1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Portions Copyright (C) 1992 Drew Eckhardt
4 */
5 #ifndef _LINUX_BLKDEV_H
6 #define _LINUX_BLKDEV_H
7
8 #include <linux/types.h>
9 #include <linux/blk_types.h>
10 #include <linux/device.h>
11 #include <linux/list.h>
12 #include <linux/llist.h>
13 #include <linux/minmax.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/wait.h>
17 #include <linux/bio.h>
18 #include <linux/gfp.h>
19 #include <linux/kdev_t.h>
20 #include <linux/rcupdate.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/blkzoned.h>
23 #include <linux/sched.h>
24 #include <linux/sbitmap.h>
25 #include <linux/uuid.h>
26 #include <linux/xarray.h>
27 #include <linux/file.h>
28 #include <linux/lockdep.h>
29
30 struct module;
31 struct request_queue;
32 struct elevator_queue;
33 struct blk_trace;
34 struct request;
35 struct sg_io_hdr;
36 struct blkcg_gq;
37 struct blk_flush_queue;
38 struct kiocb;
39 struct pr_ops;
40 struct rq_qos;
41 struct blk_queue_stats;
42 struct blk_stat_callback;
43 struct blk_crypto_profile;
44
45 extern const struct device_type disk_type;
46 extern const struct device_type part_type;
47 extern const struct class block_class;
48
49 /*
50 * Maximum number of blkcg policies allowed to be registered concurrently.
51 * Defined here to simplify include dependency.
52 */
53 #define BLKCG_MAX_POLS 6
54
55 #define DISK_MAX_PARTS 256
56 #define DISK_NAME_LEN 32
57
58 #define PARTITION_META_INFO_VOLNAMELTH 64
59 /*
60 * Enough for the string representation of any kind of UUID plus NULL.
61 * EFI UUID is 36 characters. MSDOS UUID is 11 characters.
62 */
63 #define PARTITION_META_INFO_UUIDLTH (UUID_STRING_LEN + 1)
64
65 struct partition_meta_info {
66 char uuid[PARTITION_META_INFO_UUIDLTH];
67 u8 volname[PARTITION_META_INFO_VOLNAMELTH];
68 };
69
70 /**
71 * DOC: genhd capability flags
72 *
73 * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to
74 * removable media. When set, the device remains present even when media is not
75 * inserted. Shall not be set for devices which are removed entirely when the
76 * media is removed.
77 *
78 * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events,
79 * doesn't appear in sysfs, and can't be opened from userspace or using
80 * blkdev_get*. Used for the underlying components of multipath devices.
81 *
82 * ``GENHD_FL_NO_PART``: partition support is disabled. The kernel will not
83 * scan for partitions from add_disk, and users can't add partitions manually.
84 *
85 */
86 enum {
87 GENHD_FL_REMOVABLE = 1 << 0,
88 GENHD_FL_HIDDEN = 1 << 1,
89 GENHD_FL_NO_PART = 1 << 2,
90 };
91
92 enum {
93 DISK_EVENT_MEDIA_CHANGE = 1 << 0, /* media changed */
94 DISK_EVENT_EJECT_REQUEST = 1 << 1, /* eject requested */
95 };
96
97 enum {
98 /* Poll even if events_poll_msecs is unset */
99 DISK_EVENT_FLAG_POLL = 1 << 0,
100 /* Forward events to udev */
101 DISK_EVENT_FLAG_UEVENT = 1 << 1,
102 /* Block event polling when open for exclusive write */
103 DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE = 1 << 2,
104 };
105
106 struct disk_events;
107 struct badblocks;
108
109 enum blk_integrity_checksum {
110 BLK_INTEGRITY_CSUM_NONE = 0,
111 BLK_INTEGRITY_CSUM_IP = 1,
112 BLK_INTEGRITY_CSUM_CRC = 2,
113 BLK_INTEGRITY_CSUM_CRC64 = 3,
114 } __packed ;
115
116 struct blk_integrity {
117 unsigned char flags;
118 enum blk_integrity_checksum csum_type;
119 unsigned char tuple_size;
120 unsigned char pi_offset;
121 unsigned char interval_exp;
122 unsigned char tag_size;
123 };
124
125 typedef unsigned int __bitwise blk_mode_t;
126
127 /* open for reading */
128 #define BLK_OPEN_READ ((__force blk_mode_t)(1 << 0))
129 /* open for writing */
130 #define BLK_OPEN_WRITE ((__force blk_mode_t)(1 << 1))
131 /* open exclusively (vs other exclusive openers */
132 #define BLK_OPEN_EXCL ((__force blk_mode_t)(1 << 2))
133 /* opened with O_NDELAY */
134 #define BLK_OPEN_NDELAY ((__force blk_mode_t)(1 << 3))
135 /* open for "writes" only for ioctls (specialy hack for floppy.c) */
136 #define BLK_OPEN_WRITE_IOCTL ((__force blk_mode_t)(1 << 4))
137 /* open is exclusive wrt all other BLK_OPEN_WRITE opens to the device */
138 #define BLK_OPEN_RESTRICT_WRITES ((__force blk_mode_t)(1 << 5))
139 /* return partition scanning errors */
140 #define BLK_OPEN_STRICT_SCAN ((__force blk_mode_t)(1 << 6))
141
142 struct gendisk {
143 /*
144 * major/first_minor/minors should not be set by any new driver, the
145 * block core will take care of allocating them automatically.
146 */
147 int major;
148 int first_minor;
149 int minors;
150
151 char disk_name[DISK_NAME_LEN]; /* name of major driver */
152
153 unsigned short events; /* supported events */
154 unsigned short event_flags; /* flags related to event processing */
155
156 struct xarray part_tbl;
157 struct block_device *part0;
158
159 const struct block_device_operations *fops;
160 struct request_queue *queue;
161 void *private_data;
162
163 struct bio_set bio_split;
164
165 int flags;
166 unsigned long state;
167 #define GD_NEED_PART_SCAN 0
168 #define GD_READ_ONLY 1
169 #define GD_DEAD 2
170 #define GD_NATIVE_CAPACITY 3
171 #define GD_ADDED 4
172 #define GD_SUPPRESS_PART_SCAN 5
173 #define GD_OWNS_QUEUE 6
174
175 struct mutex open_mutex; /* open/close mutex */
176 unsigned open_partitions; /* number of open partitions */
177
178 struct backing_dev_info *bdi;
179 struct kobject queue_kobj; /* the queue/ directory */
180 struct kobject *slave_dir;
181 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
182 struct list_head slave_bdevs;
183 #endif
184 struct timer_rand_state *random;
185 struct disk_events *ev;
186
187 #ifdef CONFIG_BLK_DEV_ZONED
188 /*
189 * Zoned block device information. Reads of this information must be
190 * protected with blk_queue_enter() / blk_queue_exit(). Modifying this
191 * information is only allowed while no requests are being processed.
192 * See also blk_mq_freeze_queue() and blk_mq_unfreeze_queue().
193 */
194 unsigned int nr_zones;
195 unsigned int zone_capacity;
196 unsigned int last_zone_capacity;
197 unsigned long __rcu *conv_zones_bitmap;
198 unsigned int zone_wplugs_hash_bits;
199 atomic_t nr_zone_wplugs;
200 spinlock_t zone_wplugs_lock;
201 struct mempool_s *zone_wplugs_pool;
202 struct hlist_head *zone_wplugs_hash;
203 struct workqueue_struct *zone_wplugs_wq;
204 #endif /* CONFIG_BLK_DEV_ZONED */
205
206 #if IS_ENABLED(CONFIG_CDROM)
207 struct cdrom_device_info *cdi;
208 #endif
209 int node_id;
210 struct badblocks *bb;
211 struct lockdep_map lockdep_map;
212 u64 diskseq;
213 blk_mode_t open_mode;
214
215 /*
216 * Independent sector access ranges. This is always NULL for
217 * devices that do not have multiple independent access ranges.
218 */
219 struct blk_independent_access_ranges *ia_ranges;
220
221 struct mutex rqos_state_mutex; /* rqos state change mutex */
222 };
223
224 /**
225 * disk_openers - returns how many openers are there for a disk
226 * @disk: disk to check
227 *
228 * This returns the number of openers for a disk. Note that this value is only
229 * stable if disk->open_mutex is held.
230 *
231 * Note: Due to a quirk in the block layer open code, each open partition is
232 * only counted once even if there are multiple openers.
233 */
disk_openers(struct gendisk * disk)234 static inline unsigned int disk_openers(struct gendisk *disk)
235 {
236 return atomic_read(&disk->part0->bd_openers);
237 }
238
239 /**
240 * disk_has_partscan - return %true if partition scanning is enabled on a disk
241 * @disk: disk to check
242 *
243 * Returns %true if partitions scanning is enabled for @disk, or %false if
244 * partition scanning is disabled either permanently or temporarily.
245 */
disk_has_partscan(struct gendisk * disk)246 static inline bool disk_has_partscan(struct gendisk *disk)
247 {
248 return !(disk->flags & (GENHD_FL_NO_PART | GENHD_FL_HIDDEN)) &&
249 !test_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
250 }
251
252 /*
253 * The gendisk is refcounted by the part0 block_device, and the bd_device
254 * therein is also used for device model presentation in sysfs.
255 */
256 #define dev_to_disk(device) \
257 (dev_to_bdev(device)->bd_disk)
258 #define disk_to_dev(disk) \
259 (&((disk)->part0->bd_device))
260
261 #if IS_REACHABLE(CONFIG_CDROM)
262 #define disk_to_cdi(disk) ((disk)->cdi)
263 #else
264 #define disk_to_cdi(disk) NULL
265 #endif
266
disk_devt(struct gendisk * disk)267 static inline dev_t disk_devt(struct gendisk *disk)
268 {
269 return MKDEV(disk->major, disk->first_minor);
270 }
271
272 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
273 /*
274 * We should strive for 1 << (PAGE_SHIFT + MAX_PAGECACHE_ORDER)
275 * however we constrain this to what we can validate and test.
276 */
277 #define BLK_MAX_BLOCK_SIZE SZ_64K
278 #else
279 #define BLK_MAX_BLOCK_SIZE PAGE_SIZE
280 #endif
281
282
283 /* blk_validate_limits() validates bsize, so drivers don't usually need to */
blk_validate_block_size(unsigned long bsize)284 static inline int blk_validate_block_size(unsigned long bsize)
285 {
286 if (bsize < 512 || bsize > BLK_MAX_BLOCK_SIZE || !is_power_of_2(bsize))
287 return -EINVAL;
288
289 return 0;
290 }
291
blk_op_is_passthrough(blk_opf_t op)292 static inline bool blk_op_is_passthrough(blk_opf_t op)
293 {
294 op &= REQ_OP_MASK;
295 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
296 }
297
298 /* flags set by the driver in queue_limits.features */
299 typedef unsigned int __bitwise blk_features_t;
300
301 /* supports a volatile write cache */
302 #define BLK_FEAT_WRITE_CACHE ((__force blk_features_t)(1u << 0))
303
304 /* supports passing on the FUA bit */
305 #define BLK_FEAT_FUA ((__force blk_features_t)(1u << 1))
306
307 /* rotational device (hard drive or floppy) */
308 #define BLK_FEAT_ROTATIONAL ((__force blk_features_t)(1u << 2))
309
310 /* contributes to the random number pool */
311 #define BLK_FEAT_ADD_RANDOM ((__force blk_features_t)(1u << 3))
312
313 /* do disk/partitions IO accounting */
314 #define BLK_FEAT_IO_STAT ((__force blk_features_t)(1u << 4))
315
316 /* don't modify data until writeback is done */
317 #define BLK_FEAT_STABLE_WRITES ((__force blk_features_t)(1u << 5))
318
319 /* always completes in submit context */
320 #define BLK_FEAT_SYNCHRONOUS ((__force blk_features_t)(1u << 6))
321
322 /* supports REQ_NOWAIT */
323 #define BLK_FEAT_NOWAIT ((__force blk_features_t)(1u << 7))
324
325 /* supports DAX */
326 #define BLK_FEAT_DAX ((__force blk_features_t)(1u << 8))
327
328 /* supports I/O polling */
329 #define BLK_FEAT_POLL ((__force blk_features_t)(1u << 9))
330
331 /* is a zoned device */
332 #define BLK_FEAT_ZONED ((__force blk_features_t)(1u << 10))
333
334 /* supports PCI(e) p2p requests */
335 #define BLK_FEAT_PCI_P2PDMA ((__force blk_features_t)(1u << 12))
336
337 /* skip this queue in blk_mq_(un)quiesce_tagset */
338 #define BLK_FEAT_SKIP_TAGSET_QUIESCE ((__force blk_features_t)(1u << 13))
339
340 /* undocumented magic for bcache */
341 #define BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE \
342 ((__force blk_features_t)(1u << 15))
343
344 /* atomic writes enabled */
345 #define BLK_FEAT_ATOMIC_WRITES \
346 ((__force blk_features_t)(1u << 16))
347
348 /*
349 * Flags automatically inherited when stacking limits.
350 */
351 #define BLK_FEAT_INHERIT_MASK \
352 (BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA | BLK_FEAT_ROTATIONAL | \
353 BLK_FEAT_STABLE_WRITES | BLK_FEAT_ZONED | \
354 BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE)
355
356 /* internal flags in queue_limits.flags */
357 typedef unsigned int __bitwise blk_flags_t;
358
359 /* do not send FLUSH/FUA commands despite advertising a write cache */
360 #define BLK_FLAG_WRITE_CACHE_DISABLED ((__force blk_flags_t)(1u << 0))
361
362 /* I/O topology is misaligned */
363 #define BLK_FLAG_MISALIGNED ((__force blk_flags_t)(1u << 1))
364
365 /* passthrough command IO accounting */
366 #define BLK_FLAG_IOSTATS_PASSTHROUGH ((__force blk_flags_t)(1u << 2))
367
368 struct queue_limits {
369 blk_features_t features;
370 blk_flags_t flags;
371 unsigned long seg_boundary_mask;
372 unsigned long virt_boundary_mask;
373
374 unsigned int max_hw_sectors;
375 unsigned int max_dev_sectors;
376 unsigned int chunk_sectors;
377 unsigned int max_sectors;
378 unsigned int max_user_sectors;
379 unsigned int max_segment_size;
380 unsigned int min_segment_size;
381 unsigned int physical_block_size;
382 unsigned int logical_block_size;
383 unsigned int alignment_offset;
384 unsigned int io_min;
385 unsigned int io_opt;
386 unsigned int max_discard_sectors;
387 unsigned int max_hw_discard_sectors;
388 unsigned int max_user_discard_sectors;
389 unsigned int max_secure_erase_sectors;
390 unsigned int max_write_zeroes_sectors;
391 unsigned int max_hw_zone_append_sectors;
392 unsigned int max_zone_append_sectors;
393 unsigned int discard_granularity;
394 unsigned int discard_alignment;
395 unsigned int zone_write_granularity;
396
397 /* atomic write limits */
398 unsigned int atomic_write_hw_max;
399 unsigned int atomic_write_max_sectors;
400 unsigned int atomic_write_hw_boundary;
401 unsigned int atomic_write_boundary_sectors;
402 unsigned int atomic_write_hw_unit_min;
403 unsigned int atomic_write_unit_min;
404 unsigned int atomic_write_hw_unit_max;
405 unsigned int atomic_write_unit_max;
406
407 unsigned short max_segments;
408 unsigned short max_integrity_segments;
409 unsigned short max_discard_segments;
410
411 unsigned short max_write_streams;
412 unsigned int write_stream_granularity;
413
414 unsigned int max_open_zones;
415 unsigned int max_active_zones;
416
417 /*
418 * Drivers that set dma_alignment to less than 511 must be prepared to
419 * handle individual bvec's that are not a multiple of a SECTOR_SIZE
420 * due to possible offsets.
421 */
422 unsigned int dma_alignment;
423 unsigned int dma_pad_mask;
424
425 struct blk_integrity integrity;
426 };
427
428 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
429 void *data);
430
431 #define BLK_ALL_ZONES ((unsigned int)-1)
432 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
433 unsigned int nr_zones, report_zones_cb cb, void *data);
434 int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op,
435 sector_t sectors, sector_t nr_sectors);
436 int blk_revalidate_disk_zones(struct gendisk *disk);
437
438 /*
439 * Independent access ranges: struct blk_independent_access_range describes
440 * a range of contiguous sectors that can be accessed using device command
441 * execution resources that are independent from the resources used for
442 * other access ranges. This is typically found with single-LUN multi-actuator
443 * HDDs where each access range is served by a different set of heads.
444 * The set of independent ranges supported by the device is defined using
445 * struct blk_independent_access_ranges. The independent ranges must not overlap
446 * and must include all sectors within the disk capacity (no sector holes
447 * allowed).
448 * For a device with multiple ranges, requests targeting sectors in different
449 * ranges can be executed in parallel. A request can straddle an access range
450 * boundary.
451 */
452 struct blk_independent_access_range {
453 struct kobject kobj;
454 sector_t sector;
455 sector_t nr_sectors;
456 };
457
458 struct blk_independent_access_ranges {
459 struct kobject kobj;
460 bool sysfs_registered;
461 unsigned int nr_ia_ranges;
462 struct blk_independent_access_range ia_range[];
463 };
464
465 struct request_queue {
466 /*
467 * The queue owner gets to use this for whatever they like.
468 * ll_rw_blk doesn't touch it.
469 */
470 void *queuedata;
471
472 struct elevator_queue *elevator;
473
474 const struct blk_mq_ops *mq_ops;
475
476 /* sw queues */
477 struct blk_mq_ctx __percpu *queue_ctx;
478
479 /*
480 * various queue flags, see QUEUE_* below
481 */
482 unsigned long queue_flags;
483
484 unsigned int rq_timeout;
485
486 unsigned int queue_depth;
487
488 refcount_t refs;
489
490 /* hw dispatch queues */
491 unsigned int nr_hw_queues;
492 struct xarray hctx_table;
493
494 struct percpu_ref q_usage_counter;
495 struct lock_class_key io_lock_cls_key;
496 struct lockdep_map io_lockdep_map;
497
498 struct lock_class_key q_lock_cls_key;
499 struct lockdep_map q_lockdep_map;
500
501 struct request *last_merge;
502
503 spinlock_t queue_lock;
504
505 int quiesce_depth;
506
507 struct gendisk *disk;
508
509 /*
510 * mq queue kobject
511 */
512 struct kobject *mq_kobj;
513
514 struct queue_limits limits;
515
516 #ifdef CONFIG_PM
517 struct device *dev;
518 enum rpm_status rpm_status;
519 #endif
520
521 /*
522 * Number of contexts that have called blk_set_pm_only(). If this
523 * counter is above zero then only RQF_PM requests are processed.
524 */
525 atomic_t pm_only;
526
527 struct blk_queue_stats *stats;
528 struct rq_qos *rq_qos;
529 struct mutex rq_qos_mutex;
530
531 /*
532 * ida allocated id for this queue. Used to index queues from
533 * ioctx.
534 */
535 int id;
536
537 /*
538 * queue settings
539 */
540 unsigned long nr_requests; /* Max # of requests */
541
542 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
543 struct blk_crypto_profile *crypto_profile;
544 struct kobject *crypto_kobject;
545 #endif
546
547 struct timer_list timeout;
548 struct work_struct timeout_work;
549
550 atomic_t nr_active_requests_shared_tags;
551
552 struct blk_mq_tags *sched_shared_tags;
553
554 struct list_head icq_list;
555 #ifdef CONFIG_BLK_CGROUP
556 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
557 struct blkcg_gq *root_blkg;
558 struct list_head blkg_list;
559 struct mutex blkcg_mutex;
560 #endif
561
562 int node;
563
564 spinlock_t requeue_lock;
565 struct list_head requeue_list;
566 struct delayed_work requeue_work;
567
568 #ifdef CONFIG_BLK_DEV_IO_TRACE
569 struct blk_trace __rcu *blk_trace;
570 #endif
571 /*
572 * for flush operations
573 */
574 struct blk_flush_queue *fq;
575 struct list_head flush_list;
576
577 /*
578 * Protects against I/O scheduler switching, particularly when updating
579 * q->elevator. Since the elevator update code path may also modify q->
580 * nr_requests and wbt latency, this lock also protects the sysfs attrs
581 * nr_requests and wbt_lat_usec. Additionally the nr_hw_queues update
582 * may modify hctx tags, reserved-tags and cpumask, so this lock also
583 * helps protect the hctx sysfs/debugfs attrs. To ensure proper locking
584 * order during an elevator or nr_hw_queue update, first freeze the
585 * queue, then acquire ->elevator_lock.
586 */
587 struct mutex elevator_lock;
588
589 struct mutex sysfs_lock;
590 /*
591 * Protects queue limits and also sysfs attribute read_ahead_kb.
592 */
593 struct mutex limits_lock;
594
595 /*
596 * for reusing dead hctx instance in case of updating
597 * nr_hw_queues
598 */
599 struct list_head unused_hctx_list;
600 spinlock_t unused_hctx_lock;
601
602 int mq_freeze_depth;
603
604 #ifdef CONFIG_BLK_DEV_THROTTLING
605 /* Throttle data */
606 struct throtl_data *td;
607 #endif
608 struct rcu_head rcu_head;
609 #ifdef CONFIG_LOCKDEP
610 struct task_struct *mq_freeze_owner;
611 int mq_freeze_owner_depth;
612 /*
613 * Records disk & queue state in current context, used in unfreeze
614 * queue
615 */
616 bool mq_freeze_disk_dead;
617 bool mq_freeze_queue_dying;
618 #endif
619 wait_queue_head_t mq_freeze_wq;
620 /*
621 * Protect concurrent access to q_usage_counter by
622 * percpu_ref_kill() and percpu_ref_reinit().
623 */
624 struct mutex mq_freeze_lock;
625
626 struct blk_mq_tag_set *tag_set;
627 struct list_head tag_set_list;
628
629 struct dentry *debugfs_dir;
630 struct dentry *sched_debugfs_dir;
631 struct dentry *rqos_debugfs_dir;
632 /*
633 * Serializes all debugfs metadata operations using the above dentries.
634 */
635 struct mutex debugfs_mutex;
636 };
637
638 /* Keep blk_queue_flag_name[] in sync with the definitions below */
639 enum {
640 QUEUE_FLAG_DYING, /* queue being torn down */
641 QUEUE_FLAG_NOMERGES, /* disable merge attempts */
642 QUEUE_FLAG_SAME_COMP, /* complete on same CPU-group */
643 QUEUE_FLAG_FAIL_IO, /* fake timeout */
644 QUEUE_FLAG_NOXMERGES, /* No extended merges */
645 QUEUE_FLAG_SAME_FORCE, /* force complete on same CPU */
646 QUEUE_FLAG_INIT_DONE, /* queue is initialized */
647 QUEUE_FLAG_STATS, /* track IO start and completion times */
648 QUEUE_FLAG_REGISTERED, /* queue has been registered to a disk */
649 QUEUE_FLAG_QUIESCED, /* queue has been quiesced */
650 QUEUE_FLAG_RQ_ALLOC_TIME, /* record rq->alloc_time_ns */
651 QUEUE_FLAG_HCTX_ACTIVE, /* at least one blk-mq hctx is active */
652 QUEUE_FLAG_SQ_SCHED, /* single queue style io dispatch */
653 QUEUE_FLAG_DISABLE_WBT_DEF, /* for sched to disable/enable wbt */
654 QUEUE_FLAG_NO_ELV_SWITCH, /* can't switch elevator any more */
655 QUEUE_FLAG_MAX
656 };
657
658 #define QUEUE_FLAG_MQ_DEFAULT (1UL << QUEUE_FLAG_SAME_COMP)
659
660 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
661 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
662
663 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
664 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
665 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
666 #define blk_queue_noxmerges(q) \
667 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
668 #define blk_queue_nonrot(q) (!((q)->limits.features & BLK_FEAT_ROTATIONAL))
669 #define blk_queue_io_stat(q) ((q)->limits.features & BLK_FEAT_IO_STAT)
670 #define blk_queue_passthrough_stat(q) \
671 ((q)->limits.flags & BLK_FLAG_IOSTATS_PASSTHROUGH)
672 #define blk_queue_dax(q) ((q)->limits.features & BLK_FEAT_DAX)
673 #define blk_queue_pci_p2pdma(q) ((q)->limits.features & BLK_FEAT_PCI_P2PDMA)
674 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
675 #define blk_queue_rq_alloc_time(q) \
676 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
677 #else
678 #define blk_queue_rq_alloc_time(q) false
679 #endif
680
681 #define blk_noretry_request(rq) \
682 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
683 REQ_FAILFAST_DRIVER))
684 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
685 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only)
686 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
687 #define blk_queue_sq_sched(q) test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags)
688 #define blk_queue_skip_tagset_quiesce(q) \
689 ((q)->limits.features & BLK_FEAT_SKIP_TAGSET_QUIESCE)
690 #define blk_queue_disable_wbt(q) \
691 test_bit(QUEUE_FLAG_DISABLE_WBT_DEF, &(q)->queue_flags)
692 #define blk_queue_no_elv_switch(q) \
693 test_bit(QUEUE_FLAG_NO_ELV_SWITCH, &(q)->queue_flags)
694
695 extern void blk_set_pm_only(struct request_queue *q);
696 extern void blk_clear_pm_only(struct request_queue *q);
697
698 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
699
700 #define dma_map_bvec(dev, bv, dir, attrs) \
701 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
702 (dir), (attrs))
703
queue_is_mq(struct request_queue * q)704 static inline bool queue_is_mq(struct request_queue *q)
705 {
706 return q->mq_ops;
707 }
708
709 #ifdef CONFIG_PM
queue_rpm_status(struct request_queue * q)710 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
711 {
712 return q->rpm_status;
713 }
714 #else
queue_rpm_status(struct request_queue * q)715 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
716 {
717 return RPM_ACTIVE;
718 }
719 #endif
720
blk_queue_is_zoned(struct request_queue * q)721 static inline bool blk_queue_is_zoned(struct request_queue *q)
722 {
723 return IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
724 (q->limits.features & BLK_FEAT_ZONED);
725 }
726
disk_zone_no(struct gendisk * disk,sector_t sector)727 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
728 {
729 if (!blk_queue_is_zoned(disk->queue))
730 return 0;
731 return sector >> ilog2(disk->queue->limits.chunk_sectors);
732 }
733
bdev_max_open_zones(struct block_device * bdev)734 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
735 {
736 return bdev->bd_disk->queue->limits.max_open_zones;
737 }
738
bdev_max_active_zones(struct block_device * bdev)739 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
740 {
741 return bdev->bd_disk->queue->limits.max_active_zones;
742 }
743
blk_queue_depth(struct request_queue * q)744 static inline unsigned int blk_queue_depth(struct request_queue *q)
745 {
746 if (q->queue_depth)
747 return q->queue_depth;
748
749 return q->nr_requests;
750 }
751
752 /*
753 * default timeout for SG_IO if none specified
754 */
755 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
756 #define BLK_MIN_SG_TIMEOUT (7 * HZ)
757
758 /* This should not be used directly - use rq_for_each_segment */
759 #define for_each_bio(_bio) \
760 for (; _bio; _bio = _bio->bi_next)
761
762 int __must_check add_disk_fwnode(struct device *parent, struct gendisk *disk,
763 const struct attribute_group **groups,
764 struct fwnode_handle *fwnode);
765 int __must_check device_add_disk(struct device *parent, struct gendisk *disk,
766 const struct attribute_group **groups);
add_disk(struct gendisk * disk)767 static inline int __must_check add_disk(struct gendisk *disk)
768 {
769 return device_add_disk(NULL, disk, NULL);
770 }
771 void del_gendisk(struct gendisk *gp);
772 void invalidate_disk(struct gendisk *disk);
773 void set_disk_ro(struct gendisk *disk, bool read_only);
774 void disk_uevent(struct gendisk *disk, enum kobject_action action);
775
bdev_partno(const struct block_device * bdev)776 static inline u8 bdev_partno(const struct block_device *bdev)
777 {
778 return atomic_read(&bdev->__bd_flags) & BD_PARTNO;
779 }
780
bdev_test_flag(const struct block_device * bdev,unsigned flag)781 static inline bool bdev_test_flag(const struct block_device *bdev, unsigned flag)
782 {
783 return atomic_read(&bdev->__bd_flags) & flag;
784 }
785
bdev_set_flag(struct block_device * bdev,unsigned flag)786 static inline void bdev_set_flag(struct block_device *bdev, unsigned flag)
787 {
788 atomic_or(flag, &bdev->__bd_flags);
789 }
790
bdev_clear_flag(struct block_device * bdev,unsigned flag)791 static inline void bdev_clear_flag(struct block_device *bdev, unsigned flag)
792 {
793 atomic_andnot(flag, &bdev->__bd_flags);
794 }
795
get_disk_ro(struct gendisk * disk)796 static inline bool get_disk_ro(struct gendisk *disk)
797 {
798 return bdev_test_flag(disk->part0, BD_READ_ONLY) ||
799 test_bit(GD_READ_ONLY, &disk->state);
800 }
801
bdev_read_only(struct block_device * bdev)802 static inline bool bdev_read_only(struct block_device *bdev)
803 {
804 return bdev_test_flag(bdev, BD_READ_ONLY) || get_disk_ro(bdev->bd_disk);
805 }
806
807 bool set_capacity_and_notify(struct gendisk *disk, sector_t size);
808 void disk_force_media_change(struct gendisk *disk);
809 void bdev_mark_dead(struct block_device *bdev, bool surprise);
810
811 void add_disk_randomness(struct gendisk *disk) __latent_entropy;
812 void rand_initialize_disk(struct gendisk *disk);
813
get_start_sect(struct block_device * bdev)814 static inline sector_t get_start_sect(struct block_device *bdev)
815 {
816 return bdev->bd_start_sect;
817 }
818
bdev_nr_sectors(struct block_device * bdev)819 static inline sector_t bdev_nr_sectors(struct block_device *bdev)
820 {
821 return bdev->bd_nr_sectors;
822 }
823
bdev_nr_bytes(struct block_device * bdev)824 static inline loff_t bdev_nr_bytes(struct block_device *bdev)
825 {
826 return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT;
827 }
828
get_capacity(struct gendisk * disk)829 static inline sector_t get_capacity(struct gendisk *disk)
830 {
831 return bdev_nr_sectors(disk->part0);
832 }
833
sb_bdev_nr_blocks(struct super_block * sb)834 static inline u64 sb_bdev_nr_blocks(struct super_block *sb)
835 {
836 return bdev_nr_sectors(sb->s_bdev) >>
837 (sb->s_blocksize_bits - SECTOR_SHIFT);
838 }
839
840 #ifdef CONFIG_BLK_DEV_ZONED
disk_nr_zones(struct gendisk * disk)841 static inline unsigned int disk_nr_zones(struct gendisk *disk)
842 {
843 return disk->nr_zones;
844 }
845 bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs);
846
847 /**
848 * disk_zone_capacity - returns the zone capacity of zone containing @sector
849 * @disk: disk to work with
850 * @sector: sector number within the querying zone
851 *
852 * Returns the zone capacity of a zone containing @sector. @sector can be any
853 * sector in the zone.
854 */
disk_zone_capacity(struct gendisk * disk,sector_t sector)855 static inline unsigned int disk_zone_capacity(struct gendisk *disk,
856 sector_t sector)
857 {
858 sector_t zone_sectors = disk->queue->limits.chunk_sectors;
859
860 if (sector + zone_sectors >= get_capacity(disk))
861 return disk->last_zone_capacity;
862 return disk->zone_capacity;
863 }
bdev_zone_capacity(struct block_device * bdev,sector_t pos)864 static inline unsigned int bdev_zone_capacity(struct block_device *bdev,
865 sector_t pos)
866 {
867 return disk_zone_capacity(bdev->bd_disk, pos);
868 }
869 #else /* CONFIG_BLK_DEV_ZONED */
disk_nr_zones(struct gendisk * disk)870 static inline unsigned int disk_nr_zones(struct gendisk *disk)
871 {
872 return 0;
873 }
blk_zone_plug_bio(struct bio * bio,unsigned int nr_segs)874 static inline bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs)
875 {
876 return false;
877 }
878 #endif /* CONFIG_BLK_DEV_ZONED */
879
bdev_nr_zones(struct block_device * bdev)880 static inline unsigned int bdev_nr_zones(struct block_device *bdev)
881 {
882 return disk_nr_zones(bdev->bd_disk);
883 }
884
885 int bdev_disk_changed(struct gendisk *disk, bool invalidate);
886
887 void put_disk(struct gendisk *disk);
888 struct gendisk *__blk_alloc_disk(struct queue_limits *lim, int node,
889 struct lock_class_key *lkclass);
890
891 /**
892 * blk_alloc_disk - allocate a gendisk structure
893 * @lim: queue limits to be used for this disk.
894 * @node_id: numa node to allocate on
895 *
896 * Allocate and pre-initialize a gendisk structure for use with BIO based
897 * drivers.
898 *
899 * Returns an ERR_PTR on error, else the allocated disk.
900 *
901 * Context: can sleep
902 */
903 #define blk_alloc_disk(lim, node_id) \
904 ({ \
905 static struct lock_class_key __key; \
906 \
907 __blk_alloc_disk(lim, node_id, &__key); \
908 })
909
910 int __register_blkdev(unsigned int major, const char *name,
911 void (*probe)(dev_t devt));
912 #define register_blkdev(major, name) \
913 __register_blkdev(major, name, NULL)
914 void unregister_blkdev(unsigned int major, const char *name);
915
916 bool disk_check_media_change(struct gendisk *disk);
917 void set_capacity(struct gendisk *disk, sector_t size);
918
919 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
920 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk);
921 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk);
922 #else
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)923 static inline int bd_link_disk_holder(struct block_device *bdev,
924 struct gendisk *disk)
925 {
926 return 0;
927 }
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)928 static inline void bd_unlink_disk_holder(struct block_device *bdev,
929 struct gendisk *disk)
930 {
931 }
932 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */
933
934 dev_t part_devt(struct gendisk *disk, u8 partno);
935 void inc_diskseq(struct gendisk *disk);
936 void blk_request_module(dev_t devt);
937
938 extern int blk_register_queue(struct gendisk *disk);
939 extern void blk_unregister_queue(struct gendisk *disk);
940 void submit_bio_noacct(struct bio *bio);
941 struct bio *bio_split_to_limits(struct bio *bio);
942
943 extern int blk_lld_busy(struct request_queue *q);
944 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
945 extern void blk_queue_exit(struct request_queue *q);
946 extern void blk_sync_queue(struct request_queue *q);
947
948 /* Helper to convert REQ_OP_XXX to its string format XXX */
949 extern const char *blk_op_str(enum req_op op);
950
951 int blk_status_to_errno(blk_status_t status);
952 blk_status_t errno_to_blk_status(int errno);
953 const char *blk_status_to_str(blk_status_t status);
954
955 /* only poll the hardware once, don't continue until a completion was found */
956 #define BLK_POLL_ONESHOT (1 << 0)
957 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags);
958 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
959 unsigned int flags);
960
bdev_get_queue(struct block_device * bdev)961 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
962 {
963 return bdev->bd_queue; /* this is never NULL */
964 }
965
966 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
967 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
968
bio_zone_no(struct bio * bio)969 static inline unsigned int bio_zone_no(struct bio *bio)
970 {
971 return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector);
972 }
973
bio_straddles_zones(struct bio * bio)974 static inline bool bio_straddles_zones(struct bio *bio)
975 {
976 return bio_sectors(bio) &&
977 bio_zone_no(bio) !=
978 disk_zone_no(bio->bi_bdev->bd_disk, bio_end_sector(bio) - 1);
979 }
980
981 /*
982 * Return how much within the boundary is left to be used for I/O at a given
983 * offset.
984 */
blk_boundary_sectors_left(sector_t offset,unsigned int boundary_sectors)985 static inline unsigned int blk_boundary_sectors_left(sector_t offset,
986 unsigned int boundary_sectors)
987 {
988 if (unlikely(!is_power_of_2(boundary_sectors)))
989 return boundary_sectors - sector_div(offset, boundary_sectors);
990 return boundary_sectors - (offset & (boundary_sectors - 1));
991 }
992
993 /**
994 * queue_limits_start_update - start an atomic update of queue limits
995 * @q: queue to update
996 *
997 * This functions starts an atomic update of the queue limits. It takes a lock
998 * to prevent other updates and returns a snapshot of the current limits that
999 * the caller can modify. The caller must call queue_limits_commit_update()
1000 * to finish the update.
1001 *
1002 * Context: process context.
1003 */
1004 static inline struct queue_limits
queue_limits_start_update(struct request_queue * q)1005 queue_limits_start_update(struct request_queue *q)
1006 {
1007 mutex_lock(&q->limits_lock);
1008 return q->limits;
1009 }
1010 int queue_limits_commit_update_frozen(struct request_queue *q,
1011 struct queue_limits *lim);
1012 int queue_limits_commit_update(struct request_queue *q,
1013 struct queue_limits *lim);
1014 int queue_limits_set(struct request_queue *q, struct queue_limits *lim);
1015 int blk_validate_limits(struct queue_limits *lim);
1016
1017 /**
1018 * queue_limits_cancel_update - cancel an atomic update of queue limits
1019 * @q: queue to update
1020 *
1021 * This functions cancels an atomic update of the queue limits started by
1022 * queue_limits_start_update() and should be used when an error occurs after
1023 * starting update.
1024 */
queue_limits_cancel_update(struct request_queue * q)1025 static inline void queue_limits_cancel_update(struct request_queue *q)
1026 {
1027 mutex_unlock(&q->limits_lock);
1028 }
1029
1030 /*
1031 * These helpers are for drivers that have sloppy feature negotiation and might
1032 * have to disable DISCARD, WRITE_ZEROES or SECURE_DISCARD from the I/O
1033 * completion handler when the device returned an indicator that the respective
1034 * feature is not actually supported. They are racy and the driver needs to
1035 * cope with that. Try to avoid this scheme if you can.
1036 */
blk_queue_disable_discard(struct request_queue * q)1037 static inline void blk_queue_disable_discard(struct request_queue *q)
1038 {
1039 q->limits.max_discard_sectors = 0;
1040 }
1041
blk_queue_disable_secure_erase(struct request_queue * q)1042 static inline void blk_queue_disable_secure_erase(struct request_queue *q)
1043 {
1044 q->limits.max_secure_erase_sectors = 0;
1045 }
1046
blk_queue_disable_write_zeroes(struct request_queue * q)1047 static inline void blk_queue_disable_write_zeroes(struct request_queue *q)
1048 {
1049 q->limits.max_write_zeroes_sectors = 0;
1050 }
1051
1052 /*
1053 * Access functions for manipulating queue properties
1054 */
1055 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1056 extern void blk_set_stacking_limits(struct queue_limits *lim);
1057 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1058 sector_t offset);
1059 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
1060 sector_t offset, const char *pfx);
1061 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1062
1063 struct blk_independent_access_ranges *
1064 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges);
1065 void disk_set_independent_access_ranges(struct gendisk *disk,
1066 struct blk_independent_access_ranges *iars);
1067
1068 bool __must_check blk_get_queue(struct request_queue *);
1069 extern void blk_put_queue(struct request_queue *);
1070
1071 void blk_mark_disk_dead(struct gendisk *disk);
1072
1073 struct rq_list {
1074 struct request *head;
1075 struct request *tail;
1076 };
1077
1078 #ifdef CONFIG_BLOCK
1079 /*
1080 * blk_plug permits building a queue of related requests by holding the I/O
1081 * fragments for a short period. This allows merging of sequential requests
1082 * into single larger request. As the requests are moved from a per-task list to
1083 * the device's request_queue in a batch, this results in improved scalability
1084 * as the lock contention for request_queue lock is reduced.
1085 *
1086 * It is ok not to disable preemption when adding the request to the plug list
1087 * or when attempting a merge. For details, please see schedule() where
1088 * blk_flush_plug() is called.
1089 */
1090 struct blk_plug {
1091 struct rq_list mq_list; /* blk-mq requests */
1092
1093 /* if ios_left is > 1, we can batch tag/rq allocations */
1094 struct rq_list cached_rqs;
1095 u64 cur_ktime;
1096 unsigned short nr_ios;
1097
1098 unsigned short rq_count;
1099
1100 bool multiple_queues;
1101 bool has_elevator;
1102
1103 struct list_head cb_list; /* md requires an unplug callback */
1104 };
1105
1106 struct blk_plug_cb;
1107 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1108 struct blk_plug_cb {
1109 struct list_head list;
1110 blk_plug_cb_fn callback;
1111 void *data;
1112 };
1113 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1114 void *data, int size);
1115 extern void blk_start_plug(struct blk_plug *);
1116 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short);
1117 extern void blk_finish_plug(struct blk_plug *);
1118
1119 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule);
blk_flush_plug(struct blk_plug * plug,bool async)1120 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1121 {
1122 if (plug)
1123 __blk_flush_plug(plug, async);
1124 }
1125
1126 /*
1127 * tsk == current here
1128 */
blk_plug_invalidate_ts(struct task_struct * tsk)1129 static inline void blk_plug_invalidate_ts(struct task_struct *tsk)
1130 {
1131 struct blk_plug *plug = tsk->plug;
1132
1133 if (plug)
1134 plug->cur_ktime = 0;
1135 current->flags &= ~PF_BLOCK_TS;
1136 }
1137
1138 int blkdev_issue_flush(struct block_device *bdev);
1139 long nr_blockdev_pages(void);
1140 #else /* CONFIG_BLOCK */
1141 struct blk_plug {
1142 };
1143
blk_start_plug_nr_ios(struct blk_plug * plug,unsigned short nr_ios)1144 static inline void blk_start_plug_nr_ios(struct blk_plug *plug,
1145 unsigned short nr_ios)
1146 {
1147 }
1148
blk_start_plug(struct blk_plug * plug)1149 static inline void blk_start_plug(struct blk_plug *plug)
1150 {
1151 }
1152
blk_finish_plug(struct blk_plug * plug)1153 static inline void blk_finish_plug(struct blk_plug *plug)
1154 {
1155 }
1156
blk_flush_plug(struct blk_plug * plug,bool async)1157 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1158 {
1159 }
1160
blk_plug_invalidate_ts(struct task_struct * tsk)1161 static inline void blk_plug_invalidate_ts(struct task_struct *tsk)
1162 {
1163 }
1164
blkdev_issue_flush(struct block_device * bdev)1165 static inline int blkdev_issue_flush(struct block_device *bdev)
1166 {
1167 return 0;
1168 }
1169
nr_blockdev_pages(void)1170 static inline long nr_blockdev_pages(void)
1171 {
1172 return 0;
1173 }
1174 #endif /* CONFIG_BLOCK */
1175
1176 extern void blk_io_schedule(void);
1177
1178 int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1179 sector_t nr_sects, gfp_t gfp_mask);
1180 int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1181 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop);
1182 int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector,
1183 sector_t nr_sects, gfp_t gfp);
1184
1185 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */
1186 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */
1187 #define BLKDEV_ZERO_KILLABLE (1 << 2) /* interruptible by fatal signals */
1188
1189 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1190 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1191 unsigned flags);
1192 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1193 sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1194
sb_issue_discard(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask,unsigned long flags)1195 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1196 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1197 {
1198 return blkdev_issue_discard(sb->s_bdev,
1199 block << (sb->s_blocksize_bits -
1200 SECTOR_SHIFT),
1201 nr_blocks << (sb->s_blocksize_bits -
1202 SECTOR_SHIFT),
1203 gfp_mask);
1204 }
sb_issue_zeroout(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask)1205 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1206 sector_t nr_blocks, gfp_t gfp_mask)
1207 {
1208 return blkdev_issue_zeroout(sb->s_bdev,
1209 block << (sb->s_blocksize_bits -
1210 SECTOR_SHIFT),
1211 nr_blocks << (sb->s_blocksize_bits -
1212 SECTOR_SHIFT),
1213 gfp_mask, 0);
1214 }
1215
bdev_is_partition(struct block_device * bdev)1216 static inline bool bdev_is_partition(struct block_device *bdev)
1217 {
1218 return bdev_partno(bdev) != 0;
1219 }
1220
1221 enum blk_default_limits {
1222 BLK_MAX_SEGMENTS = 128,
1223 BLK_SAFE_MAX_SECTORS = 255,
1224 BLK_MAX_SEGMENT_SIZE = 65536,
1225 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
1226 };
1227
1228 /*
1229 * Default upper limit for the software max_sectors limit used for
1230 * regular file system I/O. This can be increased through sysfs.
1231 *
1232 * Not to be confused with the max_hw_sector limit that is entirely
1233 * controlled by the driver, usually based on hardware limits.
1234 */
1235 #define BLK_DEF_MAX_SECTORS_CAP 2560u
1236
bdev_limits(struct block_device * bdev)1237 static inline struct queue_limits *bdev_limits(struct block_device *bdev)
1238 {
1239 return &bdev_get_queue(bdev)->limits;
1240 }
1241
queue_segment_boundary(const struct request_queue * q)1242 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1243 {
1244 return q->limits.seg_boundary_mask;
1245 }
1246
queue_virt_boundary(const struct request_queue * q)1247 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1248 {
1249 return q->limits.virt_boundary_mask;
1250 }
1251
queue_max_sectors(const struct request_queue * q)1252 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1253 {
1254 return q->limits.max_sectors;
1255 }
1256
queue_max_bytes(struct request_queue * q)1257 static inline unsigned int queue_max_bytes(struct request_queue *q)
1258 {
1259 return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9;
1260 }
1261
queue_max_hw_sectors(const struct request_queue * q)1262 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1263 {
1264 return q->limits.max_hw_sectors;
1265 }
1266
queue_max_segments(const struct request_queue * q)1267 static inline unsigned short queue_max_segments(const struct request_queue *q)
1268 {
1269 return q->limits.max_segments;
1270 }
1271
queue_max_discard_segments(const struct request_queue * q)1272 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1273 {
1274 return q->limits.max_discard_segments;
1275 }
1276
queue_max_segment_size(const struct request_queue * q)1277 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1278 {
1279 return q->limits.max_segment_size;
1280 }
1281
queue_emulates_zone_append(struct request_queue * q)1282 static inline bool queue_emulates_zone_append(struct request_queue *q)
1283 {
1284 return blk_queue_is_zoned(q) && !q->limits.max_hw_zone_append_sectors;
1285 }
1286
bdev_emulates_zone_append(struct block_device * bdev)1287 static inline bool bdev_emulates_zone_append(struct block_device *bdev)
1288 {
1289 return queue_emulates_zone_append(bdev_get_queue(bdev));
1290 }
1291
1292 static inline unsigned int
bdev_max_zone_append_sectors(struct block_device * bdev)1293 bdev_max_zone_append_sectors(struct block_device *bdev)
1294 {
1295 return bdev_limits(bdev)->max_zone_append_sectors;
1296 }
1297
bdev_max_segments(struct block_device * bdev)1298 static inline unsigned int bdev_max_segments(struct block_device *bdev)
1299 {
1300 return queue_max_segments(bdev_get_queue(bdev));
1301 }
1302
bdev_max_write_streams(struct block_device * bdev)1303 static inline unsigned short bdev_max_write_streams(struct block_device *bdev)
1304 {
1305 if (bdev_is_partition(bdev))
1306 return 0;
1307 return bdev_limits(bdev)->max_write_streams;
1308 }
1309
queue_logical_block_size(const struct request_queue * q)1310 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1311 {
1312 return q->limits.logical_block_size;
1313 }
1314
bdev_logical_block_size(struct block_device * bdev)1315 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1316 {
1317 return queue_logical_block_size(bdev_get_queue(bdev));
1318 }
1319
queue_physical_block_size(const struct request_queue * q)1320 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1321 {
1322 return q->limits.physical_block_size;
1323 }
1324
bdev_physical_block_size(struct block_device * bdev)1325 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1326 {
1327 return queue_physical_block_size(bdev_get_queue(bdev));
1328 }
1329
queue_io_min(const struct request_queue * q)1330 static inline unsigned int queue_io_min(const struct request_queue *q)
1331 {
1332 return q->limits.io_min;
1333 }
1334
bdev_io_min(struct block_device * bdev)1335 static inline unsigned int bdev_io_min(struct block_device *bdev)
1336 {
1337 return queue_io_min(bdev_get_queue(bdev));
1338 }
1339
queue_io_opt(const struct request_queue * q)1340 static inline unsigned int queue_io_opt(const struct request_queue *q)
1341 {
1342 return q->limits.io_opt;
1343 }
1344
bdev_io_opt(struct block_device * bdev)1345 static inline unsigned int bdev_io_opt(struct block_device *bdev)
1346 {
1347 return queue_io_opt(bdev_get_queue(bdev));
1348 }
1349
1350 static inline unsigned int
queue_zone_write_granularity(const struct request_queue * q)1351 queue_zone_write_granularity(const struct request_queue *q)
1352 {
1353 return q->limits.zone_write_granularity;
1354 }
1355
1356 static inline unsigned int
bdev_zone_write_granularity(struct block_device * bdev)1357 bdev_zone_write_granularity(struct block_device *bdev)
1358 {
1359 return queue_zone_write_granularity(bdev_get_queue(bdev));
1360 }
1361
1362 int bdev_alignment_offset(struct block_device *bdev);
1363 unsigned int bdev_discard_alignment(struct block_device *bdev);
1364
bdev_max_discard_sectors(struct block_device * bdev)1365 static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev)
1366 {
1367 return bdev_limits(bdev)->max_discard_sectors;
1368 }
1369
bdev_discard_granularity(struct block_device * bdev)1370 static inline unsigned int bdev_discard_granularity(struct block_device *bdev)
1371 {
1372 return bdev_limits(bdev)->discard_granularity;
1373 }
1374
1375 static inline unsigned int
bdev_max_secure_erase_sectors(struct block_device * bdev)1376 bdev_max_secure_erase_sectors(struct block_device *bdev)
1377 {
1378 return bdev_limits(bdev)->max_secure_erase_sectors;
1379 }
1380
bdev_write_zeroes_sectors(struct block_device * bdev)1381 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1382 {
1383 return bdev_limits(bdev)->max_write_zeroes_sectors;
1384 }
1385
bdev_nonrot(struct block_device * bdev)1386 static inline bool bdev_nonrot(struct block_device *bdev)
1387 {
1388 return blk_queue_nonrot(bdev_get_queue(bdev));
1389 }
1390
bdev_synchronous(struct block_device * bdev)1391 static inline bool bdev_synchronous(struct block_device *bdev)
1392 {
1393 return bdev->bd_disk->queue->limits.features & BLK_FEAT_SYNCHRONOUS;
1394 }
1395
bdev_stable_writes(struct block_device * bdev)1396 static inline bool bdev_stable_writes(struct block_device *bdev)
1397 {
1398 struct request_queue *q = bdev_get_queue(bdev);
1399
1400 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1401 q->limits.integrity.csum_type != BLK_INTEGRITY_CSUM_NONE)
1402 return true;
1403 return q->limits.features & BLK_FEAT_STABLE_WRITES;
1404 }
1405
blk_queue_write_cache(struct request_queue * q)1406 static inline bool blk_queue_write_cache(struct request_queue *q)
1407 {
1408 return (q->limits.features & BLK_FEAT_WRITE_CACHE) &&
1409 !(q->limits.flags & BLK_FLAG_WRITE_CACHE_DISABLED);
1410 }
1411
bdev_write_cache(struct block_device * bdev)1412 static inline bool bdev_write_cache(struct block_device *bdev)
1413 {
1414 return blk_queue_write_cache(bdev_get_queue(bdev));
1415 }
1416
bdev_fua(struct block_device * bdev)1417 static inline bool bdev_fua(struct block_device *bdev)
1418 {
1419 return bdev_limits(bdev)->features & BLK_FEAT_FUA;
1420 }
1421
bdev_nowait(struct block_device * bdev)1422 static inline bool bdev_nowait(struct block_device *bdev)
1423 {
1424 return bdev->bd_disk->queue->limits.features & BLK_FEAT_NOWAIT;
1425 }
1426
bdev_is_zoned(struct block_device * bdev)1427 static inline bool bdev_is_zoned(struct block_device *bdev)
1428 {
1429 return blk_queue_is_zoned(bdev_get_queue(bdev));
1430 }
1431
bdev_zone_no(struct block_device * bdev,sector_t sec)1432 static inline unsigned int bdev_zone_no(struct block_device *bdev, sector_t sec)
1433 {
1434 return disk_zone_no(bdev->bd_disk, sec);
1435 }
1436
bdev_zone_sectors(struct block_device * bdev)1437 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1438 {
1439 struct request_queue *q = bdev_get_queue(bdev);
1440
1441 if (!blk_queue_is_zoned(q))
1442 return 0;
1443 return q->limits.chunk_sectors;
1444 }
1445
bdev_offset_from_zone_start(struct block_device * bdev,sector_t sector)1446 static inline sector_t bdev_offset_from_zone_start(struct block_device *bdev,
1447 sector_t sector)
1448 {
1449 return sector & (bdev_zone_sectors(bdev) - 1);
1450 }
1451
bio_offset_from_zone_start(struct bio * bio)1452 static inline sector_t bio_offset_from_zone_start(struct bio *bio)
1453 {
1454 return bdev_offset_from_zone_start(bio->bi_bdev,
1455 bio->bi_iter.bi_sector);
1456 }
1457
bdev_is_zone_start(struct block_device * bdev,sector_t sector)1458 static inline bool bdev_is_zone_start(struct block_device *bdev,
1459 sector_t sector)
1460 {
1461 return bdev_offset_from_zone_start(bdev, sector) == 0;
1462 }
1463
1464 /* Check whether @sector is a multiple of the zone size. */
bdev_is_zone_aligned(struct block_device * bdev,sector_t sector)1465 static inline bool bdev_is_zone_aligned(struct block_device *bdev,
1466 sector_t sector)
1467 {
1468 return bdev_is_zone_start(bdev, sector);
1469 }
1470
1471 /**
1472 * bdev_zone_is_seq - check if a sector belongs to a sequential write zone
1473 * @bdev: block device to check
1474 * @sector: sector number
1475 *
1476 * Check if @sector on @bdev is contained in a sequential write required zone.
1477 */
bdev_zone_is_seq(struct block_device * bdev,sector_t sector)1478 static inline bool bdev_zone_is_seq(struct block_device *bdev, sector_t sector)
1479 {
1480 bool is_seq = false;
1481
1482 #if IS_ENABLED(CONFIG_BLK_DEV_ZONED)
1483 if (bdev_is_zoned(bdev)) {
1484 struct gendisk *disk = bdev->bd_disk;
1485 unsigned long *bitmap;
1486
1487 rcu_read_lock();
1488 bitmap = rcu_dereference(disk->conv_zones_bitmap);
1489 is_seq = !bitmap ||
1490 !test_bit(disk_zone_no(disk, sector), bitmap);
1491 rcu_read_unlock();
1492 }
1493 #endif
1494
1495 return is_seq;
1496 }
1497
1498 int blk_zone_issue_zeroout(struct block_device *bdev, sector_t sector,
1499 sector_t nr_sects, gfp_t gfp_mask);
1500
queue_dma_alignment(const struct request_queue * q)1501 static inline unsigned int queue_dma_alignment(const struct request_queue *q)
1502 {
1503 return q->limits.dma_alignment;
1504 }
1505
1506 static inline unsigned int
queue_atomic_write_unit_max_bytes(const struct request_queue * q)1507 queue_atomic_write_unit_max_bytes(const struct request_queue *q)
1508 {
1509 return q->limits.atomic_write_unit_max;
1510 }
1511
1512 static inline unsigned int
queue_atomic_write_unit_min_bytes(const struct request_queue * q)1513 queue_atomic_write_unit_min_bytes(const struct request_queue *q)
1514 {
1515 return q->limits.atomic_write_unit_min;
1516 }
1517
1518 static inline unsigned int
queue_atomic_write_boundary_bytes(const struct request_queue * q)1519 queue_atomic_write_boundary_bytes(const struct request_queue *q)
1520 {
1521 return q->limits.atomic_write_boundary_sectors << SECTOR_SHIFT;
1522 }
1523
1524 static inline unsigned int
queue_atomic_write_max_bytes(const struct request_queue * q)1525 queue_atomic_write_max_bytes(const struct request_queue *q)
1526 {
1527 return q->limits.atomic_write_max_sectors << SECTOR_SHIFT;
1528 }
1529
bdev_dma_alignment(struct block_device * bdev)1530 static inline unsigned int bdev_dma_alignment(struct block_device *bdev)
1531 {
1532 return queue_dma_alignment(bdev_get_queue(bdev));
1533 }
1534
bdev_iter_is_aligned(struct block_device * bdev,struct iov_iter * iter)1535 static inline bool bdev_iter_is_aligned(struct block_device *bdev,
1536 struct iov_iter *iter)
1537 {
1538 return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev),
1539 bdev_logical_block_size(bdev) - 1);
1540 }
1541
1542 static inline unsigned int
blk_lim_dma_alignment_and_pad(struct queue_limits * lim)1543 blk_lim_dma_alignment_and_pad(struct queue_limits *lim)
1544 {
1545 return lim->dma_alignment | lim->dma_pad_mask;
1546 }
1547
blk_rq_aligned(struct request_queue * q,unsigned long addr,unsigned int len)1548 static inline bool blk_rq_aligned(struct request_queue *q, unsigned long addr,
1549 unsigned int len)
1550 {
1551 unsigned int alignment = blk_lim_dma_alignment_and_pad(&q->limits);
1552
1553 return !(addr & alignment) && !(len & alignment);
1554 }
1555
1556 /* assumes size > 256 */
blksize_bits(unsigned int size)1557 static inline unsigned int blksize_bits(unsigned int size)
1558 {
1559 return order_base_2(size >> SECTOR_SHIFT) + SECTOR_SHIFT;
1560 }
1561
1562 int kblockd_schedule_work(struct work_struct *work);
1563 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1564
1565 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1566 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1567 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1568 MODULE_ALIAS("block-major-" __stringify(major) "-*")
1569
1570 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1571
1572 bool blk_crypto_register(struct blk_crypto_profile *profile,
1573 struct request_queue *q);
1574
1575 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1576
blk_crypto_register(struct blk_crypto_profile * profile,struct request_queue * q)1577 static inline bool blk_crypto_register(struct blk_crypto_profile *profile,
1578 struct request_queue *q)
1579 {
1580 return true;
1581 }
1582
1583 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1584
1585 enum blk_unique_id {
1586 /* these match the Designator Types specified in SPC */
1587 BLK_UID_T10 = 1,
1588 BLK_UID_EUI64 = 2,
1589 BLK_UID_NAA = 3,
1590 };
1591
1592 struct block_device_operations {
1593 void (*submit_bio)(struct bio *bio);
1594 int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob,
1595 unsigned int flags);
1596 int (*open)(struct gendisk *disk, blk_mode_t mode);
1597 void (*release)(struct gendisk *disk);
1598 int (*ioctl)(struct block_device *bdev, blk_mode_t mode,
1599 unsigned cmd, unsigned long arg);
1600 int (*compat_ioctl)(struct block_device *bdev, blk_mode_t mode,
1601 unsigned cmd, unsigned long arg);
1602 unsigned int (*check_events) (struct gendisk *disk,
1603 unsigned int clearing);
1604 void (*unlock_native_capacity) (struct gendisk *);
1605 int (*getgeo)(struct block_device *, struct hd_geometry *);
1606 int (*set_read_only)(struct block_device *bdev, bool ro);
1607 void (*free_disk)(struct gendisk *disk);
1608 /* this callback is with swap_lock and sometimes page table lock held */
1609 void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1610 int (*report_zones)(struct gendisk *, sector_t sector,
1611 unsigned int nr_zones, report_zones_cb cb, void *data);
1612 char *(*devnode)(struct gendisk *disk, umode_t *mode);
1613 /* returns the length of the identifier or a negative errno: */
1614 int (*get_unique_id)(struct gendisk *disk, u8 id[16],
1615 enum blk_unique_id id_type);
1616 struct module *owner;
1617 const struct pr_ops *pr_ops;
1618
1619 /*
1620 * Special callback for probing GPT entry at a given sector.
1621 * Needed by Android devices, used by GPT scanner and MMC blk
1622 * driver.
1623 */
1624 int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector);
1625 };
1626
1627 #ifdef CONFIG_COMPAT
1628 extern int blkdev_compat_ptr_ioctl(struct block_device *, blk_mode_t,
1629 unsigned int, unsigned long);
1630 #else
1631 #define blkdev_compat_ptr_ioctl NULL
1632 #endif
1633
blk_wake_io_task(struct task_struct * waiter)1634 static inline void blk_wake_io_task(struct task_struct *waiter)
1635 {
1636 /*
1637 * If we're polling, the task itself is doing the completions. For
1638 * that case, we don't need to signal a wakeup, it's enough to just
1639 * mark us as RUNNING.
1640 */
1641 if (waiter == current)
1642 __set_current_state(TASK_RUNNING);
1643 else
1644 wake_up_process(waiter);
1645 }
1646
1647 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
1648 unsigned long start_time);
1649 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1650 unsigned int sectors, unsigned long start_time);
1651
1652 unsigned long bio_start_io_acct(struct bio *bio);
1653 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1654 struct block_device *orig_bdev);
1655
1656 /**
1657 * bio_end_io_acct - end I/O accounting for bio based drivers
1658 * @bio: bio to end account for
1659 * @start_time: start time returned by bio_start_io_acct()
1660 */
bio_end_io_acct(struct bio * bio,unsigned long start_time)1661 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
1662 {
1663 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev);
1664 }
1665
1666 int bdev_validate_blocksize(struct block_device *bdev, int block_size);
1667 int set_blocksize(struct file *file, int size);
1668
1669 int lookup_bdev(const char *pathname, dev_t *dev);
1670
1671 void blkdev_show(struct seq_file *seqf, off_t offset);
1672
1673 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */
1674 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */
1675 #ifdef CONFIG_BLOCK
1676 #define BLKDEV_MAJOR_MAX 512
1677 #else
1678 #define BLKDEV_MAJOR_MAX 0
1679 #endif
1680
1681 struct blk_holder_ops {
1682 void (*mark_dead)(struct block_device *bdev, bool surprise);
1683
1684 /*
1685 * Sync the file system mounted on the block device.
1686 */
1687 void (*sync)(struct block_device *bdev);
1688
1689 /*
1690 * Freeze the file system mounted on the block device.
1691 */
1692 int (*freeze)(struct block_device *bdev);
1693
1694 /*
1695 * Thaw the file system mounted on the block device.
1696 */
1697 int (*thaw)(struct block_device *bdev);
1698 };
1699
1700 /*
1701 * For filesystems using @fs_holder_ops, the @holder argument passed to
1702 * helpers used to open and claim block devices via
1703 * bd_prepare_to_claim() must point to a superblock.
1704 */
1705 extern const struct blk_holder_ops fs_holder_ops;
1706
1707 /*
1708 * Return the correct open flags for blkdev_get_by_* for super block flags
1709 * as stored in sb->s_flags.
1710 */
1711 #define sb_open_mode(flags) \
1712 (BLK_OPEN_READ | BLK_OPEN_RESTRICT_WRITES | \
1713 (((flags) & SB_RDONLY) ? 0 : BLK_OPEN_WRITE))
1714
1715 struct file *bdev_file_open_by_dev(dev_t dev, blk_mode_t mode, void *holder,
1716 const struct blk_holder_ops *hops);
1717 struct file *bdev_file_open_by_path(const char *path, blk_mode_t mode,
1718 void *holder, const struct blk_holder_ops *hops);
1719 int bd_prepare_to_claim(struct block_device *bdev, void *holder,
1720 const struct blk_holder_ops *hops);
1721 void bd_abort_claiming(struct block_device *bdev, void *holder);
1722
1723 struct block_device *I_BDEV(struct inode *inode);
1724 struct block_device *file_bdev(struct file *bdev_file);
1725 bool disk_live(struct gendisk *disk);
1726 unsigned int block_size(struct block_device *bdev);
1727
1728 #ifdef CONFIG_BLOCK
1729 void invalidate_bdev(struct block_device *bdev);
1730 int sync_blockdev(struct block_device *bdev);
1731 int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend);
1732 int sync_blockdev_nowait(struct block_device *bdev);
1733 void sync_bdevs(bool wait);
1734 void bdev_statx(const struct path *path, struct kstat *stat, u32 request_mask);
1735 void printk_all_partitions(void);
1736 int __init early_lookup_bdev(const char *pathname, dev_t *dev);
1737 #else
invalidate_bdev(struct block_device * bdev)1738 static inline void invalidate_bdev(struct block_device *bdev)
1739 {
1740 }
sync_blockdev(struct block_device * bdev)1741 static inline int sync_blockdev(struct block_device *bdev)
1742 {
1743 return 0;
1744 }
sync_blockdev_nowait(struct block_device * bdev)1745 static inline int sync_blockdev_nowait(struct block_device *bdev)
1746 {
1747 return 0;
1748 }
sync_bdevs(bool wait)1749 static inline void sync_bdevs(bool wait)
1750 {
1751 }
bdev_statx(const struct path * path,struct kstat * stat,u32 request_mask)1752 static inline void bdev_statx(const struct path *path, struct kstat *stat,
1753 u32 request_mask)
1754 {
1755 }
printk_all_partitions(void)1756 static inline void printk_all_partitions(void)
1757 {
1758 }
early_lookup_bdev(const char * pathname,dev_t * dev)1759 static inline int early_lookup_bdev(const char *pathname, dev_t *dev)
1760 {
1761 return -EINVAL;
1762 }
1763 #endif /* CONFIG_BLOCK */
1764
1765 int bdev_freeze(struct block_device *bdev);
1766 int bdev_thaw(struct block_device *bdev);
1767 void bdev_fput(struct file *bdev_file);
1768
1769 struct io_comp_batch {
1770 struct rq_list req_list;
1771 bool need_ts;
1772 void (*complete)(struct io_comp_batch *);
1773 };
1774
blk_atomic_write_start_sect_aligned(sector_t sector,struct queue_limits * limits)1775 static inline bool blk_atomic_write_start_sect_aligned(sector_t sector,
1776 struct queue_limits *limits)
1777 {
1778 unsigned int alignment = max(limits->atomic_write_hw_unit_min,
1779 limits->atomic_write_hw_boundary);
1780
1781 return IS_ALIGNED(sector, alignment >> SECTOR_SHIFT);
1782 }
1783
bdev_can_atomic_write(struct block_device * bdev)1784 static inline bool bdev_can_atomic_write(struct block_device *bdev)
1785 {
1786 struct request_queue *bd_queue = bdev->bd_queue;
1787 struct queue_limits *limits = &bd_queue->limits;
1788
1789 if (!limits->atomic_write_unit_min)
1790 return false;
1791
1792 if (bdev_is_partition(bdev))
1793 return blk_atomic_write_start_sect_aligned(bdev->bd_start_sect,
1794 limits);
1795
1796 return true;
1797 }
1798
1799 static inline unsigned int
bdev_atomic_write_unit_min_bytes(struct block_device * bdev)1800 bdev_atomic_write_unit_min_bytes(struct block_device *bdev)
1801 {
1802 if (!bdev_can_atomic_write(bdev))
1803 return 0;
1804 return queue_atomic_write_unit_min_bytes(bdev_get_queue(bdev));
1805 }
1806
1807 static inline unsigned int
bdev_atomic_write_unit_max_bytes(struct block_device * bdev)1808 bdev_atomic_write_unit_max_bytes(struct block_device *bdev)
1809 {
1810 if (!bdev_can_atomic_write(bdev))
1811 return 0;
1812 return queue_atomic_write_unit_max_bytes(bdev_get_queue(bdev));
1813 }
1814
1815 #define DEFINE_IO_COMP_BATCH(name) struct io_comp_batch name = { }
1816
1817 #endif /* _LINUX_BLKDEV_H */
1818