPU then this has no effect other
4226 			 * than doing the BH disable/enable dance for nothing.
4227 			 * This is copied from
4228 			 * kernel/softirq.c::tasklet_unlock_spin_wait().
4229 			 */
4230 			while (!try_wait_for_completion(&barr.done)) {
4231 				if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4232 					local_bh_disable();
4233 					local_bh_enable();
4234 				} else {
4235 					cpu_relax();
4236 				}
4237 			}
4238 			goto out_destroy;
4239 		}
4240 	}
4241 
4242 	wait_for_completion(&barr.done);
4243 
4244 out_destroy:
4245 	destroy_work_on_stack(&barr.work);
4246 	return true;
4247 }
4248 
4249 /**
4250  * flush_work - wait for a work to finish executing the last queueing instance
4251  * @work: the work to flush
4252  *
4253  * Wait until @work has finished execution.  @work is guaranteed to be idle
4254  * on return if it hasn't been requeued since flush started.
4255  *
4256  * Return:
4257  * %true if flush_work() waited for the work to finish execution,
4258  * %false if it was already idle.
4259  */
flush_work(struct work_struct * work)4260 bool flush_work(struct work_struct *work)
4261 {
4262 	might_sleep();
4263 	return __flush_work(work, false);
4264 }
4265 EXPORT_SYMBOL_GPL(flush_work);
4266 
4267 /**
4268  * flush_delayed_work - wait for a dwork to finish executing the last queueing
4269  * @dwork: the delayed work to flush
4270  *
4271  * Delayed timer is cancelled and the pending work is queued for
4272  * immediate execution.  Like flush_work(), this function only
4273  * considers the last queueing instance of @dwork.
4274  *
4275  * Return:
4276  * %true if flush_work() waited for the work to finish execution,
4277  * %false if it was already idle.
4278  */
flush_delayed_work(struct delayed_work * dwork)4279 bool flush_delayed_work(struct delayed_work *dwork)
4280 {
4281 	local_irq_disable();
4282 	if (del_timer_sync(&dwork->timer))
4283 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
4284 	local_irq_enable();
4285 	return flush_work(&dwork->work);
4286 }
4287 EXPORT_SYMBOL(flush_delayed_work);
4288 
4289 /**
4290  * flush_rcu_work - wait for a rwork to finish executing the last queueing
4291  * @rwork: the rcu work to flush
4292  *
4293  * Return:
4294  * %true if flush_rcu_work() waited for the work to finish execution,
4295  * %false if it was already idle.
4296  */
flush_rcu_work(struct rcu_work * rwork)4297 bool flush_rcu_work(struct rcu_work *rwork)
4298 {
4299 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
4300 		rcu_barrier();
4301 		flush_work(&rwork->work);
4302 		return true;
4303 	} else {
4304 		return flush_work(&rwork->work);
4305 	}
4306 }
4307 EXPORT_SYMBOL(flush_rcu_work);
4308 
work_offqd_disable(struct work_offq_data * offqd)4309 static void work_offqd_disable(struct work_offq_data *offqd)
4310 {
4311 	const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1;
4312 
4313 	if (likely(offqd->disable < max))
4314 		offqd->disable++;
4315 	else
4316 		WARN_ONCE(true, "workqueue: work disable count overflowed\n");
4317 }
4318 
work_offqd_enable(struct work_offq_data * offqd)4319 static void work_offqd_enable(struct work_offq_data *offqd)
4320 {
4321 	if (likely(offqd->disable > 0))
4322 		offqd->disable--;
4323 	else
4324 		WARN_ONCE(true, "workqueue: work disable count underflowed\n");
4325 }
4326 
__cancel_work(struct work_struct * work,u32 cflags)4327 static bool __cancel_work(struct work_struct *work, u32 cflags)
4328 {
4329 	struct work_offq_data offqd;
4330 	unsigned long irq_flags;
4331 	int ret;
4332 
4333 	ret = work_grab_pending(work, cflags, &irq_flags);
4334 
4335 	work_offqd_unpack(&offqd, *work_data_bits(work));
4336 
4337 	if (cflags & WORK_CANCEL_DISABLE)
4338 		work_offqd_disable(&offqd);
4339 
4340 	set_work_pool_and_clear_pending(work, offqd.pool_id,
4341 					work_offqd_pack_flags(&offqd));
4342 	local_irq_restore(irq_flags);
4343 	return ret;
4344 }
4345 
__cancel_work_sync(struct work_struct * work,u32 cflags)4346 static bool __cancel_work_sync(struct work_struct *work, u32 cflags)
4347 {
4348 	bool ret;
4349 
4350 	ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE);
4351 
4352 	if (*work_data_bits(work) & WORK_OFFQ_BH)
4353 		WARN_ON_ONCE(in_hardirq());
4354 	else
4355 		might_sleep();
4356 
4357 	/*
4358 	 * Skip __flush_work() during early boot when we know that @work isn't
4359 	 * executing. This allows canceling during early boot.
4360 	 */
4361 	if (wq_online)
4362 		__flush_work(work, true);
4363 
4364 	if (!(cflags & WORK_CANCEL_DISABLE))
4365 		enable_work(work);
4366 
4367 	return ret;
4368 }
4369 
4370 /*
4371  * See cancel_delayed_work()
4372  */
cancel_work(struct work_struct * work)4373 bool cancel_work(struct work_struct *work)
4374 {
4375 	return __cancel_work(work, 0);
4376 }
4377 EXPORT_SYMBOL(cancel_work);
4378 
4379 /**
4380  * cancel_work_sync - cancel a work and wait for it to finish
4381  * @work: the work to cancel
4382  *
4383  * Cancel @work and wait for its execution to finish. This function can be used
4384  * even if the work re-queues itself or migrates to another workqueue. On return
4385  * from this function, @work is guaranteed to be not pending or executing on any
4386  * CPU as long as there aren't racing enqueues.
4387  *
4388  * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's.
4389  * Use cancel_delayed_work_sync() instead.
4390  *
4391  * Must be called from a sleepable context if @work was last queued on a non-BH
4392  * workqueue. Can also be called from non-hardirq atomic contexts including BH
4393  * if @work was last queued on a BH workqueue.
4394  *
4395  * Returns %true if @work was pending, %false otherwise.
4396  */
cancel_work_sync(struct work_struct * work)4397 bool cancel_work_sync(struct work_struct *work)
4398 {
4399 	return __cancel_work_sync(work, 0);
4400 }
4401 EXPORT_SYMBOL_GPL(cancel_work_sync);
4402 
4403 /**
4404  * cancel_delayed_work - cancel a delayed work
4405  * @dwork: delayed_work to cancel
4406  *
4407  * Kill off a pending delayed_work.
4408  *
4409  * Return: %true if @dwork was pending and canceled; %false if it wasn't
4410  * pending.
4411  *
4412  * Note:
4413  * The work callback function may still be running on return, unless
4414  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
4415  * use cancel_delayed_work_sync() to wait on it.
4416  *
4417  * This function is safe to call from any context including IRQ handler.
4418  */
cancel_delayed_work(struct delayed_work * dwork)4419 bool cancel_delayed_work(struct delayed_work *dwork)
4420 {
4421 	return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED);
4422 }
4423 EXPORT_SYMBOL(cancel_delayed_work);
4424 
4425 /**
4426  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4427  * @dwork: the delayed work cancel
4428  *
4429  * This is cancel_work_sync() for delayed works.
4430  *
4431  * Return:
4432  * %true if @dwork was pending, %false otherwise.
4433  */
cancel_delayed_work_sync(struct delayed_work * dwork)4434 bool cancel_delayed_work_sync(struct delayed_work *dwork)
4435 {
4436 	return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED);
4437 }
4438 EXPORT_SYMBOL(cancel_delayed_work_sync);
4439 
4440 /**
4441  * disable_work - Disable and cancel a work item
4442  * @work: work item to disable
4443  *
4444  * Disable @work by incrementing its disable count and cancel it if currently
4445  * pending. As long as the disable count is non-zero, any attempt to queue @work
4446  * will fail and return %false. The maximum supported disable depth is 2 to the
4447  * power of %WORK_OFFQ_DISABLE_BITS, currently 65536.
4448  *
4449  * Can be called from any context. Returns %true if @work was pending, %false
4450  * otherwise.
4451  */
disable_work(struct work_struct * work)4452 bool disable_work(struct work_struct *work)
4453 {
4454 	return __cancel_work(work, WORK_CANCEL_DISABLE);
4455 }
4456 EXPORT_SYMBOL_GPL(disable_work);
4457 
4458 /**
4459  * disable_work_sync - Disable, cancel and drain a work item
4460  * @work: work item to disable
4461  *
4462  * Similar to disable_work() but also wait for @work to finish if currently
4463  * executing.
4464  *
4465  * Must be called from a sleepable context if @work was last queued on a non-BH
4466  * workqueue. Can also be called from non-hardirq atomic contexts including BH
4467  * if @work was last queued on a BH workqueue.
4468  *
4469  * Returns %true if @work was pending, %false otherwise.
4470  */
disable_work_sync(struct work_struct * work)4471 bool disable_work_sync(struct work_struct *work)
4472 {
4473 	return __cancel_work_sync(work, WORK_CANCEL_DISABLE);
4474 }
4475 EXPORT_SYMBOL_GPL(disable_work_sync);
4476 
4477 /**
4478  * enable_work - Enable a work item
4479  * @work: work item to enable
4480  *
4481  * Undo disable_work[_sync]() by decrementing @work's disable count. @work can
4482  * only be queued if its disable count is 0.
4483  *
4484  * Can be called from any context. Returns %true if the disable count reached 0.
4485  * Otherwise, %false.
4486  */
enable_work(struct work_struct * work)4487 bool enable_work(struct work_struct *work)
4488 {
4489 	struct work_offq_data offqd;
4490 	unsigned long irq_flags;
4491 
4492 	work_grab_pending(work, 0, &irq_flags);
4493 
4494 	work_offqd_unpack(&offqd, *work_data_bits(work));
4495 	work_offqd_enable(&offqd);
4496 	set_work_pool_and_clear_pending(work, offqd.pool_id,
4497 					work_offqd_pack_flags(&offqd));
4498 	local_irq_restore(irq_flags);
4499 
4500 	return !offqd.disable;
4501 }
4502 EXPORT_SYMBOL_GPL(enable_work);
4503 
4504 /**
4505  * disable_delayed_work - Disable and cancel a delayed work item
4506  * @dwork: delayed work item to disable
4507  *
4508  * disable_work() for delayed work items.
4509  */
disable_delayed_work(struct delayed_work * dwork)4510 bool disable_delayed_work(struct delayed_work *dwork)
4511 {
4512 	return __cancel_work(&dwork->work,
4513 			     WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4514 }
4515 EXPORT_SYMBOL_GPL(disable_delayed_work);
4516 
4517 /**
4518  * disable_delayed_work_sync - Disable, cancel and drain a delayed work item
4519  * @dwork: delayed work item to disable
4520  *
4521  * disable_work_sync() for delayed work items.
4522  */
disable_delayed_work_sync(struct delayed_work * dwork)4523 bool disable_delayed_work_sync(struct delayed_work *dwork)
4524 {
4525 	return __cancel_work_sync(&dwork->work,
4526 				  WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4527 }
4528 EXPORT_SYMBOL_GPL(disable_delayed_work_sync);
4529 
4530 /**
4531  * enable_delayed_work - Enable a delayed work item
4532  * @dwork: delayed work item to enable
4533  *
4534  * enable_work() for delayed work items.
4535  */
enable_delayed_work(struct delayed_work * dwork)4536 bool enable_delayed_work(struct delayed_work *dwork)
4537 {
4538 	return enable_work(&dwork->work);
4539 }
4540 EXPORT_SYMBOL_GPL(enable_delayed_work);
4541 
4542 /**
4543  * schedule_on_each_cpu - execute a function synchronously on each online CPU
4544  * @func: the function to call
4545  *
4546  * schedule_on_each_cpu() executes @func on each online CPU using the
4547  * system workqueue and blocks until all CPUs have completed.
4548  * schedule_on_each_cpu() is very slow.
4549  *
4550  * Return:
4551  * 0 on success, -errno on failure.
4552  */
schedule_on_each_cpu(work_func_t func)4553 int schedule_on_each_cpu(work_func_t func)
4554 {
4555 	int cpu;
4556 	struct work_struct __percpu *works;
4557 
4558 	works = alloc_percpu(struct work_struct);
4559 	if (!works)
4560 		return -ENOMEM;
4561 
4562 	cpus_read_lock();
4563 
4564 	for_each_online_cpu(cpu) {
4565 		struct work_struct *work = per_cpu_ptr(works, cpu);
4566 
4567 		INIT_WORK(work, func);
4568 		schedule_work_on(cpu, work);
4569 	}
4570 
4571 	for_each_online_cpu(cpu)
4572 		flush_work(per_cpu_ptr(works, cpu));
4573 
4574 	cpus_read_unlock();
4575 	free_percpu(works);
4576 	return 0;
4577 }
4578 
4579 /**
4580  * execute_in_process_context - reliably execute the routine with user context
4581  * @fn:		the function to execute
4582  * @ew:		guaranteed storage for the execute work structure (must
4583  *		be available when the work executes)
4584  *
4585  * Executes the function immediately if process context is available,
4586  * otherwise schedules the function for delayed execution.
4587  *
4588  * Return:	0 - function was executed
4589  *		1 - function was scheduled for execution
4590  */
execute_in_process_context(work_func_t fn,struct execute_work * ew)4591 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
4592 {
4593 	if (!in_interrupt()) {
4594 		fn(&ew->work);
4595 		return 0;
4596 	}
4597 
4598 	INIT_WORK(&ew->work, fn);
4599 	schedule_work(&ew->work);
4600 
4601 	return 1;
4602 }
4603 EXPORT_SYMBOL_GPL(execute_in_process_context);
4604 
4605 /**
4606  * free_workqueue_attrs - free a workqueue_attrs
4607  * @attrs: workqueue_attrs to free
4608  *
4609  * Undo alloc_workqueue_attrs().
4610  */
free_workqueue_attrs(struct workqueue_attrs * attrs)4611 void free_workqueue_attrs(struct workqueue_attrs *attrs)
4612 {
4613 	if (attrs) {
4614 		free_cpumask_var(attrs->cpumask);
4615 		free_cpumask_var(attrs->__pod_cpumask);
4616 		kfree(attrs);
4617 	}
4618 }
4619 
4620 /**
4621  * alloc_workqueue_attrs - allocate a workqueue_attrs
4622  *
4623  * Allocate a new workqueue_attrs, initialize with default settings and
4624  * return it.
4625  *
4626  * Return: The allocated new workqueue_attr on success. %NULL on failure.
4627  */
alloc_workqueue_attrs(void)4628 struct workqueue_attrs *alloc_workqueue_attrs(void)
4629 {
4630 	struct workqueue_attrs *attrs;
4631 
4632 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
4633 	if (!attrs)
4634 		goto fail;
4635 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
4636 		goto fail;
4637 	if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4638 		goto fail;
4639 
4640 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
4641 	attrs->affn_scope = WQ_AFFN_DFL;
4642 	return attrs;
4643 fail:
4644 	free_workqueue_attrs(attrs);
4645 	return NULL;
4646 }
4647 
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)4648 static void copy_workqueue_attrs(struct workqueue_attrs *to,
4649 				 const struct workqueue_attrs *from)
4650 {
4651 	to->nice = from->nice;
4652 	cpumask_copy(to->cpumask, from->cpumask);
4653 	cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
4654 	to->affn_strict = from->affn_strict;
4655 
4656 	/*
4657 	 * Unlike hash and equality test, copying shouldn't ignore wq-only
4658 	 * fields as copying is used for both pool and wq attrs. Instead,
4659 	 * get_unbound_pool() explicitly clears the fields.
4660 	 */
4661 	to->affn_scope = from->affn_scope;
4662 	to->ordered = from->ordered;
4663 }
4664 
4665 /*
4666  * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4667  * comments in 'struct workqueue_attrs' definition.
4668  */
wqattrs_clear_for_pool(struct workqueue_attrs * attrs)4669 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4670 {
4671 	attrs->affn_scope = WQ_AFFN_NR_TYPES;
4672 	attrs->ordered = false;
4673 	if (attrs->affn_strict)
4674 		cpumask_copy(attrs->cpumask, cpu_possible_mask);
4675 }
4676 
4677 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)4678 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
4679 {
4680 	u32 hash = 0;
4681 
4682 	hash = jhash_1word(attrs->nice, hash);
4683 	hash = jhash_1word(attrs->affn_strict, hash);
4684 	hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4685 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4686 	if (!attrs->affn_strict)
4687 		hash = jhash(cpumask_bits(attrs->cpumask),
4688 			     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4689 	return hash;
4690 }
4691 
4692 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)4693 static bool wqattrs_equal(const struct workqueue_attrs *a,
4694 			  const struct workqueue_attrs *b)
4695 {
4696 	if (a->nice != b->nice)
4697 		return false;
4698 	if (a->affn_strict != b->affn_strict)
4699 		return false;
4700 	if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4701 		return false;
4702 	if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask))
4703 		return false;
4704 	return true;
4705 }
4706 
4707 /* Update @attrs with actually available CPUs */
wqattrs_actualize_cpumask(struct workqueue_attrs * attrs,const cpumask_t * unbound_cpumask)4708 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4709 				      const cpumask_t *unbound_cpumask)
4710 {
4711 	/*
4712 	 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4713 	 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4714 	 * @unbound_cpumask.
4715 	 */
4716 	cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4717 	if (unlikely(cpumask_empty(attrs->cpumask)))
4718 		cpumask_copy(attrs->cpumask, unbound_cpumask);
4719 }
4720 
4721 /* find wq_pod_type to use for @attrs */
4722 static const struct wq_pod_type *
wqattrs_pod_type(const struct workqueue_attrs * attrs)4723 wqattrs_pod_type(const struct workqueue_attrs *attrs)
4724 {
4725 	enum wq_affn_scope scope;
4726 	struct wq_pod_type *pt;
4727 
4728 	/* to synchronize access to wq_affn_dfl */
4729 	lockdep_assert_held(&wq_pool_mutex);
4730 
4731 	if (attrs->affn_scope == WQ_AFFN_DFL)
4732 		scope = wq_affn_dfl;
4733 	else
4734 		scope = attrs->affn_scope;
4735 
4736 	pt = &wq_pod_types[scope];
4737 
4738 	if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4739 	    likely(pt->nr_pods))
4740 		return pt;
4741 
4742 	/*
4743 	 * Before workqueue_init_topology(), only SYSTEM is available which is
4744 	 * initialized in workqueue_init_early().
4745 	 */
4746 	pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4747 	BUG_ON(!pt->nr_pods);
4748 	return pt;
4749 }
4750 
4751 /**
4752  * init_worker_pool - initialize a newly zalloc'd worker_pool
4753  * @pool: worker_pool to initialize
4754  *
4755  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
4756  *
4757  * Return: 0 on success, -errno on failure.  Even on failure, all fields
4758  * inside @pool proper are initialized and put_unbound_pool() can be called
4759  * on @pool safely to release it.
4760  */
init_worker_pool(struct worker_pool * pool)4761 static int init_worker_pool(struct worker_pool *pool)
4762 {
4763 	raw_spin_lock_init(&pool->lock);
4764 	pool->id = -1;
4765 	pool->cpu = -1;
4766 	pool->node = NUMA_NO_NODE;
4767 	pool->flags |= POOL_DISASSOCIATED;
4768 	pool->watchdog_ts = jiffies;
4769 	INIT_LIST_HEAD(&pool->worklist);
4770 	INIT_LIST_HEAD(&pool->idle_list);
4771 	hash_init(pool->busy_hash);
4772 
4773 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
4774 	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
4775 
4776 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
4777 
4778 	INIT_LIST_HEAD(&pool->workers);
4779 
4780 	ida_init(&pool->worker_ida);
4781 	INIT_HLIST_NODE(&pool->hash_node);
4782 	pool->refcnt = 1;
4783 
4784 	/* shouldn't fail above this point */
4785 	pool->attrs = alloc_workqueue_attrs();
4786 	if (!pool->attrs)
4787 		return -ENOMEM;
4788 
4789 	wqattrs_clear_for_pool(pool->attrs);
4790 
4791 	return 0;
4792 }
4793 
4794 #ifdef CONFIG_LOCKDEP
wq_init_lockdep(struct workqueue_struct * wq)4795 static void wq_init_lockdep(struct workqueue_struct *wq)
4796 {
4797 	char *lock_name;
4798 
4799 	lockdep_register_key(&wq->key);
4800 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4801 	if (!lock_name)
4802 		lock_name = wq->name;
4803 
4804 	wq->lock_name = lock_name;
4805 	wq->lockdep_map = &wq->__lockdep_map;
4806 	lockdep_init_map(wq->lockdep_map, lock_name, &wq->key, 0);
4807 }
4808 
wq_unregister_lockdep(struct workqueue_struct * wq)4809 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4810 {
4811 	if (wq->lockdep_map != &wq->__lockdep_map)
4812 		return;
4813 
4814 	lockdep_unregister_key(&wq->key);
4815 }
4816 
wq_free_lockdep(struct workqueue_struct * wq)4817 static void wq_free_lockdep(struct workqueue_struct *wq)
4818 {
4819 	if (wq->lockdep_map != &wq->__lockdep_map)
4820 		return;
4821 
4822 	if (wq->lock_name != wq->name)
4823 		kfree(wq->lock_name);
4824 }
4825 #else
wq_init_lockdep(struct workqueue_struct * wq)4826 static void wq_init_lockdep(struct workqueue_struct *wq)
4827 {
4828 }
4829 
wq_unregister_lockdep(struct workqueue_struct * wq)4830 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4831 {
4832 }
4833 
wq_free_lockdep(struct workqueue_struct * wq)4834 static void wq_free_lockdep(struct workqueue_struct *wq)
4835 {
4836 }
4837 #endif
4838 
free_node_nr_active(struct wq_node_nr_active ** nna_ar)4839 static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4840 {
4841 	int node;
4842 
4843 	for_each_node(node) {
4844 		kfree(nna_ar[node]);
4845 		nna_ar[node] = NULL;
4846 	}
4847 
4848 	kfree(nna_ar[nr_node_ids]);
4849 	nna_ar[nr_node_ids] = NULL;
4850 }
4851 
init_node_nr_active(struct wq_node_nr_active * nna)4852 static void init_node_nr_active(struct wq_node_nr_active *nna)
4853 {
4854 	nna->max = WQ_DFL_MIN_ACTIVE;
4855 	atomic_set(&nna->nr, 0);
4856 	raw_spin_lock_init(&nna->lock);
4857 	INIT_LIST_HEAD(&nna->pending_pwqs);
4858 }
4859 
4860 /*
4861  * Each node's nr_active counter will be accessed mostly from its own node and
4862  * should be allocated in the node.
4863  */
alloc_node_nr_active(struct wq_node_nr_active ** nna_ar)4864 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4865 {
4866 	struct wq_node_nr_active *nna;
4867 	int node;
4868 
4869 	for_each_node(node) {
4870 		nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4871 		if (!nna)
4872 			goto err_free;
4873 		init_node_nr_active(nna);
4874 		nna_ar[node] = nna;
4875 	}
4876 
4877 	/* [nr_node_ids] is used as the fallback */
4878 	nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4879 	if (!nna)
4880 		goto err_free;
4881 	init_node_nr_active(nna);
4882 	nna_ar[nr_node_ids] = nna;
4883 
4884 	return 0;
4885 
4886 err_free:
4887 	free_node_nr_active(nna_ar);
4888 	return -ENOMEM;
4889 }
4890 
rcu_free_wq(struct rcu_head * rcu)4891 static void rcu_free_wq(struct rcu_head *rcu)
4892 {
4893 	struct workqueue_struct *wq =
4894 		container_of(rcu, struct workqueue_struct, rcu);
4895 
4896 	if (wq->flags & WQ_UNBOUND)
4897 		free_node_nr_active(wq->node_nr_active);
4898 
4899 	wq_free_lockdep(wq);
4900 	free_percpu(wq->cpu_pwq);
4901 	free_workqueue_attrs(wq->unbound_attrs);
4902 	kfree(wq);
4903 }
4904 
rcu_free_pool(struct rcu_head * rcu)4905 static void rcu_free_pool(struct rcu_head *rcu)
4906 {
4907 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
4908 
4909 	ida_destroy(&pool->worker_ida);
4910 	free_workqueue_attrs(pool->attrs);
4911 	kfree(pool);
4912 }
4913 
4914 /**
4915  * put_unbound_pool - put a worker_pool
4916  * @pool: worker_pool to put
4917  *
4918  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
4919  * safe manner.  get_unbound_pool() calls this function on its failure path
4920  * and this function should be able to release pools which went through,
4921  * successfully or not, init_worker_pool().
4922  *
4923  * Should be called with wq_pool_mutex held.
4924  */
put_unbound_pool(struct worker_pool * pool)4925 static void put_unbound_pool(struct worker_pool *pool)
4926 {
4927 	struct worker *worker;
4928 	LIST_HEAD(cull_list);
4929 
4930 	lockdep_assert_held(&wq_pool_mutex);
4931 
4932 	if (--pool->refcnt)
4933 		return;
4934 
4935 	/* sanity checks */
4936 	if (WARN_ON(!(pool->cpu < 0)) ||
4937 	    WARN_ON(!list_empty(&pool->worklist)))
4938 		return;
4939 
4940 	/* release id and unhash */
4941 	if (pool->id >= 0)
4942 		idr_remove(&worker_pool_idr, pool->id);
4943 	hash_del(&pool->hash_node);
4944 
4945 	/*
4946 	 * Become the manager and destroy all workers.  This prevents
4947 	 * @pool's workers from blocking on attach_mutex.  We're the last
4948 	 * manager and @pool gets freed with the flag set.
4949 	 *
4950 	 * Having a concurrent manager is quite unlikely to happen as we can
4951 	 * only get here with
4952 	 *   pwq->refcnt == pool->refcnt == 0
4953 	 * which implies no work queued to the pool, which implies no worker can
4954 	 * become the manager. However a worker could have taken the role of
4955 	 * manager before the refcnts dropped to 0, since maybe_create_worker()
4956 	 * drops pool->lock
4957 	 */
4958 	while (true) {
4959 		rcuwait_wait_event(&manager_wait,
4960 				   !(pool->flags & POOL_MANAGER_ACTIVE),
4961 				   TASK_UNINTERRUPTIBLE);
4962 
4963 		mutex_lock(&wq_pool_attach_mutex);
4964 		raw_spin_lock_irq(&pool->lock);
4965 		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4966 			pool->flags |= POOL_MANAGER_ACTIVE;
4967 			break;
4968 		}
4969 		raw_spin_unlock_irq(&pool->lock);
4970 		mutex_unlock(&wq_pool_attach_mutex);
4971 	}
4972 
4973 	while ((worker = first_idle_worker(pool)))
4974 		set_worker_dying(worker, &cull_list);
4975 	WARN_ON(pool->nr_workers || pool->nr_idle);
4976 	raw_spin_unlock_irq(&pool->lock);
4977 
4978 	detach_dying_workers(&cull_list);
4979 
4980 	mutex_unlock(&wq_pool_attach_mutex);
4981 
4982 	reap_dying_workers(&cull_list);
4983 
4984 	/* shut down the timers */
4985 	del_timer_sync(&pool->idle_timer);
4986 	cancel_work_sync(&pool->idle_cull_work);
4987 	del_timer_sync(&pool->mayday_timer);
4988 
4989 	/* RCU protected to allow dereferences from get_work_pool() */
4990 	call_rcu(&pool->rcu, rcu_free_pool);
4991 }
4992 
4993 /**
4994  * get_unbound_pool - get a worker_pool with the specified attributes
4995  * @attrs: the attributes of the worker_pool to get
4996  *
4997  * Obtain a worker_pool which has the same attributes as @attrs, bump the
4998  * reference count and return it.  If there already is a matching
4999  * worker_pool, it will be used; otherwise, this function attempts to
5000  * create a new one.
5001  *
5002  * Should be called with wq_pool_mutex held.
5003  *
5004  * Return: On success, a worker_pool with the same attributes as @attrs.
5005  * On failure, %NULL.
5006  */
get_unbound_pool(const struct workqueue_attrs * attrs)5007 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
5008 {
5009 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
5010 	u32 hash = wqattrs_hash(attrs);
5011 	struct worker_pool *pool;
5012 	int pod, node = NUMA_NO_NODE;
5013 
5014 	lockdep_assert_held(&wq_pool_mutex);
5015 
5016 	/* do we already have a matching pool? */
5017 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
5018 		if (wqattrs_equal(pool->attrs, attrs)) {
5019 			pool->refcnt++;
5020 			return pool;
5021 		}
5022 	}
5023 
5024 	/* If __pod_cpumask is contained inside a NUMA pod, that's our node */
5025 	for (pod = 0; pod < pt->nr_pods; pod++) {
5026 		if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
5027 			node = pt->pod_node[pod];
5028 			break;
5029 		}
5030 	}
5031 
5032 	/* nope, create a new one */
5033 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
5034 	if (!pool || init_worker_pool(pool) < 0)
5035 		goto fail;
5036 
5037 	pool->node = node;
5038 	copy_workqueue_attrs(pool->attrs, attrs);
5039 	wqattrs_clear_for_pool(pool->attrs);
5040 
5041 	if (worker_pool_assign_id(pool) < 0)
5042 		goto fail;
5043 
5044 	/* create and start the initial worker */
5045 	if (wq_online && !create_worker(pool))
5046 		goto fail;
5047 
5048 	/* install */
5049 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
5050 
5051 	return pool;
5052 fail:
5053 	if (pool)
5054 		put_unbound_pool(pool);
5055 	return NULL;
5056 }
5057 
5058 /*
5059  * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
5060  * refcnt and needs to be destroyed.
5061  */
pwq_release_workfn(struct kthread_work * work)5062 static void pwq_release_workfn(struct kthread_work *work)
5063 {
5064 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
5065 						  release_work);
5066 	struct workqueue_struct *wq = pwq->wq;
5067 	struct worker_pool *pool = pwq->pool;
5068 	bool is_last = false;
5069 
5070 	/*
5071 	 * When @pwq is not linked, it doesn't hold any reference to the
5072 	 * @wq, and @wq is invalid to access.
5073 	 */
5074 	if (!list_empty(&pwq->pwqs_node)) {
5075 		mutex_lock(&wq->mutex);
5076 		list_del_rcu(&pwq->pwqs_node);
5077 		is_last = list_empty(&wq->pwqs);
5078 
5079 		/*
5080 		 * For ordered workqueue with a plugged dfl_pwq, restart it now.
5081 		 */
5082 		if (!is_last && (wq->flags & __WQ_ORDERED))
5083 			unplug_oldest_pwq(wq);
5084 
5085 		mutex_unlock(&wq->mutex);
5086 	}
5087 
5088 	if (wq->flags & WQ_UNBOUND) {
5089 		mutex_lock(&wq_pool_mutex);
5090 		put_unbound_pool(pool);
5091 		mutex_unlock(&wq_pool_mutex);
5092 	}
5093 
5094 	if (!list_empty(&pwq->pending_node)) {
5095 		struct wq_node_nr_active *nna =
5096 			wq_node_nr_active(pwq->wq, pwq->pool->node);
5097 
5098 		raw_spin_lock_irq(&nna->lock);
5099 		list_del_init(&pwq->pending_node);
5100 		raw_spin_unlock_irq(&nna->lock);
5101 	}
5102 
5103 	kfree_rcu(pwq, rcu);
5104 
5105 	/*
5106 	 * If we're the last pwq going away, @wq is already dead and no one
5107 	 * is gonna access it anymore.  Schedule RCU free.
5108 	 */
5109 	if (is_last) {
5110 		wq_unregister_lockdep(wq);
5111 		call_rcu(&wq->rcu, rcu_free_wq);
5112 	}
5113 }
5114 
5115 /* initialize newly allocated @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)5116 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
5117 		     struct worker_pool *pool)
5118 {
5119 	BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK);
5120 
5121 	memset(pwq, 0, sizeof(*pwq));
5122 
5123 	pwq->pool = pool;
5124 	pwq->wq = wq;
5125 	pwq->flush_color = -1;
5126 	pwq->refcnt = 1;
5127 	INIT_LIST_HEAD(&pwq->inactive_works);
5128 	INIT_LIST_HEAD(&pwq->pending_node);
5129 	INIT_LIST_HEAD(&pwq->pwqs_node);
5130 	INIT_LIST_HEAD(&pwq->mayday_node);
5131 	kthread_init_work(&pwq->release_work, pwq_release_workfn);
5132 }
5133 
5134 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)5135 static void link_pwq(struct pool_workqueue *pwq)
5136 {
5137 	struct workqueue_struct *wq = pwq->wq;
5138 
5139 	lockdep_assert_held(&wq->mutex);
5140 
5141 	/* may be called multiple times, ignore if already linked */
5142 	if (!list_empty(&pwq->pwqs_node))
5143 		return;
5144 
5145 	/* set the matching work_color */
5146 	pwq->work_color = wq->work_color;
5147 
5148 	/* link in @pwq */
5149 	list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
5150 }
5151 
5152 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5153 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
5154 					const struct workqueue_attrs *attrs)
5155 {
5156 	struct worker_pool *pool;
5157 	struct pool_workqueue *pwq;
5158 
5159 	lockdep_assert_held(&wq_pool_mutex);
5160 
5161 	pool = get_unbound_pool(attrs);
5162 	if (!pool)
5163 		return NULL;
5164 
5165 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
5166 	if (!pwq) {
5167 		put_unbound_pool(pool);
5168 		return NULL;
5169 	}
5170 
5171 	init_pwq(pwq, wq, pool);
5172 	return pwq;
5173 }
5174 
apply_wqattrs_lock(void)5175 static void apply_wqattrs_lock(void)
5176 {
5177 	mutex_lock(&wq_pool_mutex);
5178 }
5179 
apply_wqattrs_unlock(void)5180 static void apply_wqattrs_unlock(void)
5181 {
5182 	mutex_unlock(&wq_pool_mutex);
5183 }
5184 
5185 /**
5186  * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
5187  * @attrs: the wq_attrs of the default pwq of the target workqueue
5188  * @cpu: the target CPU
5189  *
5190  * Calculate the cpumask a workqueue with @attrs should use on @pod.
5191  * The result is stored in @attrs->__pod_cpumask.
5192  *
5193  * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
5194  * and @pod has online CPUs requested by @attrs, the returned cpumask is the
5195  * intersection of the possible CPUs of @pod and @attrs->cpumask.
5196  *
5197  * The caller is responsible for ensuring that the cpumask of @pod stays stable.
5198  */
wq_calc_pod_cpumask(struct workqueue_attrs * attrs,int cpu)5199 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu)
5200 {
5201 	const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5202 	int pod = pt->cpu_pod[cpu];
5203 
5204 	/* calculate possible CPUs in @pod that @attrs wants */
5205 	cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
5206 	/* does @pod have any online CPUs @attrs wants? */
5207 	if (!cpumask_intersects(attrs->__pod_cpumask, wq_online_cpumask)) {
5208 		cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
5209 		return;
5210 	}
5211 }
5212 
5213 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
install_unbound_pwq(struct workqueue_struct * wq,int cpu,struct pool_workqueue * pwq)5214 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
5215 					int cpu, struct pool_workqueue *pwq)
5216 {
5217 	struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
5218 	struct pool_workqueue *old_pwq;
5219 
5220 	lockdep_assert_held(&wq_pool_mutex);
5221 	lockdep_assert_held(&wq->mutex);
5222 
5223 	/* link_pwq() can handle duplicate calls */
5224 	link_pwq(pwq);
5225 
5226 	old_pwq = rcu_access_pointer(*slot);
5227 	rcu_assign_pointer(*slot, pwq);
5228 	return old_pwq;
5229 }
5230 
5231 /* context to store the prepared attrs & pwqs before applying */
5232 struct apply_wqattrs_ctx {
5233 	struct workqueue_struct	*wq;		/* target workqueue */
5234 	struct workqueue_attrs	*attrs;		/* attrs to apply */
5235 	struct list_head	list;		/* queued for batching commit */
5236 	struct pool_workqueue	*dfl_pwq;
5237 	struct pool_workqueue	*pwq_tbl[];
5238 };
5239 
5240 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)5241 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
5242 {
5243 	if (ctx) {
5244 		int cpu;
5245 
5246 		for_each_possible_cpu(cpu)
5247 			put_pwq_unlocked(ctx->pwq_tbl[cpu]);
5248 		put_pwq_unlocked(ctx->dfl_pwq);
5249 
5250 		free_workqueue_attrs(ctx->attrs);
5251 
5252 		kfree(ctx);
5253 	}
5254 }
5255 
5256 /* allocate the attrs and pwqs for later installation */
5257 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs,const cpumask_var_t unbound_cpumask)5258 apply_wqattrs_prepare(struct workqueue_struct *wq,
5259 		      const struct workqueue_attrs *attrs,
5260 		      const cpumask_var_t unbound_cpumask)
5261 {
5262 	struct apply_wqattrs_ctx *ctx;
5263 	struct workqueue_attrs *new_attrs;
5264 	int cpu;
5265 
5266 	lockdep_assert_held(&wq_pool_mutex);
5267 
5268 	if (WARN_ON(attrs->affn_scope < 0 ||
5269 		    attrs->affn_scope >= WQ_AFFN_NR_TYPES))
5270 		return ERR_PTR(-EINVAL);
5271 
5272 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
5273 
5274 	new_attrs = alloc_workqueue_attrs();
5275 	if (!ctx || !new_attrs)
5276 		goto out_free;
5277 
5278 	/*
5279 	 * If something goes wrong during CPU up/down, we'll fall back to
5280 	 * the default pwq covering whole @attrs->cpumask.  Always create
5281 	 * it even if we don't use it immediately.
5282 	 */
5283 	copy_workqueue_attrs(new_attrs, attrs);
5284 	wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
5285 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5286 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
5287 	if (!ctx->dfl_pwq)
5288 		goto out_free;
5289 
5290 	for_each_possible_cpu(cpu) {
5291 		if (new_attrs->ordered) {
5292 			ctx->dfl_pwq->refcnt++;
5293 			ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
5294 		} else {
5295 			wq_calc_pod_cpumask(new_attrs, cpu);
5296 			ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
5297 			if (!ctx->pwq_tbl[cpu])
5298 				goto out_free;
5299 		}
5300 	}
5301 
5302 	/* save the user configured attrs and sanitize it. */
5303 	copy_workqueue_attrs(new_attrs, attrs);
5304 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
5305 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5306 	ctx->attrs = new_attrs;
5307 
5308 	/*
5309 	 * For initialized ordered workqueues, there should only be one pwq
5310 	 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
5311 	 * of newly queued work items until execution of older work items in
5312 	 * the old pwq's have completed.
5313 	 */
5314 	if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))
5315 		ctx->dfl_pwq->plugged = true;
5316 
5317 	ctx->wq = wq;
5318 	return ctx;
5319 
5320 out_free:
5321 	free_workqueue_attrs(new_attrs);
5322 	apply_wqattrs_cleanup(ctx);
5323 	return ERR_PTR(-ENOMEM);
5324 }
5325 
5326 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)5327 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
5328 {
5329 	int cpu;
5330 
5331 	/* all pwqs have been created successfully, let's install'em */
5332 	mutex_lock(&ctx->wq->mutex);
5333 
5334 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
5335 
5336 	/* save the previous pwqs and install the new ones */
5337 	for_each_possible_cpu(cpu)
5338 		ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
5339 							ctx->pwq_tbl[cpu]);
5340 	ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
5341 
5342 	/* update node_nr_active->max */
5343 	wq_update_node_max_active(ctx->wq, -1);
5344 
5345 	/* rescuer needs to respect wq cpumask changes */
5346 	if (ctx->wq->rescuer)
5347 		set_cpus_allowed_ptr(ctx->wq->rescuer->task,
5348 				     unbound_effective_cpumask(ctx->wq));
5349 
5350 	mutex_unlock(&ctx->wq->mutex);
5351 }
5352 
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5353 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
5354 					const struct workqueue_attrs *attrs)
5355 {
5356 	struct apply_wqattrs_ctx *ctx;
5357 
5358 	/* only unbound workqueues can change attributes */
5359 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
5360 		return -EINVAL;
5361 
5362 	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
5363 	if (IS_ERR(ctx))
5364 		return PTR_ERR(ctx);
5365 
5366 	/* the ctx has been prepared successfully, let's commit it */
5367 	apply_wqattrs_commit(ctx);
5368 	apply_wqattrs_cleanup(ctx);
5369 
5370 	return 0;
5371 }
5372 
5373 /**
5374  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5375  * @wq: the target workqueue
5376  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5377  *
5378  * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5379  * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5380  * work items are affine to the pod it was issued on. Older pwqs are released as
5381  * in-flight work items finish. Note that a work item which repeatedly requeues
5382  * itself back-to-back will stay on its current pwq.
5383  *
5384  * Performs GFP_KERNEL allocations.
5385  *
5386  * Return: 0 on success and -errno on failure.
5387  */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5388 int apply_workqueue_attrs(struct workqueue_struct *wq,
5389 			  const struct workqueue_attrs *attrs)
5390 {
5391 	int ret;
5392 
5393 	mutex_lock(&wq_pool_mutex);
5394 	ret = apply_workqueue_attrs_locked(wq, attrs);
5395 	mutex_unlock(&wq_pool_mutex);
5396 
5397 	return ret;
5398 }
5399 
5400 /**
5401  * unbound_wq_update_pwq - update a pwq slot for CPU hot[un]plug
5402  * @wq: the target workqueue
5403  * @cpu: the CPU to update the pwq slot for
5404  *
5405  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
5406  * %CPU_DOWN_FAILED.  @cpu is in the same pod of the CPU being hot[un]plugged.
5407  *
5408  *
5409  * If pod affinity can't be adjusted due to memory allocation failure, it falls
5410  * back to @wq->dfl_pwq which may not be optimal but is always correct.
5411  *
5412  * Note that when the last allowed CPU of a pod goes offline for a workqueue
5413  * with a cpumask spanning multiple pods, the workers which were already
5414  * executing the work items for the workqueue will lose their CPU affinity and
5415  * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5416  * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5417  * responsibility to flush the work item from CPU_DOWN_PREPARE.
5418  */
unbound_wq_update_pwq(struct workqueue_struct * wq,int cpu)5419 static void unbound_wq_update_pwq(struct workqueue_struct *wq, int cpu)
5420 {
5421 	struct pool_workqueue *old_pwq = NULL, *pwq;
5422 	struct workqueue_attrs *target_attrs;
5423 
5424 	lockdep_assert_held(&wq_pool_mutex);
5425 
5426 	if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
5427 		return;
5428 
5429 	/*
5430 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5431 	 * Let's use a preallocated one.  The following buf is protected by
5432 	 * CPU hotplug exclusion.
5433 	 */
5434 	target_attrs = unbound_wq_update_pwq_attrs_buf;
5435 
5436 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
5437 	wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
5438 
5439 	/* nothing to do if the target cpumask matches the current pwq */
5440 	wq_calc_pod_cpumask(target_attrs, cpu);
5441 	if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
5442 		return;
5443 
5444 	/* create a new pwq */
5445 	pwq = alloc_unbound_pwq(wq, target_attrs);
5446 	if (!pwq) {
5447 		pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
5448 			wq->name);
5449 		goto use_dfl_pwq;
5450 	}
5451 
5452 	/* Install the new pwq. */
5453 	mutex_lock(&wq->mutex);
5454 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5455 	goto out_unlock;
5456 
5457 use_dfl_pwq:
5458 	mutex_lock(&wq->mutex);
5459 	pwq = unbound_pwq(wq, -1);
5460 	raw_spin_lock_irq(&pwq->pool->lock);
5461 	get_pwq(pwq);
5462 	raw_spin_unlock_irq(&pwq->pool->lock);
5463 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5464 out_unlock:
5465 	mutex_unlock(&wq->mutex);
5466 	put_pwq_unlocked(old_pwq);
5467 }
5468 
alloc_and_link_pwqs(struct workqueue_struct * wq)5469 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
5470 {
5471 	bool highpri = wq->flags & WQ_HIGHPRI;
5472 	int cpu, ret;
5473 
5474 	lockdep_assert_held(&wq_pool_mutex);
5475 
5476 	wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5477 	if (!wq->cpu_pwq)
5478 		goto enomem;
5479 
5480 	if (!(wq->flags & WQ_UNBOUND)) {
5481 		struct worker_pool __percpu *pools;
5482 
5483 		if (wq->flags & WQ_BH)
5484 			pools = bh_worker_pools;
5485 		else
5486 			pools = cpu_worker_pools;
5487 
5488 		for_each_possible_cpu(cpu) {
5489 			struct pool_workqueue **pwq_p;
5490 			struct worker_pool *pool;
5491 
5492 			pool = &(per_cpu_ptr(pools, cpu)[highpri]);
5493 			pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
5494 
5495 			*pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5496 						       pool->node);
5497 			if (!*pwq_p)
5498 				goto enomem;
5499 
5500 			init_pwq(*pwq_p, wq, pool);
5501 
5502 			mutex_lock(&wq->mutex);
5503 			link_pwq(*pwq_p);
5504 			mutex_unlock(&wq->mutex);
5505 		}
5506 		return 0;
5507 	}
5508 
5509 	if (wq->flags & __WQ_ORDERED) {
5510 		struct pool_workqueue *dfl_pwq;
5511 
5512 		ret = apply_workqueue_attrs_locked(wq, ordered_wq_attrs[highpri]);
5513 		/* there should only be single pwq for ordering guarantee */
5514 		dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5515 		WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5516 			      wq->pwqs.prev != &dfl_pwq->pwqs_node),
5517 		     "ordering guarantee broken for workqueue %s\n", wq->name);
5518 	} else {
5519 		ret = apply_workqueue_attrs_locked(wq, unbound_std_wq_attrs[highpri]);
5520 	}
5521 
5522 	return ret;
5523 
5524 enomem:
5525 	if (wq->cpu_pwq) {
5526 		for_each_possible_cpu(cpu) {
5527 			struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5528 
5529 			if (pwq)
5530 				kmem_cache_free(pwq_cache, pwq);
5531 		}
5532 		free_percpu(wq->cpu_pwq);
5533 		wq->cpu_pwq = NULL;
5534 	}
5535 	return -ENOMEM;
5536 }
5537 
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)5538 static int wq_clamp_max_active(int max_active, unsigned int flags,
5539 			       const char *name)
5540 {
5541 	if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
5542 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
5543 			max_active, name, 1, WQ_MAX_ACTIVE);
5544 
5545 	return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
5546 }
5547 
5548 /*
5549  * Workqueues which may be used during memory reclaim should have a rescuer
5550  * to guarantee forward progress.
5551  */
init_rescuer(struct workqueue_struct * wq)5552 static int init_rescuer(struct workqueue_struct *wq)
5553 {
5554 	struct worker *rescuer;
5555 	char id_buf[WORKER_ID_LEN];
5556 	int ret;
5557 
5558 	lockdep_assert_held(&wq_pool_mutex);
5559 
5560 	if (!(wq->flags & WQ_MEM_RECLAIM))
5561 		return 0;
5562 
5563 	rescuer = alloc_worker(NUMA_NO_NODE);
5564 	if (!rescuer) {
5565 		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5566 		       wq->name);
5567 		return -ENOMEM;
5568 	}
5569 
5570 	rescuer->rescue_wq = wq;
5571 	format_worker_id(id_buf, sizeof(id_buf), rescuer, NULL);
5572 
5573 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", id_buf);
5574 	if (IS_ERR(rescuer->task)) {
5575 		ret = PTR_ERR(rescuer->task);
5576 		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5577 		       wq->name, ERR_PTR(ret));
5578 		kfree(rescuer);
5579 		return ret;
5580 	}
5581 
5582 	wq->rescuer = rescuer;
5583 	if (wq->flags & WQ_UNBOUND)
5584 		kthread_bind_mask(rescuer->task, unbound_effective_cpumask(wq));
5585 	else
5586 		kthread_bind_mask(rescuer->task, cpu_possible_mask);
5587 	wake_up_process(rescuer->task);
5588 
5589 	return 0;
5590 }
5591 
5592 /**
5593  * wq_adjust_max_active - update a wq's max_active to the current setting
5594  * @wq: target workqueue
5595  *
5596  * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5597  * activate inactive work items accordingly. If @wq is freezing, clear
5598  * @wq->max_active to zero.
5599  */
wq_adjust_max_active(struct workqueue_struct * wq)5600 static void wq_adjust_max_active(struct workqueue_struct *wq)
5601 {
5602 	bool activated;
5603 	int new_max, new_min;
5604 
5605 	lockdep_assert_held(&wq->mutex);
5606 
5607 	if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5608 		new_max = 0;
5609 		new_min = 0;
5610 	} else {
5611 		new_max = wq->saved_max_active;
5612 		new_min = wq->saved_min_active;
5613 	}
5614 
5615 	if (wq->max_active == new_max && wq->min_active == new_min)
5616 		return;
5617 
5618 	/*
5619 	 * Update @wq->max/min_active and then kick inactive work items if more
5620 	 * active work items are allowed. This doesn't break work item ordering
5621 	 * because new work items are always queued behind existing inactive
5622 	 * work items if there are any.
5623 	 */
5624 	WRITE_ONCE(wq->max_active, new_max);
5625 	WRITE_ONCE(wq->min_active, new_min);
5626 
5627 	if (wq->flags & WQ_UNBOUND)
5628 		wq_update_node_max_active(wq, -1);
5629 
5630 	if (new_max == 0)
5631 		return;
5632 
5633 	/*
5634 	 * Round-robin through pwq's activating the first inactive work item
5635 	 * until max_active is filled.
5636 	 */
5637 	do {
5638 		struct pool_workqueue *pwq;
5639 
5640 		activated = false;
5641 		for_each_pwq(pwq, wq) {
5642 			unsigned long irq_flags;
5643 
5644 			/* can be called during early boot w/ irq disabled */
5645 			raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
5646 			if (pwq_activate_first_inactive(pwq, true)) {
5647 				activated = true;
5648 				kick_pool(pwq->pool);
5649 			}
5650 			raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
5651 		}
5652 	} while (activated);
5653 }
5654 
5655 __printf(1, 0)
__alloc_workqueue(const char * fmt,unsigned int flags,int max_active,va_list args)5656 static struct workqueue_struct *__alloc_workqueue(const char *fmt,
5657 						  unsigned int flags,
5658 						  int max_active, va_list args)
5659 {
5660 	struct workqueue_struct *wq;
5661 	size_t wq_size;
5662 	int name_len;
5663 
5664 	if (flags & WQ_BH) {
5665 		if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
5666 			return NULL;
5667 		if (WARN_ON_ONCE(max_active))
5668 			return NULL;
5669 	}
5670 
5671 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
5672 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5673 		flags |= WQ_UNBOUND;
5674 
5675 	/* allocate wq and format name */
5676 	if (flags & WQ_UNBOUND)
5677 		wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5678 	else
5679 		wq_size = sizeof(*wq);
5680 
5681 	wq = kzalloc(wq_size, GFP_KERNEL);
5682 	if (!wq)
5683 		return NULL;
5684 
5685 	if (flags & WQ_UNBOUND) {
5686 		wq->unbound_attrs = alloc_workqueue_attrs();
5687 		if (!wq->unbound_attrs)
5688 			goto err_free_wq;
5689 	}
5690 
5691 	name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
5692 
5693 	if (name_len >= WQ_NAME_LEN)
5694 		pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5695 			     wq->name);
5696 
5697 	if (flags & WQ_BH) {
5698 		/*
5699 		 * BH workqueues always share a single execution context per CPU
5700 		 * and don't impose any max_active limit.
5701 		 */
5702 		max_active = INT_MAX;
5703 	} else {
5704 		max_active = max_active ?: WQ_DFL_ACTIVE;
5705 		max_active = wq_clamp_max_active(max_active, flags, wq->name);
5706 	}
5707 
5708 	/* init wq */
5709 	wq->flags = flags;
5710 	wq->max_active = max_active;
5711 	wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5712 	wq->saved_max_active = wq->max_active;
5713 	wq->saved_min_active = wq->min_active;
5714 	mutex_init(&wq->mutex);
5715 	atomic_set(&wq->nr_pwqs_to_flush, 0);
5716 	INIT_LIST_HEAD(&wq->pwqs);
5717 	INIT_LIST_HEAD(&wq->flusher_queue);
5718 	INIT_LIST_HEAD(&wq->flusher_overflow);
5719 	INIT_LIST_HEAD(&wq->maydays);
5720 
5721 	INIT_LIST_HEAD(&wq->list);
5722 
5723 	if (flags & WQ_UNBOUND) {
5724 		if (alloc_node_nr_active(wq->node_nr_active) < 0)
5725 			goto err_free_wq;
5726 	}
5727 
5728 	/*
5729 	 * wq_pool_mutex protects the workqueues list, allocations of PWQs,
5730 	 * and the global freeze state.
5731 	 */
5732 	apply_wqattrs_lock();
5733 
5734 	if (alloc_and_link_pwqs(wq) < 0)
5735 		goto err_unlock_free_node_nr_active;
5736 
5737 	mutex_lock(&wq->mutex);
5738 	wq_adjust_max_active(wq);
5739 	mutex_unlock(&wq->mutex);
5740 
5741 	list_add_tail_rcu(&wq->list, &workqueues);
5742 
5743 	if (wq_online && init_rescuer(wq) < 0)
5744 		goto err_unlock_destroy;
5745 
5746 	apply_wqattrs_unlock();
5747 
5748 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5749 		goto err_destroy;
5750 
5751 	return wq;
5752 
5753 err_unlock_free_node_nr_active:
5754 	apply_wqattrs_unlock();
5755 	/*
5756 	 * Failed alloc_and_link_pwqs() may leave pending pwq->release_work,
5757 	 * flushing the pwq_release_worker ensures that the pwq_release_workfn()
5758 	 * completes before calling kfree(wq).
5759 	 */
5760 	if (wq->flags & WQ_UNBOUND) {
5761 		kthread_flush_worker(pwq_release_worker);
5762 		free_node_nr_active(wq->node_nr_active);
5763 	}
5764 err_free_wq:
5765 	free_workqueue_attrs(wq->unbound_attrs);
5766 	kfree(wq);
5767 	return NULL;
5768 err_unlock_destroy:
5769 	apply_wqattrs_unlock();
5770 err_destroy:
5771 	destroy_workqueue(wq);
5772 	return NULL;
5773 }
5774 
5775 __printf(1, 4)
alloc_workqueue(const char * fmt,unsigned int flags,int max_active,...)5776 struct workqueue_struct *alloc_workqueue(const char *fmt,
5777 					 unsigned int flags,
5778 					 int max_active, ...)
5779 {
5780 	struct workqueue_struct *wq;
5781 	va_list args;
5782 
5783 	va_start(args, max_active);
5784 	wq = __alloc_workqueue(fmt, flags, max_active, args);
5785 	va_end(args);
5786 	if (!wq)
5787 		return NULL;
5788 
5789 	wq_init_lockdep(wq);
5790 
5791 	return wq;
5792 }
5793 EXPORT_SYMBOL_GPL(alloc_workqueue);
5794 
5795 #ifdef CONFIG_LOCKDEP
5796 __printf(1, 5)
5797 struct workqueue_struct *
alloc_workqueue_lockdep_map(const char * fmt,unsigned int flags,int max_active,struct lockdep_map * lockdep_map,...)5798 alloc_workqueue_lockdep_map(const char *fmt, unsigned int flags,
5799 			    int max_active, struct lockdep_map *lockdep_map, ...)
5800 {
5801 	struct workqueue_struct *wq;
5802 	va_list args;
5803 
5804 	va_start(args, lockdep_map);
5805 	wq = __alloc_workqueue(fmt, flags, max_active, args);
5806 	va_end(args);
5807 	if (!wq)
5808 		return NULL;
5809 
5810 	wq->lockdep_map = lockdep_map;
5811 
5812 	return wq;
5813 }
5814 EXPORT_SYMBOL_GPL(alloc_workqueue_lockdep_map);
5815 #endif
5816 
pwq_busy(struct pool_workqueue * pwq)5817 static bool pwq_busy(struct pool_workqueue *pwq)
5818 {
5819 	int i;
5820 
5821 	for (i = 0; i < WORK_NR_COLORS; i++)
5822 		if (pwq->nr_in_flight[i])
5823 			return true;
5824 
5825 	if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
5826 		return true;
5827 	if (!pwq_is_empty(pwq))
5828 		return true;
5829 
5830 	return false;
5831 }
5832 
5833 /**
5834  * destroy_workqueue - safely terminate a workqueue
5835  * @wq: target workqueue
5836  *
5837  * Safely destroy a workqueue. All work currently pending will be done first.
5838  */
destroy_workqueue(struct workqueue_struct * wq)5839 void destroy_workqueue(struct workqueue_struct *wq)
5840 {
5841 	struct pool_workqueue *pwq;
5842 	int cpu;
5843 
5844 	/*
5845 	 * Remove it from sysfs first so that sanity check failure doesn't
5846 	 * lead to sysfs name conflicts.
5847 	 */
5848 	workqueue_sysfs_unregister(wq);
5849 
5850 	/* mark the workqueue destruction is in progress */
5851 	mutex_lock(&wq->mutex);
5852 	wq->flags |= __WQ_DESTROYING;
5853 	mutex_unlock(&wq->mutex);
5854 
5855 	/* drain it before proceeding with destruction */
5856 	drain_workqueue(wq);
5857 
5858 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5859 	if (wq->rescuer) {
5860 		struct worker *rescuer = wq->rescuer;
5861 
5862 		/* this prevents new queueing */
5863 		raw_spin_lock_irq(&wq_mayday_lock);
5864 		wq->rescuer = NULL;
5865 		raw_spin_unlock_irq(&wq_mayday_lock);
5866 
5867 		/* rescuer will empty maydays list before exiting */
5868 		kthread_stop(rescuer->task);
5869 		kfree(rescuer);
5870 	}
5871 
5872 	/*
5873 	 * Sanity checks - grab all the locks so that we wait for all
5874 	 * in-flight operations which may do put_pwq().
5875 	 */
5876 	mutex_lock(&wq_pool_mutex);
5877 	mutex_lock(&wq->mutex);
5878 	for_each_pwq(pwq, wq) {
5879 		raw_spin_lock_irq(&pwq->pool->lock);
5880 		if (WARN_ON(pwq_busy(pwq))) {
5881 			pr_warn("%s: %s has the following busy pwq\n",
5882 				__func__, wq->name);
5883 			show_pwq(pwq);
5884 			raw_spin_unlock_irq(&pwq->pool->lock);
5885 			mutex_unlock(&wq->mutex);
5886 			mutex_unlock(&wq_pool_mutex);
5887 			show_one_workqueue(wq);
5888 			return;
5889 		}
5890 		raw_spin_unlock_irq(&pwq->pool->lock);
5891 	}
5892 	mutex_unlock(&wq->mutex);
5893 
5894 	/*
5895 	 * wq list is used to freeze wq, remove from list after
5896 	 * flushing is complete in case freeze races us.
5897 	 */
5898 	list_del_rcu(&wq->list);
5899 	mutex_unlock(&wq_pool_mutex);
5900 
5901 	/*
5902 	 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5903 	 * to put the base refs. @wq will be auto-destroyed from the last
5904 	 * pwq_put. RCU read lock prevents @wq from going away from under us.
5905 	 */
5906 	rcu_read_lock();
5907 
5908 	for_each_possible_cpu(cpu) {
5909 		put_pwq_unlocked(unbound_pwq(wq, cpu));
5910 		RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
5911 	}
5912 
5913 	put_pwq_unlocked(unbound_pwq(wq, -1));
5914 	RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
5915 
5916 	rcu_read_unlock();
5917 }
5918 EXPORT_SYMBOL_GPL(destroy_workqueue);
5919 
5920 /**
5921  * workqueue_set_max_active - adjust max_active of a workqueue
5922  * @wq: target workqueue
5923  * @max_active: new max_active value.
5924  *
5925  * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5926  * comment.
5927  *
5928  * CONTEXT:
5929  * Don't call from IRQ context.
5930  */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)5931 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5932 {
5933 	/* max_active doesn't mean anything for BH workqueues */
5934 	if (WARN_ON(wq->flags & WQ_BH))
5935 		return;
5936 	/* disallow meddling with max_active for ordered workqueues */
5937 	if (WARN_ON(wq->flags & __WQ_ORDERED))
5938 		return;
5939 
5940 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
5941 
5942 	mutex_lock(&wq->mutex);
5943 
5944 	wq->saved_max_active = max_active;
5945 	if (wq->flags & WQ_UNBOUND)
5946 		wq->saved_min_active = min(wq->saved_min_active, max_active);
5947 
5948 	wq_adjust_max_active(wq);
5949 
5950 	mutex_unlock(&wq->mutex);
5951 }
5952 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
5953 
5954 /**
5955  * workqueue_set_min_active - adjust min_active of an unbound workqueue
5956  * @wq: target unbound workqueue
5957  * @min_active: new min_active value
5958  *
5959  * Set min_active of an unbound workqueue. Unlike other types of workqueues, an
5960  * unbound workqueue is not guaranteed to be able to process max_active
5961  * interdependent work items. Instead, an unbound workqueue is guaranteed to be
5962  * able to process min_active number of interdependent work items which is
5963  * %WQ_DFL_MIN_ACTIVE by default.
5964  *
5965  * Use this function to adjust the min_active value between 0 and the current
5966  * max_active.
5967  */
workqueue_set_min_active(struct workqueue_struct * wq,int min_active)5968 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active)
5969 {
5970 	/* min_active is only meaningful for non-ordered unbound workqueues */
5971 	if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) !=
5972 		    WQ_UNBOUND))
5973 		return;
5974 
5975 	mutex_lock(&wq->mutex);
5976 	wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active);
5977 	wq_adjust_max_active(wq);
5978 	mutex_unlock(&wq->mutex);
5979 }
5980 
5981 /**
5982  * current_work - retrieve %current task's work struct
5983  *
5984  * Determine if %current task is a workqueue worker and what it's working on.
5985  * Useful to find out the context that the %current task is running in.
5986  *
5987  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
5988  */
current_work(void)5989 struct work_struct *current_work(void)
5990 {
5991 	struct worker *worker = current_wq_worker();
5992 
5993 	return worker ? worker->current_work : NULL;
5994 }
5995 EXPORT_SYMBOL(current_work);
5996 
5997 /**
5998  * current_is_workqueue_rescuer - is %current workqueue rescuer?
5999  *
6000  * Determine whether %current is a workqueue rescuer.  Can be used from
6001  * work functions to determine whether it's being run off the rescuer task.
6002  *
6003  * Return: %true if %current is a workqueue rescuer. %false otherwise.
6004  */
current_is_workqueue_rescuer(void)6005 bool current_is_workqueue_rescuer(void)
6006 {
6007 	struct worker *worker = current_wq_worker();
6008 
6009 	return worker && worker->rescue_wq;
6010 }
6011 
6012 /**
6013  * workqueue_congested - test whether a workqueue is congested
6014  * @cpu: CPU in question
6015  * @wq: target workqueue
6016  *
6017  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
6018  * no synchronization around this function and the test result is
6019  * unreliable and only useful as advisory hints or for debugging.
6020  *
6021  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
6022  *
6023  * With the exception of ordered workqueues, all workqueues have per-cpu
6024  * pool_workqueues, each with its own congested state. A workqueue being
6025  * congested on one CPU doesn't mean that the workqueue is contested on any
6026  * other CPUs.
6027  *
6028  * Return:
6029  * %true if congested, %false otherwise.
6030  */
workqueue_congested(int cpu,struct workqueue_struct * wq)6031 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
6032 {
6033 	struct pool_workqueue *pwq;
6034 	bool ret;
6035 
6036 	rcu_read_lock();
6037 	preempt_disable();
6038 
6039 	if (cpu == WORK_CPU_UNBOUND)
6040 		cpu = smp_processor_id();
6041 
6042 	pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
6043 	ret = !list_empty(&pwq->inactive_works);
6044 
6045 	preempt_enable();
6046 	rcu_read_unlock();
6047 
6048 	return ret;
6049 }
6050 EXPORT_SYMBOL_GPL(workqueue_congested);
6051 
6052 /**
6053  * work_busy - test whether a work is currently pending or running
6054  * @work: the work to be tested
6055  *
6056  * Test whether @work is currently pending or running.  There is no
6057  * synchronization around this function and the test result is
6058  * unreliable and only useful as advisory hints or for debugging.
6059  *
6060  * Return:
6061  * OR'd bitmask of WORK_BUSY_* bits.
6062  */
work_busy(struct work_struct * work)6063 unsigned int work_busy(struct work_struct *work)
6064 {
6065 	struct worker_pool *pool;
6066 	unsigned long irq_flags;
6067 	unsigned int ret = 0;
6068 
6069 	if (work_pending(work))
6070 		ret |= WORK_BUSY_PENDING;
6071 
6072 	rcu_read_lock();
6073 	pool = get_work_pool(work);
6074 	if (pool) {
6075 		raw_spin_lock_irqsave(&pool->lock, irq_flags);
6076 		if (find_worker_executing_work(pool, work))
6077 			ret |= WORK_BUSY_RUNNING;
6078 		raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6079 	}
6080 	rcu_read_unlock();
6081 
6082 	return ret;
6083 }
6084 EXPORT_SYMBOL_GPL(work_busy);
6085 
6086 /**
6087  * set_worker_desc - set description for the current work item
6088  * @fmt: printf-style format string
6089  * @...: arguments for the format string
6090  *
6091  * This function can be called by a running work function to describe what
6092  * the work item is about.  If the worker task gets dumped, this
6093  * information will be printed out together to help debugging.  The
6094  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
6095  */
set_worker_desc(const char * fmt,...)6096 void set_worker_desc(const char *fmt, ...)
6097 {
6098 	struct worker *worker = current_wq_worker();
6099 	va_list args;
6100 
6101 	if (worker) {
6102 		va_start(args, fmt);
6103 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
6104 		va_end(args);
6105 	}
6106 }
6107 EXPORT_SYMBOL_GPL(set_worker_desc);
6108 
6109 /**
6110  * print_worker_info - print out worker information and description
6111  * @log_lvl: the log level to use when printing
6112  * @task: target task
6113  *
6114  * If @task is a worker and currently executing a work item, print out the
6115  * name of the workqueue being serviced and worker description set with
6116  * set_worker_desc() by the currently executing work item.
6117  *
6118  * This function can be safely called on any task as long as the
6119  * task_struct itself is accessible.  While safe, this function isn't
6120  * synchronized and may print out mixups or garbages of limited length.
6121  */
print_worker_info(const char * log_lvl,struct task_struct * task)6122 void print_worker_info(const char *log_lvl, struct task_struct *task)
6123 {
6124 	work_func_t *fn = NULL;
6125 	char name[WQ_NAME_LEN] = { };
6126 	char desc[WORKER_DESC_LEN] = { };
6127 	struct pool_workqueue *pwq = NULL;
6128 	struct workqueue_struct *wq = NULL;
6129 	struct worker *worker;
6130 
6131 	if (!(task->flags & PF_WQ_WORKER))
6132 		return;
6133 
6134 	/*
6135 	 * This function is called without any synchronization and @task
6136 	 * could be in any state.  Be careful with dereferences.
6137 	 */
6138 	worker = kthread_probe_data(task);
6139 
6140 	/*
6141 	 * Carefully copy the associated workqueue's workfn, name and desc.
6142 	 * Keep the original last '\0' in case the original is garbage.
6143 	 */
6144 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
6145 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
6146 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
6147 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
6148 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
6149 
6150 	if (fn || name[0] || desc[0]) {
6151 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
6152 		if (strcmp(name, desc))
6153 			pr_cont(" (%s)", desc);
6154 		pr_cont("\n");
6155 	}
6156 }
6157 
pr_cont_pool_info(struct worker_pool * pool)6158 static void pr_cont_pool_info(struct worker_pool *pool)
6159 {
6160 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
6161 	if (pool->node != NUMA_NO_NODE)
6162 		pr_cont(" node=%d", pool->node);
6163 	pr_cont(" flags=0x%x", pool->flags);
6164 	if (pool->flags & POOL_BH)
6165 		pr_cont(" bh%s",
6166 			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6167 	else
6168 		pr_cont(" nice=%d", pool->attrs->nice);
6169 }
6170 
pr_cont_worker_id(struct worker * worker)6171 static void pr_cont_worker_id(struct worker *worker)
6172 {
6173 	struct worker_pool *pool = worker->pool;
6174 
6175 	if (pool->flags & WQ_BH)
6176 		pr_cont("bh%s",
6177 			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6178 	else
6179 		pr_cont("%d%s", task_pid_nr(worker->task),
6180 			worker->rescue_wq ? "(RESCUER)" : "");
6181 }
6182 
6183 struct pr_cont_work_struct {
6184 	bool comma;
6185 	work_func_t func;
6186 	long ctr;
6187 };
6188 
pr_cont_work_flush(bool comma,work_func_t func,struct pr_cont_work_struct * pcwsp)6189 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
6190 {
6191 	if (!pcwsp->ctr)
6192 		goto out_record;
6193 	if (func == pcwsp->func) {
6194 		pcwsp->ctr++;
6195 		return;
6196 	}
6197 	if (pcwsp->ctr == 1)
6198 		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
6199 	else
6200 		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
6201 	pcwsp->ctr = 0;
6202 out_record:
6203 	if ((long)func == -1L)
6204 		return;
6205 	pcwsp->comma = comma;
6206 	pcwsp->func = func;
6207 	pcwsp->ctr = 1;
6208 }
6209 
pr_cont_work(bool comma,struct work_struct * work,struct pr_cont_work_struct * pcwsp)6210 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
6211 {
6212 	if (work->func == wq_barrier_func) {
6213 		struct wq_barrier *barr;
6214 
6215 		barr = container_of(work, struct wq_barrier, work);
6216 
6217 		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6218 		pr_cont("%s BAR(%d)", comma ? "," : "",
6219 			task_pid_nr(barr->task));
6220 	} else {
6221 		if (!comma)
6222 			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6223 		pr_cont_work_flush(comma, work->func, pcwsp);
6224 	}
6225 }
6226 
show_pwq(struct pool_workqueue * pwq)6227 static void show_pwq(struct pool_workqueue *pwq)
6228 {
6229 	struct pr_cont_work_struct pcws = { .ctr = 0, };
6230 	struct worker_pool *pool = pwq->pool;
6231 	struct work_struct *work;
6232 	struct worker *worker;
6233 	bool has_in_flight = false, has_pending = false;
6234 	int bkt;
6235 
6236 	pr_info("  pwq %d:", pool->id);
6237 	pr_cont_pool_info(pool);
6238 
6239 	pr_cont(" active=%d refcnt=%d%s\n",
6240 		pwq->nr_active, pwq->refcnt,
6241 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
6242 
6243 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6244 		if (worker->current_pwq == pwq) {
6245 			has_in_flight = true;
6246 			break;
6247 		}
6248 	}
6249 	if (has_in_flight) {
6250 		bool comma = false;
6251 
6252 		pr_info("    in-flight:");
6253 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6254 			if (worker->current_pwq != pwq)
6255 				continue;
6256 
6257 			pr_cont(" %s", comma ? "," : "");
6258 			pr_cont_worker_id(worker);
6259 			pr_cont(":%ps", worker->current_func);
6260 			list_for_each_entry(work, &worker->scheduled, entry)
6261 				pr_cont_work(false, work, &pcws);
6262 			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6263 			comma = true;
6264 		}
6265 		pr_cont("\n");
6266 	}
6267 
6268 	list_for_each_entry(work, &pool->worklist, entry) {
6269 		if (get_work_pwq(work) == pwq) {
6270 			has_pending = true;
6271 			break;
6272 		}
6273 	}
6274 	if (has_pending) {
6275 		bool comma = false;
6276 
6277 		pr_info("    pending:");
6278 		list_for_each_entry(work, &pool->worklist, entry) {
6279 			if (get_work_pwq(work) != pwq)
6280 				continue;
6281 
6282 			pr_cont_work(comma, work, &pcws);
6283 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6284 		}
6285 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6286 		pr_cont("\n");
6287 	}
6288 
6289 	if (!list_empty(&pwq->inactive_works)) {
6290 		bool comma = false;
6291 
6292 		pr_info("    inactive:");
6293 		list_for_each_entry(work, &pwq->inactive_works, entry) {
6294 			pr_cont_work(comma, work, &pcws);
6295 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6296 		}
6297 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6298 		pr_cont("\n");
6299 	}
6300 }
6301 
6302 /**
6303  * show_one_workqueue - dump state of specified workqueue
6304  * @wq: workqueue whose state will be printed
6305  */
show_one_workqueue(struct workqueue_struct * wq)6306 void show_one_workqueue(struct workqueue_struct *wq)
6307 {
6308 	struct pool_workqueue *pwq;
6309 	bool idle = true;
6310 	unsigned long irq_flags;
6311 
6312 	for_each_pwq(pwq, wq) {
6313 		if (!pwq_is_empty(pwq)) {
6314 			idle = false;
6315 			break;
6316 		}
6317 	}
6318 	if (idle) /* Nothing to print for idle workqueue */
6319 		return;
6320 
6321 	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
6322 
6323 	for_each_pwq(pwq, wq) {
6324 		raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
6325 		if (!pwq_is_empty(pwq)) {
6326 			/*
6327 			 * Defer printing to avoid deadlocks in console
6328 			 * drivers that queue work while holding locks
6329 			 * also taken in their write paths.
6330 			 */
6331 			printk_deferred_enter();
6332 			show_pwq(pwq);
6333 			printk_deferred_exit();
6334 		}
6335 		raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
6336 		/*
6337 		 * We could be printing a lot from atomic context, e.g.
6338 		 * sysrq-t -> show_all_workqueues(). Avoid triggering
6339 		 * hard lockup.
6340 		 */
6341 		touch_nmi_watchdog();
6342 	}
6343 
6344 }
6345 
6346 /**
6347  * show_one_worker_pool - dump state of specified worker pool
6348  * @pool: worker pool whose state will be printed
6349  */
show_one_worker_pool(struct worker_pool * pool)6350 static void show_one_worker_pool(struct worker_pool *pool)
6351 {
6352 	struct worker *worker;
6353 	bool first = true;
6354 	unsigned long irq_flags;
6355 	unsigned long hung = 0;
6356 
6357 	raw_spin_lock_irqsave(&pool->lock, irq_flags);
6358 	if (pool->nr_workers == pool->nr_idle)
6359 		goto next_pool;
6360 
6361 	/* How long the first pending work is waiting for a worker. */
6362 	if (!list_empty(&pool->worklist))
6363 		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
6364 
6365 	/*
6366 	 * Defer printing to avoid deadlocks in console drivers that
6367 	 * queue work while holding locks also taken in their write
6368 	 * paths.
6369 	 */
6370 	printk_deferred_enter();
6371 	pr_info("pool %d:", pool->id);
6372 	pr_cont_pool_info(pool);
6373 	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
6374 	if (pool->manager)
6375 		pr_cont(" manager: %d",
6376 			task_pid_nr(pool->manager->task));
6377 	list_for_each_entry(worker, &pool->idle_list, entry) {
6378 		pr_cont(" %s", first ? "idle: " : "");
6379 		pr_cont_worker_id(worker);
6380 		first = false;
6381 	}
6382 	pr_cont("\n");
6383 	printk_deferred_exit();
6384 next_pool:
6385 	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6386 	/*
6387 	 * We could be printing a lot from atomic context, e.g.
6388 	 * sysrq-t -> show_all_workqueues(). Avoid triggering
6389 	 * hard lockup.
6390 	 */
6391 	touch_nmi_watchdog();
6392 
6393 }
6394 
6395 /**
6396  * show_all_workqueues - dump workqueue state
6397  *
6398  * Called from a sysrq handler and prints out all busy workqueues and pools.
6399  */
show_all_workqueues(void)6400 void show_all_workqueues(void)
6401 {
6402 	struct workqueue_struct *wq;
6403 	struct worker_pool *pool;
6404 	int pi;
6405 
6406 	rcu_read_lock();
6407 
6408 	pr_info("Showing busy workqueues and worker pools:\n");
6409 
6410 	list_for_each_entry_rcu(wq, &workqueues, list)
6411 		show_one_workqueue(wq);
6412 
6413 	for_each_pool(pool, pi)
6414 		show_one_worker_pool(pool);
6415 
6416 	rcu_read_unlock();
6417 }
6418 
6419 /**
6420  * show_freezable_workqueues - dump freezable workqueue state
6421  *
6422  * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6423  * still busy.
6424  */
show_freezable_workqueues(void)6425 void show_freezable_workqueues(void)
6426 {
6427 	struct workqueue_struct *wq;
6428 
6429 	rcu_read_lock();
6430 
6431 	pr_info("Showing freezable workqueues that are still busy:\n");
6432 
6433 	list_for_each_entry_rcu(wq, &workqueues, list) {
6434 		if (!(wq->flags & WQ_FREEZABLE))
6435 			continue;
6436 		show_one_workqueue(wq);
6437 	}
6438 
6439 	rcu_read_unlock();
6440 }
6441 
6442 /* used to show worker information through /proc/PID/{comm,stat,status} */
wq_worker_comm(char * buf,size_t size,struct task_struct * task)6443 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
6444 {
6445 	/* stabilize PF_WQ_WORKER and worker pool association */
6446 	mutex_lock(&wq_pool_attach_mutex);
6447 
6448 	if (task->flags & PF_WQ_WORKER) {
6449 		struct worker *worker = kthread_data(task);
6450 		struct worker_pool *pool = worker->pool;
6451 		int off;
6452 
6453 		off = format_worker_id(buf, size, worker, pool);
6454 
6455 		if (pool) {
6456 			raw_spin_lock_irq(&pool->lock);
6457 			/*
6458 			 * ->desc tracks information (wq name or
6459 			 * set_worker_desc()) for the latest execution.  If
6460 			 * current, prepend '+', otherwise '-'.
6461 			 */
6462 			if (worker->desc[0] != '\0') {
6463 				if (worker->current_work)
6464 					scnprintf(buf + off, size - off, "+%s",
6465 						  worker->desc);
6466 				else
6467 					scnprintf(buf + off, size - off, "-%s",
6468 						  worker->desc);
6469 			}
6470 			raw_spin_unlock_irq(&pool->lock);
6471 		}
6472 	} else {
6473 		strscpy(buf, task->comm, size);
6474 	}
6475 
6476 	mutex_unlock(&wq_pool_attach_mutex);
6477 }
6478 
6479 #ifdef CONFIG_SMP
6480 
6481 /*
6482  * CPU hotplug.
6483  *
6484  * There are two challenges in supporting CPU hotplug.  Firstly, there
6485  * are a lot of assumptions on strong associations among work, pwq and
6486  * pool which make migrating pending and scheduled works very
6487  * difficult to implement without impacting hot paths.  Secondly,
6488  * worker pools serve mix of short, long and very long running works making
6489  * blocked draining impractical.
6490  *
6491  * This is solved by allowing the pools to be disassociated from the CPU
6492  * running as an unbound one and allowing it to be reattached later if the
6493  * cpu comes back online.
6494  */
6495 
unbind_workers(int cpu)6496 static void unbind_workers(int cpu)
6497 {
6498 	struct worker_pool *pool;
6499 	struct worker *worker;
6500 
6501 	for_each_cpu_worker_pool(pool, cpu) {
6502 		mutex_lock(&wq_pool_attach_mutex);
6503 		raw_spin_lock_irq(&pool->lock);
6504 
6505 		/*
6506 		 * We've blocked all attach/detach operations. Make all workers
6507 		 * unbound and set DISASSOCIATED.  Before this, all workers
6508 		 * must be on the cpu.  After this, they may become diasporas.
6509 		 * And the preemption disabled section in their sched callbacks
6510 		 * are guaranteed to see WORKER_UNBOUND since the code here
6511 		 * is on the same cpu.
6512 		 */
6513 		for_each_pool_worker(worker, pool)
6514 			worker->flags |= WORKER_UNBOUND;
6515 
6516 		pool->flags |= POOL_DISASSOCIATED;
6517 
6518 		/*
6519 		 * The handling of nr_running in sched callbacks are disabled
6520 		 * now.  Zap nr_running.  After this, nr_running stays zero and
6521 		 * need_more_worker() and keep_working() are always true as
6522 		 * long as the worklist is not empty.  This pool now behaves as
6523 		 * an unbound (in terms of concurrency management) pool which
6524 		 * are served by workers tied to the pool.
6525 		 */
6526 		pool->nr_running = 0;
6527 
6528 		/*
6529 		 * With concurrency management just turned off, a busy
6530 		 * worker blocking could lead to lengthy stalls.  Kick off
6531 		 * unbound chain execution of currently pending work items.
6532 		 */
6533 		kick_pool(pool);
6534 
6535 		raw_spin_unlock_irq(&pool->lock);
6536 
6537 		for_each_pool_worker(worker, pool)
6538 			unbind_worker(worker);
6539 
6540 		mutex_unlock(&wq_pool_attach_mutex);
6541 	}
6542 }
6543 
6544 /**
6545  * rebind_workers - rebind all workers of a pool to the associated CPU
6546  * @pool: pool of interest
6547  *
6548  * @pool->cpu is coming online.  Rebind all workers to the CPU.
6549  */
rebind_workers(struct worker_pool * pool)6550 static void rebind_workers(struct worker_pool *pool)
6551 {
6552 	struct worker *worker;
6553 
6554 	lockdep_assert_held(&wq_pool_attach_mutex);
6555 
6556 	/*
6557 	 * Restore CPU affinity of all workers.  As all idle workers should
6558 	 * be on the run-queue of the associated CPU before any local
6559 	 * wake-ups for concurrency management happen, restore CPU affinity
6560 	 * of all workers first and then clear UNBOUND.  As we're called
6561 	 * from CPU_ONLINE, the following shouldn't fail.
6562 	 */
6563 	for_each_pool_worker(worker, pool) {
6564 		kthread_set_per_cpu(worker->task, pool->cpu);
6565 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
6566 						  pool_allowed_cpus(pool)) < 0);
6567 	}
6568 
6569 	raw_spin_lock_irq(&pool->lock);
6570 
6571 	pool->flags &= ~POOL_DISASSOCIATED;
6572 
6573 	for_each_pool_worker(worker, pool) {
6574 		unsigned int worker_flags = worker->flags;
6575 
6576 		/*
6577 		 * We want to clear UNBOUND but can't directly call
6578 		 * worker_clr_flags() or adjust nr_running.  Atomically
6579 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6580 		 * @worker will clear REBOUND using worker_clr_flags() when
6581 		 * it initiates the next execution cycle thus restoring
6582 		 * concurrency management.  Note that when or whether
6583 		 * @worker clears REBOUND doesn't affect correctness.
6584 		 *
6585 		 * WRITE_ONCE() is necessary because @worker->flags may be
6586 		 * tested without holding any lock in
6587 		 * wq_worker_running().  Without it, NOT_RUNNING test may
6588 		 * fail incorrectly leading to premature concurrency
6589 		 * management operations.
6590 		 */
6591 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6592 		worker_flags |= WORKER_REBOUND;
6593 		worker_flags &= ~WORKER_UNBOUND;
6594 		WRITE_ONCE(worker->flags, worker_flags);
6595 	}
6596 
6597 	raw_spin_unlock_irq(&pool->lock);
6598 }
6599 
6600 /**
6601  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6602  * @pool: unbound pool of interest
6603  * @cpu: the CPU which is coming up
6604  *
6605  * An unbound pool may end up with a cpumask which doesn't have any online
6606  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
6607  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
6608  * online CPU before, cpus_allowed of all its workers should be restored.
6609  */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)6610 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6611 {
6612 	static cpumask_t cpumask;
6613 	struct worker *worker;
6614 
6615 	lockdep_assert_held(&wq_pool_attach_mutex);
6616 
6617 	/* is @cpu allowed for @pool? */
6618 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6619 		return;
6620 
6621 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
6622 
6623 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
6624 	for_each_pool_worker(worker, pool)
6625 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
6626 }
6627 
workqueue_prepare_cpu(unsigned int cpu)6628 int workqueue_prepare_cpu(unsigned int cpu)
6629 {
6630 	struct worker_pool *pool;
6631 
6632 	for_each_cpu_worker_pool(pool, cpu) {
6633 		if (pool->nr_workers)
6634 			continue;
6635 		if (!create_worker(pool))
6636 			return -ENOMEM;
6637 	}
6638 	return 0;
6639 }
6640 
workqueue_online_cpu(unsigned int cpu)6641 int workqueue_online_cpu(unsigned int cpu)
6642 {
6643 	struct worker_pool *pool;
6644 	struct workqueue_struct *wq;
6645 	int pi;
6646 
6647 	mutex_lock(&wq_pool_mutex);
6648 
6649 	cpumask_set_cpu(cpu, wq_online_cpumask);
6650 
6651 	for_each_pool(pool, pi) {
6652 		/* BH pools aren't affected by hotplug */
6653 		if (pool->flags & POOL_BH)
6654 			continue;
6655 
6656 		mutex_lock(&wq_pool_attach_mutex);
6657 		if (pool->cpu == cpu)
6658 			rebind_workers(pool);
6659 		else if (pool->cpu < 0)
6660 			restore_unbound_workers_cpumask(pool, cpu);
6661 		mutex_unlock(&wq_pool_attach_mutex);
6662 	}
6663 
6664 	/* update pod affinity of unbound workqueues */
6665 	list_for_each_entry(wq, &workqueues, list) {
6666 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6667 
6668 		if (attrs) {
6669 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6670 			int tcpu;
6671 
6672 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6673 				unbound_wq_update_pwq(wq, tcpu);
6674 
6675 			mutex_lock(&wq->mutex);
6676 			wq_update_node_max_active(wq, -1);
6677 			mutex_unlock(&wq->mutex);
6678 		}
6679 	}
6680 
6681 	mutex_unlock(&wq_pool_mutex);
6682 	return 0;
6683 }
6684 
workqueue_offline_cpu(unsigned int cpu)6685 int workqueue_offline_cpu(unsigned int cpu)
6686 {
6687 	struct workqueue_struct *wq;
6688 
6689 	/* unbinding per-cpu workers should happen on the local CPU */
6690 	if (WARN_ON(cpu != smp_processor_id()))
6691 		return -1;
6692 
6693 	unbind_workers(cpu);
6694 
6695 	/* update pod affinity of unbound workqueues */
6696 	mutex_lock(&wq_pool_mutex);
6697 
6698 	cpumask_clear_cpu(cpu, wq_online_cpumask);
6699 
6700 	list_for_each_entry(wq, &workqueues, list) {
6701 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6702 
6703 		if (attrs) {
6704 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6705 			int tcpu;
6706 
6707 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6708 				unbound_wq_update_pwq(wq, tcpu);
6709 
6710 			mutex_lock(&wq->mutex);
6711 			wq_update_node_max_active(wq, cpu);
6712 			mutex_unlock(&wq->mutex);
6713 		}
6714 	}
6715 	mutex_unlock(&wq_pool_mutex);
6716 
6717 	return 0;
6718 }
6719 
6720 struct work_for_cpu {
6721 	struct work_struct work;
6722 	long (*fn)(void *);
6723 	void *arg;
6724 	long ret;
6725 };
6726 
work_for_cpu_fn(struct work_struct * work)6727 static void work_for_cpu_fn(struct work_struct *work)
6728 {
6729 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6730 
6731 	wfc->ret = wfc->fn(wfc->arg);
6732 }
6733 
6734 /**
6735  * work_on_cpu_key - run a function in thread context on a particular cpu
6736  * @cpu: the cpu to run on
6737  * @fn: the function to run
6738  * @arg: the function arg
6739  * @key: The lock class key for lock debugging purposes
6740  *
6741  * It is up to the caller to ensure that the cpu doesn't go offline.
6742  * The caller must not hold any locks which would prevent @fn from completing.
6743  *
6744  * Return: The value @fn returns.
6745  */
work_on_cpu_key(int cpu,long (* fn)(void *),void * arg,struct lock_class_key * key)6746 long work_on_cpu_key(int cpu, long (*fn)(void *),
6747 		     void *arg, struct lock_class_key *key)
6748 {
6749 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6750 
6751 	INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6752 	schedule_work_on(cpu, &wfc.work);
6753 	flush_work(&wfc.work);
6754 	destroy_work_on_stack(&wfc.work);
6755 	return wfc.ret;
6756 }
6757 EXPORT_SYMBOL_GPL(work_on_cpu_key);
6758 
6759 /**
6760  * work_on_cpu_safe_key - run a function in thread context on a particular cpu
6761  * @cpu: the cpu to run on
6762  * @fn:  the function to run
6763  * @arg: the function argument
6764  * @key: The lock class key for lock debugging purposes
6765  *
6766  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
6767  * any locks which would prevent @fn from completing.
6768  *
6769  * Return: The value @fn returns.
6770  */
work_on_cpu_safe_key(int cpu,long (* fn)(void *),void * arg,struct lock_class_key * key)6771 long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
6772 			  void *arg, struct lock_class_key *key)
6773 {
6774 	long ret = -ENODEV;
6775 
6776 	cpus_read_lock();
6777 	if (cpu_online(cpu))
6778 		ret = work_on_cpu_key(cpu, fn, arg, key);
6779 	cpus_read_unlock();
6780 	return ret;
6781 }
6782 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
6783 #endif /* CONFIG_SMP */
6784 
6785 #ifdef CONFIG_FREEZER
6786 
6787 /**
6788  * freeze_workqueues_begin - begin freezing workqueues
6789  *
6790  * Start freezing workqueues.  After this function returns, all freezable
6791  * workqueues will queue new works to their inactive_works list instead of
6792  * pool->worklist.
6793  *
6794  * CONTEXT:
6795  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6796  */
freeze_workqueues_begin(void)6797 void freeze_workqueues_begin(void)
6798 {
6799 	struct workqueue_struct *wq;
6800 
6801 	mutex_lock(&wq_pool_mutex);
6802 
6803 	WARN_ON_ONCE(workqueue_freezing);
6804 	workqueue_freezing = true;
6805 
6806 	list_for_each_entry(wq, &workqueues, list) {
6807 		mutex_lock(&wq->mutex);
6808 		wq_adjust_max_active(wq);
6809 		mutex_unlock(&wq->mutex);
6810 	}
6811 
6812 	mutex_unlock(&wq_pool_mutex);
6813 }
6814 
6815 /**
6816  * freeze_workqueues_busy - are freezable workqueues still busy?
6817  *
6818  * Check whether freezing is complete.  This function must be called
6819  * between freeze_workqueues_begin() and thaw_workqueues().
6820  *
6821  * CONTEXT:
6822  * Grabs and releases wq_pool_mutex.
6823  *
6824  * Return:
6825  * %true if some freezable workqueues are still busy.  %false if freezing
6826  * is complete.
6827  */
freeze_workqueues_busy(void)6828 bool freeze_workqueues_busy(void)
6829 {
6830 	bool busy = false;
6831 	struct workqueue_struct *wq;
6832 	struct pool_workqueue *pwq;
6833 
6834 	mutex_lock(&wq_pool_mutex);
6835 
6836 	WARN_ON_ONCE(!workqueue_freezing);
6837 
6838 	list_for_each_entry(wq, &workqueues, list) {
6839 		if (!(wq->flags & WQ_FREEZABLE))
6840 			continue;
6841 		/*
6842 		 * nr_active is monotonically decreasing.  It's safe
6843 		 * to peek without lock.
6844 		 */
6845 		rcu_read_lock();
6846 		for_each_pwq(pwq, wq) {
6847 			WARN_ON_ONCE(pwq->nr_active < 0);
6848 			if (pwq->nr_active) {
6849 				busy = true;
6850 				rcu_read_unlock();
6851 				goto out_unlock;
6852 			}
6853 		}
6854 		rcu_read_unlock();
6855 	}
6856 out_unlock:
6857 	mutex_unlock(&wq_pool_mutex);
6858 	return busy;
6859 }
6860 
6861 /**
6862  * thaw_workqueues - thaw workqueues
6863  *
6864  * Thaw workqueues.  Normal queueing is restored and all collected
6865  * frozen works are transferred to their respective pool worklists.
6866  *
6867  * CONTEXT:
6868  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6869  */
thaw_workqueues(void)6870 void thaw_workqueues(void)
6871 {
6872 	struct workqueue_struct *wq;
6873 
6874 	mutex_lock(&wq_pool_mutex);
6875 
6876 	if (!workqueue_freezing)
6877 		goto out_unlock;
6878 
6879 	workqueue_freezing = false;
6880 
6881 	/* restore max_active and repopulate worklist */
6882 	list_for_each_entry(wq, &workqueues, list) {
6883 		mutex_lock(&wq->mutex);
6884 		wq_adjust_max_active(wq);
6885 		mutex_unlock(&wq->mutex);
6886 	}
6887 
6888 out_unlock:
6889 	mutex_unlock(&wq_pool_mutex);
6890 }
6891 #endif /* CONFIG_FREEZER */
6892 
workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)6893 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
6894 {
6895 	LIST_HEAD(ctxs);
6896 	int ret = 0;
6897 	struct workqueue_struct *wq;
6898 	struct apply_wqattrs_ctx *ctx, *n;
6899 
6900 	lockdep_assert_held(&wq_pool_mutex);
6901 
6902 	list_for_each_entry(wq, &workqueues, list) {
6903 		if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING))
6904 			continue;
6905 
6906 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
6907 		if (IS_ERR(ctx)) {
6908 			ret = PTR_ERR(ctx);
6909 			break;
6910 		}
6911 
6912 		list_add_tail(&ctx->list, &ctxs);
6913 	}
6914 
6915 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
6916 		if (!ret)
6917 			apply_wqattrs_commit(ctx);
6918 		apply_wqattrs_cleanup(ctx);
6919 	}
6920 
6921 	if (!ret) {
6922 		mutex_lock(&wq_pool_attach_mutex);
6923 		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6924 		mutex_unlock(&wq_pool_attach_mutex);
6925 	}
6926 	return ret;
6927 }
6928 
6929 /**
6930  * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6931  * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6932  *
6933  * This function can be called from cpuset code to provide a set of isolated
6934  * CPUs that should be excluded from wq_unbound_cpumask.
6935  */
workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)6936 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6937 {
6938 	cpumask_var_t cpumask;
6939 	int ret = 0;
6940 
6941 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6942 		return -ENOMEM;
6943 
6944 	mutex_lock(&wq_pool_mutex);
6945 
6946 	/*
6947 	 * If the operation fails, it will fall back to
6948 	 * wq_requested_unbound_cpumask which is initially set to
6949 	 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
6950 	 * by any subsequent write to workqueue/cpumask sysfs file.
6951 	 */
6952 	if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6953 		cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6954 	if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6955 		ret = workqueue_apply_unbound_cpumask(cpumask);
6956 
6957 	/* Save the current isolated cpumask & export it via sysfs */
6958 	if (!ret)
6959 		cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6960 
6961 	mutex_unlock(&wq_pool_mutex);
6962 	free_cpumask_var(cpumask);
6963 	return ret;
6964 }
6965 
parse_affn_scope(const char * val)6966 static int parse_affn_scope(const char *val)
6967 {
6968 	int i;
6969 
6970 	for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6971 		if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6972 			return i;
6973 	}
6974 	return -EINVAL;
6975 }
6976 
wq_affn_dfl_set(const char * val,const struct kernel_param * kp)6977 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6978 {
6979 	struct workqueue_struct *wq;
6980 	int affn, cpu;
6981 
6982 	affn = parse_affn_scope(val);
6983 	if (affn < 0)
6984 		return affn;
6985 	if (affn == WQ_AFFN_DFL)
6986 		return -EINVAL;
6987 
6988 	cpus_read_lock();
6989 	mutex_lock(&wq_pool_mutex);
6990 
6991 	wq_affn_dfl = affn;
6992 
6993 	list_for_each_entry(wq, &workqueues, list) {
6994 		for_each_online_cpu(cpu)
6995 			unbound_wq_update_pwq(wq, cpu);
6996 	}
6997 
6998 	mutex_unlock(&wq_pool_mutex);
6999 	cpus_read_unlock();
7000 
7001 	return 0;
7002 }
7003 
wq_affn_dfl_get(char * buffer,const struct kernel_param * kp)7004 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
7005 {
7006 	return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
7007 }
7008 
7009 static const struct kernel_param_ops wq_affn_dfl_ops = {
7010 	.set	= wq_affn_dfl_set,
7011 	.get	= wq_affn_dfl_get,
7012 };
7013 
7014 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
7015 
7016 #ifdef CONFIG_SYSFS
7017 /*
7018  * Workqueues with WQ_SYSFS flag set is visible to userland via
7019  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
7020  * following attributes.
7021  *
7022  *  per_cpu		RO bool	: whether the workqueue is per-cpu or unbound
7023  *  max_active		RW int	: maximum number of in-flight work items
7024  *
7025  * Unbound workqueues have the following extra attributes.
7026  *
7027  *  nice		RW int	: nice value of the workers
7028  *  cpumask		RW mask	: bitmask of allowed CPUs for the workers
7029  *  affinity_scope	RW str  : worker CPU affinity scope (cache, numa, none)
7030  *  affinity_strict	RW bool : worker CPU affinity is strict
7031  */
7032 struct wq_device {
7033 	struct workqueue_struct		*wq;
7034 	struct device			dev;
7035 };
7036 
dev_to_wq(struct device * dev)7037 static struct workqueue_struct *dev_to_wq(struct device *dev)
7038 {
7039 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7040 
7041 	return wq_dev->wq;
7042 }
7043 
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)7044 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
7045 			    char *buf)
7046 {
7047 	struct workqueue_struct *wq = dev_to_wq(dev);
7048 
7049 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
7050 }
7051 static DEVICE_ATTR_RO(per_cpu);
7052 
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)7053 static ssize_t max_active_show(struct device *dev,
7054 			       struct device_attribute *attr, char *buf)
7055 {
7056 	struct workqueue_struct *wq = dev_to_wq(dev);
7057 
7058 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
7059 }
7060 
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7061 static ssize_t max_active_store(struct device *dev,
7062 				struct device_attribute *attr, const char *buf,
7063 				size_t count)
7064 {
7065 	struct workqueue_struct *wq = dev_to_wq(dev);
7066 	int val;
7067 
7068 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
7069 		return -EINVAL;
7070 
7071 	workqueue_set_max_active(wq, val);
7072 	return count;
7073 }
7074 static DEVICE_ATTR_RW(max_active);
7075 
7076 static struct attribute *wq_sysfs_attrs[] = {
7077 	&dev_attr_per_cpu.attr,
7078 	&dev_attr_max_active.attr,
7079 	NULL,
7080 };
7081 ATTRIBUTE_GROUPS(wq_sysfs);
7082 
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)7083 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
7084 			    char *buf)
7085 {
7086 	struct workqueue_struct *wq = dev_to_wq(dev);
7087 	int written;
7088 
7089 	mutex_lock(&wq->mutex);
7090 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
7091 	mutex_unlock(&wq->mutex);
7092 
7093 	return written;
7094 }
7095 
7096 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)7097 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
7098 {
7099 	struct workqueue_attrs *attrs;
7100 
7101 	lockdep_assert_held(&wq_pool_mutex);
7102 
7103 	attrs = alloc_workqueue_attrs();
7104 	if (!attrs)
7105 		return NULL;
7106 
7107 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
7108 	return attrs;
7109 }
7110 
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7111 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
7112 			     const char *buf, size_t count)
7113 {
7114 	struct workqueue_struct *wq = dev_to_wq(dev);
7115 	struct workqueue_attrs *attrs;
7116 	int ret = -ENOMEM;
7117 
7118 	apply_wqattrs_lock();
7119 
7120 	attrs = wq_sysfs_prep_attrs(wq);
7121 	if (!attrs)
7122 		goto out_unlock;
7123 
7124 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
7125 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
7126 		ret = apply_workqueue_attrs_locked(wq, attrs);
7127 	else
7128 		ret = -EINVAL;
7129 
7130 out_unlock:
7131 	apply_wqattrs_unlock();
7132 	free_workqueue_attrs(attrs);
7133 	return ret ?: count;
7134 }
7135 
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)7136 static ssize_t wq_cpumask_show(struct device *dev,
7137 			       struct device_attribute *attr, char *buf)
7138 {
7139 	struct workqueue_struct *wq = dev_to_wq(dev);
7140 	int written;
7141 
7142 	mutex_lock(&wq->mutex);
7143 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
7144 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
7145 	mutex_unlock(&wq->mutex);
7146 	return written;
7147 }
7148 
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7149 static ssize_t wq_cpumask_store(struct device *dev,
7150 				struct device_attribute *attr,
7151 				const char *buf, size_t count)
7152 {
7153 	struct workqueue_struct *wq = dev_to_wq(dev);
7154 	struct workqueue_attrs *attrs;
7155 	int ret = -ENOMEM;
7156 
7157 	apply_wqattrs_lock();
7158 
7159 	attrs = wq_sysfs_prep_attrs(wq);
7160 	if (!attrs)
7161 		goto out_unlock;
7162 
7163 	ret = cpumask_parse(buf, attrs->cpumask);
7164 	if (!ret)
7165 		ret = apply_workqueue_attrs_locked(wq, attrs);
7166 
7167 out_unlock:
7168 	apply_wqattrs_unlock();
7169 	free_workqueue_attrs(attrs);
7170 	return ret ?: count;
7171 }
7172 
wq_affn_scope_show(struct device * dev,struct device_attribute * attr,char * buf)7173 static ssize_t wq_affn_scope_show(struct device *dev,
7174 				  struct device_attribute *attr, char *buf)
7175 {
7176 	struct workqueue_struct *wq = dev_to_wq(dev);
7177 	int written;
7178 
7179 	mutex_lock(&wq->mutex);
7180 	if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
7181 		written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
7182 				    wq_affn_names[WQ_AFFN_DFL],
7183 				    wq_affn_names[wq_affn_dfl]);
7184 	else
7185 		written = scnprintf(buf, PAGE_SIZE, "%s\n",
7186 				    wq_affn_names[wq->unbound_attrs->affn_scope]);
7187 	mutex_unlock(&wq->mutex);
7188 
7189 	return written;
7190 }
7191 
wq_affn_scope_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7192 static ssize_t wq_affn_scope_store(struct device *dev,
7193 				   struct device_attribute *attr,
7194 				   const char *buf, size_t count)
7195 {
7196 	struct workqueue_struct *wq = dev_to_wq(dev);
7197 	struct workqueue_attrs *attrs;
7198 	int affn, ret = -ENOMEM;
7199 
7200 	affn = parse_affn_scope(buf);
7201 	if (affn < 0)
7202 		return affn;
7203 
7204 	apply_wqattrs_lock();
7205 	attrs = wq_sysfs_prep_attrs(wq);
7206 	if (attrs) {
7207 		attrs->affn_scope = affn;
7208 		ret = apply_workqueue_attrs_locked(wq, attrs);
7209 	}
7210 	apply_wqattrs_unlock();
7211 	free_workqueue_attrs(attrs);
7212 	return ret ?: count;
7213 }
7214 
wq_affinity_strict_show(struct device * dev,struct device_attribute * attr,char * buf)7215 static ssize_t wq_affinity_strict_show(struct device *dev,
7216 				       struct device_attribute *attr, char *buf)
7217 {
7218 	struct workqueue_struct *wq = dev_to_wq(dev);
7219 
7220 	return scnprintf(buf, PAGE_SIZE, "%d\n",
7221 			 wq->unbound_attrs->affn_strict);
7222 }
7223 
wq_affinity_strict_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7224 static ssize_t wq_affinity_strict_store(struct device *dev,
7225 					struct device_attribute *attr,
7226 					const char *buf, size_t count)
7227 {
7228 	struct workqueue_struct *wq = dev_to_wq(dev);
7229 	struct workqueue_attrs *attrs;
7230 	int v, ret = -ENOMEM;
7231 
7232 	if (sscanf(buf, "%d", &v) != 1)
7233 		return -EINVAL;
7234 
7235 	apply_wqattrs_lock();
7236 	attrs = wq_sysfs_prep_attrs(wq);
7237 	if (attrs) {
7238 		attrs->affn_strict = (bool)v;
7239 		ret = apply_workqueue_attrs_locked(wq, attrs);
7240 	}
7241 	apply_wqattrs_unlock();
7242 	free_workqueue_attrs(attrs);
7243 	return ret ?: count;
7244 }
7245 
7246 static struct device_attribute wq_sysfs_unbound_attrs[] = {
7247 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
7248 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
7249 	__ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
7250 	__ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
7251 	__ATTR_NULL,
7252 };
7253 
7254 static const struct bus_type wq_subsys = {
7255 	.name				= "workqueue",
7256 	.dev_groups			= wq_sysfs_groups,
7257 };
7258 
7259 /**
7260  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
7261  *  @cpumask: the cpumask to set
7262  *
7263  *  The low-level workqueues cpumask is a global cpumask that limits
7264  *  the affinity of all unbound workqueues.  This function check the @cpumask
7265  *  and apply it to all unbound workqueues and updates all pwqs of them.
7266  *
7267  *  Return:	0	- Success
7268  *		-EINVAL	- Invalid @cpumask
7269  *		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
7270  */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)7271 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
7272 {
7273 	int ret = -EINVAL;
7274 
7275 	/*
7276 	 * Not excluding isolated cpus on purpose.
7277 	 * If the user wishes to include them, we allow that.
7278 	 */
7279 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
7280 	if (!cpumask_empty(cpumask)) {
7281 		ret = 0;
7282 		apply_wqattrs_lock();
7283 		if (!cpumask_equal(cpumask, wq_unbound_cpumask))
7284 			ret = workqueue_apply_unbound_cpumask(cpumask);
7285 		if (!ret)
7286 			cpumask_copy(wq_requested_unbound_cpumask, cpumask);
7287 		apply_wqattrs_unlock();
7288 	}
7289 
7290 	return ret;
7291 }
7292 
__wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf,cpumask_var_t mask)7293 static ssize_t __wq_cpumask_show(struct device *dev,
7294 		struct device_attribute *attr, char *buf, cpumask_var_t mask)
7295 {
7296 	int written;
7297 
7298 	mutex_lock(&wq_pool_mutex);
7299 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
7300 	mutex_unlock(&wq_pool_mutex);
7301 
7302 	return written;
7303 }
7304 
cpumask_requested_show(struct device * dev,struct device_attribute * attr,char * buf)7305 static ssize_t cpumask_requested_show(struct device *dev,
7306 		struct device_attribute *attr, char *buf)
7307 {
7308 	return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
7309 }
7310 static DEVICE_ATTR_RO(cpumask_requested);
7311 
cpumask_isolated_show(struct device * dev,struct device_attribute * attr,char * buf)7312 static ssize_t cpumask_isolated_show(struct device *dev,
7313 		struct device_attribute *attr, char *buf)
7314 {
7315 	return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
7316 }
7317 static DEVICE_ATTR_RO(cpumask_isolated);
7318 
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)7319 static ssize_t cpumask_show(struct device *dev,
7320 		struct device_attribute *attr, char *buf)
7321 {
7322 	return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
7323 }
7324 
cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7325 static ssize_t cpumask_store(struct device *dev,
7326 		struct device_attribute *attr, const char *buf, size_t count)
7327 {
7328 	cpumask_var_t cpumask;
7329 	int ret;
7330 
7331 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
7332 		return -ENOMEM;
7333 
7334 	ret = cpumask_parse(buf, cpumask);
7335 	if (!ret)
7336 		ret = workqueue_set_unbound_cpumask(cpumask);
7337 
7338 	free_cpumask_var(cpumask);
7339 	return ret ? ret : count;
7340 }
7341 static DEVICE_ATTR_RW(cpumask);
7342 
7343 static struct attribute *wq_sysfs_cpumask_attrs[] = {
7344 	&dev_attr_cpumask.attr,
7345 	&dev_attr_cpumask_requested.attr,
7346 	&dev_attr_cpumask_isolated.attr,
7347 	NULL,
7348 };
7349 ATTRIBUTE_GROUPS(wq_sysfs_cpumask);
7350 
wq_sysfs_init(void)7351 static int __init wq_sysfs_init(void)
7352 {
7353 	return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups);
7354 }
7355 core_initcall(wq_sysfs_init);
7356 
wq_device_release(struct device * dev)7357 static void wq_device_release(struct device *dev)
7358 {
7359 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7360 
7361 	kfree(wq_dev);
7362 }
7363 
7364 /**
7365  * workqueue_sysfs_register - make a workqueue visible in sysfs
7366  * @wq: the workqueue to register
7367  *
7368  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7369  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7370  * which is the preferred method.
7371  *
7372  * Workqueue user should use this function directly iff it wants to apply
7373  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7374  * apply_workqueue_attrs() may race against userland updating the
7375  * attributes.
7376  *
7377  * Return: 0 on success, -errno on failure.
7378  */
workqueue_sysfs_register(struct workqueue_struct * wq)7379 int workqueue_sysfs_register(struct workqueue_struct *wq)
7380 {
7381 	struct wq_device *wq_dev;
7382 	int ret;
7383 
7384 	/*
7385 	 * Adjusting max_active breaks ordering guarantee.  Disallow exposing
7386 	 * ordered workqueues.
7387 	 */
7388 	if (WARN_ON(wq->flags & __WQ_ORDERED))
7389 		return -EINVAL;
7390 
7391 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
7392 	if (!wq_dev)
7393 		return -ENOMEM;
7394 
7395 	wq_dev->wq = wq;
7396 	wq_dev->dev.bus = &wq_subsys;
7397 	wq_dev->dev.release = wq_device_release;
7398 	dev_set_name(&wq_dev->dev, "%s", wq->name);
7399 
7400 	/*
7401 	 * unbound_attrs are created separately.  Suppress uevent until
7402 	 * everything is ready.
7403 	 */
7404 	dev_set_uevent_suppress(&wq_dev->dev, true);
7405 
7406 	ret = device_register(&wq_dev->dev);
7407 	if (ret) {
7408 		put_device(&wq_dev->dev);
7409 		wq->wq_dev = NULL;
7410 		return ret;
7411 	}
7412 
7413 	if (wq->flags & WQ_UNBOUND) {
7414 		struct device_attribute *attr;
7415 
7416 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
7417 			ret = device_create_file(&wq_dev->dev, attr);
7418 			if (ret) {
7419 				device_unregister(&wq_dev->dev);
7420 				wq->wq_dev = NULL;
7421 				return ret;
7422 			}
7423 		}
7424 	}
7425 
7426 	dev_set_uevent_suppress(&wq_dev->dev, false);
7427 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
7428 	return 0;
7429 }
7430 
7431 /**
7432  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7433  * @wq: the workqueue to unregister
7434  *
7435  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
7436  */
workqueue_sysfs_unregister(struct workqueue_struct * wq)7437 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
7438 {
7439 	struct wq_device *wq_dev = wq->wq_dev;
7440 
7441 	if (!wq->wq_dev)
7442 		return;
7443 
7444 	wq->wq_dev = NULL;
7445 	device_unregister(&wq_dev->dev);
7446 }
7447 #else	/* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)7448 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
7449 #endif	/* CONFIG_SYSFS */
7450 
7451 /*
7452  * Workqueue watchdog.
7453  *
7454  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7455  * flush dependency, a concurrency managed work item which stays RUNNING
7456  * indefinitely.  Workqueue stalls can be very difficult to debug as the
7457  * usual warning mechanisms don't trigger and internal workqueue state is
7458  * largely opaque.
7459  *
7460  * Workqueue watchdog monitors all worker pools periodically and dumps
7461  * state if some pools failed to make forward progress for a while where
7462  * forward progress is defined as the first item on ->worklist changing.
7463  *
7464  * This mechanism is controlled through the kernel parameter
7465  * "workqueue.watchdog_thresh" which can be updated at runtime through the
7466  * corresponding sysfs parameter file.
7467  */
7468 #ifdef CONFIG_WQ_WATCHDOG
7469 
7470 static unsigned long wq_watchdog_thresh = 30;
7471 static struct timer_list wq_watchdog_timer;
7472 
7473 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
7474 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
7475 
7476 static unsigned int wq_panic_on_stall;
7477 module_param_named(panic_on_stall, wq_panic_on_stall, uint, 0644);
7478 
7479 /*
7480  * Show workers that might prevent the processing of pending work items.
7481  * The only candidates are CPU-bound workers in the running state.
7482  * Pending work items should be handled by another idle worker
7483  * in all other situations.
7484  */
show_cpu_pool_hog(struct worker_pool * pool)7485 static void show_cpu_pool_hog(struct worker_pool *pool)
7486 {
7487 	struct worker *worker;
7488 	unsigned long irq_flags;
7489 	int bkt;
7490 
7491 	raw_spin_lock_irqsave(&pool->lock, irq_flags);
7492 
7493 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
7494 		if (task_is_running(worker->task)) {
7495 			/*
7496 			 * Defer printing to avoid deadlocks in console
7497 			 * drivers that queue work while holding locks
7498 			 * also taken in their write paths.
7499 			 */
7500 			printk_deferred_enter();
7501 
7502 			pr_info("pool %d:\n", pool->id);
7503 			sched_show_task(worker->task);
7504 
7505 			printk_deferred_exit();
7506 		}
7507 	}
7508 
7509 	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
7510 }
7511 
show_cpu_pools_hogs(void)7512 static void show_cpu_pools_hogs(void)
7513 {
7514 	struct worker_pool *pool;
7515 	int pi;
7516 
7517 	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7518 
7519 	rcu_read_lock();
7520 
7521 	for_each_pool(pool, pi) {
7522 		if (pool->cpu_stall)
7523 			show_cpu_pool_hog(pool);
7524 
7525 	}
7526 
7527 	rcu_read_unlock();
7528 }
7529 
panic_on_wq_watchdog(void)7530 static void panic_on_wq_watchdog(void)
7531 {
7532 	static unsigned int wq_stall;
7533 
7534 	if (wq_panic_on_stall) {
7535 		wq_stall++;
7536 		BUG_ON(wq_stall >= wq_panic_on_stall);
7537 	}
7538 }
7539 
wq_watchdog_reset_touched(void)7540 static void wq_watchdog_reset_touched(void)
7541 {
7542 	int cpu;
7543 
7544 	wq_watchdog_touched = jiffies;
7545 	for_each_possible_cpu(cpu)
7546 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7547 }
7548 
wq_watchdog_timer_fn(struct timer_list * unused)7549 static void wq_watchdog_timer_fn(struct timer_list *unused)
7550 {
7551 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7552 	bool lockup_detected = false;
7553 	bool cpu_pool_stall = false;
7554 	unsigned long now = jiffies;
7555 	struct worker_pool *pool;
7556 	int pi;
7557 
7558 	if (!thresh)
7559 		return;
7560 
7561 	rcu_read_lock();
7562 
7563 	for_each_pool(pool, pi) {
7564 		unsigned long pool_ts, touched, ts;
7565 
7566 		pool->cpu_stall = false;
7567 		if (list_empty(&pool->worklist))
7568 			continue;
7569 
7570 		/*
7571 		 * If a virtual machine is stopped by the host it can look to
7572 		 * the watchdog like a stall.
7573 		 */
7574 		kvm_check_and_clear_guest_paused();
7575 
7576 		/* get the latest of pool and touched timestamps */
7577 		if (pool->cpu >= 0)
7578 			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7579 		else
7580 			touched = READ_ONCE(wq_watchdog_touched);
7581 		pool_ts = READ_ONCE(pool->watchdog_ts);
7582 
7583 		if (time_after(pool_ts, touched))
7584 			ts = pool_ts;
7585 		else
7586 			ts = touched;
7587 
7588 		/* did we stall? */
7589 		if (time_after(now, ts + thresh)) {
7590 			lockup_detected = true;
7591 			if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
7592 				pool->cpu_stall = true;
7593 				cpu_pool_stall = true;
7594 			}
7595 			pr_emerg("BUG: workqueue lockup - pool");
7596 			pr_cont_pool_info(pool);
7597 			pr_cont(" stuck for %us!\n",
7598 				jiffies_to_msecs(now - pool_ts) / 1000);
7599 		}
7600 
7601 
7602 	}
7603 
7604 	rcu_read_unlock();
7605 
7606 	if (lockup_detected)
7607 		show_all_workqueues();
7608 
7609 	if (cpu_pool_stall)
7610 		show_cpu_pools_hogs();
7611 
7612 	if (lockup_detected)
7613 		panic_on_wq_watchdog();
7614 
7615 	wq_watchdog_reset_touched();
7616 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
7617 }
7618 
wq_watchdog_touch(int cpu)7619 notrace void wq_watchdog_touch(int cpu)
7620 {
7621 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7622 	unsigned long touch_ts = READ_ONCE(wq_watchdog_touched);
7623 	unsigned long now = jiffies;
7624 
7625 	if (cpu >= 0)
7626 		per_cpu(wq_watchdog_touched_cpu, cpu) = now;
7627 	else
7628 		WARN_ONCE(1, "%s should be called with valid CPU", __func__);
7629 
7630 	/* Don't unnecessarily store to global cacheline */
7631 	if (time_after(now, touch_ts + thresh / 4))
7632 		WRITE_ONCE(wq_watchdog_touched, jiffies);
7633 }
7634 
wq_watchdog_set_thresh(unsigned long thresh)7635 static void wq_watchdog_set_thresh(unsigned long thresh)
7636 {
7637 	wq_watchdog_thresh = 0;
7638 	del_timer_sync(&wq_watchdog_timer);
7639 
7640 	if (thresh) {
7641 		wq_watchdog_thresh = thresh;
7642 		wq_watchdog_reset_touched();
7643 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7644 	}
7645 }
7646 
wq_watchdog_param_set_thresh(const char * val,const struct kernel_param * kp)7647 static int wq_watchdog_param_set_thresh(const char *val,
7648 					const struct kernel_param *kp)
7649 {
7650 	unsigned long thresh;
7651 	int ret;
7652 
7653 	ret = kstrtoul(val, 0, &thresh);
7654 	if (ret)
7655 		return ret;
7656 
7657 	if (system_wq)
7658 		wq_watchdog_set_thresh(thresh);
7659 	else
7660 		wq_watchdog_thresh = thresh;
7661 
7662 	return 0;
7663 }
7664 
7665 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7666 	.set	= wq_watchdog_param_set_thresh,
7667 	.get	= param_get_ulong,
7668 };
7669 
7670 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7671 		0644);
7672 
wq_watchdog_init(void)7673 static void wq_watchdog_init(void)
7674 {
7675 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
7676 	wq_watchdog_set_thresh(wq_watchdog_thresh);
7677 }
7678 
7679 #else	/* CONFIG_WQ_WATCHDOG */
7680 
wq_watchdog_init(void)7681 static inline void wq_watchdog_init(void) { }
7682 
7683 #endif	/* CONFIG_WQ_WATCHDOG */
7684 
bh_pool_kick_normal(struct irq_work * irq_work)7685 static void bh_pool_kick_normal(struct irq_work *irq_work)
7686 {
7687 	raise_softirq_irqoff(TASKLET_SOFTIRQ);
7688 }
7689 
bh_pool_kick_highpri(struct irq_work * irq_work)7690 static void bh_pool_kick_highpri(struct irq_work *irq_work)
7691 {
7692 	raise_softirq_irqoff(HI_SOFTIRQ);
7693 }
7694 
restrict_unbound_cpumask(const char * name,const struct cpumask * mask)7695 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7696 {
7697 	if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7698 		pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7699 			cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7700 		return;
7701 	}
7702 
7703 	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7704 }
7705 
init_cpu_worker_pool(struct worker_pool * pool,int cpu,int nice)7706 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
7707 {
7708 	BUG_ON(init_worker_pool(pool));
7709 	pool->cpu = cpu;
7710 	cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7711 	cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7712 	pool->attrs->nice = nice;
7713 	pool->attrs->affn_strict = true;
7714 	pool->node = cpu_to_node(cpu);
7715 
7716 	/* alloc pool ID */
7717 	mutex_lock(&wq_pool_mutex);
7718 	BUG_ON(worker_pool_assign_id(pool));
7719 	mutex_unlock(&wq_pool_mutex);
7720 }
7721 
7722 /**
7723  * workqueue_init_early - early init for workqueue subsystem
7724  *
7725  * This is the first step of three-staged workqueue subsystem initialization and
7726  * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7727  * up. It sets up all the data structures and system workqueues and allows early
7728  * boot code to create workqueues and queue/cancel work items. Actual work item
7729  * execution starts only after kthreads can be created and scheduled right
7730  * before early initcalls.
7731  */
workqueue_init_early(void)7732 void __init workqueue_init_early(void)
7733 {
7734 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7735 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7736 	void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal,
7737 						       bh_pool_kick_highpri };
7738 	int i, cpu;
7739 
7740 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
7741 
7742 	BUG_ON(!alloc_cpumask_var(&wq_online_cpumask, GFP_KERNEL));
7743 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
7744 	BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7745 	BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
7746 
7747 	cpumask_copy(wq_online_cpumask, cpu_online_mask);
7748 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7749 	restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7750 	restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
7751 	if (!cpumask_empty(&wq_cmdline_cpumask))
7752 		restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
7753 
7754 	cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
7755 
7756 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7757 
7758 	unbound_wq_update_pwq_attrs_buf = alloc_workqueue_attrs();
7759 	BUG_ON(!unbound_wq_update_pwq_attrs_buf);
7760 
7761 	/*
7762 	 * If nohz_full is enabled, set power efficient workqueue as unbound.
7763 	 * This allows workqueue items to be moved to HK CPUs.
7764 	 */
7765 	if (housekeeping_enabled(HK_TYPE_TICK))
7766 		wq_power_efficient = true;
7767 
7768 	/* initialize WQ_AFFN_SYSTEM pods */
7769 	pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7770 	pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7771 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7772 	BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7773 
7774 	BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7775 
7776 	pt->nr_pods = 1;
7777 	cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7778 	pt->pod_node[0] = NUMA_NO_NODE;
7779 	pt->cpu_pod[0] = 0;
7780 
7781 	/* initialize BH and CPU pools */
7782 	for_each_possible_cpu(cpu) {
7783 		struct worker_pool *pool;
7784 
7785 		i = 0;
7786 		for_each_bh_worker_pool(pool, cpu) {
7787 			init_cpu_worker_pool(pool, cpu, std_nice[i]);
7788 			pool->flags |= POOL_BH;
7789 			init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]);
7790 			i++;
7791 		}
7792 
7793 		i = 0;
7794 		for_each_cpu_worker_pool(pool, cpu)
7795 			init_cpu_worker_pool(pool, cpu, std_nice[i++]);
7796 	}
7797 
7798 	/* create default unbound and ordered wq attrs */
7799 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7800 		struct workqueue_attrs *attrs;
7801 
7802 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7803 		attrs->nice = std_nice[i];
7804 		unbound_std_wq_attrs[i] = attrs;
7805 
7806 		/*
7807 		 * An ordered wq should have only one pwq as ordering is
7808 		 * guaranteed by max_active which is enforced by pwqs.
7809 		 */
7810 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7811 		attrs->nice = std_nice[i];
7812 		attrs->ordered = true;
7813 		ordered_wq_attrs[i] = attrs;
7814 	}
7815 
7816 	system_wq = alloc_workqueue("events", 0, 0);
7817 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
7818 	system_long_wq = alloc_workqueue("events_long", 0, 0);
7819 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
7820 					    WQ_MAX_ACTIVE);
7821 	system_freezable_wq = alloc_workqueue("events_freezable",
7822 					      WQ_FREEZABLE, 0);
7823 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7824 					      WQ_POWER_EFFICIENT, 0);
7825 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
7826 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
7827 					      0);
7828 	system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0);
7829 	system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
7830 					       WQ_BH | WQ_HIGHPRI, 0);
7831 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
7832 	       !system_unbound_wq || !system_freezable_wq ||
7833 	       !system_power_efficient_wq ||
7834 	       !system_freezable_power_efficient_wq ||
7835 	       !system_bh_wq || !system_bh_highpri_wq);
7836 }
7837 
wq_cpu_intensive_thresh_init(void)7838 static void __init wq_cpu_intensive_thresh_init(void)
7839 {
7840 	unsigned long thresh;
7841 	unsigned long bogo;
7842 
7843 	pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
7844 	BUG_ON(IS_ERR(pwq_release_worker));
7845 
7846 	/* if the user set it to a specific value, keep it */
7847 	if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7848 		return;
7849 
7850 	/*
7851 	 * The default of 10ms is derived from the fact that most modern (as of
7852 	 * 2023) processors can do a lot in 10ms and that it's just below what
7853 	 * most consider human-perceivable. However, the kernel also runs on a
7854 	 * lot slower CPUs including microcontrollers where the threshold is way
7855 	 * too low.
7856 	 *
7857 	 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7858 	 * This is by no means accurate but it doesn't have to be. The mechanism
7859 	 * is still useful even when the threshold is fully scaled up. Also, as
7860 	 * the reports would usually be applicable to everyone, some machines
7861 	 * operating on longer thresholds won't significantly diminish their
7862 	 * usefulness.
7863 	 */
7864 	thresh = 10 * USEC_PER_MSEC;
7865 
7866 	/* see init/calibrate.c for lpj -> BogoMIPS calculation */
7867 	bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7868 	if (bogo < 4000)
7869 		thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7870 
7871 	pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7872 		 loops_per_jiffy, bogo, thresh);
7873 
7874 	wq_cpu_intensive_thresh_us = thresh;
7875 }
7876 
7877 /**
7878  * workqueue_init - bring workqueue subsystem fully online
7879  *
7880  * This is the second step of three-staged workqueue subsystem initialization
7881  * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7882  * been created and work items queued on them, but there are no kworkers
7883  * executing the work items yet. Populate the worker pools with the initial
7884  * workers and enable future kworker creations.
7885  */
workqueue_init(void)7886 void __init workqueue_init(void)
7887 {
7888 	struct workqueue_struct *wq;
7889 	struct worker_pool *pool;
7890 	int cpu, bkt;
7891 
7892 	wq_cpu_intensive_thresh_init();
7893 
7894 	mutex_lock(&wq_pool_mutex);
7895 
7896 	/*
7897 	 * Per-cpu pools created earlier could be missing node hint. Fix them
7898 	 * up. Also, create a rescuer for workqueues that requested it.
7899 	 */
7900 	for_each_possible_cpu(cpu) {
7901 		for_each_bh_worker_pool(pool, cpu)
7902 			pool->node = cpu_to_node(cpu);
7903 		for_each_cpu_worker_pool(pool, cpu)
7904 			pool->node = cpu_to_node(cpu);
7905 	}
7906 
7907 	list_for_each_entry(wq, &workqueues, list) {
7908 		WARN(init_rescuer(wq),
7909 		     "workqueue: failed to create early rescuer for %s",
7910 		     wq->name);
7911 	}
7912 
7913 	mutex_unlock(&wq_pool_mutex);
7914 
7915 	/*
7916 	 * Create the initial workers. A BH pool has one pseudo worker that
7917 	 * represents the shared BH execution context and thus doesn't get
7918 	 * affected by hotplug events. Create the BH pseudo workers for all
7919 	 * possible CPUs here.
7920 	 */
7921 	for_each_possible_cpu(cpu)
7922 		for_each_bh_worker_pool(pool, cpu)
7923 			BUG_ON(!create_worker(pool));
7924 
7925 	for_each_online_cpu(cpu) {
7926 		for_each_cpu_worker_pool(pool, cpu) {
7927 			pool->flags &= ~POOL_DISASSOCIATED;
7928 			BUG_ON(!create_worker(pool));
7929 		}
7930 	}
7931 
7932 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7933 		BUG_ON(!create_worker(pool));
7934 
7935 	wq_online = true;
7936 	wq_watchdog_init();
7937 }
7938 
7939 /*
7940  * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7941  * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7942  * and consecutive pod ID. The rest of @pt is initialized accordingly.
7943  */
init_pod_type(struct wq_pod_type * pt,bool (* cpus_share_pod)(int,int))7944 static void __init init_pod_type(struct wq_pod_type *pt,
7945 				 bool (*cpus_share_pod)(int, int))
7946 {
7947 	int cur, pre, cpu, pod;
7948 
7949 	pt->nr_pods = 0;
7950 
7951 	/* init @pt->cpu_pod[] according to @cpus_share_pod() */
7952 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7953 	BUG_ON(!pt->cpu_pod);
7954 
7955 	for_each_possible_cpu(cur) {
7956 		for_each_possible_cpu(pre) {
7957 			if (pre >= cur) {
7958 				pt->cpu_pod[cur] = pt->nr_pods++;
7959 				break;
7960 			}
7961 			if (cpus_share_pod(cur, pre)) {
7962 				pt->cpu_pod[cur] = pt->cpu_pod[pre];
7963 				break;
7964 			}
7965 		}
7966 	}
7967 
7968 	/* init the rest to match @pt->cpu_pod[] */
7969 	pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7970 	pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7971 	BUG_ON(!pt->pod_cpus || !pt->pod_node);
7972 
7973 	for (pod = 0; pod < pt->nr_pods; pod++)
7974 		BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7975 
7976 	for_each_possible_cpu(cpu) {
7977 		cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7978 		pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7979 	}
7980 }
7981 
cpus_dont_share(int cpu0,int cpu1)7982 static bool __init cpus_dont_share(int cpu0, int cpu1)
7983 {
7984 	return false;
7985 }
7986 
cpus_share_smt(int cpu0,int cpu1)7987 static bool __init cpus_share_smt(int cpu0, int cpu1)
7988 {
7989 #ifdef CONFIG_SCHED_SMT
7990 	return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
7991 #else
7992 	return false;
7993 #endif
7994 }
7995 
cpus_share_numa(int cpu0,int cpu1)7996 static bool __init cpus_share_numa(int cpu0, int cpu1)
7997 {
7998 	return cpu_to_node(cpu0) == cpu_to_node(cpu1);
7999 }
8000 
8001 /**
8002  * workqueue_init_topology - initialize CPU pods for unbound workqueues
8003  *
8004  * This is the third step of three-staged workqueue subsystem initialization and
8005  * invoked after SMP and topology information are fully initialized. It
8006  * initializes the unbound CPU pods accordingly.
8007  */
workqueue_init_topology(void)8008 void __init workqueue_init_topology(void)
8009 {
8010 	struct workqueue_struct *wq;
8011 	int cpu;
8012 
8013 	init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
8014 	init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
8015 	init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
8016 	init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
8017 
8018 	wq_topo_initialized = true;
8019 
8020 	mutex_lock(&wq_pool_mutex);
8021 
8022 	/*
8023 	 * Workqueues allocated earlier would have all CPUs sharing the default
8024 	 * worker pool. Explicitly call unbound_wq_update_pwq() on all workqueue
8025 	 * and CPU combinations to apply per-pod sharing.
8026 	 */
8027 	list_for_each_entry(wq, &workqueues, list) {
8028 		for_each_online_cpu(cpu)
8029 			unbound_wq_update_pwq(wq, cpu);
8030 		if (wq->flags & WQ_UNBOUND) {
8031 			mutex_lock(&wq->mutex);
8032 			wq_update_node_max_active(wq, -1);
8033 			mutex_unlock(&wq->mutex);
8034 		}
8035 	}
8036 
8037 	mutex_unlock(&wq_pool_mutex);
8038 }
8039 
__warn_flushing_systemwide_wq(void)8040 void __warn_flushing_systemwide_wq(void)
8041 {
8042 	pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
8043 	dump_stack();
8044 }
8045 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
8046 
workqueue_unbound_cpus_setup(char * str)8047 static int __init workqueue_unbound_cpus_setup(char *str)
8048 {
8049 	if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
8050 		cpumask_clear(&wq_cmdline_cpumask);
8051 		pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
8052 	}
8053 
8054 	return 1;
8055 }
8056 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
8057